WorldWideScience

Sample records for human cancellous bone

  1. Osteoblast recruitment routes in human cancellous bone remodeling

    DEFF Research Database (Denmark)

    Kristensen, Helene Bjørg; Andersen, Thomas Levin; Marcussen, Niels

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling...... is lacking. We addressed this question by quantifying cell densities, cell proliferation, osteoblast differentiation markers, and capillaries in human iliac crest biopsy specimens. We found that recruitment occurs on both reversal and bone-forming surfaces, as shown by the cell density and osterix levels...

  2. Age-related variations in the microstructure of human tibial cancellous bone

    DEFF Research Database (Denmark)

    Ding, M.; Odgaard, A.; Linde, F.

    2002-01-01

    -related changes in the three-dimensional (3D) microstructure of human tibial cancellous bone. One hundred and sixty cylindrical cancellous bone specimens were produced from 40 normal proximal tibiae from 40 donors, aged 16-85 years. These specimens were micro-computed tomography (micro-CT) scanned......, and microstructural properties were determined. The specimens were then tested in compression to obtain Young's modulus. The degree of anisotropy, mean marrow space volume, and bone surface-to-volume ratio increased significantly with age. Bone volume fraction, mean trabecular volume, and bone surface density...

  3. Mutual associations among microstructural, physical and mechanical properties of human cancellous bone

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Danielsen, CC

    2002-01-01

    structure and mechanical properties. In this study, 160 cancellous bone specimens were produced from 40 normal human tibiae aged from 16 to 85 years at post-mortem. The specimens underwent micro-CT and the microstructural properties were calculated using unbiased three-dimensional methods. The specimens...... were tested to determine the mechanical properties and the physical/compositional properties were evaluated. The type of structure together with anisotropy correlated well with Young's modulus of human tibial cancellous bone. The plate-like structure reflected high mechanical stress and the rod......-like structure low mechanical stress. There was a strong correlation between the type of trabecular structure and the bone-volume fraction. The most effective microstructural properties for predicting the mechanical properties of cancellous bone seem to differ with age....

  4. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    Best Poster 5Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants AuthorsBabiker , H.; Ding M.; Overgaard S.InstitutionOrthopaedic Research Laboratory, Department of Orthopaedic Surgery, Odense University Hospital, Clinical Institute, University of Southern...... from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants...... with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: DBM; DBM/CB with ratio of 1/3; DBM/allograft with ratio of 1/3; or allograft (Gold standard), respectively. Standardised surgical procedure was used1. At sacrifice, 6 weeks after surgery, both distal femurs were harvested...

  5. Multi-element determination in cancellous bone of human femoral head by PIXE

    International Nuclear Information System (INIS)

    Yuanxun Zhang; Yongping Zhang; Yongpeng Tong; Shijing Qiu; Xiaotao Wu; Kerong Dai

    1996-01-01

    Proton Induced X-ray Emission (PIXE) method is used for the determination of elemental concentrations in cancellous bone of human femoral head from five autopsies and seven patients with femoral neck broken. The specimen preparation and experimental procedure are described in detail. Using the t test, the results show that the concentrations of P, Ca, Fe, Cu, Sr in control group are higher than those in patient group, but the concentrations of S, K, Zn, Mn are not significantly different. The physiological functions of metallic elements in human bone are also discussed. (author). 19 refs., 1 fig., 4 tabs

  6. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.

    Science.gov (United States)

    Wear, Keith A; Nagaraja, Srinidhi; Dreher, Maureen L; Sadoughi, Saghi; Zhu, Shan; Keaveny, Tony M

    2017-10-01

    Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (pmechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone. Published by Elsevier Inc.

  7. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone.

    Science.gov (United States)

    Kim, Do-Gyoon; Shertok, Daniel; Ching Tee, Boon; Yeni, Yener N

    2011-06-03

    Creep is a time-dependent viscoelastic deformation observed under a constant prolonged load. It has been indicated that progressive vertebral deformation due to creep may increase the risk of vertebral fracture in the long-term. The objective of this study was to examine the relationships of creep with trabecular architecture and tissue mineral density (TMD) parameters in human vertebral cancellous bone at a physiological static strain level. Architecture and TMD parameters of cancellous bone were analyzed using microcomputerized tomography (micro-CT) in specimens cored out of human vertebrae. Then, creep and residual strains of the specimens were measured after a two-hour physiological compressive constant static loading and unloading cycle. Creep developed (3877 ± 2158 με) resulting in substantial levels of non-recoverable post-creep residual strain (1797 ± 1391 με). A strong positive linear correlation was found between creep and residual strain (r = 0.94, p creep rate. The TMD variability (GL(COV)) was the strongest correlate of creep rate (r = 0.79, p < 0.001). This result suggests that TMD variability may be a useful parameter for estimating the long-term deformation of a whole vertebral body. The results further suggest that the changes in TMD variability resulting from bone remodeling are of importance and may provide an insight into the understanding of the mechanisms underlying progressive failure of vertebral bodies and development of a clinical fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Free Radicals Formation of Irradiated Lyophilized Can-Cellous Human and Bovine Bone

    International Nuclear Information System (INIS)

    Abbas, Basril; Sudiro, Sutjipto; Hilmy, Nazly

    2000-01-01

    Radiation sterilization of lyophilized human and bovine bone as allograft and xenograft have been produced and used in orthopaedic practice in Indonesia routinely. It is well known from radio biologic studies that one of the most pronounce effects of ionizing radiation on biologic species produced the free radicals that influence the physico-chemical as well as the mechanical properties of irradiated bone. The aim of our study is to investigate the free radicals formation of irradiated lyophilized cancellous triple A bone (Autolyzed Antigen-Extracted Allograft) produced by Batan Research Tissue Bank in Jakarta. The cancellous triple A were prepared according to AATB (American Association of Tissue Bank) method. Gamma Irradiations was done at doses of 10, 20 and 30 kGy with a dose rate of 7,5 kGy/h at room temperature (30 o C± 2 o C). Measurements of free radicals was done at 24 o C ±1 o C within 30 minutes after irradiational and measurement were continued up to 9 months of storage using a JES-REIX ESR Spectrophotometer (JEOL) with Mn exp. ++ standard. Parameters measured, were the effects of mechanical grinding, water immersion and irradiation dose on free radicals formation in the bone. Results show that the signal area of ESR spectra from irradiated bovine bone of 30 kGy was higher than those of human bone I.e. 1,4 x 10 exp. 7 dan 6,4 x 10 exp. 6 Au (arbitrary unit)/g samples respectively. The signal of ESR spectra increased linearly with increasing dose in the range of 10-30 kGy and it will reduce about 30% caused by water immersion. The ESR signal reduced sharply after 2 days and gradually decreased up to 14 days and then became constant up to 9 months of storage at room temperature. A certain method of crushing can produce free radicals. Key Words: free radical, irradiation, allograft, xenograft, mechanical-grinding

  9. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft...

  10. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic

    DEFF Research Database (Denmark)

    Giesen, EB; Ding, Ming; Dalstra, M

    2001-01-01

    The objective of the present study was (1) to test the hypothesis that the elastic and failure properties of the cancellous bone of the mandibular condyle depend on the loading direction, and (2) to relate these properties to bone density parameters. Uniaxial compression tests were performed......). Archimedes' principle was applied to determine bone density parameters. The cancellous bone was in axial loading 3.4 times stiffer and 2.8 times stronger upon failure than in transverse loading. High coefficients of correlation were found among the various mechanical properties and between them...

  11. Three-dimensional microarchitecture of human osteoporotic, osteoarthrotic and rheumatoid arthritic cancellous bones

    DEFF Research Database (Denmark)

    Ding, Ming; Overgaard, Søren

    , OP often leads to skeletal fractures, and OA and RA result in severe joint disability. Over the last a few decades, much significant research on the properties has been carried out on these diseases, however, a detailed comparison of the microarchitecture of cancellous bones of these diseases...... is not available. In this study, we investigated three-dimensional (3-D) microarchitectural properties of OP, OA and RA cancellous bone. We hypothesized that there were significant differences in microarchitecture among OP, OA and RA bone tissues that might lead to different bone quality. Materials and Method...... Twenty OP, fifty OA, and twelve RA femur heads were harvested from patients undergone total hip replacement surgery. Cubic cancellous bone samples (8*8*8 mm3) were prepared and scanned with a high resolution microtomographic system (vivaCT 40, Scanco Medical AG., Brüttisellen, Switzerland). Then micro...

  12. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Directory of Open Access Journals (Sweden)

    Grażyna E Sroga

    Full Text Available To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation or ribose (ribosylation. Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women. More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples. Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar

  13. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.

    Science.gov (United States)

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T

    2011-03-01

    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications

    International Nuclear Information System (INIS)

    Yánez, A.; Herrera, A.; Martel, O.; Monopoli, D.; Afonso, H.

    2016-01-01

    Electron beam melting (EBM) was used to fabricate porous titanium alloy structures. The elastic modulus of these porous structures was similar to the elastic modulus of the cancellous human bone. Two types of cellular lattice structures were manufactured and tested: gyroids and diamonds. The design of the gyroid structures was determined by the main angle of the struts with respect to the axial direction. Thus, structures with angles of between 19 and 68.5° were manufactured. The aim of the design was to reduce the amount of material needed to fabricate a structure with the desired angles to increase the range of stiffness of the scaffolds. Compression tests were conducted to obtain the elastic modulus and the strength. Both parameters increased as the angle decreased. Finally, the specific strength of the gyroid structures was compared with that of the diamond structures and other types of structures. It is shown that, for angles lower than 35°, the gyroid structures had a high strength to weight ratios. - Highlights: • Gyroid and diamond lattice structures were fabricated by electron beam melting. • Compression tests were conducted to obtain the elastic modulus and the strength. • Some gyroid structures show a higher specific strength than other types of structures.

  15. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Yánez, A., E-mail: alejandro.yanez@ulpgc.es [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria (Spain); Herrera, A. [Julius Wolff Institute, Berlin (Germany); Martel, O. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria (Spain); Monopoli, D.; Afonso, H. [Department of Mechanical Engineering, Instituto Tecnológico de Canarias (Spain)

    2016-11-01

    Electron beam melting (EBM) was used to fabricate porous titanium alloy structures. The elastic modulus of these porous structures was similar to the elastic modulus of the cancellous human bone. Two types of cellular lattice structures were manufactured and tested: gyroids and diamonds. The design of the gyroid structures was determined by the main angle of the struts with respect to the axial direction. Thus, structures with angles of between 19 and 68.5° were manufactured. The aim of the design was to reduce the amount of material needed to fabricate a structure with the desired angles to increase the range of stiffness of the scaffolds. Compression tests were conducted to obtain the elastic modulus and the strength. Both parameters increased as the angle decreased. Finally, the specific strength of the gyroid structures was compared with that of the diamond structures and other types of structures. It is shown that, for angles lower than 35°, the gyroid structures had a high strength to weight ratios. - Highlights: • Gyroid and diamond lattice structures were fabricated by electron beam melting. • Compression tests were conducted to obtain the elastic modulus and the strength. • Some gyroid structures show a higher specific strength than other types of structures.

  16. Application of INAA in the assessment of selected elements in cancellous bone of human iliac crest

    International Nuclear Information System (INIS)

    Zaichick, V.

    2007-01-01

    The effect of age and sex was investigated on the concentration of chemical elements in intact cancellous bone of iliac crest of 74 relatively healthy, 15-55 years old women (n = 29) and men (n = 45). Concentrations of Ca, Cl, K, Mg, Mn, Na, P, and Sr in bone samples were determined by instrumental neutron activation analysis using short-lived radionuclides. Mean values (M±S.E.M.) of the mass fraction of the investigated elements (on dry weight basis) for female and male all together were: 127±4 g/kg, 1620±80 mg/kg, 1310±70 mg/kg, 1550±50 mg/kg, <0.32±0.02 mg/kg, 4240±110 mg/kg, 61.8±1.8 g/kg, and 235±18 mg/kg, respectively. The statistically significant (≤0.05) decrease of Ca, Mg, and P concentrations in the iliac cancellous bone with age was found only for women. Sex-related comparison has shown that the mean values of Mg mass fractions in male bone samples were less than in female ones. (author)

  17. Human periodontal ligament stem cells cultured onto cortico-cancellous scaffold drive bone regenerative process

    Directory of Open Access Journals (Sweden)

    F Diomede

    2016-09-01

    Full Text Available The purpose of this work was to test, in vitro and in vivo, a new tissue-engineered construct constituted by porcine cortico-cancellous scaffold (Osteobiol Dual Block (DB and xeno-free ex vivo culture of human Periodontal Ligament Stem Cells (hPDLSCs. hPDLSCs cultured in xeno-free media formulation preserved the stem cells’ morphological features, the expression of stemness and pluripotency markers, and their ability to differentiate into mesenchymal lineage. Transmission electron microscopy analysis suggested that after one week of culture, both noninduced and osteogenic differentiation induced cells joined and grew on DB secreting extracellular matrix (ECM that in osteogenic induced samples was hierarchically assembled in fibrils. Quantitative RT-PCR (qRT-PCR showed the upregulation of key genes involved in the bone differentiation pathway in both differentiated and undifferentiated hPDLSCs cultured with DB (hPDLSCs/DB. Functional studies revealed a significant increased response of calcium transients in the presence of DB, both in undifferentiated and differentiated cells stimulated with calcitonin and parathormone, suggesting that the biomaterial could drive the osteogenic differentiation process of hPDLSCs. These data were confirmed by the increase of gene expression of L-type voltage-dependent Ca2+ (VDCCL, subunits α1C and α2D1 in undifferentiated cells in the presence of DB. In vivo implantation of the hPDLSCs/DB living construct in the mouse calvaria evidenced a precocious osteointegration and vascularisation process. Our results suggest consideration of DB as a biocompatible, osteoinductive and osteoconductive biomaterial, making it a promising tool to regulate cell activities in biological environments and for a potential use in the development of new custom-made tissue engineering.

  18. Three-dimensional Microarchitecture of Adolescent Cancellous Bone

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I; Overgaard, Søren

    regarding three-dimensional (3-D) microarchitecture of normal adolescent cancellous bone. The objective of this study was to investigate 3-D microarchitecture of normal adolescent cancellous bone, and compared them with adult cancellous bone, thus seeking more insight into the subchondral bone adaptations...... of lateral condyle in the young adult. There were no statistical significances in the mechanical properties apart from the Young’s modulus of adolescent in anterior-posterior direction was significantly lower than the other groups. DISCUSSION: This is the first study on the 3-D microarchitecture of human......, Switzerland) resulting in cubic voxel sizes of 10*10*10 m3. Microarchitectural properties were calculated, and the mean values for either tibia, medial or lateral condyle were used in analyses. Furthermore, the samples were first tested non-destructively in compression in antero-posterior (AP) and medial...

  19. Increased presence of capillaries next to remodeling sites in adult human cancellous bone

    DEFF Research Database (Denmark)

    Kristensen, Helene Bjoerg; Andersen, Thomas Levin; Marcussen, Niels

    2013-01-01

    and at the level of the light-microscopically assessed contact of these three entities with the bone or canopy surfaces. Between 51 and 100 microm, their densities leveled to that found above quiescent surfaces. Electron microscopy asserted the close proximity between BRC canopies and capillaries lined...

  20. The micro-architecture of human cancellous bone from fracture neck of femur patients in relation to the structural integrity and fracture toughness of the tissue

    Directory of Open Access Journals (Sweden)

    C. Greenwood

    2015-12-01

    Full Text Available Osteoporosis is clinically assessed from bone mineral density measurements using dual energy X-ray absorption (DXA. However, these measurements do not always provide an accurate fracture prediction, arguably because DXA does not grapple with ‘bone quality’, which is a combined result of microarchitecture, texture, bone tissue properties, past loading history, material chemistry and bone physiology in reaction to disease. Studies addressing bone quality are comparatively few if one considers the potential importance of this factor. They suffer due to low number of human osteoporotic specimens, use of animal proxies and/or the lack of differentiation between confounding parameters such as gender and state of diseased bone. The present study considers bone samples donated from patients (n = 37 who suffered a femoral neck fracture and in this very well defined cohort we have produced in previous work fracture toughness measurements (FT which quantify its ability to resist crack growth which reflects directly the structural integrity of the cancellous bone tissue. We investigated correlations between BV/TV and other microarchitectural parameters; we examined effects that may suggest differences in bone remodelling between males and females and compared the relationships with the FT properties. The data crucially has shown that TbTh, TbSp, SMI and TbN may provide a proxy or surrogate for BV/TV. Correlations between FT critical stress intensity values and microarchitecture parameters (BV/TV, BS/TV, TbN, BS/BV and SMI for osteoporotic cancellous tissue were observed and are for the first time reported in this study. Overall, this study has not only highlighted that the fracture model based upon BMD could potentially be improved with inclusion of other microarchitecture parameters, but has also given us clear clues as to which of them are more influential in this role.

  1. X-treme CT analysis of cancellous bone at the rotator cuff insertion in human individuals with osteoporosis: superficial versus deep quality.

    Science.gov (United States)

    Kirchhoff, Chlodwig; Kirchhoff, Sonja; Sprecher, Christoph M; Ahrens, Philipp; Imhoff, Andreas B; Hinterwimmer, Stefan; Milz, Stefan; Braunstein, Volker

    2013-03-01

    Rotator cuff (RC) repair-especially in the elderly population-is problematic since the patients suffer to a high extent from bone mineral density loss at the reattachment site. Therefore, the study was primarily driven by the question whether it is possible to reach more or qualitatively better cancellous bone and thus a more stable postoperative result if anchors with greater length are used for RC repair and/or the conventional anchors are screwed deeper into the bone. In anatomical terms, the question is raised whether cancellous bone is of better quality close to or far off the RC enthesis. Axial HRqCT scans (X-tremeCT, Scanco Medical) of 36 human cadaveric humeral heads (75 ± 11 years) were performed to determine the ratio of bone volume to total volume (BV/TV), trabecular thickness (Trab Th), number of trabecles (Trab N), trabecular separation (Trab Sp) as well as non-metric indices such as connectivity density (Conn Dens) and structure model index (SMI). Within the greater tuberosity (GT), 6 volumes of interest (VOI) (A1, B1, C1, A2, B2, C2), in the lesser tuberosity (LT) 2 VOIs (D1, D2) and one control VOI in the subchondral bone were set. The analyzed bone cylinder of each VOI was divided into a superficial and a deep portion. The parameters BV/TV, Trab N, Trab Th and Conn Dens in all volumes of the GT and LT revealed higher values in the superficial portion reaching different levels of significance (p significance for the non-metric parameter SMI in no volume of the GT/LT, although the higher values were found superficially. Our data show that cancellous bone presents with decreasing bone quality when analyzing increasingly deeper portions of the bone cylinders of the GT and LT starting at the articular surface. This information seems to be crucial for shoulder surgeons, especially when treating elderly patients. Our results clearly prove that screwing in anchors to a deeper extent will not improve stability, since the deeper bone stock is of worse

  2. Three-dimensional microarchitecture of adolescent cancellous bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Hvid, Ivan

    2012-01-01

    , the adolescent cancellous bone had similar bone volume fraction (BV/TV), structure type (plate, rod or mixtures), and connectivity (3-D trabecular networks) as the adult cancellous bone. The adolescent cancellous bone had significantly lower bone surface density (bone surface per total volume of specimen...... and lateral condyle. These samples were micro-CT scanned (vivaCT 40, Scanco Medical AG, Switzerland) resulting in cubic voxel sizes of 10.5⁎10.5⁎10.5μm(3). Microarchitectural properties were calculated. The samples were then tested in compression followed by collagen and mineral determination. Interestingly...

  3. OSTEOPENIA in cancellous bone of sheep induced by Glucocorticoid alone

    DEFF Research Database (Denmark)

    Ding, Ming; Cheng, L.; Bollen, Peter

    2008-01-01

    Introduction: There is a great need for suitable large animal models that closely resemble osteoporosis in humans, and that they have adequate bone size for bone prosthesis and biomaterial research. Previous investigations have shown that osteoporotic sheep model requires glucocorticoid (GC......) microarchitectural properties and mechanical properties of sheep cancellous bone after a 7 months steroid treatment; and thus to validate a large animal model for orthopaedic implant/biomaterial research. Materials and Methods: Eighteen female sheep were randomly allocated into 3 groups: group 1 (GC-1) received GC......, osteocalcin was significantly reduced after 7 months but a rebound phenomenon was observed 3 months after cessation of GC. In conclusion, this study has validated an osteopenia sheep model. Bone quality was significantly reduced following a 7 months GC-treatment and recovered after further 3 month observation...

  4. Dynamic Mechanical Testing Techniques for Cortical and Cancellous Bone

    Science.gov (United States)

    Cloete, Trevor

    2017-06-01

    Bone fracture typically occurs as an impact loading event (sporting accidents, vehicle collisions), the simulation of which requires in-depth understanding of dynamic bone behavior. Bone is a natural composite material with a complex multi length-scale hierarchical microstructure. At a macroscopic level, it is classified into hard/compact cortical bone and soft/spongy cancellous (trabecular) bone, though both are low-impedance materials relative to steels. Cortical bone is predominant in long bones, while in complex bone geometries (joints, flat bones) a cancellous bone core supports a thin cortical shell. Bone has primarily been studied at quasi-static strain rates (ɛ˙ failure, with interrupted quasi-static tests revealing a strong microstructure dependence. However, bone specimens are typically destroyed during dynamic tests, leading to a lack of dynamic microstructural damage investigations. In this paper, a short overview of dynamic bone testing is presented to give context to the challenges of testing low impedance, strain-rate dependent, non-linear, visco-elastic-brittle materials. Recent state-of-the-art experimental developments in dynamic bone testing are reviewed, with emphasis on pulse shaping, momentum trapping and ISR testing. These techniques allow for dynamic bone testing at small strains and near-constant strain rates with intact specimen recovery. The results are compared to those obtained with varying strain rate tests. Interrupted dynamic test results with microstructural analysis of the recovered specimens are presented and discussed. The paper concludes with a discussion of the experimental and modeling challenges that lie ahead in the field of dynamic bone behavior. The financial assistance of the National Research Foundation and the University of Cape Town towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author alone.

  5. Cosserat moduli of anisotropic cancellous bone : A micromechanical analysis

    NARCIS (Netherlands)

    Fatemi, J.; Onck, P.R.; Poort, G.; Van Keulen, F.

    A micromechanical-based approach is proposed to quantify the effective (in the macroscopic sense) elastic constants of Cosserat materials. The material under investigation (cancellous bone) is cellular and classically elastic at the microscopic level and assumed to be dense Cosserat elastic at the

  6. An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2015-09-01

    Full Text Available Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD instrument and an in vivo application for neonatal bone evaluation are introduced in this study. The UBBD provides several advantages, including noninvasiveness, non-ionizing radiation, portability, and simplicity. In this study, the backscatter signal could be measured within 5 s using the UBBD. Ultrasonic backscatter measurements were performed on 467 neonates (268 males and 199 females at the left calcaneus. The backscatter signal was measured at a central frequency of 3.5 MHz. The delay (T1 and duration (T2 of the backscatter signal of interest (SOI were varied, and the apparent integrated backscatter (AIB, frequency slope of apparent backscatter (FSAB, zero frequency intercept of apparent backscatter (FIAB, and spectral centroid shift (SCS were calculated. The results showed that the SOI selection had a direct influence on cancellous bone evaluation. The AIB and FIAB were positively correlated with the gestational age (|R| up to 0.45, P10 µs. Moderate positive correlations (|R| up to 0.45, P10 µs. The T2 mainly introduced fluctuations in the observed correlation coefficients. The moderate correlations observed with UBBD demonstrate the feasibility of using the backscatter signal to evaluate neonatal bone status. This study also proposes an explicit standard for in vivo SOI selection and neonatal cancellous bone assessment.

  7. Microstructural Assessment of Cancellous Bone Using 3D Microtomography

    International Nuclear Information System (INIS)

    Silva A M H; Alves J M; Da Silva O L; Silva Junior N F; Gazziro M; Pereira J C; Lasso P R O; Vaz C M P; Pereira C A M; Leiva T P; Guarniero R

    2011-01-01

    Cancellous bones have a porous microstructure and can be modeled as linear elastic solid, heterogeneous and anisotropic. Few studies regarding the morphometric analysis of trabecular bone samples with 3D microtomography have been published so far. The technique has spread worldwide for the characterization of trabecular structures in studies related to bone quality and its relationship with metabolic diseases bone like osteoporosis. In our study cancellous bone samples with cubic and cylindrical geometry were extracted from bovine femur were used to investigate the structural arrangement of bone through high resolution x-ray 3D microtomography (μCT). Four trabecular microstructural parameters (tissue volume, bone volume, bone volume fraction and tissue surface) were measured by 2D (stereological method) and 3D morphometric analysis using the software CTan Analyser supplied by the manufacturer of the microtomograph (SkyScan, model 1172, Belgium). The measurements were done in three main directions (superior-inferior, medial-lateral and anterior-posterior) to investigate the correlation between the 2D and 3D morphometric analysis. The results show a high correlation between the analysis. The x-ray 3D microtomography technique has a great potential for the assessment of bone quality.

  8. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  9. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    International Nuclear Information System (INIS)

    Hoffmeister, Brent K; Holt, Andrew P; Kaste, Sue C

    2011-01-01

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  10. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Brent K; Holt, Andrew P [Department of Physics, Rhodes College, Memphis, TN (United States); Kaste, Sue C, E-mail: hoffmeister@rhodes.edu [Department of Diagnostic Imaging, St Jude Children' s Research Hospital, Memphis, TN (United States)

    2011-10-07

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  11. Bone augmentation for cancellous bone- development of a new animal model

    Science.gov (United States)

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  12. Radiographic healing and remodelling of cortical and cancellous bone grafts after rigid plate fixation

    International Nuclear Information System (INIS)

    Waris, P.; Karaharju, E.; Slaetis, P.; Paavolainen, P.

    1980-01-01

    Cortical and cancellous interposition grafts, with rigid plate fixation, in the tibiofibular bones of 130 rabbits were followed radiographically for one year. The cancellous grafts healed earlier, but by 12 weeks both graft types had been incorporated, the distal host-graft interface being the last to heal. Progressive cancellous transformation in both the graft and host bone led to an increased over-all bone diameter, a widened medullary canal and a thinned porotic wall. (Auth.)

  13. Ultrasonic characterization of cancellous bone using apparent integrated backscatter

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, B K [Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States); III, C I Jones [Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States); Caldwell, G J [Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States); Kaste, S C [Department of Diagnostic Imaging, St Jude Children' s Research Hospital, Memphis, TN 38105 (United States)

    2006-06-07

    Apparent integrated backscatter (AIB) is a measure of the frequency-averaged (integrated) backscattered power contained in some portion of a backscattered ultrasonic signal. AIB has been used extensively to study soft tissues, but its usefulness as a tissue characterization technique for cancellous bone has not been demonstrated. To address this, we performed measurements on 17 specimens of cancellous bone over two different frequency ranges using a 1 MHz and 5 MHz broadband ultrasonic transducer. Specimens were obtained from bovine tibiae and prepared in the shape of cubes (15 mm side length) with faces oriented along transverse (anterior, posterior, medial and lateral) and longitudinal (superior and inferior) principal anatomic directions. A mechanical scanning system was used to acquire multiple backscatter signals from each direction for each cube. AIB demonstrated highly significant linear correlations with bone mineral density (BMD) for both the transverse (R{sup 2} = 0.817) and longitudinal (R{sup 2} = 0.488) directions using the 5 MHz transducer. In contrast, the correlations with density were much weaker for the 1 MHz transducer (R{sup 2} = 0.007 transverse, R{sup 2} = 0.228 longitudinal). In all cases where a significant correlation was observed, AIB was found to decrease with increasing BMD.

  14. Changed morphology and mechanical properties of cancellous bone in the mandibular condyles of edentate people

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    Since edentate subjects have a reduced masticatory function, it can be expected that the morphology of the cancellous bone of their mandibular condyles has changed according to the altered mechanical environment. In the present study, the morphology of cylindrical cancellous bone specimens...

  15. Bone cement allocation analysis in artificial cancellous bone structures

    Directory of Open Access Journals (Sweden)

    Ivan Zderic

    2017-01-01

    Conclusion: The simulated leakage path seemed to be the most important adverse injection factor influencing the uniformity of cement distribution. Another adverse factor causing dispersion of this distribution was represented by the simulated bone marrow. However, the rather uniform distribution of the totally injected cement amount, considered as one unit, could be ascribed to the medium viscosity of the used cement. Finally, with its short waiting time of 45 s, the stepwise injection procedure was shown to be ineffective in preventing cement leakage.

  16. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss.

    Science.gov (United States)

    Iwaniec, U T; Philbrick, K A; Wong, C P; Gordon, J L; Kahler-Quesada, A M; Olson, D A; Branscum, A J; Sargent, J L; DeMambro, V E; Rosen, C J; Turner, R T

    2016-10-01

    Room temperature housing (22 °C) results in premature cancellous bone loss in female mice. The bone loss was prevented by housing mice at thermoneutral temperature (32 °C). Thermogenesis differs markedly between mice and humans and mild cold stress induced by standard room temperature housing may introduce an unrecognized confounding variable into preclinical studies. Female mice are often used as preclinical models for osteoporosis but, in contrast to humans, mice exhibit cancellous bone loss during growth. Mice are routinely housed at room temperature (18-23 °C), a strategy that exaggerates physiological differences in thermoregulation between mice (obligatory daily heterotherms) and humans (homeotherms). The purpose of this investigation was to assess whether housing female mice at thermoneutral (temperature range where the basal rate of energy production is at equilibrium with heat loss) alters bone growth, turnover and microarchitecture. Growing (4-week-old) female C57BL/6J and C3H/HeJ mice were housed at either 22 or 32 °C for up to 18 weeks. C57BL/6J mice housed at 22 °C experienced a 62 % cancellous bone loss from the distal femur metaphysis during the interval from 8 to 18 weeks of age and lesser bone loss from the distal femur epiphysis, whereas cancellous and cortical bone mass in 32 °C-housed mice were unchanged or increased. The impact of thermoneutral housing on cancellous bone was not limited to C57BL/6J mice as C3H/HeJ mice exhibited a similar skeletal response. The beneficial effects of thermoneutral housing on cancellous bone were associated with decreased Ucp1 gene expression in brown adipose tissue, increased bone marrow adiposity, higher rates of bone formation, higher expression levels of osteogenic genes and locally decreased bone resorption. Housing female mice at 22 °C resulted in premature cancellous bone loss. Failure to account for species differences in thermoregulation may seriously confound interpretation of studies

  17. Defect nonunion of a metatarsal bone fracture in a cow: successful management with bone plating and autogenous cancellous bone graft.

    Science.gov (United States)

    Raghunath, M; Singh, N; Singh, T; Gopinathan, A; Mohindroo, J; Atri, K

    2013-01-01

    A two-and-half-year-old cow was presented with a defect nonunion of the right metatarsal III/IV bone following a severely comminuted open fracture two months previously. The animal underwent open fixation using a 4.5 mm, broad, 10-hole, dynamic compression plate and autogenous cancellous bone graft collected from the contralateral iliac shaft. The animal started partial weight bearing after the third postoperative day and resumed complete weight bearing after the 10th day. Fracture healing was complete and the implants were removed after the 120th postoperative day. Stable fixation by means of a bone plate in conjunction with a cancellous bone graft facilitated complete healing and restoration of the bone column of the defect and the metatarsal fracture. The animal made a complete recovery.

  18. Pharmacokinetics of Cefuroxime in Cortical and Cancellous Bone Obtained by Microdialysis - a Porcine Study

    DEFF Research Database (Denmark)

    Tøttrup, Mikkel; Forsingdal Hardlei, Tore; Bendtsen, Michael

    2014-01-01

    . As reference, free and total plasma concentrations were also measured. The animals received a bolus of 1500 mg cefuroxime over 30 min. No significant differences between key pharmacokinetic parameters for sealed and unsealed drill holes in cortical bone were found. The mean area under the concentration...... (MD) technique for measurement of cefuroxime in bone, and to obtain pharmacokinetic profiles for the same drug in porcine cortical and cancellous bone. Measurements were conducted in bone-wax sealed and unsealed drill holes in cortical bone, in drill holes in cancellous bone and in subcutaneous tissue...

  19. Accuracy of cancellous bone volume fraction measured by micro-CT scanning

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Hvid, I

    1999-01-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...

  20. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.

    Science.gov (United States)

    Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M

    2018-02-01

    Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and

  1. Cancellous bone structure of iliac crest biopsies following 370 days of head-down bed rest

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Morukov, Boris V.; Vico, Laurence

    2005-01-01

    INTRODUCTION: Static bone histomorphometry was applied to existing iliac bone sections originating from a 370-d 5 degrees head-down bed rest experiment. This bed rest experiment is the longest ever to have been conducted. We hypothesized that bed rest would decrease cancellous bone volume fractio...

  2. Comparative biomechanical and microstructural analysis of native versus peracetic acid-ethanol treated cancellous bone graft.

    Science.gov (United States)

    Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Gelinsky, Michael; Günther, Klaus-Peter; Stiehler, Maik

    2014-01-01

    Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at -20 °C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG.

  3. Comparative Biomechanical and Microstructural Analysis of Native versus Peracetic Acid-Ethanol Treated Cancellous Bone Graft

    Directory of Open Access Journals (Sweden)

    Juliane Rauh

    2014-01-01

    Full Text Available Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG. Forty-eight human CBG cylinders were either treated by PE or frozen at −20°C and subjected to compression testing and histological and scanning electron microscopy (SEM analysis. The levels of compressive strength, stiffness (Young’s modulus, and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG.

  4. Comparative Biomechanical and Microstructural Analysis of Native versus Peracetic Acid-Ethanol Treated Cancellous Bone Graft

    Science.gov (United States)

    Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Günther, Klaus-Peter; Stiehler, Maik

    2014-01-01

    Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at −20°C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG. PMID:24678514

  5. Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research.

    Science.gov (United States)

    Ding, Ming; Cheng, Liming; Bollen, Peter; Schwarz, Peter; Overgaard, Søren

    2010-02-15

    Glucocorticoid with low calcium and phosphorus intake induces osteopenia in cancellous bone of sheep. To validate a large animal model for spine fusion and biomaterial research. A variety of ovariectomized animals has been used to study osteoporosis. Most experimental spine fusions were based on normal animals, and there is a great need for suitable large animal models with adequate bone size that closely resemble osteoporosis in humans. Eighteen female skeletal mature sheep were randomly allocated into 3 groups, 6 each. Group 1 (GC-1) received prednisolone (GC) treatment (0.60 mg/kg/day, 5 times weekly) for 7 months. Group 2 (GC-2) received the same treatment as GC-1 for 7 months followed by 3 months without treatment. Group 3 was left untreated and served as the controls. All sheep received restricted diet with low calcium and phosphorus during experiment. After killing the animals, cancellous bone specimens from the vertebra, femurs, and tibias were micro-CT scanned and tested mechanically. Serum biomarkers were determined. In lumbar vertebra, the GC treatment resulted in significant decrease of cancellous bone volume fraction and trabecular thickness, and bone strength. However, the microarchitecture and bone strength of GC-2 recovered to a similar level of the controls. A similar trend of microarchitectural changes was also observed in the distal femur and proximal tibia of both GC treated sheep. The bone formation marker serum-osteocalcin was largely reduced in GC-1 compared to the controls, but recovered with a rebound increase at month 10 in GC-2. The current investigation demonstrates that the changes in microarchitecture and mechanical properties were comparable with those observed in humans after long-term GC treatment. A prolonged GC treatment is needed for a long-term observation to keep osteopenic bone. This model resembles long-term glucocorticoid treated osteoporotic model, and is useful in preclinical studies.

  6. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  7. [A long-term follow-up of treatment of adult unicameral bone cysts with allograft of lyophilized cancellous bone].

    Science.gov (United States)

    Zhang, Yonggang; Wang, Yan; Cheng, Jiying

    2005-08-01

    To investigate the long-term clinical results of treatment of adult unicameral bone cyst with cancellous allograft. From 1993 to 1998, 15 patients with unicameral bone cyst were treated by allograft with lyophilized cancellous bone. Among 15 patients, there were 5 males and 10 females, aging 19-41 years with an average of 27 years. The average follow-up time was 7.5 years (6-11 years). The X-ray films were taken and the CT scanning were carried out. The X-ray films showed that the allograft particles became vague 2-3 months after operation, that the allograft particles fused and began to form new bone and the bone density increased 5 months after operation, and that new bone formation completed after 7 months of operation. At the end of follow-up, remodelling in new bone occurred. Recurrence was not found in all patients. The symptom of pain disappeared or relieved obviously. Allograft of lyophilized cancellous bone is an effective treatment for adult unicameral bone cysts.

  8. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone

    International Nuclear Information System (INIS)

    Lee, Kang ll; Hughes, E R; Humphrey, V F; Leighton, T G; Choi, Min Joo

    2007-01-01

    The Biot and the modified Biot-Attenborough (MBA) models have been found useful to understand ultrasonic wave propagation in cancellous bone. However, neither of the models, as previously applied to cancellous bone, allows for the angular dependence of acoustic properties with direction. The present study aims to account for the acoustic anisotropy in cancellous bone, by introducing empirical angle-dependent input parameters, as defined for a highly oriented structure, into the Biot and the MBA models. The anisotropy of the angle-dependent Biot model is attributed to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment. The angle-dependent MBA model employs a simple empirical way of using the parametric fit for the fast and the slow wave speeds. The angle-dependent models were used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the trabecular alignment of cancellous bone. The predictions were compared with those of the Schoenberg model for anisotropy in cancellous bone and in vitro experimental measurements from the literature. The angle-dependent models successfully predicted the angular dependence of phase velocity of the fast wave with direction. The root-mean-square errors of the measured versus predicted fast wave velocities were 79.2 m s -1 (angle-dependent Biot model) and 36.1 m s -1 (angle-dependent MBA model). They also predicted the fact that the slow wave is nearly independent of propagation angle for angles about 50 0 , but consistently underestimated the slow wave velocity with the root-mean-square errors of 187.2 m s -1 (angle-dependent Biot model) and 240.8 m s -1 (angle-dependent MBA model). The study indicates that the angle-dependent models reasonably replicate the acoustic anisotropy in cancellous bone

  9. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone.

    Science.gov (United States)

    Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao

    2010-12-01

    To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences

  10. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    International Nuclear Information System (INIS)

    Yang Bo; Yin Zhanhai; Cao Junling; Shi Zhongli; Zhang Zengtie; Liu Fuqiang; Song Hongxing; Caterson, Bruce

    2010-01-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 μm) than in cortical BMG (5-15 μm), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  11. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bo; Yin Zhanhai; Cao Junling; Shi Zhongli; Zhang Zengtie; Liu Fuqiang [College of Medicine, Xi' an Jiaotong University, Yanta West Road, No 76, Yanta District, Xi' an, Shaanxi Province 710061 (China); Song Hongxing [Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Caterson, Bruce, E-mail: caojl@mail.xjtu.edu.c [Connective Tissue Biology Laboratories, Cardiff School of Biosciences, Cardiff University, Biomedical Building, Museum Avenue, Cardiff, CF10 3US (United Kingdom)

    2010-08-01

    In this study, we constructed tissue-engineered cartilage using allogeneic cancellous bone matrix gelatin (BMG) as a scaffold. Allogeneic BMG was prepared by sequential defatting, demineralization and denaturation. Isolated rabbit chondrocytes were seeded onto allogeneic cancellous BMG, and cell-BMG constructs were harvested after 1, 3 and 6 weeks for evaluation by hematoxylin and eosin staining for overall morphology, toluidine blue for extracellular matrix (ECM) proteoglycans, immunohistochemical staining for collagen type II and a transmission electron microscope for examining cellular microstructure on BMG. The prepared BMG was highly porous with mechanical strength adjustable by duration of demineralization and was easily trimmed for tissue repair. Cancellous BMG showed favorable porosity for cell habitation and metabolism material exchange with larger pore sizes (100-500 {mu}m) than in cortical BMG (5-15 {mu}m), allowing cell penetration. Cancellous BMG also showed good biocompatibility, which supported chondrocyte proliferation and sustained their differentiated phenotype in culture for up to 6 weeks. Rich and evenly distributed cartilage ECM proteoglycans and collagen type II were observed around chondrocytes on the surface and inside the pores throughout the cancellous BMG. Considering the large supply of banked bone allografts and relatively convenient preparation, our study suggests that allogeneic cancellous BMG is a promising scaffold for cartilage tissue engineering.

  12. Histologic Evaluation of Wound Healing After Ridge Preservation With Cortical, Cancellous, and Combined Cortico-Cancellous Freeze-Dried Bone Allograft: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Demetter, Randy S; Calahan, Blaine G; Mealey, Brian L

    2017-09-01

    Cortical and cancellous mineralized freeze-dried bone allografts (FDBA) are available for use in alveolar ridge preservation after tooth extraction. There are currently no data regarding use of a combination 50%/50% cortico-cancellous FDBA compared with a 100% cortical or 100% cancellous FDBA in ridge preservation. The primary objective of this study is to dimensionally and histologically evaluate healing after ridge preservation in non-molar sites using 50%/50% cortico-cancellous FDBA versus 100% cortical and 100% cancellous FDBA. Sixty-six patients requiring extraction of a non-molar tooth were enrolled and randomized into three groups to receive ridge preservation with the following: 1) 100% cortical FDBA; 2) 100% cancellous FDBA; or 3) 50%/50% cortico-cancellous FDBA. After 18 to 20 weeks of healing, a biopsy was harvested, and an implant was placed. The alveolar ridge was measured pre- and postoperatively to evaluate change in ridge height and width. Percentages of vital bone, residual graft, and connective tissue (CT)/other were determined via histomorphometric analysis. Histomorphometric analysis revealed no significant differences among groups regarding percentage of vital bone or CT/other. The 100% cortical FDBA group had significantly greater residual graft material (P = 0.04). Dimensional analysis revealed no significant between-group differences in any parameter measured. To the best knowledge of the authors, this study offers the first histologic evidence demonstrating no significant difference in vital bone formation or dimensional changes among 50%/50% cortico-cancellous FDBA, 100% cortical FDBA, and 100% cancellous FDBA when used in ridge preservation of non-molar tooth sites.

  13. Effects of gas produced by degradation of Mg–Zn–Zr Alloy on cancellous bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingbo; Jiang, Hongfeng [Tianjin Hospital, 300211 Tianjin (China); Bi, Yanze; Sun, Jin e; Chen, Minfang; Liu, Debao [School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin (China)

    2015-10-01

    Mg–Zn–Zr alloy cylinders were implanted into the femoral condyles of Japanese big-ear white rabbits. X-ray showed that by 12 weeks following implantation the implant became obscure, around which the low-density area appeared and enlarged. By 24 weeks, the implant was more obscure and the density of the surrounding cancellous bone increased. Scanning electron microscopy examination showed bone tissue on the surface of the alloy attached by living fibers at 12 weeks. Micro-CT confirmed that new bone tissue on the surface of the residual alloy implant increased from 12 weeks to 24 weeks. By 12 weeks, many cavities in the cancellous bone tissue around the implant were noted with a CT value, similar to gas value, and increasing by 24 weeks (P < 0.01). Histological examination of hard tissue slices showed that bone tissue was visibly attached to the alloy in the femoral condyle at 12 weeks. The trabecular bone tissues became more intact and dense, and the cavities were filled with soft tissue at 24 weeks. In general, gas produced by the degradation of the Mg–Zn–Zr alloy can cause cavitation within cancellous bone, which does not affect osteogenesis of Mg alloy. - Highlights: • The degradation of Mg alloy in cancellous bone causes cavitation around the alloy. • At first, the CT value of the cavities is similar to the gas value. • The area of the cavities enlarges gradually by 12 weeks. • The cavities are filled with bone tissue and soft tissue gradually.

  14. Compacted cancellous bone has a spring-back effect

    DEFF Research Database (Denmark)

    Kold, S; Bechtold, JE; Ding, Ming

    2003-01-01

    A new surgical technique, compaction, has been shown to improve implant fixation. It has been speculated that the enhanced implant fixation with compaction could be due to a spring-back effect of compacted bone. However, such an effect has yet to be shown. Therefore we investigated in a canine mo....... Thus we found a spring-back effect of compacted bone, which may be important for increasing implant fixation by reducing initial gaps between the implant and bone....

  15. A histomorphometric and micro-computed tomography study of bone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split-mouth model

    NARCIS (Netherlands)

    de Lange, G.L.; Overman, J.R.; Farre-Guasch, E.; Korstjens, C.M.; Hartman, B.; Langenbach, G.E.J.; van Duin, M.A.; Klein-Nulend, J.

    2014-01-01

    Objective The gain of mineralized bone was compared between deproteinized bovine bone allograft (DBA) and biphasic calcium phosphate (BCP) for dental implant placement. Study Design Five patients with atrophic maxillae underwent bilateral sinus elevation with DBA (Bio-Oss) and BCP (Straumann

  16. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone

    NARCIS (Netherlands)

    Kabel, J.; Rietbergen, van B.; Dalstra, M.; Odgaard, A.; Huiskes, H.W.J.

    1999-01-01

    Conceptually, the elastic characteristics of cancellous bone could be predicted directly from the trabecular morphology-or architecture-and by the elastic properties of the tissue itself. Although hardly any experimental evidence exists, it is often implicitly assumed that tissue anisotropy has a

  17. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    Science.gov (United States)

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  18. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.

    Science.gov (United States)

    Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J

    2016-03-15

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.

  19. Mechanical Modelling of Cancellous Bone from their Microstructure

    Directory of Open Access Journals (Sweden)

    Ruiz–Cervantes O.

    2010-04-01

    Full Text Available In this paper is established a spongy bone bidimensional models methodology for its analysis by finite element software. The models are focused to represent the bone trabecular structure by Voronoi cells, using the coordinates of the porous center, contained within the bone structure, obtained by optical microscope images. Looking for a better geometrical similarity, it was assigned a thicker transversal area in the trabecula union zone, because has been reported that this factor gives a better approximation to experimental results. To feed the finite element models, compression test has been done to trabecular specimens, taking the maximum strain and maximum stress, to obtain the elastic modulus. By means of strained specimen images analysis, it has been established the structure collapse moment. It was when the 36% of total trabeculae failed. Finally it was obtained a tissue Young modulus of 323 [MPa] and with this value, the resistance variation in function of density and trabecular architecture.

  20. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.

    Science.gov (United States)

    Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi

    2008-11-01

    In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.

  1. Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research

    DEFF Research Database (Denmark)

    Ding, Ming; Cheng, Liming; Bollen, Peter

    2010-01-01

    STUDY DESIGN: Glucocorticoid with low calcium and phosphorus intake induces osteopenia in cancellous bone of sheep. OBJECTIVE: To validate a large animal model for spine fusion and biomaterial research. SUMMARY OF BACKGROUND DATA: A variety of ovariectomized animals has been used to study...... osteoporosis. Most experimental spine fusions were based on normal animals, and there is a great need for suitable large animal models with adequate bone size that closely resemble osteoporosis in humans. METHODS: Eighteen female skeletal mature sheep were randomly allocated into 3 groups, 6 each. Group 1 (GC......-1) received prednisolone (GC) treatment (0.60 mg/kg/day, 5 times weekly) for 7 months. Group 2 (GC-2) received the same treatment as GC-1 for 7 months followed by 3 months without treatment. Group 3 was left untreated and served as the controls. All sheep received restricted diet with low calcium...

  2. Safe Harvesting of Outer Table Parietal Bone Grafts Using an Oscillating Saw and a Bone Scraper : A Refinement of Technique for Harvesting Cortical and "Cancellous"-Like Calvarial Bone

    NARCIS (Netherlands)

    Schortinghuis, Jurjen; Putters, Thomas F.; Raghoebar, Gerry M.

    Calvarial bone is a readily available source of bone for preimplantation augmentation procedures of the alveolar process. However, the calvaria consist mostly of cortical bone, and cancellous bone of the diploic space is scarce. A bone scraper (Safescraper Twist; META, Reggio Emilia, Italy) was used

  3. Microstructures and properties of cancellous bone of avascular necrosis of femoral heads

    Science.gov (United States)

    Yao, Xuefeng; Wang, Peng; Dai, Ruchun; Yeh, Hsien Yang

    2010-03-01

    The aim of this study is to investigate microscopic structure and characterize cancellous bone of avascular necrosis of the femoral head (ANFH). The rabbit model of the ANFH is established. The histopathologic features are studied successfully. The differences between the steroid-injection group (S.G.) and the controlled group (C.G.) are examined, including the weight of rabbits, the hematological examination and the three-dimensional structures. It is found that the plasma levels of cholesterol (CHO), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in S.G. are lower than those in C.G. when the triglyceride (TG) increased in the S.G.; but the bone mineral content (BMC) and the structural model index (SMI) of the organ and tissue decreased significantly in S.G. Three-dimensional structures of the femoral head are obtained using micro-computed tomography (CT) scanning and the mechanical model is established to analyze the influences of these structural changes on the mechanical properties of the cancellous bone.

  4. Managment of frontal sinus fracture: obliteration sinus with cancellous bone graft.

    Science.gov (United States)

    Muminagic, Sahib; Masic, Tarik; Babajic, Emina; Asotic, Mithat

    2011-01-01

    Frontal sinus fractures make up about 2-15% of all facial fractures.This is relatively low frequency of occurrence, but it has a large potential of complication and may involve not only the frontal sinuse but more importantly the brain and the eyes. The management depends of the complexity. If anterior wall is fractured with grossly involved nasofrontal duct (NFD) in the injury it is paramount to occlude NFD. Very often, sinus obliteration is done at the same time. In our expirience autogenous cancellous bone graft is considered to be the best grafting material. It has the less short - or long-term complications and the donor site morbidity is insignificant.

  5. In vitro comparison of DE-QCT parameters with the compressive strength of cancellous bone

    International Nuclear Information System (INIS)

    Oravez, W.T.; Robertson, D.D.

    1986-01-01

    Quantitative computed tomography (QCT) is used as a method for assessing bone mineral in patients with osteoporosis. The implication being that if the mass of bone mineral is low enough then the patient is at risk for developing symptoms, i.e., fracture. The authors performed an in vitro test which compared dual-energy-QCT (DE-QCT) parameters with compressive strength. The bone samples were placed in a water bath and CT scanned using a Siemens DR-3. Alternating x-ray pulses of 125 and 85 kVp were used to generate the dual energy images. Four images, high kVp, low kVp, monoenergenic, and calcium equivalent, were reconstructed from each scan. A specially constructed bone mineral calibration phantom, consisting of a polyethylene rod and varying tubes of K2HP04, was placed within the water bath along with the specimens. Comparisons will be made between the various DE parameters and their relationship to the compressive strength of cancellous bone. The critical effect of trabecular bone orientation will also be discussed

  6. 78 FR 64254 - Advisory Committee for Education and Human Resources; Cancellation of Meeting

    Science.gov (United States)

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Cancellation of... Foundation is issuing this notice to cancel the November 6-7, 2013 Advisory Committee for Education and Human Resources meeting. The public notice for this committee was published in the Federal Register on October 3...

  7. Advances in allogenic bone graft processing and usage: preparation and evaluation of chitosan-demineralized cancellous bone powder composite scaffolds as a bone graft substitute

    International Nuclear Information System (INIS)

    Yongyudh Vajaradul

    2008-01-01

    Full text: Demineralized bone matrix (DBM) is currently used by surgeons. It usually exists as a lyophilized powder which is difficult to handle and operated. In this study, we try to improve these disadvantages by combining DBM with a biomaterial. It focuses on a natural biodegradable polymer, chitosan, to act as a temporary matrix for bone growth that easily prepare in any size and shape by using tissue engineering knowledge to get a proper temporary matrix. Thus, the development of chitosan-demineralized bone powder composite scaffold is an alternative way. Polymeric scaffold has been demonstrated to have great potential for tissue engineering because the scaffold or three dimension (3D) construct provides the necessary support for cells to proliferate, extracellular matrix deposition and vascularization of neo-tissue. Moreover, chitosan, a natural cationic polymer which its structural is similar to extracellular matrix glycosaminoblycans, is biodegradable, biocompatible, non-antigenic and biofunctional. It can enhance osteoblast cells proliferation and mineral matrix deposition in culture. The first study was to fabricate and analyze composite scaffold composed of either chitosan-demineralized cancellous bone powders or chitosan-demineralized cancellous cartilage bone powders in a ratio 50:50 and 70:30 w/w (chitosan : bone powders) based on physical properties composing of average pore diameter, mechanical integrity and swelling property. Secondly, scaffolds were evaluated in term of biological properties composing of their ability to support neo osteogenesis, including assessments of cell attachment and viability, cell morphology, and the biosynthesis of extracellular matrix. Results indicated that chitosan-demineralized cancellous bone powder composite scaffolds possessing an interconnecting, porous structure could be easily created through a simple freezing and lyophilization process. (Author)

  8. Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications

    International Nuclear Information System (INIS)

    Arca, Turkan; Genever, Paul; Proffitt, Joanne

    2011-01-01

    Bone matrix (BM) is an acellular crosslinked porcine-derived cancellous bone graft, and therefore may provide advantages over other synthetic and naturally derived materials for use in orthopaedic surgery. Here, we analysed the potential of BM to support the growth and differentiation of primary human multipotent stromal cells/mesenchymal stem cells (MSCs) in order to predict in vivo bone regeneration events. Imaging with laser scanning confocal microscopy and scanning electron microscopy showed that 1 day after static seeding, a dense population of viable MSCs could be achieved on scaffolds suggesting they could be used for in vivo delivery of cells to the implant site. Long-term growth analysis by confocal imaging and histology demonstrated that BM was permissive to the growth and the 3D population of primary MSCs and an enhanced green fluorescent protein expressing osteosarcoma cell line, eGFP.MG63s, over several days in culture. Measurement of alkaline phosphatase (ALP) activities and mRNA expression levels of osteogenic markers (Runx-2, ALP, collagen type I, osteonectin, osteocalcin and osteopontin) indicated that BM supported osteogenesis of MSCs when supplemented with osteogenic stimulants. Upregulation of some of these osteogenic markers on BM, but not on tissue culture plastic, under non-osteogenic conditions suggested that BM also had osteoinductive capacities.

  9. Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Arca, Turkan; Genever, Paul [Department of Biology, University of York, York, YO10 5DD (United Kingdom); Proffitt, Joanne, E-mail: paul.genever@york.ac.uk [TSL Centre of Biologics, Covidien, Allerton Bywater, Castleford, WF10 2DB (United Kingdom)

    2011-04-15

    Bone matrix (BM) is an acellular crosslinked porcine-derived cancellous bone graft, and therefore may provide advantages over other synthetic and naturally derived materials for use in orthopaedic surgery. Here, we analysed the potential of BM to support the growth and differentiation of primary human multipotent stromal cells/mesenchymal stem cells (MSCs) in order to predict in vivo bone regeneration events. Imaging with laser scanning confocal microscopy and scanning electron microscopy showed that 1 day after static seeding, a dense population of viable MSCs could be achieved on scaffolds suggesting they could be used for in vivo delivery of cells to the implant site. Long-term growth analysis by confocal imaging and histology demonstrated that BM was permissive to the growth and the 3D population of primary MSCs and an enhanced green fluorescent protein expressing osteosarcoma cell line, eGFP.MG63s, over several days in culture. Measurement of alkaline phosphatase (ALP) activities and mRNA expression levels of osteogenic markers (Runx-2, ALP, collagen type I, osteonectin, osteocalcin and osteopontin) indicated that BM supported osteogenesis of MSCs when supplemented with osteogenic stimulants. Upregulation of some of these osteogenic markers on BM, but not on tissue culture plastic, under non-osteogenic conditions suggested that BM also had osteoinductive capacities.

  10. A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models.

    Science.gov (United States)

    Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B

    2014-04-01

    The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.

  11. Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model.

    Science.gov (United States)

    Wu, Zi-xiang; Lei, Wei; Hu, Yun-yu; Wang, Hai-qiang; Wan, Shi-yong; Ma, Zhen-sheng; Sang, Hong-xun; Fu, Suo-chao; Han, Yi-sheng

    2008-11-01

    Osteoporotic/osteopenia fractures occur most frequently in trabeculae-rich skeletal sites. The purpose of this study was to use a high-resolution micro-computed tomography (micro-CT) and dual energy X-ray absorptionmeter (DEXA) to investigate the changes in micro-architecture and bone mineral density (BMD) in a sheep model resulted from ovariectomy (OVX). Biomechanical tests were performed to evaluate the strength of the trabecular bone. Twenty adult sheeps were randomly divided into three groups: sham group (n=8), group 1 (n=4) and group 2 (n=8). In groups 1 and 2, all sheep were ovariectomized (OVX); in the sham group, the ovaries were located and the oviducts were ligated. In all animals, BMD for lumbar spine was obtained during the surgical procedure. BMD at the spine, femoral neck and femoral condyle was determined 6 months (group 1) and 12 months (group 2) post-OVX. Lumbar spines and femora were obtained and underwent BMD scan, micro-CT analysis. Compressive mechanical properties were determined from biopsies of vertebral bodies and femoral condyles. BMD, micro-architectural parameters and mechanical properties of cancellous bone did not decrease significantly at 6 months post-OVX. Twelve months after OVX, BMD, micro-architectural parameters and mechanical properties decreased significantly. The results of linear regression analyses showed that trabecular thickness (Tb.Th) (r=0.945, R2=0.886) and bone volume fraction (BV/TV) (r=0.783, R2=0.586) had strong (R2>0.5) correlation to compression stress. In OVX sheep, changes in the structural parameters of trabecular bone are comparable to the human situation during osteoporosis was induced. The sheep model presented seems to meet the criteria for an osteopenia model for fracture treatment with respect to morphometric and mechanical properties. But the duration of OVX must be longer than 12 months to ensure the animal model can be established successfully.

  12. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    Science.gov (United States)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  13. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I

    2000-01-01

    Structure model type and trabecular thickness are important characteristics in describing cancellous bone architecture. It has been qualitatively observed that a radical change of trabeculae from plate-like to rod-like occurs in aging, bone remodeling, and osteoporosis. Thickness of trabeculae has...... traditionally been measured using model-based histomorphometric methods on two-dimensional (2-D) sections. However, no quantitative study has been published based on three-dimensional (3-D) methods on the age-related changes in structure model type and trabecular thickness for human peripheral (tibial......, structure model type and trabecular thickness were quantified by means of novel 3-D methods. Structure model type was assessed by calculating the structure model index (SMI). The SMI was quantified based on a differential analysis of the triangulated bone surface of a structure. This technique allows...

  14. Late Effects of Heavy Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    Science.gov (United States)

    Tran, Luan Hoang; Alwood, Joshua; Kumar, Akhilesh; Limoli, C. L.; Globus, Ruth

    2012-01-01

    . Thus, both low and high doses of heavy ion irradiation cause time dependent, adaptive changes in redox state within marrow cells but only high doses (50, 200cGy) inhibit osteoblastogenesis and cause cancellous bone loss. We conclude space radiation has the potential to cause persistent damage to bone marrow derived stem and progenitor cells for osteoblasts despite adaptive changes in cellular redox state.

  15. Age-related new bone formation following the use of cancellous bone-block allografts for reconstruction of atrophic alveolar ridges.

    Science.gov (United States)

    Nissan, Joseph; Kolerman, Roni; Chaushu, Liat; Vered, Marilena; Naishlos, Sarit; Chaushu, Gavriel

    2018-02-01

    An age-related decrease in the number of osteogenic progenitor cells may compromise bone augmentation. Histomorphometrical assessment of age-related new bone formation, following atrophic alveolar ridge reconstruction, using cancellous bone-block allografts. Ninety-three consecutive patients (58 females and 35 males) were referred for implant-supported restoration of 122 severe atrophic alveolar ridges. Alveolar ridge deficiency locations were classified as anterior maxilla (n = 58), posterior maxilla (n= 32), and posterior mandible (n = 32). A bony deficiency of at least 3 mm horizontally and up to 3 mm vertically according to computerized tomography (CT) in the posterior mandible and anterior maxilla, served as inclusion criteria. In the posterior maxilla, a residual alveolar ridge up to 4 mm vertically according to CT served as inclusion criteria. Augmentation was performed by the use of cancellous bone-block allografts. Bone biopsies (9-month posterior maxilla, 4 months anterior maxilla and posterior mandible) of young (≤40 years) versus older (>40 years) patients were histomorphometrically evaluated. In the posterior maxilla, no statistically significant histomorphometric differences were noted. While at the anterior maxilla and posterior mandible, statistically significant more newly formed bone was found in young versus older individuals, respectively (38.6% vs 19.8%, P = 0.04 and 69% vs 31%, P = .05). New bone formation following residual alveolar ridge bone grafting is age-related. Longer bone consolidation and healing time may be recommended for older individuals. © 2017 Wiley Periodicals, Inc.

  16. Evaluation of the bone microstructures after the mandibular reconstruction, using bioresorbable hydroxyapatite/poly-L-lactide mesh tray and the particulate cancellous bone

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Matsuo, Akira; Chiba, Hiroshige

    2010-01-01

    The combination of particulate cancellous bone and marrow (PCBM) and a titanium tray is frequently used for mandibular reconstruction. However, there are difficulties in bending the tray and forming a suitable contour. In addition, the metallic ions elute into the living body and the hinders the implant insertion; therefore, a removable operation is required after reconstruction. Hydroxyapatite/poly-L-lactide (HA/PLLA) is a bone-bonding material that has both bio-activity and bio-resorbability. It may overcome the weakness of a titanium tray, but the bone microstructures have not been evaluated after the use of this tray for PCBM reconstruction. We created defects on the mandible of a beagle and reconstructed it by filling it with a mixture of PCBM and PRP using the HA/PLLA tray. We examined the bone-formation mechanism using a confocal laser microscope and bone microstructural analysis using microCT. As a result, compared to the titanium tray, the bone-formation is delayed during the first 3 to 6 months with an HA/PLLA tray. However, a formation of new bone with equal quality is observed after 12 months. According to the bone microstructural measurement, both of them had higher bone volume fraction than the native bone but other parameters were the same. From the above, the quantity of the new bone in the HA/PLLA tray is the same as the bone in the titanium tray, and has equal bone microstructures with the surrounding native bone. (author)

  17. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  18. [Fusion of reconstructed titanic plate, vertebral pedical screws and autogenous granulated cancellous bone graft in posterior occipitocervical region].

    Science.gov (United States)

    Zhong, Dejun; Song, Yueming

    2006-08-01

    To explore the technique of fusing the reconstructed titanic plate, the C2 pedical screws, and the autogenous granulated cancellous bone graft in the occipitocervical region. From April 2002 to January 2005, 19 patients aged 31-67 years with occipitocervical instability underwent the occipitocervical fusion using the reconstructed plate, C2 pedical screws, and autogenous granulated cancellous bone graft. Of the patients, 8 had complex occipitocervical deformity, 8 had old atlantoaxial fracture and dislocation, 2 had rheumatoid arthritis and anterior dislocation of the atlantoaxial joint, and 1 had cancer of the deltoid process of the axis. No complication occurred during and after operation. The follow-up for an average of 16 months in 19 patients showed that all the patients achieved solid bony fusion in the occipitocervical region. There was no broken plate, broken screw, looseness of the internal fixation or neurovascular injury. The fixation of the C2 pedical screws with the reconstructed titanic plate is reliable, the insertion is easy, and the autogenous granulated cancellous bone graft has a high fusion rate, thus resulting in a satisfactory effect in the occipitocervical fusion.

  19. Comparison of bioengineered human bone construct from four sources of osteogenic cells.

    Science.gov (United States)

    Ng, Angela Min-Hwei; Saim, Aminuddin Bin; Tan, Kok-Keong; Tan, G H; Mokhtar, Sabarul Afian; Rose, Isa Mohamed; Othman, Fauziah; Idrus, Ruszymah Binti Haji

    2005-01-01

    Osteoprogenitor cells have been reported to be present in periosteum, cancellous and cortical bone, and bone marrow; but no attempt to identify the best cell source for bone tissue engineering has yet been reported. In this study, we aimed to investigate the growth and differentiation pattern of cells derived from these four sources in terms of cell doubling time and expression of osteoblast-specific markers in both monolayer cells and three-dimensional cell constructs in vitro. In parallel, human plasma derived-fibrin was evaluated for use as biomaterial when forming three-dimensional bone constructs. Our findings showed osteoprogenitor cells derived from periosteum to be most proliferative followed by cortical bone, cancellous bone, and then bone marrow aspirate. Bone-forming activity was observed in constructs formed with cells derived from periosteum, whereas calcium deposition was seen throughout the constructs formed with cells derived from cancellous and cortical bones. Although no mineralization activity was seen in constructs formed with osteoprogenitor cells derived from bone marrow, well-organized lacunae as would appear in the early phase of bone reconstruction were noted. Scanning electron microscopy evaluation showed cell proliferation throughout the fibrin matrix, suggesting the possible application of human fibrin as the bioengineered tissue scaffold at non-load-bearing sites.

  20. Early reversal cells in adult human bone remodeling

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Delaissé, Jean-Marie; Hinge, Maja

    2016-01-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter...... of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts....... Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone...

  1. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    Science.gov (United States)

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  2. Preoperative assessment of the cancellous bone mineral density of the proximal humerus using CT data

    International Nuclear Information System (INIS)

    Krappinger, Dietmar; Roth, Tobias; Gschwentner, Martin; Suckert, Armin; Blauth, Michael; Hengg, Clemens; Kralinger, Franz

    2012-01-01

    Osteoporotic fractures of the proximal humerus show an increasing incidence. Osteoporosis not only influences the fracture risk after low-energy trauma, but also affects the mechanical stability of internal fixation. Preoperative assessment of the local bone quality may be useful in the surgical treatment of patients sustaining these injuries. The aim of the present study was to present a method for the preoperative assessment of the local cancellous bone mineral density (BMD) of the proximal humerus using CT data. In the first part of the study, CT scans of 30 patients with unilateral fractures of the proximal humerus after low-energy trauma were used. The local BMD was assessed on the contralateral uninjured side. All 30 patients additionally underwent dual-emission X-ray absorptiometry (DXA) of the lumbar spine, proximal femur, and forearm of the side of the uninjured proximal humerus within 6 weeks after trauma. Three independent trauma surgeons performed measurements on the uninjured proximal humerus twice with a time interval of 4 weeks in order to assess the inter- and intraobserver reliability of the method. In the second part of the study, the local BMD of 507 patients with either proximal humerus fractures or chronic shoulder instability was assessed by a single trauma surgeon. In both parts, the average HU values in standardized ROIs of the humeral head were automatically calculated after correcting for HU values below the water equivalent. A linear calibration equation was computed for the calculation from HU to BMD using a calibration device (EFP). The intra- and interobserver reliability was high (ICC > 0.95). Correlation coefficients between the local BMD of the proximal humerus and other anatomical sites were between 0.35 (lumbar spine) and 0.64 (forearm). We found a high correlation between the local BMD and age. The BMD in the fracture group was significantly lower than in the instability group. These patients were significantly older and more

  3. Preoperative assessment of the cancellous bone mineral density of the proximal humerus using CT data

    Energy Technology Data Exchange (ETDEWEB)

    Krappinger, Dietmar; Roth, Tobias; Gschwentner, Martin; Suckert, Armin; Blauth, Michael; Hengg, Clemens; Kralinger, Franz [Innsbruck Medical University, Department of Trauma Surgery and Sports Medicine, Innsbruck (Austria)

    2012-03-15

    Osteoporotic fractures of the proximal humerus show an increasing incidence. Osteoporosis not only influences the fracture risk after low-energy trauma, but also affects the mechanical stability of internal fixation. Preoperative assessment of the local bone quality may be useful in the surgical treatment of patients sustaining these injuries. The aim of the present study was to present a method for the preoperative assessment of the local cancellous bone mineral density (BMD) of the proximal humerus using CT data. In the first part of the study, CT scans of 30 patients with unilateral fractures of the proximal humerus after low-energy trauma were used. The local BMD was assessed on the contralateral uninjured side. All 30 patients additionally underwent dual-emission X-ray absorptiometry (DXA) of the lumbar spine, proximal femur, and forearm of the side of the uninjured proximal humerus within 6 weeks after trauma. Three independent trauma surgeons performed measurements on the uninjured proximal humerus twice with a time interval of 4 weeks in order to assess the inter- and intraobserver reliability of the method. In the second part of the study, the local BMD of 507 patients with either proximal humerus fractures or chronic shoulder instability was assessed by a single trauma surgeon. In both parts, the average HU values in standardized ROIs of the humeral head were automatically calculated after correcting for HU values below the water equivalent. A linear calibration equation was computed for the calculation from HU to BMD using a calibration device (EFP). The intra- and interobserver reliability was high (ICC > 0.95). Correlation coefficients between the local BMD of the proximal humerus and other anatomical sites were between 0.35 (lumbar spine) and 0.64 (forearm). We found a high correlation between the local BMD and age. The BMD in the fracture group was significantly lower than in the instability group. These patients were significantly older and more

  4. Higher number of pentosidine cross-links induced by ribose does not alter tissue stiffness of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Nop M.B.K., E-mail: n.willems@acta.nl [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Langenbach, Geerling E.J. [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Stoop, Reinout [Dept. of Metabolic Health Research, TNO, P.O. Box 2215, 2301 CE Leiden (Netherlands); Toonder, Jaap M.J. den [Dept. of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Mulder, Lars [Dept. of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Zentner, Andrej [Dept. of Orthodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands); Everts, Vincent [Dept. of Oral Cell Biology and Functional Anatomy, MOVE Research Institute, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081 LA Amsterdam (Netherlands)

    2014-09-01

    The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2 M ribose at 37 °C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness. - Highlights: • The assessment of effects of glycation in bone using HPLC, microCT, and nanoindentation • Ribose incubation: 300‐fold increase in the number of pentosidine cross-links • 300‐fold increase in the number of pentosidine cross-links: no changes in bone tissue stiffness.

  5. A soluble activin type IIA receptor mitigates the loss of femoral neck bone strength and cancellous bone mass in a mouse model of disuse osteopenia.

    Science.gov (United States)

    Lodberg, Andreas; Eijken, Marco; van der Eerden, Bram C J; Okkels, Mette Wendelboe; Thomsen, Jesper Skovhus; Brüel, Annemarie

    2018-05-01

    Disuse causes a rapid and substantial bone loss distinct in its pathophysiology from the bone loss associated with cancers, age, and menopause. While inhibitors of the activin-receptor signaling pathway (IASPs) have been shown to prevent ovariectomy- and cancer-induced bone loss, their application in a model of disuse osteopenia remains to be tested. Here, we show that a soluble activin type IIA receptor (ActRIIA-mFc) increases diaphyseal bone strength and cancellous bone mass, and mitigates the loss of femoral neck bone strength in the Botulinum Toxin A (BTX)-model of disuse osteopenia in female C57BL/6J mice. We show that ActRIIA-mFc treatment preferentially stimulates a dual-effect (anabolic-antiresorptive) on the periosteal envelope of diaphyseal bone, demonstrating in detail the effects of ActRIIA-mFc on cortical bone. These observations constitute a previously undescribed feature of IASPs that mediates at least part of their ability to mitigate detrimental effects of unloading on bone tissue. The study findings support the application of IASPs as a strategy to combat bone loss during disuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    International Nuclear Information System (INIS)

    Singh, Atul Kumar; Gajiwala, Astrid Lobo; Rai, Ratan Kumar; Khan, Mohd Parvez; Singh, Chandan; Barbhuyan, Tarun; Vijayalakshmi, S.; Chattopadhyay, Naibedya; Sinha, Neeraj; Kumar, Ashutosh; Bellare, Jayesh R.

    2016-01-01

    critical parameters of bone, showing a significant advancements over currently existing methods. - Highlights: • Aim: to analyze three-dimensional micro- and macro-structural changes in normal and osteoporotic human bone processed into allografts for transplantation. • Method: ssNMR, SEM, μCT-MIMICS and TGA were used for delineating the ultra-structural property of cortical and cancellous bone. • Findings: Altered balance in water content and association, collagen tertiary structure, and crystalline order in normal and osteoporotic bone (ssNMR). • Pasteurization, alcohol treatment and radiation affect bone through bound water integrity resulting in shifted HU (μCT-MIMICS®), which could make bone weaker. • Cross-correlation between probes used quantitatively demonstrated that protocol adopted for bone processing could play a crucial role in allograft preparation.

  7. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Atul Kumar [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Gajiwala, Astrid Lobo [Tissue Bank, Tata Memorial Hospital, Parel, Mumbai 400012 (India); Rai, Ratan Kumar [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Khan, Mohd Parvez [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Singh, Chandan [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Barbhuyan, Tarun [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Vijayalakshmi, S. [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Chattopadhyay, Naibedya [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Sinha, Neeraj, E-mail: neerajcbmr@gmail.com [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Kumar, Ashutosh, E-mail: ashutoshk@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Bellare, Jayesh R., E-mail: jb@iitb.ac.in [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-05-01

    critical parameters of bone, showing a significant advancements over currently existing methods. - Highlights: • Aim: to analyze three-dimensional micro- and macro-structural changes in normal and osteoporotic human bone processed into allografts for transplantation. • Method: ssNMR, SEM, μCT-MIMICS and TGA were used for delineating the ultra-structural property of cortical and cancellous bone. • Findings: Altered balance in water content and association, collagen tertiary structure, and crystalline order in normal and osteoporotic bone (ssNMR). • Pasteurization, alcohol treatment and radiation affect bone through bound water integrity resulting in shifted HU (μCT-MIMICS®), which could make bone weaker. • Cross-correlation between probes used quantitatively demonstrated that protocol adopted for bone processing could play a crucial role in allograft preparation.

  8. Measurement of microvascular blood flow in cancellous bone using laser Doppler flowmetry and 133Xe-clearance

    International Nuclear Information System (INIS)

    Hellem, S.; Jacobsson, L.S.; Nilsson, G.E.; Lewis, D.H.

    1983-01-01

    Blood flow in cancelleous bone with varying vascular density was investigated simultaneously with Laser Doppler Flowmeter (LDF) and 113 Xe-clearance. The cancellous bone subapical to 2 contralateral incisors in the mandibles of 17 young pigs was used as an experimental model. Light from a 2 mW He-Ne-laser was guided through an optical fibre to a flowmeter probe. Stainless steel probe-holders firmly inserted in the pulpal canals of the two incisors served as the probe entrance to cancellous bone for blood flow recording. Due to the Doppler effect, the light scattered by circulating blood cells undergoes a frequency shift. The back-scattered light picked up by optical fibres in the probe, was guided to a photosensitive device, where it was demodulated. After signal processing, a signal referred to as the Blood Flow Value (BFV) was recorded on a pen recorder. Rhythmical variations (vasomotion) in BFV with frequencies from 2-11 cycles/min were observed in 6% of recordings made initially after probeholder implantation, and in 34% of the recordings made 5 weeks later. On this occasion, a marked increase in BFV was recorded. Histological examination showed increased vascularity in the bone tissue. The reproducibility error of LDF was 7.4% and temporal changes in BFV, apart from vasomotion, were 8.3%, provided no injections or manipulations of the probe were made. Spatial variations in BFV were found to be related to the vascular density. 2 successive recordings by LDF from the same bone area were highly correlated (r=0.98). The corresponding figure for 2 logarithmic decay rates of locally injected 133 Xe was 0.76. No correlation between BFV and 133 Xe-clearance could be demonstrated. (author)

  9. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  10. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis.

    Science.gov (United States)

    Takeuchi, Issei; Kobayashi, Shiori; Hida, Yukari; Makino, Kimiko

    2017-07-01

    Postmenopausal osteoporosis among older women, which occurs by an ovarian hormone deficiency, is one of the major public health problems. 17 β-estradiol (E2) is used to prevent and treat this disease as a drug of hormone replacement therapy. In oral administration, E2 is significantly affected by first-pass hepatic metabolism, and high dose administration must be needed to obtain drug efficacy. Therefore, alternative administration route is needed, and we have focused on the transdermal drug delivery system. In this study, we have prepared E2-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles for osteoporosis by using a combination of an antisolvent diffusion method with preferential solvation. The average particle diameter of the nanoparticles was 110.0±41.0nm and the surface charge number density was 82 times higher than that of conventional E2-loaded PLGA nanoparticles. Therapeutic evaluation of E2-loaded PLGA nanoparticles was carried out using ovariectomized female rats. Therapeutic efficacy was evaluated to measure bone mineral density of cancellous bone using an X-ray CT system. When the E2-loaded PLGA nanoparticles were administrated once a week, bone mineral density was significantly higher than that of the non-treated group at 60days after the start of treatment. Also, in the group administered this nanoparticle twice a week, the bone mineral density increased significantly at 45days after the start of treatment. From these results, it was revealed that E2-loaded PLGA nanoparticles with iontophoresis were useful to recover bone mineral density of cancellous bone, and it was also suggested that they extend the dosing interval of E2. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    Science.gov (United States)

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Molt performance and bone density of cortical, medullary, and cancellous bone in laying hens during feed restriction or alfalfa-based feed molt.

    Science.gov (United States)

    Kim, W K; Donalson, L M; Bloomfield, S A; Hogan, H A; Kubena, L F; Nisbet, D J; Ricke, S C

    2007-09-01

    A study was conducted to evaluate the effects of alfalfa-based molt diets on molting performance and bone qualities. A total of 36 Single Comb White Leghorn hens were used for the study. There were 6 treatments: pretrial control (PC), fully fed (FF), feed withdrawal (FW), 90% alfalfa:10% layer ration (A90), 80% alfalfa:20% layer ration (A80), and 70% alfalfa:30% layer ration (A70). For the PC treatment, hens were euthanized by CO(2) gas, and bones were collected before molt was initiated. At the end of the 9-d molt period, hens were euthanized, and femurs and tibias were collected to evaluate bone qualities by peripheral quantitative computed tomography, mechanical testing, and conventional ash weights. The hens fed alfalfa-based molt diets and FW stopped laying eggs within 5 d after molt started, and all hens in these groups had reduced ovary weights compared with those of the FF hens. In the FW and A90 groups, total femur volumetric bone mineral densities (vBMD) at the midshaft were significantly lower, but those of the A80 and A70 groups were not significantly different from the values for the PC and FF hens. In cortical bone density, the midshaft tibial vBMD were significantly higher for FF and A70 hens than for PC hens. The medullary bone densities at the midshaft femur or tibia of the FW, A90, A80, and A70 hens were reduced compared with those of the PC hens. Femur cancellous densities at the distal femur for the FW and A90 hens were significantly reduced compared with those of the PC and FF hens. The FW, A80, and A70 hens yielded significantly higher elastic moduli, and the A80 hens had higher ultimate stress compared with the PC hens, suggesting that the mechanical integrity of the midshaft bone was maintained even though the medullary vBMD was reduced. These results suggest that alfalfa-based molt diets exhibit molt performance similar to FW, that medullary and cancellous bones are labile bone compartments during molting, and that alfalfa-based molt diets

  13. In vitro assessment of biomaterial-induced remodeling of subchondral and cancellous bone for the early intervention of joint degeneration with focus on the spinal disc

    Science.gov (United States)

    McCanless, Jonathan D.

    Osteoarthritis-associated pain of the spinal disc, knee, and hip derives from degeneration of cartilagenous tissues in these joints. Traditional therapies have focused on these cartilage (and disc specific nucleus pulposus) changes as a means of treatment through tissue grafting, regenerative synthetic implants, non-regenerative space filling implants, arthroplasty, and arthrodesis. Although such approaches may seem apparent upon initial consideration of joint degeneration, tissue pathology has shown changes in the underlying bone and vascular bed precede the onset of cartilaginous changes. It is hypothesized that these changes precedent joint degeneration and as such may provide a route for early prevention. The current work proposes an injectable biomaterial-based therapy within these subchondral and cancellous bone regions as a means of preventing or reversing osteoarthritis. Two human concentrated platelet releasate-containing alginate hydrogel/beta-tricalcium phosphate composites have been developed for this potential biomaterial application. The undertaking of assessing these materials through bench-, in vitro, and ex vivo work is described herein. These studies showed the capability of the biomaterials to initiate a wound healing response in monocytes, angiogenic and differentiation behavior in immature endothelial cells, and early osteochondral differentiation in mesenchymal stem cells. These cellular activities are associated with fracture healing and endochondral bone formation, demonstrating the potential of the biomaterials to induce osseous and vascular tissue remodeling underlying osteoarthritic joints as a novel therapy for a disease with rapidly growing healthcare costs.

  14. Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images.

    NARCIS (Netherlands)

    Rietbergen, van B.; Majumdar, S.; Pistoia, W.; Newitt, D.C.; Kothari, M.; Laib, A.; Rüegsegger, P.

    1998-01-01

    Recently, new micro-finite element (micro-FE) techniques have been introduced to calculate cancellous bone mechanical properties directly from high-resolution images of its internal architecture. Also recently, new peripheral quantitative computed tomography (pQCT) and magnetic resonance (MR)

  15. The variation of cancellous bones at lumbar vertebra, femoral neck, mandibular angle and rib in ovariectomized sheep.

    Science.gov (United States)

    Zhang, Yongqiang; Li, Yongfeng; Gao, Qi; Shao, Bo; Xiao, Jianrui; Zhou, Hong; Niu, Qiang; Shen, Mingming; Liu, Baolin; Hu, Kaijin; Kong, Liang

    2014-07-01

    This study aimed to compare the variation of cancellous bones at four skeletal sites: lumbar vertebra, femoral neck, mandibular angle and rib in ovariectomized sheep. Sixteen adult sheep were randomly divided into two groups: eight sheep were ovariectomized served as experimental group; the other eight untreated sheep were served as control group. Bone mineral density was assessed by dual-energy X-ray absorptiometry on lumbar vertebrae at baseline and twelve months after ovariectomy. After 12 months, lumbar vertebrae L3 and L4, femoral necks, mandibular angles and the fourth ribs were harvested for micro-CT scanning, histological analysis and biomechanical test. The results showed that bone mineral density of lumbar vertebra decreased significantly in twelfth month (pbone volume/total volume decreased by 45.6%, 36.1% 21.3% and 18.7% in lumbar vertebrae, femoral necks, mandibular angles and ribs in experimental group (pbones to oestrogen deficiency in ovariectomized sheep was site-specific on a pattern as follows: lumbar vertebra, femoral neck, mandibular angle and rib. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones.

    Science.gov (United States)

    Nuss, Katja M R; Auer, Joerg A; Boos, Alois; von Rechenberg, Brigitte

    2006-08-15

    The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  17. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    Science.gov (United States)

    Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von

    2006-01-01

    Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials. PMID:16911787

  18. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    OpenAIRE

    Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von

    2006-01-01

    Abstract Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Result...

  19. Use of dual-energy computed tomography to measure skeletal-wide marrow composition and cancellous bone mineral density.

    Science.gov (United States)

    Arentsen, Luke; Hansen, Karen E; Yagi, Masashi; Takahashi, Yutaka; Shanley, Ryan; McArthur, Angela; Bolan, Patrick; Magome, Taiki; Yee, Douglas; Froelich, Jerry; Hui, Susanta K

    2017-07-01

    Temporal and spatial variations in bone marrow adipose tissue (MAT) can be indicative of several pathologies and confound current methods of assessing immediate changes in bone mineral remodeling. We present a novel dual-energy computed tomography (DECT) method to monitor MAT and marrow-corrected volumetric BMD (mcvBMD) throughout the body. Twenty-three cancellous skeletal sites in 20 adult female cadavers aged 40-80 years old were measured using DECT (80 and 140 kVp). vBMD was simultaneous recorded using QCT. MAT was further sampled using MRI. Thirteen lumbar vertebrae were then excised from the MRI-imaged donors and examined by microCT. After MAT correction throughout the skeleton, significant differences (p < 0.05) were found between QCT-derived vBMD and DECT-derived mcvBMD results. McvBMD was highly heterogeneous with a maximum at the posterior skull and minimum in the proximal humerus (574 and 0.7 mg/cc, respectively). BV/TV and BMC have a nearly significant correlation with mcvBMD (r = 0.545, p = 0.057 and r = 0.539, p = 0.061, respectively). MAT assessed by DECT showed a significant correlation with MRI MAT results (r = 0.881, p < 0.0001). Both DECT- and MRI-derived MAT had a significant influence on uncorrected vBMD (r = -0.86 and r = -0.818, p ≤ 0.0001, respectively). Conversely, mcvBMD had no correlation with DECT- or MRI-derived MAT (r = 0.261 and r = 0.067). DECT can be used to assess MAT while simultaneously collecting mcvBMD values at each skeletal site. MAT is heterogeneous throughout the skeleton, highly variable, and should be accounted for in longitudinal mcvBMD studies. McvBMD accurately reflects the calcified tissue in cancellous bone.

  20. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    Directory of Open Access Journals (Sweden)

    Boos Alois

    2006-08-01

    Full Text Available Abstract Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  1. Acetabular reconstruction with human and bovine freeze-dried bone grafts and a reinforcement device

    Directory of Open Access Journals (Sweden)

    Ricardo Rosito

    2008-01-01

    Full Text Available BACKGROUND: This is a cohort trial (1997-2005 of 49 patients submitted to an acetabular component revision of a total hip arthroplasty, using impacted human and bovine freeze-dried cancellous bone grafts (H&FDBG and a reinforcement device. OBJECTIVE: To compare clinical/radiographic graft incorporation capability between cancellous bone grafts. PATIENTS/METHODS: There were two groups: I (n=26 receiving human grafts and II (n=25 receiving bovine grafts. The average follow-up times were 55 and 49 months, respectively. Clinical analysis was based on the Merle d'Aubigné and Postel score, and the radiographic analysis involved an established score based on Conn's et al. criteria for radiographic bone incorporation. RESULTS: No clinical/radiographic differences were found between the groups and both showed an overall rate of 88.5% and 76% of graft incorporation (p=0.424. CONCLUSION: The results presented here are comparable to those in the literature with the use of deep-FG. Therefore, cancellous bone grafts can be safely and adequately used in acetabular component revision in total hip arthroplasty.

  2. Morphological studies at subchondral bone structures in human early arthrosis. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    Quantitative histomorphometric studies using an image analysis system were performed simultaneously on hyaline cartilage, calcified cartilage and subchondral cancellous bone of human tibial heads for detailed information about the pathogenesis of arthrosis. Joint structures need to be fully detected in three dimensions since measurement values are more affected by topographical aspects than by either age, or sex, or arthrosin stage. Mechanical factors were found to affect essentially the initiation and progression of arthrosis. Results are demonstrated in detail. (orig.) [de

  3. Architectural Measures of the Cancellous Bone of the Mandibular Condyle Identified by Principal Components Analysis

    DEFF Research Database (Denmark)

    Giese, E.B.; Ding, M.; Dalstra, M.

    2003-01-01

    embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning......-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular...

  4. Sequential treatment with basic fibroblast growth factor and parathyroid hormone restores lost cancellous bone mass and strength in the proximal tibia of aged ovariectomized rats

    DEFF Research Database (Denmark)

    Wronski, T.J.; Ratkus, A.M.; Thomsen, Jesper Skovhus

    2001-01-01

    This study was designed to determine whether sequential treatment with basic fibroblast growth factor (bFGF) and parathyroid hormone (PTH) can restore lost cancellous bone mass and strength at a severely osteopenic skeletal site in aged ovariectomized (OVX) rats. Female Sprague-Dawley rats were...... intravenously (iv) daily with bFGF for 14 days at a dose of 200 microg/kg body weight. At the end of bFGF treatment, one group was killed whereas the other group was subjected to 8 weeks of treatment with synthetic human PTH 1-34 [hPTH(1-34)] consisting of subcutaneous (sc) injections 5 days/week at a dose...... of 80 microg/kg. Another group of OVX rats was treated iv with vehicle for 2 weeks followed by treatment with PTH alone for 8 weeks. Other groups of sham-operated control rats and OVX rats were treated iv and sc with vehicle alone. The right proximal tibia from each rat was processed undecalcified...

  5. Atomic scale chemical tomography of human bone

    Science.gov (United States)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  6. Enxerto ósseo esponjoso autólogo em pequenos animais Autologous cancellous bone graft in small animals

    Directory of Open Access Journals (Sweden)

    Fernanda Carpi dos Santos

    2004-12-01

    Full Text Available O enxerto ósseo esponjoso autólogo é formado por osso trabecular, poroso e altamente celular. Visto ser de fundamental importância na cirurgia ortopédica de pequenos animais, o trabalho teve por objetivo discorrer sobre a função, locais de colheita, cuidados, formas de aplicação, indicações e contra-indicações desse enxerto. Ele estimula a formação óssea devido ao fornecimento de células vivas e fatores de crescimento, mas não possui suporte mecânico. A asa do ílio craniodorsal, úmero proximal, tíbia proximal e fêmur distal, são os locais de colheita mais utilizados em cães. A asa do ílio consiste no local mais satisfatório para gatos. Para maximizar a incorporação do enxerto com o tecido hospedeiro, devem ser tomados alguns cuidados entre a colheita e a transferência para a área receptora. Além disso, pode ser aplicado sem compressão dentro do local recipiente. A freqüência de complicações é considerada baixa.The autologous cancellous bone is formed by trabecular bone, porous, and highly cellular. Since this graft is very important in orthopedic surgery of small animals, the purpose of this paper is to describe the function, donor sites, precautions, application methods, indications, and contraindications. It stimulates the bone formation because it provides live cells and growth factors, but it did not have mechanical support. Cranial dorsal wing of the ilium, proximal humerus, proximal tibia, and distal femur are the most common harvest sites used in dogs. The wing of the ilium is the most satisfactory harvest site in cats. To maximize the graft incorporation with the tissue it is necessary to take care during the harvest and transference to recipient site. In addition, it may be put into the recipient site with no compression. The frequency of complications is considered low.

  7. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    Science.gov (United States)

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for

  8. Perfluoroalkyl substances in human bone: concentrations in bones and effects on bone cell differentiation.

    Science.gov (United States)

    Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J

    2017-07-28

    Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.

  9. Partial Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Partial Cancellation. Full Cancellation is desirable. But complexity requirements are enormous. 4000 tones, 100 Users billions of flops !!! Main Idea: Challenge: To determine which cross-talker to cancel on what “tone” for a given victim. Constraint: Total complexity is ...

  10. Thermal Conductivity of Human Bone in Cryoprobe Freezing as Related to Density.

    Science.gov (United States)

    Walker, Kyle E; Baldini, Todd; Lindeque, Bennie G

    2017-03-01

    Cryoprobes create localized cell destruction through freezing. Bone is resistant to temperature flow but is susceptible to freezing necrosis at warmer temperatures than tumor cells. Few studies have determined the thermal conductivity of human bone. No studies have examined conductivity as related to density. The study goal was to examine thermal conductivity in human bone while comparing differences between cancellous and cortical bone. An additional goal was to establish a relationship between bone density and thermal conductivity. Six knee joints from 5 cadavers were obtained. The epiphyseal region was sliced in half coronally prior to inserting an argon-circulating cryoprobe directed away from the joint line. Thermistor thermometers were placed perpendicularly at measured increments, and the freezing cycle was recorded until steady-state conditions were achieved. For 2 cortical samples, the probe was placed intramedullary in metaphyseal samples and measurements were performed radially from the central axis of each sample. Conductivity was calculated using Fournier's Law and then plotted against measured density of each sample. Across samples, density of cancellous bone ranged from 0.86 to 1.38 g/mL and average thermal conductivity ranged between 0.404 and 0.55 W/mK. Comparatively, cortical bone had a density of 1.70 to 1.86 g/mL and thermal conductivity of 0.0742 to 0.109 W/mK. A strong 2-degree polynomial correlation was seen (R 2 =0.8226, P<.001). Bone is highly resistant to temperature flow. This resistance varies and inversely correlates strongly with density. This information is clinically relevant to maximize tumor ablation while minimizing morbidity through unnecessary bone loss and damage to surrounding structures. [Orthopedics. 2017; 40(2):90-94.]. Copyright 2016, SLACK Incorporated.

  11. Clinical uses of radiosterilized freeze-dried human bone: its application in buccomaxillary surgery

    International Nuclear Information System (INIS)

    Wolfsohn, B.; Taramasso, F.; Godoy, J.; Wodowoz, O.; Saldias, M.; Silva, W.; Machin, D.; Sanchez, G.; Alvarez, I.

    2008-01-01

    Full text: The objective of this paper is to evaluate the uses of different human bone tissue allografts in bucomaxillary surgery between 2005 and 2007. Presentation of our experience using single freeze dried bone allografts and associated to bovine collagen membranes (commercial registered). Twenty patients were treated with cortical struts, cancellous chips, morsellized and morsellized demineralized bone. All the grafts were processed at the INDT multi tissue bank from cardiac arrest and brain death cadaveric donors. All the tissues were radiosterilized by Gamma radiation. Bone allografts were used: 1) to optimize bone support increasing maxillar or mandible bone before implant surgery. 2) in dehiscences and fissures during the implant surgery. 3) to stimulate bone regeneration in alveolar cavity, post-apicectomies, and cystectomies as well as for bone defects. The patients were periodically evaluated using standardized protocols. All the cases were successful showing clinic and radiologically osseointegration after 6 and 12 months. Results were evaluated considering surgical technique and patients bucomaxillary rehabilitation. Clinical uses of bone allografts confirm in our experience, as scientific literature outcomes shows, are useful in patients that refuses autografts ablation. (Author)

  12. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  13. Uranium concentrations in human bone

    International Nuclear Information System (INIS)

    Schlenker, R.A.; Oltman, B.G.

    1981-01-01

    The uranium concentration in bone from an individual injected with 239 Pu has been determined, using the fission-track method. The data are consistent with those reported about 10 years ago by Welford and Baird for New York City area residents and by Hamilton in England. They are at variance with the more recent data of Welford et al

  14. 脱蛋白松质骨作为异种骨移植材料的修复作用%Repair effect of deproteinised cancellous bone as xenogeneic bone graft material

    Institute of Scientific and Technical Information of China (English)

    高春阳; 姜宏春; 金春明

    2011-01-01

    BACKGROUND: Unequal size, mutual communication, and open pore network structure can be seen in cancellous bone treated with deproteinization. Its inorganic component is hydroxyapatite, and the organic component is collagen, which has a good mechanical property and biocompatibility. It may be a new type of bone graft material.OBJECTIVE: To study the properties of xenogeneic deproteinised cancellous bone being carrier of bone tissue engineering in bone fusion.METHODS: Taking “xenogeneic deproteinised cancellous bone, bone fusion, carrier” in Chinese as search terms, the articles from January 1998 to December 2009 in VIP database, CNKI database, Pubmed database were retrieved by computer. The relevant literatures were included, the literature of irrelevant purpose and repetitive content were excluded, and 33 of them were involved for further analysis.RESULTS AND CONCLUSION: Compared with synthetic bone material, animal bones have similar biomaterial structure, modeling, excellent cell attachment, and cell growth and proliferation environment. However, the compatibility of bone tissue is poor, because of the differences in species when xenogeneic deproteinised cancellous bone transplantation, and gravis immune rejection, the key question is implantation of immune problems. How to overcome immunogenicity, xenogeneic deproteinised cancellous bone is a good carrier of bone tissue engineering, which can provide a stable environment for revascularization and differentiation of osteoblasts.%背景:采用脱蛋白处理后的松质骨可见大小不等、相互交通、开放孔隙的网架结构,其无机成分为羟基磷灰石,有机成分为胶原,力学性能保存良好,有良好的细胞相容性,可能是一种新型骨移植材料.目的:介绍异种脱蛋白松质骨作为骨组织工程载体的性能,以及其用于骨融合的作用.方法:分别以"异种脱蛋白松质骨、骨融合、载体",为检索词,应用计算机检索重庆

  15. Age changes in human bone: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, W.D.

    1977-12-03

    The human skeleton steadily changes structure and mass during life because of a variety of internal and external factors. Extracellular substance and bone cells get old, characteristic structural remodeling occurs with age and these age-related changes are important in the discrimination between pathological and physiological changes. Perhaps 20 percent of the bone mass is lost between the fourth and the ninth decades, osteoblasts function less efficiently and gradual loss of bone substance is enhanced by delayed mineralization of an increased surface area of thin and relatively less active osteoid seams. After the fifth decade, osteoclasia and the number of Howship's lacunae increase, and with age, the number of large osteolytic osteocytes increases as the number of small osteocytes declines and empty osteocyte lacunae become more common. The result is greater liability to fracture and diminished healing or replacement of injured bone.

  16. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  17. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  18. The penetration of cefazolin, erythromycin and methicillin into human bone tissue

    DEFF Research Database (Denmark)

    Sørensen, T S; Colding, H; Schroeder, E

    1978-01-01

    The penetration of cefazolin, erythromycin and methicillin into normal bone was studied in 20 patients undergoing surgery for fracture in the trochanteric region of the femur. The antibiotic concentrations were determined in serum, bone marrow, and cancellous and cortical bone. For all three...... antibiotics the bone marrow concentrations were of the same order of magnitude as the serum concentrations. In the eight patients receiving erythromycin, detectable concentrations were found in all the cancellous bone specimens (ranging from 1/7 to 1/2 of the serum concentration) and in three cortical bone...... specimens (ranging from 1/50 to 1/5 of the serum concentration). In the six patients receiving cefazolin, a detectable concentration was found in only one cancellous bone sample. In the six patients receiving methicillin, detectable concentrations were found only in the blood contaminated specimens of one...

  19. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.

    Science.gov (United States)

    Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L

    2015-12-01

    Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Analysis of bone mineral density of human bones for strength ...

    Indian Academy of Sciences (India)

    Different types of bone strength are required for various ... To statically analyse various methods to find BMD and related material ... bone study for research purpose. ..... and Dagoberto Vela Arvizo 2007 A qualitative stress analysis of a cross ...

  1. Normal human bone marrow and its variations in MRI

    International Nuclear Information System (INIS)

    Vahlensieck, M.; Schmidt, H.M.

    2000-01-01

    Physiology and age dependant changes of human bone marrow are described. The resulting normal distribution patterns of active and inactive bone marrow including the various contrasts on different MR-sequences are discussed. (orig.) [de

  2. Alien Noise Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Full FEXT Cancellation. Expectation Maximization based Algorithms. Partial Cancellation. Optimal Choice of what to Cancel and what not to! Alien Noise Cancellation. Efficient Crosstalk channel estimation. In addition:

  3. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    Science.gov (United States)

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc

  4. Effects of young-coconut juice on increasing mandibular cancellous bone in orchidectomized rats: Preliminary novel findings

    Directory of Open Access Journals (Sweden)

    Pranee Suwanpal

    2011-12-01

    Full Text Available Androgens play a very important role in building the skeleton in young adults and help to prevent bone loss andosteoporosis in aging men. In addition, in hypogonadism or elderly men, bone mass has been related to estrogen levels ratherthan to testosterone. Estrogen replacement therapy has therefore been proposed to prevent bone loss in males as well as infemales. Estrogen, however, has been considered to be one of the hormonal risk factors for benign prostatic hyperplasia andprostate cancer and also has other side effects. Young coconut juice (YCJ presumably containing phytoestrogen was investigatedin the present study for its possible beneficial effects on delaying osteoporosis using a male rat model, and by this totest the possibility that it might be able to replace estrogen replacement therapy without side effects. In this study, mandibularcancellous bone was used as the osteoporotic model. Using the same model, we have previously found that total cartilagethickness particularly the hypertrophic zone of mandibular condylar cartilage was thicker in the sham-operated rats receivingYCJ orally fed for a 14 day period, compared with sham, orchidectomized animal, orchidectomized rats receiving estradiolbenzoate, and orchidectomized rats receiving YCJ. The present study confirmed our former study that mandibular cancellousbone in the sham-operated rats and in the orchidectomized rats receiving YCJ orally fed for a 14–day period were thicker thanthose of the sham and orchidectomized rat groups. This study results are novel and they indicate that YCJ may have beneficialeffects in the treatment of osteoporosis in andropause men.

  5. Aging, human immunodeficiency virus, and bone health

    Directory of Open Access Journals (Sweden)

    Kim C Mansky

    2010-09-01

    Full Text Available Kim C ManskyDivision of Orthodontics, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USAAbstract: Highly active antiretroviral therapy (HAART has had a profound impact on improving the long-term prognosis for individuals infected with human immunodeficiency virus (HIV. HAART has been available for close to two decades, and now a significant number of patients with access to HAART are over the age of 50 years. Many clinical studies have indicated that HIV infection, as well as components of HAART, can increase the risk in these individuals to a variety of noninfectious complications, including a risk to bone health. There is a significant need for detailed mechanistic analysis of the aging, HIV-infected population regarding the risk of HIV infection and therapy in order to maintain bone health. Insights from basic mechanistic studies will help to shed light on the role of HIV infection and the components of HAART that impact bone health, and will help in identifying preventative countermeasures, particularly for individuals 50 years of age and older.Keywords: osteopenia, osteomalacia, osteoporosis, bisphosphonates, tenofovir, osteoimmunology

  6. Analysis of bone mineral density of human bones for strength ...

    Indian Academy of Sciences (India)

    The bone density (BMD) is a medical term normally referring to the amount of mineral matter per square centimetre of bones. Twenty-five patients (18 female and 7 male patients with a mean age of 71.3 years) undergoing both lumbar spine DXA scans and computed tomography imaging were evaluated to determine if HU ...

  7. Combined Treatment of Alendronate and Low-Intensity Pulsed Ultrasound (LIPUS Increases Bone Mineral Density at the Cancellous Bone Osteotomy Site in Aged Rats: A Preliminary Study.

    Directory of Open Access Journals (Sweden)

    H Aonuma

    2011-12-01

    Full Text Available Introduction: During fracture healing, alendronate encourages callus volume by inhibiting bone resorption, whereas low-intensity pulsed ultrasound (LIPUS enhances bone regeneration by promoting an anabolic response. Methods: In the present study, 9-month-old Sprague-Dawley rats, with a unilateral proximal tibial osteotomy, were treated with alendronate (daily, 1 g/kg plus sham-LIPUS (n = 14, saline plus LIPUS (20 min/day (n = 18, alendronate plus LIPUS (n = 16, or saline plus sham- LIPUS as a control (n = 13 for 4 weeks. The rats were then examined for changes in bone mineral density (BMD during metaphyseal bone repair. Results: The combined therapy signi cantly increased BMD at the osteotomy site at 4 weeks (p < 0.001 compared with the control, without affecting the contralateral, non-osteotomized tibia. Both alendronate and LIPUS alone also exerted a positive, albeit less, effect on BMD in the affected limb (p < 0.001 and p = 0.006, respectively. Conclusions: Alendronate and LIPUS cooperate to enhance BMD during metaphyseal bone healing. Keywords: LIPUS, bisphosphonate, bone mineral density.

  8. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  9. A murine model of human myeloma bone disease

    NARCIS (Netherlands)

    Garrett, I.R.; Dallas, S.; Radl, J.; Mundy, G.R.

    1997-01-01

    Myeloma causes a devastating and unique form of osteolytic bone disease. Although osteoclast activation is responsible for bone destruction, the precise mechanisms by which myeloma cells increase osteoclast activity have not been defined. An animal model of human myeloma bone disease mould help in

  10. Engineering bone tissue from human embryonic stem cells

    OpenAIRE

    Marolt, Darja; Campos, Iván Marcos; Bhumiratana, Sarindr; Koren, Ana; Petridis, Petros; Zhang, Geping; Spitalnik, Patrice F.; Grayson, Warren L.; Vunjak-Novakovic, Gordana

    2012-01-01

    In extensive bone defects, tissue damage and hypoxia lead to cell death, resulting in slow and incomplete healing. Human embryonic stem cells (hESC) can give rise to all specialized lineages found in healthy bone and are therefore uniquely suited to aid regeneration of damaged bone. We show that the cultivation of hESC-derived mesenchymal progenitors on 3D osteoconductive scaffolds in bioreactors with medium perfusion leads to the formation of large and compact bone constructs. Notably, the i...

  11. Experimental studies of the visualisation of spongious bone by high resolution computed tomography

    International Nuclear Information System (INIS)

    Henschel, M.G.; Freyschmidt, J.; Holland, B.R.

    1995-01-01

    18 native human lumbar vertebrae were placed in a water phantom and examined by HR-CT. The scans were compared with contact radiographs of correlating thin bone sections by morphologic criteria. The measured lower limit of visualisation of cancellous bone structures is celarly worse than expected from the measurements of spatial resolution with standard phantoms used for HR-CT (0.6 versus 0.4 mm). True and exact imaging of normal cancellous bone cannot be achieved even by modern HR-CT. Noise creates structures mimicking cancellous bone. (orig./MG) [de

  12. Regulation of bone blood flow in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Boushel, Robert; Hellsten, Ylva

    2018-01-01

    of cyclooxygenase (COX) enzyme, thus prostaglandin (PG) synthesis on femoral bone marrow blood flow by positron emission tomography in healthy young men at rest and during one leg dynamic exercise. In an additional group of healthy men, the role of adenosine (ADO) in the regulation of BBF during exercise......The mechanisms that regulate bone blood flow (BBF) in humans are largely unknown. Animal studies suggest that nitric oxide (NO) could be involved and in the present study we investigated the effects of inhibition of nitric oxide synthase (NOS) alone and in combination with inhibition.......036), but did not affect BBF significantly during exercise (5.5±1.4 ml/100g/min, p=0.25). On the other hand, while combined NOS and COX inhibition did not cause any further reduction of blood flow at rest (0.6±0.2 ml/100g/min), the combined blockade reduced BBF during exercise by ~21%, to 5.0±1.8 ml/100g/min (p...

  13. Healing of Large Segmental Bone Defect after Implantation of Autogenous Cancellous Bone Graft in Comparison to Hydroxyapatite and 0.5% Collagen Scaffold Combined with Mesenchymal Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Nečas, A.; Proks, P.; Urbanová, L.; Srnec, R.; Stehlík, L.; Crha, M.; Raušer, P.; Plánka, L.; Janovec, J.; Dvořák, M.; Amler, Evžen; Vojtová, L.; Jančář, J.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 607-612 ISSN 0001-7213 R&D Projects: GA MŠk 2B06130 Institutional support: RVO:68378041 Keywords : fracture fixation * bone healing * comminuted fracture Subject RIV: FI - Traumatology, Orthopedics Impact factor: 0.534, year: 2010

  14. Pathogenesis of age-related bone loss in humans.

    Science.gov (United States)

    Khosla, Sundeep

    2013-10-01

    Although data from rodent systems are extremely useful in providing insights into possible mechanisms of age-related bone loss, concepts evolving from animal models need to ultimately be tested in humans. This review provides an update on mechanisms of age-related bone loss in humans based on the author's knowledge of the field and focused literature reviews. Novel imaging, experimental models, biomarkers, and analytic techniques applied directly to human studies are providing new insights into the patterns of bone mass acquisition and loss as well as the role of sex steroids, in particular estrogen, on bone metabolism and bone loss with aging in women and men. These studies have identified the onset of trabecular bone loss at multiple sites that begins in young adulthood and remains unexplained, at least based on current paradigms of the mechanisms of bone loss. In addition, estrogen appears to be a major regulator of bone metabolism not only in women but also in men. Studies assessing mechanisms of estrogen action on bone in humans have identified effects of estrogen on RANKL expression by several different cell types in the bone microenvironment, a role for TNF-α and IL-1β in mediating effects of estrogen deficiency on bone, and possible regulation of the Wnt inhibitor, sclerostin, by estrogen. There have been considerable advances in our understanding of age-related bone loss in humans. However, there are also significant gaps in knowledge, particularly in defining cell autonomous changes in bone in human studies to test or validate concepts emerging from studies in rodents. Decision Editor: Luigi Ferrucci, MD, PhD.

  15. Colonic complications following human bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Paulino Martínez Hernández-Magro

    2015-01-01

    Full Text Available Background: Human bone marrow transplantation (BMT becomes an accepted treatment of leukemia, aplastic anemia, immunodeficiency syndromes, and hematologic malignancies. Colorectal surgeons must know how to determine and manage the main colonic complications. Objective: To review the clinical features, clinical and pathological staging of graft vs host disease (GVHD, and treatment of patients suffering with colonic complications of human bone marrow transplantation. Patients and methods: We have reviewed the records of all patients that received an allogeneic bone marrow transplant and were evaluated at our Colon and Rectal Surgery department due to gastrointestinal symptoms, between January 2007 and January 2012. The study was carried out in patients who developed colonic complications, all of them with clinical, histopathological or laboratory diagnosis. Results: The study group was constituted by 77 patients, 43 male and 34 female patients. We identified colonic complications in 30 patients (38.9%; five patients developed intestinal toxicity due to pretransplant chemotherapy (6.4%; graft vs. host disease was present in 16 patients (20%; 13 patients (16.8% developed acute colonic GVHD, and 3 (3.8% chronic GVHD. Infection was identified in 9 patients (11.6%. Conclusions: The three principal colonic complications are the chemotherapy toxicity, GVHD, and superinfection; the onset of symptoms could help to suspect the type of complication (0–20 day chemotherapy toxicity, 20 and more GVHD, and infection could appear in any time of transplantation. Resumo: Experiência: O transplante de medula óssea humana (MOH passou a ser um tratamento adotado para leucemia, anemia aplástica, síndromes de imunodeficiência e neoplasias hematológicas. Cirurgiões colorretais devem saber como determinar e tratar as principais complicações do cólon. Objetivo: Revisar as características clínicas, estadiamentos clínico e patológico da doença do enxerto

  16. Validating in vivo Raman spectroscopy of bone in human subjects

    Science.gov (United States)

    Esmonde-White, Francis W. L.; Morris, Michael D.

    2013-03-01

    Raman spectroscopy can non-destructively measure properties of bone related to mineral density, mineral composition, and collagen composition. Bone properties can be measured through the skin in animal and human subjects, but correlations between the transcutaneous and exposed bone measurements have only been reported for human cadavers. In this study, we examine human subjects to collect measurements transcutaneously, on surgically exposed bone, and on recovered bone fragments. This data will be used to demonstrate in vivo feasibility and to compare transcutaneous and exposed Raman spectroscopy of bone. A commercially available Raman spectrograph and optical probe operating at 785 nm excitation are used for the in vivo measurements. Requirements for applying Raman spectroscopy during a surgery are also discussed.

  17. Oreopithecus was a bipedal ape after all: Evidence from the iliac cancellous architecture

    Science.gov (United States)

    Rook, Lorenzo; Bondioli, Luca; Köhler, Meike; Moyà-Solà, Salvador; Macchiarelli, Roberto

    1999-01-01

    Textural properties and functional morphology of the hip bone cancellous network of Oreopithecus bambolii, a 9- to 7-million-year-old Late Miocene hominoid from Italy, provide insights into the postural and locomotor behavior of this fossil ape. Digital image processing of calibrated hip bone radiographs reveals the occurrence of trabecular features, which, in humans and fossil hominids, are related to vertical support of the body weight, i.e., to bipedality. PMID:10411955

  18. Laterality and grip strength influence hand bone micro-architecture in modern humans, an HRpQCT study.

    Science.gov (United States)

    Reina, Nicolas; Cavaignac, Etienne; Trousdale, William H; Laffosse, Jean-Michel; Braga, José

    2017-06-01

    It is widely hypothesized that mechanical loading, specifically repetitive low-intensity tasks, influences the inner structure of cancellous bone. As such, there is likely a relationship between handedness and bone morphology. The aim of this study is to determine patterns in trabecular bone between dominant and non-dominant hands in modern humans. Seventeen healthy patients between 22 and 32 years old were included in the study. Radial carpal bones (lunate, capitate, scaphoid, trapezium, trapezoid, 1st, 2nd and 3rd metacarpals) were analyzed with high-resolution micro-computed tomography. Additionally, crush and pinch grip were recorded. Factorial analysis indicated that bone volume ratio, trabeculae number (Tb.N), bone surface to volume ratio (BS.BV), body weight, stature and crush grip were all positively correlated with principal components 1 and 2 explaining 78.7% of the variance. Volumetric and trabecular endostructural parameters (BV/TV, BS/BV or Tb.Th, Tb.N) explain the observed inter-individual variability better than anthropometric or clinical parameters. Factors analysis regressions showed correlations between these parameters and the dominant side for crush strength for the lunate (r 2 = 0.640, P modern human wrist. © 2017 Anatomical Society.

  19. Human bone ingrowth into a porous tantalum acetabular cup

    Directory of Open Access Journals (Sweden)

    Gregory N. Haidemenopoulos

    2017-11-01

    Full Text Available Porous Tantalum is increasingly used as a structural scaffold in orthopaedic applications. Information on the mechanisms of human bone ingrowth into trabecular metal implants is rather limited. In this work we have studied, qualitatively, human bone ingrowth into a retrieved porous tantalum monoblock acetabular cup using optical microscopy, scanning electron microscopy and energy dispersive X-ray analysis. According to the results and taking into account the short operational life (4 years of the implant, bone ingrowth on the acetabular cup took place in the first two-rows of porous tantalum cells to an estimated depth of 1.5 to 2 mm. The bone material, grown inside the first raw of cells, had almost identical composition with the attached bone on the cup surface, as verified by the same Ca:P ratio. Bone ingrowth has been a gradual process starting with Ca deposition on the tantalum struts, followed by bone formation into the tantalum cells, with gradual densification of the bone tissue into hydroxyapatite. A critical step in this process has been the attachment of bone material to the tantalum struts following the topology of the porous tantalum scaffold. These results provide insight to the human bone ingrowth process into porous tantalum implants.

  20. Quantitative dual-energy CT for phantomless evaluation of cancellous bone mineral density of the vertebral pedicle: correlation with pedicle screw pull-out strength

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, Julian L.; Booz, Christian; Bauer, Ralf W.; Kerl, J.M.; Fischer, Sebastian; Lehnert, Thomas; Vogl, Thomas J.; Khan, M.F. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Wesarg, Stefan [Fraunhofer IGD, Cognitive Computing and Medical Imaging, Darmstadt (Germany); Kafchitsas, Konstantinos [Spine Center, Asklepios Klinik Lindenlohe, Schwandorf (Germany)

    2015-06-01

    To evaluate quantitative dual-energy computed tomography (DECT) for phantomless analysis of cancellous bone mineral density (BMD) of vertebral pedicles and to assess the correlation with pedicle screw pull-out strength. Twenty-nine thoracic and lumbar vertebrae from cadaver specimens were examined with DECT. Using dedicated post-processing software, a pedicle screw vector was mapped (R1, intrapedicular segment of the pedicle vector; R2, intermediate segment; R3, intracorporal segment; global, all segments) and BMD was calculated. To invasively evaluate pedicle stability, pedicle screws were drilled through both pedicles and left pedicle screw pull-out strength was measured. Resulting values were correlated using the paired t test and Pearson's linear correlation. Average pedicle screw vector BMD (R1, 0.232 g/cm{sup 3}; R2, 0.166 g/cm{sup 3}; R3, 0.173 g/cm{sup 3}; global, 0.236 g/cm{sup 3}) showed significant differences between R1-R2 (P < 0.002) and R1-R3 (P < 0.034) segments while comparison of R2-R3 did not reach significance (P > 0.668). Average screw pull-out strength (639.2 N) showed a far stronger correlation with R1 (r = 0.80; P < 0.0001) than global BMD (r = 0.42; P = 0.025), R2 (r = 0.37; P = 0.048) and R3 (r = -0.33; P = 0.078) segments. Quantitative DECT allows for phantomless BMD assessment of the vertebral pedicle. BMD of the intrapedicular segment shows a significantly stronger correlation with pedicle screw pull-out strength than other segments. (orig.)

  1. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Jose de M. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose W. [Escola Politecnica de Pernambuco (POLI). Universidade de Pernambuco (UPE), Recife, PE (Brazil); Lima, Vanildo J. de M., E-mail: vjr@ufpe.br [Departamento de Anatomia. Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lima, Lindeval F., E-mail: lindeval@dmat.ufrr.br [Departamento de Matematica (DMAT). Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares (CRCN/NE-CNEN-PE), Recife, PE (Brazil); Vasconcelos, Wagner E. de [Departamento de Energia Nuclear (DEN). Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-07-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  2. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.

    Science.gov (United States)

    Prisby, Rhonda D

    2014-07-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (pnecrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    International Nuclear Information System (INIS)

    Lima Filho, Jose de M.; Vieira, Jose W.; Lima, Vanildo J. de M.; Lima, Lindeval F.; Lima, Fernando R.A.; Vasconcelos, Wagner E. de

    2011-01-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  4. Management of stage I and II A/B avascular necrosis of femoral head with core decompression autologous cancellous bone grafting and platelet rich plasma factors

    Directory of Open Access Journals (Sweden)

    Tushar Agarwal

    2015-01-01

    Full Text Available Background: Avascular necrosis (AVN of the femoral head is a progressive disease that generally affects patients in the third through fifth decades of life; if left untreated, it leads to complete deterioration of the hip joint. Treatments range from simple decompression of the femoral head, to bone grafting of the involved area, or by using a vascularized fibular graft with varying degree of success. In most instances, the disease progresses further causing secondary arthritis. We present a study of management of early stage AVN (stage I and II A/B of Ficat Arlet classification with core decompression autologous cancellous bone grafting along with platelet rich plasma. Aims: To evaluate the results of the above modality in the management of AVN of the hip. Settings and Design: This prospective study of 30 cases was done during the period of 2011-2013. Materials and Methods: Patients with stage I and II A/B were treated with the above modality and were followed up for 1-year. The results were evaluated on the basis of progression or remission of the disease by radiographic studies, preoperative and postoperative Harris hip score (HHS, age and sex distribution. Statistical Analysis Used: Primer software for calculating the statistical data was used and paired t-test was applied to all the data. Results: Show males were more affected than females and average age group of presentation in stage I and II was 29 years (22-55. The most common cause was idiopathic followed by steroid use. Average preoperative HHS was 56.80 and postoperative HHS was 79.73. 60% (18 showed remission of the disease (radiographically compared to preoperative stage at 1-year follow-up, in 30% (9 disease did not progress further and 10% (3 progressed and required arthroplasty. Conclusion: Management of stage I and II A/B AVN of femur showed good satisfactory results in terms of disease remission and prevention of the further progress of the disease by the above method at 1

  5. The effect of radiation sterilization on human transplantable bone

    International Nuclear Information System (INIS)

    Triantafyllou, N.; Karatzas, P.

    1974-11-01

    In order to study the effect of radiation sterilization on human transplantable bones, work was carried out on human and bovine bone tissue samples. Factors causing possible alterations in the mechanical structures of the preserved bone allografts were considered to be deep freezing (-35degC), lyophylization, irradiation, or a combination of lyophylization and irradiation. The latter could be shown to lower the mechanical strength of the bone. Crystal lattice of the bone did not show any alterations in x-ray diffraction pattern, following freeze drying and/or irradiation with doses up to 10 Mrad of gamma radiation. Deterioration in mechanical properties is probably due to damage to the organic phase of the bone matrix

  6. Biomechanical study of the bone tissue with dental implants interaction

    Directory of Open Access Journals (Sweden)

    Navrátil P.

    2011-12-01

    Full Text Available The article deals with the stress-strain analysis of human mandible in the physiological state and after the dental implant application. The evaluation is focused on assessing of the cancellous bone tissue modeling-level. Three cancellous bone model-types are assessed: Non-trabecular model with homogenous isotropic material, nontrabecular model with inhomogeneous material obtained from computer tomography data using CT Data Analysis software, and trabecular model built from mandible section image. Computational modeling was chosen as the most suitable solution method and the solution on two-dimensional level was carried out. The results show that strain is more preferable value than stress in case of evaluation of mechanical response in cancellous bone. The non-trabecular model with CT-obtained material model is not acceptable for stress-strain analysis of the cancellous bone for singularities occurring on interfaces of regions with different values of modulus of elasticity.

  7. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    Science.gov (United States)

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  8. The influence of lifelong exposure to environmental fluoride on bone quality in humans

    Science.gov (United States)

    Chachra, Debbie

    The objective of this study was to determine if lifelong exposure to environmental sources of fluoride (including fluoridated water) had an effect on bone quality in humans. Ninety-two femoral heads were obtained from individuals undergoing total hip arthroplasty in regions with and without fluoridated water (Toronto and Montreal, respectively), so that the donors would have had a wide range of fluoride exposure. As the samples were obtained at surgery, the femoral heads were affected by osteoarthritis (75), osteoporosis (9) and other diseases. The fluoride content of cancellous bone was assessed by instrumental neutron activation analysis. A number of contributors to bone quality were assessed. The compressive and torsional mechanical properties were measured for cancellous cores excised from the centre of the femoral head. The architecture was assessed by image analysis of an x-ray of a 5 mm thick coronal section of the femoral head, as well as of histological sections taken from the superior (weightbearing) and the inferior (nonweightbearing) surface of the femoral head. The degree of mineralization was measured using backscattered electron imaging and microhardness, again at the superior and the inferior surface. Femoral heads from Toronto donors had a greater mean fluoride content than those from Montreal donors (1033 +/- 438 ppm vs. 643 +/- 220 ppm). However, the fluoride content of the Toronto donors ranged approximately twelve-fold (192--2264 ppm) and entirely contained the range of Montreal donors. Therefore, fluoridated water exposure is not the only determinant of fluoride content. The logarithm of the bone fluoride content increased with age. No substantive effect of fluoride, independent of age, was observed for the mechanical properties. Similarly, at the inferior surface, the architecture was affected by age but not by fluoride incorporation but the degree of mineralization was not affected by either. However, the degree of mineralization (measured

  9. Registration-based Bone Morphometry for Shape Analysis of the Bones of the Human Wrist

    Science.gov (United States)

    Joshi, Anand A.; Leahy, Richard M.; Badawi, Ramsey D.; Chaudhari, Abhijit J.

    2015-01-01

    We present a method that quantifies point-wise changes in surface morphology of the bones of the human wrist. The proposed method, referred to as Registration-based Bone Morphometry (RBM), consists of two steps: an atlas selection step and an atlas warping step. The atlas for individual wrist bones was selected based on the shortest l2 distance to the ensemble of wrist bones from a database of a healthy population of subjects. The selected atlas was then warped to the corresponding bones of individuals in the population using a non-linear registration method based on regularized l2 distance minimization. The displacement field thus calculated showed local differences in bone shape that then were used for the analysis of group differences. Our results indicate that RBM has potential to provide a standardized approach to shape analysis of bones of the human wrist. We demonstrate the performance of RBM for examining group differences in wrist bone shapes based on sex and between those of the right and left wrists in healthy individuals. We also present data to show the application of RBM for tracking bone erosion status in rheumatoid arthritis. PMID:26353369

  10. Tissue engineering for lateral ridge augmentation with recombinant human bone morphogenetic protein 2 combination therapy: a case report.

    Science.gov (United States)

    Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei

    2015-01-01

    This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations.

  11. Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone.

    Directory of Open Access Journals (Sweden)

    Christopher A Smith

    Full Text Available To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC. BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1 concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.

  12. Is fatty acid composition of human bone marrow significant to bone health?

    Science.gov (United States)

    Pino, Ana María; Rodríguez, J Pablo

    2017-12-16

    The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Crestal Sinus Augmentation with Recombinant Human Bone Morphogenetic Protein 2: Clinical and Radiographic Outcomes of 2-Year Pilot Trial.

    Science.gov (United States)

    Kuchler, Ulrike; Rudelstorfer, Claudia M; Barth, Barbara; Tepper, Gabor; Lidinsky, Dominika; Heimel, Patrick; Watzek, Georg; Gruber, Reinhard

    Recombinant human bone morphogenetic protein 2 (rhBMP-2) together with an absorbable collagen carrier (ACS) was approved for augmentation of the maxillary sinus prior to implant placement. The original registration trial was based on a lateral window approach. Clinical outcomes of crestal sinus augmentation with rhBMP-2 have not been reported so far. An uncontrolled pilot trial in which seven patients with a residual maxillary height below 5 mm were enrolled to receive crestal sinus augmentation with rhBMP-2/ACS was conducted. Elevation of the sinus mucosa was performed by gel pressure. Primary endpoints were the gain in augmentation height and volume measured by computed tomography after 6 months. Evaluation of bone quality at the time of implant placement was based on histology. Secondary endpoints were the clinical and radiologic evaluation of the implants and patient satisfaction by visual analog scale (VAS) at the 2-year follow-up. Median gain in augmentation height was 7.2 mm (range 0.0 to 17.5 mm). Five patients gained at least 5 mm of bone height. Two patients with a perforation of the sinus mucosa failed to respond to rhBMP-2/ACS and underwent lateral window augmentation. The median gain in augmentation volume of the five patients was 781.3 mm³ (range 426.9 to 1,242.8 mm³). Biopsy specimens showed a cancellous network consisting of primary plexiform bone with little secondary lamellar bone. After 2 years, implants were in function with no signs of inflammation or peri-implant bone loss. Patients were satisfied with the esthetic outcomes and chewing function. This pilot clinical trial supports the original concept that rhBMP-2/ACS supports bone formation, also in crestal sinus augmentation, and emphasizes the relevance of the integrity of the sinus mucosa to predict the bone gain.

  14. MicroCT evaluation of bone mineral density loss in human bones

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Oliveira, Luis F.

    2007-01-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca 10 (PO 4 ) 6 OH 2 ], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 μm (±5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm -3 and 1.92 g.cm -3 respectively. The correlation of the measured absorption coefficient with the mineral content in the samples was then

  15. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  16. DNA and bone structure preservation in medieval human skeletons.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Radiation dosimetry in human bone using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Breen, S.L.

    1995-01-01

    Accurate measurements of dose in bone are required in order to improve the dosimetry of systemic radiotherapy for osseous metastases. Bone is an integrating dosimeter which records the radiation history of the skeleton. During irradiation, electrons become trapped in the crystalline component of bone mineral (hydroxyapatite). The traps are very stable; at room temperature, emptying of the traps occurs with a half-life of many years. The population of trapped unpaired electrons is proportional to the radiation dose administered to the bone and can be measured in excised bone samples using electron paramagnetic resonance (EPR). EPR spectra of synthetic hydroxyapatite, irradiated with Co-60, were obtained at room temperature and at 77 K. At room temperature, the radiation-induced signal, with a g-value of 2.001 ± 0.001 increased linearly with absorbed dose above a lower threshold of 3 Gy, up to doses of 200 Gy. In contrast with pure hydroxyapatite, EPR spectra of excised human bone showed a broad 'native' signal, due to the organic component of bone, which masks the dosimetrically important signal. This native signal is highly variable from sample to sample and precludes the use of EPR as an absolute dosimetry technique. However, after subtraction of the background signal, irradiated human bone showed a linear response with a lower limit of measurement similar to that of synthetic hydroxyapatite. Bone is an in vivo linear dosimeter which can be exploited to develop accurate estimates of the radiation dose delivered during systemic radiotherapy and teletherapy. However, improved sensitivity of the EPR dosimetry technique is necessary before it can be applied reliably in clinical situations. (author)

  18. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  19. [Comparation on Haversian system between human and animal bones by imaging analysis].

    Science.gov (United States)

    Lu, Hui-Ling; Zheng, Jing; Yao, Ya-Nan; Chen, Sen; Wang, Hui-Pin; Chen, Li-Xian; Guo, Jing-Yuan

    2006-04-01

    To explore the differences in Haversian system between human and animal bones through imaging analysis and morphology description. Thirty-five slices grinding from human being as well as dog, pig, cow and sheep bones were observed to compare their structure, then were analysed with the researchful microscope. Plexiform bone or oeston band was not found in human bones; There were significant differences in the shape, size, location, density of Haversian system, between human and animal bones. The amount of Haversian lamella and diameter of central canal in human were the biggest; Significant differences in the central canal diameter and total area percentage between human and animal bones were shown by imaging analysis. (1) Plexiform bone and osteon band could be the exclusive index in human bone; (2) There were significant differences in the structure of Haversian system between human and animal bones; (3) The percentage of central canals total area was valuable in species identification through imaging analysis.

  20. Differentiating human versus non-human bone by exploring the nutrient foramen: implications for forensic anthropology.

    Science.gov (United States)

    Johnson, Vail; Beckett, Sophie; Márquez-Grant, Nicholas

    2017-11-01

    One of the roles of a forensic anthropologist is to assist medico-legal investigations in the identification of human skeletal remains. In some instances, only small fragments of bone may be present. In this study, a non-destructive novel technique is presented to distinguish between human and non-human long bones. This technique is based on the macroscopic and computed tomography (CT) analysis of nutrient foramina. The nutrient foramen of long bone diaphyses transmits the nutrient artery which provides much of the oxygen and nutrients to the bone. The nutrient foramen and its canal were analysed in six femora and humeri of human, sheep (Ovies aries) and pig (Sus scrofa) species. The location, position and direction of the nutrient foramina were measured macroscopically. The length of the canal, angle of the canal, circumference and area of the entrance of the foramen were measured from CT images. Macroscopic analysis revealed the femora nutrient foramina are more proximal, whereas humeri foramina are more distal. The human bones and sheep humerus conform to the perceived directionality, but the pig bones and sheep femur do not. Amongst the parameters measured in the CT analysis, the angle of the canal had a discriminatory power. This study shows the potential of this technique to be used independently or complementary to other methods in distinguishing between human and non-human bone in forensic anthropology.

  1. Distribution of radium and plutonium in human bone

    International Nuclear Information System (INIS)

    Schlenker, R.A.

    1985-01-01

    This review covers studies of the microdistribution of radium and plutonium in human bone, conducted at Argonne with emphasis on the alpha-spectrometric method of measurement. Alpha spectrometry offers high spatial resolution and is well suited to the measurement of radionuclide concentrations near bone surfaces. With these techniques surface deposit thicknesses have been measured to be about 1 μm thick for isotopes of lead, radium and the actinides, and volume deposits of 226 Ra have been found to be quite nonuniform near bone surfaces, leading to endosteal tissue dose rates that are higher than expected under the assumption of uniform volume concentration normally used in radiation protection calculations. With autoradiography, the bony septa of the mastoid air cell system have been found to be depleted in radium relative to the bone tissue surrounding them; this is expected to have a significant influence on the dosimetry of the mastoid epithelia. A combination of autoradiographic and morphometric measurements indicates that specific activities in the axial skeleton are higher than in the appendicular skeleton, primarily because the former has higher bone surface-to-volume ratios and higher bone surface concentrations of plutonium. 19 references, 14 figures, 6 tables

  2. Strontium-90 content of human bone collected in 1967

    International Nuclear Information System (INIS)

    Jeanmaire, L.; Patti, F.

    1969-01-01

    This report follows report CEA-R-3381 and presents the strontium 90 content of human bones collected in 1967 in the Paris area. The main trend is much the same as during 1966; contamination levels are falling down in infants up to 5 year old. Beyond this age, the values are the same or experience a slight increase. (authors) [fr

  3. Ancient pathogen DNA in human teeth and petrous bones

    DEFF Research Database (Denmark)

    Margaryan, Ashot; Hansen, Henrik B.; Rasmussen, Simon

    2018-01-01

    Recent ancient DNA (aDNA) studies of human pathogens have provided invaluable insights into their evolutionary history and prevalence in space and time. Most of these studies were based on DNA extracted from teeth or postcranial bones. In contrast, no pathogen DNA has been reported from the petro...

  4. Specific depletion of mature T lymphocytes from human bone marrow

    DEFF Research Database (Denmark)

    Geisler, C; Møller, J; Plesner, T

    1989-01-01

    An effective method for specific depletion of mature T lymphocytes from human bone marrow mononuclear cells (BMMC) with preservation of prethymic T cells and natural killer (NK) cells is presented. The BMMC were incubated with F101.01, a monoclonal antibody recognizing an epitope of the T...

  5. Diagnostic dry bone histology in human paleopathology

    NARCIS (Netherlands)

    de Boer, H. H. Hans; van der Merwe, A. E. Lida

    2016-01-01

    Paleopathology is the study of trauma and disease as may be observed in ancient (human) remains. In contrast to its central role in current medical practice, microscopy plays a rather modest role in paleopathology. This is at least partially due to the differences between fresh and decomposed (i.e.,

  6. Age variations in the properties of human tibial trabecular bone

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Danielsen, CC

    1997-01-01

    We tested in compression specimens of human proximal tibial trabecular bone from 31 normal donors aged from 16 to 83 years and determined the mechanical properties, density and mineral and collagen content. Young's modulus and ultimate stress were highest between 40 and 50 years, whereas ultimate...... strain and failure energy showed maxima at younger ages. These age-related variations (except for failure energy) were non-linear. Tissue density and mineral concentration were constant throughout life, whereas apparent density (the amount of bone) varied with ultimate stress. Collagen density (the...... amount of collagen) varied with failure energy. Collagen concentration was maximal at younger ages but varied little with age. Our results suggest that the decrease in mechanical properties of trabecular bone such as Young's modulus and ultimate stress is mainly a consequence of the loss of trabecular...

  7. The development of a composite bone model for training on placement of dental implants.

    Science.gov (United States)

    Alkhodary, Mohamed Ahmed; Abdelraheim, Abdelraheim Emad Eldin; Elsantawy, Abd Elaleem Hassan; Al Dahman, Yousef Hamad; Al-Mershed, Mohammed

    2015-04-01

    It takes a lot of training on patients for both undergraduate to develop clinical sense as regards to the placement of dental implants in the jaw bones, also, the models provided by the dental implant companies for training are usually made of strengthened synthetic foams, which are far from the composition, and tactile sense provided by natural bone during drilling for clinical placement of dental implants. This is an in-vitro experimental study which utilized bovine femur bone, where the shaft of the femur provided the surface compact layer, and the head provided the cancellous bone layer, to provide a training model similar to jaw bones macroscopic anatomy. Both the compact and cancellous bone samples were characterized using mechanical compressive testing. The elastic moduli of the cancellous and cortical femur bone were comparable to those of the human mandible, and the prepared training model provided a more lifelike condition during the drilling and placement of dental implants. The composite bone model developed simulated the macroscopic anatomy of the jaw bones having a surface layer of compact bone, and a core of cancellous bone, and provided a better and a more natural hands-on experience for placement of dental implants as compared to plastic models made of polyurethane.

  8. Effects of Recombinant Human Bone Morphogenetic Protein-2 on Vertical Bone Augmentation in a Canine Model.

    Science.gov (United States)

    Hsu, Yung-Ting; Al-Hezaimi, Khalid; Galindo-Moreno, Pablo; O'Valle, Francisco; Al-Rasheed, Abdulaziz; Wang, Hom-Lay

    2017-09-01

    Vertical bone augmentation (VBA) remains unpredictable and challenging for most clinicians. This study aims to compare hard tissue outcomes of VBA, with and without recombinant human bone morphogenetic protein (rhBMP)-2, under space-making titanium mesh in a canine model. Eleven male beagle dogs were used in the study. Experimental ridge defects were created to form atrophic ridges. VBA was performed via guided bone regeneration using titanium mesh and allografts. In experimental hemimandibles, rhBMP-2/absorbable collagen sponge was well mixed with allografts prior to procedures, whereas a control buffer was applied within controls. Dogs were euthanized after a 4-month healing period. Clinical and radiographic examinations were performed to assess ridge dimensional changes. In addition, specimens were used for microcomputed tomography (micro-CT) assessment and histologic analysis. Membrane exposure was found on five of 11 (45.5%) rhBMP-2-treated sites, whereas it was found on nine of 11 (81.8%) non-rhBMP-2-treated sites. Within 4 months of healing, rhBMP-2-treated sites showed better radiographic bone density, greater defect fill, and significantly more bone gain in ridge height (P 0.05). Under light microscope, predominant lamellar patterns were found in the specimen obtained from rhBMP-2 sites. With inherent limitations of the canine model and the concern of such a demanding surgical technique, current findings suggest that the presence of rhBMP-2 in a composite graft allows an increase of vertical gain, with formation of ectopic bone over the titanium mesh in comparison with non-rhBMP-2 sites.

  9. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  10. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  11. Creep of trabecular bone from the human proximal tibia.

    Science.gov (United States)

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L; McKittrick, Joanna

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Calcium isotope ratios in animal and human bone

    Science.gov (United States)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  13. Development of a Human Cranial Bone Surrogate for Impact Studies

    International Nuclear Information System (INIS)

    Roberts, Jack C.; Merkle, Andrew C.; Carneal, Catherine M.; Voo, Liming M.; Johannes, Matthew S.; Paulson, Jeff M.; Tankard, Sara; Uy, O. Manny

    2013-01-01

    In order to replicate the fracture behavior of the intact human skull under impact it becomes necessary to develop a material having the mechanical properties of cranial bone. The most important properties to replicate in a surrogate human skull were found to be the fracture toughness and tensile strength of the cranial tables as well as the bending strength of the three-layer (inner table-diplöe-outer table) architecture of the human skull. The materials selected to represent the surrogate cranial tables consisted of two different epoxy resins systems with random milled glass fiber to enhance the strength and stiffness and the materials to represent the surrogate diplöe consisted of three low density foams. Forty-one three-point bending fracture toughness tests were performed on nine material combinations. The materials that best represented the fracture toughness of cranial tables were then selected and formed into tensile samples and tested. These materials were then used with the two surrogate diplöe foam materials to create the three-layer surrogate cranial bone samples for three-point bending tests. Drop tower tests were performed on flat samples created from these materials and the fracture patterns were very similar to the linear fractures in pendulum impacts of intact human skulls, previously reported in the literature. The surrogate cranial tables had the quasi-static fracture toughness and tensile strength of 2.5 MPa√ m and 53 ± 4.9 MPa, respectively, while the same properties of human compact bone were 3.1 ± 1.8 MPa√ m and 68 ± 18 MPa, respectively. The cranial surrogate had a quasi-static bending strength of 68 ± 5.7 MPa, while that of cranial bone was 82 ± 26 MPa. This material/design is currently being used to construct spherical shell samples for drop tower and ballistic tests.

  14. Contribution of the endosteal surface of cortical bone to the trabecular pattern seen on IOPA radiographs: an in vitro study

    Directory of Open Access Journals (Sweden)

    P T Ravikumar

    2012-01-01

    Full Text Available Objectives: A study was conducted to assess the contribution of the cancellous and endosteal surface of the cortical bone to the trabecular pattern seen in an IOPA radiograph. Materials and methods: An in vitro study analyzing the contribution of the endosteal surface of cortical bone and cancellous bone to the trabecular pattern was conducted, using 60 specimens of desiccated human mandibles. The mode of execution involved IOPA radiographic evaluation of premolarmolar segments in the specimens before and after removal of cancellous bone. The radiographs were numbered for identification and subjected to evaluation by 5 dentomaxillofacial radiologists who were doubleblinded to ensure an unbiased interpretation. Results: The trabecular pattern appreciation by the experts in the IOPA radiographs before and after removal of cancellous bone displayed immaculate correlation as per the Goodman-Kruskal Gamma Coefficient values which was 0.78 indicating a very large correlation. The relative density of trabecular pattern was significantly higher in radiograph before than after removal of cancellous bone with p-value less than 0.05. Conclusion: Based on these results it was adjudged that both the cancellous and endosteal surface of cortical bone contributed significantly to the trabecular pattern in an IOPA radiograph.

  15. Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair

    Science.gov (United States)

    Weir, Michael D.; Xu, Hockin H.K.

    2010-01-01

    Due to its injectability and excellent osteoconductivity, calcium phosphate cement (CPC) is highly promising for orthopedic applications. However, a literature search revealed no report on human bone marrow mesenchymal stem cell (hBMSC) encapsulation in CPC for bone tissue engineering. The aim of this study was to encapsulate hBMSCs in alginate hydrogel beads and then incorporate them into CPC, CPC–chitosan and CPC–chitosan–fiber scaffolds. Chitosan and degradable fibers were used to mechanically reinforce the scaffolds. After 21 days, that the percentage of live cells and the cell density of hBMSCs inside CPC-based constructs matched those in alginate without CPC, indicating that the CPC setting reaction did not harm the hBMSCs. Alkaline phosphate activity increased by 8-fold after 14 days. Mineral staining, scanning electron microscopy and X-ray diffraction confirmed that apatitic mineral was deposited by the cells. The amount of hBMSC-synthesized mineral in CPC–chitosan–fiber matched that in CPC without chitosan and fibers. Hence, adding chitosan and fibers, which reinforced the CPC, did not compromise hBMSC osteodifferentiation and mineral synthesis. In conclusion, hBMSCs were encapsulated in CPC and CPC–chitosan–fiber scaffolds for the first time. The encapsulated cells remained viable, osteodifferentiated and synthesized bone minerals. These self-setting, hBMSC-encapsulating CPC-based constructs may be promising for bone tissue engineering applications. PMID:20451676

  16. Radiographic Comparison of Bovine Bone Substitute Alone versus Bovine Bone Substitute and Simvastatin for Human Maxillary Sinus Augmentation

    Directory of Open Access Journals (Sweden)

    Amir Ali Reza Rasouli Ghahroudi

    2018-01-01

    Full Text Available Objectives: The aim of this study was to compare the efficacy of bovine bone substitute (Compact Bone B. ® alone versus bovine bone substitute and simvastatin for human maxillary sinus augmentation.Materials and Methods: This study was conducted on 16 sinuses in eight patients. Radiographic assessments were done preoperatively (T0, immediately (T1 and at nine months after sinus grafting (T2. Alveolar bone height and density were assessed on cone beam computed tomography (CBCT scans using Planmeca Romexis™ Imaging Software 2.2.Results: The change in alveolar bone height and density between T0, T1 and T2 was significant in both groups. Alveolar bone height (h0, h1, h2 and vertical height of the grafted bone (g1, g2 in three lines (anterior, middle and posterior were not significantly different between groups. The grafted bone height shrinkage (% in the anterior, middle and posterior limits of the augmented area were not significantly different between groups. The existing alveolar and grafted bone density increased significantly in both groups between T1 and T2, except for the existing alveolar bone density in the control group. There were no statistically significant differences between the alveolar bone density values obtained in TI and T2 between groups, except for the existing alveolar bone density at T1.Conclusions: This study did not show any significant positive effect for simvastatin in maxillary sinus augmentation based on radiographic examination.

  17. Subchondral bone density distribution in the human femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)

    2012-06-15

    This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)

  18. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  19. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture.

    Science.gov (United States)

    Kim, Yoon Jeong; Henkin, Jeffrey

    2015-04-01

    Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.

  20. Recombinant human bone morphogenetic protein-2 in the treatment of bone fractures

    Directory of Open Access Journals (Sweden)

    Neil Ghodadra

    2008-09-01

    Full Text Available Neil Ghodadra, Kern SinghDepartment of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USAAbstract: Over one million fractures occur per year in the US and are associated with impaired healing increasing patient morbidity, stress, and economic costs. Despite improvements in surgical technique, internal fixation, and understanding of biologics, fracture healing is delayed or impaired in up to 4% of all fractures. Complications due to impaired fracture healing present therapeutic challenges to the orthopedic surgeon and often lead to chronic functional and psychological disability for the patient. As a result, it has become clinically desirable to augment mechanical fixation with biologic strategies in order to accelerate osteogenesis and promote successful arthrodesis. The discovery of bone morphogenic protein (BMP has been pivotal in understanding the biology of fracture healing and has been a source of intense clinical research as an adjunct to fracture treatment. Multiple in vitro and in vivo studies in animals have elucidated the complex biologic interactions between BMPs and cellular receptors and have convincingly demonstrated rhBMP-2 to be a safe, effective treatment option to enhance bone healing. Multiple clinical trials in trauma surgery have provided level 1 evidence for the use of rhBMP-2 as a safe and effective treatment of fractures. Human clinical trials have provided further insight into BMP-2 dosage, time course, carriers, and efficacy in fracture healing of tibial defects. These promising results have provided hope that a new biologic field of technology has emerged as a useful adjunct in the treatment of skeletal injuries and conditions.Keywords: bone morphogenic protein-2, bone fracture, bone healing

  1. Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone

    Science.gov (United States)

    Prisby, Rhonda D.

    2014-01-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721

  2. Determination of Sr90 activity in human bones

    International Nuclear Information System (INIS)

    Mendonca, Anamelia Habib

    1970-01-01

    Several studies have been published in the literature on the extent and levels of radioactive contamination of food chains caused by fallout from nuclear weapon tests. According to UNSCEAR, these studies cover a great number of:-areas of the developed world, though large, areas of Asia, Africa and South-America are left aside with only, unsatisfactory information about the levels, of radioactive contamination. In 1968, UNSCEAR recommended that a survey on the contamination of biological materials such as human - bone by fission products and particularly Sr 90 should be encouraged on those areas where only fragmentary information was available. UNSCEAR recommendations call upon the fact that many individuals on such areas of the world have been exposed to Sr 90 contamination from birth to their adult area. Therefore, that group have an Sr 90 skeletal burden very much different from people exposed only at adult age. Based on these considerations, UNSCEAR recommendations called for Sr 90 analysis on human bones from different age groups. In Brazil, studies on the of Sr 90 in human bone are practically non-existent, except for the year of 1959. Following UNSCEAR recommendations, we decided to perform such a survey on Sr 90 levels in human bones. Samples were collected from individuals that died in Rio de Janeiro from accidents. These samples were firstly classified according to social level in very poor and poor groups. Samples were then classified in three age groups ranging 0-18, 18-30 and 30-40 years of age. Results show that levels found in the Brazilian age groups are close to the ones observed in Chile (1969), Argentina and Australia (1966-1968) and slightly, higher than -those observed in Venezuela, Senegal and Jamaica (1969). If one compares the results obtained for the North and South hemispheres respectively, one sees that there was a more pronounced decrease in the levels of Sr 90 content of the of some regions of South America. Our results show no

  3. Neovascular niche for human myeloma cells in immunodeficient mouse bone.

    Directory of Open Access Journals (Sweden)

    Hirono Iriuchishima

    Full Text Available The interaction with bone marrow (BM plays a crucial role in pathophysiological features of multiple myeloma (MM, including cell proliferation, chemoresistance, and bone lesion progression. To characterize the MM-BM interactions, we utilized an in vivo experimental model for human MM in which a GFP-expressing human MM cell line is transplanted into NOG mice (the NOG-hMM model. Transplanted MM cells preferentially engrafted at the metaphyseal region of the BM endosteum and formed a complex with osteoblasts and osteoclasts. A subpopulation of MM cells expressed VE-cadherin after transplantation and formed endothelial-like structures in the BM. CD138(+ myeloma cells in the BM were reduced by p53-dependent apoptosis following administration of the nitrogen mustard derivative bendamustine to mice in the NOG-hMM model. Bendamustine maintained the osteoblast lining on the bone surface and protected extracellular matrix structures. Furthermore, bendamustine suppressed the growth of osteoclasts and mesenchymal cells in the NOG-hMM model. Since VE-cadherin(+ MM cells were chemoresistant, hypoxic, and HIF-2α-positive compared to the VE-cadherin(- population, VE-cadherin induction might depend on the oxygenation status. The NOG-hMM model described here is a useful system to analyze the dynamics of MM pathophysiology, interactions of MM cells with other cellular compartments, and the utility of novel anti-MM therapies.

  4. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study

    NARCIS (Netherlands)

    Marcián, P.; Borák, L.; Valášek, J.; Kaiser, J.; Florian, Z.; Wolff, J.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  5. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone – a feasibility study

    NARCIS (Netherlands)

    Marcian, P.; Borak, L.; Valasek, J.; Kaiser, J.; Florian, Z.; Wolff, J.E.H.

    2014-01-01

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant

  6. Quantification of manganese in human hand bones: a feasibility study

    International Nuclear Information System (INIS)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E

    2008-01-01

    Manganese is both an essential element to human health and also toxic when humans are exposed to excessive levels, particularly by means of inhalation. Biological monitoring of manganese exposure is problematic. It is subject to homeostasis; levels in blood (or serum/plasma) reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive technique for measurement of manganese stored in bone, using in vivo neutron activation analysis. Following preliminary feasibility studies, the technique has been enhanced by two significant infrastructure advances. A specially designed irradiation facility serves to maximize the activation of manganese with respect to the dose of ionizing radiation. Secondly, an array of eight NaI(Tl) crystals provides a detection system with very close to 4π geometry. This feasibility study, using neutron activation analysis to measure manganese in the bones of the hand, takes two features into account. Firstly, there is considerable magnesium present in the bone and this produces a spectral interference with the manganese. The 26 Mg(n,γ) 27 Mg reaction produces γ-rays of 0.843 MeV from the decay of 27 Mg, which interfere with the 0.847 MeV γ-rays from the decay of 56 Mn, produced by the 55 Mn(n,γ) 56 Mn reaction. Secondly, this work provides estimates of the levels of manganese to be expected in referent subjects. A revised estimate has been made from the most recent literature to explore the potential of the technique as a suitable means of screening patients and people exposed to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. This report presents the enhancements to the neutron activation system, by which manganese can be measured, which resulted in a detection limit in the hand of human subjects of 1.6

  7. Quantification of manganese in human hand bones: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada)], E-mail: aslamib@mcmaster.ca

    2008-08-07

    Manganese is both an essential element to human health and also toxic when humans are exposed to excessive levels, particularly by means of inhalation. Biological monitoring of manganese exposure is problematic. It is subject to homeostasis; levels in blood (or serum/plasma) reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive technique for measurement of manganese stored in bone, using in vivo neutron activation analysis. Following preliminary feasibility studies, the technique has been enhanced by two significant infrastructure advances. A specially designed irradiation facility serves to maximize the activation of manganese with respect to the dose of ionizing radiation. Secondly, an array of eight NaI(Tl) crystals provides a detection system with very close to 4{pi} geometry. This feasibility study, using neutron activation analysis to measure manganese in the bones of the hand, takes two features into account. Firstly, there is considerable magnesium present in the bone and this produces a spectral interference with the manganese. The {sup 26}Mg(n,{gamma}){sup 27}Mg reaction produces {gamma}-rays of 0.843 MeV from the decay of {sup 27}Mg, which interfere with the 0.847 MeV {gamma}-rays from the decay of {sup 56}Mn, produced by the {sup 55}Mn(n,{gamma}){sup 56}Mn reaction. Secondly, this work provides estimates of the levels of manganese to be expected in referent subjects. A revised estimate has been made from the most recent literature to explore the potential of the technique as a suitable means of screening patients and people exposed to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. This report presents the enhancements to the neutron activation system, by which manganese can be measured, which resulted in a detection

  8. Bone sarcoma in humans induced by radium: A threshold response?

    International Nuclear Information System (INIS)

    Rowland, R.E.

    1996-01-01

    The radium 226 and radium 228 have induced malignancies in the skeleton (primarily bone sarcomas) of humans. They have also induced carcinomas in the paranasal sinuses and mastoid air cells. There is no evidence that any leukemias or any other solid cancers have been induced by internally deposited radium. This paper discuses a study conducted on the dial painter population. This study made a concerted effort to verify, for each of the measured radium cases, the published values of the skeletal dose and the initial intake of radium. These were derived from body content measurements made some 40 years after the radium intake. Corrections to the assumed radium retention function resulted in a considerable number of dose changes. These changes have changed the shape of the dose response function. It now appears that the induction of bone sarcomas is a threshold process

  9. An in vitro 3D bone metastasis model by using a human bone tissue culture and human sex-related cancer cells.

    Science.gov (United States)

    Salamanna, Francesca; Borsari, Veronica; Brogini, Silvia; Giavaresi, Gianluca; Parrilli, Annapaola; Cepollaro, Simona; Cadossi, Matteo; Martini, Lucia; Mazzotti, Antonio; Fini, Milena

    2016-11-22

    One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes.

  10. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study

    DEFF Research Database (Denmark)

    Petruskevicius, Juozas; Nielsen, Mette Strange; Kaalund, Søren

    2002-01-01

    We studied the effects of a newly marketed bone substitute, Osteoset, on bone healing in a tibial defect in humans. 20 patients undergoing an ACL (anterior cruciate ligament) reconstruction with bone-patella tendon-bone graft were block-randomized into 2 groups of 10 each. In the treatment group......, the tibial defect was filled manually with Osteoset pellets, in the control group the defect was left empty. CTs of the defect were taken on the first day after the operation, 6 weeks, 3 and 6 months postoperatively. We found about the same amount of bone in the defect in the Osteoset and control groups...... after 6 weeks, 3, and 6 months. In the control group, but not in the Osteoset group, the bone volume increased from 6 weeks to 3 months. The Osteoset pellets were almost resorbed after 6 weeks....

  11. Scientific journal cancellations

    CERN Multimedia

    The Library

    2001-01-01

    Earlier this year the Scientific Information Policy Board (SIPB) requested the Library and the Working Group for Acquisitions to revise the current printed journal collection in order to cancel those titles that are less required. Savings could then be used for the development of other collections and particularly electronic resources needed to support CERN current research activities. A list of proposed cancellations was drawn and posted on the Library web pages: http://library.cern.ch/library_general/cancel.html The SIPB invites every one to check if any of the titles are of importance to their work, in which case you are invited to inform the Library before the 25th of September by sending an e-mail to: eliane.chaney@cern.ch Titles not reconsidered by the users will be cancelled by the end of the year. Thank you, The Library

  12. Age variations in the properties of human tibial trabecular bone and cartilage

    DEFF Research Database (Denmark)

    Ding, Ming

    2000-01-01

    , such as apparent, apparent ash and collagen densities of human tibial trabecular bone have significant relationships with age. Tissue density and mineral concentration remain constant throughout life. Trabecular bone is tougher in the younger age, i.e. fracture requires more energy. Collagen density was the single......Initiated and motivated by clinical and scientific problems such as age-related bone fracture, prosthetic loosening, bone remodeling, and degenerative bone diseases, much significant research on the properties of trabecular bone has been carried out over the last two decades. This work has mainly...... focused on the central vertebral trabecular bone, while little is known about age-related changes in the properties of human peripheral (tibial) trabecular bone. Knowledge of the properties of peripheral (tibial) trabecular bone is of major importance for the understanding of degenerative diseases...

  13. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Brehler, M; Sisniega, A; Marinetto, E; Stayman, J; Siewerdsen, J; Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Zyazin, A; Peters, I [Teledyne DALSA, Eindhoven (Netherlands); Yorkston, J [Carestream Health, Inc, Penfield, NY (United States)

    2016-06-15

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection) using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high

  14. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    International Nuclear Information System (INIS)

    Cao, Q; Brehler, M; Sisniega, A; Marinetto, E; Stayman, J; Siewerdsen, J; Zbijewski, W; Zyazin, A; Peters, I; Yorkston, J

    2016-01-01

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection) using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high

  15. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  16. Synchrotron radiation XRF microprobe study of human bone tumor slice

    International Nuclear Information System (INIS)

    Huang Yuying; Zhao Limin; Wang Zhouguang; Shao Hanru; Li Guangcheng; Wu Yingrong; He Wei; Lu Jianxin; He Rongguo

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described. Using the bovine liver as the standard reference, the minimum detection limit (MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe. The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated. The experimental result relation to the clinical medicine was also discussed. (author)

  17. Mechanical properties of human bone-tendon-bone grafts preserved by different methods and radiation sterilised

    International Nuclear Information System (INIS)

    Kaminski, A.; Gut, G.

    2008-01-01

    Full text: Patellar tendon auto and allografts are commonly used in orthopaedic surgery for reconstruction of the anterior crucial ligaments (ACL). Autografts are mainly used for primary reconstruction, while allografts are useful for revision surgery. To avoid the risk of infection diseases transmission allografts should be radiation-sterilised. As radiation-sterilisation is supposed to decrease the mechanical strength of tendon tissue, it is important to establish methods of allografts preservation and sterilisation resulting in their best quality and safety. Therefore, the purpose of the study was to compare the tensile strength of the central one third of human patellar tendon (as used for ACL reconstruction), preserved by different methods (deep fresh freezing, lyophilisation) and subsequently radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. Bone-tendon-bone grafts were prepared from cadaveric human patella tendon with both patellar and tibial attachments. BTB grafts were preserved by deep freezing, glicerolisation or lyophilisation and radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. To estimate mechanical properties all samples were subjected to tensile tests to failure using Instron system. Before these tests all lyophilised grafts were rehydrated. We found decrease of tensile strength of irradiated grafts compared to non-irradiated controls. Obtained results of the mechanical testing of studied grafts indicate their potential usefulness for clinical applications.(Author)

  18. The hydroxylapatite-bone interface: 10 years after implant installation.

    NARCIS (Netherlands)

    Beekmans, H.C.; Meijer, G.J.; Barkhuysen, R.; Blijdorp, P.A.; Merkx, M.A.W.; Jansen, J.A.

    2008-01-01

    Reconstruction of a severely atrophied maxilla by sinus augmentation with a mixture of hydroxylapatite (HA) granules and autologous cancellous bone is claimed to be a predictable means to facilitate implant placement. To the authors' knowledge, this is the first human histological case report of

  19. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus.

    Science.gov (United States)

    Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2016-01-01

    This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations. © 2015 Anatomical Society.

  20. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  1. Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity

    DEFF Research Database (Denmark)

    Saparin, Peter I.; Thomsen, Jesper Skovhus; Prohaska, Steffen

    2005-01-01

    3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify...

  2. Association between in vivo bone formation and ex vivo migratory capacity of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Andersen, Rikke K.; Zaher, Walid; Larsen, Kenneth Hauberg

    2015-01-01

    INTRODUCTION: There is a clinical need for developing systemic transplantation protocols for use of human skeletal stem cells (also known bone marrow stromal stem cells) (hBMSC) in tissue regeneration. In systemic transplantation studies, only a limited number of hBMSC home to injured tissues...... populations derived from telomerized hBMSC (hBMSC-TERT) with variable ability to form heterotopic bone when implanted subcutaneously in immune deficient mice. In vitro transwell migration assay was used and the in vivo homing ability of transplanted hBMSC to bone fractures in mice was visualized...... suggesting that only a subpopulation of hBMSC possesses "homing" capacity. Thus, we tested the hypothesis that a subpopulation of hBMSC defined by ability to form heterotopic bone in vivo, is capable of homing to injured bone. METHODS: We tested ex vivo and in vivo homing capacity of a number of clonal cell...

  3. Can experimental data in humans verify the finite element-based bone remodeling algorithm?

    DEFF Research Database (Denmark)

    Wong, C.; Gehrchen, P.M.; Kiaer, T.

    2008-01-01

    STUDY DESIGN: A finite element analysis-based bone remodeling study in human was conducted in the lumbar spine operated on with pedicle screws. Bone remodeling results were compared to prospective experimental bone mineral content data of patients operated on with pedicle screws. OBJECTIVE......: The validity of 2 bone remodeling algorithms was evaluated by comparing against prospective bone mineral content measurements. Also, the potential stress shielding effect was examined using the 2 bone remodeling algorithms and the experimental bone mineral data. SUMMARY OF BACKGROUND DATA: In previous studies...... operated on with pedicle screws between L4 and L5. The stress shielding effect was also examined. The bone remodeling results were compared with prospective bone mineral content measurements of 4 patients. They were measured after surgery, 3-, 6- and 12-months postoperatively. RESULTS: After 1 year...

  4. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Henk-Jan Prins

    2014-03-01

    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  5. Development of parietal bone surrogates for parietal graft lift training

    Directory of Open Access Journals (Sweden)

    Hollensteiner Marianne

    2016-09-01

    Full Text Available Currently the surgical training of parietal bone graft techniques is performed on patients or specimens. Commercially available bone models do not deliver realistic haptic feedback. Thus customized parietal skull surrogates were developed for surgical training purposes. Two human parietal bones were used as reference. Based on the measurement of insertion forces of drilling, milling and saw procedures suitable material compositions for molding cortical and cancellous calvarial layers were found. Artificial skull caps were manufactured and tested. Additionally microtomograpy images of human and artificial parietal bones were performed to analyze outer table and diploe thicknesses. Significant differences between human and artificial skulls were not detected with the mechanical procedures tested. Highly significant differences were found for the diploe thickness values. In conclusion, an artificial bone has been created, mimicking the properties of human parietal bone thus being suitable for tabula externa graft lift training.

  6. Human Bone Derived Collagen for the Development of an Artificial Corneal Endothelial Graft. In Vivo Results in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Natalia Vázquez

    Full Text Available Corneal keratoplasty (penetrating or lamellar using cadaveric human tissue, is nowadays the main treatment for corneal endotelial dysfunctions. However, there is a worldwide shortage of donor corneas available for transplantation and about 53% of the world's population have no access to corneal transplantation. Generating a complete cornea by tissue engineering is still a tough goal, but an endothelial lamellar graft might be an easier task. In this study, we developed a tissue engineered corneal endothelium by culturing human corneal endothelial cells on a human purified type I collagen membrane. Human corneal endothelial cells were cultured from corneal rims after corneal penetrating keratoplasty and type I collagen was isolated from remnant cancellous bone chips. Isolated type I collagen was analyzed by western blot, liquid chromatography -mass spectrometry and quantified using the exponentially modified protein abundance index. Later on, collagen solution was casted at room temperature obtaining an optically transparent and mechanically manageable membrane that supports the growth of human and rabbit corneal endothelial cells which expressed characteristic markers of corneal endothelium: zonula ocluddens-1 and Na+/K+ ATPase. To evaluate the therapeutic efficiency of our artificial endothelial grafts, human purified type I collagen membranes cultured with rabbit corneal endothelial cells were transplanted in New Zealand white rabbits that were kept under a minimal immunosuppression regimen. Transplanted corneas maintained transparency for as long as 6 weeks without obvious edema or immune rejection and maintaining the same endothelial markers that in a healthy cornea. In conclusion, it is possible to develop an artificial human corneal endothelial graft using remnant tissues that are not employed in transplant procedures. This artificial endothelial graft can restore the integrality of corneal endothelium in an experimental model of

  7. Biomechanical competence of six different bone screws for reconstructive surgery in three different transplants: Fibular, iliac crest, scapular and artificial bone.

    Science.gov (United States)

    Pietsch, Arnold P; Raith, Stefan; Ode, Jan-Eric; Teichmann, Jan; Lethaus, Bernd; Möhlhenrich, Stephan C; Hölzle, Frank; Duda, Georg N; Steiner, Timm

    2016-06-01

    The goal of this study was to determine a combination of screw and transplantation type that offers optimal primary stability for reconstructive surgery. Fibular, iliac crest, and scapular transplants were tested along with artificial bone substrate. Six different kinds of bone screws (Medartis(©)) were compared, each type utilized with one of six specimens from human transplants (n = 6). Controlled screw-in-tests were performed and the required torque was protocolled. Subsequently, pull-out-tests were executed to determine the retention forces. The artificial bone substitute material showed significantly higher retention forces than real bone samples. The self-drilling screws achieved the significantly highest retention values in the synthetic bone substitute material. Cancellous screws achieved the highest retention in the fibular transplants, while self-drilling and cancellous screws demonstrated better retention than cortical screws in the iliac crest. In the scapular graft, no significant differences were found between the screw types. In comparison to the human transplant types, the cortical screws showed the significantly highest values in the fibula and the lowest values in the iliac crest. The best retention was found in the combination of cancellous screws with fibular graft (514.8 N + -252.3 N). For the flat bones (i.e., scapular and illiac crest) we recommend the cancellous screws. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Human DPSCs fabricate vascularized woven bone tissue: A new tool in bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Paino, F.; Noce, M.L.; Giuliani, A.; de Rosa, A.; Mazzoni, F.; Laino, L.; Amler, Evžen; Papaccio, G.; Desiderio, V.; Tirino, V.

    2017-01-01

    Roč. 131, č. 8 (2017), s. 699-713 ISSN 0143-5221 Institutional support: RVO:68378041 Keywords : bone differentiation * bone regeneration * bone tissue engineering Subject RIV: FP - Other Medical Disciplines OBOR OECD: Orthopaedics Impact factor: 4.936, year: 2016

  9. 42 CFR 57.313a - Loan cancellation reimbursement.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Loan cancellation reimbursement. 57.313a Section 57.313a Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR... Loans § 57.313a Loan cancellation reimbursement. In the event that insufficient funds are available to...

  10. 3D Reconstruction of human bones based on dictionary learning.

    Science.gov (United States)

    Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin

    2017-11-01

    An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Human multipotent mesenchymal stromal cells in the treatment of postoperative temporal bone defect: an animal model

    Czech Academy of Sciences Publication Activity Database

    Školoudík, L.; Chrobok, V.; Kalfert, D.; Kočí, Zuzana; Syková, Eva; Chumak, Tetyana; Popelář, Jiří; Syka, Josef; Laco, J.; Dědková, J.; Dayanithi, Govindan; Filip, S.

    2016-01-01

    Roč. 25, č. 7 (2016), s. 1405-1414 ISSN 0963-6897 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : Human bone marrow * Human mesenchymal stromal cells (hMSCs) * Middle ear surgery * Temporal bone Subject RIV: FP - Other Medical Disciplines Impact factor: 3.006, year: 2016

  12. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  13. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.

    Science.gov (United States)

    Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C

    2013-11-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. © 2013. Published by Elsevier Inc. All rights reserved.

  14. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆

    Science.gov (United States)

    Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.

    2013-01-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972

  15. Enhancement of bone formation in rabbits by recombinant human growth hormone

    International Nuclear Information System (INIS)

    Ehrnberg, A.; Brosjoe, O.; Laaftman, P.; Nilsson, O.; Stroemberg, L.

    1993-01-01

    We studied the effect of human recombinant growth hormone on diaphyseal bone in 40 adult rabbits. The diaphyseal periosteum of one femur in each animal was mechanically stimulated by a nylon cerclage band. The bands induced an increase in bone formation, bone mineral content, and maximum torque capacity of the diaphyseal bone at 1 and 2 months. Growth hormone enhanced the anabolic effect of the cerclage bands on bone metabolism, evidenced by a further increase in torsional strength of the femurs. (au) (32 refs.)

  16. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    Science.gov (United States)

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  17. The Mechanics of Long Bone Fractures.

    Science.gov (United States)

    1981-01-31

    r = .99) between wet density and ultimate bending strength for 37 specimens of human femoral bone. Evans (1973) studied embalmed human tibial...Work 2 2.2 Methods 6 2.2.1 Torsional Loading 6 2.2.2 The Effects of Combined Loading 10 2.2.3 Cancellous Bone Effects 11 2.3 Results 11 2.3.1...PROPERTIES 21 3.1 Previous Work 22 3.2 Methods 26 3.2.1 Cross Sectional Property Software 26 3.2.2 CT Scanning Procedure 28 3.2.3 Linear Dependency of

  18. Morphological studies at subchondral bone structures in human early arthrosis. Final report; Morphologische Studien an subchondralen Knochenstrukturen bei humanen Frueharthrosen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    Quantitative histomorphometric studies using an image analysis system were performed simultaneously on hyaline cartilage, calcified cartilage and subchondral cancellous bone of human tibial heads for detailed information about the pathogenesis of arthrosis. Joint structures need to be fully detected in three dimensions since measurement values are more affected by topographical aspects than by either age, or sex, or arthrosin stage. Mechanical factors were found to affect essentially the initiation and progression of arthrosis. Results are demonstrated in detail. (orig.) [Deutsch] Um detaillierte Aussagen ueber die Pathogenese der Arthrose machen zu koennen, wurden hyaliner Knorpel, Kalkknorpel und subchondrale Spongiosa menschlicher Tibiakoepfe gleichzeitig mit Hilfe eines Bildanalysesystems quantitativ histomorphometrisch untersucht. Eine umfangreiche dreidimensionale Erfassung der Gelenkstrukturen ist erforderlich, da sich topographische Aspekte wesentlich staerker auf die Messwerte auswirken als Alter, Geschlecht oder Arthrosestadium. Insgesamt zeigt sich ein wesentlicher Einfluss mechanischer Faktoren auf die Arthroseinitiierung und -progredienz. Die Ergebnisse werden detailliert dargestellt. (orig.)

  19. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

    Science.gov (United States)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.

    2009-02-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.

  20. Anatomical variation of human thoracic rib in dry bone.

    Directory of Open Access Journals (Sweden)

    Dr. Nalini Konkani

    2017-12-01

    Full Text Available Introduction: The Ribs are essential structure of osseous thorax and provide information that aids in the interpretation of radiologic images. The purpose of this study to investigate variations in thoracic rib and its morphological & clinical importance. So, In present study attempted to find out additional intercostal spaces due to bifurcation of ribs, less intercostal space due to fusion of ribs, variation of the normal ribs like, gap in the rib, fusion of one rib to another at a shaft of rib. Congenital abnormalities of the ribs are usually asymptomatic, often discovered incidentally on chest X-ray. Effects of this neuroskeletal anomaly can include respiratory difficulties and neurological limitations.Material & Method: The study was carried out in Bone Store of Department of Anatomy, B. J. Medical College, Ahmedabad, Gujarat. Study was carried out on 500 human dried ribs. And the variations in the ribs are studied. We got variation in the human ribs and studied. Result : Variations were seen like out of 500 ribs, Bifid rib having two ends 9(1.8%, rib having bifid space 2(0.4%, fusion rib at the level of shaft 1(0.2%, fusion of first rib and second rib 1(0.2%,first rib having two ends 1(0.2%. Conclusion: Bifid rib is an anatomical variant where the sternal end of the rib is cleaved into two. So we can rule out mesodermal abnormalities, parenchymal lung disease, chest wall tumor or costal fracture.

  1. Autologous Pancreatic Islet Transplantation in Human Bone Marrow

    Science.gov (United States)

    Maffi, Paola; Balzano, Gianpaolo; Ponzoni, Maurilio; Nano, Rita; Sordi, Valeria; Melzi, Raffaella; Mercalli, Alessia; Scavini, Marina; Esposito, Antonio; Peccatori, Jacopo; Cantarelli, Elisa; Messina, Carlo; Bernardi, Massimo; Del Maschio, Alessandro; Staudacher, Carlo; Doglioni, Claudio; Ciceri, Fabio; Secchi, Antonio; Piemonti, Lorenzo

    2013-01-01

    The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being ideal. We recently have shown in mice that the bone marrow (BM) may be a valid alternative to the liver, and here we report a pilot study to test feasibility and safety of BM as a site for islet transplantation in humans. Four patients who developed diabetes after total pancreatectomy were candidates for the autologous transplantation of pancreatic islet. Because the patients had contraindications for intraportal infusion, islets were infused in the BM. In all recipients, islets engrafted successfully as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples analyzed during follow-up. Thus far, we have recorded no adverse events related to the infusion procedure or the presence of islets in the BM. Islet function was sustained for the maximum follow-up of 944 days. The encouraging results of this pilot study provide new perspectives in identifying alternative sites for islet infusion in patients with type 1 diabetes. Moreover, this is the first unequivocal example of successful engraftment of endocrine tissue in the BM in humans. PMID:23733196

  2. Bone Healing in Transverse Maxillary Defects with Different Surgical Procedures Using Anorganic Bovine Bone in Humans

    OpenAIRE

    Beltrán, Victor; Matthijs, Andries; Borie, Eduardo; Fuentes, Ramón; Valdivia-Gandur, Iván; Engelke, Wilfried

    2013-01-01

    The centripetal resorption of maxilla is a continuous process after tooth loss. For treatment of deficient bone sites, autologous bone grafts may be used, as an alternative, biomaterials can be applied which do not require intra- or extraoral donor sites. The present report we describe the use of anorganic bovine bone (ABB) based on three case reports under different modes: Membrane, rigid barrier and connective tissue graft. Clinical results show that under all conditions, sufficient hard ti...

  3. Inhibition of radio cobalt uptake by human bone powder using Mg and Ni

    International Nuclear Information System (INIS)

    Abdel Fattah, A.T.A.; Mohamed, S.A.

    1992-01-01

    Human bone powder samples of 30 - 40 Μ in diameter were prepared from human bone femurs as fat free (FFB), protein free (PEB) or left untreated as a raw bone powder (RB). The uptake of 60 Co by these types of bone powder took the sequence : PFB > FFB> RB. Stable ions of magnesium and nickel exhibit an inhibition or competing effect on the uptake process of 60 Co. The competing effect did not disturb the uptake sequence. The competing effect of nickel was higher than magnesium

  4. Is the corticomedullary index valid to distinguish human from nonhuman bones: a multislice computed tomography study.

    Science.gov (United States)

    Rérolle, Camille; Saint-Martin, Pauline; Dedouit, Fabrice; Rousseau, Hervé; Telmon, Norbert

    2013-09-10

    The first step in the identification process of bone remains is to determine whether they are of human or nonhuman origin. This issue may arise when only a fragment of bone is available, as the species of origin is usually easily determined on a complete bone. The present study aims to assess the validity of a morphometric method used by French forensic anthropologists to determine the species of origin: the corticomedullary index (CMI), defined by the ratio of the diameter of the medullary cavity to the total diameter of the bone. We studied the constancy of the CMI from measurements made on computed tomography images (CT scans) of different human bones, and compared our measurements with reference values selected in the literature. The measurements obtained on CT scans at three different sites of 30 human femurs, 24 tibias, and 24 fibulas were compared between themselves and with the CMI reference values for humans, pigs, dogs and sheep. Our results differed significantly from these reference values, with three exceptions: the proximal quarter of the femur and mid-fibular measurements for the human CMI, and the proximal quarter of the tibia for the sheep CMI. Mid-tibial, mid-femoral, and mid-fibular measurements also differed significantly between themselves. Only 22.6% of CT scans of human bones were correctly identified as human. We concluded that the CMI is not an effective method for determining the human origin of bone remains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Abbas Jafari

    2017-02-01

    Full Text Available Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  6. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  7. Adaptive noise cancellation

    International Nuclear Information System (INIS)

    Akram, N.

    1999-01-01

    In this report we describe the concept of adaptive noise canceling, an alternative method of estimating signals corrupted by additive noise of interference. The method uses 'primary' input containing the corrupted signal and a 'reference' input containing noise correlated in some unknown way with the primary noise, the reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. When the reference input is free of signal and certain other conditions are met then noise in the primary input can be essentially eliminated without signal distortion. It is further shown that the adaptive filter also acts as notch filter. Simulated results illustrate the usefulness of the adaptive noise canceling technique. (author)

  8. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    Science.gov (United States)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  9. Geneva University - Cancelled

    CERN Multimedia

    Université de Genève

    2010-01-01

    École de physique - Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVA 4 Tel: (022) 379 62 73 - Fax: (022) 379 69 92 Monday 19 April 2010 17h00 - Stückelberg Auditorium Into the darkness: Simulating the distribution of dark matter in our Universe Prof. Volker Springel - Heidelberg Institute for Theoretical Studies   THE COLLOQUIUM IS CANCELLED. Prof. Markus Büttiker

  10. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  11. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by mea...... that are of importance for the understanding of the etiology and pathogenesis of degenerative joint diseases, such as arthrosis....

  12. Generating cancelable fingerprint templates.

    Science.gov (United States)

    Ratha, Nalini K; Chikkerur, Sharat; Connell, Jonathan H; Bolle, Ruud M

    2007-04-01

    Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. In this paper, we demonstrate several methods to generate multiple cancelable identifiers from fingerprint images to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation "key." The identifiers can be cancelled and replaced when compromised. We empirically compare the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that we can achieve revocability and prevent cross-matching of biometric databases. It is also shown that the transforms are noninvertible by demonstrating that it is computationally as hard to recover the original biometric identifier from a transformed version as by randomly guessing. Based on these empirical results and a theoretical analysis we conclude that feature-level cancelable biometric construction is practicable in large biometric deployments.

  13. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  14. One Million Bones: Measuring the Effect of Human Rights Participation in the Social Work Classroom

    Science.gov (United States)

    McPherson, Jane; Cheatham, Leah P.

    2015-01-01

    This article describes the integration of human rights content and a national arts-activism initiative--One Million Bones--into a bachelor's-level macro practice class as a human rights teaching strategy. Two previously validated scales, the Human Rights Exposure (HRX) in Social Work and the Human Rights Engagement (HRE) in Social Work (McPherson…

  15. Inca - interparietal bones in neurocranium of human skulls in central India.

    Science.gov (United States)

    Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  16. Inca - interparietal bones in neurocranium of human skulls in central India

    Directory of Open Access Journals (Sweden)

    R R Marathe

    2010-01-01

    Full Text Available Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. Objectives: To find the incidence of Inca variants in Central India. Materials and Methods: In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Results: Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%. The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. Conclusions: This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  17. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Coulson-Thomas, Vivien J; Norton, Andrew L; Gesteira, Tarsis F; Cavalheiro, Renan P; Meneghetti, Maria Cecília Z; Martins, João R; Dixon, Ronald A; Nader, Helena B

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  18. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Directory of Open Access Journals (Sweden)

    Yvette M Coulson-Thomas

    Full Text Available Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs. Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS and hyaluronic acid (HA. In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  19. Structural strength of cancellous specimens from bovine femur under cyclic compression

    Directory of Open Access Journals (Sweden)

    Kaori Endo

    2016-01-01

    Full Text Available The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01 and structural model index (SMI, r = − 0.81, p < 0.01. The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01 and SMI (r = − 0.78, p < 0.01. These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that

  20. Human bone marrow mesenchymal stem cells for retinal vascular injury.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Jonas, Jost B; Xu, Liang; Zhang, Wei

    2017-09-01

    To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley

  1. Ancient pathogen DNA in human teeth and petrous bones

    DEFF Research Database (Denmark)

    Margaryan, Ashot; Hansen, Henrik B.; Rasmussen, Simon

    2018-01-01

    pestis. Based on shotgun sequencing data, four of these five plague victims showed clearly detectable levels of Y.pestis DNA in the teeth, whereas all the petrous bones failed to produce Y.pestis DNA above baseline levels. A broader comparative metagenomic analysis of teeth and petrous bones from 10...

  2. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans

    DEFF Research Database (Denmark)

    Nissen, Anne; Christensen, Mikkel; Knop, Filip K

    2014-01-01

    intestine. The hormone is known as an incretin hormone, but preclinical studies have suggested that it may also influence bone metabolism, showing both antiresorptive and anabolic effects as reflected by changes in biomechanical measures, microarchitecture, and activity of the bone cells in response to GIP...

  3. A Comparative Analysis of Recombinant Human Bone Morphogenetic Protein-2 with a Demineralized Bone Matrix versus Iliac Crest Bone Graft for Secondary Alveolar Bone Grafts in Patients with Cleft Lip and Palate: Review of 501 Cases.

    Science.gov (United States)

    Hammoudeh, Jeffrey A; Fahradyan, Artur; Gould, Daniel J; Liang, Fan; Imahiyerobo, Thomas; Urbinelli, Leo; Nguyen, JoAnna T; Magee, William; Yen, Stephen; Urata, Mark M

    2017-08-01

    Alveolar cleft reconstruction using iliac crest bone graft is considered standard of care for children with complete cleft lip and palate at the time of mixed dentition. Harvesting bone may result in donor-site morbidity and additional operating time and length of hospitalization. Recombinant human bone morphogenetic protein (rhBMP)-2 with a demineralized bone matrix is an alternative bone source for alveolar cleft reconstruction. The authors investigated the outcomes of rhBMP-2/demineralized bone matrix versus iliac crest bone graft for alveolar cleft reconstruction by reviewing postoperative surgical complications and cleft closure. A retrospective chart review was conducted for 258 rhBMP-2/demineralized bone matrix procedures (mean follow-up, 2.9 years) and 243 iliac crest bone graft procedures (mean follow-up, 4.1 years) on 414 patients over a 12-year period. The authors compared complications, canine eruption, and alveolar cleft closure between the two groups. In the rhBMP-2/demineralized bone matrix group, one patient required prolonged intubation because of intraoperative airway swelling not thought to be caused by rhBMP-2, 36 reported facial swelling and one required outpatient steroids as treatment, and 12 had dehiscence; however, half of these complications resolved without intervention. Twenty-three of the 228 rhBMP-2/demineralized bone matrix patients and 28 of the 242 iliac crest bone graft patients required repeated surgery for alveolar cleft repair. Findings for canine tooth eruption into the cleft site through the graft were similar between the groups. The rhBMP-2/demineralized bone matrix appears to be an acceptable alternative for alveolar cleft repair. The authors found no increase in serious adverse events with the use of this material. Local complications, such as swelling and minor wound dehiscence, predominantly improved without intervention. Therapeutic, III.

  4. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    Science.gov (United States)

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.

  5. MESOLITHIC HUMAN BONES FROM THE UPPER VOLGA BASIN : RADIOCARBON AND TRACE ELEMENTS

    NARCIS (Netherlands)

    Alexandrovskiy, A. L.; Alexandrovskaya, E. I.; Zhilin, M. I.; van der Plicht, J.

    2009-01-01

    Human bones from 3 Mesolithic sites in the Upper Volga basin were analyzed for trace elements, and dated by accelerator mass spectrometry (AMS). The radiocarbon dates of the bones correspond to the Mesolithic era. However, some dates differ from those obtained for the enclosing deposits and for the

  6. Establishing quiescence in human bone marrow stem cells leads to enhanced osteoblast marker expression

    DEFF Research Database (Denmark)

    Harkness, Linda; Rumman, Mohammad; Kassem, Moustapha

    Human bone marrow stromal (skeletal) stem cells (hBMSC) are cells that retain a multi-lineage differentiation potential and are thus increasingly being investigated for use in clinical applications. In vivo BMSC, which comprise approximately 0.1% of the bone marrow compartment, are thought to mai...

  7. Penetration of flomoxef into human maxillary and mandibular bones.

    Science.gov (United States)

    Igawa, H H; Sugihara, T; Yoshida, T; Kawashima, K; Ohura, T

    1995-09-01

    Penetration of flomoxef into the maxillary and mandibular bones was assayed clinically to provide data about its usefulness for the prevention of postoperative infection after maxillofacial surgery. Twenty-one patients undergoing maxillofacial surgery at our department were given flomoxef 2 g dissolved in 20 ml of physiological saline intravenously over 3 minutes during operation, and the serum, maxillary and mandibular concentrations were measured 1, 3, and 6 hours after injection by the band culture method using Escherichia coli 7437 as the indicator strain. The mean concentrations were 53.4, 16.1, and 2.6 micrograms/ml, respectively, in the serum, 17.6, 7.8, and 1.0 micrograms/g in maxillary bone, and 16.4, 4.2, and 0.9 micrograms/g in mandibular bone. The mean bone:serum ratios at 1, 3, and 6 hours were 33.0%, 48.2%, and 36.8%, respectively, for maxillary bone, and 30.7%, 26.2%, and 35.7% for mandibular bone. When compared with previously reported data on the bone:serum ratios in jaw of various other intravenous antibiotics, our results show that penetration of flomoxef into maxillary and mandibular bone is extremely high. As all the intramaxillary and intramandibular concentrations exceed its MIC80 values against clinical isolates of bacteria frequently isolated in cases of infection in the oral and maxillofacial region, it is apparent that one intravenous shot of flomoxef 2 g allows penetration of the drug into the maxillary and mandibular bones at effective concentrations. Flomoxef is therefore potentially useful for the prevention and treatment of infections in the oral and maxillofacial region, as it has excellent penetration into the maxillary and mandibular bones.

  8. Computed tomography evaluation of human mandibles with regard to layer thickness and bone density of the cortical bone

    International Nuclear Information System (INIS)

    Markwardt, Jutta; Meissner, H.; Weber, A.; Reitemeier, B.; Laniado, M.

    2013-01-01

    Application of function-restoring individual implants for the bridging of defects in mandibles with continuity separation requires a stable fixation with special use of the cortical bone stumps. Five section planes each of 100 computed tomographies of poly-traumatized patients' jaws were used for measuring the thickness of the cortical layer and the bone density of the mandible. The CT scans of 28 female and 72 male candidates aged between 12 and 86 years with different dentition of the mandible were available. The computed tomographic evaluations of human mandibles regarding the layer thickness of the cortical bone showed that the edge of the mandible in the area of the horizontal branch possesses the biggest layer thickness of the whole of the lower jaws. The highest medians of the cortical bone layer thickness were found in the area of the molars and premolars at the lower edge of the lower jaws in 6-o'clock position, in the area of the molars in the vestibular cranial 10-o'clock position and in the chin region lingual-caudal in the 4-o'clock position. The measurement of the bone density showed the highest values in the 8-o'clock position (vestibular-caudal) in the molar region in both males and females. The average values available of the bone density and the layer thickness of the cortical bone in the various regions of the lower jaw, taking into consideration age, gender and dentition, are an important aid in practice for determining a safe fixation point for implants in the area of the surface layer of the mandible by means of screws or similar fixation elements. (orig.)

  9. Tissue-engineered bone formation using human bone marrow stromal cells and novel β-tricalcium phosphate

    International Nuclear Information System (INIS)

    Liu Guangpeng; Zhao Li; Cui Lei; Liu Wei; Cao Yilin

    2007-01-01

    In this study we investigated not only the cellular proliferation and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) on the novel β-tricalcium phosphate (β-TCP) scaffolds in vitro but also bone formation by ectopic implantation in athymic mice in vivo. The interconnected porous β-TCP scaffolds with pores of 300-500 μm in size were prepared by the polymeric sponge method. β-TCP scaffolds with the dimension of 3 mm x 3 mm x 3 mm were combined with hBMSCs, and incubated with (+) or without (-) osteogenic medium in vitro. Cell proliferation and osteogenic differentiation on the scaffolds were evaluated by scanning electron microscopy (SEM) observation, MTT assay, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content measurement. SEM observation showed that hBMSCs attached well on the scaffolds and proliferated rapidly. No significant difference in the MTT assay could be detected between the two groups, but the ALP activity and OCN content of scaffolds (+) were much higher than those of the scaffolds (-) (p < 0.05). These results indicated that the novel porous β-TCP scaffolds can support the proliferation and subsequent osteogenic differentiation of hBMSCs in vitro. After being cultured in vitro for 14 days, the scaffolds (+) and (-) were implanted into subcutaneous sites of athymic mice. In β-TCP scaffolds (+), woven bone formed after 4 weeks of implantation and osteogenesis progressed with time. Furthermore, tissue-engineered bone could be found at 8 weeks, and remodeled lamellar bone was also observed at 12 weeks. However, no bone formation could be found in β-TCP scaffolds (-) at each time point checked. The above findings illustrate that the novel porous β-TCP scaffolds developed in this work have prominent osteoconductive activity and the potential for applications in bone tissue engineering

  10. Tissue-engineered bone formation using human bone marrow stromal cells and novel {beta}-tricalcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangpeng [National Tissue Engineering Research and Development Center, Shanghai 200235 (China); Zhao Li [National Tissue Engineering Research and Development Center, Shanghai 200235 (China); Cui Lei [National Tissue Engineering Research and Development Center, Shanghai 200235 (China); Liu Wei [National Tissue Engineering Research and Development Center, Shanghai 200235 (China); Cao Yilin [National Tissue Engineering Research and Development Center, Shanghai 200235 (China)

    2007-06-01

    In this study we investigated not only the cellular proliferation and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) on the novel {beta}-tricalcium phosphate ({beta}-TCP) scaffolds in vitro but also bone formation by ectopic implantation in athymic mice in vivo. The interconnected porous {beta}-TCP scaffolds with pores of 300-500 {mu}m in size were prepared by the polymeric sponge method. {beta}-TCP scaffolds with the dimension of 3 mm x 3 mm x 3 mm were combined with hBMSCs, and incubated with (+) or without (-) osteogenic medium in vitro. Cell proliferation and osteogenic differentiation on the scaffolds were evaluated by scanning electron microscopy (SEM) observation, MTT assay, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content measurement. SEM observation showed that hBMSCs attached well on the scaffolds and proliferated rapidly. No significant difference in the MTT assay could be detected between the two groups, but the ALP activity and OCN content of scaffolds (+) were much higher than those of the scaffolds (-) (p < 0.05). These results indicated that the novel porous {beta}-TCP scaffolds can support the proliferation and subsequent osteogenic differentiation of hBMSCs in vitro. After being cultured in vitro for 14 days, the scaffolds (+) and (-) were implanted into subcutaneous sites of athymic mice. In {beta}-TCP scaffolds (+), woven bone formed after 4 weeks of implantation and osteogenesis progressed with time. Furthermore, tissue-engineered bone could be found at 8 weeks, and remodeled lamellar bone was also observed at 12 weeks. However, no bone formation could be found in {beta}-TCP scaffolds (-) at each time point checked. The above findings illustrate that the novel porous {beta}-TCP scaffolds developed in this work have prominent osteoconductive activity and the potential for applications in bone tissue engineering.

  11. Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Laib, A.; Koller, B.

    2005-01-01

    Stereology applied on histological sections is the 'gold standard' for obtaining quantitative information on cancellous bone structure. Recent advances in micro computed tomography (microCT) have made it possible to acquire three-dimensional (3D) data non-destructively. However, before the 3D...... methods can be used as a substitute for the current 'gold standard' they have to be verified against the existing standard. The aim of this study was to compare bone structural measures obtained from 3D microCT data sets with those obtained by stereology performed on conventional histological sections...... tibial metaphysis. The biopsies were embedded in methylmetacrylate before microCT scanning in a Scanco microCT 40 scanner at a resolution of 20 x 20 x 20 microm3, and the 3D data sets were analysed with a computer program. After microCT scanning, 16 sections were cut from the central 2 mm of each biopsy...

  12. Minor and trace elements in human bones and teeth

    Energy Technology Data Exchange (ETDEWEB)

    Iyengar, G V; Tandon, L

    1999-07-01

    Chemical elements play a great role in the metabolism of bones and teeth. Some elements are beneficial (F at non toxic concentrations in bones and teeth, supplementation of Cu, Mn and Zn along with Ca to delay or prevent the onset of osteoporosis) and some others (chronic exposure to Pb even at moderate concentrations, and excessive exposures to F as in fluorosis situations) are detrimental for the normal functioning of the skeleton. Knowledge on the roles played by both groups of elements can be enhanced if reliable compositional picture is available for scrutiny. The present survey was undertaken to assess the literature status on chemical composition of bones and teeth, and revealed that much needs to be done in order to have tangible collection of meaningful data. In this context, there is a desperate need for harmonization (types of samples chosen, procedures adopted to process the specimens, and finally the determination of analytes) to generate comparable data. To begin with, it is necessary to develop a bioanalytical protocol that exemplifies the merits and demerits of analyzing bones and teeth. Identification of any particular type of bone as a representative sample for the whole skeleton appears to be a far cry. Even if such a representative segment of a particular bone is identified, the logistics related to medico-legal (autopsy) and anatomical (biopsy) parameters will prevail as decisive factors. For the sake of gaining a comprehensive insight into the distribution of various trace elements in different types of bones, it is necessary to carry out controlled investigations on different types of bones (and cortical and trabecular segments from the same sources) from the same cadaver under well defined sampling conditions. On the analytical side, development of hard tissue RMs for whole bone, as well as for cortical, trabecular and marrow segments separately, would be very helpful for future investigations. (author)

  13. Minor and trace elements in human bones and teeth

    International Nuclear Information System (INIS)

    Iyengar, G.V.; Tandon, L.

    1999-01-01

    Chemical elements play a great role in the metabolism of bones and teeth. Some elements are beneficial (F at non toxic concentrations in bones and teeth, supplementation of Cu, Mn and Zn along with Ca to delay or prevent the onset of osteoporosis) and some others (chronic exposure to Pb even at moderate concentrations, and excessive exposures to F as in fluorosis situations) are detrimental for the normal functioning of the skeleton. Knowledge on the roles played by both groups of elements can be enhanced if reliable compositional picture is available for scrutiny. The present survey was undertaken to assess the literature status on chemical composition of bones and teeth, and revealed that much needs to be done in order to have tangible collection of meaningful data. In this context, there is a desperate need for harmonization (types of samples chosen, procedures adopted to process the specimens, and finally the determination of analytes) to generate comparable data. To begin with, it is necessary to develop a bioanalytical protocol that exemplifies the merits and demerits of analyzing bones and teeth. Identification of any particular type of bone as a representative sample for the whole skeleton appears to be a far cry. Even if such a representative segment of a particular bone is identified, the logistics related to medico-legal (autopsy) and anatomical (biopsy) parameters will prevail as decisive factors. For the sake of gaining a comprehensive insight into the distribution of various trace elements in different types of bones, it is necessary to carry out controlled investigations on different types of bones (and cortical and trabecular segments from the same sources) from the same cadaver under well defined sampling conditions. On the analytical side, development of hard tissue RMs for whole bone, as well as for cortical, trabecular and marrow segments separately, would be very helpful for future investigations. (author)

  14. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    Science.gov (United States)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  15. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    Science.gov (United States)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  16. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    International Nuclear Information System (INIS)

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A.

    1990-01-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ([3H]thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens

  17. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC...... population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high...... and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone...

  18. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    Science.gov (United States)

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial

  19. Identification of Chloride Intracellular Channel Protein 3 as a Novel Gene Affecting Human Bone Formation

    DEFF Research Database (Denmark)

    Brum, A M; Leije, M; J, Schreuders-Koedam

    2017-01-01

    is diminished and more adipocytes are seen in the bone marrow, suggesting a shift in MSC lineage commitment. Identification of specific factors that stimulate osteoblast differentiation from human MSCs may deliver therapeutic targets to treat osteoporosis. The aim of this study was to identify novel genes...... an in vivo human bone formation model in which hMSCs lentivirally transduced with the CLIC3 overexpression construct were loaded onto a scaffold (hydroxyapatite-tricalcium-phosphate), implanted under the skin of NOD-SCID mice, and analyzed for bone formation 8 weeks later. CLIC3 overexpression led to a 15...

  20. First forensic records of termite activity on non-fossilized human bones in Brazil

    Directory of Open Access Journals (Sweden)

    R. A. Queiroz

    Full Text Available Abstract The aim of this study was to describe the first records of termite activity on non-fossilized human bones in Brazil. The cases reported in this study resulted from forensic analysis of six human skeletons found in northeastern Brazil between 2012 and 2014. Traces of tunnels and nests commonly produced by termites were found on several human bone surfaces as well as the specimens and characteristic signs of osteophagic activity. In four cases, the species were identified: Amitermes amifer Silvestri, 1901, Nasutitermes corniger (Motschulsky, 1855 (on two skeletons, and Microcerotermes indistinctus Mathews, 1977. In two other cases, the activity of termites on bone surfaces was evidenced by remains of nests and tunnels produced by these insects. At least in the samples of human remains available for this report, the number of termites collected was greater on bones found during autumn, the rainy season in the Northeast of Brazil. The human bones examined showed termites like insects with lots of strength at bone degradation, capable of continuing the process of decomposition of human remains even in completely skeletonized bodies.

  1. Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae

    Directory of Open Access Journals (Sweden)

    M Krause

    2014-09-01

    Full Text Available Due to their well-established fracture risk reduction, bisphosphonates are the most frequently used therapeutic agent to treat osteoporosis. Bisphosphonates reduce fracture risk by suppressing bone resorption, but the lower bone turnover could have a negative impact on bone quality at the tissue level. Here, we directly assess the structural and mechanical characteristics of cancellous bone from the lumbar vertebrae (L5 in non-treated osteoporotic controls (n = 21, mid-term alendronate-treated osteoporotic patients (n = 6, and long-term alendronate-treated osteoporotic patients (n = 7. The strength and toughness of single trabeculae were evaluated, while the structure was characterised through measurements of microdamage accumulation, mineralisation distribution, and histological indices. The alendronate-treated cases had a reduced eroded surface (ES/BS, p < 0.001 and a higher bone mineralisation in comparison to non-treated controls (p = 0.037, which is indicative of low turnover associated with treatment. However, the amount of microdamage and the mechanical properties were similar among the control and treatment groups. As the tissue mineral density (TMD increased significantly with alendronate treatment compared to non-treated osteoporotic controls, the reduction in resorption cavities could counterbalance the higher TMD allowing the alendronate-treated bone to maintain its mechanical properties and resist microdamage accumulation. A multivariate analysis of the possible predictors supports the theory that multiple factors (e.g., body mass index, TMD, and ES/BS can impact the mechanical properties. Our results suggest that long-term alendronate treatment shows no adverse impact on mechanical cancellous bone characteristics.

  2. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells

    International Nuclear Information System (INIS)

    Howlett, C.R.; Zreiqat, H.; O'Dell, R.; Noorman, J.; Evans, P.; Dalton, B.A.; McFarland, C.; Steele, J.G.

    1994-01-01

    Our group is investigating the potential of modifying the surface atomic layers of biomaterials by ion beam implantation in order to stimulate adhesion of bone cells to these treated biomaterials. In this study alumina that had been implanted with magnesium ions (Mg)-(Al 2 O 3 ), was compared to unmodified alumina (Al 2 O 3 ) for the adhesion of cells cultured from explanted human bone. The attachment and spreading of cultured human bone derived cells onto (Mg)-(Al 2 O 3 ) was significantly enhanced as compared to Al 2 O 3 . The role of adsorption of serum adhesive glycoproteins firbronectin (Fn) and vitronectin (Vn) in the adhesion of human bone derived cells to (Mg)-(Al 2 O 3 ) was determined. (Author)

  3. The correlation between R2' and bone mineral measurements in human vertebrae: an in vitro study

    International Nuclear Information System (INIS)

    Brismar, T.B.; Karlsson, M.; Li, T.Q.; Ringertz, H.

    1999-01-01

    The aim of this study was to investigate whether MR imaging of trabecular bone structure using magnetic inhomogeneity measurements is related to the amount of bone mineral in human vertebrae. Weight, bone mineral content (BMC DXA ), bone mineral per area (BMA DXA ) and bone mineral density (BMD CT ) were determined in 12 defatted human lumbar vertebrae (L2-L4) by weighing, dual X-ray absorptiometry (DXA) and CT. Inhomogeneity caused by susceptibility differences between trabecular bone and surrounding water was studied with MR imaging at 1.5 T using the GESFIDE sequence. The pulse sequence determines the transverse relaxation rate R2 * and its two components, the non-reversible transverse relaxation rate (R2) and the reversible transverse relaxation rate (R2'; i. e. relaxation rate due to magnetic susceptibility) in a single scan. Voxel size was 0.9 x 1.9 x 5.0 mm. Positive significant correlations between R2' and weight, BMC DXA , BMA DXA and BMD CT were observed (r > 0.61 and p DXA and BMD CT (r > 0.66 and p DXA . Thus, R2' measurements are related to the amount of bone mineral, but they also provide information which is not obtainable from bone mineral measurements. (orig.) (orig.)

  4. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  5. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  6. 48 CFR 552.238-73 - Cancellation.

    Science.gov (United States)

    2010-10-01

    ... may cancel this contract in whole or in part by providing written notice. The cancellation will take... elects to cancel this contract, the Government will not reimburse the minimum guarantee. (End of clause) ...

  7. Expression profiling of microRNAs in human bone tissue from postmenopausal women.

    Science.gov (United States)

    De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia

    2018-01-01

    Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.

  8. Clinical assessment of bone quality of human extraction sockets after conversion with growth factors.

    Science.gov (United States)

    Ntounis, Athanasios; Geurs, Nico; Vassilopoulos, Philip; Reddy, Michael

    2015-01-01

    The study was conducted to evaluate the effect of mineralized freeze-dried bone allograft (FDBA), alone or in combination with growth factors in extraction sockets, on subjective assessment of bone quality during implant placement. Forty-one patients whose treatment plan involved extraction of anterior or premolar teeth were randomized into four groups: Group 1, collagen plug (control); Group 2, FDBA/β-tricalcium phosphate (β-TCP)/collagen plug; Group 3, FDBA/β-TCP/platelet-rich plasma (PRP)/collagen plug; Group 4, FDBA/β-TCP/recombinant human platelet-derived growth factor BB (rhPDGF-BB)/collagen plug. After 8 weeks of healing, implants were placed. The clinicians assessed bone quality according to the Misch classification. A benchtop calibration exercise test was conducted to evaluate agreement and accuracy of operators in recognizing different bone qualities. Differences were analyzed using one-way analysis of variance (ANOVA) or chi-square tests for continuous and categorical data. Pairwise comparisons were tested using least squares means (LS means). Spearman correlation coefficients were used to evaluate the relationship of bone growth with potential confounders. P .05). Inclusion of bone grafting is associated with a shift from D4 quality to D3 quality bone. Inclusion of PRP in bone grafting eliminates the incidence of D4 bone, establishing D3 and D2 quality bone as prevalent (56% vs. 42%, respectively). Inclusion of rhPDGF-BB and β-TCP in combination with the bone grafting has the same effect, although D2 quality is less prevalent. When compared to sockets grafted with FDBA/β-TCP/collagen plug alone, the sockets with growth factors demonstrated fewer residual bone graft particles. (1) Inclusion of bone grafting enhanced bone quality as assessed during implant placement. (2) Overall inclusion of PRP and rhPDGF-BB enhanced subjective bone quality, eliminating incidence of D4 quality in human extraction sockets. (3) The use of PRP or rhPDGF-BB may

  9. Recombinant human bone morphogenetic protein 2 in augmentation procedures: case reports.

    Science.gov (United States)

    Luiz, Jaques; Padovan, Luis Eduardo Marques; Claudino, Marcela

    2014-01-01

    To successfully rehabilitate edentulous patients using endosseous implants, there must be enough available bone. Several techniques have been proposed for augmentation of sites with insufficient bone volume. Although autogenous bone has long been considered the gold standard for such procedures, the limited availability of graft material and a high morbidity rate are potential disadvantages of this type of graft. An alternative is to use recombinant human bone morphogenetic protein 2 (rhBMP-2), which is able to support bone regeneration in the oral environment. These cases demonstrate the applicability of rhBMP-2 in maxillary sinus elevation and augmentation procedures in the maxilla to enable dental implant placement. The use of rhBMP-2 in alveolar augmentation procedures had several clinical benefits for these patients.

  10. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations.

    Science.gov (United States)

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-09-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. © 2014 Anatomical Society.

  11. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Armas, Laura A G; Akhter, Mohammed P; Drincic, Andjela; Recker, Robert R

    2012-01-01

    Patients with Type 1 Diabetes Mellitus (DM) have markedly increased risk of fracture, but little is known about abnormalities in bone microarchitecture or remodeling properties that might give insight into the pathogenesis of skeletal fragility in these patients. We report here a case-control study comparing bone histomorphometric and micro-CT results from iliac biopsies in 18 otherwise healthy subjects with Type 1 Diabetes Mellitus with those from healthy age- and sex-matched non-diabetic control subjects. Five of the diabetics had histories of low-trauma fracture. Transilial bone biopsies were obtained after tetracycline labeling. The biopsy specimens were fixed, embedded, and scanned using a desktop μCT at 16 μm resolution. They were then sectioned and quantitative histomorphometry was performed as previously described by Recker et al. [1]. Two sections, >250 μm apart, were read from the central part of each biopsy. Overall there were no significant differences between diabetics and controls in histomorphometric or micro-CT measurements. However, fracturing diabetics had structural and dynamic trends different from nonfracturing diabetics by both methods of analysis. In conclusion, Type 1 Diabetes Mellitus does not result in abnormalities in bone histomorphometric or micro-CT variables in the absence of manifest complications from the diabetes. However, diabetics suffering fractures may have defects in their skeletal microarchitecture that may underlie the presence of excess skeletal fragility. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Role of purinergic receptor polymorphisms in human bone

    DEFF Research Database (Denmark)

    Wesselius, Anke; Bours, Martijn J L; Agrawal, Ankita

    2011-01-01

    Osteoporosis is a multifactorial disease with a strong genetic component. Variations in a number of genes have been shown to associate with bone turnover and risk of osteoporosis. P2 purinergic receptors are proteins that have ATP or other nucleotides as their natural ligands. Various P2Y and P2X...

  13. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...

  14. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    Science.gov (United States)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  15. Heavy metals in human bones in different historical epochs.

    Science.gov (United States)

    Martínez-García, M J; Moreno, J M; Moreno-Clavel, J; Vergara, N; García-Sánchez, A; Guillamón, A; Portí, M; Moreno-Grau, S

    2005-09-15

    The concentration of the metals lead, copper, zinc, cadmium and iron was determined in bone remains belonging to 30 individuals buried in the Region of Cartagena dating from different historical periods and in eight persons who had died in recent times. The metals content with respect to lead, cadmium and copper was determined either by anodic stripping voltammetry or by atomic absorption spectroscopy on the basis of the concentrations present in the bone remains. In all cases, zinc and iron were quantified by means of atomic absorption spectroscopy. The lead concentrations found in the bone remains in our city are greater than those reported in the literature for other locations. This led to the consideration of the sources of these metals in our area, both the contribution from atmospheric aerosols as well as that from the soil in the area. Correlation analysis leads us to consider the presence of the studied metals in the analysed bone samples to be the consequence of analogous inputs, namely the inhalation of atmospheric aerosols and diverse contributions in the diet. The lowest values found in the studied bone remains correspond to the Neolithic period, with similar contents to present-day samples with respect to lead, copper, cadmium and iron. As regards the evolution over time of the concentrations of the metals under study, a clear increase in these is observed between the Neolithic period and the grouping made up of the Bronze Age, Roman domination and the Byzantine period. The trend lines used to classify the samples into 7 periods show that the maximum values of lead correspond to the Roman and Byzantine periods. For copper, this peak is found in the Byzantine Period and for iron, in the Islamic Period. Zinc shows an increasing tendency over the periods under study and cadmium is the only metal whose trend lines shows a decreasing slope.

  16. Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans

    Science.gov (United States)

    Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna

    2011-01-01

    Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823

  17. Locating the scala media in the fixed human temporal bone for therapeutic access: a preliminary study.

    Science.gov (United States)

    Pau, H; Fagan, P; Oleskevich, S

    2006-11-01

    To investigate the location of the scala media in relation to the round window niche in human temporal bones. Ten human temporal bones were investigated by radical mastoidectomy and promontory drill-out. Temporal bone laboratory. The distance from the scala media to the anterior edge of the round window niche, measured by Fisch's stapedectomy measuring cylinders. The scala media was identified at the transection point of a vertical line 1.6 to 2.2 mm (mean=1.8 mm; standard deviation=0.2) anterior to the anterior edge of the round window niche and a horizontal line 0.2 mm inferior to the lower border of the oval window. This report demonstrates the point of entry into the scala media via the promontory in fixed temporal bone models, which may provide a site of entry for stem cells and gene therapy insertion.

  18. Gene Expression Changes in Femoral Head Necrosis of Human Bone Tissue

    Directory of Open Access Journals (Sweden)

    Bernadett Balla

    2011-01-01

    Full Text Available Osteonecrosis of the femoral head (ONFH is the result of an interruption of the local circulation and the injury of vascular supply of bone. Multiple factors have been implicated in the development of the disease. However the mechanism of ischemia and necrosis in non-traumatic ONFH is not clear. The aim of our investigation was to identify genes that are differently expressed in ONFH vs. non-ONFH human bone and to describe the relationships between these genes using multivariate data analysis. Six bone tissue samples from ONFH male patients and 8 bone tissue samples from non-ONFH men were examined. The expression differences of selected 117 genes were analyzed by TaqMan probe-based quantitative real-time RT-PCR system. The significance test indicated marked differences in the expression of nine genes between ONFH and non-ONFH individuals. These altered genes code for collagen molecules, an extracellular matrix digesting metalloproteinase, a transcription factor, an adhesion molecule, and a growth factor. Canonical variates analysis demonstrated that ONFH and non-ONFH bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via canonical TGFB pathway as well as genes coding for extracellular matrix composing collagen type molecules. The markedly altered gene expression profile observed in the ONFH of human bone tissue may provide further insight into the pathogenetic process of osteonecrotic degeneration of bone.

  19. Labeling the human skeleton with {sup 41}Ca to assess changes in bone calcium metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Denk, E.; Hurrell, R.F.; Walczyk, T. [Institute of Food Science and Nutrition, ETH Zurich, Laboratory of Human Nutrition, Zuerich (Switzerland); Hillegonds, D.; Vogel, J. [Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry, Livermore, CA (United States); Synal, A. [Paul Scherrer Institute/ETH Zurich, Laboratory of Particle Physics, Zuerich (Switzerland); Geppert, C.; Wendt, K. [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); Fattinger, K. [University Hospital Bern, Department of General Internal Medicine, Inselspital, Bern (Switzerland); Hennessy, C.; Berglund, M. [Institute for Reference Materials and Measurements (IRMM), European Commission Joint Research Centre, Geel (Belgium)

    2006-11-15

    relative changes in transfer rates between compartments in response to an intervention, inaccuracies in the underlying model cancel out. Changes in tracer distribution between compartments were modeled based on identified kinetic parameters. While changes in bone formation and resorption can, in principle, be assessed by monitoring urinary {sup 41}Ca excretion over the first few weeks post-dosing, assessment of an intervention effect is more reliable {proportional_to}150 days post-dosing when excreted tracer originates mainly from bone. (orig.)

  20. Comparative pathogenesis of radium-induced intracortical bone lesions in humans and beagles

    International Nuclear Information System (INIS)

    Pool, R.R.; Morgan, J.P.; Parks, N.J.; Farnham, J.E.; Littman, M.S.

    1982-01-01

    An interlaboratory research team from our Laboratory and the Center for Human Radiobiology at Argonne National Laboratory has performed an initial comparison of intracortical lesions in the long bones of dog and man following chronic radium deposition in the skeleton. The sequential radiographic appearance and morphology of radiation osteodystrophy is discussed. The role of osteodystrohy in the evaluation of bone tumors in the dog is examined

  1. Total lymphatic irradiation and bone marrow in human heart transplantation

    International Nuclear Information System (INIS)

    Kahn, D.R.; Hong, R.; Greenberg, A.J.; Gilbert, E.F.; Dacumos, G.C.; Dufek, J.H.

    1984-01-01

    Six patients, aged 36 to 59 years, had heart transplants for terminal myocardial disease using total lymphatic irradiation (TLI) and donor bone marrow in addition to conventional therapy. All patients were poor candidates for transplantation because of marked pulmonary hypertension, unacceptable tissue matching, or age. Two patients are living and well more than four years after the transplants. Two patients died of infection at six and seven weeks with normal hearts. One patient, whose preoperative pulmonary hypertension was too great for an orthotopic heart transplant, died at 10 days after such a procedure. The other patient died of chronic rejection seven months postoperatively. Donor-specific tolerance developed in 2 patients. TLI and donor bone marrow can produce specific tolerance to donor antigens and allow easy control of rejection, but infection is still a major problem. We describe a new technique of administering TLI with early reduction of prednisone that may help this problem

  2. Human Bone Matrix Changes During Deep Saturation Dives

    Science.gov (United States)

    2008-08-08

    urine concentrations of Ntx have been demonstrated in bone diseases such as osteoporosis, primary hyperthyroidism , and Paget’s disease. Also... loss in divers, and that the differentials likely came from the gas- induced osmosis model.30 4 The same facility was used for both dives and...Other demographic data such as age, height, weight , and diving experience were also collected for later correlational analyses. The dive took place

  3. SERPINB2 is a novel TGFβ-responsive lineage fate determinant of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Atteya, Muhammad

    2017-01-01

    TGF-β1, a multifunctional regulator of cell growth and differentiation, is the most abundant bone matrix growth factor. During differentiation of human bone stromal cells (hBMSCs), which constitute bone marrow osteoblast (OS) and adipocyte (AD) progenitor cells, continuous TGF-β1 (10 ng/ml) treat...

  4. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  5. Patient-specific in silico models can quantify primary implant stability in elderly human bone.

    Science.gov (United States)

    Steiner, Juri A; Hofmann, Urs A T; Christen, Patrik; Favre, Jean M; Ferguson, Stephen J; van Lenthe, G Harry

    2018-03-01

    Secure implant fixation is challenging in osteoporotic bone. Due to the high variability in inter- and intra-patient bone quality, ex vivo mechanical testing of implants in bone is very material- and time-consuming. Alternatively, in silico models could substantially reduce costs and speed up the design of novel implants if they had the capability to capture the intricate bone microstructure. Therefore, the aim of this study was to validate a micro-finite element model of a multi-screw fracture fixation system. Eight human cadaveric humerii were scanned using micro-CT and mechanically tested to quantify bone stiffness. Osteotomy and fracture fixation were performed, followed by mechanical testing to quantify displacements at 12 different locations on the instrumented bone. For each experimental case, a micro-finite element model was created. From the micro-finite element analyses of the intact model, the patient-specific bone tissue modulus was determined such that the simulated apparent stiffness matched the measured stiffness of the intact bone. Similarly, the tissue modulus of a small damage region around each screw was determined for the instrumented bone. For validation, all in silico models were rerun using averaged material properties, resulting in an average coefficient of determination of 0.89 ± 0.04 with a slope of 0.93 ± 0.19 and a mean absolute error of 43 ± 10 μm when correlating in silico marker displacements with the ex vivo test. In conclusion, we validated a patient-specific computer model of an entire organ bone-implant system at the tissue-level at high resolution with excellent overall accuracy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:954-962, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  7. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2016-01-01

    Full Text Available Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs’ identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects.

  8. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold

    Science.gov (United States)

    Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen

    2016-01-01

    Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects. PMID:27118977

  9. HUD Initiated Activity Cancellation Reports

    Data.gov (United States)

    Department of Housing and Urban Development — This monthly report displays all HOME activities automatically cancelled by IDIS. Effective January 1, 2011, and the beginning of every month thereafter, committed...

  10. Monitoring of Bone Loss Biomarkers in Human Sweat: A Non-Invasive, Time Efficient Means of Monitoring Bone Resorption Markers under Micro and Partial Gravity Loading Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this project was to validate the concept that the rate and extent of unloading-induced bone loss in humans can be assessed by monitoring the...

  11. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  12. Localized ridge defect augmentation using human pericardium membrane and demineralized bone matrix.

    Science.gov (United States)

    Vidyadharan, Arun Kumar; Ravindran, Anjana

    2014-01-01

    Patient wanted to restore her lost teeth with implants in the lower left first molar and second premolar region. Cone beam computerized tomography (CBCT) revealed inadequate bone width and height around future implant sites. The extraction socket of second premolar area revealed inadequate socket healing with sparse bone fill after 4 months of extraction. To evaluate the clinical feasibility of using a collagen physical resorbable barrier made of human pericardium (HP) to augment localized alveolar ridge defects for the subsequent placement of dental implants. Ridge augmentation was done in the compromised area using Puros® demineralized bone matrix (DBM) Putty with chips and an HP allograft membrane. Horizontal (width) and vertical hard tissue measurements with CBCT were recorded on the day of ridge augmentation surgery, 4 month and 7 months follow-up. Intra oral periapical taken 1 year after implant installation showed minimal crestal bone loss. Bone volume achieved through guided bone regeneration was a gain of 4.8 mm horizontally (width) and 6.8 mm vertically in the deficient ridge within a period of 7 months following the procedure. The results suggested that HP Allograft membrane may be a suitable component for augmentation of localized alveolar ridge defects in conjunction with DBM with bone chips.

  13. Survival of Free and Encapsulated Human and Rat Islet Xenografts Transplanted into the Mouse Bone Marrow

    Science.gov (United States)

    Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569

  14. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  15. Histomorphometric quantification of human pathological bones from synchrotron radiation 3D computed microtomography

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson

    2011-01-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a noninvasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, the output 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify pathological samples of human bone. Samples of human bones were cut into small blocks (8 mm x 8 mm x 10 mm) with a precision saw and then imaged. The computed microtomographies were obtained at SYRMEP (Synchrotron Radiation for MEdical Physics) beamline, at ELETTRA synchrotron radiation facility (Italy). The obtained 3D images yielded excellent resolution and details of intra-trabecular bone structures, including marrow present inside trabeculae. Histomorphometric quantification was compared to literature as well. (author)

  16. Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2.

    Science.gov (United States)

    Edmunds, Ryan K; Mealey, Brian L; Mills, Michael P; Thoma, Daniel S; Schoolfield, John; Cochran, David L; Mellonig, Jim

    2014-01-01

    No human studies exist on the use of recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS) as a sole graft material for lateral ridge augmentation in large ridge defect sites. This series evaluates the treatment outcome of maxillary anterior lateral ridge augmentation with rhBMP-2/ACS. Twenty patients were treated with rhBMP-2/ACS and fixation screws for space maintenance. Cone beam volumetric tomography measurements were used to determine gain in ridge width, and a bone core biopsy was obtained. The mean horizontal ridge gain was 1.2 mm across sites, and every site gained width.

  17. In vivo measurement of mechanical properties of human long bone by using sonic sound

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M. Jayed, E-mail: zed.hossain06@gmail.com; Rahman, M. Moshiur, E-mail: razib-121@yahoo.com; Alam, Morshed [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.

  18. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty.

    Science.gov (United States)

    Tian, Xiao-bin; Sun, Li; Yang, Shu-hua; Zhang, Yu-kun; Hu, Ru-yin; Fu, De-hao

    2008-04-20

    Nanobone putty is an injectable and bioresorbable bone substitute. The neutral-pH putty resembles hard bone tissue, does not contain polymers or plasticizers, and is self-setting and nearly isothermic, properties which are helpful for the adhesion, proliferation, and function of bone cells. The aim of this study was to investigate the osteogenic potential of human bone morphogenetic protein 2 (hBMP2) gene activated nanobone putty in inducing ectopic bone formation, and the effects of the hBMP2 gene activated nanobone putty on repairing bone defects. Twenty four Kunming mice were randomly divided into two groups. The nanobone putty + hBMP2 plasmid was injected into the right thigh muscle pouches of the mice (experiment side). The nanobone putty + blank plasmid or nanobone putty was injected into the left thigh muscle pouches of the group 1 (control side 1) or group 2 (control side 2), respectively. The effects of ectopic bone formation were evaluated by radiography, histology, and molecular biology analysis at 2 and 4 weeks after operation. Bilateral 15 mm radial defects were made in forty-eight rabbits. These rabbits were randomly divided into three groups: Group A, nanobone putty + hBMP2 plasmid; Group B, putty + blank plasmid; Group C, nanobone putty only. Six rabbits with left radial defects served as blank controls. The effect of bone repairing was evaluated by radiography, histology, molecular biology, and biomechanical analysis at 4, 8, and 12 weeks after operation. The tissue from the experimental side of the mice expressed hBMP2. Obvious cartilage and island-distributed immature bone formation in implants of the experiment side were observed at 2 weeks after operation, and massive mature bone observed at 4 weeks. No bone formation was observed in the control side of the mice. The ALP activity in the experiment side of the mice was higher than that in the control side. The tissue of Group A rabbits expressed hBMP2 protein and higher ALP level. The new bone

  19. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  20. Effects of growth hormone and low dose estrogen on bone growth and turnover in long bones of hypophysectomized rats

    Science.gov (United States)

    Kidder, L. S.; Schmidt, I. U.; Evans, G. L.; Turner, R. T.

    1997-01-01

    Pituitary hormones are recognized as critical to longitudinal growth, but their role in the radial growth of bone and in maintaining cancellous bone balance are less clear. This investigation examines the histomorphometric effects of hypophysectomy (Hx) and ovariectomy (OVX) and the subsequent replacement of growth hormone (GH) and estrogen (E), in order to determine the effects and possible interactions between these two hormones on cortical and cancellous bone growth and turnover. The replacement of estrogen is of interest since Hx results in both pituitary and gonadal hormone insufficiencies, with the latter being caused by the Hx-associated reduction in follicle stimulating hormone (FSH). All hypophysectomized animals received daily supplements of hydrocortisone (500 microg/kg) and L-thyroxine (10 microg/kg), whereas intact animals received daily saline injections. One week following surgery, hypophysectomized animals received either daily injections of low-dose 17 beta-estradiol (4.8 microg/kg s.c.), 3 X/d recombinant human GH (2 U/kg s.c.), both, or saline for a period of two weeks. Flurochromes were administered at weekly intervals to label bone matrix undergoing mineralization. Whereas Hx resulted in reductions in body weight, uterine weight, and tibial length, OVX significantly increased body weight and tibial length, while reducing uterine weight. The combination of OVX and Hx resulted in values similar to Hx alone. Treatment with GH normalized body weight and bone length, while not affecting uterine weight in hypophysectomized animals. Estrogen increased uterine weight, while not impacting longitudinal bone growth and reduced body weight. Hypophysectomy diminished tibial cortical bone area through reductions in both mineral appositional rate (MAR) and bone formation rate (BFR). While E had no effect, GH increased both MAR and BFR, though not to sham-operated (control) levels. Hypophysectomy reduced proximal tibial trabecular number and cancellous bone

  1. Sorption behavior of human bone powder towards 60 Co and 65 Zn

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.T.; Essa, M.W.A.; Mohamed, S.A.; Molokhia, M.K.

    1990-01-01

    Human bone powder 30-40 Μ in diameter was prepared from human bone femurs as fat-free (FFB), protein-free (PFB) or left untreated as raw bone powder (RB). The sorption behavior of human bone powder towards 60 Co and 65 Zn was studied. The uptake changed with the type of bone powder to be : PFB>FFB>RB. The increase in the concentration of cobalt(from 10 -6 to 10 -1 Mole/litre)and of zinc (from 10 -7 to 10 -4 M/1) increased the uptake of 60 Co and 65 Zn. Freunclich-type isotherm was successfully applied on the uptake data of both ions and the slopes of these isotherms were, nearly, directly proportional to their uptake values. The uptake was found to be less influenced by the PH. In case of cobalt the uptake increased till PH 4, followed by a plateau till PH 8 while in case of zinc the PH effect is much less pronounced

  2. Fe and Cu stable isotopes in archeological human bones and their relationship to sex.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent; Herrscher, Estelle; Lamboux, Aline; Telouk, Philippe; Albarède, Francis

    2012-07-01

    Accurate sex assignment of ancient human remains usually relies on the availability of coxal bones or well-preserved DNA. Iron (Fe) and copper (Cu) stable isotope compositions ((56)Fe/(54)Fe and (65)Cu/(63)Cu, respectively) were recently measured in modern human blood, and an unexpected result was the discovery of a (56)Fe-depletion and a (65)Cu-enrichment in men's blood compared to women's blood. Bones, being pervasively irrigated by blood, are expected to retain the (56)Fe/(54)Fe and (65)Cu/(63)Cu signature of blood, which in turn is useful for determining the sex of ancient bones. Here, we report the (56)Fe/(54)Fe, (65)Cu/(63)Cu, and (66)Zn/(64)Zn ratios from a suite of well-preserved phalanxes (n = 43) belonging to individuals buried in the 17th and 18th centuries at the necropolis of Saint-Laurent de Grenoble, France, and for which the sex was independently estimated from pelvic bone morphology. The metals were purified from the bone matrix by liquid chromatography on ion exchange resin and the isotope compositions were measured by multiple-collector inductively coupled plasma mass spectrometry. The results show that, as expected from literature data on blood, male bone iron is depleted in (56)Fe and enriched in (65)Cu relative to female. No sex difference is found in the (66)Zn/(64)Zn ratios of bone. The concentration and isotopic data show no evidence of soil contamination. Four samples of five (77%) can be assigned their correct sex, a result comparable to sex assignment using Fe and Cu isotopes in blood (81%). Isotopic analysis of metals may therefore represent a valid method of sex assignment applicable to incomplete human remains. Copyright © 2012 Wiley Periodicals, Inc.

  3. Immune Humanization of Immunodeficient Mice Using Diagnostic Bone Marrow Aspirates from Carcinoma Patients

    Science.gov (United States)

    Werner-Klein, Melanie; Proske, Judith; Werno, Christian; Schneider, Katharina; Hofmann, Hans-Stefan; Rack, Brigitte; Buchholz, Stefan; Ganzer, Roman; Blana, Andreas; Seelbach-Göbel, Birgit; Nitsche, Ulrich

    2014-01-01

    Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses. PMID:24830425

  4. Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Melanie Werner-Klein

    Full Text Available Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null (NSG and HLA-I expressing NSG mice (NSG-HLA-A2/HHD comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses.

  5. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by 99mTc-MDP bone scintigraphy

    International Nuclear Information System (INIS)

    Yang Shunfang; Dong Qianggang; Yao Ming; Shi Meiping; Ye Jianding; Zhao Langxiang; Su Jianzhong; Gu Weiyong; Xie Wenhui; Wang Kankan; Du Yanzhi; Li Yao; Huang Yan

    2009-01-01

    Background: Bone metastasis is one of the most common clinical phenomena of late stage lung cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal and cell model. This study aims to establish human lung adenocarcinoma cell line with highly bone metastases potency with 99m Tc-MDP bone scintigraphy. Methods: The human lung adenocarcinoma cancer cells SPC-A-1 were injected into the left cardiac ventricle of NIH-Beige-Nude-XID (NIH-BNX) immunodeficient mice. The metastatic lesions of tumor-bearing mice were imaged with 99m Tc-MDP bone scintigraphy on a Siemens multi-single photon emission computed tomography. Pinhole images were acquired on a GZ-B conventional gamma camera with a self-designed pinhole collimator. The mice with bone metastasis were sacrificed under deep anesthesia, and the lesions were resected. Bone metastatic cancer cells in the resected lesions were subjected for culture and then reinoculated into the NIH-BNX mice through left cardiac ventricle. The process was repeated for eight cycles to obtain a novel cell subline SPC-A-1BM. Real-time polymerase chain reaction (PCR) was used to compare the gene expression differences in the parental and SPC-A-1BM cells. Results: The bone metastasis sites were successfully revealed by bone scintigraphy. The established bone metastasis cell line SPC-A-1BM had a high potential to metastasize in bone, including mandible, humerus, thoracic vertebra, lumbar, femur, patella, ilium and cartilage rib. The expression level of vascular endothelial growth factor gene family, Bcl-2 and cell adhesion-related genes ECM1, ESM1, AF1Q, SERPINE2 and FN1 were examined. Gene expression difference was found between parental and bone-seeking metastasis cell SPC-A-1BM, which indicates SPC-A-1BM has metastatic capacity vs. its parental cells. Conclusion: SPC-A-1BM is a bone-seeking metastasis human lung adenocarcinoma cell line. Bone scintigraphy may be used as an

  6. Microarchitectural adaptations in aging and osteoarthrotic subchondral bone tissues

    DEFF Research Database (Denmark)

    Ding, Ming

    2010-01-01

    . These diseases are among the major health care problems in terms of socio-economic costs. The overall goals of the current series of studies were to investigate the age-related and osteoarthrosis (OA) related changes in the 3-D microarchitectural properties, mechanical properties, collagen and mineral quality......-related development of guinea pig OA; secondly, the potential effects of hyaluronan on OA subchondral bone tissues; and thirdly, the effects on OA progression of an increase in subchondral bone density by inhibition of bone remodeling with a bisphosphonate. These investigations aimed to obtain more insight...... into the age-related and OA-related subchondral bone adaptations.   Microarchitectural adaptation in human aging cancellous bone The precision of micro-CT measurement is excellent. Accurate 3-D micro-CT image datasets can be generated by applying an appropriate segmentation threshold. A fixed threshold may...

  7. METHODS USED FOR THE VIRTUAL HUMAN BONES AND JOINTS RECONSTRUCTION. NORMAL AND PATHOLOGICAL HUMAN JOINTS VIRTUAL SIMULATIONS

    Directory of Open Access Journals (Sweden)

    POPA Laurentiu Dragos

    2015-06-01

    Full Text Available To understand the problems, which appear in every human joint, it is very important to know the anatomy and morphology of the human bones and the way in which the components are working together to realize a normal functionality. For this purpose was used a CAD parametric software which permits to define models with a high degree of difficulty. First, it was used a CT or MRI device to obtain the parallel sections to study each component of the bone. A 3D scanner can be used only for the outer geometry. In the second step the images were transferred to a 2D CAD software, like AutoCAD, where the outer and inner contours of the bone were approximate to polygonal lines composed by many segments. After this, the contours were transferred to a 3D CAD software, like SolidWorks, where, step by step, and section by section, was defined the virtual bone component. Additionally to the main shape can be attached other Loft, Round or Dome shapes. For some components, as vertebrae, mandible or skull bones, can be used a preliminary model obtained by parallel sections. Starting from this, the model can be defined using the main 3D curves and we can get the final virtual solid model. In some simulations, the soft components, as muscles or ligaments, were included in simulations using non-linear virtual springs. Also, sometimes were used implants or prosthetic elements. In the final of the paper, were extracted important conclusions.

  8. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  9. The Use of Recombinant Human Platelet-Derived Growth Factor for Maxillary Sinus Augmentation.

    Science.gov (United States)

    Kubota, Atsushi; Sarmiento, Hector; Alqahtani, Mohammed Saad; Llobell, Arturo; Fiorellini, Joseph P

    The maxillary sinus augmentation procedure has become a predictable treatment to regenerate bone for implant placement. The purpose of this study was to evaluate the effect of recombinant human platelet-derived growth factor BB (rhPDGF-BB) combined with a deproteinized cancellous bovine bone graft for sinus augmentation. The lateral window approach was used for maxillary sinuses with minimal residual bone. After a healing period of 4 months, dental implants were placed and then restored following a 2-month osseointegration period. The result demonstrated increased bone height and ISQ values and a 100% survival rate. This study indicates that the addition of rhPDGF-BB to deproteinized cancellous bovine bone accelerated the healing period in maxillary sinuses with minimal native bone.

  10. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    Science.gov (United States)

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.

  11. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Science.gov (United States)

    Bouderlique, Thibault; Henault, Emilie; Lebouvier, Angelique; Frescaline, Guilhem; Bierling, Phillipe; Rouard, Helene; Courty, José; Albanese, Patricia; Chevallier, Nathalie

    2014-01-01

    Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  12. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Thibault Bouderlique

    Full Text Available Pleiotrophin (PTN is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  13. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone

    Directory of Open Access Journals (Sweden)

    Natalia Lanocha-Arendarczyk

    2016-01-01

    Full Text Available The aim of this study was to investigate the impact of environmental factors on the concentrations of vanadium (V, chromium (Cr, and calcium (Ca and to examine the synergistic or antagonistic relationships between these metals, in cartilage (C, cortical bone (CB, and spongy bone (SB samples obtained following hip joint surgery on patients with osteoarthritis in NW Poland. We found significantly higher concentrations of V and Cr in spongy bone in patients who consumed game meat and also those with prosthetic implants. Chromium levels were significantly lower in patients with kidney diseases. The greatest positive correlations were found between spongy bone V and (i the amount of consumed beer and (ii seafood diet. Correlation analysis also showed a significant correlation between Cr levels and seafood diet. To a certain extent these results indicate that the concentrations of V, Cr, and Ca in the human hip joint tissues are connected with occupational exposure, kidney diseases, diet containing game meat, sea food, beer, and the presence of implants. Furthermore, we noted new types of interactions in specific parts of the femoral head. Vanadium may contribute to the lower bone Ca levels, especially in the external parts (cartilage and cortical bone.

  14. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.

    Science.gov (United States)

    Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha

    2014-09-01

    Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, Robert O; Koester, K. J.; Ager III, J. W.; Ritchie, R.O.

    2008-05-10

    Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.

  16. Selective inhibition of B lymphocytes in TBTC-treated human bone marrow long-term culture.

    NARCIS (Netherlands)

    Carfi', M.; Bowe, G.; Pieters, R.; Gribaldo, L.

    2010-01-01

    Tributyltin chloride (TBTC) is well known for its immunotoxic effect, in particular towards immature thymocytes. TBTC is also known to induce adipocyte differentiation in primary human bone marrow cultures, which is reflected in the decrease in a number of adipocyte-derived cytokines, chemokines and

  17. Direct radiocarbon dating and DNA analysis of the Darra-i-Kur (Afghanistan) human temporal bone.

    Science.gov (United States)

    Douka, Katerina; Slon, Viviane; Stringer, Chris; Potts, Richard; Hübner, Alexander; Meyer, Matthias; Spoor, Fred; Pääbo, Svante; Higham, Tom

    2017-06-01

    The temporal bone discovered in the 1960s from the Darra-i-Kur cave in Afghanistan is often cited as one of the very few Pleistocene human fossils from Central Asia. Here we report the first direct radiocarbon date for the specimen and the genetic analyses of DNA extracted and sequenced from two areas of the bone. The new radiocarbon determination places the find to ∼4500 cal BP (∼2500 BCE) contradicting an assumed Palaeolithic age of ∼30,000 years, as originally suggested. The DNA retrieved from the specimen originates from a male individual who carried mitochondrial DNA of the modern human type. The petrous part yielded more endogenous ancient DNA molecules than the squamous part of the same bone. Molecular dating of the Darra-i-Kur mitochondrial DNA sequence corroborates the radiocarbon date and suggests that the specimen is younger than previously thought. Taken together, the results consolidate the fact that the human bone is not associated with the Pleistocene-age deposits of Darra-i-Kur; instead it is intrusive, possibly re-deposited from upper levels dating to much later periods (Neolithic). Despite its Holocene age, the Darra-i-Kur specimen is, so far, the first and only ancient human from Afghanistan whose DNA has been sequenced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Progesterone Promotes Human Bone Marrow Mesenchymal Stem Cells to Synthesize Fibronectin via ERK Pathway].

    Science.gov (United States)

    Wu, Zhen-Yong; Chen, Jing-Li; Huang, Shu; Zhang, Hui; Wang, Fang; Wang, Yan; Bi, Xiao-Yun; Guo, Zi-Kuan

    2015-12-01

    To investigate whether the progesterone can promote fibronection (FN) synthesis by human bone marrow mesenchymal stem cells (MSCs) and to explore the potential underlying mechanism. The human bone marrow MSCs were cultured in a serum-free medium with progesterone for 72 hours, the MTT test was performed to observe the proliferation status and adhension ability of the treated cells. Western blot was used to detect the content of FN in MSDs with GAPDH as the internal reference, the phosphorylation of ERK1/2, as well as the FN content in MSC treated by PD98059, a specific inhibitor of ERK1/2. The progesterone at a range of certain doses not effect on the proliferation of human bone marrow MSCs. Progesterone (25 µg/L) treatment enhanced the FN expression and adherent ability of marrow MSCs. Progesterone could induce prompt phosphorylation of ERK 1/2 and its promoting effects on FN synthesis was reversed by PD98059. The progesterone can promote FN synthesis by human bone marrow MSCs via ERK 1/2 pathway, and it might be used to culture MSCs in serum-free medium.

  19. Strontium-90 content of human bones collected from 1962 to 1966

    International Nuclear Information System (INIS)

    Jeanmaire, L.

    1967-01-01

    The aim of this report is essentially to present results of 90 Sr determination made on human bones collected in the Paris region from 1962 to 1966. The results are classified according to the year and the age-group in, two tables and one figure which show the general evolution of the contamination during this period. (author) [fr

  20. The Human Figure Drawing with Donor and Nondonor Siblings of Pediatric Bone Marrow Transplant Patients.

    Science.gov (United States)

    Packman, Wendy L.; Beck, Vanessa L.; VanZutphen, Kelly H.; Long, Janet K.; Spengler, Gisele

    2003-01-01

    There is little research on the psychological impact of bone marrow transplantation (BMT) on family members. This study uses the Human Figure Drawing (HFD) to measure siblings' emotional distress toward BMT. Among the siblings, feelings of isolation, anger, depression, anxiety, and low self-esteem emerged as major themes. Findings indicate the…

  1. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  2. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.

    Science.gov (United States)

    Langdahl, Bente; Ferrari, Serge; Dempster, David W

    2016-12-01

    The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that

  3. [Comparison of fluoride concentrations in human, dog, fox and raccoon dog bones from northwestern Poland].

    Science.gov (United States)

    Palczewska-Komsa, Mirona

    2015-01-01

    Since the beginning of the XXth there has been a constant increase in fluoride (F-) emissions into the environment, mainly due to the development of industry, the fluoridation of drinking water, and the widespread use of toothpaste containing fluoride. All these factors have resulted in an intensive accumulation of F- in the bodies of vertebrates, mainly in their bones. It is therefore reasonable to estimate the F- concentration in humans and other long-lived mammals. Accordingly, ecotoxicologists worldwide have looked for mammalian species that may serve as good bioindicators of environmental fluoride pollution. In contrast to ungulates, long-lived domestic mammals and wild carnivores have rarely been used for this purpose (including the dog, fox and raccoon dog). The main aims of this study were to: 1) investigate F- concentrations in bones obtained from humans, dog, fox and raccoon dog from northwestern Poland, 2) perform intra- and inter-specific comparisons of F- concentrations in the studied mammalian bones against the background of environmental and living conditions, 3) examine the relationship between concentrations of F- in bones and the age or age category of the studied mammals. The study material comprised bones of the hip joint obtained from 36 patients who underwent hip replacement in Szczecin, 43 dogs from Szczecin veterinary clinics, 32 foxes and 18 raccoon dogs provided by hunters, with the whole test material consisting of 129 samples. The indications of F- (using potentiometry with Thermo Orion ion-selective electrodes) were performed in triplicate. The F- concentration was expressed on a dry weight basis. Interspecific analysis showed that the largest number of differences in the concentrations of F- were between the fox and raccoon, and then between the dog and fox, and then between the dog and the wild canids (foxes and raccoon dogs together). Close statistically significant differences were also found between the samples from humans and the

  4. Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering.

    Science.gov (United States)

    Diao, Yinze; Ma, Qingjun; Cui, Fuzhai; Zhong, Yanfeng

    2009-10-01

    Mesenchymal stem cells (MSCs) are ideal seed cells for bone tissue engineering. However, intrinsic deficiencies exist for the autologous transplantation strategy of constructing artificial bone with MSCs derived from bone marrow of patients. In this study, MSCs-like cells were isolated from human umbilical cords and were expanded in vitro. Flow cytometric analysis revealed that cells from the fourth passage were positive for CD29, CD44, CD71, CD73, CD90, and CD105 whereas they were negative for CD14, CD34, CD45, and CD117. Furthermore, these cells expressed HLA-A, B, C (MHC-I), but not HLA-DP, DQ, DR (MHC-II), or costimulatory molecules such as CD80 and CD86. Following incubation in specific inductive media for 3 weeks, cultured cells were shown to possess potential to differentiate into adipogenic, osteogenic or chondrogenic lineages in vitro. The umbilical cord-derived MSCs (UC-MSCs) were loaded with a biomimetic artificial bone scaffold material before being implanted subcutaneously in the back of Balb/c nude mice for four to twelve weeks. Our results revealed that UC-MSCs loaded with the scaffold displayed capacity of osteogenic differentiation leading to osteogenesis with human origin in vivo. As a readily available source of seed cells for bone tissue engineering, UC-MSCs should have broad application prospects.

  5. Severely impaired bone material quality in Chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta.

    Science.gov (United States)

    Fiedler, Imke A K; Schmidt, Felix N; Wölfel, Eva M; Plumeyer, Christine; Milovanovic, Petar; Gioia, Roberta; Tonelli, Francesca; Bale, Hrishikesh A; Jähn, Katharina; Besio, Roberta; Forlino, Antonella; Busse, Björn

    2018-04-17

    Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Since the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how osteogenesis imperfecta manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/ +) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier transform infrared spectroscopy, nanoindentation and X-ray microscopy. At the skeletal level, Chi/+ display smaller body size, deformities and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to WT. The alterations in the cellular, compositional and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/ +. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant osteogenesis imperfecta. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    Energy Technology Data Exchange (ETDEWEB)

    Antebi, Uri; Mathor, Monica B., E-mail: uri@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Guimaraes, Rodrigo P., E-mail: clinicaguimaraes@gmail.com [Santa Casa de Sao Paulo (FCM/SCSP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Medicas

    2015-07-01

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  7. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    International Nuclear Information System (INIS)

    Antebi, Uri; Mathor, Monica B.; Guimaraes, Rodrigo P.

    2015-01-01

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  8. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Automated processing of human bone marrow grafts for transplantation.

    Science.gov (United States)

    Zingsem, J; Zeiler, T; Zimmermanm, R; Weisbach, V; Mitschulat, H; Schmid, H; Beyer, J; Siegert, W; Eckstein, R

    1993-01-01

    Prior to purging or cryopreservation, we concentrated 21 bone marrow (BM) harvests using a modification of the 'grancollect-protocol' of the Fresenius AS 104 cell separator with the P1-Y set. Within 40-70 min, the initial marrow volume of 1,265 ml (+/- 537 ml) was processed two to three times. A mean of 47% (+/- 21%) of the initial mononuclear cells was recovered in a mean volume of 128 ml (+36 ml). The recovery of clonogenic cells, measured by CFU-GM assays, was 68% (+/- 47%). Red blood cells in the BM concentrates were reduced to 7% (+/- 4%) of the initial number. The procedure was efficient and yielded a BM cell fraction suitable for purging, cryopreservation and transplantation. At this time, 10 of the 21 patients whose BM was processed using this technique have been transplanted. Seven of these 10 patients have been grafted using the BM alone. Three of the 10 patients showed reduced cell viability and colony growth in the thawed BM samples, and therefore obtained BM and peripheral blood-derived stem cells. All transplanted patients showed an evaluable engraftment, achieving 1,000 granulocytes per microliter of peripheral blood in a mean of 18 days.

  10. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  11. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Wang FJ

    2015-12-01

    Full Text Available Mesenchymal stromal cells (MSCs have shown promise as treatment for graft-versus-host disease (GvHD following allogeneic bone marrow transplantation (alloBMT. Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs were injected via carotid artery (IA or tail vein (TV into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments.

  12. [Synthetic human calcitonin in Paget's disease of bone and osteoporosis (author's transl)].

    Science.gov (United States)

    Nuti, R; Vattimo, A

    1981-01-30

    Synthetic human calcitonin was used in the treatment of 26 patients over a period of 1-14 months. 17 patients had Paget's disease of the bone, 6 postmenopausal osteoporosis and 3 Sudeck's syndrome. Subjective improvement (reduction of pain, improvement of mobility) was found in 15 patients with Paget's disease, in 4 females with postmenopausal osteoporosis and in all 3 patients with Sudeck's syndrome. Radiographic improvement of bone changes developed only very slowly. These results were confirmed by diminution of the exchangeable calcium pool indicating reduction of rates of osseous degradation. Calcitonin tolerance was acceptable. Transitory nausea and occasional vomiting occurred in 3 patients.

  13. Fluorine determination in human and animal bones by particle-induced gamma-ray emission

    International Nuclear Information System (INIS)

    Sastri, Chaturvedula S.; Hoffmann, Peter; Ortner, Hugo M.; Iyengar, Venkatesh; Blondiaux, Gilbert; Tessier, Yves; Petri, Hermann; Aras, Namik K.; Zaichick, Vladimir

    2002-01-01

    Fluorine was determined in the iliac crest bones of patients and in ribs collected from postmortem investigations by particle-induced gamma-ray emission based on the 19 F(p,pγ) 19 F reaction, using 20/2.5 MeV protons. The results indicate that for 68% of the human samples the F concentration is in the range 500-1999 μg g -1 . For comparison purposes fluorine was also determined in some animal bones; in some animal tissues lateral profiles of fluorine were measured. (abstract)

  14. In vivo x-ray fluorescence of bone lead in the study of human lead metabolism: Serum lead, whole blood lead, bone lead, and cumulative exposure

    International Nuclear Information System (INIS)

    Cake, K.M.; Chettle, D.R.; Webber, C.E.; Gordon, C.L.

    1995-01-01

    Traditionally, clinical studies of lead's effect on health have relied on blood lead levels to indicate lead exposure. However, this is unsatisfactory because blood lead levels have a half-life of approximately 5 weeks, and thus reflect recent exposure. Over 90% of the lead body burden is in bone, and it is thought to have a long residence time, thus implying that measurements of bone lead reflect cumulative exposure. So, measurements of bone lead are useful in understanding the long-term health effects of lead. Ahlgren reported the first noninvasive measurements of bone lead in humans, where γ-rays from 57 Co were used to excite the K series x-rays of lead. The lead detection system at McMaster University uses a 109 Cd source which is positioned at the center of the detector face (HPGe) and a near backscatter (∼160 degrees) geometry. This arrangement allows great flexibility, since one can sample lead in a range of different bone sites due to a robust normalization technique which eliminates the need to correct for bone geometry, thickness of overlying tissue, and other related factors. The effective radiation dose to an adult during an x-ray fluorescence bone lead measurement is extremely low, being 35 nSv. This paper addresses the issue of how bone, whole blood, and serum lead concentrations can be related in order to understand a person's lead exposure history

  15. Relative biological effectiveness of tritiated water on human chromosomes of lymphocytes and bone marrow cells

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Sawada, Shozo; Kamada, Nanao

    1992-01-01

    One of the major toxic effluent from nuclear power industries is tritiated water (HTO), which is released into the environment in large quantities. Low dose radiation effects and dose rate effects of HTO on human lymphocytes and bone marrow cells are not well studied. The present study was performed to investigate dose-response relationship for chromosome aberration frequencies in the human lymphocytes and bone marrow cells, by HTO in-vitro exposure at low dose ranges of 0.1 to 1 Gy. Go lymphocytes and bone marrow cells were incubated for 10 - 150 minutes with HTO at 2 cGy/min. Also 60 Co γ and 137 Cs γ rays were used as controls. Dicentric chromosomes were scored in 1,000 to 2,000 cells of each experimental series. The RBE values of HTO at low dose range for the induction of dicentric chromosomes and chromatid type aberrations were 2.7 in lymphocytes and approximately 3.8 in bone marrow cells with respect to 60 Co γ ray, respectively. Also lymphocytes were chronically exposed to HTO for 24 to 72 hrs at lower dose rates (0.2 and 0.05 cGy/min). The yields of dicentrics and rings decreased with the reduction in the dose rate of HTO, presenting a clear dose rate effects of HTO. These results provide an useful information for the assessment for health risk in humans exposed to low concentration level to HTO. (author)

  16. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress.

    Science.gov (United States)

    Kraft, David Christian Evar; Bindslev, Dorth Arenholt; Melsen, Birte; Klein-Nulend, Jenneke

    2011-02-01

    For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular response via loading-induced flow of interstitial fluid. After surgical removal of ectopically impacted third molars, human dental pulp tissue is an easily accessible and interesting source of cells for mineralized tissue engineering. The aim of this study was to determine whether human dental pulp-derived cells (DPC) are responsive to mechanical loading by pulsating fluid flow (PFF) upon stimulation of mineralization in vitro. Human DPC were incubated with or without mineralization medium containing differentiation factors for 3 weeks. Cells were subjected to 1-h PFF (0.7 ± 0.3 Pa, 5 Hz) and the response was quantified by measuring nitric oxide (NO) and prostaglandin E₂ (PGE₂) production, and gene expression of cyclooxygenase (COX)-1 and COX-2. We found that DPC are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. PFF stimulated NO and PGE₂ production, and up-regulated COX-2 but not COX-1 gene expression. In DPC cultured under mineralizing conditions, the PFF-induced NO, but not PGE₂, production was significantly enhanced. These data suggest that human DPC, like osteogenic cells, acquire responsiveness to pulsating fluid shear stress in mineralizing conditions. Thus DPC might be able to perform bone-like functions during mineralized tissue remodeling in vivo, and therefore provide a promising new tool for mineralized tissue engineering to restore, for example, maxillofacial defects.

  17. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics

    Science.gov (United States)

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-01-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. PMID:12489757

  18. 76 FR 62422 - National Institute of Environmental Health Sciences; Cancellation of Meeting

    Science.gov (United States)

    2011-10-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Environmental Health Sciences; Cancellation of Meeting Notice is hereby given of the cancellation of the Interagency Breast Cancer and Environmental Research Coordinating Committee, October 12, 2011, 1 p.m. to 3 p.m...

  19. 78 FR 24224 - National Institute of Allergy and Infectious Diseases; Cancellation of Meeting

    Science.gov (United States)

    2013-04-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Allergy and Infectious Diseases; Cancellation of Meeting Notice is hereby given of the cancellation of the AIDS Research Advisory Committee, NIAID, June 05, 2013, 8:00 a.m. to June 05, 2013, 5:00 p.m., National...

  20. Physico chemical study of the uptake of some radionuclides by the human bone powder

    International Nuclear Information System (INIS)

    Mohamed, S.A.

    1989-01-01

    Human bone femurs were freed from flesh and marrow, crushed and ground to a grain size below 50 in diameter. Fat was extracted from one third of the powder (FFB). protein was extracted from the second third (PFB) and the third portion was without any treatment as raw bone powder (RB). Physical and chemical properties of bone powder such as density, chemical composition, calcium content, and nitrogen content were investigated. Experimental procedures followed two techniques: - Schweitzer and Nehls technique (164) where a large reaction vessel was used. - Harrison et al technique (90) where the batch system was used. Counting systems applied were : beta counting for 89 Sr and gamma counting for 60 Co and 6 5 Zn

  1. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells

    DEFF Research Database (Denmark)

    Ayesh Hafez Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora

    2018-01-01

    during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor......Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling...... signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand...

  2. Early human bone response to laser metal sintering surface topography: a histologic report.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  3. Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    M Mumme

    2012-09-01

    Full Text Available Inflammatory cytokines present in the milieu of the fracture site are important modulators of bone healing. Here we investigated the effects of interleukin-1β (IL-1β on the main events of endochondral bone formation by human bone marrow mesenchymal stromal cells (BM-MSC, namely cell proliferation, differentiation and maturation/remodelling of the resulting hypertrophic cartilage. Low doses of IL-1β (50 pg/mL enhanced colony-forming units-fibroblastic (CFU-f and -osteoblastic (CFU-o number (up to 1.5-fold and size (1.2-fold in the absence of further supplements and glycosaminoglycan accumulation (1.4-fold upon BM-MSC chondrogenic induction. In osteogenically cultured BM-MSC, IL-1β enhanced calcium deposition (62.2-fold and BMP-2 mRNA expression by differential activation of NF-κB and ERK signalling. IL-1β-treatment of BM-MSC generated cartilage resulted in higher production of MMP-13 (14.0-fold in vitro, mirrored by an increased accumulation of the cryptic cleaved fragment of aggrecan, and more efficient cartilage remodelling/resorption after 5 weeks in vivo (i.e., more TRAP positive cells and bone marrow, less cartilaginous areas, resulting in the formation of mature bone and bone marrow after 12 weeks. In conclusion, IL-1β finely modulates early and late events of the endochondral bone formation by BM-MSC. Controlling the inflammatory environment could enhance the success of therapeutic approaches for the treatment of fractures by resident MSC and as well as improve the engineering of implantable tissues.

  4. Effects of bone damage on creep behaviours of human vertebral trabeculae.

    Science.gov (United States)

    O'Callaghan, Paul; Szarko, Matthew; Wang, Yue; Luo, Jin

    2018-01-01

    A subgroup of patients suffering with vertebral fractures can develop progressive spinal deformities over time. The mechanism underlying such clinical observation, however, remains unknown. Previous studies suggested that creep deformation of the vertebral trabeculae may play a role. Using the acoustic emission (AE) technique, this study investigated effects of bone damage (modulus reduction) on creep behaviours of vertebral trabecular bone. Thirty-seven human vertebral trabeculae samples were randomly assigned into five groups (A to E). Bones underwent mechanical tests using similar experimental protocols but varied degree of bone damage was induced. Samples first underwent creep test (static compressive stress of 0.4MPa) for 30min, and then were loaded in compression to a specified strain level (0.4%, 1.0%, 1.5%, 2.5%, and 4% for group A to E, respectively) to induce different degrees of bone damage (0.4%, no damage control; 1.0%, yield strain; 1.5%, beyond yield strain, 2.5% and 4%, post-ultimate strains). Samples were creep loaded (0.4MPa) again for 30min. AE techniques were used to monitor bone damage. Bone damage increased significantly from group A to E (P30% of modulus reduction in group D and E. Before compressive loading, creep deformation was not different among the five groups and AE hits in creep test were rare. After compressive loading, creep deformation was significantly greater in group D and E than those in other groups (Pcreep test were significantly greater in group D and E than in group A, B, and C (Pcreep deformation may occur even when the vertebra was under physiological loads. The boosted creep deformation observed may be attributed to newly created trabecular microfractures. Findings provide a possible explanation as to why some vertebral fracture patients develop progressive spinal deformity over time. Copyright © 2017. Published by Elsevier Inc.

  5. Identification of Rorβ targets in cultured osteoblasts and in human bone

    Energy Technology Data Exchange (ETDEWEB)

    Roforth, Matthew M., E-mail: roforth.matthew@mayo.edu; Khosla, Sundeep, E-mail: khosla.sundeep@mayo.edu; Monroe, David G., E-mail: monroe.david@mayo.edu

    2013-11-01

    Highlights: •We examine the gene expression patterns controlled by Rorβ in osteoblasts. •Genes involved in extracellular matrix regulation and proliferation are affected. •Rorβ mRNA levels increase in aged, human bone biopsies. •Rorβ may affect osteoblast activity by modulation of these pathways. -- Abstract: Control of osteoblastic bone formation involves the cumulative action of numerous transcription factors, including both activating and repressive functions that are important during specific stages of differentiation. The nuclear receptor retinoic acid receptor-related orphan receptor β (Rorβ) has been recently shown to suppress the osteogenic phenotype in cultured osteoblasts, and is highly upregulated in bone marrow-derived osteogenic precursors isolated from aged osteoporotic mice, suggesting Rorβ is an important regulator of osteoblast function. However the specific gene expression patterns elicited by Rorβ are unknown. Using microarray analysis, we identified 281 genes regulated by Rorβ in an MC3T3-E1 mouse osteoblast cell model (MC3T3-Rorβ-GFP). Pathway analysis revealed alterations in genes involved in MAPK signaling, genes involved in extracellular matrix (ECM) regulation, and cytokine-receptor interactions. Whereas the identified Rorβ-regulated ECM genes normally decline during osteoblastic differentiation, they were highly upregulated in this non-mineralizing MC3T3-Rorβ-GFP model system, suggesting that Rorβ may exert its anti-osteogenic effects through ECM disruption. Consistent with these in vitro findings, the expression of both RORβ and a subset of RORβ-regulated genes were increased in bone biopsies from postmenopausal women (73 ± 7 years old) compared to premenopausal women (30 ± 5 years old), suggesting a role for RORβ in human age-related bone loss. Collectively, these data demonstrate that Rorβ regulates known osteogenic pathways, and may represent a novel therapeutic target for age-associated bone loss.

  6. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    Science.gov (United States)

    Andrade, E.; Solís, C.; Canto, C. E.; de Lucio, O. G.; Chavez, E.; Rocha, M. F.; Villanueva, O.; Torreblanca, C. A.

    2014-08-01

    Analysis of ancient human bones found in "El Cóporo", an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone's black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  7. Vancomycin graft composite for infected bone defects

    International Nuclear Information System (INIS)

    Winkler, H.; Janata, O.; Georgopoulos, A.

    1999-01-01

    Reconstructive surgery under septic conditions represents a major challenge in orthopaedics. Local application of antibiotics can provide high drug levels at the site of infection without systemic effects. However, removal of non-resorbable implants and filling of defects usually requires additional operative procedures. An ideal antibiotic carrier should provide for : 1) Effective bactericidal activity, especially against staphylococci including MRSA; 2) High and long lasting levels at the site of infection without local or systemic toxicity; 3) Repair of defects without a second stage procedure. Allogeneic cancellous bone is proven to be effective in restoration of bone stock. Vancomycin is effective against all gram-positive populations and the agent of choice for infections with MRSA. The aim of our study is to investigate the efficacy of a combination of both components in bone infection. Cancellous bone of human origin was processed during several steps and incubated in 10% vancomycin solution. The antimicrobial activity of the vancomycin graft composite (VGC) was evaluated using an agar diffusion bioassay against staphylococcus aureus and high performance liquid chromatography (HPLC). The testing period was up to 9 weeks. Elution of vancomycin from the graft was evaluated in 2.5% human albumin solution, which was exchanged every 24 hours. Concentration of vancomycin in allograft-bone was between 6.653[tg/g and 23.194gg/g with an average of 15.250 [tg/g, which is equivalent to 10.000 times the minimum inhibitory concentration (MIC) for s. aureus. The initial activity decreased to approx. 50% during the first week and approx. 30% at the end of the 9th week. The lowest values measured exceeded the MIC by 2000 times. Concentration in surrounding fluid decreased from 24.395,80 to 18,43pg/ml after 11 complete exchanges. Human cancellous bone, processed in an adequate way, offers capability to store high quantities of vancomycin. Vancomycin graft composites are

  8. Low radiation dose impact on human bone mineral density

    International Nuclear Information System (INIS)

    Zaichick, V.E.

    2002-01-01

    Immediately after the Chernobyl Nuclear Power Plant disaster it was assumed that osteoporosis would develop in a few young adult males (the so-called 'cleaners') who took part in the cleanup operations. The following factors were taken into consideration: Low external irradiation of whole body including skeleton; Non-uniform irradiation of thyroid and parathyroid glands by iodine radionuclides, as well as the different radiosensitivity of these organs (imbalance of parathormone and calcitonine); Intoxication from lead dropped from helicopters into the destroyed reactor as well as cadmium, a constituent of the nuclear reactor construction (a suppressive action of Pb and Cd on normal growth and the functioning of osteoblasts); Chronic stress arising in the cleaners following a huge amount of negative information from the mass media about the unhealthy consequences of exposure (imbalance of Ca-regulating hormones, including an excess of glucocorticoids). Despite substantiated assumption, all the efforts of national and international programs during the after-disaster period were mostly aimed at early diagnoses of thyroid and blood diseases. No attention was paid to osteoporosis problems of the cleaners. Only since 1997, the DXA method (Bone Densitometer LUNAR DPX-L) has been used to determine spinal and femoral BMD. To date, 162 men aged 30 to 50 have been examined, that is, those who were 18 to 35 years old during cleanup operations. In addition, the total body composition (tissue, fat, lean, BMD, BMC) as well as height and body mass was determined by DXA in every subject. A control group consisted of 188 randomly selected healthy men of the same age. Using the T score and the WHO recommendation changes in either spinal or femoral BMD that could be classified as osteopenia (77 cleaners, 47.5 %) and osteoporosis (9 cleaners, 5.6 %) were found in 86 of 162 cleaners. No great changes in height and body composition were found in cleaners. The incidence of osteopenia and

  9. 77 FR 19747 - Proposed Cancelation

    Science.gov (United States)

    2012-04-02

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary [Order 2012-3-7; Docket DOT-OST-2012-0022] Proposed Cancelation of the Air Taxi Authority Of VIH Cougar Helicopters, Inc. AGENCY: Department of... order finding that VIH Cougar Helicopters, Inc. is not a U.S. citizen as defined in 49 U.S.C. 40102(a...

  10. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities.

    Science.gov (United States)

    Lang, Thomas; Van Loon, Jack J W A; Bloomfield, Susan; Vico, Laurence; Chopard, Angele; Rittweger, Joern; Kyparos, Antonios; Blottner, Dieter; Vuori, Ilkka; Gerzer, Rupert; Cavanagh, Peter R

    2017-01-01

    Without effective countermeasures, the musculoskeletal system is altered by the microgravity environment of long-duration spaceflight, resulting in atrophy of bone and muscle tissue, as well as in deficits in the function of cartilage, tendons, and vertebral disks. While inflight countermeasures implemented on the International Space Station have evidenced reduction of bone and muscle loss on low-Earth orbit missions of several months in length, important knowledge gaps must be addressed in order to develop effective strategies for managing human musculoskeletal health on exploration class missions well beyond Earth orbit. Analog environments, such as bed rest and/or isolation environments, may be employed in conjunction with large sample sizes to understand sex differences in countermeasure effectiveness, as well as interaction of exercise with pharmacologic, nutritional, immune system, sleep and psychological countermeasures. Studies of musculoskeletal biomechanics, involving both human subject and computer simulation studies, are essential to developing strategies to avoid bone fractures or other injuries to connective tissue during exercise and extravehicular activities. Animal models may be employed to understand effects of the space environment that cannot be modeled using human analog studies. These include studies of radiation effects on bone and muscle, unraveling the effects of genetics on bone and muscle loss, and characterizing the process of fracture healing in the mechanically unloaded and immuno-compromised spaceflight environment. In addition to setting the stage for evidence-based management of musculoskeletal health in long-duration space missions, the body of knowledge acquired in the process of addressing this array of scientific problems will lend insight into the understanding of terrestrial health conditions such as age-related osteoporosis and sarcopenia.

  11. Insights into the effects of tensile and compressive loadings on human femur bone.

    Science.gov (United States)

    Havaldar, Raviraj; Pilli, S C; Putti, B B

    2014-01-01

    Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.

  12. Remoção da cartilagem articular associada ou não a implante homógeno ou enxerto autógeno de osso esponjoso em cães submetidos à artrodese atlantoaxial Joint cartilage removal associated or not to homologous implant or autologous cancellous bone graft in dogs submitted to atlantoaxial arthrodesis

    Directory of Open Access Journals (Sweden)

    Rafael Festugatto

    2013-03-01

    Full Text Available O objetivo deste estudo foi avaliar o grau de fusão articular e formação óssea na articulação atlantoaxial de cães submetidos à artrodese após a remoção da cartilagem articular associada ou não ao implante homógeno ou enxerto autógeno de osso esponjoso. Foram utilizados 12 cães, adultos, distribuídos aleatoriamente em três grupos iguais. Grupo I (GI: realizada apenas a remoção da cartilagem articular e imobilização articular com pinos e resina acrílica. Grupo II (GII: feita a remoção da cartilagem articular e imobilização da articulação, seguida da colocação e modelagem do implante ósseo esponjoso homógeno entre as superfícies articulares. Grupo III (GIII: foi realizado o mesmo procedimento do GII, mais o enxerto ósseo esponjoso autógeno no local determinado. Realizaram-se exames radiográficos em todos os animais aos 30, 60 e 90 dias de pós-operatório (PO. Aos 90 dias de PO foi feita a eutanásia para o emprego do teste de palpação manual, avaliação tomográfica e histopatológica. Para análise estatística da associação entre o grau de fusão articular, aplicou-se o Teste Qui-quadrado de independência. Os resultados dos testes foram avaliados pela significância exata e considerados significantes a 5% (PThe aim of this study was to evaluate the degree of joint fusion and bone formation in dogs undergoing atlantoaxial arthrodesis after removal of articular cartilage associated or not to implant homogenous or autogenous cancellous bone. Twelve dogs, weighing between 8 and 12kg were randomly divided into three groups. Group I (GI performed only the removal of joint cartilage and joint immobilization with acrylic resin and pins. Group II (GII: after removel of joint cartilage and articular immobilization was performed modeling and placement of homogenous cancellous bone at the given location. The volume of homograft placed in the joint was measured using a precision balance and all animals received the

  13. Human histologic evaluation of anorganic bovine bone mineral combined with recombinant human platelet-derived growth factor BB in maxillary sinus augmentation: case series study.

    Science.gov (United States)

    Nevins, Myron; Garber, David; Hanratty, James J; McAllister, Bradley S; Nevins, Marc L; Salama, Maurice; Schupbach, Peter; Wallace, Steven; Bernstein, Simon M; Kim, David M

    2009-12-01

    The objective of this proof-of-principle study was to examine the potential for improved bone regenerative outcomes in maxillary sinus augmentation procedures when recombinant human platelet-derived growth factor BB (0.3 mg/mL) is combined with particulate anorganic bovine bone mineral. The surgical outcomes in all treated sites were uneventful at 6 to 8 months, with sufficient regenerated bone present to allow successful placement of maxillary posterior implants. Large areas of dense, well-formed lamellar bone were seen throughout the intact core specimens in more than half of the grafted sites. Abundant numbers of osteoblasts were noted in concert with significant osteoid in all sites, indicating ongoing osteogenesis. A number of cores demonstrated efficient replacement of the normally slowly resorbing anorganic bovine bone mineral matrix particles with newly formed bone when the matrix was saturated with recombinant human platelet-derived growth factor BB.

  14. 77 FR 50702 - Cardiovascular and Renal Drugs Advisory Committee; Cancellation

    Science.gov (United States)

    2012-08-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Cardiovascular and Renal Drugs Advisory Committee scheduled for...

  15. 75 FR 81283 - Oncologic Drugs Advisory Committee; Cancellation

    Science.gov (United States)

    2010-12-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Oncologic Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Oncologic Drugs Advisory Committee scheduled for February 9, 2011, is...

  16. 77 FR 63839 - Oncologic Drugs Advisory Committee; Cancellation

    Science.gov (United States)

    2012-10-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Oncologic Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Oncologic Drugs Advisory Committee Meeting scheduled for November 8, 2012, is...

  17. Identification and Characterization of Plasma Cells in Normal Human Bone Marrow by High-Resolution Flow Cytometry

    NARCIS (Netherlands)

    Terstappen, Leonardus Wendelinus Mathias Marie; Johnsen, Steen; Segers-Nolten, Gezina M.J.; Loken, Michael R.

    1990-01-01

    The low frequency of plasma cells and the lack of specific cell surface markers has been a major obstacle for a detailed characterization of plasma cells in normal human bone marrow. Multiparameter flow cytometry enabled the identification of plasma cells in normal bone marrow aspirates. The plasma

  18. Comparison of naturally occurring and ligature-induced peri-implantitis bone defects in humans and dogs.

    NARCIS (Netherlands)

    Schwarz, F.; Herten, M. van; Sager, M.; Bieling, K.; Sculean, A.; Becker, J.

    2007-01-01

    OBJECTIVES: The aim of the present study was to evaluate and compare naturally occuring and ligature-induced peri-implantitis bone defects in humans and dogs. MATERIAL AND METHODS: Twenty-four partially and fully edentulous patients undergoing peri-implant bone augmentation procedures due to

  19. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures.

    Science.gov (United States)

    Amaral, M; Dias, A G; Gomes, P S; Lopes, M A; Silva, R F; Santos, J D; Fernandes, M H

    2008-10-01

    Nanocrystalline diamond (NCD) has a great potential for prosthetic implants coating. Nevertheless, its biocompatibility still has to be better understood. To do so, we employed several materials characterization techniques (SEM, AFM, micro-Raman spectroscopy) and cell culture assays using MG63 osteoblast-like and human bone marrow cells. Biochemical routines (MTT assays, Lowry's method, ALP activity) supported by SEM and confocal microscopy characterization were carried out. We used silicon nitride (Si3N4) substrates for NCD coatings based on a previous demonstration of the superior adhesion and tribological performance of these NCD coated ceramics. Results demonstrate an improved human osteoblast proliferation and the stimulation of differentiated markers, like ALP activity and matrix mineralization, compared with standard polystyrene tissue culture plates. The nanometric featuring of NCD, associated to its chemical affinity are key points for bone regeneration purposes.

  20. The Plastic Nature of the Human Bone-Periodontal Ligament-Tooth Fibrous Joint

    Science.gov (United States)

    Ho, Sunita P.; Kurylo, Michael P.; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I.; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q. (Jerry); Webb, Samuel; Marshall, Grayson W.; Curtis, Donald; Andrews, Joy C.; Pianetta, Piero

    2014-01-01

    This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano transmission X-ray microscopy (nano-TXM), and micro tomography (Micro XCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8 GPa) compared to lamellar bone (0.8-6 GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30 μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947

  1. Effect of polygonimitin C on bone formation and resorption in human ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of polygonimitin C (PC) on bone formation and resorption in human osteoblast-like MG63 cells. Methods: MG63 cells were treated with PC at doses of 0, 20, 40 or 80 μg/mL for 48 h, with an untreated group as control. The effect of PC on alkaline phosphatase (ALP) activity in MG63 cells ...

  2. Neutrophil Extracellular Traps and Fibrin in Otitis Media: Analysis of Human and Chinchilla Temporal Bones.

    Science.gov (United States)

    Schachern, Patricia A; Kwon, Geeyoun; Briles, David E; Ferrieri, Patricia; Juhn, Steven; Cureoglu, Sebahattin; Paparella, Michael M; Tsuprun, Vladimir

    2017-10-01

    Bacterial resistance in acute otitis can result in bacterial persistence and biofilm formation, triggering chronic and recurrent infections. To investigate the middle ear inflammatory response to bacterial infection in human and chinchilla temporal bones. Six chinchillas underwent intrabullar inoculations with 0.5 mL of 106 colony-forming units (CFUs) of Streptococcus pneumoniae, serotype 2. Two days later, we counted bacteria in middle ear effusions postmortem. One ear from each chinchilla was processed in paraffin and sectioned at 5 µm. The opposite ear was embedded in epoxy resin, sectioned at a thickness of 1 µm, and stained with toluidine blue. In addition, we examined human temporal bones from 2 deceased donors with clinical histories of otitis media (1 with acute onset otitis media, 1 with recurrent infection). Temporal bones had been previously removed at autopsy, processed, embedded in celloidin, and cut at a thickness of 20 µm. Sections of temporal bones from both chinchillas and humans were stained with hematoxylin-eosin and immunolabeled with antifibrin and antihistone H4 antibodies. Histopatological and imminohistochemical changes owing to otitis media. Bacterial counts in chinchilla middle ear effusions 2 days after inoculation were approximately 2 logs above initial inoculum counts. Both human and chinchilla middle ear effusions contained bacteria embedded in a fibrous matrix. Some fibers in the matrix showed positive staining with antifibrin antibody, others with antihistone H4 antibody. In acute and recurrent otitis media, fibrin and neutrophil extracellular traps (NETs) are part of the host inflammatory response to bacterial infection. In the early stages of otitis media the host defense system uses fibrin to entrap bacteria, and NETs function to eliminate bacteria. In chronic otitis media, fibrin and NETs appear to persist.

  3. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells

    OpenAIRE

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 week...

  4. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    OpenAIRE

    Ding Ding; Youtao Xie; Kai Li; Liping Huang; Xuebin Zheng

    2018-01-01

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were co...

  5. Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling?

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Søe, Kent; Andersen, Thomas Levin

    2014-01-01

    matrix molecules, collagen's potency was superior and only equaled by fibronectin. Next, the majority of the newly recruited osteoblast lineage cells positioned immediately next to the osteoclasts exhibit uPARAP/Endo180, an endocytic collagen receptor reported to be involved in collagen internalization......Osteoblast recruitment during bone remodeling is obligatory to re-construct the bone resorbed by the osteoclast. This recruitment is believed to be triggered by osteoclast products and is therefore likely to start early during the remodeling cycle. Several osteoclast products with osteoblast...... recruitment potential are already known. Here we draw the attention on the osteoblast recruitment potential of the collagen that is freshly demineralized by the osteoclast. Our evidence is based on observations on adult human cancellous bone, combined with in vitro assays. First, freshly eroded surfaces where...

  6. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Instrumental activation and X-ray fluorescent analysis of human bone in health and disease

    International Nuclear Information System (INIS)

    Zaichick, V.Y.

    1994-01-01

    A complex of methods for the in-vitro and in-vivo bone analysis was developed. Among the in-vitro methods are: INAA with reactor and 14 MeV neutrons, IGAA with 25 MeV linear accelerator; XRF with 55 Fe, 109 Cd, 241 Am radionuclide sources. Twenty-five elements could be analyzed by it: N, F, Na, Mg, P, Cl, K, Ca, Sc, Cr, Mn, Fe, Co, Zn, Se, Br, Rb, Sr, Ag, Sb, Cs, Ba, Tb, Hg, and Pb. Among the in-vivo methods are: INAA of band, foot and spine Ca and limb bone tumour Ca, Na and Cl with 238 Pu-Be neutron sources; IGAA of N and P in limb bone tumours; XRF of tooth Ca, Zn, Sr and Pb with 109 Cs radionuclide sources. The methods developed were used both in clinical and experimental medicine for studying the healthy human and animal bone with different diseases and environmental influence. (author) 28 refs.; 7 tabs

  8. Comparative kinetic analysis of89 Sr,60 Co and65 Zn Uptake by human bone powder

    International Nuclear Information System (INIS)

    Abdel-Fatah, A.T.A.; Essa, M.W.A.; Mohamed, S.A.; Molokhia, M.K.

    1990-01-01

    Human bone powder samples were prepared from recent femurs. The Bone particles range between 30 and 40 MU in diameter. One portion of this powder was prepared fat-free (FFB), the second portion as protein-free (PFB) and the last portion was left as raw bone powder-(RB). The sequence of uptake of 89 Sr by these types of bone powder is : FFB > RB > PFB, while that of 60 Co and 65 Zn is: PFB > FFB > RB. Kinetic analysis of the uptake curves of the 3 isotopes indicated that these processes proceed in 3 distinct steps; very fast initial, moderate intermediate and slow last step. The obtained rates of uptake indicated that : (1) the uptake by PEB is faster in its third step than the other types, (2) the most predominant step in case of 89 Sr and 60 Co is the third step (ion exchange step) while in case of 65 Zn it is the first step (physical adsorption), (3) defatenisation or deproteinisation, in general, inhances the uptake process

  9. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    Science.gov (United States)

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  10. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    International Nuclear Information System (INIS)

    Andrade, E.; Solís, C.; Canto, C.E.; Lucio, O.G. de; Chavez, E.; Rocha, M.F.; Villanueva, O.; Torreblanca, C.A.

    2014-01-01

    Analysis of ancient human bones found in “El Cóporo”, an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14 C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14 C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone’s black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment

  11. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Solís, C.; Canto, C.E.; Lucio, O.G. de [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Chavez, E. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, 07738 México D.F. (Mexico); Rocha, M.F.; Villanueva, O.; Torreblanca, C.A. [Centro INAH Zacatecas, Miguel Auza No. 205, Col. Centro, Zacatecas/Zacatecas CP 98000 (Mexico)

    2014-08-01

    Analysis of ancient human bones found in “El Cóporo”, an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: {sup 14}C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The {sup 14}C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone’s black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  12. Changes of the proliferation kinetics of human bone marrow in vivo through hydroxyurea

    International Nuclear Information System (INIS)

    Ertl, E.

    1982-01-01

    A 10-hour oral continuous infusion with hydroxyurea (HU) at a non-toxic concentration was performed in 20 malignoma patients with undisturbed bone marrow. Bone marrow taken before, during and after HU-administration was examined for 3H-TdR incorporation by means of autoradiography and liquid scintimetry, for cell phase distribution by means of flow cytophotometry, morphologically and by means of CFUc. 3H-TdR incorporation into bone marrow cells dropped to 16% of the initial value under HU and rose to 156% 10 h after HU-effect terminated. Cytophotometry did not furnish any proof of a decrease of S-phase cells or increase of cells in G 1 -to-S-transition during HU. S-cells rise to 129% of the initial value 10 h after having fallen below minimum inhibition concentration. Under HU, there is an equal number of cells in S which incorporate much less 3H-thymidine; after HU more S-cells incorporate more 3H-thymidine than before HU. During HU action, DNA synthesis activity is reduced to 17% and reaches the initial value with 105% afterwards. In human bone marrow, hydroxyurea in non-toxic concentration causes a temporary DNA synthesis inhibition in terms of activity reduction and partial arrest in S. A stop-and-go of the cell cycle effected by HU does not occur; the effect is rather a slow-down of DNA synthesis. (orig./MG) [de

  13. Effect of boron on osteogenic differentiation of human bone marrow stromal cells.

    Science.gov (United States)

    Ying, Xiaozhou; Cheng, Shaowen; Wang, Wei; Lin, Zhongqin; Chen, Qingyu; Zhang, Wei; Kou, Dongquan; Shen, Yue; Cheng, Xiaojie; Rompis, Ferdinand An; Peng, Lei; Zhu Lu, Chuan

    2011-12-01

    Bone marrow stromal cells (BMSCs) have been well established as an ideal source of cell-based therapy for bone tissue engineering applications. Boron (B) is a notable trace element in humans; so far, the effects of boron on the osteogenic differentiation of BMSCs have not been reported. The aim of this study was to evaluate the effects of boron (0, 1, 10,100, and 1,000 ng/ml) on osteogenic differentiation of human BMSCs. In this study, BMSCs proliferation was analyzed by cell counting kit-8 (CCK8) assay, and cell osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity assay, Von Kossa staining, and real-time PCR. The results indicated that the proliferation of BMSCs was no different from the control group when added with B at the concentration of 1, 10, and 100 ng/ml respectively (P > 0.05); in contrast, 1,000 ng/ml B inhibited the proliferation of BMSCs at days 4, 7, and 14 (P < 0.05). By ALP staining, we discovered that BMSCs treated with 10 and 100 ng/ml B presented a higher ALP activity compared with control (P < 0.05). By real-time PCR, we detected the messenger RNA expression of ALP, osteocalcin, collagen type I, and bone morphogenetic proteins 7 were also increased in 10 and 100 ng/ml B treatment groups (P < 0.05). The calcium depositions were increased in 1 and 10 ng/ml B treatment groups (P < 0.05). Taken all together, it was the first time to report that B could increase osteogenic effect by stimulating osteogenic differentiation-related marker gene synthesis during the proliferation and differentiation phase in human BMSCs and could be a promising approach for enhancing osteogenic capacity of cell-based construction in bone tissue engineering.

  14. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    International Nuclear Information System (INIS)

    Tsuno, Hiroaki; Yoshida, Toshiko; Nogami, Makiko; Koike, Chika; Okabe, Motonori; Noto, Zenko; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2012-01-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAMα cells and induced to osteogenic status—their in vivo osteogenesis was subsequently investigated in rats. It was found that HAMα cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAMα cells. The expression of osteocalcin mRNA was increased in HAMα cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAMα cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: ► Human amniotic mesenchymal cells include cells (HAMα cells) that have the properties of MSCs. ► HAMα cells have excellent osteogenic differentiation potential. ► Osteogenic differentiation ability of HAMα was amplified by calcium phosphate scaffolds. ► HAMα cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  15. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  16. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types.

    Science.gov (United States)

    Loh, Kyle M; Chen, Angela; Koh, Pang Wei; Deng, Tianda Z; Sinha, Rahul; Tsai, Jonathan M; Barkal, Amira A; Shen, Kimberle Y; Jain, Rajan; Morganti, Rachel M; Shyh-Chang, Ng; Fernhoff, Nathaniel B; George, Benson M; Wernig, Gerlinde; Salomon, Rachel E A; Chen, Zhenghao; Vogel, Hannes; Epstein, Jonathan A; Kundaje, Anshul; Talbot, William S; Beachy, Philip A; Ang, Lay Teng; Weissman, Irving L

    2016-07-14

    Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws.

    Science.gov (United States)

    Götz, Werner; Gerber, Thomas; Michel, Barbara; Lossdörfer, Stefan; Henkel, Kai-Olaf; Heinemann, Friedhelm

    2008-10-01

    Bone substitute biomaterials may be osteogenic, osteoconductive or osteoinductive. To test for these probable characteristics in a new nanoporous grafting material consisting of nanocrystalline hydroxyapatite embedded in a porous silica gel matrix (NanoBone(s)), applied in humans, we studied biopsies from 12 patients before dental implantation following various orofacial augmentation techniques with healing times of between 3.5 and 12 months. Sections from decalcified specimens were investigated using histology, histochemistry [periodic acid Schiff, alcian blue staining and tartrate-resistant acid phosphatase (TRAP)] and immunohistochemistry, with markers for osteogenesis, bone remodelling, resorption and vessel walls (alkaline phosphatase, bone morphogenetic protein-2, collagen type I, ED1, osteocalcin, osteopontin, runx2 and Von-Willebrand factor). Histologically, four specific stages of graft transformation into lamellar bone could be characterized. During early stages of healing, bone matrix proteins were absorbed by NanoBone(s) granules, forming a proteinaceous matrix, which was invaded by small vessels and cells. We assume that the deposition of these molecules promotes early osteogenesis in and around NanoBone(s) and supports the concomitant degradation probably by osteoclast-like cells. TRAP-positive osteoclast-like cells were localized directly on the granular surfaces. Runx2-immunoreactive pre-osteoblasts, which are probably involved in direct osteogenesis forming woven bone that is later transformed into lamellar bone, were attracted. Graft resorption and bone apposition around the graft granules appear concomitantly. We postulate that NanoBone(s) has osteoconductive and biomimetic properties and is integrated into the host's physiological bone turnover at a very early stage.

  18. CERN Library - Scientific journal cancellations

    CERN Multimedia

    2004-01-01

    Due to the constant increase of the subscription costs of scientific journals and the current budget restrictions, the Scientific Information Policy Board has mandated the Working Group for Acquisitions (WGA) together with the Library to propose a list of titles to be cancelled at the end of 2004. As a first step, the WGA has identified the scientific journals listed at the web site below as candidates for cancellation. The choice has been guided by the personal experience of the WGA members, consultation of other expert CERN staff for highly specialized titles, and by criteria such as subscription price, impact factor, and - where available - access statistics for electronic journals. The list also accounts for the fact that many titles are subscribed to in 'packages' such that a cancellation of individual titles would not lead to any cost savings. We invite users to carefully check the list on the Library homepage (http://library.cern.ch/). If you find any title that you consider critically important for y...

  19. Identification of transcriptional macromolecular associations in human bone using browser based in silico analysis in a giant correlation matrix.

    Science.gov (United States)

    Reppe, Sjur; Sachse, Daniel; Olstad, Ole K; Gautvik, Vigdis T; Sanderson, Paul; Datta, Harish K; Berg, Jens P; Gautvik, Kaare M

    2013-03-01

    Intracellular signaling is critically dependent on gene regulatory networks comprising physical molecular interactions. Presently, there is a lack of comprehensive databases for most human tissue types to verify such macromolecular interactions. We present a user friendly browser which helps to identify functional macromolecular interactions in human bone as significant correlations at the transcriptional level. The molecular skeletal phenotype has been characterized by transcriptome analysis of iliac crest bone biopsies from 84 postmenopausal women through quantifications of ~23,000 mRNA species. When the signal levels were inter-correlated, an array containing >260 million correlations was generated, thus recognizing the human bone interactome at the RNA level. The matrix correlation and p values were made easily accessible by a freely available online browser. We show that significant correlations within the giant matrix are reproduced in a replica set of 13 male vertebral biopsies. The identified correlations differ somewhat from transcriptional interactions identified in cell culture experiments and transgenic mice, thus demonstrating that care should be taken in extrapolating such results to the in vivo situation in human bone. The current giant matrix and web browser are a valuable tool for easy access to the human bone transcriptome and molecular interactions represented as significant correlations at the RNA-level. The browser and matrix should be a valuable hypothesis generating tool for identification of regulatory mechanisms and serve as a library of transcript relationships in human bone, a relatively inaccessible tissue. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Radiographic and Histologic Evaluation of a Bone Void that Formed After Recombinant Human Bone Morphogenetic Protein-2-Mediated Sinus Graft Augmentation: A Case Report.

    Science.gov (United States)

    Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.

  1. A high concentration of recombinant human bone morphogenetic protein-2 induces low-efficacy bone regeneration in sinus augmentation: a histomorphometric analysis in rabbits.

    Science.gov (United States)

    Hong, Ji-Youn; Kim, Min-Soo; Lim, Hyun-Chang; Lee, Jung-Seok; Choi, Seong-Ho; Jung, Ui-Won

    2016-12-01

    The aim of the study was to elucidate the efficacy of bone regeneration at the early stage of healing in rabbit sinuses grafted with a biphasic calcium phosphate (BCP) carrier soaked in a high concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2). Both maxillary sinuses of eight male rabbits were used. The sinus on one side (assigned randomly) was grafted with BCP loaded with rhBMP-2 (1.5 mg/ml; test group) using a soaking method, while the other was grafted with saline-soaked BCP (control group). After a 2-week healing period, the sinuses were analyzed by micro-computed tomography and histomorphometry. The total augmented area and soft tissue space were significantly larger in the test group than in the control group, whereas the opposite was true for the area of residual material and newly formed bone. Most of the new bone in the test group was localized to the Schneiderian membrane (SM), while very little bone formation was observed in the window and center regions of the sinus. New bone was distributed evenly in the control group sinuses. Within the limitations of this study, it appeared that application of a high concentration of rhBMP-2 soaked onto a BCP carrier inhibited bone regeneration from the pristine bone and increased soft tissue swelling and inflammatory response at the early healing stage of sinus augmentation, although osteoinductive potential was found along the SM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Antinociceptive effect of intrathecal microencapsulated human pheochromocytoma cell in a rat model of bone cancer pain.

    Science.gov (United States)

    Li, Xiao; Li, Guoqi; Wu, Shaoling; Zhang, Baiyu; Wan, Qing; Yu, Ding; Zhou, Ruijun; Ma, Chao

    2014-07-08

    Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l) lysine-alginate (APA) microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  3. Antinociceptive Effect of Intrathecal Microencapsulated Human Pheochromocytoma Cell in a Rat Model of Bone Cancer Pain

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2014-07-01

    Full Text Available Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l lysine-alginate (APA microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  4. Telomerase reverse transcriptase mediated immortalization of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Yong Teng

    2014-02-01

    Full Text Available Primary human bone marrow stromal cells (hMSCs were transfected with human telomerase reverse transcriptase (hTERT gene with lipofection method. The hTERT transfected hMSCs of passage 100 underwent chondrogenesis induction with dexamethasone, transforming the growth factor β and vitamin C, osteogenesis induction with dexamethasone, β glycerophosphoric acid and vitamin C, and cardiomyocyte induction with 5-azacytidine. After 7, 14, 21 and 28 days of induction, immunocytochemistry was performed to detect the expressions of type I and II collagen and osteocalcin, and alizarin red staining was performed to detect the bone nodule formation in osteogenesis induction. Immunocytochemistry was carried out to detect the striated muscle actin expression in cardiomyocytes. The hMSCs undergoing successful transfection were positive for the hTERT. The hTERT transfected cells were grown in vitro successfully and passaged for 136 generations. Results showed that these cells could be induced to differentiate into chondrocytes, bone and myocardial cells. Introduction of exogenous hTERT into hMSCs could achieve immortalized hMSCs with the potential of multi-directional differentiation. Thus, these cells could be applied as seed cells in tissue engineering.

  5. Plutonium and uranium in human bones from areas surrounding the Semipalatinsk nuclear test site.

    Science.gov (United States)

    Yamamoto, Masayoshi; Hoshi, Masaharu; Sakaguchi, Aya; Shinohara, Kunihiko; Kurihara, Osamu; Apsalikov, Kazbek N; Gusev, Boris I

    2006-02-01

    To evaluate the present levels of 239,240Pu and U in residents living near the Semipalatinsk nuclear test site, more than 70 bone samples were obtained at autopsy. The subjects ranged in age from 30 to 86 years (mean 59.3+/-12.9). Most of the samples consisted of victims who died of various diseases. Plutonium and U were radiochemically separated and determined by alpha-ray spectrometry. The mean concentrations of 239,240Pu and 238U observed were 0.050+/-0.041 mBq/g-ash (vertebrae 71, long-bones 18) and 0.28+/-0.13 mBq/g-ash (22.8+/-10.6 microg U/kg-ash) (vertebrae 58, long bones 16), respectively. The present 239,240Pu levels were within the range found for human bone samples from other countries due solely to global fallout in the early 1980s. The average U concentration was close to the estimate (mean 22.5 microg U/kg-ash) for the UK, and about 10 times higher than those estimated for residents in New York City and Japan. By assuming that the average concentration of 239,240Pu in bone samples is the value at 45 years after instantaneous inhalation in 1955, the initial total intake and the effective dose for 45 years were estimated as 10 Bq and 0.2 mSv, respectively. The annual intake of total U (234,235,238U) and its effective dose for 60 years were estimated as 30 Bq for adult and 0.1 mSv, respectively, for chronic ingestion.

  6. The evaluation of lyophilized polymer matrices for administering recombinant human bone morphogenetic protein-2.

    Science.gov (United States)

    Duggirala, S S; Rodgers, J B; DeLuca, P P

    1996-07-01

    Novel unitary devices, prepared by lyophilization of viscous solutions of sodium carboxymethylcellulose (CMC) and methylcellulose (MC), were evaluated as sustained-release delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). In vitro characterization of the unitary devices, which contained rhBMP-2-loaded poly (d,l lactide-co-glycolide) (PLGA) bioerodible particles (BEPs), was conducted over a 2-month period. Determinations included buffer uptake, mass and molecular weight loss and rhBMP-2 release from the unitary devices. CMC devices imbibed approximately 16 times their weight of buffer, while with MC, equilibrium uptake was approximately 6 times the dry weight of the devices. Overall mass loss percentages were approximately 55 and 35%, respectively, for CMC and MC devices. rhBMP-2 release from the devices was essentially a triphasic process: an initial phase during which "free" protein (rhBMP-2 present on the surface and within the pores of the PLGA BEPs) was released, a lag period during which no release was discerned, and then release of "bound" rhBMP-2 (protein adsorbed to the BEPs). The release of bound protein correlated with the mass loss of the polymer which began after 3 weeks. Release from the unitary devices was lower than that from the BEPs alone, due to a retardation effect of the gelled CMC/MC polymers. In rabbits in which full-thickness cranial bone defects were created, the implants were well tolerated and induced significant new bone growth during an 8-week evaluation period. The CMC devices appear to have induced bone earlier (at 2 weeks), but this did not affect eventual 8-week results. CMC devices without rhBMP-2 appeared to provide some bone conduction, in contrast to the blank MC devices.

  7. Histologic and histomorphometric evaluation of bone regeneration using nanocrystalline hydroxyapatite and human freeze-dried bone graft : An experimental study in rabbit.

    Science.gov (United States)

    Sadeghi, Rokhsareh; Najafi, Mohammad; Semyari, Hassan; Mashhadiabbas, Fatemeh

    2017-03-01

    Bone regeneration is an important concern in periodontal treatment and implant dentistry. Different biomaterials and surgical techniques have been used for this purpose. The aim of the present study was to compare the effect of nanocrystalline hydroxyapatite and human freeze-dried bone graft (FDBG) in regeneration of rabbit calvarium bony defects by histologic and histomorphometric evaluation. In this experimental study, three similar defects, measuring 8 mm in diameter, were created in the calvaria of 16 white New Zealand rabbits. Two defects were filled with FDBG and nanocrystalline hydroxyapatite silica gel, while the other one remained unfilled to be considered as control. All the defects were covered with collagen membranes. During the healing period, two animals perished; so 14 rabbits were divided into two groups: half of them were euthanized after 6 weeks of healing and the other half after 12 weeks. The specimens were subjected to histologic and histomorphometric examinations for assessment of the following variables: percentage of bone formation and residual graft material, inflammation scores, patterns of bone formation and type of newly formed bone. The percentages of new bone formation after 6 weeks were 14.22 ± 7.85, 21.57 ± 6.91, and 20.54 ± 10.07% in FDBG, NanoBone, and control defects. These values were 27.54 ± 20.19, 23.86 ± 6.27, and 26.48 ± 14.18% in 12-week specimens, respectively. No significant differences were found in the amount of bone formation between the groups. With regard to inflammation, the control and NanoBone groups showed significantly less inflammation compared to FDBG at the 6-week healing phase (P = 0.04); this difference was not significant in the 12-week specimens. Based on the results of this experimental study, both NanoBone and FDBG exhibited a similar effect on bone formation.

  8. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    Science.gov (United States)

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  9. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries

    Directory of Open Access Journals (Sweden)

    Irmgard Tegeder

    2016-12-01

    Full Text Available Progranulin deficiency in humans is associated with neurodegeneration. Its mechanisms are not yet fully understood. We performed a Yeast-2-Hybrid screen using human full-length progranulin as bait to assess the interactions of progranulin. Progranulin was screened against human fetal brain and human bone marrow libraries using the standard Matchmaker technology (Clontech. This article contains the full Y2H data table, including blast results and sequences, a sorted table according to selection criteria for likely positive, putatively positive, likely false and false preys, and tables showing the gene ontology terms associated with the likely and putative preys of the brain and bone marrow libraries. The interactions with autophagy proteins were confirmed and functionally analyzed in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016 [1].

  10. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries.

    Science.gov (United States)

    Tegeder, Irmgard

    2016-12-01

    Progranulin deficiency in humans is associated with neurodegeneration. Its mechanisms are not yet fully understood. We performed a Yeast-2-Hybrid screen using human full-length progranulin as bait to assess the interactions of progranulin. Progranulin was screened against human fetal brain and human bone marrow libraries using the standard Matchmaker technology (Clontech). This article contains the full Y2H data table, including blast results and sequences, a sorted table according to selection criteria for likely positive, putatively positive, likely false and false preys, and tables showing the gene ontology terms associated with the likely and putative preys of the brain and bone marrow libraries. The interactions with autophagy proteins were confirmed and functionally analyzed in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].

  11. Interleukin-3 Does Not Affect the Differentiation of Mast Cells Derived from Human Bone Marrow Progenitors

    Science.gov (United States)

    Shimizu, Yuji; Matsumoto, Kenji; Okayama, Yoshimichi; Kentaro, Sakai; Maeno, Toshitaka; Suga, Tatsuo; Miura, Toru; Takai, Shinji; Kurabayashi, Masahiko; Saito, Hirohisa

    2008-01-01

    Although IL-3 is commonly used for culture of human progenitor-derived mast cells together with Stem cell factor (SCF) and IL-6, the effect of IL-3 on human mast cell differentiation has not been well elucidated. Human bone marrow CD34+ progenitors were cultured for up to 12 weeks in the presence of rhSCF and rhIL-6 either with rhIL-3 (IL-3 (+)) or without rhIL-3 (IL-3 (−)) for the initial 1-week of culture. Total cell number increased at 2 weeks in IL-3 (+), as compared to IL-3 (−), but changes in the appearance of mast cells were delayed. When IL-3 was present for the initial 1-week culture, granules looked more mature with IL-3 than without IL-3. However, tryptase and chymase contents, and surface antigen expression (CD18, CD51, CD54, and CD117) were not altered by IL-3. Surface expression and mRNA level of FcεRIα and histamine release by crosslinking of FcεRIα did not differ from one preparation to the next. GeneChip analysis revealed that no significant differences were observed between IL-3 (+) and IL-3 (−) cells either when inactivated or activated by aggregation of FcεRIα. These findings indicate that initial incubation of human bone marrow CD34+ progenitors with IL-3 does not affect the differentiation of mast cells. PMID:18214796

  12. Theobromine Upregulates Osteogenesis by Human Mesenchymal Stem Cells In Vitro and Accelerates Bone Development in Rats.

    Science.gov (United States)

    Clough, Bret H; Ylostalo, Joni; Browder, Elizabeth; McNeill, Eoin P; Bartosh, Thomas J; Rawls, H Ralph; Nakamoto, Tetsuo; Gregory, Carl A

    2017-03-01

    Theobromine (THB) is one of the major xanthine-like alkaloids found in cacao plant and a variety of other foodstuffs such as tea leaves, guarana and cola nuts. Historically, THB and its derivatives have been utilized to treat cardiac and circulatory disorders, drug-induced nephrotoxicity, proteinuria and as an immune-modulator. Our previous work demonstrated that THB has the capacity to improve the formation of hydroxyl-apatite during tooth development, suggesting that it may also enhance skeletal development. With its excellent safety profile and resistance to pharmacokinetic elimination, we reasoned that it might be an excellent natural osteoanabolic supplement during pregnancy, lactation and early postnatal growth. To determine whether THB had an effect on human osteoprogenitors, we subjected primary human bone marrow mesenchymal stem cells (hMSCs) to osteogenic assays after exposure to THB in vitro and observed that THB exposure increased the rate of osteogenesis and mineralization by hMSCs. Moreover, THB exposure resulted in a list of upregulated mRNA transcripts that best matched an osteogenic tissue expression signature as compared to other tissue expression signatures archived in several databases. To determine whether oral administration of THB resulted in improved skeletal growth, we provided pregnant rats with chow supplemented with THB during pregnancy and lactation. After weaning, offspring received THB continuously until postnatal day 50 (approximately 10 mg kg -1 day -1 ). Administration of THB resulted in neonates with larger bones, and 50-day-old offspring accumulated greater body mass, longer and thicker femora and superior tibial trabecular parameters. The accelerated growth did not adversely affect the strength and resilience of the bones. These results indicate that THB increases the osteogenic potential of bone marrow osteoprogenitors, and dietary supplementation of a safe dose of THB to expectant mothers and during the postnatal period

  13. Monitoring Dynamic Interactions between Breast Cancer Cells and Human Bone Tissue in a Co-Culture Model

    Science.gov (United States)

    Contag, Christopher H.; Lie, Wen-Rong; Bammer, Marie C.; Hardy, Jonathan W.; Schmidt, Tobi L.; Maloney, William J.; King, Bonnie L.

    2015-01-01

    Purpose Bone is a preferential site of breast cancer metastasis and models are needed to study this process at the level of the microenvironment. We have used bioluminescence imaging (BLI) and multiplex biomarker immunoassays to monitor dynamic breast cancer cell behaviors in co-culture with human bone tissue. Procedures Femur tissue fragments harvested from hip replacement surgeries were co-cultured with luciferase-positive MDA-MB-231-fLuc cells. BLI was performed to quantify breast cell division and track migration relative to bone tissue. Breast cell colonization of bone tissues was assessed with immunohistochemistry. Biomarkers in co-culture supernatants were profiled with MILLIPLEX® immunoassays. Results BLI demonstrated increased MDA-MB-231-fLuc proliferation (pbones, and revealed breast cell migration toward bone. Immunohistochemistry illustrated MDA-MB-231-fLuc colonization of bone, and MILLIPLEX® profiles of culture supernatants suggested breast/bone crosstalk. Conclusions Breast cell behaviors that facilitate metastasis occur reproducibly in human bone tissue co-cultures and can be monitored and quantified using BLI and multiplex immunoassays. PMID:24008275

  14. Integrin expression by human osteoblasts cultured on degradable polymeric materials applicable for tissue engineered bone.

    Science.gov (United States)

    El-Amin, Saadiq F; Attawia, Mohamed; Lu, Helen H; Shah, Asist K; Chang, Richard; Hickok, Noreen J; Tuan, Rocky S; Laurencin, Cato T

    2002-01-01

    The use of biodegradable polymers in the field of orthopaedic surgery has gained increased popularity, as surgical pins and screws, and as potential biological scaffolds for repairing cartilage and bone defects. One such group of polymers that has gained considerable attention are the polyesters, poly(lactide-co-glycolide) (PLAGA) and polylactic acid (PLA), because of their minimal tissue inflammatory response, favorable biocompatibility and degradation characteristics. The objective of this study was to evaluate human osteoblastic cell adherence and growth on PLAGA and PLA scaffolds by examining integrin receptor (alpha2, alpha3, alpha4, alpha5, alpha6 and beta1) expression. Primary human osteoblastic cells isolated from trabecular bone adhered efficiently to both PLAGA and PLA, with the rate of adherence on PLAGA comparable to that of control tissue culture polystyrene (TCPS), and significantly higher than on PLA polymers at 3, 6 and 12 h. Human osteoblastic phenotypic expression, alkaline phosphatase (ALP) activity was positive on both degradable matrices, whereas osteocalcin levels were significantly higher on cells grown on PLAGA than on PLA composites. Interestingly, the integrin subunits, alpha2, alpha3, alpha4, alpha5, alpha6 and beta1 were all expressed at higher levels by osteoblasts cultured on PLAGA than those on PLA as analyzed by westerns blots and by flow cytometry. Among the integrins, alpha2, beta5 and beta1 showed the greatest difference in levels between the two surfaces. Thus, both PLA and PLAGA support osteoblastic adhesion and its accompanying engagement of integrin receptor and expression of osteocalcin and ALP. However PLAGA consistently appeared to be a better substrate for osteoblastic cells based on these parameters. This study is one of the first to investigate the ability of primary human osteoblastic cells isolated from trabecular bone to adhere to the biodegradable polymers PLAGA and PLA, and to examine the expression of their key

  15. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review.

    Science.gov (United States)

    Chavda, Suraj; Levin, Liran

    2018-02-01

    Alveolar ridge augmentation can be completed with various types of bone augmentation materials (autogenous, allograft, xenograft, and alloplast). Currently, autogenous bone is labeled as the "gold standard" because of faster healing times and integration between native and foreign bone. No systematic review has currently determined whether there is a difference in implant success between various bone augmentation materials. The purpose of this article was to systematically review comparative human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials (autogenous, allograft, xenograft, and alloplast). A MEDLINE search was conducted under the 3 search concepts of bone augmentation, dental implants, and alveolar ridge augmentation. Studies pertaining to socket grafts or sinus lifts were excluded. Case reports, small case series, and review papers were excluded. A bias assessment tool was applied to the final articles. Overall, 219 articles resulted from the initial search, and 9 articles were included for final analysis. There were no discernible differences in implant success between bone augmentation materials. Generally, patients preferred nonautogenous bone sources as there were fewer hospital days, less pain, and better recovery time. Two articles had industrial support; however, conclusions of whether that support influenced the outcomes could not be determined. Future comparative studies should compare nonautogenous bone sources and have longer follow-up times.

  16. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    Science.gov (United States)

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study

    DEFF Research Database (Denmark)

    Ojanen, X.; Tanska, P.; Malo, M. K.H.

    2017-01-01

    Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were charact......). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone....

  18. Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration.

    Directory of Open Access Journals (Sweden)

    Junjie Guan

    Full Text Available Bone tissue engineering requires highly proliferative stem cells that are easy to isolate. Human urine stem cells (USCs are abundant and can be easily harvested without using an invasive procedure. In addition, in our previous studies, USCs have been proved to be able to differentiate into osteoblasts, chondrocytes, and adipocytes. Therefore, USCs may have great potential and advantages to be applied as a cell source for tissue engineering. However, there are no published studies that describe the interactions between USCs and biomaterials and applications of USCs for bone tissue engineering. Therefore, the objective of the present study was to evaluate the interactions between USCs with a typical bone tissue engineering scaffold, beta-Tricalcium Phosphate (β-TCP, and to determine whether the USCs seeded onto β-TCP scaffold can promote bone regeneration in a segmental femoral defect of rats. Primary USCs were isolated from urine and seeded on β-TCP scaffolds. Results showed that USCs remained viable and proliferated within β-TCP. The osteogenic differentiation of USCs within the scaffolds was demonstrated by increased alkaline phosphatase activity and calcium content. Furthermore, β-TCP with adherent USCs (USCs/β-TCP were implanted in a 6-mm critical size femoral defect of rats for 12 weeks. Bone regeneration was determined using X-ray, micro-CT, and histologic analyses. Results further demonstrated that USCs in the scaffolds could enhance new bone formation, which spanned bone defects in 5 out of 11 rats while β-TCP scaffold alone induced modest bone formation. The current study indicated that the USCs can be used as a cell source for bone tissue engineering as they are compatible with bone tissue engineering scaffolds and can stimulate the regeneration of bone in a critical size bone defect.

  19. Depth measurements of drilled holes in bone by laser triangulation for the field of oral implantology

    Science.gov (United States)

    Quest, D.; Gayer, C.; Hering, P.

    2012-01-01

    Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.

  20. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation....... We also assessed bone formation by DPCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Results: We found that DPCs are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. Implantation of DPCs resulted...... remodeling in vivo, and therefore provide a promising new tool for regenerative dentistry, for example mineralized tissue engineering to restore bone defects in relation to periodontitis, periimplantatis and orofacial surgery. Experiments in progress have proven that DPCSs are also useful for assessing...

  1. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density.

    Science.gov (United States)

    Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew; Nardo, Lorenzo; Facchetti, Luca; Pasco, Courtney; Zhang, Chiyuan A; Han, Misung; Parrott, Amanda Hutton; Tien, Phyllis; Krug, Roland

    2018-02-01

    There is evidence that human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are independent risk factors for osteoporosis and fracture which is not solely explained by changes in bone mineral density. Thus, we hypothesized that the assessment of trabecular microstructure might play an important role for bone quality in this population and might explain the increased fracture risk. In this study, we have assessed bone microstructure in the proximal femur using high-resolution magnetic resonance imaging (MRI) as well as in the extremities using high resolution peripheral quantitative computed tomography (HR-pQCT) in HIV-infected men and healthy controls and compared these findings to those based on areal bone mineral density (aBMD) derived from dual X-ray absorptiometry (DXA) which is the standard clinical parameter for the diagnosis of osteoporosis. Eight HIV-infected men and 11 healthy age-matched controls were recruited and informed consent was obtained before each scan. High-resolution MRI of the proximal femur was performed using fully balanced steady state free precession (bSSFP) on a 3T system. Three volumes of interest at corresponding anatomic locations across all subjects were defined based on registrations of a common template. Four MR-based trabecular microstructural parameters were analyzed at each region: fuzzy bone volume fraction (f-BVF), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp). In addition, the distal radius and distal tibia were imaged with HR-pQCT. Four HR-pQCT-based microstructural parameters were analyzed: trabecular bone volume fraction (BV/TV), Tb.N, Tb.Th, and Tb.Sp. Total hip and spine aBMD were determined from DXA. Microstructural bone parameters derived from MRI at the proximal femur and from HR-pQCT at the distal tibia showed significantly lower bone quality in HIV-infected patients compared to healthy controls. In contrast, DXA aBMD data showed no significant differences between HIV

  2. NOTE: A preliminary study for non-invasive quantification of manganese in human hand bones

    Science.gov (United States)

    Aslam; Pejović-Milić, A.; Chettle, D. R.; McNeill, F. E.; Pysklywec, M. W.; Oudyk, J.

    2008-10-01

    Manganese (Mn) is a nutrient essential for regulating neurological and skeletal functions in the human body, but it is also toxic when humans are excessively exposed to Mn. Blood (or serum/plasma) and other body fluids reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive measurement of Mn stored in bone, using in vivo neutron activation analysis. Following feasibility studies, a first pilot study, using neutron activation analysis to measure Mn in the bones of the hand of ten healthy male human subjects, was conducted with the approval of the concerned research ethics boards. The participants of this study had no known history of exposure to Mn. Two volunteers were excluded from this study due to technical problems with their measurements. The inverse variance weighted mean value of Mn/Ca for the participants of this study is 0.12 ± 0.68 µg Mn/g Ca which is comparable within uncertainties with the estimated range of 0.16 0.78 µg Mn/g Ca and mean value of 0.63 ± 0.30 µg Mn/g Ca derived from cadaver data. It is recommended to investigate the use of the diagnostic technique for in vivo measurements of workers exposed occupationally to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. The technique needs further development to improve the precision of in vivo measurements in the non-exposed population.

  3. Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Noh, Minsoo

    2012-03-01

    Lineage commitment of human bone marrow mesenchymal stem cells (hBM-MSCs) to adipocytes or osteoblasts has been suggested as a model system to study the relationship between type II diabetes and abnormal bone metabolism. Leptin and IL-17A inhibit adipogenesis whereas they promote osteogenesis in MSCs. Due to pathophysiologic roles of IL-17A in human metabolic diseases and bone metabolism, it was evaluated whether IL-17A-dependent inverse regulation on adipogenesis and osteogenesis was related to endogenous leptin production in hBM-MSCs. In the analysis of adiponectin and leptin secretion profiles of hBM-MSCs in response to various combinations of differentiation inducing factors, it was found that dexamethasone, a common molecule used for both adipogenesis and osteogenesis, increased leptin production in hBM-MSCs. Importantly, the level of leptin production during osteogenesis in hBM-MSCs was higher than that during adipogenesis, implicating a significant leptin production in extra-adipose tissues. IL-17A increased leptin production in hBM-MSCs and also under the condition of osteogenesis. In spite of direct inhibition on adipogenesis, IL-17A up-regulated leptin production in hBM-MSC-derived adipocytes. Anti-leptin antibody treatment partially antagonized the IL-17A dependent inhibition of adipogenesis in hBM-MSCs, suggesting a role of leptin in mediating the inverse regulation of IL-17A on osteogenesis and adipogenesis in hBM-MSCs. Therefore, the IL-17A-induced leptin production may provide a key clue to understand a molecular mechanism on the lineage commitment of hBM-MSCs into adipocytes or osteoblasts. In addition, leptin production in extra-adipose tissues like MSCs and osteoblasts should be considered in future studies on leptin-associated human diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A preliminary study for non-invasive quantification of manganese in human hand bones

    International Nuclear Information System (INIS)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E; Pysklywec, M W; Oudyk, J

    2008-01-01

    Manganese (Mn) is a nutrient essential for regulating neurological and skeletal functions in the human body, but it is also toxic when humans are excessively exposed to Mn. Blood (or serum/plasma) and other body fluids reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive measurement of Mn stored in bone, using in vivo neutron activation analysis. Following feasibility studies, a first pilot study, using neutron activation analysis to measure Mn in the bones of the hand of ten healthy male human subjects, was conducted with the approval of the concerned research ethics boards. The participants of this study had no known history of exposure to Mn. Two volunteers were excluded from this study due to technical problems with their measurements. The inverse variance weighted mean value of Mn/Ca for the participants of this study is 0.12 ± 0.68 μg Mn/g Ca which is comparable within uncertainties with the estimated range of 0.16-0.78 μg Mn/g Ca and mean value of 0.63 ± 0.30 μg Mn/g Ca derived from cadaver data. It is recommended to investigate the use of the diagnostic technique for in vivo measurements of workers exposed occupationally to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. The technique needs further development to improve the precision of in vivo measurements in the non-exposed population. (note)

  5. 3D Synchrotron μ-x-ray fluorescence analysis on human bones

    International Nuclear Information System (INIS)

    Zoeger, N.; Wobrauschek, P.; Streli, C.; Chinea-Cano, E.; Wegrzynek, D.; Roschger, P.; Simon, R.; Staub, S.; Falkenberg, G.

    2004-01-01

    A comparison between μ-x-ray fluorescence tomography and confocal μ-x-ray fluorescence analysis (μ-XRF) will be presented. These techniques were used to study the three dimensional (3D) elemental distribution in human bone. Since bone shows very strong inhomogeneities in structure as well as in distribution of the chemical elements, two dimensional (2D) analysis (element mapping) of the samples always led to difficulties in interpreting the results and assigning elemental distributions to microscopic structures. Tomography scans in fluorescence and absorption mode have been carried out simultaneously at the fluo-topo beamline at ANKA, Karlsruhe, to determine the distribution of the elements over the depth of the previously prepared sample from human patella. A monochromatized x-ray beam (17 keV) from a bending magnet station focused by a compound refractive lens to a beamsize of 10 x 5 μm was used to perform the measurements. The transmitted beam signal measured with the SD detector was utilized to apply a simplified absorption correction to XRF tomographic images. Based on the XRF sinograms the elemental distribution within the object cross-section was reconstructed by means of filtered backprojection. The same section of human bone has been analyzed by confocal μ-XRF at HASYLAB, Hamburg, Germany beamline L. With this experiment two polycapillary half lenses were used; one for focusing the previously monochromatized primary x-ray beam onto the sample and the second half lens in front of a Si(Li) detector to get a small inspected area. By overlapping the two foci of the lenses a very well defined volume of investigation could be defined. Scanning the sample up- and downstream it was possible to determine the elemental distribution in depth of the sample. An absorption correction has been applied to get a corrected fluorescence image of the sample. Both methods showed consistent results and allowed a precise localization of the elements of interest. (author)

  6. Microscopic and radiographic analysis of the effect of particle size of demineralized bovine cancellous bone matrix on the repair of bone defects in femurs of rabbits Análise microscópica e radiográfica do efeito do tamanho das partículas de matriz de osso medular bovino desmineralizado na reparação de defeito ósseo em fêmures de coelhos

    Directory of Open Access Journals (Sweden)

    Everdan Carneiro

    2005-06-01

    Full Text Available The bone tissue has a great regenerative potential, with ability to completely restore its structure and original functions. In some situations, though, bone defects cannot be self-repaired, thus requiring the use of grafts for a correct treatment and good prognosis. This work aimed at microscopically analyzing the effect of the particle size of demineralized bovine cancellous bone matrix in micro and macrogranular forms on the repair of bone defects in femurs of rabbits, with blood clot used as control. At 1, 3 and 6 months after implantation of the materials, the animals were killed and the anatomic specimens were removed. A foreign body-type granulomatous reaction containing macrophages and multinucleated giant cells in contact with the implanted particles was observed. These results suggest a failure in demineralization and/or interruption of the antigenic potential during production of the biomaterial. It is concluded that the size of the particles did not influence the evolution of the repair process of bone defects, acting only as bone-filler substances, and that the material implanted should be improved by quality control during production, since it may represent a good alternative for bone graft.O tecido ósseo possui grande potencial regenerativo com capacidade para restaurar completamente sua estrutura e função originais. Há situações em que os defeitos ósseos não conseguem por si só obter o reparo, casos em que se fazem necessários o uso de enxertos, para um correto tratamento e bom prognóstico. Este experimento teve o propósito de analisar microscopicamente o efeito do tamanho das partículas de matriz de osso medular bovino desmineralizado, nas formas micro e macrogranular, na reparação de defeito ósseo em fêmures de coelhos, tendo como controle o coágulo sanguíneo. Após 1,3 e 6 meses da implantação dos materiais, os animais foram mortos e as peças anatômicas removidas. Uma reação granulomatosa tipo corpo

  7. Study of Cancelled Elective Surgical Operations

    Directory of Open Access Journals (Sweden)

    M Amrollahi

    2004-07-01

    Full Text Available Introduction: Cancellation of an elective operation is a very important problem, which is the cause for different types of stresses for patients and their families and results in loss of significant amount of time, money and hospital resources. Therefore, finding the main causes of operation postponement may help us to understand and reduce these problems. Material & Method: A special questionnaire was designed to gather information about different causes of operation cancellation and filled from October 23rd (Aban 1st till November 21st (Azar 30 th, 2001 (1380 in all of the teaching hospitals of Yazd university. (S.Dr Rahnemoon, Afshar, Rah Ahan, Bahman and Savaneg Sukhteghy Results were statistically evaluated.. Results: 180 of the 31437 scheduled operations had been cancelled (12.52% Majority of cases (33.3% had been cancelled due to the absence of the surgeons. This group ((Surgeons absent was the most common cause for the postponement of operations (36.7%. The secondary cause of cancellations was related to anesthetic team and operating room problems (25%, the patient’s reasons for cancellation was 16.2% and the most minimal cause of cancellation was insufficient hospital revenue (0.5%. The basis of disease or high risk patients for operation were the main causes of dysfunction of the anesthetic team (68.9% and also the first cause of cancellation. The rate of cancellation was the most in the "older than 60 years" age group. (15.4% The cancellation in women was 12.6% and in males 12.5%. Conclusion: Surgeons schedule more patients keeping in mind cancellations which occur regularly due to patients, hospital, anesthesia, and operating room problems. This over scheduling is a problem itself, so preadmission evaluation clinics are recommended to decrease the rate of cancellations thereby saving the socioeconomic resources and decreasing patient’s stress.

  8. Using Comics to Communicate Legal Contract Cancellation

    OpenAIRE

    Marietjie Botes

    2017-01-01

    This article investigates how comics can be used to adequately communicate the correct process of contract cancellation and whether comics can enhance understanding of the legal process. A survey of pre-owned vehicle buyers of various levels of education in Pretoria, South Africa found that when comics are used to communicate contract cancellation, a significant increase in the comprehension of the legal cancellation process occurs. The results may influence how contracting parties may choose...

  9. Characterization of human erythroid burst-promoting activity derived from bone marrow conditioned media

    International Nuclear Information System (INIS)

    Porter, P.N.; Ogawa, M.

    1982-01-01

    Bone marrow conditioned media (BMCM) increases burst number and the incorporation of 59 Fe into heme by bursts when peripheral blood or bone marrow cells are cultured at limiting serum concentrations. Burst-promoting activity (BPA) has now been purified approximately 300-fold from this source by ion-exchange chromatography on DEAE-Sephadex and absorption chromatography on hydroxyapatite agarose gel. Marrow BPA increased burst number and hemoglobin (Hb) synthesis in a dose-dependent manner. A larger increase in Hb synthesis than in burst number was consistently observed, which was probably a consequence of the increase in the number of cells per burst that occurs in the presence of BPA. The role of BPA in culture could be distinguished from erythropoietin (Ep), since no bursts grew in the absence of Ep, whether or not BPA was present, and since it had no effect on the growth of erythroid colonies scored at day 5 of culture. Our purified fraction did not support the growth of CFU-C in culture. Activity was stable at temperatures of 70 degrees C or lower for 10 min; exposure to 80 degrees C resulted in approximately 50% loss of activity. BPA was completely inactivated by treatment at 100 degrees C for 10 min. Thus, human bone marrow cells produce a heat-sensitive factor that specifically promotes the growth of early erythroid progenitors in culture

  10. [Consensus statement: recommendations for the management of metabolic bone disease in human immunodeficiency virus patients].

    Science.gov (United States)

    Martínez, Esteban; Jódar Gimeno, Esteban; Reyes García, Rebeca; Carpintero, Pedro; Casado, José Luis; Del Pino Montes, Javier; Domingo Pedrol, Pere; Estrada, Vicente; Maalouf, Jorge; Negredo, Eugenia; Ocampo, Antonio; Muñoz-Torres, Manuel

    2014-04-01

    To provide practical recommendations for the evaluation and treatment of metabolic bone disease in human immunodeficiency virus (HIV) patients. Members of scientific societies related to bone metabolism and HIV: Grupo de Estudio de Sida (GeSIDA), Sociedad Española de Endocrinología y Nutrición (SEEN), Sociedad Española de Investigación Ósea y del Metabolismo Mineral (SEIOMM), and Sociedad Española de Fractura Osteoporótica (SEFRAOS). A systematic search was carried out in PubMed, and papers in English and Spanish with a publication date before 28 May 2013 were included. Recommendations were formulated according to GRADE system (Grading of Recommendations, Assessment, Development, and Evaluation) setting both their strength and the quality of supporting evidence. Working groups were established for each major part, and the final resulting document was later discussed in a face-to-face meeting. All the authors reviewed the final written document and agreed with its content. The document provides evidence-based practical recommendations on the detection and treatment of bone disease in HIV-infected patients. Copyright © 2013 Elsevier España, S.L. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  11. What do bones tell us? The study of human skeletons from the perspective of forensic anthropology.

    Science.gov (United States)

    Corrieri, Brigida; Márquez-Grant, Nicholas

    2015-01-01

    Human remains are present in a number of contexts. Some of these are archaeological burial sites, which can comprise individual or mass graves burials. Human remains are usually found buried (or cremated), but they can also be found in museums and in universities, as part of their anatomical collections. Human remains can be found in churches as relics, in ossuaries, and as part of objects. Hence human remains refer to not just a complete skeleton, but also apart of a bone or tooth, hair and mummified remains. In more recent forensic, police or medico-legal cases, human skeletal remains can be found in a number of contexts, such as fire scenes, natural disasters, clandestine graves, or on the surface in open areas (e.g. a woodland). One aspect ofphysical anthropology is that which studies human skeletal remains in order to reconstruct the past, understand human variation, and provide information about the deceased individuals, such as their age at death, sex, ancestry, stature, pathological conditions or traumatic injuries; the remains from medico-legal or police cases fall under the branch offorensic anthropology.

  12. Porous bioresorbable magnesium as bone substitute

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2003-07-01

    Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35% and/or with the small pore size of about 70 {mu}m are close to those of human cancellous bones. (orig.)

  13. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  14. Neutron activation analysis of calcium/phosphorus ratio in rib bone of healthy humans

    International Nuclear Information System (INIS)

    Tzaphlidou, Margaret; Zaichick, Vladimir

    2002-01-01

    The Ca/P ratio was estimated in intact rib bone samples from healthy humans, 37 women and 45 men, aged from 15 to 55 years using instrumental neutron activation analysis. No statistically significant differences (p>0.05) age- or sex-related differences in the Ca/P ratio were observed. The mean value (M±SD) for the investigated parameter for the whole group studied, 2.33±0.34, was within a very wide range of published data and close to the median value

  15. Trace element determination in human bones using the neutron activation analysis method

    International Nuclear Information System (INIS)

    Kramarski, Sila; Saiki, Mitiko; Borelli, Aurelio; Batalha, Joao R.F.

    1997-01-01

    This work presents the results obtained in the analysis of rib bone samples from normal human individuals by applying instrumental neutron activation analysis. In these analyses, the elements Br, Cl, Fe, K, Mg, Na, Rb, Sr and Zn were found at the ppm level and the elements Ca and P at the level of percentage. The precision and the of the results were evaluated by using biological reference materials NIST SRM 1577a Bovine Liver, IAEA A-11 Milk powder, NIES CRM 9 Sargasso e NIES CRM 10A Rice Flour Unpolished. (author). 5 refs., 3 tabs

  16. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy

    International Nuclear Information System (INIS)

    Farzam, Parisa; Zirak, Peyman; Durduran, Turgut; Binzoni, Tiziano

    2013-01-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion. (paper)

  17. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.

    Science.gov (United States)

    Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut

    2013-08-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.

  18. Recent progress of the bone densitometer

    International Nuclear Information System (INIS)

    Tamegai, Toshiaki

    1996-01-01

    A Bone Densitometer is the equipment which non-invasively evaluates bone mineral such as calcium contained in the bone of human. It is widely accepted as a useful equipment for the purpose of diagnosis of the bone, especially of the osteoporosis. Human body is considered as two-component system composed of bone and soft tissue at the point of view of radiation absorption. Therefore it is necessary to eliminate soft tissue component to determine bone mineral content or density. To cancel soft tissue component, there are a few methods employed to the bone densitometers. Accordingly the bone densitometers are classified into two types. In SXA, X-ray source having effective energy of approximately 30keV is used. The measurement site of patient should be soaked in water to eliminate soft tissue component according to the theory that the linear attenuation coefficient of water is nearly equal to that of soft tissue. Therefore the difference between the intensity of X-ray transmitted through soft tissue and that of X-ray through soft tissue plus bone indicates amount of bone mineral directly under the constant water thickness condition. SXA is a very convenient method, but the necessity of water may not be desirable in the clinical use. Therefore, clinical applications of SXA are limited to peripheral site such as forearm or calcaneus. In DXA, X-ray source having dual effective energies of approximately 40keV and 80keV is used. The theory is based on the difference of intensities between X-ray transmitted through soft tissue and that of transmitted through bone. The amount of bone mineral is then estimated by the theoretical calculations. Therefore, DXA is applicable for not only spine or femur but also all sites of patients. The bone densitometers based on SXA or DXA are widely accepted as the equipments for the measurement of bone mineral. However, recently, equipments based on other theoretical method, pQCT and QUS are proposed. (J.P.N.)

  19. Vocal Noise Cancellation From Respiratory Sounds

    National Research Council Canada - National Science Library

    Moussavi, Zahra

    2001-01-01

    Although background noise cancellation for speech or electrocardiographic recording is well established, however when the background noise contains vocal noises and the main signal is a breath sound...

  20. 20 CFR 217.27 - Effect of cancellation.

    Science.gov (United States)

    2010-04-01

    ... ANNUITY OR LUMP SUM Cancellation of Application § 217.27 Effect of cancellation. When a person cancels an application the effect is the same as though an application was never filed. When an employee cancels his or her application, any application filed by the employee's spouse is also cancelled. However, a request...

  1. 34 CFR 674.59 - Cancellation for military service.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Cancellation for military service. 674.59 Section 674... Cancellation for military service. (a) Cancellation on a Defense loan. (1) An institution must cancel up to 50... cancellation rate is 121/2 percent of the original loan principal, plus the interest on the unpaid balance...

  2. Below the Callus Surface: Applying Paleohistological Techniques to Understand the Biology of Bone Healing in Skeletonized Human Remains.

    Science.gov (United States)

    Assis, Sandra; Keenleyside, Anne

    2016-01-01

    Bone trauma is a common occurrence in human skeletal remains. Macroscopic and imaging scrutiny is the approach most currently used to analyze and describe trauma. Nevertheless, this line of inquiry may not be sufficient to accurately identify the type of traumatic lesion and the associated degree of bone healing. To test the usefulness of histology in the examination of bone healing biology, we used an integrative approach that combines gross inspection and microscopy. Six bone samples belonging to 5 adult individuals with signs of bone trauma were collected from the Human Identified Skeletal Collection from the Museu Bocage (Lisbon, Portugal). Previous to sampling, the lesions were described according to their location, morphology, and healing status. After sampling, the bone specimens were prepared for plane light and polarized light analysis. The histological analysis was pivotal: (1) to differentiate between types of traumatic lesions; (2) to ascertain the posttraumatic interval, and (3) to diagnose other associated pathological conditions. The outer surface of a bone lesion may not give a complete picture of the biology of the tissue's response. Accordingly, microscopic analysis is essential to differentiate, characterize, and classify trauma signs. © 2016 S. Karger AG, Basel.

  3. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  4. Increased bone marrow blood flow in sickle cell anemia demonstrated by thallium-201 and Tc-99m human albumin microspheres

    International Nuclear Information System (INIS)

    Thrall, J.H.; Rucknagel, D.L.

    1978-01-01

    Lower extremity vascularity in nine patients with sickle cell anemia was studied by intra-arterial /sup 99m/Tc human albumin microspheres or intravenous thallium-201. In eight patients, the normal pattern of greater muscle than bone activity was reversed with marked tracer localization in skeletal parts usually not visualized. In four cases, there were distinct focal abnormalities in the femurs and tibias which correlated with defects on /sup 99m/Tc sulfur colloid marrow scans. TC-99m pyrophosphate bone scans demonstrated normal uptake in the same areas. The scintigraphic findings indicate a markedly increased relative bone marrow blood flow

  5. Multiple-energy tissue-cancellation applications of a digital beam attenuator to chest radiography

    International Nuclear Information System (INIS)

    Dobbins, J.T. III.

    1985-01-01

    The digitally-formed primary beam attenuator (DBA) spatially modulates the x-ray fluence incident upon the patient to selectively attenuate regions of interest. The DBA attenuating mask is constructed from CeO 2 powder by a modified printing technique and uses image information from an initial low-dose exposure. Two tissue-cancellation imaging techniques are investigated with the DBA: (1) energy-dependent information is used to form a beam attenuator that attenuates specific tissues in the primary x-ray beam for tissue-cancelled film radiography; (2) the beam attenuator is used to improve image signal-to-noise and scattered radiation properties in traditional energy-subtraction tissue-cancellation imaging with digital detectors. The tissue-cancellation techniques in the primary x-ray beam were capable of adequately removing either soft-tissue or bone from the final compensated film radiograph when using a phantom with well defined soft-tissue and bone sections. However, when tried on an anthropomorphic chest phantom the results were adequate for cancellation of large soft tissue structures, but unsatisfactory for cancellation of bony structures such as the ribs, because of the limited spatial frequency content of the attenuating mask. The second technique (with digital detectors) showed improved uniformity of image signal-to-noise and a two-fold increase in soft-tissue nodule contrast due to improved scattered radiation properties. The tissue-cancelled images contained residual image contributions from the presence of the attenuating mask, but this residual may be correctable by future algorithms

  6. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model.

    Directory of Open Access Journals (Sweden)

    Matthew B Greenblatt

    Full Text Available Mice bearing a "humanized" immune system are valuable tools to experimentally manipulate human cells in vivo and facilitate disease models not normally possible in laboratory animals. Here we describe a form of GVHD that develops in NOD/SCID mice reconstituted with human fetal bone marrow, liver and thymus (NS BLT mice. The skin, lungs, gastrointestinal tract and parotid glands are affected with progressive inflammation and sclerosis. Although all mice showed involvement of at least one organ site, the incidence of overt clinical disease was approximately 35% by 22 weeks after reconstitution. The use of hosts lacking the IL2 common gamma chain (NOD/SCID/γc(-/- delayed the onset of disease, but ultimately did not affect incidence. Genetic analysis revealed that particular donor HLA class I alleles influenced the risk for the development of GVHD. At a cellular level, GVHD is associated with the infiltration of human CD4+ T cells into the skin and a shift towards Th1 cytokine production. GVHD also induced a mixed M1/M2 polarization phenotype in a dermal murine CD11b+, MHC class II+ macrophage population. The presence of xenogenic GVHD in BLT mice both presents a major obstacle in the use of humanized mice and an opportunity to conduct preclinical studies on GVHD in a humanized model.

  7. Damage characterization on human femur bone by means of ultrasonics and acoustic emission

    International Nuclear Information System (INIS)

    Strantza, M; Boulpaep, F; Van Hemelrijck, D; Aggelis, D G; Polyzos, D; Louis, O

    2015-01-01

    Human bone tissue is characterized as a material with high brittleness. Due to this nature, visible signs of cracking are not easy to be detected before final failure. The main objective of this work is to investigate if the acoustic emission (AE) technique can offer valuable insight to the fracture process of human femur specimens as in other engineering materials characterization. This study describes the AE activity during fracture of whole femur bones under flexural load. Before fracture, broadband AE sensors were used in order to measure parameters like wave velocity dispersion and attenuation. Waveform parameters like the duration, rise time and average frequency, were also examined relatively to the propagation distance as a preparation for the AE monitoring during fracture. After the ultrasonic study, the samples were partly cast in concrete and fixed as cantilevers. A point load was applied on the femur head, which due to the test geometry resulted in a combination of two different patterns of fracture, bending and torsion. Two AE broadband sensors were placed in different points of the sample, one near the fixing end and the other near the femur head. Preliminary analysis shows that parameters like the number of acquired AE signals and their amplitude are well correlated with the load history. Furthermore, the parameters of rise time and frequency can differentiate the two fracture patterns. Additionally, AE allows the detection of the load at the onset of fracture from the micro-cracking events that occur at the early loading stages, allowing monitoring of the whole fracture process. Parameters that have been used extensively for monitoring and characterization of fracture modes of engineering materials seem to poses characterization power in the case of bone tissue monitoring as well. (paper)

  8. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  9. 30 CFR 250.181 - When may the Secretary cancel my lease and when am I compensated for cancellation?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may the Secretary cancel my lease and when... may the Secretary cancel my lease and when am I compensated for cancellation? If the Secretary cancels.... Section 250.185 states conditions under which you will receive no compensation. The Secretary may cancel a...

  10. Comparison of in vitro biocompatibility of NanoBone(®) and BioOss(®) for human osteoblasts.

    Science.gov (United States)

    Liu, Qin; Douglas, Timothy; Zamponi, Christiane; Becker, Stephan T; Sherry, Eugene; Sivananthan, Sureshan; Warnke, Frauke; Wiltfang, Jörg; Warnke, Patrick H

    2011-11-01

    Scaffolds for bone tissue engineering seeded with the patient's own cells might be used as a preferable method to repair bone defects in the future. With the emerging new technologies of nanostructure design, new synthetic biomaterials are appearing on the market. Such scaffolds must be tested in vitro for their biocompatibility before clinical application. However, the choice between a natural or a synthetic biomaterial might be challenging for the doctor and the patient. In this study, we compared the biocompatibility of a synthetic bone substitute, NanoBone(®) , to the widely used natural bovine bone replacement material BioOss(®) . The in vitro behaviour of human osteoblasts on both materials was investigated. Cell performance was determined using scanning electron microscopy (SEM), cell vitality staining and four biocompatibility tests (LDH, MTT, WST, BrdU). We found that both materials showed low cytotoxicity and good biocompatibility. The MTT proliferation test was superior for Nanobone(®) . Both scaffolds caused only little damage to human osteoblasts and justify their clinical application. However, NanoBone(®) was able to support and promote proliferation of human osteoblasts slightly better than BioOss(®) in our chosen test set-up. The results may guide doctors and patients when being challenged with the choice between a natural or a synthetic biomaterial. Further experiments are necessary to determine the comparison of biocompatibility in vivo. © 2011 John Wiley & Sons A/S.

  11. Compact DD generator based in vivo neutron activation analysis (IVNAA) system to determine sodium concentrations in human bone.

    Science.gov (United States)

    Coyne, Mychaela Dawn; Neumann, Colby R; Zhang, Xinxin; Byrne, Patrick; Liu, Yingzi; Weaver, Connie M; Nie, Linda Huiling

    2018-04-16

    This study presents the development of a non-invasive method for monitoring Na in human bone. Many diseases, such as hypertension and osteoporosis, are closely associated with sodium (Na) retention in the human body. Na retention is generally evaluated by calculating the difference between dietary intake and excretion. There is currently no method to directly quantify Na retained in the body. Bone is a storage for many elements, including Na, which renders bone Na an ideal biomarker to study Na metabolism and retention. Approach: A customized compact deuterium-deuterium (DD) neutron generator was used to produce neutrons for in vivo neutron activation analysis (IVNAA), with a moderator/ reflector/ shielding assembly optimized for human hand irradiation in order to maximize the thermal neutron flux inside the irradiation cave and to limit radiation exposure to the hand and the whole body. Main Results: The experimental results show that the system is able to detect sodium levels in the bone as low as 12 g Na/g dry bone with an effective dose to the body of about 27 μSv. The simulation results agree with the numbers estimated from the experiment. Significance: This is expected to be a feasible method for measuring the change of Na in bone. The low detection limit indicates this will be a useful system to study the association between Na retention and related diseases. © 2018 Institute of Physics and Engineering in Medicine.

  12. Synchrotron Radiation and Energy Dispersive X-Ray Fluorescence Applications on Elemental Distribution in Human Hair and Bones

    International Nuclear Information System (INIS)

    Carvalho, M.L.; Marques, A.F.; Brito, J.

    2003-01-01

    This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 μg g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment

  13. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Ryu, Eunsook; Hong, Su; Kang, Jaeku; Woo, Junghoon; Park, Jungjun; Lee, Jongho; Seo, Jeong-Sun

    2008-01-01

    Human bone marrow mesenchymal stem cells (hBMMSCs) are multipotent stem cells that can differentiate into several specialized cell types, including bone, cartilage, and fat cells. The proliferative capacity of hBMMSCs paves the way for the development of regenerative medicine and tissue engineering. However, long-term in vitro culture of hBMMSCs leads to a reduced life span of the cells due to senescence, which leads eventually to growth arrest. To investigate the molecular mechanism behind the cellular senescence of hBMMSCs, microarray analysis was used to compare the expression profiles of early passage hBMMSCs, late passage hBMMSCs and hBMMSCs ectopically expressing human telomerase reverse transcriptase (hTERT). Using an intersection analysis of 3892 differentially expressed genes (DEGs) out of 27,171 total genes analyzed, we identified 338 senescence-related DEGs. GO term categorization and pathway network analysis revealed that the identified genes are strongly related to known senescence pathways and mechanisms. The genes identified using this approach will facilitate future studies of the mechanisms underlying the cellular senescence of hBMMSCs

  14. Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells.

    Science.gov (United States)

    Zhou, Junjie; Yu, Guangrong; Cao, Chengfu; Pang, Jinhui; Chen, Xianqi

    2011-06-01

    Bone morphogenetic proteins (BMPs) play important roles at multiple stages of chondrogenesis. This study was undertaken to investigate the potential role of bone morphogenetic protein-7 (BMP-7) in the differentiation of chondrocytes using tissue engineering techniques. The impact of BMP-7 on human amniotic epithelial cells (hAECs) was tested. The hAECs were treated either with recombinant human BMP-7 cDNA or with transforming growth factor beta 1 (TGF-β1) as a positive control for three weeks in vitro. Cartilaginous differentiation and proliferation were assayed by quantitative RT-PCR, histology, and in situ hybridization. Our results were such that hAECs treated with either BMP-7 or TGF-β1 expressed cartilage markers (aggrecan, Sox9, CEP-68, and type II and X collagens) within three weeks. Compared with a control vector, BMP-7 induced a decrease in type I collagen expression, while the transcription of the cartilage-specific type II collagen remained stable. In induction experiments, BMP-7 transgenic hAECs exhibited the largest amount of matrix synthesis. In conclusion, these data indicate that BMP-7 plays an important role in inducing the production of cartilage by hAECs in vitro. Cartilage differentiation and matrix maturation can be promoted by BMPs in a cartilage engineering paradigm. These properties make BMPs promising tools in the engineering of cartilaginous joint bio-prostheses and as candidate biological agents or genes for cartilage stabilisation.

  15. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells.

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-04-03

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  16. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs.

    Science.gov (United States)

    Lee, Michelle H; Goralczyk, Anna G; Kriszt, Rókus; Ang, Xiu Min; Badowski, Cedric; Li, Ying; Summers, Scott A; Toh, Sue-Anne; Yassin, M Shabeer; Shabbir, Asim; Sheppard, Allan; Raghunath, Michael

    2016-02-17

    Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced 'browning' in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.

  17. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Ding Ding

    2018-04-01

    Full Text Available Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs, a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM, X-ray diffraction (XRD as well as transmission electron microscopy (TEM. The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  18. HSP10 selective preference for myeloid and megakaryocytic precursors in normal human bone marrow

    Directory of Open Access Journals (Sweden)

    F Cappello

    2009-06-01

    Full Text Available Heat shock proteins (HSPs constitute a heterogeneous family of proteins involved in cell homeostasis. During cell life they are involved in harmful insults, as well as in immune and inflammatory reactions. It is known that they regulate gene expression, and cell proliferation, differentiation and death. HSP60 is a mitochondrial chaperonin, highly preserved during evolution, responsible of protein folding. Its function is strictly dependent on HSP10 in both prokaryotic and eukaryotic elements. We investigated the presence and the expression of HSP60 and HSP10 in a series of 20 normal human bone marrow specimens (NHBM by the means of immunohistochemistry. NHBM showed no expression of HSP60, probably due to its being below the detectable threshold, as already demonstrated in other normal human tissues. By contrast, HSP10 showed a selective positivity for myeloid and megakaryocytic lineages. The positivity was restricted to precursor cells, while mature elements were constantly negative.We postulate that HSP10 plays a role in bone marrow cell differentiation other than being a mitochondrial co-chaperonin. The present data emphasize the role of HSP10 during cellular homeostasis and encourage further investigations in this field.

  19. Bones and humanity. On Forensic Anthropology and its constitutive power facing forced disappearance

    Directory of Open Access Journals (Sweden)

    Anne Huffschmid

    2015-11-01

    Full Text Available Forensic anthropologists seek to decipher traces of anonymous dead, to restitute identities of human remains and to provide their families with the possibility to conclude mourning and even of justice. The article explores the contributions and meanings of forensic anthropology as state-independent practice beyond a mereley criminalistic approach, as it was conceptualized by the Argentine pioneers after the last dictatorship in this nation. I conceive this practice as a sort of arqueology of contemporary terror that seeks to confront a specific violence as the forced disappearance of persons and the deshumanization of their dead bodies. The article proposes reading forensic anthropology as a 'situated cience', with its complexities and ambigueties, that operates between nameless bones (the human remains and names without bodies (the so-called disappeared in settings of violent pasts such as Argentina or Guatemala, and especially in Mexico, where mass graves became the new symbol of a horrified present.

  20. Bone marrow extract as a growth supplement for human iliac apophyseal chondrocyte culture

    Directory of Open Access Journals (Sweden)

    Balasubramanian Balakumar

    2016-01-01

    Full Text Available Background & objectives: Human bone marrow is rich in various growth factors which may support the chondrocyte growth. This study was conducted to compare the culture characteristics of human growth plate chondrocyte in foetal bovine serum (FBS and human autologous bone marrow extract (BME in monolayer culture. Methods: Iliac crest apophyseal cartilage was harvested from four donors, aged between two and nine years, undergoing hip surgery. Chondrocytes were propagated under two culture conditions, with 10 per cent FBS and 10 per cent autologous BME harvested from the same donors. Cells were harvested at 7, 14 and 21 days to assess viability, morphology, cell count and immunocytochemistry. Results: With an initial seeding density of 2500 cells/cm 2 , the average yield in monolayer cultured with FBS was 3.35 × 10 5 , 5.9 × 10 5 , 14.1 × 10 5 and BME was 0.66 × 10 5 , 1.57 × 10 5 and 3.48 × 10 5 at 7, 14 and 21 days, respectively. Viability was 98.21 per cent with FBS and 97.45 per cent with BME at 21 days. In BME supplemented cultures, hyaline phenotype was maintained up to 21 days. The yield was higher in the FBS supplemented group; however, the phenotype could not be maintained by the FBS group as long as BME group. Interpretation & conclusions: Autologous BME was found to be a safer alternative to FBS for human studies. BME could maintain the hyaline phenotype for a longer time. Ways to enhance the cell yield needs to be explored in future studies.

  1. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Science.gov (United States)

    Verboket, René; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C.; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  2. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    Science.gov (United States)

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  3. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Directory of Open Access Journals (Sweden)

    Dirk Henrich

    2015-01-01

    Full Text Available Bone marrow mononuclear cells (BMCs are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma, demineralized bone matrix (DBM, and bovine cancellous bone (BS were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  4. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. 78 FR 18594 - Notice of Cancelation for Call of the President's Advisory Council on Faith-Based and...

    Science.gov (United States)

    2013-03-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Notice of Cancelation for Call of the President's Advisory Council on Faith-Based and Neighborhood Partnerships Notice of Cancelation: This notice was published in...: March 21, 2013. Ben O'Dell, Associate Director for Center for Faith-based and Neighborhood Partnerships...

  6. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress

    NARCIS (Netherlands)

    Kraft, D.C.E.; Bindslev, D.A.; Melsen, B.; Klein-Nulend, J.

    2011-01-01

    Background aims. For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular

  7. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yuli; Yin, Ying; Jiang, Fei; Chen, Ning

    2015-02-01

    Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.

  8. Noise canceling in-situ detection

    Science.gov (United States)

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  9. Surgery cancellations at a public hospital

    Directory of Open Access Journals (Sweden)

    Erika Pittelkow

    2008-12-01

    Full Text Available Objective: To determine the frequency of cancellation of scheduledsurgeries at a public hospital in the city of São Paulo, and to identifythe reasons of cancellation. Methods: A descriptive, exploratory,retrospective study, with quantitative analysis, of records ofprocedures cancelled and medical charts of patients whose surgerieswere cancelled, between January 2006 and July 2007. Results: Ofthe 6,149 (100% surgeries scheduled for the period surveyed, 701(11.4% were canceled and 5,448 (88.6% conducted; among thesurgeries cancelled, most were general surgeries (237/33.8% andorthopedic surgery (200/28.5%; surgeons or assistant surgeons(518/73.9% and anesthesiologists (183/26.1% were responsible forcancellations. The primary reasons for cancellation were unfavorableclinical status of patients (225/32.1%, no show up of patients(119/17.0%, change in medical management (79/11.3%, patientnot appropriately prepared (53/7.5% and lack of material (52/7.4%.Conclusions: This study enabled identifying the frequency and causesof surgical cancellations at a public hospital, so as to contribute toimproving professional performance in this area.

  10. Changes in bone geometry and microarchitecture caused by intermittent administration of PTH. Comparison with those by exercise load

    International Nuclear Information System (INIS)

    Mori, Keiya

    2010-01-01

    There have been several studies showing that periodical intermittent medication with parathyroid hormone (PTH) causes increases in cancellous bone mass. However, there have been almost no reports comparing the effects of periodical intermittent PTH medication on bone microarchitecture with changes caused by physiological stimulation such as exercise load. In this study, we compared the effects of these two interventions on the microarchitecturural deterioration of femoral cancellous bone associated with unloading, using micro-computed tomography (micro-CT), and the effects of PTH administration and motion loading on improvement of the deteriorated structure. In the study, 32 eight-week-old male Wistar rats were divided into four groups: a control group without tail suspension (CON), a control recovery group after suspension (S+C), a suspension/PTH group (S+P), and a suspension/jumping exercise group (S+J). Periodical intermittent human PTH (1-34) was given periodically to the S+P group rats at a dose of 75 μg/kg/day five times a week for five weeks, after two weeks of exercise with suspension of the tail. The rats in the S+J group performed 40 cm-high jumping 10 times/day five times a week for five weeks. After this conditioning, upon examination, bilateral femurs were removed and the right distal metaphysis was scanned using micro-CT to obtain images of the cancellous bone region of the femur. Based on the tomographic data, indices of cancellous bone microarchitecture was the index of trabecular bone structure were determined by using three-dimensional image analysis system. In addition, to examine the geometric properties of the diaphysis, mid-portion images of the bone shaft of the left femur were obtained by micro-CT, and then the mechanical bone strength of the left femur was determined by performing a three-point bending test. Compared to the S+C group, the S+P and S+J groups showed significantly higher bone volume, bone surface mass values, superficial bone

  11. A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Ding, Ming; Overgaard, Søren

    2015-01-01

    Large animals as sheep are often used as models for human osteoporosis. Our aim was therefore to determine how glucocorticoid treatment of ovariectomised sheep affects the cancellous bone, determining the cellular events within the bone remodelling process that contributes to their bone loss...... in postmenopausal women with glucocorticoid-induced osteoporosis. This supports the relevance of the sheep model to the pathophysiology of glucocorticoid-induced osteoporosis in postmenopausal women, making it a relevant preclinical model for orthopaedic implant and biomaterial research........ Twenty female sheep were assigned for two groups; an untreated control group and an ovariectomised group treated with glucocorticoids (0.6mg/kg/day, 5 times weekly) for 7months. At 7months the glucocorticoid-treated ovariectomised sheep showed a significant change in the bone microstructure revealed...

  12. Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Martínez, I; Arsuaga, J L; Quam, R; Carretero, J M; Gracia, A; Rodríguez, L

    2008-01-01

    This study describes and compares two hyoid bones from the middle Pleistocene site of the Sima de los Huesos in the Sierra de Atapuerca (Spain). The Atapuerca SH hyoids are humanlike in both their morphology and dimensions, and they clearly differ from the hyoid bones of chimpanzees and Australopithecus afarensis. Their comparison with the Neandertal specimens Kebara 2 and SDR-034 makes it possible to begin to approach the question of temporal variation and sexual dimorphism in this bone in fossil humans. The results presented here show that the degree of metric and anatomical variation in the fossil sample was similar in magnitude and kind to living humans. Modern hyoid morphology was present by at least 530 kya and appears to represent a shared derived feature of the modern human and Neandertal evolutionary lineages inherited from their last common ancestor.

  13. White-tailed Deer as a Taphonomic Agent: Photographic Evidence of White-tailed Deer Gnawing on Human Bone.

    Science.gov (United States)

    Meckel, Lauren A; McDaneld, Chloe P; Wescott, Daniel J

    2018-01-01

    Ungulate gnawing on bone has been reported in the taphonomic and zooarchaeological literature, but there are no known reports of ungulates altering human remains. Herein, we report on the first known photographic evidence of deer gnawing human remains. As described in nonhuman scavenging literature, forking of the bone characterizes the taphonomic effect of deer gnawing in this case, which is distinct from the effect caused by other scavengers. This type of osteophagia during the winter season is consistent with previously documented behavior of deer gnawing on nonhuman bone, possibly to obtain minerals absent in their diet. In this study, we briefly discuss the distinguishing features of ungulate gnawing, the reasons for this behavior, and possible confusion with other common types of scavenging and modification. This report contributes to taphonomic literature covering the range of animal interactions with human skeletal remains. © 2017 American Academy of Forensic Sciences.

  14. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization

    DEFF Research Database (Denmark)

    Stenderup, Karin; Rosada, Cecilia; Justesen, J

    2004-01-01

    Age-related decreased osteoblast function is a well-known but poorly understood phenomenon. Previous studies that examined the effects of donor age on osteoblast functions employed in vitro assays that may not reflect the true osteoblast capacity for bone formation. Thus, we have developed an in ...

  15. Nuclear plant cancellations: causes, costs, and consequences

    International Nuclear Information System (INIS)

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested

  16. Incorporation of Trace Elements in Ancient and Modern Human Bone: An X-Ray Absorption Spectroscopy Study

    Science.gov (United States)

    Pingitore, N. E.; Cruz-Jimenez, G.; Price, T. D.

    2001-12-01

    X-ray absorption spectroscopy (XAS) affords the opportunity to probe the atomic environment of trace elements in human bone. We are using XAS to investigate the mode(s) of incorporation of Sr, Zn, Pb, and Ba in both modern and ancient (and thus possibly altered) human and animal bone. Because burial and diagenesis may add trace elements to bone, we performed XAS analysis on samples of pristine contemporary and ancient, buried human and animal bone. We assume that deposition of these elements during burial occurs by processes distinct from those in vivo, and this will be reflected in their atomic environments. Archaeologists measure strontium in human and animal bone as a guide to diet. Carnivores show lower Sr/Ca ratios than their herbivore prey due to discrimination against Sr relative to Ca up the food chain. In an initial sample suite no difference was observed between modern and buried bone. Analysis of additional buried samples, using a more sensitive detector, revealed significant differences in the distance to the second and third neighbors of the Sr in some of the buried samples. Distances to the first neighbor, oxygen, were similar in all samples. Zinc is also used in paleo-diet studies. Initial x-ray absorption spectroscopy of a limited suite of bones did not reveal any differences between modern and buried samples. This may reflect the limited number of samples examined or the low levels of Zn in typical aqueous solutions in soils. Signals from barium and lead were too low to record useful XAS spectra. Additional samples will be studied for Zn, Ba, and Pb. We conducted our XAS experiments on beam lines 4-1 and 4-3 at the Stanford Synchrotron Radiation Laboratory. Data were collected in the fluorescence mode, using a Lytle detector and appropriate filter, and a solid state, 13-element Ge-detector.

  17. Lead determinations in human bone by particle induced x-ray emission (PIXE) and graphite furnace atomic absorption spectrometry (GFAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Deibel, M A; Savage, J M; Robertson, J D; Ehmann, W D [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Markesbery, W R [Kentucky Univ., Lexington, KY (United States)

    1995-08-01

    Chronic lead (Pb) intoxication has been linked to Alzheimer`s disease (AD). Lead, like many heavy elements, tends to accumulate in bone. Pixe is a powerful analytical tool which permits the determination of Pb at the {mu}g/g level without requiring sample digestion. GFAAS is one of the most sensitive methods for the determination of Pb and is capable of determining ng/g levels is solution. For bone analyses by GFAAS, sample dissolution and a matrix modifier are required. Rib bone samples were analyzed for Pb by PIXE and GFAAS. IAEA Animal Bone (H-5) was used as a secondary standard for Pb with both methods to ensure accuracy. The range of Pb concentrations in human rib bone was 1.4-11.5 {mu}/g for the trabecular surface by PIXE, 1.3-45 {mu}g/g for the cortical surface by PIXE, and 1.54-11.75 {mu}g/g for whole bone by GFAAS. No significant difference p.<0.05 was found for AD versus control for either surface or for whole bone. (author). 17 refs., 2 figs., 3 tabs.

  18. Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue.

    Science.gov (United States)

    Nyman, Jeffry S; Roy, Anuradha; Acuna, Rae L; Gayle, Heather J; Reyes, Michael J; Tyler, Jerrod H; Dean, David D; Wang, Xiaodu

    2006-12-01

    Collagen crosslinks are important to the quality of bone and may be contributors to the age-related increase in bone fracture. This study was performed to investigate whether age and gender effects on collagen crosslinks are similar in osteonal and interstitial bone tissues. Forty human cadaveric femurs were collected and divided into two age groups: middle-aged (42-63 years of age) and elderly (69-90 years of age) with ten males and ten females in each group (n = 10). Micro-cores of bone tissue from both secondary osteons and interstitial regions in the medial quadrant of the diaphysis were extracted using a custom-modified, computer-controlled milling machine. The bone specimens were then analyzed using high performance liquid chromatography to determine the effects of age and gender on the concentration of mature, enzymatic crosslinks (hydroxylysyl-pyridinoline-HP and lysyl-pyridinoline-LP) and a non-enzymatic crosslink (pentosidine-PE) at these two microstructural sites. The results indicate that age has a significant effect on the concentration of LP and PE, while gender has a significant effect on HP and LP. In addition, the concentration of the crosslinks in the secondary osteons is significantly different from that in the interstitial bone regions. These results suggest that the amount of non-enzymatic crosslinking may increase while that of mature enzymatic crosslinking may decrease with age. Such changes could potentially reduce the inherent quality of the bone tissue in the elderly skeleton.

  19. Lead determinations in human bone by particle induced x-ray emission (PIXE) and graphite furnace atomic absorption spectrometry (GFAAS)

    International Nuclear Information System (INIS)

    Deibel, M.A.; Savage, J.M.; Robertson, J.D.; Ehmann, W.D.

    1995-01-01

    Chronic lead (Pb) intoxication has been linked to Alzheimer's disease (AD). Lead, like many heavy elements, tends to accumulate in bone. Pixe is a powerful analytical tool which permits the determination of Pb at the μg/g level without requiring sample digestion. GFAAS is one of the most sensitive methods for the determination of Pb and is capable of determining ng/g levels is solution. For bone analyses by GFAAS, sample dissolution and a matrix modifier are required. Rib bone samples were analyzed for Pb by PIXE and GFAAS. IAEA Animal Bone (H-5) was used as a secondary standard for Pb with both methods to ensure accuracy. The range of Pb concentrations in human rib bone was 1.4-11.5 μ/g for the trabecular surface by PIXE, 1.3-45 μg/g for the cortical surface by PIXE, and 1.54-11.75 μg/g for whole bone by GFAAS. No significant difference (p.<0.05 was found for AD versus control for either surface or for whole bone. (author). 17 refs., 2 figs., 3 tabs

  20. The impact of thickness of resorbable membrane of human origin on the ossification of bone defects: A pathohistologic study

    Directory of Open Access Journals (Sweden)

    Bubalo Marija

    2012-01-01

    Full Text Available Background/Aim. A wide range of resorbable and nonresorbable membranes have been investigated over the last two decades. The barrier membrane protects the defect from ingrowth of soft tissue cells and allows bone progenitor cells to develop bone within a blood clot that is formed beneath the barrier membrane. The membranes are applied to reconstruct small bony defect prior to implantation, to cover dehiscences and fenestrations around dental implants. The aim of this study was to evaluate the influence of human resorbable demineralized membrane (RHDM thickness on bone regeneration. Methods. The experiment, approved by Ethical Committee, was performed on 6 dogs and conducted into three phases. Bone defects were created in all the 6 dogs on the left side of the mandible, 8 weeks after extraction of second, third and fourth premolars. One defect was covered with RHDM 100 μ thick, one with RHDM 200 μ thick, and the third defect left empty (control defect. The histopathological analysis was done 2, 4 and 6 months after the surgery. In the third phase samples of bone tissue were taken and subjected to histopathological analysis. Results. In all the 6 dogs the defects treated with RHDM 200 μ thick showed higher level of bone regeneration in comparison with the defect treated with RHDM 100 μ thick and especially with empty defect. Conclusion. Our results demonstrated that the thicker membrane showed the least soft tissue ingrowths and promoted better bone formation at 6 months compared with a thinner one.