WorldWideScience

Sample records for human calf muscles

  1. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Oezdemir, Mahir S; Reyngoudt, Harmen; Deene, Yves de; Sazak, Hakan S; Fieremans, Els; Delputte, Steven; D'Asseler, Yves; Derave, Wim; Lemahieu, Ignace; Achten, Eric

    2007-01-01

    Carnosine has been shown to be present in the skeletal muscle and in the brain of a variety of animals and humans. Despite the various physiological functions assigned to this metabolite, its exact role remains unclear. It has been suggested that carnosine plays a role in buffering in the intracellular physiological pH i range in skeletal muscle as a result of accepting hydrogen ions released in the development of fatigue during intensive exercise. It is thus postulated that the concentration of carnosine is an indicator for the extent of the buffering capacity. However, the determination of the concentration of this metabolite has only been performed by means of muscle biopsy, which is an invasive procedure. In this paper, we utilized proton magnetic resonance spectroscopy ( 1 H MRS) in order to perform absolute quantification of carnosine in vivo non-invasively. The method was verified by phantom experiments and in vivo measurements in the calf muscles of athletes and untrained volunteers. The measured mean concentrations in the soleus and the gastrocnemius muscles were found to be 2.81 ± 0.57/4.8 ± 1.59 mM (mean ± SD) for athletes and 2.58 ± 0.65/3.3 ± 0.32 mM for untrained volunteers, respectively. These values are in agreement with previously reported biopsy-based results. Our results suggest that 1 H MRS can provide an alternative method for non-invasively determining carnosine concentration in human calf muscle in vivo

  2. Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise

    DEFF Research Database (Denmark)

    Green, S; Langberg, Henning; Skovgaard, D

    2000-01-01

    +. Calf muscle pain was assessed using a visual analogue scale. On average, [K+]I was 4.4 mmol l(-1) at rest and increased during minutes 3-5 of incremental exercise by approximately 1-7 mmol l(-1) as a positive function of power output. K+ release also increased as a function of exercise intensity......Changes in the concentration of interstitial K+ surrounding skeletal muscle fibres ([K+]I) probably play some role in the regulation of cardiovascular adjustments to muscular activity, as well as in the aetiology of muscle pain and fatigue during high-intensity exercise. However, there is very...... little information on the response of [K+]I to exercise in human skeletal muscle. Five young healthy subjects performed plantar flexion exercise for four 5 min periods at increasing power outputs ( approximately 1-6 W) with 10 min intervening recovery periods, as well as for two 5 min periods...

  3. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Green, Sara Marie Ehrenreich

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise......, and (2) whether blood flow is coupled to oxidative metabolism. 2. Seven individuals performed dynamic plantar flexion from 1 to 9 W. Radial artery and popliteal venous blood were sampled for O2, peritendinous blood flow was determined by 133Xe-washout, calf blood flow by plethysmography, cardiac output...

  4. Time-resolved phosphorous magnetization transfer of the human calf muscle at 3 T and 7 T: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Valkovič, Ladislav, E-mail: siegfried.trattnig@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Institute of Measurement Science, Department of Imaging Methods, Slovak Academy of Sciences, 841 04 Bratislava, Dúbravska cesta 9 (Slovakia); Chmelík, Marek, E-mail: marek.chmelik@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Just Kukurova, Ivica, E-mail: ivica.kukurova@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Krššák, Martin, E-mail: martin.krssak@meduniwien.ac.at [Department of Internal Medicine III, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Gruber, Stephan, E-mail: stephan@nmr.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Frollo, Ivan, E-mail: umerollo@savba.sk [Institute of Measurement Science, Department of Imaging Methods, Slovak Academy of Sciences, 841 04 Bratislava, Dúbravska cesta 9 (Slovakia); Trattnig, Siegfried, E-mail: siegfried.trattnig@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Bogner, Wolfgang, E-mail: wolfgang@nmr.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria)

    2013-05-15

    Phosphorous ({sup 31}P) magnetization transfer (MT) experiments enable the non-invasive investigation of human muscle metabolism in various physiological and pathological conditions. The purpose of our study was to investigate the feasibility of time-resolved MT, and to compare the results of MT experiments at 3 T and 7 T. Six healthy volunteers were examined on a 3 T and a 7 T MR scanner using the same setup and identical measurement protocols. In the calf muscle of all volunteers, four separate MT experiments (each ∼10 min duration) were performed in one session. The forward rate constant of the ATP synthesis reaction (k{sub ATP}) and creatine kinase reaction (k{sub CK}), as well as corresponding metabolic fluxes (F{sub ATP}, F{sub CK}), were estimated. A comparison of these exchange parameters, apparent T{sub 1}s, data quality, quantification precision, and reproducibility was performed. The data quality and reproducibility of the same MT experiments at 7 T was significantly higher (i.e., k{sub ATP} 2.7 times higher and k{sub CK} 3.4 times higher) than at 3 T (p < 0.05). The values for k{sub ATP} (p = 0.35) and k{sub CK} (p = 0.09) at both field strengths were indistinguishable. Even a single MT experiment at 7 T provided better data quality than did a 4 times-longer MT experiment at 3 T. The minimal time-resolution to reliably quantify both F{sub ATP} and F{sub CK} at 7 T was ∼6 min. Our results show that MT experiments at 7 T can be at least 4 times faster than 3 T MT experiments and still provide significantly better quantification. This enables time-resolved MT experiments for the observation of slow metabolic changes in the human calf muscle at 7 T.

  5. Time-resolved phosphorous magnetization transfer of the human calf muscle at 3 T and 7 T: A feasibility study

    International Nuclear Information System (INIS)

    Valkovič, Ladislav; Chmelík, Marek; Just Kukurova, Ivica; Krššák, Martin; Gruber, Stephan; Frollo, Ivan; Trattnig, Siegfried; Bogner, Wolfgang

    2013-01-01

    Phosphorous ( 31 P) magnetization transfer (MT) experiments enable the non-invasive investigation of human muscle metabolism in various physiological and pathological conditions. The purpose of our study was to investigate the feasibility of time-resolved MT, and to compare the results of MT experiments at 3 T and 7 T. Six healthy volunteers were examined on a 3 T and a 7 T MR scanner using the same setup and identical measurement protocols. In the calf muscle of all volunteers, four separate MT experiments (each ∼10 min duration) were performed in one session. The forward rate constant of the ATP synthesis reaction (k ATP ) and creatine kinase reaction (k CK ), as well as corresponding metabolic fluxes (F ATP , F CK ), were estimated. A comparison of these exchange parameters, apparent T 1 s, data quality, quantification precision, and reproducibility was performed. The data quality and reproducibility of the same MT experiments at 7 T was significantly higher (i.e., k ATP 2.7 times higher and k CK 3.4 times higher) than at 3 T (p < 0.05). The values for k ATP (p = 0.35) and k CK (p = 0.09) at both field strengths were indistinguishable. Even a single MT experiment at 7 T provided better data quality than did a 4 times-longer MT experiment at 3 T. The minimal time-resolution to reliably quantify both F ATP and F CK at 7 T was ∼6 min. Our results show that MT experiments at 7 T can be at least 4 times faster than 3 T MT experiments and still provide significantly better quantification. This enables time-resolved MT experiments for the observation of slow metabolic changes in the human calf muscle at 7 T

  6. Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise

    DEFF Research Database (Denmark)

    Green, S; Langberg, Henning; Skovgaard, D

    2000-01-01

    little information on the response of [K+]I to exercise in human skeletal muscle. Five young healthy subjects performed plantar flexion exercise for four 5 min periods at increasing power outputs ( approximately 1-6 W) with 10 min intervening recovery periods, as well as for two 5 min periods...

  7. An exploration of diffusion tensor eigenvector variability within human calf muscles.

    Science.gov (United States)

    Rockel, Conrad; Noseworthy, Michael D

    2016-01-01

    To explore the effect of diffusion tensor imaging (DTI) acquisition parameters on principal and minor eigenvector stability within human lower leg skeletal muscles. Lower leg muscles were evaluated in seven healthy subjects at 3T using an 8-channel transmit/receive coil. Diffusion-encoding was performed with nine signal averages (NSA) using 6, 15, and 25 directions (NDD). Individual DTI volumes were combined into aggregate volumes of 3, 2, and 1 NSA according to number of directions. Tensor eigenvalues (λ1 , λ2 , λ3 ), eigenvectors (ε1 , ε2 , ε3 ), and DTI metrics (fractional anisotropy [FA] and mean diffusivity [MD]) were calculated for each combination of NSA and NDD. Spatial maps of signal-to-noise ratio (SNR), λ3 :λ2 ratio, and zenith angle were also calculated for region of interest (ROI) analysis of vector orientation consistency. ε1 variability was only moderately related to ε2 variability (r = 0.4045). Variation of ε1 was affected by NDD, not NSA (P < 0.0002), while variation of ε2 was affected by NSA, not NDD (P < 0.0003). In terms of tensor shape, vector variability was weakly related to FA (ε1 :r = -0.1854, ε2 : ns), but had a stronger relation to the λ3 :λ2 ratio (ε1 :r = -0.5221, ε2 :r = -0.1771). Vector variability was also weakly related to SNR (ε1 :r = -0.2873, ε2 :r = -0.3483). Zenith angle was found to be strongly associated with variability of ε1 (r = 0.8048) but only weakly with that of ε2 (r = 0.2135). The second eigenvector (ε2 ) displayed higher directional variability relative to ε1 , and was only marginally affected by experimental conditions that impacted ε1 variability. © 2015 Wiley Periodicals, Inc.

  8. The pH heterogeneity in human calf muscle during neuromuscular electrical stimulation.

    Science.gov (United States)

    Stutzig, Norman; Rzanny, Reinhard; Moll, Kevin; Gussew, Alexander; Reichenbach, Jürgen R; Siebert, Tobias

    2017-06-01

    The aim of the study was to examine pH heterogeneity during fatigue induced by neuromuscular electrical stimulation (NMES) using phosphorus magnetic resonance spectroscopy ( 31 P-MRS). It is hypothesized that three pH components would occur in the 31 P-MRS during fatigue, representing three fiber types. The medial gastrocnemius of eight subjects was stimulated within a 3-Tesla whole body MRI scanner. The maximal force during stimulation (F stim ) was examined by a pressure sensor. Phosphocreatine (PCr), adenosintriphosphate, inorganic phosphate (Pi), and the corresponding pH were estimated by a nonvolume-selective 31 P-MRS using a small loop coil at rest and during fatigue. During fatigue, F stim and PCr decreased to 27% and 33% of their initial levels, respectively. In all cases, the Pi peak increased when NMES was started and split into three different peaks. Based on the single Pi peaks during fatigue, an alkaline (6.76 ± 0.08), a medium (6.40 ± 0.06), and an acidic (6.09 ± 0.05) pH component were observed compared to the pH (7.02 ± 0.02) at rest. It is suggested that NMES is able to induce pH heterogeneity in the medial gastrocnemius, and that the single Pi peaks represent the different muscle fiber types of the skeletal muscle. Magn Reson Med 77:2097-2106, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Diffusion tensor imaging of the human calf : Variation of inter- and intramuscle-specific diffusion parameters

    NARCIS (Netherlands)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-01-01

    Purpose: To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Materials and Methods: Whole calf muscles of 18 healthy

  10. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin.

    Directory of Open Access Journals (Sweden)

    Wolfgang Nachbauer

    Full Text Available Friedreich ataxia (FRDA is caused by a GAA repeat expansion in the FXN gene leading to reduced expression of the mitochondrial protein frataxin. Recombinant human erythropoietin (rhuEPO is suggested to increase frataxin levels, alter mitochondrial function and improve clinical scores in FRDA patients. Aim of the present pilot study was to investigate mitochondrial metabolism of skeletal muscle tissue in FRDA patients and examine effects of rhuEPO administration by phosphorus 31 magnetic resonance spectroscopy (31P MRS. Seven genetically confirmed FRDA patients underwent 31P MRS of the calf muscles using a rest-exercise-recovery protocol before and after receiving 3000 IU of rhuEPO for eight weeks. FRDA patients showed more rapid phosphocreatine (PCr depletion and increased accumulation of inorganic phosphate (Pi during incremental exercise as compared to controls. After maximal exhaustive exercise prolonged regeneration of PCR and slowed decline in Pi can be seen in FRDA. PCr regeneration as hallmark of mitochondrial ATP production revealed correlation to activity of complex II/III of the respiratory chain and to demographic values. PCr and Pi kinetics were not influenced by rhuEPO administration. Our results confirm mitochondrial dysfunction and exercise intolerance due to impaired oxidative phosphorylation in skeletal muscle tissue of FRDA patients. MRS did not show improved mitochondrial bioenergetics after eight weeks of rhuEPO exposition in skeletal muscle tissue of FRDA patients.EU Clinical Trials Register2008-000040-13.

  11. [A swollen, painless calf caused by neurogenic muscle (pseudo)-hypertrophy

    NARCIS (Netherlands)

    Warrenburg, B.P.C. van de; Zwarts, M.J.; Engelen, B.G.M. van

    2003-01-01

    Neurogenic muscle (pseudo) hypertrophy of the calf was diagnosed in a 60-year-old man, who presented with chronic, painless and unilateral calf enlargement caused by a chronic S1 radiculopathy due to a lumbar disc hernia in the L5-S1 interspace. The differential diagnosis of a swelling of the calf

  12. Muscle specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat

    DEFF Research Database (Denmark)

    Olesen, Annesofie Thorup; Jensen, Bente Rona; Uhlendorf, Toni L

    2014-01-01

    length, passive stiffness and passive force of spastic GA were decreased whereas those of spastic SO were increased. No mechanical interaction between the calf muscles and TA was found. As GA was lengthened, force from SO and PL declined despite a constant muscle-tendon unit length of SO and PL. However......, the extent of this interaction was not different in the spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes seen for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate......The purpose of the present study was to investigate muscle mechanical properties and mechanical interaction between muscles in the lower hindlimb of the spastic mutant rat. Length-force characteristics of gastrocnemius (GA), soleus (SO) and plantaris (PL) were assessed in anesthetized spastic...

  13. Calf muscle volume estimates: Implications for Botulinum toxin treatment?

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Sonne-Holm, Stig; Thomsen, Carsten

    2007-01-01

    An optimal botulinum toxin dose may be related to the volume of the targeted muscle. We investigated the suitability of using ultrasound and anthropometry to estimate gastrocnemius and soleus muscle volume. Gastrocnemius and soleus muscle thickness was measured in 11 cadaveric human legs, using...

  14. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters.

    Science.gov (United States)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-10-01

    To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Pseudohypertrophy of the calf muscles in a patient with diabetic neuropathy: a case report

    International Nuclear Information System (INIS)

    Lee, Eun Jin; Lee, Young Hwan; Jung, Kyung Jae; Park, Young Chan; Kim, Ho Kyun; Kim, Ok Dong

    2007-01-01

    Partial or complete loss of innervation of skeletal muscle leads to muscle weakness and atrophic changes, resulting in decreased muscle volume with fatty replacement. Rarely, enlargement of the affected muscle may occur, related to two processes: true hypertrophy and pseudohypertrophy. We report CT and MR findings of the pseudohypertrophy of calf muscles, especially the soleus and gastrocnemius muscles, in a patient with diabetic neuropathy that showed increased muscle volume with diffuse fatty replacement and the presence of scanty muscle fibers

  16. Pseudohypertrophy of the calf muscles in a patient with diabetic neuropathy: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Lee, Young Hwan; Jung, Kyung Jae; Park, Young Chan; Kim, Ho Kyun; Kim, Ok Dong [School of Medicine, Catholic University of Daegu, Daegu (Korea, Republic of)

    2007-09-15

    Partial or complete loss of innervation of skeletal muscle leads to muscle weakness and atrophic changes, resulting in decreased muscle volume with fatty replacement. Rarely, enlargement of the affected muscle may occur, related to two processes: true hypertrophy and pseudohypertrophy. We report CT and MR findings of the pseudohypertrophy of calf muscles, especially the soleus and gastrocnemius muscles, in a patient with diabetic neuropathy that showed increased muscle volume with diffuse fatty replacement and the presence of scanty muscle fibers.

  17. Phosphorus Spectroscopy of Calf Muscles before and after Exercise

    International Nuclear Information System (INIS)

    Wcisło, Bożena; Cichocka, Monika; Urbanik, Andrzej

    2014-01-01

    The aim of this study was to determine 31 PMRS reference spectrum and intracellular pH of calf muscles in the dominant limb of healthy, young, male volunteers before and after intense physical effort. Examinations were performed with a 1.5 T MR system. FID CSI (Free Induction Decay Chemical Shift Imaging) sequence was used with the following parameters: TR=4000 ms, FA=90°, NEX=2 and VOI (Volume Of Interest)=8×8×8 cm 3 (512 cm 3 ) involving in calf muscles. Raw data was preprocessed using SAGE (GE) software. Authors analyzed relative concentrations ratios of selected metabolites: PCr/ATP and PCr/P i . Intracellular pH and relative concentrations ratios of each metabolite (P i , PCr, α-ATP, β-ATP, γ-ATP, ATP) were also calculated relative to the sum of concentrations of all metabolites. Results were compared with a t-test. Based on statistical analysis of results significant differences (p<0.05) were demonstrated for some of the studied metabolites and for intracellular pH. Increase in PCr concentration in relation to the sum of concentrations of all metabolites and to ATP concentration was noted. However, β-ATP, α-ATP and ATP concentrations relative to the sum of concentrations of all metabolites become reduced. Decrease in pH after physical effort was demonstrated. There were no significant differences (p<0.05) in concentrations of remaining metabolites before and after exercise. Increase in PCr concentration relative to P i concentration and decrease of P i and γ-ATP concentration relative to the sum of concentrations of all metabolites were demonstrated. The 31 PMRS method enables assessment of concentrations of phosphorus-containing metabolites as well as intercellular pH before and after exercise. This method is still under examination, but it has already shown promise as a diagnostic tool for the future

  18. EFFECT OF MUSCLE ENERGY TECHNIQUE ON FLEXIBILITY OF HAMSTRING AND CALF MUSCLES AND SPRINTING PERFORMANCE IN SPRINTERS

    Directory of Open Access Journals (Sweden)

    M. Prasad Naik

    2015-10-01

    Full Text Available Background: Muscle energy technique is used for restoring normal tone in hypertonic muscles, strengthening weak muscles, preparing muscle for subsequent stretching, one of the main uses of this method is to normalize joint range which may help in increase flexibility and performance in sprinters. The aim of the study is to evaluate the effect of muscle energy technique on flexibility of hamstrings and calf muscles and sprinting performance in sprinters. The objective of the study is to determine the muscle energy technique on hamstrings and calf muscle flexibility and sprinting performance in sprinters by using goniometer and timing of sprinting performance. Method: The study design is an experimental study in which 30 male sprinters were recruited in this study. The study sample included all male healthy sprinters, aged between 15 -30 years. All subjects received warm up, muscle energy technique and cool down exercises daily for a period of 6weeks.The outcome measures are 90°-90°popliteal angle for assessing hamstring flexibility and ROM of ankle joint for calf muscles by universal goniometer and sprinting performance time by using stopwatch. Results: Independent t-test and paired t- test are used to analyse the data. A significant difference was found between pre and post values of hamstring and calf muscle flexibility and sprinting performance after the analysis in this study. Conclusion: This study shows that there was a significant effect of MET on hamstring and calf muscle flexibility and sprinting performance.

  19. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults.

    Science.gov (United States)

    Behringer, M; Moser, M; Montag, J; McCourt, M; Tenner, D; Mester, J

    2015-06-01

    Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.

  20. Effects of noxious stimulation to the back or calf muscles on gait stability.

    Science.gov (United States)

    van den Hoorn, Wolbert; Hug, François; Hodges, Paul W; Bruijn, Sjoerd M; van Dieën, Jaap H

    2015-11-26

    Gait stability is the ability to deal with small perturbations that naturally occur during walking. Changes in motor control caused by pain could affect this ability. This study investigated whether nociceptive stimulation (hypertonic saline injection) in a low back (LBP) or calf (CalfP) muscle affects gait stability. Sixteen participants walked on a treadmill at 0.94ms(-1) and 1.67ms(-1), while thorax kinematics were recorded using 3D-motion capture. From 110 strides, stability (local divergence exponent, LDE), stride-to-stride variability and root mean squares (RMS) of thorax linear velocities were calculated along the three movement axes. At 0.94ms(-1), independent of movement axes, gait stability was lower (higher LDE) and stride-to-stride variability was higher, during LBP and CalfP than no pain. This was more pronounced during CalfP, likely explained by the biomechanical function of calf muscles in gait, as supported by greater mediolateral RMS and stance time asymmetry than in LBP and no pain. At 1.67ms(-1), independent of movement axes, gait stability was greater and stride-to-stride variability was smaller with LBP than no pain and CalfP, whereas CalfP was not different from no pain. Opposite effects of LBP on gait stability between speeds suggests a more protective strategy at the faster speed. Although mediolateral RMS was greater and participants had more asymmetric stance times with CalfP than LBP and no pain, limited effect of CalfP at the faster speed could relate to greater kinematic constraints and smaller effects of calf muscle activity on propulsion at this speed. In conclusion, pain effects on gait stability depend on pain location and walking speed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. No change in calf muscle passive stiffness after botulinum toxin injection in children with cerebral palsy.

    Science.gov (United States)

    Alhusaini, Adel A A; Crosbie, Jack; Shepherd, Roberta B; Dean, Catherine M; Scheinberg, Adam

    2011-06-01

    Stiffness and shortening of the calf muscle due to neural or mechanical factors can profoundly affect motor function. The aim of this study was to investigate non-neurally mediated calf-muscle tightness in children with cerebral palsy (CP) before and after botulinum toxin type A (BoNT-A) injection. Sixteen children with spastic CP (seven females, nine males; eight at Gross Motor Function Classification System level I, eight at level II; age range 4-10 y) and calf muscle spasticity were tested before and during the pharmaceutically active phase after injection of BoNT-A. Measures of passive muscle compliance and viscoelastic responses, hysteresis, and the gradient of the torque-angle curve were computed and compared before and after injection. Although there was a slight, but significant increase in ankle range of motion after BoNT-A injection and a small, significant decrease in the torque required to achieve plantigrade and 5° of dorsiflexion, no significant difference in myotendinous stiffness or hysteresis were detected after BoNT-A injection. Despite any effect on neurally mediated responses, the compliance of the calf muscle was not changed and the muscle continued to offer significant resistance to passive motion of the ankle. These findings suggest that additional treatment approaches are required to supplement the effects of BoNT-A injections when managing children with calf muscle spasticity. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  2. Measurement of Gender Differences of Gastrocnemius Muscle and Tendon Using Sonomyography during Calf Raises: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Guang-Quan Zhou

    2017-01-01

    Full Text Available Skeletal muscles are essential to the gender-specific characteristics of human movements. Sonomyography, a new signal for quantifying muscle activation, is of great benefit to understand muscle function through monitoring the real-time muscle architectural changes. The purpose of this pilot study was to investigate gender differences in the architectural changes of gastronomies muscle and tendon by using sonomyography during performing two-legged calf raising exercises. A motion analysis system was developed to extract sonomyography from ultrasound images together with kinematic and kinetic measurements. Tiny fascicle length changes among seven male subjects were observed at the initial part of calf raising, whereas the fascicle of seven female subjects shortened immediately. This result suggested that men would generate higher mechanical power output of plantar flexors to regulate their heavier body mass. In addition, the larger regression coefficient between the fascicle length and muscle force for the male subjects implied that higher muscle stiffness for the men was required in demand of maintaining their heavier body economically. The findings from the current study suggested that the body mass might play a factor in the gender difference in structural changes of muscle and tendon during motion. The sonomyography may provide valuable information in the understanding of the gender difference in human movements.

  3. Calf Muscle Performance Deficits Remain 7 Years After an Achilles Tendon Rupture.

    Science.gov (United States)

    Brorsson, Annelie; Grävare Silbernagel, Karin; Olsson, Nicklas; Nilsson Helander, Katarina

    2018-02-01

    Optimizing calf muscle performance seems to play an important role in minimizing impairments and symptoms after an Achilles tendon rupture (ATR). The literature lacks long-term follow-up studies after ATR that describe calf muscle performance over time. The primary aim was to evaluate calf muscle performance and patient-reported outcomes at a mean of 7 years after ATR in patients included in a prospective, randomized controlled trial. A secondary aim was to evaluate whether improvement in calf muscle performance continued after the 2-year follow-up. Cohort study; Level of evidence, 2. Sixty-six subjects (13 women, 53 men) with a mean age of 50 years (SD, 8.5 years) were evaluated at a mean of 7 years (SD, 1 year) years after their ATR. Thirty-four subjects had surgical treatment and 32 had nonsurgical treatment. Patient-reported outcomes were evaluated with Achilles tendon Total Rupture Score (ATRS) and Physical Activity Scale (PAS). Calf muscle performance was evaluated with single-leg standing heel-rise test, concentric strength power heel-rise test, and single-legged hop for distance. Limb Symmetry Index (LSI = injured side/healthy side × 100) was calculated for side-to-side differences. Seven years after ATR, the injured side showed decreased values in all calf muscle performance tests ( P performance did not continue after the 2-year follow-up. Heel-rise height increased significantly ( P = .002) between the 1-year (10.8 cm) and the 7-year (11.5 cm) follow-up assessments. The median ATRS was 96 (of a possible score of 100) and the median PAS was 4 (of a possible score of 6), indicating minor patient-reported symptoms and fairly high physical activity. No significant differences were found in calf muscle performance or patient-reported outcomes between the treatment groups except for the LSI for heel-rise repetitions. Continued deficits in calf muscle endurance and strength remained 7 years after ATR. No continued improvement in calf muscle performance

  4. Connective tissue injury in calf muscle tears and return to play: MRI correlation.

    Science.gov (United States)

    Prakash, Ashutosh; Entwisle, Tom; Schneider, Michal; Brukner, Peter; Connell, David

    2017-10-26

    The aim of our study was to assess a group of patients with calf muscle tears and evaluate the integrity of the connective tissue boundaries and interfaces. Further, we propose a novel MRI grading system based on integrity of the connective tissue and assess any correlation between the grading score and time to return to play. We have also reviewed the anatomy of the calf muscles. We retrospectively evaluated 100 consecutive patients with clinical suspicion and MRI confirmation of calf muscle injury. We evaluated each calf muscle tear with MRI for the particular muscle injured, location of injury within the muscle and integrity of the connective tissue structure at the interface. The muscle tears were graded 0-3 depending on the degree of muscle and connective tissue injury. The time to return to play for each patient and each injury was found from the injury records and respective sports doctors. In 100 patients, 114 injuries were detected. Connective tissue involvement was observed in 63 out of 100 patients and failure (grade 3 injury) in 18. Mean time to return to play with grade 0 injuries was 8 days, grade 1 tears was 17 days, grade 2 tears was 25 days and grade 3 tears was 48 days (pmuscle tears. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. CONGENITAL NUTRITIONAL MYODEGENERATION (WHITE MUSCLE DISEASE) IN A GIRAFFE ( GIRAFFA CAMELOPARDALIS) CALF.

    Science.gov (United States)

    Bos, Jan H; Klip, Fokko C; Kik, Marja J L

    2017-12-01

    It is well known that vitamin E and selenium deficiencies in domestic ruminants can lead to white muscle disease. After a clinically normal gestation period at Ouwehand Zoo in the Netherlands, a newborn giraffe ( Giraffa camelopardalis) calf showed clinical signs of white muscle disease almost immediately after birth. The calf was rejected by the mother and was euthanized 3 days later because of deterioration of clinical signs. At necropsy, pulmonary edema and pallor of skeletal and heart muscles was noted. Histologically, there was hyaline degeneration of skeletal muscle myocytes and pulmonary edema. Blood concentrations of vitamin E were ≤ 0.7 mg/L. Based on clinical, biochemical, and gross and microscopic pathological findings, congenital nutritional myodegeneration was diagnosed. This case of neonatal white muscle disease is particularly remarkable given that the diet of the dam contained more than the recommended amount of vitamin E.

  6. Mitochondrial dysfunction in calf muscles of patients with combined peripheral arterial disease and diabetes type 2

    DEFF Research Database (Denmark)

    Lindegaard Pedersen, Brian; Bækgaard, Niels; Quistorff, Bjørn

    2017-01-01

    BACKGROUND: This study elucidate the effects on muscle mitochondrial function in patients suffering from combined peripheral arterial disease (PAD) and type 2 diabetes (T2D) and the relation to patient symptoms and treatment. METHODS: Near Infra Red Spectroscopy (NIRS) calf muscle exercise tests...... were conducted on Forty subjects, 15 (PAD), 15 (PAD+T2D) and 10 healthy age matched controls (CTRL) recruited from the vascular outpatient clinic at Gentofte County Hospital, Denmark. Calf muscle biopsies (~ 80 mg) (Gastrocnemius and Anterior tibial muscles) were sampled and mitochondrial function...... group. This was confirmed by a ~30% reduction in oxygen consumption in the muscle biopsy tests for the PAD+T2D compared to the PAD group (P

  7. Calf muscle involvement in Becker muscular dystrophy: when size does not matter.

    Science.gov (United States)

    Monforte, Mauro; Mercuri, Eugenio; Laschena, Francesco; Ricci, Enzo; Tasca, Giorgio

    2014-12-15

    Calf hypertrophy is a common feature in Becker muscular dystrophy (BMD), and it is still debated to which extent fatty degeneration or true muscle hypertrophy account for it. We wanted to investigate the relative contribution of these two components using a simple image analysis approach and their possible correlation with disease severity. Twenty-nine BMD patients' MRI scans were analyzed. A semiquantitative visual score assessing fatty replacement of calf muscles (calf MRI score, CMS) was calculated and correlated with the cross sectional area (CSA) of lower leg posterior compartment muscles, digitally measured on acquired images. The correlation between CSA and CMS was not significant. CMS in contrast correlated with disease severity (p<0.001) while CSA did not (p=0.969). In BMD, a major contribution to calf hypertrophy is provided by real muscle hypertrophy rather than by fatty degeneration. CMS appears to be a potential surrogate marker of disease severity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ankle-foot orthoses that restrict dorsiflexion improve walking in polio survivors with calf muscle weakness

    NARCIS (Netherlands)

    Ploeger, Hilde E.; Bus, Sicco A.; Brehm, Merel-Anne; Nollet, Frans

    2014-01-01

    In polio survivors with calf muscle weakness, dorsiflexion-restricting ankle-foot orthoses (DR-AFOs) aim to improve gait in order to reduce walking-related problems such as instability or increased energy cost. However, evidence on the efficacy of DR-AFOs in polio survivors is lacking. We

  9. Factors associated with night-time calf muscle cramps: a case-control study.

    Science.gov (United States)

    Hawke, Fiona; Chuter, Vivienne; Burns, Joshua

    2013-03-01

    Although highly prevalent and painful, night-time calf muscle cramping is poorly understood, and no treatment has shown consistent efficacy or safety. One hundred sixty adults were recruited from New South Wales, Australia, including 80 who had night-time calf cramping at least once per week and 80 age- and gender-matched adults who did not. Participants were assessed using reliable tests of lower limb strength, flexibility, morphometrics, circulation, and sensation, and were questioned about health and lifestyle factors, diet, medications, exercise, symptomatology, sleeping habits, and footwear. Conditional logistic regression identified 3 factors independently associated with night-time calf muscle cramps: muscle twitching (OR 4.6, 95% CI 1.6-15.5, P = 0.01); lower limb tingling (OR 4.1, 95% CI 1.6-10.3, P = 0.003); and foot dorsiflexion weakness (OR 1.02, 95% CI 1.01-1.03, P = 0.002), which represented other measures of lower limb weakness in the model. Night-time calf muscle cramps were associated with markers of neurological dysfunction and potential musculoskeletal therapeutic targets. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  10. Relative strengths of the calf muscles based on MRI volume measurements.

    Science.gov (United States)

    Jeng, Clifford L; Thawait, Gaurav K; Kwon, John Y; Machado, Antonio; Boyle, James W; Campbell, John; Carrino, John A

    2012-05-01

    In 1985, Silver et al. published a cadaver study which determined the relative order of strength of the muscles in the calf. Muscle strength, which is proportional to volume, was obtained by dissecting out the individual muscles, weighing them, and then multiplying by the specific gravity. No similar studies have been performed using {\\it in vivo} measurements of muscle volume. Ten normal subjects underwent 3-Tesla MRI's of both lower extremities using non-fat-saturated T2 SPACE sequences. The volume for each muscle was determined by tracing the muscle contour on sequential axial images and then interpolating the volume using imaging software. The results from this study differ from Silver's original article. The lateral head of the gastrocnemius was found to be stronger than the tibialis anterior muscle. The FHL and EDL muscles were both stronger than the peroneus longus. There was no significant difference in strength between the peroneus longus and brevis muscles. This revised order of muscle strengths in the calf based on in vivo MRI findings may assist surgeons in determining the optimal tendons to transfer in order to address muscle weakness and deformity.

  11. Sport socks do not enhance calf muscle pump function but inelastic wraps do.

    Science.gov (United States)

    Partsch, H; Mosti, G

    2014-12-01

    Aim of the study was to measure the effect of elastic and inelastic compression on calf muscle pump function in healthy male athletes. This was an experimental study which included 21 healthy male athletes. The ejection fraction (EF) of the venous calf pump was measured comparing the effects of a variety of compression materials: 1) sport compression stockings; 2) light zinc paste bandages; 3) sport compression stockings with additional Velcro® wraps over the calf. The influence of sport stocking and wraps on the venous calibre at the largest calf circumference in the lying and standing position was investigated using MRI. Inelastic compression exerting a median pressure in the standing position of 37.5 mmHg (zinc paste) and 48 mmHg (loosely applied straps over a sport stocking) achieved a significant increase of EF up to 100%. Sport stockings alone with a standing pressure of 19-24 mmHg did not show a significant change of EF. MRI demonstrated some venous narrowing in the lying but not in the standing position. By wrapping inelastic straps over the stocking an emptying of the veins in the lying and a considerable narrowing in the standing position could be observed. Venous calf pump function in athletes is not influenced by elastic sport stockings, but inelastic wraps either alone or applied over sport stockings lead to a significant enhancement.

  12. A young lady with swelling and stiffness of calf muscles

    Directory of Open Access Journals (Sweden)

    H S Kiran

    2011-01-01

    Full Text Available Hypothyroidism causes a variety of changes in the body. Though uncommon, hypothyroidism can present as myopathy. Hoffman′s syndrome is a specific, rare form of hypothyroid myopathy, which causes proximal weakness and pseudohypertrophy of muscles.

  13. Ultrasonographic evaluation of the calf muscle mass and architecture in elderly patients with and without sarcopenia.

    Science.gov (United States)

    Kuyumcu, Mehmet Emin; Halil, Meltem; Kara, Özgür; Çuni, Bledjan; Çağlayan, Gökhan; Güven, Serdar; Yeşil, Yusuf; Arık, Güneş; Yavuz, Burcu Balam; Cankurtaran, Mustafa; Özçakar, Levent

    2016-01-01

    To sonographically assess the muscle mass and architecture of sarcopenic elderly subjects, and to explore the utility of ultrasound (US) measurements in predicting sarcopenia. One hundred elderly subjects were enrolled in this cross-sectional study. Mean age value of our study population was 73.08±6.18years. The diagnosis of sarcopenia was confirmed by measuring fat-free mass index (using bioelectrical impedance analysis) and handgrip strength. Calf circumference was measured and US evaluations comprised bilateral gastrocnemius muscle (MG) thickness, fascicle length and pennate angles; subcutaneous fat and dermis thicknesses in the calf. Bilateral muscle thickness and fascicle length values were significantly lower in patients with sarcopenia (both psarcopenia (all values>76.92%). Gastrocnemius muscle thickness and fascicle length values are lower in sarcopenic elderly and these two parameters can serve as alternative measurements for predicting/quantifying sarcopenia. Calf circumference measurements alone may not be appropriate for assessing sarcopenia. Instead, US imaging can conveniently be used to evaluate different compartments of the musculoskelal system in (sarcopenic) elderly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Bilateral idiopathic calf muscle hypertrophy: an exceptional cause of unsightly leg curvature.

    Science.gov (United States)

    Herlin, C; Chaput, B; Rivier, F; Doucet, J C; Bigorre, M; Captier, G

    2015-04-01

    The authors present the management of a young female patient who presented with longstanding bilateral calf muscle hypertrophy, with no known cause. Taking into account the patient's wishes and the fact that the hypertrophy was mainly located in the posteromedial compartment, we chose to carry out a subtotal bilateral resection of medial gastrocnemius muscles. This procedure was performed with an harmonic scalpel, permitting a excellent cosmetic result while avoiding complications or functional impairment. After a reviewing of the commonly used techniques, the authors discuss the chosen surgical approach taking into account its clinical particularity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function.

    Science.gov (United States)

    Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N

    2015-07-01

    The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery-vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

  16. A novel approach to sonographic examination in a patient with a calf muscle tear: a case report

    Directory of Open Access Journals (Sweden)

    Chen Carl PC

    2009-06-01

    Full Text Available Abstract Introduction Rupture of the distal musculotendinous junction of the medial head of the gastrocnemius, also known as "tennis leg", can be readily examined using a soft tissue ultrasound. Loss of muscle fiber continuity and the occurrence of bloody fluid accumulation can be observed using ultrasound with the patient in the prone position; however, some cases may have normal ultrasound findings in this conventional position. We report a case of a middle-aged man with tennis leg. Ultrasound examination had normal findings during the first two attempts. During the third attempt, with the patient's calf muscles examined in an unconventional knee flexed position, sonographic findings resembling tennis leg were detected. Case presentation A 60-year-old man in good health visited our rehabilitation clinic complaining of left calf muscle pain. On suspicion of a ruptured left medial head gastrocnemius muscle, a soft tissue ultrasound examination was performed. An ultrasound examination revealed symmetrical findings of bilateral calf muscles without evidence of muscle rupture. A roentgenogram of the left lower limb did not reveal any bony lesions. An ultrasound examination one week later also revealed negative sonographic findings. However, he still complained of persistent pain in his left calf area. A different ultrasound examination approach was then performed with the patient lying in the supine position with his knee flexed at 90 degrees. The transducer was then placed pointing upwards to examine the muscles and well-defined anechoic fluid collections with areas of hypoechoic surroundings were observed. Conclusion For patients suffering from calf muscle area pain and suspicion of tennis leg, a soft tissue ultrasound is a simple tool to confirm the diagnosis. However, in the case of negative sonographic findings, we recommend trying a different positional approach to examine the calf muscles by ultrasound before the diagnosis of tennis leg can

  17. A novel approach to sonographic examination in a patient with a calf muscle tear: a case report.

    Science.gov (United States)

    Chen, Carl Pc; Tang, Simon Ft; Hsu, Chih-Chin; Chen, Ruo Li; Hsu, Rex Ch; Wu, Chin-Wen; Chen, Max Jl

    2009-06-25

    Rupture of the distal musculotendinous junction of the medial head of the gastrocnemius, also known as "tennis leg", can be readily examined using a soft tissue ultrasound. Loss of muscle fiber continuity and the occurrence of bloody fluid accumulation can be observed using ultrasound with the patient in the prone position; however, some cases may have normal ultrasound findings in this conventional position. We report a case of a middle-aged man with tennis leg. Ultrasound examination had normal findings during the first two attempts. During the third attempt, with the patient's calf muscles examined in an unconventional knee flexed position, sonographic findings resembling tennis leg were detected. A 60-year-old man in good health visited our rehabilitation clinic complaining of left calf muscle pain. On suspicion of a ruptured left medial head gastrocnemius muscle, a soft tissue ultrasound examination was performed. An ultrasound examination revealed symmetrical findings of bilateral calf muscles without evidence of muscle rupture. A roentgenogram of the left lower limb did not reveal any bony lesions. An ultrasound examination one week later also revealed negative sonographic findings. However, he still complained of persistent pain in his left calf area. A different ultrasound examination approach was then performed with the patient lying in the supine position with his knee flexed at 90 degrees. The transducer was then placed pointing upwards to examine the muscles and well-defined anechoic fluid collections with areas of hypoechoic surroundings were observed. For patients suffering from calf muscle area pain and suspicion of tennis leg, a soft tissue ultrasound is a simple tool to confirm the diagnosis. However, in the case of negative sonographic findings, we recommend trying a different positional approach to examine the calf muscles by ultrasound before the diagnosis of tennis leg can be ruled out.

  18. Local and Systemic Changes in Pain Sensitivity After 4 Weeks of Calf Muscle Stretching in a Nonpainful Population

    DEFF Research Database (Denmark)

    Bartholdy, Cecilie; Zangger, Graziella; Hansen, Lisbeth

    2016-01-01

    BACKGROUND: Stretching is often used in clinical practice for a variety of purposes, including pain therapy. The possible mechanism behind the effect of stretching remains to be clarified. AIM: To investigate whether 4 weeks of unilateral stretching of the calf muscles would affect local...... and central pain sensitivity. METHOD: This study was a randomized assessor-blinded clinical study. Healthy participants (age 18 to 40) were included and randomized. Participants in the intervention group were instructed to perform 2 stretching exercises targeting the calf muscles; 3 times 30 seconds, 7 days...... a week for 4 weeks on the dominant leg. Participants in the control group were instructed not to do any stretching for 4 weeks. Pressure pain threshold (PPT) and temporal summation (TS) of pressure pain were measured on the stretched calf, the contra-lateral calf, and contra-lateral lower arm using...

  19. Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy.

    Science.gov (United States)

    Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele

    2012-08-01

    To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Young, healthy subjects can reduce the activity of calf muscles when provided with EMG biofeedback in upright stance

    Directory of Open Access Journals (Sweden)

    Taian M. Vieira

    2016-04-01

    Full Text Available Recent evidence suggests the minimisation of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimising the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimise the level of muscle activation during standing without increasing the excursion of the centre of pressure (CoP. CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from ten healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects’ responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P<0.05 and an increase in tibialis anterior EMG (~10%; P<0.05. Furthermore, CoP mean position significantly shifted backward (~30 mm. In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at

  1. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

    Directory of Open Access Journals (Sweden)

    Guido Gambara

    Full Text Available Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus. Adult C57Bl/N6 male mice (n = 5 flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013, a sex and age-matched cohort were housed in standard vivarium cages (n = 5, or in a replicate flight habitat as ground control (n = 5. Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response. Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6 were further validated by quantitative real-time PCR (qRT-PCR. Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.

  2. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Søndergård, Stine D; Dela, Flemming; Helge, Jørn W

    2016-01-01

    Actovegin, a deproteinized haemodialysate of calf blood, is suggested to have ergogenic properties, but this potential effect has never been investigated in human skeletal muscle. To investigate this purported ergogenic effect, we measured the mitochondrial respiratory capacity in permeabilized h...

  3. Effects of exercise training on calf muscle oxygen extraction and blood flow in patients with peripheral artery disease.

    Science.gov (United States)

    Baker, Wesley B; Li, Zhe; Schenkel, Steven S; Chandra, Malavika; Busch, David R; Englund, Erin K; Schmitz, Kathryn H; Yodh, Arjun G; Floyd, Thomas F; Mohler, Emile R

    2017-12-01

    We employed near-infrared optical techniques, diffuse correlation spectroscopy (DCS), and frequency-domain near-infrared spectroscopy (FD-NIRS) to test the hypothesis that supervised exercise training increases skeletal muscle microvascular blood flow and oxygen extraction in patients with peripheral artery disease (PAD) who experience claudication. PAD patients ( n = 64) were randomly assigned to exercise and control groups. Patients in the exercise group received 3 mo of supervised exercise training. Calf muscle blood flow and oxygen extraction were optically monitored before, during, and after performance of a graded treadmill protocol at baseline and at 3 mo in both groups. Additionally, measurements of the ankle-brachial index (ABI) and peak walking time (PWT) to maximal claudication were made during each patient visit. Supervised exercise training was found to increase the maximal calf muscle blood flow and oxygen extraction levels during treadmill exercise by 29% (13%, 50%) and 8% (1%, 12%), respectively [ P group population were significantly higher than corresponding changes in the control group ( P training also increased PWT by 49% (18%, 101%) ( P = 0.01). However, within statistical error, the ABI, resting calf muscle blood flow and oxygen extraction, and the recovery half-time for hemoglobin\\myoglobin desaturation following cessation of maximal exercise were not altered by exercise training. The concurrent monitoring of both blood flow and oxygen extraction with the hybrid DCS/FD-NIRS instrument revealed enhanced muscle oxidative metabolism during physical activity from exercise training, which could be an underlying mechanism for the observed improvement in PWT. NEW & NOTEWORTHY We report on noninvasive optical measurements of skeletal muscle blood flow and oxygen extraction dynamics before/during/after treadmill exercise in peripheral artery disease patients who experience claudication. The measurements tracked the effects of a 3-mo supervised

  4. Effects of isokinetic calf muscle exercise program on muscle strength and venous function in patients with chronic venous insufficiency.

    Science.gov (United States)

    Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B

    2018-05-01

    Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.

  5. Research on the performance of the spastic calf muscle of young adults with cerebral palsy.

    Science.gov (United States)

    Lampe, Renee; Mitternacht, Jurgen

    2011-02-12

    The aim of this study was to find an objective graduation of pes equinus in infantile cerebral palsy, especially with regard to functional aspects, to allow a differentiated choice of the therapeutic options. Very often raises the question of whether a surgical lengthening of the Achilles tendon may let expect a functional improvement. For this documentation 17 patients with pes equinus and a diagnosis of spastic cerebral palsy, primarily of the lower limbs, and hemiplegia were examined first clinically and then by a procedure for calculating the functional kinetic parameters from an in-shoe plantar pressure distribution measurement (novel pedar-X system), which is used in many orthopedic practices and clinics as a standard measuring device. Using additional video motion analysis, the flexion in the ankle joint and the ankle joint torque were determined. From this the physical performance of the spastically shortened calf muscle was calculated. The course of the curves of torque and joint performance allows a functional classification of the pes equinus. Approximately three quarters of all pes equinus demonstrated functional activity of the most part of the normal push-off propulsion power. Even the rigid pes equinus was capable of performing push-off propulsion work, provided it converted energy that was absorbed during the heel-strike phase and released it again during the push-off phase. This suggests that the function of paretic ankle joint is better than its kinematics of motion. A heel strike with a pes equinus triggers via stretching stimuli in the muscle-ligament structure reflex motor functions, thereby causing the typical spastic gait pattern. This remarkable gait pattern is often evaluated as dysfunctional and as absolutely requiring correction. However, an aspect possibly neglected in this instance is the fact that this gait pattern may be efficient for the patient and may in fact be a suitable means allowing for economic locomotion despite the cerebral

  6. A case of polyarteritis nodosa limited to the right calf muscles, fascia, and skin: a case report

    Directory of Open Access Journals (Sweden)

    Brett Francesca

    2011-09-01

    Full Text Available Abstract Introduction Limited polyarteritis nodosa is a rare benign disease that usually responds well to systemic corticosteroid treatment. We report a case limited to calf muscles, fascia, and skin treated with local corticosteroid therapy directed to the affected areas by ultrasound guidance. Case presentation A 36-year-old Caucasian woman presented with a 10-month history of progressive right calf pain and swelling, which were unresponsive to treatment with non-steroidal anti-inflammatory drugs and physiotherapy. An examination revealed a swollen tender right calf with indurated overlying skin. Laboratory investigations showed an erythrocyte sedimentation rate of 24 mm/hour and a C-reactive protein of 15 mg/dl. Full blood count, renal profile, and creatinine kinase level were normal. A full autoantibody screen and hepatitis B and C serology results were negative. A chest X-ray was unremarkable. Magnetic resonance imaging of the right leg revealed increased signal intensity in T2-weighted images and this was suggestive of extensive inflammatory changes of the gastrocnemius muscle and, to a lesser extent, the soleus muscle. There were marked inflammatory changes throughout the gastrocnemius muscle and the subcutaneous tissue circumferentially around the right lower leg. A biopsy of affected skin, muscle, and fascia showed histopathological features consistent with polyarteritis nodosa, including small-vessel vasculitis with fibrinoid changes in the vessel wall and intense perivascular and focal mural chronic inflammatory changes. Our patient declined treatment with oral steroids. She received a course of ultrasound-guided injections of steroid (Depo-Medrone, methylprednisolone in the involved muscle area and commenced maintenance azathioprine with a good response. Conclusions Limited polyarteritis nodosa is rare and affects middle-aged individuals. In most cases, treatment with moderate- to high-dose corticosteroids gives symptomatic relief

  7. The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness.

    Science.gov (United States)

    Morrissey, Dylan; Roskilly, Anna; Twycross-Lewis, Richard; Isinkaye, Tomide; Screen, Hazel; Woledge, Roger; Bader, Dan

    2011-03-01

    To compare in vivo effects of eccentric and concentric calf muscle training on Achilles tendon stiffness, in subjects without tendinopathy. Thirty-eight recreational athletes completed 6 weeks eccentric (6 males, 13 females, 21.6  ±  2.2 years) or concentric training (8 males, 11 females, 21.1  ±  2.0 years). Achilles tendon stiffness, tendon modulus and single-leg jump height were measured before and after intervention. Exercise adherence was recorded using a diary. All data are reported as mean  ±  SD. Groups were matched for height and weight but the eccentric training group were more active at baseline (P Tendon stiffness was higher in the eccentrically trained group at baseline compared to the concentrically trained group (20.9  ±  7.3 N/mm v 13.38  ±  4.66 N/mm; P = 0.001) and decreased significantly after eccentric training (to 17.2 ( ±  5.9) N/mm (P = 0.035)). There was no stiffness change in the concentric group (P = 0.405). Stiffness modulus showed similar changes to stiffness. An inverse correlation was found between initial, and subsequent, reduction in stiffness (r = -0.66). Jump height did not change and no correlation between stiffness change and adherence was observed in either group (r = 0.01). Six weeks of eccentric training can alter Achilles tendon stiffness while a matched concentric programme shows no similar effects. Studies in patients with Achilles tendinopathy are warranted.

  8. The long-term clinical and MRI results following eccentric calf muscle training in chronic Achilles tendinosis

    International Nuclear Information System (INIS)

    Gaerdin, Anna; Shalabi, Adel; Movin, Tomas; Svensson, Leif

    2010-01-01

    To evaluate the long-term results following eccentric calf-muscle training in patients with chronic Achilles tendinopathy. A total of 24 patients with chronic Achilles tendinopathy were included in a study evaluating MRI findings and clinical symptoms before and after 3 months of daily eccentric calf-muscle strength training. Median duration of symptoms was 18 months (range 6-120). Four of the patients did not perform the prescribed treatment for different reasons and were followed for 14 months. The resulting 20 treated patients completed 4.2-year (range 29-58 months) follow up. Tendon volume was evaluated by using 3D seed growing technique and signal abnormalities were visually semi-quantitatively graded. Level of pain and performance was categorized using a questionnaire completed by the patient. In the symptomatic treated patients, median intensity level of pain decreased from moderate/severe at time of inclusion to mild at follow up (p 3 (SD 2.0) at time of inclusion and 6.4 cm 3 (SD 2.0) at follow up (p = 0.18). The four symptomatic non-treated tendons did not improve regarding pain, performance, intratendinous signal or tendon volume. We found decreased pain, improved performance and decreased intratendinous signal both compared to index examination and immediately after the 3 months training regimen in a 4.2-year clinical and MRI follow up, in a group of patients treated with heavy loaded eccentric calf-muscle training for chronic Achilles tendinopathy. The improvements were greater at 4.2-year follow up, despite no further active treatment, than immediately after the treatment. This may indicate a good long-term prognosis for Achilles tendinosis patients. (orig.)

  9. Effects of ageing on adaptation during vibratory stimulation of the calf and neck muscles.

    Science.gov (United States)

    Patel, M; Fransson, P A; Magnusson, M

    2009-01-01

    The ability to adapt and habituate based on prior experiences is important for human movement control, fall prevention and for the ability to enhance performance during various human activities. However, little is known about the ability for the elderly to adapt to balance perturbations in the lateral direction. To determine whether adaptation, i.e., the ability to adjust postural control to handle balance perturbations better over time, differed in the elderly subjects compared with young subjects in the anteroposterior and lateral directions, and whether the site of the balance perturbation or the presence or absence of vision affected the response. Postural stability was measured as anteroposterior and lateral torque variance in a young group (n = 18 (9 female and 9 male), average age = 29.1 years) and an elderly group (n = 16 (5 female and 11 male), average age = 71.5 years) with eyes open and closed during balance perturbations from calf and neck vibrations. After a 30-s period of quiet stance, these vibrations were repeated over a period of 200 s, so the adaptive responses could be analyzed by splitting the data into 50-s periods. The adaptive responses in the anteroposterior and lateral directions were different. Adaptation in the anteroposterior direction occurred to an almost equal extent in the elderly and young, whereas adaptation in the lateral direction was markedly larger in the elderly in all tests except for neck vibration with eyes closed. Age, vision and vibration site were all influential factors for recorded body movements, but no significant combined effects were found. Balance perturbation instigates an adaptive response in the elderly in both the anteroposterior and lateral directions. However, during perturbation, age and vision are both very influential factors for the stability, thus associating the previously documented age-related decline in visual functioning with a higher risk of falls in this age range. (c) 2008 S. Karger AG, Basel.

  10. Muscle function-dependent sarcopenia and cut-off values of possible predictors in community-dwelling Turkish elderly: calf circumference, midarm muscle circumference and walking speed.

    Science.gov (United States)

    Akın, S; Mucuk, S; Öztürk, A; Mazıcıoğlu, M; Göçer, Ş; Arguvanlı, S; Şafak, E D

    2015-10-01

    The aim of this study was to determine the prevalence of muscle strength-based sarcopenia and to determine possible predictors. This is a cross-sectional population-based study in the community-dwelling Turkish elderly. Anthropometric measurements, namely body height, weight, triceps skin fold (TSF), mid upper arm circumference (MUAC), waist circumference (WC) and calf circumference (CC), were noted. The midarm muscle circumference (MAMC) was calculated by using MUAC and TSF measurement. Sarcopenia was assessed, adjusted for body mass index (BMI) and gender, according to muscle strength. Physical performance was determined by 4 m walking speed (WS; m/s). The receiver operating curve analysis was performed to determine cut-offs of CC, MAMC and 4 m WS. A total of 879 elderly subjects, 50.1% of whom were female, were recruited. The mean handgrip strength (HGS) and s.d. was 24.2 (8.8) kg [17.9 (4.8) female, 30.6 (7.1) male]. The muscle function-dependent sarcopenia was 63.4% (female 73.5%, male 53.2%). The muscle mass-dependent sarcopenia for CC (sarcopenia. An adequate muscle mass may not mean a reliable muscle function. Muscle function may describe sarcopenia better compared with muscle mass. The CC, MAMC and 4 m WS cut-offs may be used to assess sarcopenia in certain age groups.

  11. Evaluation of skeletal muscle during calf exercise by 31-phosphorus magnetic resonance spectroscopy in patients on statin medications.

    Science.gov (United States)

    Wu, Jim S; Buettner, Catherine; Smithline, Howard; Ngo, Long H; Greenman, Robert L

    2011-01-01

    Muscle pain is a common side effect of statin medications, but the cause is poorly understood. We characterized phosphocreatine (PCr) exercise recovery kinetics in 10 patients with hypercholesterolemia before and after a 4-week regimen of statin therapy using 31-phosphorus magnetic resonance spectroscopy ((31) P-MRS). (31) P spectra were obtained before, during, and after exercise on a calf flexion pedal ergometer. Creatine kinase (CK) serum levels were drawn before and after statin therapy. The mean metabolic recovery time constant in subjects increased from 28.1 s (SE = 6.5 s) to 55.4 s (SE = 7.4 s) after statin therapy. The unweighted mean of the pre/post-recovery time difference was -27.3 s (SE = 12.4 s; P = 0.02). Pre- and post-therapy CK levels were not significantly different (P = 0.50). Metabolic recovery time in the calf is prolonged in patients after statin use. This suggests that statins impair mitochondrial oxidative function, and (31) P MRS is a potential study model for statin-associated myopathy. Copyright © 2010 Wiley Periodicals, Inc.

  12. Evaluation of skeletal muscle during calf exercise by 31P MR spectroscopy in patients on statin medications

    Science.gov (United States)

    Buettner, Catherine; Smithline, Howard; Ngo, Long H; Greenman, Robert L.

    2012-01-01

    Introduction Muscle pain is a common side effect of statin medications, however, the cause is poorly understood. Methods We characterized phosphocreatine (PCr) exercise recovery kinetics in 10 patients with hypercholesterolemia before and after a 4 week regimen of statin therapy using 31P magnetic resonance spectroscopy (31P-MRS). 31P spectra were obtained before, during, and following exercise on a calf flexion pedal ergometer. Creatine kinase (CK) serum levels were drawn before and after statin therapy. Results The mean metabolic recovery time constant in subjects increased from 28.1s (SE=6.5s) to 55.4s (SE=7.4s) following statin therapy. The unweighted mean of the pre-post recovery time difference was -27.3s (SE=12.4s); (p-value = 0.02). Pre- and post-therapy CK levels were not significantly different (p-value = 0.50). Discussion Metabolic recovery time in the calf is prolonged in patients following statin use. This suggests that statins impair mitochondrial oxidative function, and 31P –MRS is a potential study model for statin-associated myopathy. PMID:21171098

  13. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Pfirrmann, Christian W.A.; Buck, Florian M. [University Hospital Balgrist, Radiology, Zurich (Switzerland); Espinosa, Norman [University Hospital Balgrist, Department of Orthopedic Surgery, Zurich (Switzerland); Raptis, Dimitri A. [University Hospital Zurich, Clinic of Visceral and Transplant Surgery, Zurich (Switzerland)

    2014-06-15

    To quantify the muscle fat-content (MFC) in phantoms, volunteers and patients with achillodynia using two-point Dixon-based magnetic resonance imaging (2pt-MRI{sub DIXON}) in comparison to MR spectroscopy (MRS) and visual assessment of MFC. Two-point Dixon-based MRI was used to measure the MFC of 15 phantoms containing 0-100 % fat-content and calf muscles in 30 patients (13 women; 57 ± 15 years) with achillodynia and in 20 volunteers (10 women; 30 ± 14 years) at 1.5 T. The accuracy of 2pt-MRI{sub DIXON} in quantification of MFC was assessed in vitro using phantoms and in vivo using MRS as the standard of reference. Fat-fractions derived from 2pt-MRI{sub DIXON} (FF{sub DIXON}) and MRS (FF{sub MRS}) were related to visual assessment of MFC (Goutallier grades 0-4) and Achilles-tendon quality (grade 0-4). Excellent linear correlation was demonstrated for FF{sub DIXON} with phantoms and with FF{sub MRS} in patients (p{sub c} = 0.997/0.995; p < 0.001). FF{sub DIXON} of the gastrocnemius muscle was significantly higher (p = 0.002) in patients (7.0 % ± 4.7 %) compared with volunteers (3.6 % ± 0.7 %), whereas visual-grading showed no difference between both groups (p > 0.05). FF{sub MRS} and FF{sub DIXON} were significantly higher in subjects with (>grade 1) structural damage of the Achilles-tendon (p = 0.01). Two-point Dixon-based MRI allows for accurate quantification of MFC, outperforming visual assessment of calf muscle fat. Structural damage of the Achilles tendon is associated with a significantly higher MFC. (orig.)

  14. Absolute quantification of calf muscle metabolites by proton 1H-MR spectroscopy

    International Nuclear Information System (INIS)

    Ma Ling; Pan Bitao; Meng Qunfei; Gao Zhenhua; Zhang Xiaoling

    2010-01-01

    relaxation time was measured at 3.0 T of the metabolites in skeletal muscles of healthy adult human. After corrected by the relaxation times, the absolute concentrations calculated were consistent with the reported results. Quantitative knowledge of muscle NMR relaxation time was a prerequisite for absolute quantification of metabolites using the 1 H-MRS and also was useful for optimizing measurement protocols. (authors)

  15. Spontaneous calf haematoma: case report.

    Science.gov (United States)

    Zubaidah, N H; Liew, N C

    2014-02-01

    Spontaneous calf haematoma is a rare condition and few case reports have been published in the English literature. Common conditions like deep vein thrombosis and traumatic gastrocnemius muscle tear need to be considered when a patient presents with unilateral calf swelling and tenderness. Ultrasound and Magnetic Resonance Imaging are essential for confirmation of diagnosis. The purpose of this paper is to report on a rare case of spontaneous calf hematoma and its diagnosis and management.

  16. Video game-based neuromuscular electrical stimulation system for calf muscle training: a case study.

    Science.gov (United States)

    Sayenko, D G; Masani, K; Milosevic, M; Robinson, M F; Vette, A H; McConville, K M V; Popovic, M R

    2011-03-01

    A video game-based training system was designed to integrate neuromuscular electrical stimulation (NMES) and visual feedback as a means to improve strength and endurance of the lower leg muscles, and to increase the range of motion (ROM) of the ankle joints. The system allowed the participants to perform isotonic concentric and isometric contractions in both the plantarflexors and dorsiflexors using NMES. In the proposed system, the contractions were performed against exterior resistance, and the angle of the ankle joints was used as the control input to the video game. To test the practicality of the proposed system, an individual with chronic complete spinal cord injury (SCI) participated in the study. The system provided a progressive overload for the trained muscles, which is a prerequisite for successful muscle training. The participant indicated that he enjoyed the video game-based training and that he would like to continue the treatment. The results show that the training resulted in a significant improvement of the strength and endurance of the paralyzed lower leg muscles, and in an increased ROM of the ankle joints. Video game-based training programs might be effective in motivating participants to train more frequently and adhere to otherwise tedious training protocols. It is expected that such training will not only improve the properties of their muscles but also decrease the severity and frequency of secondary complications that result from SCI. Copyright © 2010 IPEM. All rights reserved.

  17. EMG changes in thigh and calf muscles in fin swimming exercise.

    Science.gov (United States)

    Jammes, Y; Delliaux, S; Coulange, M; Jammes, C; Kipson, N; Brerro-Saby, C; Bregeon, F

    2010-08-01

    Because previous researchers have reported a reduced lactic acid production that accompanies a delayed or an absent ventilatory threshold (VTh) in water-based exercise, we hypothesized that the metaboreflex, activated by muscle acidosis, might be absent in fin swimming. This motor response, delaying the occurrence of fatigue, is characterized by a decreased median frequency (MF) of electromyographic (EMG) power spectrum. Seven healthy subjects performed a maximal fin swimming exercise protocol with simultaneous recordings of surface EMGs in VASTUS MEDIALIS (VM), TIBIALIS ANTERIOR (TA) and GASTROCNEMIUS MEDIALIS (GM). We computed the root mean square (RMS) and MF and recorded the compound evoked muscle potential (M-wave) in VM. We also measured the propulsive force and oxygen uptake (VO (2)), and determined VTh. VTh was absent in 4/7 subjects and measured at 70-90% of VO (2max) in the other three. In the three studied muscles, the global EMG activity (RMS) increased while the MF decreased in proportion of VO (2), the MF changes being significantly higher in VM (-29%) and GM (-39%) than in TA (-19%). Because no M-wave changes were noted, the MF decline was attributed to the recruitment of low-frequency, fatigue-resistant motor units. Our most important finding is the persistence of the metaboreflex even in a situation of reduced muscle acidosis. (c) Georg Thieme Verlag KG Stuttgart . New York.

  18. Human calf muscular metabolism study with a home-made ergometer using 31P NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Peynsaert, J; Achten, E; Claeys, E [Ghent University Hospital (Belgium); Rousseaux, M [Ghent University Hospital (Belgium). Dept. of Sport Medicine

    1995-12-01

    Phosphorus-31 NMR measurements were performed to examine the variations in the concentration of phosphate metabolites in calf muscle during exercise. Therefore, volunteers, installed in the supine position, were asked to push repetitively on the pedal of a home-made ergometer. The produced work and the changes in phosphorus containing metabolites were measured continuously. Correlations were made between the inorganic phosphate/phosphocreatine ratio and the cumulative work and between the intracellular pH and the cumulative work. The exercise protocol could be changed interactively with respect to the imposed initial pressure, the maximum pressure, the pressure increase per level and the time a certain level was held. The whole experiment could be graphically followed on-line. In the first stadium, the in vitro reproducibility of the ergometer was tested for different protocols. These tests revealed that, though the deviation in produced work was markedly the highest at high working pressures, the relative error never exceeded 3%. Consequently, the ex vitro reproducibility of the data was examined with the equipment placed in the scanner. Generally, same conclusions could be derived. In a next stage, the work will be synchronized with the biochemical data. Extreme precautions will be taken to examine each volunteer every time under the same physical and psychological conditions.

  19. Human calf muscular metabolism study with a home-made ergometer using 31P NMR spectroscopy

    International Nuclear Information System (INIS)

    Peynsaert, J.; Achten, E.; Claeys, E. . Dept. of Magnetic Resonance; Rousseaux, M.

    1995-01-01

    Phosphorus-31 NMR measurements were performed to examine the variations in the concentration of phosphate metabolites in calf muscle during exercise. Therefore, volunteers, installed in the supine position, were asked to push repetitively on the pedal of a home-made ergometer. The produced work and the changes in phosphorus containing metabolites were measured continuously. Correlations were made between the inorganic phosphate/phosphocreatine ratio and the cumulative work and between the intracellular pH and the cumulative work. The exercise protocol could be changed interactively with respect to the imposed initial pressure, the maximum pressure, the pressure increase per level and the time a certain level was held. The whole experiment could be graphically followed on-line. In the first stadium, the in vitro reproducibility of the ergometer was tested for different protocols. These tests revealed that, though the deviation in produced work was markedly the highest at high working pressures, the relative error never exceeded 3%. Consequently, the ex vitro reproducibility of the data was examined with the equipment placed in the scanner. Generally, same conclusions could be derived. In a next stage, the work will be synchronized with the biochemical data. Extreme precautions will be taken to examine each volunteer every time under the same physical and psychological conditions

  20. Blood pressure and calf muscle oxygen extraction during plantar flexion exercise in peripheral artery disease.

    Science.gov (United States)

    Luck, J Carter; Miller, Amanda J; Aziz, Faisal; Radtka, John F; Proctor, David N; Leuenberger, Urs A; Sinoway, Lawrence I; Muller, Matthew D

    2017-07-01

    Peripheral artery disease (PAD) is an atherosclerotic vascular disease that affects 200 million people worldwide. Although PAD primarily affects large arteries, it is also associated with microvascular dysfunction, an exaggerated blood pressure (BP) response to exercise, and high cardiovascular mortality. We hypothesized that fatiguing plantar flexion exercise that evokes claudication elicits a greater reduction in skeletal muscle oxygenation (SmO 2 ) and a higher rise in BP in PAD compared with age-matched healthy subjects, but low-intensity steady-state plantar flexion elicits similar responses between groups. In the first experiment, eight patients with PAD and eight healthy controls performed fatiguing plantar flexion exercise (from 0.5 to 7 kg for up to 14 min). In the second experiment, seven patients with PAD and seven healthy controls performed low-intensity plantar flexion exercise (2.0 kg for 14 min). BP, heart rate (HR), and SmO 2 were measured continuously using near-infrared spectroscopy (NIRS). SmO 2 is the ratio of oxygenated hemoglobin to total hemoglobin, expressed as a percent. At fatigue, patients with PAD had a greater increase in mean arterial BP (18 ± 2 vs. vs. 10 ± 2 mmHg, P = 0.029) and HR (14 ± 2 vs. 6 ± 2 beats/min, P = 0.033) and a greater reduction in SmO 2 (-54 ± 10 vs. -12 ± 4%, P = 0.001). However, both groups had similar physiological responses to low-intensity, nonpainful plantar flexion exercise. These data suggest that patients with PAD have altered oxygen uptake and/or utilization during fatiguing exercise coincident with an augmented BP response. NEW & NOTEWORTHY In this laboratory study, patients with peripheral artery disease performed plantar flexion exercise in the supine posture until symptoms of claudication occurred. Relative to age- and sex-matched healthy subjects we found that patients had a higher blood pressure response, a higher heart rate response, and a greater reduction in skeletal muscle oxygenation as

  1. Muscular Calf Injuries in Runners.

    Science.gov (United States)

    Fields, Karl B; Rigby, Michael D

    2016-01-01

    Calf pain is a common complaint among runners of all ages but is most frequent in masters athletes. This article focuses on injuries to the triceps surae or true 'calf muscles.' The most common calf injury is a tear of the medial gastrocnemius muscle (Tennis Leg) but other structures including the lateral gastrocnemius, plantaris and soleus also may be the cause of muscular pain. This article looks at the presentation, evaluation, and treatment of these injuries. We also highlight some examples of musculoskeletal ultrasound which is a valuable tool for rapid diagnosis of the cause and extent of injury.

  2. Cellular toxicity of calf blood extract on human corneal epithelial cells in vitro.

    Science.gov (United States)

    Park, Young Min; Kim, Su Jin; Han, Young Sang; Lee, Jong Soo

    2015-01-01

    To investigate the biologic effects of the calf blood extract on corneal epithelial cells in vitro. The effects on corneal epithelial cells were evaluated after 1, 4, 12, and 24 h of exposure to various concentrations of calf blood extract (3, 5, 8 and 16%). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was performed to measure levels of cellular metabolic activity. The lactate dehydrogenase (LDH) assay was performed to determine the extent of cellular damage. Cellular morphology was examined using phase-contrast microscopy. The scratch wound assay was performed to quantify the migration of corneal epithelial cells. At the 3 and 5% concentrations of calf blood extract, MTT values were similar to those observed in the control group. However, at a concentration of 8 and 16%, cellular metabolic activity was significantly decreased after 4 h of exposure to calf blood extract. After 12 h of exposure to 8 and 16% concentrations of calf blood extract, LDH activity and cellular morphological damage to the corneal epithelial cells were significantly increased. There was no evidence of cellular migration after 12 h exposure to 5% or higher concentration of calf blood extract because of cellular toxicity. Compared with normal corneal epithelial cells, the cellular activity was decreased, and toxicity was increased after over 12 h of exposure to more than 5% concentration of calf blood extract. Further clinical studies will be necessary to determine the optimal concentration and exposure time for the topical application of eye drops containing calf blood extract.

  3. THE EFFECT OF FETAL CALF SERUM ON HUMAN DENTAL PULP STEM CELLS

    Directory of Open Access Journals (Sweden)

    Jakub Suchánek

    2013-01-01

    Full Text Available Aims: Authors studied potential side effects of fetal calf serum (FCS in cultivation media on human dental pulp stem cells (DPSC during long term cultivation. Methods: Two lines of DPSC obtained healthy donors (male 22 years, female 23 years were used. Both lines were cultivated under standard cultivation conditions in four different media containing 10% or 2% FCS and substituted with growth factors. During long term cultivation proliferation ability, karyotype and phenotype of DPSC were measured. Results: Both lines of DPSC cultivated in a media containing 2% FCS and ITS supplement showed the highest number of population doublings. On the other hand the proliferation rate of DPSC cultivated in a media with 2% FCS without ITS supplement was slowest. Proliferation rate of DPSC cultivated in 10% FCS media with or without FGF-2 was comparable. DPSC cultivated in a media with 10% FCS showed a significantly higher amount of chromosomal aberrations. These chromosomal aberrations do not seem to be clonal but surprisingly we found large amounts of tetraploid cells in the 9th passage in both media containing 10% FCS. Conclusions: Our study proved that cultivation of DPSC in media containing higher concentration of FCS has critical side effects on cell chromosomal stability.

  4. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-11-01

    Full Text Available Abstract Background The effects of fetal calf serum (FCS heat inactivation and bacterial lipopolysaccharide (LPS contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM cells were grown in FCS, either non-heated, or heat inactivated, having low ( Results A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE as compared to cells grown in media with non-heated FCS (NHE. Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1. Conclusion The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome.

  5. Development of Human Muscle Protein Measurement with MRI

    Science.gov (United States)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity

  6. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains.

    Science.gov (United States)

    Orchard, John; Farhart, Patrick; Kountouris, Alex; James, Trefor; Portus, Marc

    2010-01-01

    To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains. This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998-1999 to 2008-2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI]) were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture. Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4-7.1). Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03-2.1) and quadriceps strain (RR = 2.0; 95% CI: 1.1-3.5) were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4-1.1). Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group. Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a strong theoretical basis for the connection, it is likely that this is a true association.

  7. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains

    Directory of Open Access Journals (Sweden)

    John Orchard

    2010-09-01

    Full Text Available John Orchard1, Patrick Farhart2, Alex Kountouris3, Trefor James3, Marc Portus31School of Public Health, University of Sydney, Australia; 2Punjab Kings XI team, Indian Premier League, India; 3Cricket Australia, Melbourne, AustraliaObjective: To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains.Methods: This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998–1999 to 2008–2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI] were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture.Results: Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4–7.1. Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03–2.1 and quadriceps strain (RR = 2.0; 95% CI: 1.1–3.5 were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4–1.1. Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group.Conclusion: Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a

  8. Recurrent painful calf swelling associated with gout.

    Science.gov (United States)

    Kovarsky, J; Young, M B

    1978-01-01

    A 30-year-old man had a recurrent painful calf swelling associated with gout that mimicked thrombophlebitis and possibly muscle tear. This painful calf swelling occurred in the absence of a subjective history of arthritis of the knee. A constellation of clinical signs was highly suggestive that gout was the cause of the painful calf swellings. Patients with similar conditions, after careful exclusion of thrombophlebitis, might be spared unnecessary and potentially dangerous anticoagulation or surgical intervention by early diagnosis of gout.

  9. Trichinella spiralis in human muscle (image)

    Science.gov (United States)

    This is the parasite Trichinella spiralis in human muscle tissue. The parasite is transmitted by eating undercooked meats, especially pork. The cysts hatch in the intestines and produce large numbers of larvae that migrate into muscle tissue. The cysts ...

  10. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  11. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  12. Effects of duration of vitamin C supplementation during the finishing period on postmortem protein degradation, tenderness, and meat color of the longissimus muscle of calf-fed steers consuming a 0.31 or 0.59% sulfur diet.

    Science.gov (United States)

    Pogge, D J; Lonergan, S M; Hansen, S L

    2015-05-01

    High-S (HS) diets have been identified as a causative agent in the development of oxidative stress in cattle, which in postmortem muscle can negatively alter meat quality. Vitamin C (VC) is a potent antioxidant produced endogenously by cattle; however, exogenous supplementation of VC may be useful when HS diets are fed to cattle. The objective of this study was to examine the impact of duration of VC supplementation, for the first 56, 90, or 127 d, during the finishing period on meat color and tenderness of the longissimus thoracis (LT) collected from calf-fed steers consuming a 0.31 or 0.59% S diet. Angus steers ( n= 42) were stratified to pens by initial BW (304 ± 13 kg) and GeneMax marbling score (4.3 ± 0.12), and each pen was randomly assigned to 1 of 7 treatments (6 steers/pen, 1 pen/treatment), including HS (0.59% S, a combination of dried distillers grains plus solubles and sodium sulfate) control (HS CON), HS CON + 10 g VC·steer·(-1)d(-1) for the first 56 d (HS VC56), 90 d (HS VC90), or 127 d (HS VC127), low S (LS; 0.31% S) + 10 g VC·steer·(-1)d(-1) for the first 56 d (LS VC56), 90 d (LS VC90), or 127 d (LS VC127). Steers were harvested (n = 40) and, after a 24-h chill, rib sections (LT) were collected. pH was determined on each rib section before division into 3 sections for determination of 1) 7-d retail display and color and Warner-Bratzler shear force (WBSF), 2) 14-d WBSF determination, and 3) protein degradation and collagen content (2 d postmortem). Data were analyzed by ANOVA as a completely randomized design, with the fixed effect of treatment. Individual feed intake was recorded, and steer was the experimental unit. The HS steers had a greater and lesser percent of the 80- and 76-kDa subunits of calpain-1 (P ≤ 0.05), respectively, and tended to have less (P = 0.08) troponin T degradation (d2), and more (P = 0.02) collagen than LS steers. Increasing days of VC supplementation decreased (P = 0.05) the percentage of the 80 kDa subunit of

  13. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  14. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  15. Quantitative assessment of calf circumference in Duchenne muscular dystrophy patients

    NARCIS (Netherlands)

    Beenakker, EAC; de Vries, Joeke; Fock, JM; van Tol, M; Brouwer, OF; Maurits, NM; van der Hoeven, JH

    2002-01-01

    Duchenne muscular dystrophy is clinically characterised by progressive muscle weakness and a gradual increase in the size of some affected muscles, especially calf muscles. The extent of calf enlargement is usually determined by subjective visual assessment. The purpose of this study was to

  16. Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells.

    Science.gov (United States)

    Fernandez-Rebollo, Eduardo; Mentrup, Birgit; Ebert, Regina; Franzen, Julia; Abagnale, Giulio; Sieben, Torsten; Ostrowska, Alina; Hoffmann, Per; Roux, Pierre-François; Rath, Björn; Goodhardt, Michele; Lemaitre, Jean-Marc; Bischof, Oliver; Jakob, Franz; Wagner, Wolfgang

    2017-07-11

    Culture medium of mesenchymal stromal cells (MSCs) is usually supplemented with either human platelet lysate (HPL) or fetal calf serum (FCS). Many studies have demonstrated that proliferation and cellular morphology are affected by these supplements - it is therefore important to determine if they favor outgrowth of different subpopulations and thereby impact on the heterogeneous composition of MSCs. We have isolated and expanded human bone marrow-derived MSCs in parallel with HPL or FCS and demonstrated that HPL significantly increases proliferation and leads to dramatic differences in cellular morphology. Remarkably, global DNA-methylation profiles did not reveal any significant differences. Even at the transcriptomic level, there were only moderate changes in pairwise comparison. Furthermore, the effects on proliferation, cytoskeletal organization, and focal adhesions were reversible by interchanging to opposite culture conditions. These results indicate that cultivation of MSCs with HPL or FCS has no systematic bias for specific cell types.

  17. Phosphorylation potential in the dominant leg is lower, and [ADPfree] is higher in calf muscles at rest in endurance athletes than in sprinters and in untrained subjects.

    Science.gov (United States)

    Zoladz, J A; Kulinowski, P; Zapart-Bukowska, J; Grandys, M; Majerczak, J; Korzeniewski, B; Jasiński, A

    2007-12-01

    It has been reported that various types of mammalian muscle fibers differ regarding the content of several metabolites at rest. However, to our knowledge no data have been reported in the literature, concerning the muscle energetic status at rest in high class athletes when considering the dominant and non-dominant leg separately. We have hypothesised that due to higher mechanical loads on the dominant leg in athletes, the metabolic profile in the dominant leg at rest in the calf muscles, characterized by [PCr], [ADP(free)], [AMP(free)] and DeltaG(ATP), will significantly differ among endurance athletes, sprinters and untrained individuals. In this study we determined the DeltaG(ATP) and adenine phosphates concentrations in the dominant and non-dominant legs in untrained subjects (n = 6), sprinters (n = 10) and endurance athletes (n = 7) at rest. The (mean +/- SD) age of the subjects was 23.4 +/- 4.3 years. Muscle metabolites were measured in the calf muscles at rest, by means of (31)P-MRS, using a 4.7 T superconducting magnet (Bruker). When taking into account mean values in the left and right leg, phosphocreatine concentration ([PCr]) and DeltaG(ATP) were significantly lower (p<0.05, Wilcoxon-Mann-Whitney test), and [ADP(free)] was significantly higher (p = 0.04) in endurance athletes than in untrained subjects. When considering the differences between the left and right leg, [PCr] in the dominant leg was significantly lower in endurance athletes than in sprinters (p = 0.01) and untrained subjects (p = 0.02) (25.91 +/- 2.87 mM; 30.02 +/- 3.12 mM and 30.71 +/- 2.88 mM, respectively). The [ADP(free)] was significantly higher (p = 0.02) in endurance athletes than in sprinters and untrained subjects (p = 0.02) (42.19 +/- 13.44 microM; 27.86 +/- 10.19 microM; 25.35 +/- 10.97 microM, respectively). The DeltaG(ATP) in the dominant leg was significantly lower (p = 0.02) in endurance athletes than in sprinters and untrained subjects (p = 0.01) (-60.53 +/- 2.03 kJ.M(-1

  18. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  19. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-01-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO 2 ) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO 2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO 2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P 2 and tHb

  20. Rapid desensitization and resensitization of 5-HT2 receptor mediated phosphatidyl inositol hydrolysis by serotonin agonists in quiescent calf aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Pauwels, P.J.; Van Gompel, P.; Leysen, J.E.

    1990-01-01

    Agonist regulation of 5-hydroxytryptamine 2 (5-HT 2 ) receptors was studied in calf aortic smooth muscle cultures incubated in a quiescent, defined synthetic medium that does not stimulate cell proliferation, but that provides cells with supplements that maintain cell viability. In these cells, 5-hydroxytryptamine (5-HT)-induced [ 3 H]inositol phosphates accumulation showed the characteristics of a 5-HT 2 receptor coupled transducing system according to the inhibition of the response by 5-HT 2 antagonists at nanomolar concentrations. The 5-HT 2 receptor coupled response became rapidly desensitized during continued incubation with 5-HT and 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM); nearly full desensitization was obtained in two hours with 10 μM 5-HT and DOM pretreatment. The recovery of the response had a half-live of 5 hours after 2 hours pretreatment and of 9.5 to 12.5 hours after 24 to 96 hours agonist pretreatment. The DOM-induced desensitization of the 5-HT 2 receptor coupled response was fully blocked by 0.1 μM cinanserin. Cinanserin alone did not induce desensitization or up-regulation of the 5-HT 2 receptor coupled response at 0.1 μM

  1. A near infrared spectroscopy-based test of calf muscle function in patients with peripheral arterial disease

    DEFF Research Database (Denmark)

    Pedersen, Brian Lindegaard; Bækgaard, Niels; Quistorff, Bjørn

    2015-01-01

    test runs. Intraclass correlation constant (ICC) was used to describe reproducibility. The ICC was calculated using the area under the NIRS oxygenated hemoglobin (Hbox) curve, the initial velocity of the Hbox recovery curve, force measurements, and walking time. Results The ICC of the GAS was between 0...... and two age-matched patients without claudication. Each patient was tested with an isometric ergometer pedal test and a treadmill test applying NIRS measurements of the anterior tibial and the gastrocnemius muscles (GAS). Tests were repeated three times with randomly selected intervals between individual.......92-0.95 (foot-pedal) and 0.70-0.98 (tread mill) and of the anterior tibial muscle was between 0.87-0.96 (foot-pedal) and 0.67-0.79 (tread mill). Conclusion In this study, we contribute a new apparatus and test protocol for peripheral arterial disease (PAD) applying NIRS technique and controlled physical...

  2. A novel approach to sonographic examination in a patient with a calf muscle tear: a case report

    OpenAIRE

    Chen Carl PC; Tang Simon FT; Hsu Chih-Chin; Chen Ruo Li; Hsu Rex CH; Wu Chin-Wen; Chen Max JL

    2009-01-01

    Abstract Introduction Rupture of the distal musculotendinous junction of the medial head of the gastrocnemius, also known as "tennis leg", can be readily examined using a soft tissue ultrasound. Loss of muscle fiber continuity and the occurrence of bloody fluid accumulation can be observed using ultrasound with the patient in the prone position; however, some cases may have normal ultrasound findings in this conventional position. We report a case of a middle-aged man with tennis leg. Ultraso...

  3. Comparison of the prevalence of sarcopenia using skeletal muscle mass index and calf circumference applying the European consensus definition in elderly Mexican women.

    Science.gov (United States)

    Velazquez-Alva, Maria Consuelo; Irigoyen Camacho, Maria Esther; Lazarevich, Irina; Delgadillo Velazquez, Jaime; Acosta Dominguez, Patricia; Zepeda Zepeda, Marco A

    2017-01-01

    To compare the prevalence of sarcopenia using two indicators: skeletal muscle mass index (SMI) and calf circumference (CC) used in the algorithm proposed by the European Working Group on Sarcopenia in Mexican elderly women. This was a cross-sectional study. Lean body mass was determined by dual-energy X-ray absorptiometry. To define sarcopenia, the SMI was obtained using a cut-off value of 5.5 kg/m 2 , and the CC cut-off was 31 cm. For gait speed and handgrip strength, the cut-off values were 0.8 m/s and 20 kg, respectively. A total of 137 women (mean age 73.8 ± 6.7 years) participated in the study. The prevalence of sarcopenia was 14.6% using SMI and 11.0% using CC (P = 0.009). Body mass index was associated with a lower probability of sarcopenia applying SMI or CC (OR 0.75, P = 0.002 for SMI and OR 0.71, P = 0.004 for CC). Sarcopenia evaluated either with dual-energy X-ray absorptiometry or CC was not associated with physical performance, such as five times chair stand test, timed up and go test and short physical performance battery. Additionally, SMI was not associated with physical performance, five times chair stand test (P = 0.775) and timed up-and-go test (P = 0.341). The prevalence of sarcopenia in active elderly women was low. A higher prevalence of sarcopenia was detected using SMI compared with CC. It is important to identify the best methods to assess skeletal muscle mass to obtain a reliable diagnosis of sarcopenia. Geriatr Gerontol Int 2017; 17: 161-170. © 2015 Japan Geriatrics Society.

  4. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a ri...

  5. CALF BLOOD-FLOW AND POSTURE - DOPPLER ULTRASOUND MEASUREMENTS DURING AND AFTER EXERCISE

    NARCIS (Netherlands)

    VANLEEUWEN, BE; BARENDSEN, GJ; LUBBERS, J; DEPATER, L

    To investigate the joint effects of body posture and calf muscle pump, the calf blood flow of eight healthy volunteers was measured with pulsed Doppler equipment during and after 3 min of rhythmic exercise on a calf ergometer in the supine, sitting, and standing postures. Muscle contractions

  6. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  7. Phosphorylation of human skeletal muscle myosin

    International Nuclear Information System (INIS)

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-01-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30 0 C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with ( 30 P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ

  8. Calf-raise senior: a new test for assessment of plantar flexor muscle strength in older adults: protocol, validity, and reliability.

    Science.gov (United States)

    André, Helô-Isa; Carnide, Filomena; Borja, Edgar; Ramalho, Fátima; Santos-Rocha, Rita; Veloso, António P

    2016-01-01

    This study aimed to develop a new field test protocol with a standardized measurement of strength and power in plantar flexor muscles targeted to functionally independent older adults, the calf-raise senior (CRS) test, and also evaluate its reliability and validity. Forty-one subjects aged 65 years and older of both sexes participated in five different cross-sectional studies: 1) pilot (n=12); 2) inter- and intrarater agreement (n=12); 3) construct (n=41); 4) criterion validity (n=33); and 5) test-retest reliability (n=41). Different motion parameters were compared in order to define a specifically designed protocol for seniors. Two raters evaluated each participant twice, and the results of the same individual were compared between raters and participants to assess the interrater and intrarater agreement. The validity and reliability studies involved three testing sessions that lasted 2 weeks, including a battery of functional fitness tests, CRS test in two occasions, accelerometry, and strength assessments in an isokinetic dynamometer. The CRS test presented an excellent test-retest reliability (intraclass correlation coefficient [ICC] =0.90, standard error of measurement =2.0) and interrater reliability (ICC =0.93-0.96), as well as a good intrarater agreement (ICC =0.79-0.84). Participants with better results in the CRS test were younger and presented higher levels of physical activity and functional fitness. A significant association between test results and all strength parameters (isometric, r =0.87, r 2 =0.75; isokinetic, r =0.86, r 2 =0.74; and rate of force development, r =0.77, r 2 =0.59) was shown. This study was successful in demonstrating that the CRS test can meet the scientific criteria of validity and reliability. The test can be a good indicator of ankle strength in older adults and proved to discriminate significantly between individuals with improved functionality and levels of physical activity.

  9. Validating subject-specific RF and thermal simulations in the calf muscle using MR-based temperature measurements

    NARCIS (Netherlands)

    Simonis, Ffj; Raaijmakers, Aje; Lagendijk, Jjw; van den Berg, Cat

    2017-01-01

    Purpose: Ongoing discussions occur to translate the safety restrictions on MR scanners from specific absorption rate (SAR) to thermal dose. Therefore, this research focuses on the accuracy of thermal simulations in human subjects during an MR exam, which is fundamental information in that debate.

  10. Asymmetry of magnetic motor evoked potentials recorded in calf muscles of the dominant and non-dominant lower extremity.

    Science.gov (United States)

    Olex-Zarychta, Dorota; Koprowski, Robert; Sobota, Grzegorz; Wróbel, Zygmunt

    2009-08-07

    The aim of the study was to determine the applicability of magnetic stimulation and magnetic motor evoked potentials (MEPs) in motor asymmetry studies by obtaining quantitative and qualitative measures of efferent activity during low intensity magnetic stimulation of the dominant and non-dominant lower extremities. Magnetic stimulation of the tibial nerve in the popliteal fossa was performed in 10 healthy male right-handed and right-footed young adults. Responses were recorded from the lateral head of the gastrocnemius muscles of the right and left lower extremities. Response characteristics (duration, onset latency, amplitude) were analyzed in relation to the functional dominance of the limbs and in relation to the direction of the current in the magnetic coil by use of the Wilcoxon pair sequence test. The CCW direction of coil current was related to reduced amplitudes of recorded MEPs. Greater amplitudes of evoked potentials were recorded in the non-dominant extremity, both in the CW and CCW coil current directions, with the statistical significance of this effect (p=0.005). No differences in duration of response were found in the CW current direction, while in CCW the time of the left-side response was prolonged (p=0.01). In the non-dominant extremity longer onset latencies were recorded in both current directions, but only for the CW direction the side asymmetries showed a statistical significance of p=0.005. In the dominant extremity the stimulation correlated with stronger paresthesias, especially using the CCW direction of coil current. The results indicate that low intensity magnetic stimulation may be useful in quantitative and qualitative research into the motor asymmetry.

  11. Esterase profile of human masseter muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle...... the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and ii......C. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating...

  12. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain

    DEFF Research Database (Denmark)

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter

    2014-01-01

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity......, while the asymptomatic leg displayed higher uptake for medial gastrocnemius and flexor hallucis longus (P tendon GU than the controls (P effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative...... within- or between-group differences. Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle....

  13. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain.

    Science.gov (United States)

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter; Bojsen-Møller, Jens; Finni, Taija

    2014-07-15

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity and Achilles tendon GU. A longitudinal study design with control (n = 10) and patient (n = 10) groups was used. Surface electromyography (SEMG) from four ankle plantar flexors and GU from the same muscles and the Achilles tendon were measured during submaximal intermittent isometric plantar flexion task. The results indicated that the symptomatic leg was weaker (P eccentric rehabilitation. Additionally, the rehabilitation resulted in greater GU in both soleus (P tendon GU than the controls (P effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative activity in the symptomatic leg compared with both the asymptomatic and control legs (P Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle. Copyright © 2014 the American Physiological Society.

  14. Feasibility of measuring thermoregulation during RF heating of the human calf muscle using MR based methods

    NARCIS (Netherlands)

    Simonis, Frank F J; Petersen, Esben T; Lagendijk, JJW; van den Berg, CAT

    PURPOSE: One of the main safety concerns in MR is heating of the subject due to radiofrequency (RF) exposure. Recently was shown that local peak temperatures can reach dangerous values and the most prominent parameter for accurate temperature estimations is thermoregulation. Therefore, the goal of

  15. Muscle Coordination and Locomotion in Humans.

    Science.gov (United States)

    Sylos-Labini, Francesca; Zago, Myrka; Guertin, Pierre A; Lacquaniti, Francesco; Ivanenko, Yury P

    2017-01-01

    Locomotion is a semi-automatic daily task. Several studies show that muscle activity is fairly stereotyped during normal walking. Nevertheless, each human leg contains over 50 muscles and locomotion requires flexibility in order to adapt to different conditions as, for instance, different speeds, gaits, turning, obstacle avoidance, altered gravity levels, etc. Therefore, locomotor control has to deal with a certain level of flexibility and non-linearity. In this review, we describe and discuss different findings dealing with both simplicity and variability of the muscular control, as well as with its maturation during development. Despite complexity and redundancy, muscle activity patterns and spatiotemporal maps of spinal motoneuron output during human locomotion show both stereotypical features as well as functional re-organization. Flexibility and different solutions to adjust motor patterns should be considered when considering new rehabilitation strategies to treat disorders involving deficits in gait. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    Science.gov (United States)

    Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter

    2013-01-01

    Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  17. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse

    Directory of Open Access Journals (Sweden)

    Michele Salanova

    2013-01-01

    Full Text Available Activity-induced nitric oxide (NO imbalance and “nitrosative stress” are proposed mechanisms of disrupted Ca2+ homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study without and with exercise as countermeasure in order to assess (i the negative effects of chronic muscle disuse by nitrosative stress, (ii to test for possible attenuation by exercise countermeasure in bed rest and (iii to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre and at end (End from a bed rest disuse control group (CTR, n=9 and two bed rest resistive exercise groups either without (RE, n=7 or with superimposed vibration stimuli (RVE, n=7. At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, –SERCA1 and –PMCA and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  18. Human Plasma and Human Platelet-rich Plasma as a Substitute for Fetal Calf Serum during Long-term Cultivation of Mesenchymal Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Tereza Suchánková Kleplová

    2014-01-01

    Full Text Available Aims: Our aims were to isolate and cultivate mesenchymal dental pulp stem cells (DPSC in various media enriched with human blood components, and subsequently to investigate their basic biological properties. Methods: DPSC were cultivated in five different media based on α MEM containing different concentrations of human plasma (HP, platelet-rich plasma (PRP, or fetal calf serum (FCS. The DPSC biological properties were examined periodically. Results: We cultivated DPSC in the various cultivation media over 15 population doublings except for the medium supplemented with 10% HP. Our results showed that DPSC cultivated in medium supplemented with 10% PRP showed the shortest average population doubling time (DT (28.6 ± 4.6 hours, in contrast to DPSC cultivated in 10% HP which indicated the longest DT (156.2 ± 17.8 hours; hence this part of the experiment had been cancelled in the 6th passage. DPSC cultivated in media with 2% FCS+ITS (DT 47.3 ± 10.4 hours, 2% PRP (DT 40.1 ± 5.7 hours and 2% HP (DT 49.0 ± 15.2 hours showed almost the same proliferative activity. DPSC’s viability in the 9th passage was over 90% except for the DPSC cultivated in the 10% HP media. Conclusions: We proved that human blood components are suitable substitution for FCS in cultivation media for long-term DPSC cultivation.

  19. [Melanosis maculosa in a calf].

    Science.gov (United States)

    Camenzind, D; Winzap, B; Hässig, M

    2003-07-01

    This work describes findings in a fattened calf, which were seen in a routine slaughter. The most important findings by the meat inspector were diffuse, black spots between 2 and 70 mm in diameter. This hyperpigmentation was observed on the entire carcass as well as on the outside and inside of all internal organs. Removal of the spinal cord produced black colored liquor. Subsequent microbiological examination of the meat resulted in sterile findings. The muscle pH was 5.8. On histological examination many macrophages containing melanin were found in the lung and liver. Based on these findings the diagnosis of Melanosis maculosa was made.

  20. Subunit Stoichiometry of Human Muscle Chloride Channels

    OpenAIRE

    Fahlke, Christoph; Knittle, Timothy; Gurnett, Christina A.; Campbell, Kevin P.; George, Alfred L.

    1997-01-01

    Voltage-gated Cl? channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl? channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their ...

  1. Differential diagnosis of calf pain by ultrasonography

    Directory of Open Access Journals (Sweden)

    Luciano Augusto Botter

    2008-03-01

    Full Text Available This paper aims to evaluate the recent and numerous applications of ultrasonography in the differential diagnosis of conditions that affect the popliteal fossa and lower limbs, resulting in calf pain. Popliteal cysts and their ruptures, aneurysms, hematomas, cellulitis, abscesses, soft tissue tumors and other fluid collections are easily identified by this technique. Moreover, post-trauma and inflammatory conditions affecting muscles and tendons, muscle necrosis, deep venous thrombosis and superficial thrombophlebitis are very well demonstrated by the ultrasonographic screening.

  2. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women.

    Science.gov (United States)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C; Joseph, Gabby B; Yap, Samuel P; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M

    2012-07-01

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 ± 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P infiltration of muscle commonly occurs in many metabolic and neuromuscular diseases. • Image-based semi-quantitative classifications for assessing fat infiltration are not well validated. • Quantitative MRI techniques provide an accurate assessment of muscle fat.

  3. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  4. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine.

    Science.gov (United States)

    Gabr, Refaat E; El-Sharkawy, Abdel-Monem M; Schär, Michael; Weiss, Robert G; Bottomley, Paul A

    2011-07-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.

  5. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  6. Tursiops truncatus calf

    African Journals Online (AJOL)

    1990-05-15

    May 15, 1990 ... rest, changes in respiration rate appear to be strongly associated with the metabolic state of the calf. Stress ... 02-C02 respiratory control in bottlenose dolphins ..... phenomenon should be of obvious husbandry interest in.

  7. Lactate oxidation in human skeletal muscle mitochondria

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B

    2013-01-01

    of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P = 0.003). The addition...... of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within...

  8. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  9. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis

    NARCIS (Netherlands)

    Serlie, Mireille J. M.; de Haan, Jacco H.; Tack, Cees J.; Verberne, Hein J.; Ackermans, Mariette T.; Heerschap, Arend; Sauerwein, Hans P.

    2005-01-01

    The introduction of C-13 magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  10. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    , but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  11. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2012-07-15

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 {+-} 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. (orig.)

  12. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  13. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  14. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    the increase in xanthine oxidase in the muscle there were no detectable changes in the levels of muscle malondialdehyde or in plasma antioxidant capacity up to 4 days post-exercise. 5. It is concluded that eccentric exercise leads to an increased level of xanthine oxidase in human muscle and that the increase...

  15. Serial water changes in human skeletal muscles on exercise studied with proton magnetic resonance spectroscopy and imaging

    International Nuclear Information System (INIS)

    Ogino, Toru; Ikehira, Hiroo; Arimizu, Noboru

    1994-01-01

    In vivo 1 H-magnetic resonance imaging (MRI) enabled us to study the distribution of water in living tissues and to document changes in human skeletal muscles during physical exercise. The purpose of the present study was to determine the total muscle water changes after exercise using water in 1 H-MR spectroscopy and to compare these changes to the signal intensity change on T 2 * -weighted images and/or to the T 2 value change. Seven young male volunteers were positioned in a 1.5 T Philips MR imaging system. They were then asked to dorsiflex their ankle joint against a 2 kg weight once every 2 seconds for 2 minutes. The peak height of water declined according to the clearance curve after exercise in all seven cases with the 1 H-MRS similar to the signal intensity. The increasing rate at peak height of total muscle water exceeded both the signal intensity and the T 2 value because the water peak height on the 1 H-MRS included the extracellular water. In addition, we measured the changes in signal intensity in both calf muscles after walking race exercise. The time intensity curves were used to draw a clearance curve for each muscle group after exercise. It was possible to discern which muscle was used most from the T 2 * -weighted image that was obtained once after exercise. (author)

  16. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    Science.gov (United States)

    English, K. L.; Mulavara, A.; Bloomberg, J.; Ploutz-Snyder, LL

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.

  17. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  18. Selective activation of neuromuscular compartments within the human trapezius muscle

    DEFF Research Database (Denmark)

    Holtermann, A; Roeleveld, K; Mork, P J

    2009-01-01

    of the human trapezius muscle can be independently activated by voluntary command, indicating neuromuscular compartmentalization of the trapezius muscle. The independent activation of the upper and lower subdivisions of the trapezius is in accordance with the selective innervation by the fine cranial and main...... branch of the accessory nerve to the upper and lower subdivisions. These findings provide new insight into motor control characteristics, learning possibilities, and function of the clinically relevant human trapezius muscle....

  19. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  20. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically...

  1. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S. (Argonne National Lab., IL); Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  2. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  3. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    . Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular......Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans...

  4. Upper-limb exoskeleton for human muscle fatigue

    OpenAIRE

    Ali, SK; Tokhi, MO

    2017-01-01

    Human muscle fatigue is identified as one of the causes to musculuskeletal disorder (MSD). The objective of this paper is to investigate the effect of an exoskeleton in dealing with muscle fatigue in a virtual environment. The focus of this work is, for the exoskeleton to provide support as needed by human joint. A (Proportional, Integration and Derivative) controller is used for both human and exoskeleton. Simmechanics and Simulink are used to evaluate the performance of the exoskeleton. Exp...

  5. Intermuscular force transmission between human plantarflexor muscles in vivo

    DEFF Research Database (Denmark)

    Bojsen-Møller, Jens; Schwartz, Sidse; Kalliokoski, Kari K

    2010-01-01

    of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary...... surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited...

  6. Human skeletal muscle contains no detectable guanidinoacetic acid

    DEFF Research Database (Denmark)

    Ostojic, Sergej M; Ostojic, Jelena

    2018-01-01

    We analyzed data from previously completed trials to determine the effects of supplemental guanidinoacetic acid (GAA) on markers of muscle bioenergetics in healthy men using 1.5 T magnetic resonance spectroscopy. No detectable GAA (<0.1 μmol/L) was found in the vastus medialis muscle at baseline ...... nor at follow-up. This implies deficient GAA availability in the human skeletal muscle, suggesting absent or negligible potential for creatine synthesis from GAA inside this tissue, even after GAA loading....

  7. Unique expression of cytoskeletal proteins in human soft palate muscles.

    Science.gov (United States)

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  8. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  9. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  10. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  11. Calf enlargement associated with neurologic disease: two uncommon cases.

    Science.gov (United States)

    Harwood, S C; Honet, J C

    1988-01-01

    Muscle enlargement and hypertrophy are rare findings in neurogenic lesions. The two in combination have been reported in cases of peripheral nerve lesions, polyneuropathy, and poliomyelitis. True and pseudo muscle hypertrophy are the two possible etiologies, whereas infiltration, stretch, or exercise of the muscle are the causative factors. We report two cases of unilateral calf enlargement, one occurring after surgery for S1 radiculopathy with associated cramping, and the other after poliomyelitis.

  12. Observational Study on the Occurrence of Muscle Spindles in Human Digastric and Mylohyoideus Muscles

    Directory of Open Access Journals (Sweden)

    Daniele Saverino

    2014-01-01

    Full Text Available Although the occurrence of muscle spindles (MS is quite high in most skeletal muscles of humans, few MS, or even absence, have been reported in digastric and mylohyoideus muscles. Even if this condition is generally accepted and quoted in many papers and books, observational studies are scarce and based on histological sections of a low number of specimens. The aim of the present study is to confirm previous data, assessing MS number in a sample of digastric and mylohyoideus muscles. We investigated 11 digastric and 6 mylohyoideus muscles from 13 donors. Muscle samples were embedded in paraffin wax, cross-sectioned in a rostrocaudal direction, and stained using haematoxylin-eosin. A mean of 5.1 ± 1.1 (range 3–7 MS was found in digastric muscles and mean of 0.5 ± 0.8 (range 0–2 in mylohyoideus muscles. A significant difference (P<0.001 was found with the control sample, confirming the correctness of the histological procedure. Our results support general belief that the absolute number of spindles is sparse in digastric and mylohyoideus muscles. External forces, such as food resistance during chewing or gravity, do not counteract jaw-opening muscles. It is conceivable that this condition gives them a limited proprioceptive importance and a reduced need for having specific receptors as MS.

  13. Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: human MRSA carriage related with animal antimicrobial usage and farm hygiene.

    Science.gov (United States)

    Graveland, Haitske; Wagenaar, Jaap A; Heesterbeek, Hans; Mevius, Dik; van Duijkeren, Engeline; Heederik, Dick

    2010-06-08

    Recently a specific MRSA sequence type, ST398, emerged in food production animals and farmers. Risk factors for carrying MRSA ST398 in both animals and humans have not been fully evaluated. In this cross-sectional study, we investigated factors associated with MRSA colonization in veal calves and humans working and living on these farms. A sample of 102 veal calf farms were randomly selected and visited from March 2007-February 2008. Participating farmers were asked to fill in a questionnaire (n = 390) to identify potential risk factors. A nasal swab was taken from each participant. Furthermore, nasal swabs were taken from calves (n = 2151). Swabs were analysed for MRSA by selective enrichment and suspected colonies were confirmed as MRSA by using slide coagulase test and PCR for presence of the mecA-gene. Spa types were identified and a random selection of each spa type was tested with ST398 specific PCR. The Sequence Type of non ST398 strains was determined. Data were analyzed using logistic regression analysis. Human MRSA carriage was strongly associated with intensity of animal contact and with the number of MRSA positive animals on the farm. Calves were more often carrier when treated with antibiotics, while farm hygiene was associated with a lower prevalence of MRSA. This is the first study showing direct associations between animal and human carriage of ST398. The direct associations between animal and human MRSA carriage and the association between MRSA and antimicrobial use in calves implicate prudent use of antibiotics in farm animals.

  14. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  15. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  16. Calf Spleen Extractive Injection (CSEI, a small peptides enriched extraction, induces human hepatocellular carcinoma cell apoptosis via ROS/MAPKs dependent mitochondrial pathway

    Directory of Open Access Journals (Sweden)

    Dongxu Jia

    2016-10-01

    Full Text Available Calf Spleen Extractive Injection (CSEI, a small peptides enriched extraction, performs immunomodulatory activity on cancer patients suffering from radiotherapy or chemotherapy. The present study aims to investigate the anti-hepatocellular carcinoma effects of CSEI in cells and tumor-xenografted mouse models. In HepG2 and SMMC-7721 cells, CSEI reduced cell viability, enhanced apoptosis rate, caused reactive oxygen species (ROS accumulation, inhibited migration ability, and induced caspases cascade and mitochondrial membrane potential dissipation. CSEI significantly inhibited HepG2-xenografted tumor growth in nude mice. In cell and animal experiments, CSEI increased the activations of pro-apoptotic proteins including caspase 8, caspase 9 and caspase 3; meanwhile, it suppressed the expressions of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2 and anti-oxidation proteins, such as nuclear factor-erythroid 2 related factor 2 (Nrf2 and catalase (CAT. The enhanced phosphorylation of P38 and c-JunN-terminalkinase (JNK, and decreased phosphorylation of extra cellular signal-regulated protein kinase (ERKs were observed in CSEI-treated cells and tumor tissues. CSEI-induced cell viability reduction was significantly attenuated by N-Acetyl-l-cysteine (a ROS inhibitor pretreatment. All data demonstrated that the upregulated oxidative stress status and the altered mitogen-activated protein kinases (MAPKs phosphorylation contributed to CSEI-driven mitochondrial dysfunction. Taken together, CSEI exactly induced apoptosis in human hepatocellular carcinoma cells via ROS/MAPKs dependent mitochondrial pathway.

  17. Vibration sensitivity of human muscle spindles and Golgi tendon organs.

    Science.gov (United States)

    Fallon, James B; Macefield, Vaughan G

    2007-07-01

    The responses of the various muscle receptors to vibration are more complicated than a naïve categorization into stretch (muscle spindle primary ending), length (muscle spindle secondary endings), and tension (Golgi tendon organs) receptors. To emphasize the similarity of responses to small length changes, we recorded from 58 individual muscle afferents subserving receptors in the ankle or toe dorsiflexors of awake human subjects (32 primary endings, 20 secondary endings, and six Golgi tendon organs). Transverse sinusoidal vibration was applied to the distal tendon of the receptor-bearing muscle, while subjects either remained completely relaxed or maintained a weak isometric contraction of the appropriate muscle. In relaxed muscle, few units responded in a 1:1 manner to vibration, and there was no evidence of a preferred frequency of activation. In active muscle the response profiles of all three receptor types overlapped, with no significant difference in threshold between receptor types. These results emphasize that when intramuscular tension increases during a voluntary contraction, Golgi tendon organs and muscle spindle secondary endings, not just muscle spindle primary endings, can effectively encode small imposed length changes.

  18. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  19. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study....

  20. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  1. Calf blood flow at rest evaluated by thermal measurement with tissue temperature and heat flow and 133Xe clearance

    International Nuclear Information System (INIS)

    Tamura, Toshiyo; Togawa, Tatsuo; Fukuoka, Masakazu; Kawakami, Kenji.

    1982-01-01

    The regional blood flow in the calf was determined simultaneously by thermal measurement and by 133 Xe clearance technique. Calf blood flow (Ft) by thermal measurement was accounted for by the equation of the form Ft=(CdT*d+Ho-Mb)/rho sub(b)c su b(D) (Ta-Td), where Cd is thermal capacitance of the calf compartment, T*d is the change of calf tissue temperature, Ta is arterila blood temperature, Td is calf tissue temperature, Ho is the heat dissipation from the compartment to the environment, Mb is estimated metabolism of the calf tissue and rho sub(b)c sub(b) is the product of density and specific heat of blood. The healthy men were chosen for the experiments. Total calf blood flow was 2.53+-1.31ml/(min-100ml calf), and muscle blood flow was 2.63+-1.69ml/(min- 100ml muscle) and skin blood flow 7.19+-3.83ml/(min-100ml skin) measured by 133 Xe clearance. On the basis of the results, an estimate has been made of the proportions of the calf volume which can be ascribed to skin and muscle respectively. Estimated muscle and skin blood flow were correlated with total calf blood flow(r=0.98). (author)

  2. Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture.

    Science.gov (United States)

    Williams-Hatala, E M; Hatala, K G; Hiles, S; Rabey, K N

    2016-06-23

    Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses.

  3. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina

    2010-01-01

    Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...... lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min-1) by 17.4% (P improved insulin sensitivity by 19......, but their role in regulating human skeletal muscle adaptation remains unknown....

  4. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  5. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...

  6. Human platelet lysate is a feasible candidate to replace fetal calf serum as medium supplement for blood vascular and lymphatic endothelial cells.

    Science.gov (United States)

    Hofbauer, Pablo; Riedl, Sabrina; Witzeneder, Karin; Hildner, Florian; Wolbank, Susanne; Groeger, Marion; Gabriel, Christian; Redl, Heinz; Holnthoner, Wolfgang

    2014-09-01

    As angiogenic and lymphangiogenic key players, endothelial cells (ECs) are promising candidates for vascular regenerative therapies. To culture ECs in vitro, fetal calf serum (FCS) is most often used. However, some critical aspects of FCS usage, such as possible internalization of xenogeneic proteins and prions, must be considered. Therefore, the aim of this project was to determine if human platelet lysate (hPL) is a suitable alternative to FCS as medium supplement for the culture of blood vascular and lymphatic endothelial cells. The usability of hPL was tested by analysis of endothelial surface marker expression, metabolic activity and vasculogenic potential of outgrowth ECs (OECs), human umbilical vein ECs (HUVECs), and lymphatic ECs (LECs). Expression of EC markers CD31, VEGFR2, VE-cadherin and CD146 did not differ significantly between the EC types cultured in FCS or hPL. In addition, OECs, HUVECs and LECs formed tube-like structures on Matrigel when cultured in hPL and FCS. With the use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid assays, we found that the metabolic activity of OECs and LECs was slightly decreased when hPL was used. However, HUVECs and LECs did not show a significant decrease in metabolic activity, and HUVECs showed a slightly higher activity at low seeding densities. The use of hPL on different EC types did not reveal any substantial negative effects on EC behavior. Thus, hPL appears to be a favorable candidate to replace FCS as a medium supplement in the culture of ECs. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  8. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  9. Postexercise muscle glycogen resynthesis in humans.

    Science.gov (United States)

    Burke, Louise M; van Loon, Luc J C; Hawley, John A

    2017-05-01

    Since the pioneering studies conducted in the 1960s in which glycogen status was investigated using the muscle biopsy technique, sports scientists have developed a sophisticated appreciation of the role of glycogen in cellular adaptation and exercise performance, as well as sites of storage of this important metabolic fuel. While sports nutrition guidelines have evolved during the past decade to incorporate sport-specific and periodized manipulation of carbohydrate (CHO) availability, athletes attempt to maximize muscle glycogen synthesis between important workouts or competitive events so that fuel stores closely match the demands of the prescribed exercise. Therefore, it is important to understand the factors that enhance or impair this biphasic process. In the early postexercise period (0-4 h), glycogen depletion provides a strong drive for its own resynthesis, with the provision of CHO (~1 g/kg body mass) optimizing this process. During the later phase of recovery (4-24 h), CHO intake should meet the anticipated fuel needs of the training/competition, with the type, form, and pattern of intake being less important than total intake. Dietary strategies that can enhance glycogen synthesis from suboptimal amounts of CHO or energy intake are of practical interest to many athletes; in this scenario, the coingestion of protein with CHO can assist glycogen storage. Future research should identify other factors that enhance the rate of synthesis of glycogen storage in a limited time frame, improve glycogen storage from a limited CHO intake, or increase muscle glycogen supercompensation. Copyright © 2017 the American Physiological Society.

  10. Physical inactivity and muscle oxidative capacity in humans.

    Science.gov (United States)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated in humans, and further studies are required to substantiate this hypothesis, which could expand our knowledge of the potential link between lifestyle-related diseases and muscle oxidative capacity. Furthermore, even though a large body of literature reports the effect of physical training on muscle oxidative capacity, the adaptations that occur with physical inactivity may not always be opposite to that of physical training. Thus, it is concluded that studies on the effect of physical inactivity per se on muscle oxidative capacity in functional human skeletal muscle are warranted.

  11. Congenital Liver Cyst in a Neonatal Calf

    Directory of Open Access Journals (Sweden)

    Nora Nogradi

    2013-01-01

    Full Text Available Congenital serous cysts attached to the liver capsule are usually small and multiple, but can be solitary, grow extremely large, and become symptomatic. They are considered rare incidental findings during laparotomies or necropsies and thier occurrence is well described in the human literature, with limited reports from the veterinary literature. This report describes the ante-mortem diagnosis and successful surgical removal of a large congenital liver cyst in a neonatal calf.

  12. Photobiomodulation in human muscle tissue: an advantage in sports performance?

    Science.gov (United States)

    Ferraresi, Cleber; Huang, Ying-Ying; Hamblin, Michael R

    2016-12-01

    Photobiomodulation (PBM) describes the use of red or near-infrared (NIR) light to stimulate, heal, and regenerate damaged tissue. Both preconditioning (light delivered to muscles before exercise) and PBM applied after exercise can increase sports performance in athletes. This review covers the effects of PBM on human muscle tissue in clinical trials in volunteers related to sports performance and in athletes. The parameters used were categorized into those with positive effects or no effects on muscle performance and recovery. Randomized controlled trials and case-control studies in both healthy trained and untrained participants, and elite athletes were retrieved from MEDLINE up to 2016. Performance metrics included fatigue, number of repetitions, torque, hypertrophy; measures of muscle damage and recovery such as creatine kinase and delayed onset muscle soreness. Searches retrieved 533 studies, of which 46 were included in the review (n = 1045 participants). Studies used single laser probes, cluster of laser diodes, LED clusters, mixed clusters (lasers and LEDs), and flexible LED arrays. Both red, NIR, and red/NIR mixtures were used. PBM can increase muscle mass gained after training, and decrease inflammation and oxidative stress in muscle biopsies. We raise the question of whether PBM should be permitted in athletic competition by international regulatory authorities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Short-term immobilization and recovery affect skeletal muscle but not collagen tissue turnover in humans

    DEFF Research Database (Denmark)

    Christensen, Britt; Dyrberg, Eva; Aagaard, Per

    2008-01-01

    Not much is known about the effects of immobilization and subsequent recovery on tendon connective tissue. In the present study, healthy young men had their nondominant leg immobilized for a 2-wk period, followed by a recovery period of the same length. Immobilization resulted in a mean decrease...... of 6% (5,413 to 5,077 mm(2)) in cross-sectional area (CSA) of the triceps surae muscles and a mean decrease of 9% (261 to 238 N.m) in strength of the immobilized calf muscles. Two weeks of recovery resulted in a 6% increased in CSA (to 5,367 mm(2)), whereas strength remained suppressed (240 N...... muscle size and strength, while tendon size and collagen turnover were unchanged. While recovery resulted in an increase in muscle size, strength was unchanged. No significant difference in tendon size could be detected between the two legs after 2 wk of recovery, although collagen synthesis...

  14. A 3-Dimensional Atlas of Human Tongue Muscles

    Science.gov (United States)

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  15. Calprotectin is released from human skeletal muscle tissue during exercise

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian

    2008-01-01

    Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle. IL-6 was infused for 3 h into healthy young males (n = 7) and muscle biopsies obtained...... in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known...... as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of approximately 50...

  16. Relationship between Human Aging Muscle and Oxidative System Pathway

    Directory of Open Access Journals (Sweden)

    Enrico Doria

    2012-01-01

    Full Text Available Ageing is a complex process that in muscle is usually associated with a decrease in mass, strength, and velocity of contraction. One of the most striking effects of ageing on muscle is known as sarcopenia. This inevitable biological process is characterized by a general decline in the physiological and biochemical functions of the major systems. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS generated by the addition of a single electron to the oxygen molecule. The aging process is characterized by an imbalance between an increase in the production of reactive oxygen species in the organism and the antioxidant defences as a whole. The goal of this review is to examine the results of existing studies on oxidative stress in aging human skeletal muscles, taking into account different physiological factors (sex, fibre composition, muscle type, and function.

  17. Multi-frequency bioimpedance in human muscle assessment

    DEFF Research Database (Denmark)

    Bartels, Else Marie; Sørensen, Emma Rudbæk; Harrison, Adrian Paul

    2015-01-01

    Bioimpedance analysis (BIA) is a well-known and tested method for body mass and muscular health assessment. Multi-frequency BIA (mfBIA) equipment now makes it possible to assess a particular muscle as a whole, as well as looking at a muscle at the fiber level. The aim of this study was to test...... healthy human control subjects and three selected cases were examined to demonstrate the extent to which this method may be used clinically, and in relation to training in sport. The electrode setup is shown to affect the mfBIA parameters recorded. Our recommendation is the use of noble metal electrodes......, contracted state, and cell transport/metabolic activity, which relate to muscle performance. Our findings indicate that mfBIA provides a noninvasive, easily measurable and very precise momentary assessment of skeletal muscles....

  18. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  19. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    Science.gov (United States)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  20. Effects of exercise on insulin binding to human muscle

    International Nuclear Information System (INIS)

    Bonen, A.; Tan, M.H.; Clune, P.; Kirby, R.L.

    1985-01-01

    A procedure was developed to measure insulin binding to human skeletal muscle obtained via the percutaneous muscle biopsy technique. With this method the effects of exercise on insulin binding were investigated. Subjects (n = 9) exercised for 60 min on a bicycle ergometer at intensities ranging from 20-86% maximum O 2 consumption (VO 2 max). Blood samples were obtained before, during, and after exercise and analyzed for glucose and insulin. Muscle samples (250 mg) for the vastus lateralis were obtained 30 min before exercise, at the end of exercise, and 60 min after exercise. Two subjects rested during the experimental period. There was no linear relationship between exercise intensities and the changes in insulin binding to human muscle. At rest (n = 2) and at exercise intensities below 60% VO 2 max (n = 5) no change in insulin binding occurred (P greater than 0.05). However, when exercise occurred at greater than or equal to 69% VO 2 max (n = 4), a pronounced decrement in insulin binding (30-50%) was observed (P less than 0.05). This persisted for 60 min after exercise. These results indicate that insulin binding in human muscle is not altered by 60 min of exercise at less than or equal to 60% VO 2 max but that a marked decrement occurs when exercise is greater than or equal to 69% VO 2 max

  1. Interactions of mean body and local skin temperatures in the modulation of human forearm and calf blood flows: a three-dimensional description.

    Science.gov (United States)

    Caldwell, Joanne N; Matsuda-Nakamura, Mayumi; Taylor, Nigel A S

    2016-02-01

    The inter-relationships between mean body and local skin temperatures have previously been established for controlling hand and foot blood flows. Since glabrous skin contains many arteriovenous anastomoses, it was important to repeat those experiments on non-glabrous regions using the same sample and experimental conditions. Mild hypothermia (mean body temperature 31.4 °C), normothermia (control: 36.0 °C) and moderate hyperthermia (38.3 °C) were induced and clamped (climate chamber and water-perfusion garment) in eight males. Within each condition, five localised thermal treatments (5, 15, 25, 33, 40 °C) were applied to the left forearm and right calf. Steady-state forearm and calf blood flows were measured (venous occlusion plethysmography) for each of the resulting 15 combinations of clamped mean body and local skin temperatures. Under the normothermic clamp, cutaneous blood flows averaged 4.2 mL 100 mL(-1) min(-1) (±0.28: forearm) and 5.4 mL 100 mL(-1) min(-1) (±0.27: calf). When mildly hypothermic, these segments were unresponsive to localised thermal stimuli, but tracked those changes when normothermic and moderately hyperthermic. For deep-body (oesophageal) temperature elevations, forearm blood flow increased by 5.1 mL 100 mL(-1) min(-1) °C(-1) (±0.9) relative to normothermia, while the calf was much less responsive: 3.3 mL 100 mL(-1) min(-1) °C(-1) (±1.5). Three-dimensional surfaces revealed a qualitative divergence in the control of calf blood flow, with vasoconstrictor tone apparently being released more gradually. These descriptions reinforce the importance of deep-tissue temperatures in controlling cutaneous perfusion, with this modulation being non-linear at the forearm and appearing linear for the calf.

  2. An animal model for human masseter muscle: histochemical characterization of mouse, rat, rabbit, cat, dog, pig, and cow masseter muscle

    DEFF Research Database (Denmark)

    Tuxen, A; Kirkeby, S

    1990-01-01

    The masseter muscle of several animal species was investigated by use of a histochemical method for the demonstration of acid-stable and alkali-stable myosin adenosine triphosphatase (ATPase). The following subdivisions of fiber types were used: Type I fibers show weak ATPase activity at pH 9...... II and I fibers, with type II predominating. Cow masseter muscle consisted mainly of type I fibers, although some cow masseter muscles contained a very small number of type II fibers. Pig masseter muscle had both type I, II, and IM fibers. One of the characteristics of human masseter muscle is type...... IM fibers, which are rarely seen in muscles other than the masticatory muscles. Therefore, pig masseter muscle might be a suitable animal model for experimental studies, such as an investigation of the distribution and diameter of fiber types in the masticatory muscles before and after orthognathic...

  3. Nutrition and muscle loss in humans during spaceflight

    Science.gov (United States)

    Stein, T. P.

    1999-01-01

    The protein loss in humans during spaceflight is partly due to a normal adaptive response to a decreased work load on the muscles involved in weight bearing. The process is mediated by changes in prostaglandin release, secondary to the decrease in tension on the affected muscles. On missions, where there is a high level of physical demands on the astronauts, there tends to be an energy deficit, which adds to the muscle protein loss and depletes the body fat reserves. While the adaptive response is a normal part of homeostasis, the additional protein loss from an energy deficit can, in the long run, have a negative effect on health and capability of humans to live and work in space and afterward return to Earth.

  4. Leucine incorporation into mixed skeletal muscle protein in humans

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Griggs, R.C.

    1988-01-01

    Fractional mixed skeletal muscle protein synthesis (FMPS) was estimated in 10 postabsorptive healthy men by determining the increment in the abundance of [ 13 C]-leucine in quadriceps muscle protein during an intravenous infusion of L-[1- 13 C]leucine. Whole-body muscle protein synthesis (MPS) was calculated based on the estimation of muscle mass from creatinine excretion and compared with whole-body protein synthesis (WBPS) calculated from the nonoxidative portion of leucine flux. A significant correlation was found between MPS. The contribution of MPS to WBPS was 27 ± 1%, which is comparable to the reports in other species. Morphometric analyses of adjacent muscle samples in eight subjects demonstrated that the biopsy specimens consisted of 86.5 ± 2% muscular as opposed to other tissues. Because fiber type composition varies between biopsies, the authors examined the relationship between proportions of each fiber type and FMPS. Variation in the composition of biopsies and in fiber-type proportion did not affect the estimation of muscle protein synthesis rate. They conclude that stable isotope techniques using serial needle biopsies permit the direct measurement of FMPS in humans and that this estimation is correlated with an indirect estimation of WBPS

  5. Development of the epaxial muscles in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Eleonore KÖhler, S.; Lamers, Wouter H.

    2016-01-01

    Although the intrinsic muscles of the back are defined by their embryological origin and innervation pattern, no detailed study on their development is available. Human embryos (5-10 weeks development) were studied, using Amira3D® reconstruction and Cinema4D® remodeling software for visualization.

  6. Erythropoietin treatment enhances muscle mitochondrial capacity in humans

    DEFF Research Database (Denmark)

    Plenge, Ulla; Belhage, Bo; Guadalupe-Grau, Amelia

    2012-01-01

    in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over 8 weeks with oral iron (100 mg) supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis...

  7. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respira...

  8. The capillary pattern in human masseter muscle during ageing

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Janáček, Jiří; Kubínová, Lucie; Eržen, I.

    2013-01-01

    Roč. 32, č. 3 (2013), s. 135-144 ISSN 1580-3139 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : 3D analysis * capillaries * confocal microscopy * human * masseter * muscle Subject RIV: EA - Cell Biology Impact factor: 0.697, year: 2013

  9. Free-energy carriers in human cultured muscle cells

    NARCIS (Netherlands)

    Bolhuis, P. A.; de Zwart, H. J.; Ponne, N. J.; de Jong, J. M.

    1985-01-01

    Creatine phosphate (CrP), adenosine triphosphate (ATP), creatine kinase (CK), adenylate kinase (AK), protein, and DNA were quantified in human muscle cell cultures undergoing transition from dividing myoblasts to multinucleate myotubes. CrP is negligible in cultures grown in commonly applied media

  10. Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans.

    Directory of Open Access Journals (Sweden)

    Barbora de Courten

    Full Text Available Carnosine is a naturally present dipeptide abundant in skeletal muscle and an over-the counter food additive. Animal data suggest a role of carnosine supplementation in the prevention and treatment of obesity, insulin resistance, type 2 diabetes and cardiovascular disease but only limited human data exists.Samples of vastus lateralis muscle were obtained by needle biopsy. We measured muscle carnosine levels (high-performance liquid chromatography, % body fat (bioimpedance, abdominal subcutaneous and visceral adiposity (magnetic resonance imaging, insulin sensitivity (euglycaemic hyperinsulinemic clamp, resting energy expenditure (REE, indirect calorimetry, free-living ambulatory physical activity (accelerometers and lipid profile in 36 sedentary non-vegetarian middle aged men (45±7 years with varying degrees of adiposity and glucose tolerance. Muscle carnosine content was positively related to % body fat (r = 0.35, p = 0.04 and subcutaneous (r = 0.38, p = 0.02 but not visceral fat (r = 0.17, p = 0.33. Muscle carnosine content was inversely associated with insulin sensitivity (r = -0.44, p = 0.008, REE (r = -0.58, p<0.001 and HDL-cholesterol levels (r = -0.34, p = 0.048. Insulin sensitivity and physical activity were the best predictors of muscle carnosine content after adjustment for adiposity.Our data shows that higher carnosine content in human skeletal muscle is positively associated with insulin resistance and fasting metabolic preference for glucose. Moreover, it is negatively associated with HDL-cholesterol and basal energy expenditure. Intervention studies targeting insulin resistance, metabolic and cardiovascular disease risk factors are necessary to evaluate its putative role in the prevention and management of type 2 diabetes and cardiovascular disease.

  11. Artificial muscle: the human chimera is the future.

    Science.gov (United States)

    Tozzi, P

    2011-12-14

    Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

  12. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  13. On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo.

    Science.gov (United States)

    Yang, Peng-Fei; Kriechbaumer, Andreas; Albracht, Kirsten; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Shang, Peng; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2015-02-05

    The mechanical relationship between bone and muscle has been long recognized. However, it still remains unclear how muscles exactly load on bone. In this study, utilizing an optical segment tracking technique, the in vivo tibia loading regimes in terms of tibia segment deformation in humans were investigated during walking, forefoot and rear foot stair ascent and running and isometric plantar flexion. Results suggested that the proximal tibia primarily bends to the posterior aspect and twists to the external aspect with respect to the distal tibia. During walking, peak posterior bending and peak torsion occurred in the first half (22%) and second half (76%) of the stance phase, respectively. During stair ascent, two noticeable peaks of torsion were found with forefoot strike (38% and 82% of stance phase), but only one peak of torsion was found with rear foot strike (78% of stance phase). The torsional deformation angle during both stair ascent and running was larger with forefoot strike than rear foot strike. During isometric plantar flexion, the tibia deformation regimes were characterized more by torsion (maximum 1.35°) than bending (maximum 0.52°). To conclude, bending and torsion predominated the tibia loading regimes during the investigated activities. Tibia torsional deformation is closely related to calf muscle contractions, which further confirm the notion of the muscle-bone mechanical link and shift the focus from loading magnitude to loading regimes in bone mechanobiology. It thus is speculated that torsion is another, yet under-rated factor, besides the compression and tension, to drive long bone mechano-adaptation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P contraction, subjects dropping in force showed lower ATP economy compared with those maintaining the force (3.......7 +/- 0.6 vs 5.3 +/- 0.6 N.s.micromol-1; P contraction could be due to an increase in the ATP economy of contracting muscle fibers offsetting the effects of increased temperature and low ATP economy...

  15. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  16. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  17. Avaliação do volume de fluxo venoso da bomba sural por ultra-sonografia Doppler durante cinesioterapia ativa e passiva: um estudo piloto Evaluation of venous flow volume of the calf muscle pump by Doppler ultrasound during active and passive kinesiotherapy: a pilot study

    Directory of Open Access Journals (Sweden)

    Carmindo Carlos Cardoso Campos

    2008-12-01

    Full Text Available CONTEXTO: O fisioterapeuta na unidade hospitalar atua sobre os efeitos da hipoatividade ou inatividade do paciente acamado. Na prática diária, a contração do músculo da panturrilha é difundida entre os profissionais de saúde no ambiente hospitalar, principalmente nos períodos de pré e pós-operatório, como forma de diminuir a estase venosa e os riscos de trombose venosa profunda nos membros inferiores. OBJETIVO: Avaliar o volume de fluxo venoso na bomba sural, através de ultra-sonografia doppler, durante cinesioterapia ativa e passiva (flexão plantar do tornozelo. MÉTODOS: A amostra foi constituída por 30 indivíduos escolhidos aleatoriamente e submetidos a ultra-sonografia doppler da veia poplítea direita, visando mensurar o volume de fluxo sanguíneo em quatro momentos: repouso, compressão manual da panturrilha, movimentação passiva e ativa do tornozelo em flexão plantar. Na análise dos resultados, utilizou-se o teste t, sendo utilizado um valor de p BACKGROUND: In-hospital physical therapists work on the effects of hypoactivity or inactivity of bedridden patients. In daily practice, contraction of the calf muscle is commonly performed by health professionals in hospitals, especially in pre- and post-operative periods as a form of reducing venous stasis and risk of deep venous thrombosis in the lower limbs. OBJECTIVE: To assess venous flow volume at the calf muscle pump using color Doppler ultrasound during active and passive kinesiotherapy (ankle plantar flexion. METHODS: The sample consisted of 30 individuals randomly selected and submitted to color Doppler ultrasound of the right popliteal vein, aiming to measure blood flow volume in four periods: rest, manual calf compression, active and passive ankle movement in plantar flexion. The t test was used for statistical analysis, and p < 0.05 was used as an index of statistical significance. RESULTS: The sample consisted of 16 females and 14 males. Means were as follows: age

  18. Effect of ionizing radiation on human skeletal muscle precursor cells

    International Nuclear Information System (INIS)

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions

  19. Evaluation of human muscle in vivo by potassium radiometric measuring

    International Nuclear Information System (INIS)

    Sousa, Wanderson de P.

    2000-01-01

    Potassium is an essential element to the human metabolism and is present in all living cells, mainly in the striated muscular fibers. K-40 is one of the natural potassium isotopes with mass percentage of 0,0118% . This isotope emits beta particle and gamma rays with 1460 keV. The energy of K-40 photon and its uniform distribution within the human body allows its in vivo measurement. The objective of this study is to optimize this technique and evaluate the possibility of its medical application in order to quantify muscle increase during recovering procedures. Subjects of both sexes measured until this moment were divided into two groups. Subjects of Group 1 do not exercise routinely and subjects of Group 2 does. In Group 1 the average potassium mass, muscle mass and potassium concentration were (101±16)g of K, (20±3)kg of muscle and (1,3±0,3)g of K/kg of body mass, respectively, while in Group 2 average values were (125±38)g of K, (25±8)kg of muscle and (1,7±0,2)g of K/kg of body mass. The comparison between average values shows a clear difference, which allows to correlate a higher K mass with routine body activity. The technique has shown enough sensitivity for this application. (author)

  20. Muscle gene expression patterns in human rotator cuff pathology.

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J; Lieber, Richard L; Schenk, Simon; Lane, John G; Ward, Samuel R

    2014-09-17

    Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of myogenesis. These data highlight the

  1. Morphometric and Statistical Analysis of the Palmaris Longus Muscle in Human and Non-Human Primates

    Science.gov (United States)

    Aversi-Ferreira, Roqueline A. G. M. F.; Bretas, Rafael Vieira; Maior, Rafael Souto; Davaasuren, Munkhzul; Paraguassú-Chaves, Carlos Alberto; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre

    2014-01-01

    The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing. PMID:24860810

  2. Morphometric and Statistical Analysis of the Palmaris Longus Muscle in Human and Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Roqueline A. G. M. F. Aversi-Ferreira

    2014-01-01

    Full Text Available The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing.

  3. Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise

    International Nuclear Information System (INIS)

    Jemiolo, Bozena; Trappe, Scott

    2004-01-01

    Reverse transcription and real-time PCR have become the method of choice for the detection of low-abundance mRNA transcripts obtained from small human muscle biopsy samples. GAPDH, β-actin, β-2M, and 18S rRNA are widely employed as endogenous control genes, with the assumption that their expression is unregulated and constant for given experimental conditions. The aim of this study was to determine if mRNA transcripts could be performed on isolated human single muscle fibers and to determine reliable housekeeping genes (HKGs) using quantitative gene expression protocols at rest and in response to an acute exercise bout. Muscle biopsies were obtained from the gastrocnemius of three adult males before, immediately after, and 4 h following 30 min of treadmill running at 70% of VO 2 max. A total of 40 single fibers (MHC I and IIa) were examined for GAPDH, β-actin, β-2M, and 18S rRNA using quantitative RT-PCR and SYBR Green detection. All analyzed single fiber segments showed ribosomal RNA (28S/18S). No degradation or additional bands below ribosomal were detected (rRNA ratio 1.5-1.8). Also, no high or low-molecular weight genomic DNA contamination was observed. For each housekeeping gene the duplicate average SD was ±0.13 with a CV of 0.58%. Stable expression of GAPDH was observed at all time points for each fiber type (MHC I and IIa). Inconsistent expression of β-actin, β-2M, and 18S rRNA was observed during the post-exercise time points for each fiber type. These data indicate that successful extraction of high quality RNA from human single muscle fibers along with quantification of mRNA of selected genes can be performed. Furthermore, exercise does influence the expression of certain HKGs with GAPDH being the most stable

  4. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  5. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  6. Blood pressure and the contractility of a human leg muscle.

    Science.gov (United States)

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  7. IMP metabolism in human skeletal muscle after exhaustive exercise

    DEFF Research Database (Denmark)

    Tullson, P. C.; Bangsbo, Jens; Hellsten, Ylva

    1995-01-01

    This study addressed whether AMP deaminase (AMPD)myosin binding occurs with deamination during intense exercise in humans and the extent of purine loss from muscle during the initial minutes of recovery. Male subjects performed cycle exercise (265 +/- 2 W for 4.39 +/- 0.04 min) to stimulate muscle...... inosine 5'-monophosphate (IMP) formation. After exercise, blood flow to one leg was occluded. Muscle biopsies (vastus lateralis) were taken before and 3.6 +/- 0.2 min after exercise from the occluded leg and 0.7 +/- 0.0, 1.1 +/- 0.0, and 2.9 +/- 0.1 min postexercise in the nonoccluded leg. Exercise...... activated AMPD; at exhaustion IMP was 3.5 +/- 0.4 mmol/kg dry muscle. Before exercise, 16.0 +/- 1.6% of AMPD cosedimented with the myosin fraction; the extent of AMPD:myosin binding was unchanged by exercise. Inosine content increased about threefold during exercise and twofold more during recovery; by 2...

  8. Bionic Humans Using EAP as Artificial Muscles Reality and Challenges

    Directory of Open Access Journals (Sweden)

    Yoseph Bar-Cohen

    2008-11-01

    Full Text Available For many years, the idea of a human with bionic muscles immediately conjures up science fiction images of a TV series superhuman character that was implanted with bionic muscles and portrayed with strength and speed far superior to any normal human. As fantastic as this idea may seem, recent developments in electroactive polymers (EAP may one day make such bionics possible. Polymers that exhibit large displacement in response to stimulation that is other than electrical signal were known for many years. Initially, EAP received relatively little attention due to their limited actuation capability. However, in the recent years, the view of the EAP materials has changed due to the introduction of effective new materials that significantly surpassed the capability of the widely used piezoelectric polymer, PVDF. As this technology continues to evolve, novel mechanisms that are biologically inspired are expected to emerge. EAP materials can potentially provide actuation with lifelike response and more flexible configurations. While further improvements in performance and robustness are still needed, there already have been several reported successes. In recognition of the need for cooperation in this multidisciplinary field, the author initiated and organized a series of international forums that are leading to a growing number of research and development projects and to great advances in the field. In 1999, he challenged the worldwide science and engineering community of EAP experts to develop a robotic arm that is actuated by artificial muscles to win a wrestling match against a human opponent. In this paper, the field of EAP as artificial muscles will be reviewed covering the state of the art, the challenges and the vision for the progress in future years.

  9. Isolated tear of the tendon to the medial head of gastrocnemius presenting as a painless lump in the calf

    OpenAIRE

    Watura, Christopher; Harries, William

    2009-01-01

    We report on a case of isolated tear of the medial head of gastrocnemius tendon. The patient presented with a painless lump in the right calf and denied any prior history of trauma or strain to the leg. A longitudinal split of the tendon was demonstrated at ultrasound and magnetic resonance imaging (MRI). There were no other abnormalities and the gastrocnemius muscle was normal. There are no reports in the literature of isolated gastrocnemius tendon tear. To date the calf muscle complex injur...

  10. Muscle reflexes during gait elicited by electrical stimulation of the posterior cruciate ligament in humans

    DEFF Research Database (Denmark)

    Fischer-Rasmussen, T; Krogsgaard, M R; Jensen, D B

    2002-01-01

    over the vastus medialis, rectus femoris, vastus lateralis, biceps femoris caput longum, and semitendinosus muscles. The stimuli consisted of four pulses delivered at 200 Hz; the stimulus amplitude was two to three times the sensory threshold. The electrical stimulation of the PCL inhibited the ongoing......We investigated the influence of electrical stimulation of the posterior cruciate ligament (PCL) on the motoneuron pool of the thigh and calf muscle during gait. The study group comprised eight young men without any history of injury to the knee joints. Multistranded teflon-insulated stainless...... steel wires were inserted into the PCL guided by sonography and in four subjects also into the fat pad of the knee. The PCL was electrically stimulated during gait on a treadmill at heel strike and 100 ms after heel strike. Electromyographic signals were recorded with bipolar surface electrodes placed...

  11. Ultrastructure of striated muscle fibers in the middle third of the human esophagus

    OpenAIRE

    Faussone-Pellegrini, M.S; Cortesini, C.

    1986-01-01

    Striated muscle fibers and .their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimensioi~ (100-200 pm of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and ...

  12. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.

    Science.gov (United States)

    Stubbs, Peter W; Walsh, Lee D; D'Souza, Arkiev; Héroux, Martin E; Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2018-06-01

    In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the

  13. Beef cow-calf production.

    Science.gov (United States)

    Feuz, Dillon M; Umberger, Wendy J

    2003-07-01

    Cow-calf production occurs in all 50 states over varied resource bases and under vastly different environmental conditions. Multiple breeds exist and management styles and objectives are as numerous as the number of cow-calf producers. There is not one area of the country, one breed of cattle, or one management style that is most profitable for producing cows and calves. There are, however, some common strategies that can be employed by cow-calf producers to enhance profitability. Costs need to be controlled without jeopardizing cow herd productivity or net returns. It appears that the cost associated with purchased and harvested feeds varies considerably across operations. Understanding cyclic and seasonal price patterns, weight-price slides, cattle shrink, and other marketing costs can help producers enhance their profit by marketing (and not by just selling) their cattle. Producers with superior cattle genetics can become part of a specific alliance or, at a minimum, document the performance of their cattle so that they can get paid for the superior genetics. The beef industry is changing and will likely continue to change. Cow-calf producers will need to examine their own management practices to determine whether they are optimal for the current industry. Those producers who are most adept at matching their management abilities to their cattle type, their resource base, and the appropriate market outlet will be the most successful in the future.

  14. Physical inactivity and muscle oxidative capacity in humans

    DEFF Research Database (Denmark)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present...... literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents...... of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated...

  15. Effect of exercise on insulin action in human skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Mikines, K J; Galbo, Henrik

    1989-01-01

    The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization...... was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2...... consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp...

  16. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  17. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    -specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  18. Experimental model of human corpus cavernosum smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Rommel P. Regadas

    2010-08-01

    Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.

  19. Activity of upper limb muscles during human walking.

    Science.gov (United States)

    Kuhtz-Buschbeck, Johann P; Jing, Bo

    2012-04-01

    The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Radioimmunoassay of human muscle carbonic anhydrase III in dystrophic states

    Energy Technology Data Exchange (ETDEWEB)

    Heath, R.; Jeffery, S.; Carter, N. (Department of Child Health, St. George' s Hospital Medical School, London (UK))

    1982-03-12

    A radioimmunoassay for the human isozyme carbonic anhydrase III (CAIII) has been developed. The assay can detect levels as low as 4..mu..g/l of sample. Plasma CAIII levels in patients suffering from Duchenne muscular dystrophy were found to be up to 39 times greater than in a control group. Urine CAIII levels in patients suffering from Duchenne muscular dystrophy were not significantly different from the levels found in urine from normal adults. Measurement of plasma CAIII levels may be useful in prenatal diagnosis of Duchenne muscular dystrophy, and in investigation of adult skeletal muscle disease.

  1. Radioimmunoassay of human muscle carbonic anhydrase III in dystrophic states

    International Nuclear Information System (INIS)

    Heath, R.; Jeffery, S.; Carter, N.

    1982-01-01

    A radioimmunoassay for the human isozyme carbonic anhydrase III (CAIII) has been developed. The assay can detect levels as low as 4μg/l of sample. Plasma CAIII levels in patients suffering from Duchenne muscular dystrophy were found to be up to 39 times greater than in a control group. Urine CAIII levels in patients suffering from Duchenne muscular dystrophy were not significantly different from the levels found in urine from normal adults. Measurement of plasma CAIII levels may be useful in prenatal diagnosis of Duchenne muscular dystrophy, and in investigation of adult skeletal muscle disease. (Auth.)

  2. MRI assessment of calf injuries in Australian Football League players: findings that influence return to play

    International Nuclear Information System (INIS)

    Waterworth, George; Wein, Sara; Rotstein, Andrew H.; Gorelik, Alexandra

    2017-01-01

    Calf muscle strains have become increasingly prevalent in recent seasons of the Australian Football League (AFL) and represent a significant cause of time lost from competition. The purpose of this study was to examine the association between MRI features of calf muscle strains and games missed and to thereby identify parameters that are of prognostic value. A retrospective analysis of MRI scans of AFL players with calf strains referred to a musculoskeletal radiology clinic over a 5-year period (2008-2012) was performed. The muscle(s) and muscle component affected, the site and size of strain, and the presence of an intramuscular tendon tear or intermuscular fluid were recorded. These data were cross-referenced with whether a player missed at least one game. Imaging features of prognostic value were thus identified. Sixty-three athletes had MRI scans for calf muscle strains. Soleus strains were more common than strains of other muscles. Players with soleus strains were more likely to miss at least one game if they had multiple muscle involvement (p = 0.017), musculotendinous junction strains (p = 0.046), and deep strains (p = 0.036). In a combined analysis of gastrocnemius and soleus strains, intramuscular tendon tears were observed in a significantly greater proportion of players who missed games (p = 0.010). Amongst AFL players with calf injuries, there is an association between missing at least one game and multiple muscle involvement, musculotendinous junction strains, deep strain location, and intramuscular tendon tears. In this setting, MRI may therefore provide prognostic information to help guide return-to-play decisions. (orig.)

  3. MRI assessment of calf injuries in Australian Football League players: findings that influence return to play

    Energy Technology Data Exchange (ETDEWEB)

    Waterworth, George; Wein, Sara; Rotstein, Andrew H. [Victoria House Medical Imaging, Prahran, Victoria (Australia); Gorelik, Alexandra [Royal Melbourne Hospital, University of Melbourne, Melbourne Epicentre, Parkville (Australia)

    2017-03-15

    Calf muscle strains have become increasingly prevalent in recent seasons of the Australian Football League (AFL) and represent a significant cause of time lost from competition. The purpose of this study was to examine the association between MRI features of calf muscle strains and games missed and to thereby identify parameters that are of prognostic value. A retrospective analysis of MRI scans of AFL players with calf strains referred to a musculoskeletal radiology clinic over a 5-year period (2008-2012) was performed. The muscle(s) and muscle component affected, the site and size of strain, and the presence of an intramuscular tendon tear or intermuscular fluid were recorded. These data were cross-referenced with whether a player missed at least one game. Imaging features of prognostic value were thus identified. Sixty-three athletes had MRI scans for calf muscle strains. Soleus strains were more common than strains of other muscles. Players with soleus strains were more likely to miss at least one game if they had multiple muscle involvement (p = 0.017), musculotendinous junction strains (p = 0.046), and deep strains (p = 0.036). In a combined analysis of gastrocnemius and soleus strains, intramuscular tendon tears were observed in a significantly greater proportion of players who missed games (p = 0.010). Amongst AFL players with calf injuries, there is an association between missing at least one game and multiple muscle involvement, musculotendinous junction strains, deep strain location, and intramuscular tendon tears. In this setting, MRI may therefore provide prognostic information to help guide return-to-play decisions. (orig.)

  4. MRI assessment of calf injuries in Australian Football League players: findings that influence return to play.

    Science.gov (United States)

    Waterworth, George; Wein, Sara; Gorelik, Alexandra; Rotstein, Andrew H

    2017-03-01

    Calf muscle strains have become increasingly prevalent in recent seasons of the Australian Football League (AFL) and represent a significant cause of time lost from competition. The purpose of this study was to examine the association between MRI features of calf muscle strains and games missed and to thereby identify parameters that are of prognostic value. A retrospective analysis of MRI scans of AFL players with calf strains referred to a musculoskeletal radiology clinic over a 5-year period (2008-2012) was performed. The muscle(s) and muscle component affected, the site and size of strain, and the presence of an intramuscular tendon tear or intermuscular fluid were recorded. These data were cross-referenced with whether a player missed at least one game. Imaging features of prognostic value were thus identified. Sixty-three athletes had MRI scans for calf muscle strains. Soleus strains were more common than strains of other muscles. Players with soleus strains were more likely to miss at least one game if they had multiple muscle involvement (p = 0.017), musculotendinous junction strains (p = 0.046), and deep strains (p = 0.036). In a combined analysis of gastrocnemius and soleus strains, intramuscular tendon tears were observed in a significantly greater proportion of players who missed games (p = 0.010). Amongst AFL players with calf injuries, there is an association between missing at least one game and multiple muscle involvement, musculotendinous junction strains, deep strain location, and intramuscular tendon tears. In this setting, MRI may therefore provide prognostic information to help guide return-to-play decisions.

  5. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle...... fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...... GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle....

  6. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  7. Study of Statin- and Loratadine-Induced Muscle Pain Mechanisms Using Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yat Hei Leung

    2017-10-01

    Full Text Available Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4. The main objective of this study was to confirm the inhibitory potentials of atorvastatin, simvastatin (acid and lactone forms, rosuvastatin, and loratadine on l-lactic acid transport using primary human skeletal muscle cells (SkMC. Loratadine (IC50 31 and 15 µM and atorvastatin (IC50 ~130 and 210 µM demonstrated the greatest potency for inhibition of l-lactic acid efflux at pH 7.0 and 7.4, respectively (~2.5-fold l-lactic acid intracellular accumulation. Simvastatin acid exhibited weak inhibitory potency on l-lactic acid efflux with an intracellular lactic acid increase of 25–35%. No l-lactic acid efflux inhibition was observed for simvastatin lactone or rosuvastatin. Pretreatment studies showed no change in inhibitory potential and did not affect lactic acid transport for all tested drugs. In conclusion, we have demonstrated that loratadine and atorvastatin can inhibit the efflux transport of l-lactic acid in SkMC. Inhibition of l-lactic acid efflux may cause an accumulation of intracellular l-lactic acid leading to the reported drug-induced myotoxicity.

  8. Series elasticity of the human triceps surae muscle : Measurement by controlled-release vs. resonance methods.

    NARCIS (Netherlands)

    Hof, AL; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    With a newly developed Controlled-Release Ergometer the complete characteristic of the series elastic component can be measured in human muscles. Previous estimates were based on the resonance method: muscle elasticity was assessed from the resonance frequency of the muscle elasticity connected to a

  9. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  10. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  11. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    2014-05-01

    Full Text Available Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.

  12. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Jensen, Line

    2012-01-01

    Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle...... atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2......-4 days) of human disuse-muscle atrophy along with a marked reduction in PGC-1α and PGC-1β (1-4 days) and a ∼10% decrease in myofiber size (4 days). Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days) of immobilization. In contrast...

  13. Ketone body metabolism in normal and diabetic human skeletal muscle

    International Nuclear Information System (INIS)

    Nosadini, R.; Avogaro, A.; Sacca, L.

    1985-01-01

    Although the liver is considered the major source of ketone bodies (KB) in humans, these compounds may also be formed by nonhepatic tissues. To study this aspect further, 3-[ 14 C]hydroxybutyrate (BOH) or [3- 14 C]acetoacetate (AcAc) were constantly infused after a priming dose and contemporaneous arterial and venous samples were taken at splanchnic, heart, kidney, and leg sites in eight normal subjects (N) undergoing diagnostic catheterization and at the forearm site in five normal and six ketotic diabetic (D) subjects. After 70 min of infusion, tracer and tracee levels of AcAc and BOH reached a steady state in the artery and vein in both normal and diabetic subjects. The venous-arterial (V-A) difference at the forearm step for cold KB was negligible both in normal and diabetic subjects, whereas for labeled KB it was approximately 10-fold higher in diabetic subjects (V-A AcAc, -31 +/- 7 and -270 +/- 34 dpm/ml in N and D, respectively; V-A BOH, -38 +/- 6 and -344 +/- 126 dpm/ml in N and D, respectively). The authors assumed that the V-A difference in tracer concentration was consistent with dilution of the tracer by newly synthesized tracee inside the muscle and calculated that the forearm muscle produces KB at a rate of 16.2 +/- 3.3 mumol/min in D and 0.9 +/- 0.9 mumol/min in N. These findings can be accounted for by the hypothesis that the disappearance flux of KB from circulation was replaced by an equivalent flux of KB entering the vein at the muscle step in D but not in N. Moreover, in N KB were not only produced but also utilized by the splanchnic area (39 +/- 9 mumol/min)

  14. Molecular networks of human muscle adaptation to exercise and age.

    Directory of Open Access Journals (Sweden)

    Bethan E Phillips

    2013-03-01

    Full Text Available Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44 who then undertook 20 weeks of supervised resistance-exercise training (RET. Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%, and when applying Ingenuity Pathway Analysis (IPA up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR signaling associating with growth (P = 1.4 × 10(-30. Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13 and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7 with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET, they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52, with a continuum of subject ages (18-78 y, the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6 and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to

  15. Calf Contouring with Endoscopic Fascial Release, Calf Implant, and Structural Fat Grafting

    Directory of Open Access Journals (Sweden)

    Ercan Karacaoglu, MD

    2013-08-01

    Conclusions: A novel endoscopic approach for lower leg contouring is discussed. Endoscopic fasciotomy technique with calf implant and structural fat grafting for improved lower leg aesthetics is a simple, effective, reliable, and predictable technique for calf contouring.

  16. Human eosinophil–airway smooth muscle cell interactions

    Directory of Open Access Journals (Sweden)

    J. Margaret Hughes

    2000-01-01

    Full Text Available Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24 h with TNF-α, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-α.

  17. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans].

    Science.gov (United States)

    Khorievin, V I; Horkovenko, A V; Vereshchaka, I V

    2013-01-01

    Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.

  18. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  19. Phosphocreatine recovery overshoot after high intensity exercise in human skeletal muscle is associated with extensive muscle acidification and a significant decrease in phosphorylation potential.

    Science.gov (United States)

    Zoladz, Jerzy A; Korzeniewski, Bernard; Kulinowski, Piotr; Zapart-Bukowska, Justyna; Majerczak, Joanna; Jasiński, Andrzej

    2010-09-01

    The phosphocreatine (PCr) recovery overshoot in skeletal muscle is a transient increase of PCr concentration above the resting level after termination of exercise. In the present study [PCr], [ATP], [P(i)] and pH were measured in calf muscle during rest, during plantar flexion exercise until exhaustion and recovery, using the (31)P NMR spectroscopy. A significantly greater acidification of muscle cells and significantly lower phosphorylation potential (DeltaG (ATP)) at the end of exercise was encountered in the group of subjects that evidenced the [PCr] overshoot as well as [ADP] and [P(i)] undershoots than in the group that did not. We postulate that the role of the PCr overshoot-related transiently elevated [ATP]/[ADP(free)] ratio is to activate different processes (including protein synthesis) that participate in repairing numerous damages of the muscle cells caused by intensive exercise-induced stressing factors, such as extensive muscle acidification, a significant decrease in DeltaG (ATP), an elevated level of reactive oxygen species or mechanical disturbances.

  20. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions

    Directory of Open Access Journals (Sweden)

    Jose eGonzalez-Vargas

    2015-09-01

    Full Text Available Humans can efficiently walk across a large variety of terrains and locomotion conditions with little or no mental effort. It has been hypothesized that the nervous system simplifies neuromuscular control by using muscle synergies, thus organizing multi-muscle activity into a small number of coordinative co-activation modules. In the present study we investigated how muscle modularity is structured across a large repertoire of locomotion conditions including five different speeds and five different ground elevations. For this we have used the non-negative matrix factorization technique in order to explain EMG experimental data with a low-dimensional set of four motor components. In this context each motor components is composed of a non-negative factor and the associated muscle weightings. Furthermore, we have investigated if the proposed descriptive analysis of muscle modularity could be translated into a predictive model that could: 1 Estimate how motor components modulate across locomotion speeds and ground elevations. This implies not only estimating the non-negative factors temporal characteristics, but also the associated muscle weighting variations. 2 Estimate how the resulting muscle excitations modulate across novel locomotion conditions and subjects.The results showed three major distinctive features of muscle modularity: 1 the number of motor components was preserved across all locomotion conditions, 2 the non-negative factors were consistent in shape and timing across all locomotion conditions, and 3 the muscle weightings were modulated as distinctive functions of locomotion speed and ground elevation. Results also showed that the developed predictive model was able to reproduce well the muscle modularity of un-modeled data, i.e. novel subjects and conditions. Muscle weightings were reconstructed with a cross-correlation factor greater than 70% and a root mean square error less than 0.10. Furthermore, the generated muscle excitations

  1. In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.

    Science.gov (United States)

    Bruserud, Oystein; Tronstad, Karl Johan; Berge, Rolf

    2005-06-01

    Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells, but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. The seven osteosarcoma cell lines Cal72, SJSA-1, Saos-2, SK-ES-1, U2OS, 143.98.2, and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). Although proliferation often was relatively low in serum-free media (X-vivo 10, X-vivo 15, X-vivo 20, Stem Span SFEM), some cell lines (Cal72, KHOS-32IH, Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However, all cell lines proliferated well in Stem Span with FCS, and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS), and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72, SJSA-1), and the chemokine release profile was very similar to the

  2. Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Prats Gavalda, Clara; Ploug, Thorkil

    2013-01-01

    Background: Impaired insulin sensitivity may partly arise from a dysregulated lipid metabolism in human skeletal muscle. This study investigates the expression levels of perilipin 2, 3, and 5, and four key lipases in human skeletal muscle from the subjects that exhibit a range from normal to very...

  3. Anatomical study of the nerve regeneration after selective neurectomy in the rabbit: clinical application for esthetic calf reduction

    OpenAIRE

    Shin, Kang-Jae; Yoo, Ja-Young; Lee, Ju-Young; Gil, Young-Chun; Kim, Jeong-Nam; Koh, Ki-Seok; Song, Wu-Chul

    2015-01-01

    The purposes of this study were therefore to characterize the degeneration and regeneration of nerves to the calf muscles after selective neurectomy, both macroscopically and microscopically, and to determine the incidence of such regeneration in a rabbit model. Seventy four New Zealand white rabbits were used. Selective neurectomy to the triceps surae muscles was performed, and the muscles were subsequently harvested and weighed 1-4 months postneurectomy. The gastrocnemius muscles were stain...

  4. Differences in intramuscular vascular connections of human and dog latissimus dorsi muscles.

    Science.gov (United States)

    Yang, D; Morris, S F

    1999-02-01

    Distal ischemia and necrosis of the dog latissimus dorsi muscle flap used in experimental cardiomyoplasty have been reported. However, little information on the intramuscular vascular anatomy of the dog latissimus dorsi is available. It is unclear whether there are any anatomic factors relating to the muscle flap ischemia and necrosis, and whether the dog latissimus dorsi is a suitable experimental model. To study the intramuscular vascular territories in the dog latissimus dorsi muscle, and to compare the intramuscular vasculature of the dog with that of the human, 5 fresh dog cadavers and 7 fresh human cadavers were injected with a mixture of lead oxide, gelatin, and water (200 mL/kg) through the carotid artery. Both the dog and the human latissimus dorsi muscles and neurovascular pedicles were dissected and radiographed. The intramuscular vascular anatomy of the latissimus dorsi muscles was compared. Radiographs demonstrate clearly that the pattern of latissimus dorsi intramuscular anastomoses between branches of the thoracodorsal artery and the perforators of posterior intercostal arteries in the proximal half of the muscle are different between the dog and the human. In the dog muscle, vascular connections between the thoracodorsal artery and the posterior intercostal arteries are formed by reduced-caliber choke arteries, whereas four to six true anastomoses without a change in caliber between them are found in the human muscle. The portion of the latissimus dorsi muscle supplied by the dominant thoracodorsal vascular territory was 25.9% +/- 0.3% in the dog and 23.9% +/- 0.5% in the human. For further comparison, an extended vascular territory in the latissimus dorsi muscle was demonstrated, including both the thoracodorsal territory and the posterior intercostal territories. The area of the extended vascular territory was 52% +/- 0.5% of the total muscle. The dog latissimus dorsi model may not be a perfect predictor of the behavior of the human latissimus

  5. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Prats Gavalda, Clara; Qvortrup, Klaus

    2013-01-01

    The subcellular distribution and secretion of vascular endothelial growth factor (VEGF) was examined in skeletal muscle of healthy humans. Skeletal muscle biopsies were obtained from m.v. lateralis before and after a 2 h bout of cycling exercise. VEGF localization was conducted on preparations...... regions and between the contractile elements within the muscle fibers; and in pericytes situated on the skeletal muscle capillaries. Quantitation of the subsarcolemmal density of VEGF vesicles, calculated on top of myonuclei, in the muscle fibers revealed a ∼50% increase (P...

  6. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Mounier, Remi; Plomgaard, Peter

    2007-01-01

    The cytokine interleukin-15 (IL-15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL-15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL-15 expression in muscle. Triceps brachii, vastus...... lateralis quadriceps and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers (n = 14), because these muscles are characterized by having different fibre-type compositions. In addition, healthy, normally physically active male subjects (n = 8) not involved...

  7. Are animal models predictive for human postmortem muscle protein degradation?

    Science.gov (United States)

    Ehrenfellner, Bianca; Zissler, Angela; Steinbacher, Peter; Monticelli, Fabio C; Pittner, Stefan

    2017-11-01

    A most precise determination of the postmortem interval (PMI) is a crucial aspect in forensic casework. Although there are diverse approaches available to date, the high heterogeneity of cases together with the respective postmortal changes often limit the validity and sufficiency of many methods. Recently, a novel approach for time since death estimation by the analysis of postmortal changes of muscle proteins was proposed. It is however necessary to improve the reliability and accuracy, especially by analysis of possible influencing factors on protein degradation. This is ideally investigated on standardized animal models that, however, require legitimization by a comparison of human and animal tissue, and in this specific case of protein degradation profiles. Only if protein degradation events occur in comparable fashion within different species, respective findings can sufficiently be transferred from the animal model to application in humans. Therefor samples from two frequently used animal models (mouse and pig), as well as forensic cases with representative protein profiles of highly differing PMIs were analyzed. Despite physical and physiological differences between species, western blot analysis revealed similar patterns in most of the investigated proteins. Even most degradation events occurred in comparable fashion. In some other aspects, however, human and animal profiles depicted distinct differences. The results of this experimental series clearly indicate the huge importance of comparative studies, whenever animal models are considered. Although animal models could be shown to reflect the basic principles of protein degradation processes in humans, we also gained insight in the difficulties and limitations of the applicability of the developed methodology in different mammalian species regarding protein specificity and methodic functionality.

  8. Muscle blood flow at onset of dynamic exercise in humans.

    Science.gov (United States)

    Rådegran, G; Saltin, B

    1998-01-01

    To evaluate the temporal relationship between blood flow, blood pressure, and muscle contractions, we continuously measured femoral arterial inflow with ultrasound Doppler at onset of passive exercise and voluntary, one-legged, dynamic knee-extensor exercise in humans. Blood velocity and inflow increased (P dicrotic and diastolic blood pressure notches, respectively. Mechanical hindrance occurred (P dicrotic notch. The increase in blood flow (Q) was characterized by a one-component (approximately 15% of peak power output), two-component (approximately 40-70% of peak power output), or three-component exponential model (> or = 75% of peak power output), where Q(t) = Qpassive + delta Q1.[1 - e-(t - TD1/tau 1)]+ delta Q2.[1 - e-(t - TD2/tau 2)]+ delta Q3.[1 - e-(t - TD3/tau 3)]; Qpassive, the blood flow during passive leg movement, equals 1.17 +/- 0.11 l/min; TD is the onset latency; tau is the time constant; delta Q is the magnitude of blood flow rise; and subscripts 1-3 refer to the first, second, and third components of the exponential model, respectively. The time to reach 50% of the difference between passive and voluntary asymptotic blood flow was approximately 2.2-8.9 s. The blood flow leveled off after approximately 10-150 s, related to the power outputs. It is concluded that the elevation in blood flow with the first duty cycle(s) is due to muscle mechanical factors, but vasodilators initiate a more potent amplification within the second to fourth contraction.

  9. Unilateral notomelia in a newborn Holstein calf.

    Science.gov (United States)

    Muirhead, Tammy L; Pack, LeeAnn; Radtke, Catherine L

    2014-07-01

    A 24-hour-old Holstein bull calf with notomelia was donated to the Atlantic Veterinary College. The extra limb was on the right side of the caudal neck adjacent to the withers. The limb was surgically removed under general anesthesia. The calf was adopted and discharged with no complications.

  10. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8...... of slow fibers in the young (r = -0.45, P > 0.25) or in the elderly (r = 0. 11, P > 0.75) subjects. In conclusion, in human skeletal muscle, GLUT-4 expression is fiber type dependent and decreases with age, particularly in fast muscle fibers....

  11. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans

    DEFF Research Database (Denmark)

    Langberg, H; Bjørn, C; Boushel, Robert Christopher

    2002-01-01

    been established. Microdialysis (molecular mass cut-off 5 kDa) was performed simultaneously in calf muscle and peritendinous Achilles tissue at rest and during 10 min periods of incremental (0.75 W, 2 W, 3.5 W and 4.75 W) dynamic plantar flexion exercise in 10 healthy individuals (mean age 27 years...... increased both in muscle (from 0.48 +/- 0.07 micromol l(-1) to 1.59 +/- 0.35 micromol l(-1); P increases the interstitial concentrations......Bradykinin is known to cause vasodilatation in resistance vessels and may, together with adenosine, be an important regulator of tissue blood flow during exercise. Whether tissue concentrations of bradykinin change with exercise in skeletal muscle and tendon-related connective tissue has not yet...

  12. Muscle triacylglycerol and hormone-sensitive lipase activity in untrained and trained human muscles

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Biba, Taus O; Galbo, Henrik

    2006-01-01

    During exercise, triacylglycerol (TG) is recruited in skeletal muscles. We hypothesized that both muscle hormone-sensitive lipase (HSL) activity and TG recruitment would be higher in trained than in untrained subjects in response to prolonged exercise. Healthy male subjects (26 +/- 1 years, body ...

  13. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration.

    Science.gov (United States)

    Koide, Masashi; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Kanzaki, Makoto; Hatakeyama, Hiroyasu; Tanaka, Yukinori; Minowa, Takashi; Takemura, Taro; Ando, Akira; Sekiguchi, Takuya; Yabe, Yutaka; Itoi, Eiji

    2018-01-01

    Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.

  14. Effects of muscle activation on shear between human soleus and gastrocnemius muscles.

    Science.gov (United States)

    Finni, T; Cronin, N J; Mayfield, D; Lichtwark, G A; Cresswell, A G

    2017-01-01

    Lateral connections between muscles provide pathways for myofascial force transmission. To elucidate whether these pathways have functional roles in vivo, we examined whether activation could alter the shear between the soleus (SOL) and lateral gastrocnemius (LG) muscles. We hypothesized that selective activation of LG would decrease the stretch-induced shear between LG and SOL. Eleven volunteers underwent a series of knee joint manipulations where plantar flexion force, LG, and SOL muscle fascicle lengths and relative displacement of aponeuroses between the muscles were obtained. Data during a passive full range of motion were recorded, followed by 20° knee extension stretches in both passive conditions and with selective electrical stimulation of LG. During active stretch, plantar flexion force was 22% greater (P stronger (stiffer) connectivity between the two muscles, at least at flexed knee joint angles, which may serve to facilitate myofascial force transmission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  16. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    OpenAIRE

    Deane, Colleen Siobhan; Wilkinson, D.J.; Phillips, B.E.; Smith, K.; Etheridge, T.; Atherton, P.J.

    2017-01-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cach...

  17. ATPase activity and contraction in porcine and human cardiac muscle

    Czech Academy of Sciences Publication Activity Database

    Griffiths, P. J.; Isackson, H.; Redwood, C.; Marston, S.; Pelc, Radek; Funari, S.; Watkins, H.; Ashley, C. C.

    2008-01-01

    Roč. 29, 6-8 (2008), s. 277-277 ISSN 0142-4319. [European Muscle Conference of the European Society for Muscle Research /37./. 13.09.2008-16.09.2008, Oxford] R&D Projects: GA MŠk(CZ) LC06063 Grant - others:EC(XE) RII3-CT-2004-506008 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * ATP-asa * cardiac muscle * molecular motor Subject RIV: ED - Physiology

  18. The acute response of pericytes to muscle-damaging eccentric contraction and protein supplementation in human skeletal muscle.

    Science.gov (United States)

    De Lisio, Michael; Farup, Jean; Sukiennik, Richard A; Clevenger, Nicole; Nallabelli, Julian; Nelson, Brett; Ryan, Kelly; Rahbek, Stine K; de Paoli, Frank; Vissing, Kristian; Boppart, Marni D

    2015-10-15

    Skeletal muscle pericytes increase in quantity following eccentric exercise (ECC) and contribute to myofiber repair and adaptation in mice. The purpose of the present investigation was to examine pericyte quantity in response to muscle-damaging ECC and protein supplementation in human skeletal muscle. Male subjects were divided into protein supplement (WHY; n = 12) or isocaloric placebo (CHO; n = 12) groups and completed ECC using an isokinetic dynamometer. Supplements were consumed 3 times/day throughout the experimental time course. Biopsies were collected prior to (PRE) and 3, 24, 48, and 168 h following ECC. Reflective of the damaging protocol, integrin subunits, including α7, β1A, and β1D, increased (3.8-fold, 3.6-fold and 3.9-fold, respectively, P muscle-damaging ECC increases α7β1 integrin content in human muscle, yet pericyte quantity is largely unaltered. Future studies should focus on the capacity for ECC to influence pericyte function, specifically paracrine factor release as a mechanism toward pericyte contribution to repair and adaptation postexercise. Copyright © 2015 the American Physiological Society.

  19. Functional Echomyography of the human denervated muscle: first results

    Directory of Open Access Journals (Sweden)

    Riccardo Zanato

    2011-03-01

    Full Text Available In this study we followed with ultrasound three patients with permanent denervation to evaluate changes in morphology, thickness, contraction and vascularisation of muscles undergoing the home-based electrical stimulation program of the Rise2-Italy project. During a period of 1 year for the first subject, 6 months for the second subject and 3 months for the third subject we studied with ultrasound the denervated muscle comparing it (if possible to the contralateral normal muscle. We evaluated: 1. Changes in morphology and sonographic structure of the pathologic muscle; 2. Muscular thickness in response to the electrical stimulation therapy; 3. Short-term modifications in muscle perfusion and arterial flow patterns after stimulation; 4. Contraction-relaxation kinetic induced by volitional activity or electrical stimulation. Morphology and ultrasonographic structure of the denervated muscles changed during the period of stimulation from a pattern typical of complete muscular atrophy to a pattern which might be considered “normal” when detected in an old patient. Thickness improved significantly more in the middle third than in the proximal and distal third of the denervated muscle, reaching in the last measurements of the first subject approximately the same thickness as the contralateral normal muscle. In all the measurements done within this study, arterial flow of the denervated muscle showed at rest a low-resistance pattern with Doppler Ultra Sound (US, and a pulsed pattern after electrical stimulation. The stimulation- induced pattern is similar to the trifasic high-resistance pattern of the normal muscle. Contraction- relaxation kinetic, measured by recording the muscular movements during electrical stimulation, showed an abnormal behaviour of the denervated muscle during the relaxation phase, which resulted to be significantly longer than in normal muscle (880 msec in the denervated muscle vs 240 msec in the contralateral normal one

  20. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Hellsten, Ylva; Jensen, Mie B. F.

    2008-01-01

    The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study...... the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects...... was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells...

  1. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  2. Detection of human muscle glycogen by natural abundance 13C NMR

    International Nuclear Information System (INIS)

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-01-01

    Natural abundance 13 C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated 1 H decoupling was used to obtain decoupled natural abundance 13 C NMR spectra of the C-1 position of muscle glycogen

  3. Analysis of human muscle extracts by proton NMR

    International Nuclear Information System (INIS)

    Venkatasubramanian, P.N.; Barany, M.; Arus, C.

    1986-01-01

    Perchloric acid extracts were prepared from pooled human muscle biopsies from patients diagnosed with scoliosis (SCOL) and cerebral palsy (CP). After neutralization with KOH and removal of perchlorate, the extracts were concentrated by freeze drying and dissolved in 2 H 2 O to contain 120 O.D. units at 280 nm per 0.5 ml. 1 H NMR spectroscopy was performed with the 5 mm probe of a Varian XL300 instrument. Creatine, lactate, carnosine, and choline were the major resonances in the one-dimensional spectra of both extracts. With creatine as reference, 2.5-fold more lactate was found in SCOL than in CP, and a much smaller difference was also found in their carnosine content. Two-dimensional COSY comparison revealed several differences between the two extracts. Taurine, N-acetyl glutamate, glycerophosphoryl choline (or phosphoryl choline) and an unidentified spot were present only in the extract from SCOL but not in that from CP. On the other hand, aspartate, hydroxy-proline, carnitine and glycerophosphoryl ethanolamine were only present in CP but absent in SCOL. Alanine, cysteine, lysine and arginine appeared in both extracts without an apparent intensity difference

  4. Human skeletal muscle: transition between fast and slow fibre types.

    Science.gov (United States)

    Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan

    2011-05-01

    Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.

  5. Contractile Force of Human Extraocular Muscle: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Hongmei Guo

    2016-01-01

    Full Text Available Aim. The length-contractile force relationships of six human extraocular muscles (EOMs in primary innervations should be determined during eye movement modeling and surgery of clinical EOMs. This study aims to investigate these relationships. Method. The proposal is based on the assumption that six EOMs have similar constitutive relationships, with the eye suspended in the primary position. The constitutive relationships of EOMs are obtained by optimizing from previous experimental data and the theory of mechanical equilibrium using traditional model. Further, simulate the existing experiment of resistance force, and then compare the simulated results with the existing experimental results. Finally, the mechanical constitutive relationships of EOMs are obtained. Results. The results show that the simulated resistance forces from the other four EOMs except for the horizontal recti well agree with previous experimental results. Conclusion. The mechanical constitutive relationships of six EOMs in primary innervations are obtained, and the rationality of the constitutive relationships is verified. Whereafter, the active stress-strain relationships of the six EOMs in the primary innervations are obtained. The research results can improve the eye movement model to predict the surgical amounts of EOMs before EOM surgery more precisely.

  6. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    Science.gov (United States)

    Jørgensen, Louise H.; Petersson, Stine J.; Sellathurai, Jeeva; Andersen, Ditte C.; Thayssen, Susanne; Sant, Dorte J.; Jensen, Charlotte H.; Schrøder, Henrik D.

    2009-01-01

    Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009) PMID:18796407

  7. Myosin heavy chain composition of the human sternocleidomastoid muscle

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Eržen, I.

    2012-01-01

    Roč. 194, č. 5 (2012), s. 467-472 ISSN 0940-9602 R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : immunohistochemistry * MyHC isoforms * muscle fibre types * sternocleidomastoid muscle Subject RIV: FH - Neurology Impact factor: 1.960, year: 2012

  8. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise

    DEFF Research Database (Denmark)

    Miller, Benjamin F; Olesen, Jens L; Hansen, Mette

    2005-01-01

    We hypothesized that an acute bout of strenuous, non-damaging exercise would increase rates of protein synthesis of collagen in tendon and skeletal muscle but these would be less than those of muscle myofibrillar and sarcoplasmic proteins. Two groups (n = 8 and 6) of healthy young men were studied...... collagen (0.077% h(-1)), muscle collagen (0.054% h(-1)), myofibrillar protein (0.121% h(-1)), and sarcoplasmic protein (0.134% h(-1))). The rates decreased toward basal values by 72 h although rates of tendon collagen and myofibrillar protein synthesis remained elevated. There was no tissue damage...... of muscle visible on histological evaluation. Neither tissue microdialysate nor serum concentrations of IGF-I and IGF binding proteins (IGFBP-3 and IGFBP-4) or procollagen type I N-terminal propeptide changed from resting values. Thus, there is a rapid increase in collagen synthesis after strenuous exercise...

  9. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1992-01-01

    changes in human muscle. The aim of this study was to develop a method by which EMG and NMR spectroscopy measurements could be performed simultaneously. All measurements were performed in a whole body 1.5 Tesla NMR scanner. A calf muscle ergometer, designed for use in a whole body NMR scanner, was used....... The subject had the left foot strapped to the ergometer. The anterior tibial EMG was recorded by bipolar surface electrodes. A surface coil was strapped to the anterior tibial muscle next to the EMG electrodes. Simultaneous measurements of surface EMG and surface coil 31P NMR spectroscopy were performed...

  10. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

    Directory of Open Access Journals (Sweden)

    Anthony E Civitarese

    2007-03-01

    Full Text Available Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y, overweight (body mass index, 27.8 +/- 0.7 kg/m(2 individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX, 12.5% CR + 12.5% increased energy expenditure (EE. In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008. Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05. In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005 and 21% +/- 4% in the CREX group (p < 0.004, with no change in the control group (2% +/- 2%. However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid cycle (citrate synthase, beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase, and electron transport chain (cytochrome C oxidase II was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003 and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011, but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.The observed increase in

  11. Human skeletal muscle drug transporters determine local exposure and toxicity of statins.

    Science.gov (United States)

    Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G

    2010-02-05

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.

  12. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Petersson, Stine J; Sellathurai, Jeeva

    2009-01-01

    indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis...

  13. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exer......Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one......-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (phuman muscle....... The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p

  14. Muscle oxygen kinetics at onset of intense dynamic exercise in humans

    DEFF Research Database (Denmark)

    Bangsbo, J; Krustrup, P; González-Alonso, J

    2000-01-01

    The present study examined the onset and the rate of rise of muscle oxidation during intense exercise in humans and whether oxygen availability limits muscle oxygen uptake in the initial phase of intense exercise. Six subjects performed 3 min of intense one-legged knee-extensor exercise [65.3 +/-...

  15. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Lassiter, David G; Nylén, Carolina; Sjögren, Rasmus J O

    2018-01-01

    the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated...

  16. Isolated tear of the tendon to the medial head of gastrocnemius presenting as a painless lump in the calf.

    Science.gov (United States)

    Watura, Christopher; Harries, William

    2009-01-01

    We report on a case of isolated tear of the medial head of gastrocnemius tendon. The patient presented with a painless lump in the right calf and denied any prior history of trauma or strain to the leg. A longitudinal split of the tendon was demonstrated at ultrasound and magnetic resonance imaging (MRI). There were no other abnormalities and the gastrocnemius muscle was normal. There are no reports in the literature of isolated gastrocnemius tendon tear. To date the calf muscle complex injury described in this area is tearing of the medial head of gastrocnemius muscle, sometimes referred to as "tennis leg". We conclude that an isolated tear of the tendon to the medial head of gastrocnemius should be considered in the differential diagnosis of a lump or swelling in the upper medial area of the calf and we recommend ultrasound or MRI as the investigations of choice.

  17. Muscle architectural changes after massive human rotator cuff tear.

    Science.gov (United States)

    Gibbons, Michael C; Sato, Eugene J; Bachasson, Damien; Cheng, Timothy; Azimi, Hassan; Schenk, Simon; Engler, Adam J; Singh, Anshuman; Ward, Samuel R

    2016-12-01

    Rotator cuff (RC) tendon tears lead to negative structural and functional changes in the associated musculature. The structural features of muscle that predict function are termed "muscle architecture." Although the architectural features of "normal" rotator cuff muscles are known, they are poorly understood in the context of cuff pathology. The purpose of this study was to investigate the effects of tear and repair on RC muscle architecture. To this end thirty cadaveric shoulders were grouped into one of four categories based on tear magnitude: Intact, Full-thickness tear (FTT), Massive tear (MT), or Intervention if sutures or hardware were present, and key parameters of muscle architecture were measured. We found that muscle mass and fiber length decreased proportionally with tear size, with significant differences between all groups. Conversely, sarcomere number was reduced in both FTT and MT with no significant difference between these two groups, in large part because sarcomere length was significantly reduced in MT but not FTT. The loss of muscle mass in FTT is due, in part, to subtraction of serial sarcomeres, which may help preserve sarcomere length. This indicates that function in FTT may be impaired, but there is some remaining mechanical loading to maintain "normal" sarcomere length-tension relationships. However, the changes resulting from MT suggest more severe limitations in force-generating capacity because sarcomere length-tension relationships are no longer normal. The architectural deficits observed in MT muscles may indicate deeper deficiencies in muscle adaptability to length change, which could negatively impact RC function despite successful anatomical repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2089-2095, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Endurance training enhances skeletal muscle interleukin-15 in human male subjects

    DEFF Research Database (Denmark)

    Rinnov, Anders; Yfanti, Christina; Nielsen, Søren

    2014-01-01

    Regular endurance exercise promotes metabolic and oxidative changes in skeletal muscle. Overexpression of interleukin-15 (IL-15) in mice exerts similar metabolic changes in muscle as seen with endurance exercise. Muscular IL-15 production has been shown to increase in mice after weeks of regular...... endurance running. With the present study we aimed to determine if muscular IL-15 production would increase in human male subjects following 12 weeks of endurance training. In two different studies we obtained plasma and muscle biopsies from young healthy subjects performing: (1) 12 weeks of ergometer...... weeks of regular endurance training induced a 40% increase in basal skeletal muscle IL-15 protein content (p...

  19. Comparison of human IgE-binding soya bean allergenic protein Gly m I with the antigenicity profiles of calf anti-soya protein sera

    NARCIS (Netherlands)

    Hessing, M.; Bleeker, H.; Tsuji, H.; Ogawa, T.; Vlooswijk, R.A.A.

    1996-01-01

    In the food, particularly the feed, industry, large quantities of soya bean protein products are used for the formulation of end-products destined for human or animal consumption. These basic ingredients and the final end products often have to fulfill specific requirements regarding the presence of

  20. Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: Human MRSA carriage related with animal antimicrobial usage and farm hygiene

    NARCIS (Netherlands)

    Graveland, H.|info:eu-repo/dai/nl/304841838; Wagenaar, J.A.|info:eu-repo/dai/nl/126613354; Heesterbeek, H.|info:eu-repo/dai/nl/073321427; Mevius, D.J.|info:eu-repo/dai/nl/079677347; van Duijkeren, E.|info:eu-repo/dai/nl/135063841; Heederik, D.|info:eu-repo/dai/nl/072910542

    2010-01-01

    INTRODUCTION: Recently a specific MRSA sequence type, ST398, emerged in food production animals and farmers. Risk factors for carrying MRSA ST398 in both animals and humans have not been fully evaluated. In this cross-sectional study, we investigated factors associated with MRSA colonization in veal

  1. Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: human MRSA carriage related with animal antimicrobial usage and farm hygiene

    NARCIS (Netherlands)

    Graveland, H.; Wagenaar, J.A.; Heesterbeek, H.; Mevius, D.J.; Duijkeren, van E.; Heederik, D.J.J.

    2010-01-01

    Introduction Recently a specific MRSA sequence type, ST398, emerged in food production animals and farmers. Risk factors for carrying MRSA ST398 in both animals and humans have not been fully evaluated. In this cross-sectional study, we investigated factors associated with MRSA colonization in veal

  2. Contributions of central command and muscle feedback to sympathetic nerve activity in contracting human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Daniel eBoulton

    2016-05-01

    Full Text Available During voluntary contractions, muscle sympathetic nerve activity (MSNA to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-minute isometric dorsiflexion contractions (left leg separated by 2-minute rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10 % of maximum. MSNA was recorded continuously (microneurography from the left peroneal nerve and quantified from cardiac-synchronised, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34 % (P 0.05. MSNA analysed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01, remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.

  3. Fetal development of deep back muscles in the human thoracic region with a focus on transversospinalis muscles and the medial branch of the spinal nerve posterior ramus

    Science.gov (United States)

    Sato, Tatsuo; Koizumi, Masahiro; Kim, Ji Hyun; Kim, Jeong Hyun; Wang, Bao Jian; Murakami, Gen; Cho, Baik Hwan

    2011-01-01

    Fetal development of human deep back muscles has not yet been fully described, possibly because of the difficulty in identifying muscle bundle directions in horizontal sections. Here, we prepared near-frontal sections along the thoracic back skin (eight fetuses) as well as horizontal sections (six fetuses) from 14 mid-term fetuses at 9–15 weeks of gestation. In the deep side of the trapezius and rhomboideus muscles, the CD34-positive thoracolumbar fascia was evident even at 9 weeks. Desmin-reactivity was strong and homogeneous in the superficial muscle fibers in contrast to the spotty expression in the deep fibers. Thus, in back muscles, formation of the myotendinous junction may start from the superficial muscles and advance to the deep muscles. The fact that developing intramuscular tendons were desmin-negative suggested little possibility of a secondary change from the muscle fibers to tendons. We found no prospective spinalis muscle or its tendinous connections with other muscles. Instead, abundant CD68-positive macrophages along the spinous process at 15 weeks suggested a change in muscle attachment, an event that may result in a later formation of the spinalis muscle. S100-positive intramuscular nerves exhibited downward courses from the multifidus longus muscle in the original segment to the rotatores brevis muscles in the inferiorly adjacent level. The medial cutaneous nerve had already reached the thoracolumbar fascia at 9 weeks, but by 15 weeks the nerve could not penetrate the trapezius muscle. Finally, we propose a folded myotomal model of the primitive transversospinalis muscle that seems to explain a fact that the roofing tile-like configuration of nerve twigs in the semispinalis muscle is reversed in the multifidus and rotatores muscles. PMID:21954879

  4. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.

    1998-01-01

    BACKGROUND: Adenosine has been proposed to be a locally produced regulator of blood flow in skeletal muscle. However, the fundamental questions of to what extent adenosine is formed in skeletal muscle tissue of humans, whether it is present in the interstitium, and where it exerts its vasodilatory...... rest (0.13+/-0.03, 0.07+/-0.03, and 0.07+/-0.02 micromol/L, respectively) to exercise (10 W; 2.00+/-1.32, 2.08+/-1.23, and 1.65+/-0.50 micromol/L, respectively; Pskeletal muscle...... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow....

  5. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka

    2007-01-01

    receptor blockade. BF heterogeneity within muscles was calculated from 16-mm(3) voxels in BF images and heterogeneity among the muscles from the mean values of the four QF compartments. Mean BF in the whole QF and its four parts increased, and heterogeneity decreased with workload both without......Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...... and with theophylline (P heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing...

  6. Direct observation of glycogen synthesis in human muscle with 13C NMR

    International Nuclear Information System (INIS)

    Jue, T.; Rothman, D.L.; Shulman, G.I.; Tavitian, B.A.; DeFronzo, R.A.; Shulman, R.G.

    1989-01-01

    On the basis of previous indirect measurements, skeletal muscle has been implicated as the major site of glucose uptake and it has been suggested that muscle glycogen formation is the dominant pathway. However, direct measurements of the rates of glycogen synthesis have not been possible by previous techniques. The authors have developed 13 C NMR methods to measure directly the rate of human muscle glycogen formation from infused, isotopically labeled [1- 13 C]glucose. They show that under conditions of imposed hyperglycemia and hyperinsulinemia, a majority of the infused glucose was converted to muscle glycogen in a normal man. This directly shows that muscle is the major site of glucose disposal under these conditions, and provides quantitation of the glucose flux to muscle glycogen

  7. Oxidation of urate in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Tullson, P. C.; Richter, Erik

    1997-01-01

    the level was more than twofold higher and remained elevated throughout recovery (p exercise, probably due to generation of free radicals. Furthermore, the findings support the suggested importance of urate......The purpose of the present study was to investigate whether high metabolic stress to skeletal muscle, induced by intensive exercise, would lead to an oxidation of urate to allantoin in the exercised muscle. Seven healthy male subjects performed short term (4.39 +/- 0.04 [+/-SE] min) exhaustive...... cycling exercise. Muscle samples were obtained from m. v. lateralis before and during the first few minutes after the exercise. Venous blood samples were obtained before and up to 45 min after the exercise. The concentration of urate in muscle decreased from a resting level of 0.26 +/- 0.023 to 0...

  8. Muscle metaboreflex and autonomic regulation of heart rate in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Adlan, Ahmed M; Shantsila, Alena

    2013-01-01

    ) conditions, but attenuated with β-adrenergic blockade (0.2 ± 1 beats min(-1); P > 0.05 vs. rest). Thus muscle metaboreflex activation-mediated increases in HR are principally attributable to increased cardiac sympathetic activity, and only following exercise with a large muscle mass (PEI following leg......We elucidated the autonomic mechanisms whereby heart rate (HR) is regulated by the muscle metaboreflex. Eight male participants (22 ± 3 years) performed three exercise protocols: (1) enhanced metaboreflex activation with partial flow restriction (bi-lateral thigh cuff inflation) during leg cycling...... exercise, (2) isolated muscle metaboreflex activation (post-exercise ischaemia; PEI) following leg cycling exercise, (3) isometric handgrip followed by PEI. Trials were undertaken under control (no drug), β1-adrenergic blockade (metoprolol) and parasympathetic blockade (glycopyrrolate) conditions. HR...

  9. Skeletal muscle glucose uptake during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Saltin, Bengt

    1988-01-01

    uptake was not compensated for by increased uptake of free fatty acids but was accompanied by decreases in plasma insulin and increases in plasma epinephrine and norepinephrine. During work with large muscle masses, arterial lactate increased to approximately 6 mM, and net leg lactate release reverted......To study the role of muscle mass in glucoregulation, six subjects worked with the knee extensors of one leg on a specially constructed cycle ergometer. The knee extensors of one leg worked either alone or in combination with the knee extensors of the other leg and/or with the arms. Substrate usage...... to net lactate uptake. Decreased glucose uptake could not be explained by decreased perfusion. It is concluded that thigh muscle glucose uptake is affected by the size of the total muscle mass engaged in exercise. The decrease in thigh glucose uptake, when arm cranking was added and O2 uptake...

  10. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

    Science.gov (United States)

    Catoire, Milène; Mensink, Marco; Boekschoten, Mark V; Hangelbroek, Roland; Müller, Michael; Schrauwen, Patrick; Kersten, Sander

    2012-01-01

    Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max). Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.

  11. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Milène Catoire

    Full Text Available Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max. Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.

  12. Clinical and morphological study of calf enlargement following S-1 radiculopathy

    Directory of Open Access Journals (Sweden)

    Osvaldo J. M. Nascimento

    1992-09-01

    Full Text Available Calf enlargement following sciatica is a rare condition. It is reported the case of a 28-year-old woman who complained of repeated episodes of lower back pain radiating into the left buttock and foot. One year after the beginning of her symptoms, she noticed enlargement of her left calf. X-ray studies disclosed L5-S1 disk degeneration. EMG showed muscle denervation with normal motor conduction velocity. Open biopsies of the gastrocnemius muscles were performed. The left gastrocnemius muscle showed hypertrophic type 2 fibers in comparison with the right gastrocnemius. Electron microscopy showed mildly increased number of mitochondria in these fibers. A satisfactory explanation for denervation hypertrophy has yet to be provided.

  13. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    Science.gov (United States)

    Deane, Colleen S; Wilkinson, Daniel J; Phillips, Bethan E; Smith, Kenneth; Etheridge, Timothy; Atherton, Philip J

    2017-04-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1 ) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2 ) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. Copyright © 2017 the American Physiological Society.

  14. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  15. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sara Martina Maffioletti

    2018-04-01

    Full Text Available Summary: Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. : Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons. Keywords: skeletal muscle, pluripotent stem cells, iPS cells, myogenic differentiation, tissue engineering, disease modeling, muscular dystrophy, organoids

  16. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity

    DEFF Research Database (Denmark)

    Skovbro, M; Baranowski, M; Skov-Jensen, C

    2008-01-01

    -hyperinsulinaemic clamp was performed for 120 and 90 min for step 1 and step 2, respectively. Muscle biopsies were obtained from vastus lateralis at baseline, and after steps 1 and 2. RESULTS: Glucose infusion rates increased in response to insulin infusion, and significant differences were present between groups (T2D......AIMS/HYPOTHESIS: In skeletal muscle, ceramides may be involved in the pathogenesis of insulin resistance through an attenuation of insulin signalling. This study investigated total skeletal muscle ceramide fatty acid content in participants exhibiting a wide range of insulin sensitivities. METHODS......: The middle-aged male participants (n=33) were matched for lean body mass and divided into four groups: type 2 diabetes (T2D, n=8), impaired glucose tolerance (IGT, n=9), healthy controls (CON, n=8) and endurance-trained (TR, n=8). A two step (28 and 80 mU m(-2) min(-1)) sequential euglycaemic...

  17. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  18. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Directory of Open Access Journals (Sweden)

    Jared Markowitz

    2016-05-01

    Full Text Available Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG, and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  19. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans.......The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans....

  20. Raising the standards of the calf-raise test: a systematic review.

    Science.gov (United States)

    Hébert-Losier, Kim; Newsham-West, Richard J; Schneiders, Anthony G; Sullivan, S John

    2009-11-01

    The calf-raise test is used by clinicians and researchers in sports medicine to assess properties of the calf muscle-tendon unit. The test generally involves repetitive concentric-eccentric muscle action of the plantar-flexors in unipedal stance and is quantified by the number of raises performed. Although the calf-raise test appears to have acceptable reliability and face validity, and is commonly used for medical assessment and rehabilitation of injuries, no universally acceptable test parameters have been published to date. A systematic review of the existing literature was conducted to investigate the consistency as well as universal acceptance of the evaluation purposes, test parameters, outcome measurements and psychometric properties of the calf-raise test. Nine electronic databases were searched during the period May 30th to September 21st 2008. Forty-nine articles met the inclusion criteria and were quality assessed. Information on study characteristics and calf-raise test parameters, as well as quantitative data, were extracted; tabulated; and statistically analysed. The average quality score of the reviewed articles was 70.4+/-12.2% (range 44-90%). Articles provided various test parameters; however, a consensus was not ascertained. Key testing parameters varied, were often unstated, and few studies reported reliability or validity values, including sensitivity and specificity. No definitive normative values could be established and the utility of the test in subjects with pathologies remained unclear. Although adapted for use in several disciplines and traditionally recommended for clinical assessment, there is no uniform description of the calf-raise test in the literature. Further investigation is recommended to ensure consistent use and interpretation of the test by researchers and clinicians.

  1. ATP and phosphocreatine utilization in single human muscle fibres during the development of maximal power output at elevated muscle temperatures.

    Science.gov (United States)

    Gray, Stuart R; Söderlund, Karin; Ferguson, Richard A

    2008-05-01

    In this study, we examined the effect of muscle temperature (Tm) on adenosine triphosphate (ATP) and phosphocreatine utilization in single muscle fibres during the development of maximal power output in humans. Six male participants performed a 6-s maximal sprint on a friction-braked cycle ergometer under both normal (Tm = 34.3 degrees C, s = 0.6) and elevated (T(m) = 37.3 degrees C, s = 0.2) muscle temperature conditions. During the elevated condition, muscle temperature of the legs was raised, passively, by hot water immersion followed by wrapping in electrically heated blankets. Muscle biopsies were taken from the vastus lateralis before and immediately after exercise. Freeze-dried single fibres were dissected, characterized according to myosin heavy chain composition, and analysed for ATP and phosphocreatine content. Single fibres were classified as: type I, IIA, IIAX25 (1 - 25% IIX isoform), IIAX50 (26 - 50% IIX), IIAX75 (51 - 75% IIX), or IIAX100 (76 - 100% IIX). Maximal power output and pedal rate were both greater (P < 0.05) during the elevated condition by 258 W (s = 110) and 22 rev . min(-1) (s = 6), respectively. In both conditions, phosphocreatine content decreased significantly in all fibre types, with a greater decrease during the elevated condition in type IIA fibres (P < 0.01). Adenosine triphosphate content was also reduced to a greater (P < 0.01) extent in type IIA fibres during the elevated condition. The results of the present study indicate that after passive elevation of muscle temperature, there was a greater decrease in ATP and phosphocreatine content in type IIA fibres than in the normal trial, which contributed to the higher maximal power output.

  2. The motor cortex drives the muscles during walking in human subjects

    DEFF Research Database (Denmark)

    Petersen, Tue Hvass; Willerslev-Olsen, Maria; Conway, B A

    2012-01-01

    Indirect evidence that the motor cortex and the corticospinal tract contribute to the control of walking in human subjects has been provided in previous studies. In the present study we used coherence analysis of the coupling between EEG and EMG from active leg muscles during human walking...... area and EMG from the anterior tibial muscle was found in the frequency band 24–40 Hz prior to heel strike during the swing phase of walking. This signifies that rhythmic cortical activity in the 24–40 Hz frequency band is transmitted via the corticospinal tract to the active muscles during walking...

  3. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina D; Vissing, John; González-Alonso, José

    2012-01-01

    Oxygen (O(2)) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can incr...

  4. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  5. Influence of Passive Muscle Tension on Electromechanical Delay in Humans

    Science.gov (United States)

    Lacourpaille, Lilian; Hug, François; Nordez, Antoine

    2013-01-01

    Background Electromechanical delay is the time lag between onsets of muscle activation and muscle force production and reflects both electro-chemical processes and mechanical processes. The aims of the present study were two-fold: to experimentally determine the slack length of each head of the biceps brachii using elastography and to determine the influence of the length of biceps brachii on electromechanical delay and its electro-chemical/mechanical processes using very high frame rate ultrasound. Methods/Results First, 12 participants performed two passive stretches to evaluate the change in passive tension for each head of the biceps brachii. Then, they underwent two electrically evoked contractions from 120 to 20° of elbow flexion (0°: full extension), with the echographic probe maintained over the muscle belly and the myotendinous junction of biceps brachii. The slack length was found to occur at 95.5 ± 6.3° and 95.3 ± 8.2° of the elbow joint angle for the long and short heads of the biceps brachii, respectively. The electromechanical delay was significantly longer at 120° (16.9 ± 3.1 ms; p0.95). Conclusion In contrast to previous observations on gastrocnemius medialis, the onset of muscle motion and the onset of myotendinous junction motion occurred simultaneously regardless of the length of the biceps brachii. That suggests that the between-muscles differences reported in the literature cannot be explained by different muscle passive tension but instead may be attributable to muscle architectural differences. PMID:23308153

  6. Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans

    DEFF Research Database (Denmark)

    Mackey, Abigail; Bojsen-Moller, Jens; Qvortrup, Klaus

    2008-01-01

    and desmin-negative staining in a small percentage of myofibers in five and four individuals, respectively. z-Line disruption was evident at varying magnitudes in all subjects and displayed a trend toward a positive correlation (r = 0.73, P = 0.0663) with the force produced by stimulation. Increased muscle...

  7. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans.

    Science.gov (United States)

    Gray, Stuart R; De Vito, Giuseppe; Nimmo, Myra A; Farina, Dario; Ferguson, Richard A

    2006-02-01

    The effect of temperature on skeletal muscle ATP turnover and muscle fiber conduction velocity (MFCV) was studied during maximal power output development in humans. Eight male subjects performed a 6-s maximal sprint on a mechanically braked cycle ergometer under conditions of normal (N) and elevated muscle temperature (ET). Muscle temperature was passively elevated through the combination of hot water immersion and electric blankets. Anaerobic ATP turnover was calculated from analysis of muscle biopsies obtained before and immediately after exercise. MFCV was measured during exercise using surface electromyography. Preexercise muscle temperature was 34.2 degrees C (SD 0.6) in N and 37.5 degrees C (SD 0.6) in ET. During ET, the rate of ATP turnover for phosphocreatine utilization [temperature coefficient (Q10) = 3.8], glycolysis (Q10 = 1.7), and total anaerobic ATP turnover [Q10 = 2.7; 10.8 (SD 1.9) vs. 14.6 mmol x kg(-1) (dry mass) x s(-1) (SD 2.3)] were greater than during N (P < 0.05). MFCV was also greater in ET than in N [3.79 (SD 0.47) to 5.55 m/s (SD 0.72)]. Maximal power output (Q10 = 2.2) and pedal rate (Q10 = 1.6) were greater in ET compared with N (P < 0.05). The Q10 of maximal and mean power were correlated (P < 0.05; R = 0.82 and 0.85, respectively) with the percentage of myosin heavy chain type IIA. The greater power output obtained with passive heating was achieved through an elevated rate of anaerobic ATP turnover and MFCV, possibly due to a greater effect of temperature on power production of fibers, with a predominance of myosin heavy chain IIA at the contraction frequencies reached.

  8. Induction and modulation of referred muscle pain in humans

    DEFF Research Database (Denmark)

    Laursen, René Johannes

    correlated to pain intensity, and LP and RP thresholds were reproducible within and between sessions. Experimentally (electrical stimulation and infusion of hypertonic saline) induced muscle pain seems to be mediated by myelinated and unmyelinated afferents and the peripheral component of RP by myelinated...... afferents. Furthermore, cutaneous anesthesia of the RP area resulted in a reduction of RP intensity of 22%, while a complete nerve block of afferents from the RP area resulted in a 40% reduction. In summary, observations from the presented experiments suggest that elicitation of referred muscle pain...... is depending on and correlated to local muscle pain. Peripheral input from the RP area is involved, but is not a necessary condition for RP to appear. The present studies as well as others suggest that central hyperexcitability is involved in the generation of RP, but further investigations on mechanisms of RP...

  9. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...... consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved....

  10. Norepinephrine spillover from skeletal muscle during exercise in humans

    DEFF Research Database (Denmark)

    Savard, G K; Richter, Erik; Strange, S

    1989-01-01

    The purpose of this study was to determine the effect of increasing muscle mass involvement in dynamic exercise on both sympathetic nervous activation and local hemodynamic variables of individual active and inactive skeletal muscle groups. Six male subjects performed 15-min bouts of one...... legs, with a steeper rise occurring approximately 70% VO2max. These increases were not associated with any significant changes in leg blood flow or leg vascular conductance at the exercise intensities examined. These results suggest that, as the total active muscle mass increases, the rise...... in both legs. Arterial and venous plasma concentrations of norepinephrine (NE) and epinephrine were analyzed, and the calculated NE spillover was used as an index of sympathetic nervous activity to the limb. NE spillover increased gradually both in the resting, and to a larger extent in the exercising...

  11. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-06-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.

  12. Electrical stimulation counteracts muscle atrophy associated with aging in humans

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2013-07-01

    Full Text Available Functional and structural muscle decline is a major problem during aging. Our goal was to improve in old subjects quadriceps m. force and mobility functional performances (stair test, chair rise test, timed up and go test with neuromuscular electrical stimulation (9 weeks, 2-3times/week, 20-30 minutes per session. Furthermore we performed histological and biological molecular analyses of vastus lateralis m. biopsies. Our findings demonstrate that electrical stimulation significantly improved mobility functional performancies and muscle histological characteristics and molecular markers.

  13. Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Zhongjie Xu

    2016-06-01

    Full Text Available Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT exhibits significant antitumor activity. However, the mechanism of its pharmacological interaction with human serum albumin (HSA and DNA remains poorly understood. Here, we aimed to elucidate the interactions of Dp44mT with HSA and DNA using MTT assays, spectroscopic methods, and molecular docking analysis. Our results indicated that addition of HSA at a ratio of 1:1 did not alter the cytotoxicity of Dp44mT, but did affect the cytotoxicity of the Dp44mT-Cu complex. Data from fluorescence quenching and UV-VIS absorbance measurements demonstrated that Dp44mT could bind to HSA with a moderate affinity (Ka = approximately 104 M−1. CD spectra revealed that Dp44mT could slightly disrupt the secondary structure of HSA. Dp44mT could also interact with Ct-DNA, but had a moderate binding constant (KEB = approximately 104 M−1. Docking studies indicated that the IB site of HSA, but not the IIA and IIIA sites, could be favorable for Dp44mT and that binding of Dp44mT to HSA involved hydrogen bonds and hydrophobic force, consistent with thermodynamic results from spectral investigations. Thus, the moderate binding affinity of Dp44mT with HSA and DNA partially contributed to its antitumor activity and may be preferable in drug design approaches.

  14. Study of Statin- and Loratadine-Induced Muscle Pain Mechanisms Using Human Skeletal Muscle Cells

    OpenAIRE

    Yat Hei Leung; Jacques Turgeon; Veronique Michaud

    2017-01-01

    Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs) may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4). The main objective of this study was to confirm the inhibitory potentials of atorvastatin, simvastatin (acid and lact...

  15. Pyruvate carboxylase is expressed in human skeletal muscle

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2010-01-01

    Pyruvate carboxylase (PC) is a mitochondrial enzyme that catalyses the carboxylation of pyruvate to oxaloacetate thereby allowing supplementation of citric acid cycle intermediates. The presence of PC in skeletal muscle is controversial. We report here, that PC protein is easily detectable...

  16. Corticospinal contribution to arm muscle activity during human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Nielsen, Jens Bo

    2010-01-01

    inhibitory interneurones, the suppression is in all likelihood caused by removal of a corticospinal contribution to the ongoing EMG activity. The data thus suggest that the motor cortex makes an active contribution, through the corticospinal tract, to the ongoing EMG activity in arm muscles during walking....

  17. Factors regulating fat oxidation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiens, Bente; Alsted, Thomas Junker; Jeppesen, Jacob

    2011-01-01

    In modern societies, oversupply of calories leads to obesity and chronic metabolic stress, which may lead to development of disease. Oversupply of calories is often associated with elevated plasma lipid concentrations and accumulation of lipids in skeletal muscle leading to decreased insulin...

  18. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan

    2012-01-01

    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene ex...

  19. Ammonia uptake in inactive muscles during exercise in humans

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Kiens, Bente; Richter, Erik

    1996-01-01

    The present study examined NH3 (ammonia and ammonium) uptake in resting leg muscle. Six male subjects performed intermittent arm exercise at various intensities in two separate 32-min periods (part I and part II) and in one subsequent 20-min period in which one-legged exercise was also performed ...

  20. Human and rodent muscle Na(+)-K(+)-ATPase in diabetes related to insulin, starvation, and training

    DEFF Research Database (Denmark)

    Schmidt, T A; Hasselbalch, S; Farrell, P A

    1994-01-01

    cerebral cortex Na(+)-K(+)-ATPase concentration as a result of diabetes, semistarvation, or insulin treatment. In human subjects, Na(+)-K(+)-ATPase concentration in vastus lateralis muscle biopsies was 17 and 22% greater (P dependent diabetes...... mellitus (n = 24) and insulin-dependent diabetes mellitus (n = 7) than in control subjects (n = 8). A positive linear correlation between muscle Na(+)-K(+)-ATPase and plasma insulin concentrations was observed (r = 0.50, P = 0.006; n = 29). Thus, insulin seems a regulator of muscle Na......(+)-K(+)-ATPase concentration, reduction of muscle Na(+)-K(+)-ATPase concentration with untreated diabetes bears similarities with undernourishment, and physical conditioning may ameliorate the muscle Na(+)-K(+)-ATPase concentration decrease induced by diabetes....

  1. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content......, maximal activity and subunit specific mRNA level (a1, a2, ß1, ß2, ß3) in deltoid and vastus lateralis muscle were investigated. Before treatment, maximal Na+,K+ pump activity, as well as a1, a2, ß1 and ß2 mRNA levels were higher (P ... increased Na+,K+ pump maximal activity in vastus lateralis and deltoid by 14 ± 7% (P Na+,K+ pump content by 18 ± 9% (P

  2. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    Science.gov (United States)

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  3. Validity of soft-tissue thickness of calf measured using MRI for assessing unilateral lower extremity lymphoedema secondary to cervical and endometrial cancer treatments

    International Nuclear Information System (INIS)

    Lu, Qing; Li, Yulai; Chen, Tian-Wu; Yao, Yuan; Zhao, Zizhou; Li, Yang; Xu, Jianrong; Jiang, Zhaohua; Hu, Jiani

    2014-01-01

    Aim: To determine whether soft-tissue thickness of the calf measured using MRI could be valid for assessing unilateral lower extremity lymphoedema (LEL) secondary to cervical and endometrial cancer treatments. Materials and methods: Seventy women with unilateral LEL and 25 without LEL after cervical or endometrial cancer treatments underwent MRI examinations of their calves. Total thickness of soft-tissue (TT), muscle thickness (MT), and subcutaneous tissue thickness (STT) of the calf, and the difference between the affected and contralateral unaffected calf regarding TT (DTT), MT (DMT), and STT (DSTT) were obtained using fat-suppressed T2-weighted imaging in the middle of the calves. The volume of the calf and difference in volume (DV) between calves were obtained by the method of water displacement. Statistical analysis was performed to determine the validity of MRI measurements by volume measurements in staging LEL. Results: There was a close correlation between volume and TT for the affected (r = 0.927) or unaffected calves (r = 0.896). STT of the affected calf, and DTT or DSTT of the calves were closely correlated with volume of the affected calf or DV of the calves (all p < 0.05). Multivariate analysis showed significant differences in TT, STT, volume of the affected calf, DTT, DSTT, and DV between stages except in volume of the affected calf or in DV between stage 0 and 1. For staging LEL, DSTT showed the best discrimination ability among all the parameters. Conclusions: Soft-tissue thickness of the calf measured at MRI could be valid for quantitatively staging unilateral LEL, and DSTT of the calves could be the best classifying factor. - Highlights: • The soft tissue thickness of calves on MRI could quantitatively assess secondary LEL. • Calf soft tissue thickness indicated concurrent or construct validity of calf volume. • The difference of subcutaneous tissue thickness of calves could be used to stage LEL

  4. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  5. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional...

  6. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    Science.gov (United States)

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P antigravity leg muscles.

  7. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia.

    Science.gov (United States)

    Pannérec, Alice; Springer, Margherita; Migliavacca, Eugenia; Ireland, Alex; Piasecki, Mathew; Karaz, Sonia; Jacot, Guillaume; Métairon, Sylviane; Danenberg, Esther; Raymond, Frédéric; Descombes, Patrick; McPhee, Jamie S; Feige, Jerome N

    2016-04-01

    Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.

  8. Motor unit activity after eccentric exercise and muscle damage in humans.

    Science.gov (United States)

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  9. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, Henning; Gemmer, Carsten

    2002-01-01

    The vascular endothelium is an important mediator of tissue vasodilatation, yet the role of the specific substances, nitric oxide (NO) and prostaglandins (PG), in mediating the large increases in muscle perfusion during exercise in humans is unclear. Quadriceps microvascular blood flow......, respectively (P exercise in humans. These findings demonstrate an important synergistic role of NO and PG for skeletal muscle vasodilatation and hyperaemia during muscular contraction....... was quantified by near infrared spectroscopy and indocyanine green in six healthy humans during dynamic knee extension exercise with and without combined pharmacological inhibition of NO synthase (NOS) and PG by L-NAME and indomethacin, respectively. Microdialysis was applied to determine interstitial release...

  10. Detection of Botulinum Toxin Muscle Effect in Humans Using Magnetic Resonance Imaging: A Qualitative Case Series.

    Science.gov (United States)

    O'Dell, Michael W; Villanueva, Mark; Creelman, Carly; Telhan, Gaurav; Nestor, Jaclyn; Hentel, Keith D; Ballon, Douglas; Dyke, Jonathan P

    2017-12-01

    Although important for dosing and dilution, there are few data describing botulinum toxin (BT) movement in human muscle. To better understand BT movement within human muscle. Proof-of-concept study with descriptive case series. Outpatient academic practice. Five subjects with stroke who were BT naive with a mean age of 60.4 ± 14 years and time poststroke of 4.6 ± 3.7 years. Three standardized injections were given to the lateral gastrocnemius muscle (LGM): 2 contained 25 units (U) of onabotulinumtoxinA (Botox) in 0.25 mL of saline solution and the third 0.25 mL of saline solution only. The tibialis anterior muscle (TAM) was not injected in any subject. A leg magnetic resonance image was obtained at baseline, 2 months, and 3 months later with a 3.0 Tesla Siemens scanner. Three muscles, the LGM, lateral soleus muscle (LSM), and TAM, were manually outlined on the T2 mapping sequence at each time point. A histogram of T2 relaxation times (T2-RT) for all voxels at baseline was used to calculate a mean and standard deviation (SD) T2-RT for each muscle. Botulinum toxin muscle effect (BTME) at 2 months and 3 months was defined as a subject- and muscle-specific T2-RT voxel threshold ≥3 SD above the baseline mean at or near BT injection sites. BTME volume for each leg magnetic resonance imaging slice at 3 time points and 3 muscles for all subjects. One subject missed the 3-month scan, leaving 18 potential observations of BTME. Little to no BTME effect was seen in the noninjected TAM. A BTME was detected in the LGM in 13 of 18 possible observations, and no effect was detected in 5 observations. Possible BTME effect was seen in the LSM in 3 subjects due to either diffusion through fascia or needle misplacement. Volume of BTME, as defined here, appeared to be substantially greater than the 0.25-mL injection volume. This descriptive case series is among the first attempts to quantify BTME within human muscle. Our findings are preliminary and are limited by a few

  11. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis...... to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. ....... that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD...

  12. Noninvasive optical imaging of resistance training adaptations in human muscle

    Science.gov (United States)

    Warren, Robert V.; Cotter, Joshua; Ganesan, Goutham; Le, Lisa; Agustin, Janelle P.; Duarte, Bridgette; Cutler, Kyle; O'Sullivan, Thomas; Tromberg, Bruce J.

    2017-12-01

    A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ˜6% in oxy-hemo/myoglobin (3.4±1.0 μM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 μM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ˜2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ˜60% increases in 1 rep-max strength (41.5±6.2 kg, p = 1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.

  13. Architecture and functional ecology of the human gastrocnemius muscle-tendon unit.

    Science.gov (United States)

    Butler, Erin E; Dominy, Nathaniel J

    2016-04-01

    The gastrocnemius muscle-tendon unit (MTU) is central to human locomotion. Structural variation in the human gastrocnemius MTU is predicted to affect the efficiency of locomotion, a concept most often explored in the context of performance activities. For example, stiffness of the Achilles tendon varies among individuals with different histories of competitive running. Such a finding highlights the functional variation of individuals and raises the possibility of similar variation between populations, perhaps in response to specific ecological or environmental demands. Researchers often assume minimal variation in human populations, or that industrialized populations represent the human species as well as any other. Yet rainforest hunter-gatherers, which often express the human pygmy phenotype, contradict such assumptions. Indeed, the human pygmy phenotype is a potential model system for exploring the range of ecomorphological variation in the architecture of human hindlimb muscles, a concept we review here. © 2015 Anatomical Society.

  14. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    Science.gov (United States)

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    Science.gov (United States)

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.

  16. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  17. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities

    Directory of Open Access Journals (Sweden)

    Toshinari Takamura

    2017-07-01

    Interpretation: Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective marker against obesity-associated metabolic abnormalities.

  18. Aging is associated with diminished muscle re-growth and myogenic precursor cell expansion in the early recovery phase after immobility-induced atrophy in human skeletal muscle

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Mackey, Abigail L

    2013-01-01

    Recovery of skeletal muscle mass from immobilisation-induced atrophy is faster in young than older individuals, yet the cellular mechanisms remain unknown. We examined the cellular and molecular regulation of muscle recovery in young and old human subjects subsequent to 2 weeks of immobility...... expression analysis of key growth and transcription factors associated with local skeletal muscle milieu were performed after 2 weeks immobility (Imm) and following 3 days (+3d) and 4 weeks (+4wks) of re-training. OM demonstrated no detectable gains in MFA (VL muscle) and no increases in number of Pax7......-induced muscle atrophy. Re-training consisted of 4 weeks of supervised resistive exercise in 9 older (OM: 67.3yrs, range 61-74) and 11 young (YM: 24.4yrs, range 21-30) males. Measures of myofiber area (MFA), Pax7-positive satellite cells (SC) associated with type I and type II muscle fibres, as well as gene...

  19. Functional compartmentalization of the human superficial masseter muscle.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Guzmán-Venegas

    Full Text Available Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM muscle's motor units using high-density surface electromyography (EMGs at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF were randomly requested. Using a two-dimensional grid (four columns, six electrodes located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001.The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001. The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001. The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20-60% MVBF.

  20. Mechanics of the human hamstring muscles during sprinting.

    Science.gov (United States)

    Schache, Anthony G; Dorn, Tim W; Blanch, Peter D; Brown, Nicholas A T; Pandy, Marcus G

    2012-04-01

    An understanding of hamstring mechanics during sprinting is important for elucidating why these muscles are so vulnerable to acute strain-type injury. The purpose of this study was twofold: first, to quantify the biomechanical load (specifically, musculotendon strain, velocity, force, power, and work) experienced by the hamstrings across a full stride cycle; and second, to determine how these parameters differ for each hamstring muscle (i.e., semimembranosus (SM), semitendinosus (ST), biceps femoris long head (BF), biceps femoris short head (BF)). Full-body kinematics and ground reaction force data were recorded simultaneously from seven subjects while sprinting on an indoor running track. Experimental data were integrated with a three-dimensional musculoskeletal computer model comprised of 12 body segments and 92 musculotendon structures. The model was used in conjunction with an optimization algorithm to calculate musculotendon strain, velocity, force, power, and work for the hamstrings. SM, ST, and BF all reached peak strain, produced peak force, and formed much negative work (energy absorption) during terminal swing. The biomechanical load differed for each hamstring muscle: BF exhibited the largest peak strain, ST displayed the greatest lengthening velocity, and SM produced the highest peak force, absorbed and generated the most power, and performed the largest amount of positive and negative work. As peak musculotendon force and strain for BF, ST, and SM occurred around the same time during terminal swing, it is suggested that this period in the stride cycle may be when the biarticular hamstrings are at greatest injury risk. On this basis, hamstring injury prevention or rehabilitation programs should preferentially target strengthening exercises that involve eccentric contractions performed with high loads at longer musculotendon lengths.

  1. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    International Nuclear Information System (INIS)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M.

    1990-01-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications

  2. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. (Stanford Univ. School of Medicine, CA (USA))

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  3. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  4. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes), Bonobos (Pan paniscus), and Humans (Homo sapiens)

    OpenAIRE

    Potau, J. M.; Arias-Martorell, J.; Bello-Hellegouarch, G.; Casado, A.; Pastor, J. F.; de Paz, F.; Diogo, R.

    2018-01-01

    We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan\\ud troglodytes) and bonobos(Pan paniscus) and compared them to anatomic variations in these muscles in humans(Homo sapiens). We\\ud have macroscopically dissected these muscles in six adult Pan troglodytes, five Pan paniscus of ages ranging from fetus to adult, and\\ud five adult Homo sapiens. Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we...

  5. Recruitment of single human low-threshold motor units with increasing loads at different muscle lengths.

    Science.gov (United States)

    McNulty, P A; Cresswell, A G

    2004-06-01

    We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (Precruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.

  6. Human skeletal muscle digitalis glycoside receptors (Na,K-ATPase)--importance during digitalization.

    Science.gov (United States)

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1993-02-01

    The aims of the present study were to evaluate in humans the putative importance of skeletal muscle digitalis glycoside receptors (Na,K-ATPase) in the volume of distribution of digoxin and to assess whether therapeutic digoxin exposure might cause digitalis receptor upregulation in skeletal muscle. Samples of the vastus lateralis were obtained postmortem from 11 long-term (9 months to 9 years) digitalized (125-187.5 micrograms daily) and eight undigitalized subjects. In intact samples from digitalized patients, vanadate-facilitated 3H-ouabain binding increased 15% (p 0.30) before and after washing in specific digoxin antibody fragments, respectively. Thus, the present study indicates a approximately 13% occupancy of skeletal muscle digitalis glycoside receptors with digoxin during digitalization. In light of the large skeletal muscle contribution to body mass, this indicates that the skeletal muscle Na,K-ATPase pool constitutes a major volume of distribution for digoxin during digitalization. The results gave no indication of skeletal muscle digitalis glycoside receptor upregulation in response to digoxin treatment. On the contrary, there was evidence of significantly lower (37%, p digitalized patients, which may be of importance for skeletal muscle incapacity in heart failure.

  7. Quantitative analysis of energy metabolism in human muscle using SLOOP 31P-MR-spectroscopy

    International Nuclear Information System (INIS)

    Beer, M.; Koestler, H.; Buchner, S.; Sandstede, J.; Hahn, D.

    2002-01-01

    Objective: Energy metabolism is vital for regular muscle function. In humans, in vivo analysis using 31 P-MR-spectroscopy (MRS) is mostly restricted to semiquantitative parameters due to technical demands. We applied spatial localization with optimal pointspread function (SLOOP) for quantification in human skeletal and cardiac muscle. Subjects/Methods: 10 healthy volunteers and 4 patients with myotonic dystrophy type 1 were examined using a 1.5 T system (Magnetom VISION) and chemical shift imaging (CSI) for data collection. Concentrations of PCr, ATP and P i as well as PCr/ATP ratios were calculated by SLOOP. Results: Concentrations of PCr, ATP and P i were 29.9±3.4, 7.1±0.9 and 5.7±1.2 [mmol/kg] in normal skeletal muscle, corresponding to previously published studies. Two of the patients with a duration of disease longer than 10 years and a pronounced muscle weakness showed a significant decrease of PCr and ATP in skeletal muscle below 10 and 5 mmol/kg. One of these patients had an additional reduction of PCr in cardiac muscle. (orig.) [de

  8. Motor units in the human medial gastrocnemius muscle are not spatially localized or functionally grouped.

    Science.gov (United States)

    Héroux, Martin E; Brown, Harrison J; Inglis, J Timothy; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2015-08-15

    Human medial gastrocnemius (MG) motor units (MUs) are thought to occupy small muscle territories or regions, with low-threshold units preferentially located distally. We used intramuscular recordings to measure the territory of muscle fibres from MG MUs and determine whether these MUs are grouped by recruitment threshold or joint action (ankle plantar flexion and knee flexion). The territory of MUs from the MG muscle varied from somewhat localized to highly distributed, with approximately half the MUs spanning at least half the length and width of the muscle. There was also no evidence of regional muscle activity based on MU recruitment thresholds or joint action. The CNS does not have the means to selectively activate regions of the MG muscle based on task requirements. Human medial gastrocnemius (MG) motor units (MUs) are thought to occupy small muscle territories, with low-threshold units preferentially located distally. In this study, subjects (n = 8) performed ramped and sustained isometric contractions (ankle plantar flexion and knee flexion; range: ∼1-40% maximal voluntary contraction) and we measured MU territory size with spike-triggered averages from fine-wire electrodes inserted along the length (seven electrodes) or across the width (five electrodes) of the MG muscle. Of 69 MUs identified along the length of the muscle, 32 spanned at least half the muscle length (≥ 6.9 cm), 11 of which spanned all recording sites (13.6-17.9 cm). Distal fibres had smaller pennation angles (P recruitment threshold or contraction type, nor was there a relationship between MU territory size and recruitment threshold (Spearman's rho = -0.20 and 0.13, P > 0.18). MUs in the human MG have larger territories than previously reported and are not localized based on recruitment threshold or joint action. This indicates that the CNS does not have the means to selectively activate regions of the MG muscle based on task requirements. © 2015 The Authors. The Journal of

  9. Contrasting actions of philanthotoxin-343 and philanthotoxin-(12) on human muscle nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Brier, Tim J; Mellor, Ian R; Tikhonov, Denis B

    2003-01-01

    Whole-cell recordings and outside-out patch recordings from TE671 cells were made to investigate antagonism of human muscle nicotinic acetylcholine receptors (nAChR) by the philanthotoxins, PhTX-343 and PhTX-(12). When coapplied with acetylcholine (ACh), PhTX-343 caused activation-dependent, nonc......Whole-cell recordings and outside-out patch recordings from TE671 cells were made to investigate antagonism of human muscle nicotinic acetylcholine receptors (nAChR) by the philanthotoxins, PhTX-343 and PhTX-(12). When coapplied with acetylcholine (ACh), PhTX-343 caused activation...

  10. Regulation of PDH in human arm and leg muscles at rest and during intense exercise

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Birk, Jesper Bratz; Damsgaard, Rasmus

    2008-01-01

    To test the hypothesis that pyruvate dehydrogenase (PDH) is differentially regulated in specific human muscles, regulation of PDH was examined in triceps, deltoid, and vastus lateralis at rest and during intense exercise. To elicit considerable glycogen use, subjects performed 30 min of exhaustive...... arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P ....05) in vastus lateralis than in triceps and deltoid as was the activity of oxidative enzymes. Net muscle glycogen utilization was similar in vastus lateralis and triceps ( approximately 50%) but less in deltoid (likely reflecting less recruitment of deltoid), while muscle lactate accumulation was approximately...

  11. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  12. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    2003-01-01

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... culture and rodent skeletal muscle. To determine whether PGC-1a transcription is regulated by acute exercise and exercise training in human skeletal muscle, seven male subjects performed 4 weeks of one-legged knee extensor exercise training. At the end of training, subjects completed 3 h of two......-legged knee extensor exercise. Biopsies were obtained from the vastus lateralis muscle of both the untrained and trained legs before exercise and after 0, 2, 6 and 24 h of recovery. Time to exhaustion (2 min maximum resistance), as well as hexokinase II (HKII), citrate synthase and 3-hydroxyacyl...

  13. Plasticity of human skeletal muscle: gene expression to in vivo function.

    Science.gov (United States)

    Harridge, Stephen D R

    2007-09-01

    Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (V(max)), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing V(max) and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level.

  14. A mini-overview of single muscle fibre mechanics: the effects of age, inactivity and exercise in animals and humans.

    Science.gov (United States)

    Jee, Hyunseok; Kim, Jong-Hee

    2017-09-05

    Many basic movements of living organisms are dependent on muscle function. Muscle function allows for the coordination and harmonious integrity of movement that is necessary for various biological processes. Gross and fine motor skills are both regulated at the micro-level (single muscle fibre level), controlled by neuronal regulation, and it is therefore important to understand muscle function at both micro- and macro-levels to understand the overall movement of living organisms. Single muscle mechanics and the cellular environment of muscles fundamentally allow for the harmonious movement of our bodies. Indeed, a clear understanding of the functionality of muscle at the micro-level is indispensable for explaining muscular function at the macro-(whole gross muscle) level. By investigating single muscle fibre mechanics, we can also learn how other factors such Ca2+ kinetics, enzyme activity and contractile proteins can contribute to muscle mechanics at the micro- and macro-levels. Further, we can also describe how aging affects the capacity of skeletal muscle cells, as well as how exercise can prevent aging-based sarcopenia and frailty. The purpose of this review is to introduce and summarise the current knowledge of single muscle fibre mechanics in light of aging and inactivity. We then describe how exercise mitigates negative muscle adaptations that occur under those circumstances. In addition, single muscle fibre mechanics in both animal and human models are discussed.

  15. Quantifying antimicrobial resistance at veal calf farms

    NARCIS (Netherlands)

    Bosman, A.B.; Wagenaar, J.A.; Stegeman, A.; Vernooij, H.; Mevius, D.J.

    2012-01-01

    This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From

  16. Mitochondrial Respiration after One Session of Calf Raise Exercise in Patients with Peripheral Vascular Disease and Healthy Older Adults.

    Science.gov (United States)

    van Schaardenburgh, Michel; Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J R

    2016-01-01

    Mitochondria are essential for energy production in the muscle cell and for this they are dependent upon a sufficient supply of oxygen by the circulation. Exercise training has shown to be a potent stimulus for physiological adaptations and mitochondria play a central role. Whether changes in mitochondrial respiration are seen after exercise in patients with a reduced circulation is unknown. The aim of the study was to evaluate the time course and whether one session of calf raise exercise stimulates mitochondrial respiration in the calf muscle of patients with peripheral vascular disease. One group of patients with peripheral vascular disease (n = 11) and one group of healthy older adults (n = 11) were included. Patients performed one session of continuous calf raises followed by 5 extra repetitions after initiation of pain. Healthy older adults performed 100 continuous calf raises. Gastrocnemius muscle biopsies were collected at baseline and 15 minutes, one hour, three hours and 24 hours after one session of calf raise exercise. A multi substrate (octanoylcarnitine, malate, adp, glutamate, succinate, FCCP, rotenone) approach was used to analyze mitochondrial respiration in permeabilized fibers. Mixed-linear model for repeated measures was used for statistical analyses. Patients with peripheral vascular disease have a lower baseline respiration supported by complex I and they increase respiration supported by complex II at one hour post-exercise. Healthy older adults increase respiration supported by electron transfer flavoprotein and complex I at one hour and 24 hours post-exercise. Our results indicate a shift towards mitochondrial respiration supported by complex II as being a pathophysiological component of peripheral vascular disease. Furthermore exercise stimulates mitochondrial respiration already after one session of calf raise exercise in patients with peripheral vascular disease and healthy older adults. ClinicalTrials.gov NCT01842412.

  17. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.

    Science.gov (United States)

    Knaepen, Kristel; Beyl, Pieter; Duerinck, Saartje; Hagman, Friso; Lefeber, Dirk; Meeusen, Romain

    2014-11-01

    Until today it is not entirely clear how humans interact with automated gait rehabilitation devices and how we can, based on that interaction, maximize the effectiveness of these exoskeletons. The goal of this study was to gain knowledge on the human-robot interaction, in terms of kinematics and muscle activity, between a healthy human motor system and a powered knee exoskeleton (i.e., KNEXO). Therefore, temporal and spatial gait parameters, human joint kinematics, exoskeleton kinetics and muscle activity during four different walking trials in 10 healthy male subjects were studied. Healthy subjects can walk with KNEXO in patient-in-charge mode with some slight constraints in kinematics and muscle activity primarily due to inertia of the device. Yet, during robot-in-charge walking the muscular constraints are reversed by adding positive power to the leg swing, compensating in part this inertia. Next to that, KNEXO accurately records and replays the right knee kinematics meaning that subject-specific trajectories can be implemented as a target trajectory during assisted walking. No significant differences in the human response to the interaction with KNEXO in low and high compliant assistance could be pointed out. This is in contradiction with our hypothesis that muscle activity would decrease with increasing assistance. It seems that the differences between the parameter settings of low and high compliant control might not be sufficient to observe clear effects in healthy subjects. Moreover, we should take into account that KNEXO is a unilateral, 1 degree-of-freedom device.

  18. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...

  19. Energy demand and supply in human skeletal muscle.

    Science.gov (United States)

    Barclay, C J

    2017-04-01

    The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min -1 during isometric contractions of various intensity to as much as 400 mM min -1 during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min -1 which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min -1 . During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min -1 over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.

  20. Three-dimensional architecture of the whole human soleus muscle in vivo

    Science.gov (United States)

    Finni, Taija; D’Souza, Arkiev; Eguchi, Junya; Clarke, Elizabeth C.; Herbert, Robert D.

    2018-01-01

    Background Most data on the architecture of the human soleus muscle have been obtained from cadaveric dissection or two-dimensional ultrasound imaging. We present the first comprehensive, quantitative study on the three-dimensional anatomy of the human soleus muscle in vivo using diffusion tensor imaging (DTI) techniques. Methods We report three-dimensional fascicle lengths, pennation angles, fascicle curvatures, physiological cross-sectional areas and volumes in four compartments of the soleus at ankle joint angles of 69 ± 12° (plantarflexion, short muscle length; average ± SD across subjects) and 108 ± 7° (dorsiflexion, long muscle length) of six healthy young adults. Microdissection and three-dimensional digitisation on two cadaveric muscles corroborated the compartmentalised structure of the soleus, and confirmed the validity of DTI-based muscle fascicle reconstructions. Results The posterior compartments of the soleus comprised 80 ± 5% of the total muscle volume (356 ± 58 cm3). At the short muscle length, the average fascicle length, pennation angle and curvature was 37 ± 8 mm, 31 ± 3° and 17 ± 4 /m, respectively. We did not find differences in fascicle lengths between compartments. However, pennation angles were on average 12° larger (p < 0.01) in the posterior compartments than in the anterior compartments. For every centimetre that the muscle-tendon unit lengthened, fascicle lengths increased by 3.7 ± 0.8 mm, pennation angles decreased by −3.2 ± 0.9° and curvatures decreased by −2.7 ± 0.8 /m. Fascicles in the posterior compartments rotated almost twice as much as in the anterior compartments during passive lengthening. Discussion The homogeneity in fascicle lengths and inhomogeneity in pennation angles of the soleus may indicate a functionally different role for the anterior and posterior compartments. The data and techniques presented here demonstrate how DTI can be used to obtain detailed, quantitative measurements of the

  1. Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: technical aspects

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1994-01-01

    The bioenergetics of human skeletal muscle can be studied by 31P NMR spectroscopy (31P-MRS) and by surface electromyography (SEMG). Simultaneous 31P-MRS and SEMG permit accurate and noninvasive studies of the correlation between metabolic and electrical changes in exercising and recovering human....... A nonmagnetic ergometer was used for ankle dorsiflexions that activated only the anterior tibial muscle as verified by post exercise imaging. The coil design and the adiabatic sech/tanh pulse improved sensitivity by 45% and 56% respectively, compared with standard techniques. Simultaneous electromyographic...... recordings did not deteriorate the NMR spectra. The VARPRO time domain fitting routine was very suitable for estimating 31P muscle spectra. With these methods it was possible to accurately estimate parameters describing metabolic and electrical changes during rest, exercise and the entire recovery period...

  2. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...... or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel...... to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+....

  3. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2006-01-01

    -Thr-172 AMPK phosphorylation (r2 = 0.84, P important actor in exercise-regulated AMPK signalling in human skeletal muscle, probably mediating phosphorylation of ACCß.......5'AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK a/ß/¿-heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between...... total AMPK activity and regulation of its target acetyl-CoA-carboxylase (ACC)ß. Also, exercise training decreases expression of the regulatory ¿3 AMPK subunit and attenuates a2 AMPK activity during exercise. We hypothesize that these observations reflect a differential regulation of the AMPK...

  4. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  5. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    International Nuclear Information System (INIS)

    Wei, Yan; Li, Yuan; Chen, Chao; Stoelzel, Katharina; Kaufmann, Andreas M.; Albers, Andreas E.

    2011-01-01

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  6. Cultured smooth muscle cells of the human vesical sphincter are more sensitive to histamine than are detrusor smooth muscle cells.

    Science.gov (United States)

    Neuhaus, Jochen; Oberbach, Andreas; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2006-05-01

    To compare histamine receptor expression in cultured smooth muscle cells from the human detrusor and internal sphincter using receptor-specific agonists. Smooth muscle cells from the bladder dome and internal sphincter were cultured from 5 male patients undergoing cystectomy for bladder cancer therapy. Calcium transients in cells stimulated with carbachol, histamine, histamine receptor 1 (H1R)-specific heptanecarboxamide (HTMT), dimaprit (H2R), and R-(alpha)-methylhistamine (H3R) were measured by calcium imaging. Histamine receptor proteins were detected by Western blot analysis and immunocytochemistry. H1R, H2R, and H3R expression was found in tissue and cultured cells. Carbachol stimulated equal numbers of detrusor and sphincter cells (60% and 51%, respectively). Histamine stimulated significantly more cells than carbachol in detrusor (100%) and sphincter (99.34%) cells. Calcium responses to carbachol in detrusor and sphincter cells were comparable and did not differ from those to histamine in detrusor cells. However, histamine and specific agonists stimulated more sphincter cells than did carbachol (P <0.001), and the calcium increase was greater in sphincter cells than in detrusor cells. Single cell analysis revealed comparable H2R responses in detrusor and sphincter cells, but H1R and H3R-mediated calcium reactions were significantly greater in sphincter cells. Histamine very effectively induces calcium release in smooth muscle cells. In sphincter cells, histamine is even more effective than carbachol regarding the number of reacting cells and the intracellular calcium increase. Some of the variability in the outcome of antihistaminic interstitial cystitis therapies might be caused by the ineffectiveness of the chosen antihistaminic or unintentional weakening of sphincteric function.

  7. Rotator cuff tear state modulates self-renewal and differentiation capacity of human skeletal muscle progenitor cells.

    Science.gov (United States)

    Thomas, Kelsey A; Gibbons, Michael C; Lane, John G; Singh, Anshuman; Ward, Samuel R; Engler, Adam J

    2017-08-01

    Full thickness rotator cuff tendon (RCT) tears have long-term effects on RC muscle atrophy and fatty infiltration, with lasting damage even after surgical tendon repair. Skeletal muscle progenitor cells (SMPs) are critical for muscle repair in response to injury, but the inability of RC muscles to recover from chronic RCT tear indicates possible deficits in repair mechanisms. Here we investigated if muscle injury state was a crucial factor during human SMP expansion and differentiation ex vivo. SMPs were isolated from muscles in patients with no, partial-thickness (PT), or full-thickness (FT) RCT tears. Despite using growth factors, physiological niche stiffness, and muscle-mimetic extracellular matrix (ECM) proteins, we found that SMPs isolated from human RC muscle with RCT tears proliferated slower but fused into myosin heavy chain (MHC)-positive myotubes at higher rates than SMPs from untorn RCTs. Proteomic analysis of RC muscle tissue revealed shifts in muscle composition with pathology, as muscle from massive RCT tears had increased ECM deposition compared with no tear RC muscle. Together these data imply that the remodeled niche in a torn RCT primes SMPs not for expansion but for differentiation, thus limiting longer-term self-renewal necessary for regeneration after surgical repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1816-1823, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  9. EFFECT OF HEAT PRECONDITIONING BY MICROWAVE HYPERTHERMIA ON HUMAN SKELETAL MUSCLE AFTER ECCENTRIC EXERCISE

    Directory of Open Access Journals (Sweden)

    Norio Saga

    2008-03-01

    Full Text Available The purpose of this study was to clarify whether heat preconditioning results in less eccentric exercise-induced muscle damage and muscle soreness, and whether the repeated bout effect is enhanced by heat preconditioning prior to eccentric exercise. Nine untrained male volunteers aged 23 ± 3 years participated in this study. Heat preconditioning included treatment with a microwave hyperthermia unit (150 W, 20 min that was randomly applied to one of the subject's arms (MW; the other arm was used as a control (CON. One day after heat preconditioning, the subjects performed 24 maximal isokinetic eccentric contractions of the elbow flexors at 30°·s-1 (ECC1. One week after ECC1, the subjects repeated the procedure (ECC2. After each bout of exercise, maximal voluntary contraction (MVC, range of motion (ROM of the elbow joint, upper arm circumference, blood creatine kinase (CK activity and muscle soreness were measured. The subjects experienced both conditions at an interval of 3 weeks. MVC and ROM in the MW were significantly higher than those in the CON (p < 0.05 for ECC1; however, the heat preconditioning had no significant effect on upper arm circumference, blood CK activity, or muscle soreness following ECC1 and ECC2. Heat preconditioning may protect human skeletal muscle from eccentric exercise-induced muscle damage after a single bout of eccentric exercise but does not appear to promote the repeated bout effect after a second bout of eccentric exercise

  10. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle.

    Science.gov (United States)

    Rodríguez-Rosell, David; Pareja-Blanco, Fernando; Aagaard, Per; González-Badillo, Juan José

    2017-12-20

    Rate of force development (RFD) refers to the ability of the neuromuscular system to increase contractile force from a low or resting level when muscle activation is performed as quickly as possible, and it is considered an important muscle strength parameter, especially for athletes in sports requiring high-speed actions. The assessment of RFD has been used for strength diagnosis, to monitor the effects of training interventions in both healthy populations and patients, discriminate high-level athletes from those of lower levels, evaluate the impairment in mechanical muscle function after acute bouts of eccentric muscle actions and estimate the degree of fatigue and recovery after acute exhausting exercise. Notably, the evaluation of RFD in human skeletal muscle is a complex task as influenced by numerous distinct methodological factors including mode of contraction, type of instruction, method used to quantify RFD, devices used for force/torque recording and ambient temperature. Another important aspect is our limited understanding of the mechanisms underpinning rapid muscle force production. Therefore, this review is primarily focused on (i) describing the main mechanical characteristics of RFD; (ii) analysing various physiological factors that influence RFD; and (iii) presenting and discussing central biomechanical and methodological factors affecting the measurement of RFD. The intention of this review is to provide more methodological and analytical coherency on the RFD concept, which may aid to clarify the thinking of coaches and sports scientists in this area. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Is passive stiffness in human muscles related to the elasticity of tendon structures?

    Science.gov (United States)

    Kubo, K; Kanehisa, H; Fukunaga, T

    2001-08-01

    The purpose of this study was to examine in vivo whether passive stiffness in human muscles was related to the elasticity of tendon structures and to performance during stretch-shortening cycle exercise. Passive torque of plantar flexor muscles was measured during passive stretch from 90 degrees (anatomical position) to 65 degrees of dorsiflexion at a constant velocity of 5 degrees.s-1. The slope of the linear portion of the passive torque-angle curve during stretching was defined as the passive stiffness of the muscle. The elongation of the tendon and aponeurosis of the medial gastrocnemius muscle (MG) was directly measured using ultrasonography during ramp isometric plantar flexion up to the voluntary maximum. The relationship between the estimated muscle force of MG and tendon elongation was fitted to a linear regression, the slope of which was defined as the stiffness of the tendon. In addition, the dynamic torques during maximal voluntary concentric plantar flexion with and without prior eccentric contraction were determined at a constant velocity of 120 degrees.s-1. There were no significant correlations between passive stiffness and either the tendon stiffness (r = 0.19, P > 0.05) or the relative increase in torque with prior eccentric contraction (r = -0.19, P > 0.05). However, tendon stiffness was negatively correlated to the relative increase in torque output (r = -0.42, P tendon structures, and had no favourable effect on the muscle performance during stretch-shortening cycle exercise.

  12. Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males.

    Science.gov (United States)

    Owens, Daniel J; Webber, Daniel; Impey, Samuel G; Tang, Jonathan; Donovan, Timothy F; Fraser, William D; Morton, James P; Close, Graeme L

    2014-06-01

    Vitamin D may be a regulator of skeletal muscle function, although human trials investigating this hypothesis are limited to predominantly elderly populations. We aimed to assess the effect of oral vitamin D3 in healthy young males upon skeletal muscle function. Participants (n = 29) received an oral dose of 10,000 IU day(-1) vitamin D3 (VITD) or a visually identical placebo (PLB) for 3 months. Serum 25[OH]D and intact parathyroid hormone (iPTH) were measured at baseline and at week 4, 8 and 12. Muscle function was assessed in n = 22 participants by isokinetic dynamometry and percutaneous isometric electromyostimulation at baseline and at week 6 and 12. Baseline mean total serum 25[OH]D was 40 ± 17 and 41 ± 20 nmol L(-1) for PLB and VITD, respectively. VITD showed a significant improvement in total 25[OH]D at week 4 (150 ± 31 nmol L(-1)) that remained elevated throughout the trial (P L(-1)) compared with baseline. Despite marked increases in total serum 25[OH]D in VITD and a decrease in PLB, there were no significant changes in any of the muscle function outcome measures at week 6 or 12 for either group (P > 0.05). Elevating total serum 25[OH]D to concentrations > 120 nmol L(-1) has no effect on skeletal muscle function. We postulate that skeletal muscle function is only perturbed in conditions of severe deficiency (L(-1)).

  13. Afferent-mediated modulation of the soleus muscle activity during the stance phase of human walking

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; do Nascimento, Omar Feix

    2006-01-01

    The aim of this study was to investigate the contribution of proprioceptive feedback to the amplitude modulation of the soleus muscle activity during human walking. We have previously shown that slow-velocity, small-amplitude ankle dorsiflexion enhancements and reductions applied during the stance...

  14. Changes in recruitment order of motor units in the human biceps muscle

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Denier van der Gon, J.J.; Gielen, C.C.A.M.

    1982-01-01

    Changes in recruitment threshold of individual motor units of the human biceps (caput longum), a multifunctional muscle, were investigated during different tasks, i.e., isometric flexion of the elbow, isometric supination of the forearm, and isometric exorotation of the humerus of the 110° flexed

  15. Clay Modeling as a Method to Learn Human Muscles: A Community College Study

    Science.gov (United States)

    Motoike, Howard K.; O'Kane, Robyn L.; Lenchner, Erez; Haspel, Carol

    2009-01-01

    The efficacy of clay modeling compared with cat dissection for human muscle identification was examined over two semesters at LaGuardia Community College in Queens, NY. The 181 students in 10 sections in this study were randomly distributed into control (cat dissection) and experimental (clay modeling) groups, and the results of the muscle…

  16. CD16(+) monocytes with smooth muscle cell characteristics are reduced in human renal chronic transplant dysfunction

    NARCIS (Netherlands)

    Boersema, M.; van den Born, Joost; van Ark, J.; Harms, Geertruida; Seelen, M. A.; van Dijk, M. C. R. F.; van Goor, H.; Navis, G. J.; Popa, E. R.; Hillebrands, J. L.

    In chronic transplant dysfunction (CTD), persistent (allo)immune-mediated inflammation eventually leads to tissue remodeling including neointima formation in intragraft arteries. We previously showed that recipient-derived neointimal alpha-SMA(+) smooth muscle-like cells are present in human renal

  17. A model of the human triceps surae muscle-tendon complex applied to jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; Huijing, Peter A.; van Ingen Schenau, Gerrit Jan

    1986-01-01

    The purpose of this study was to gain more insight into the behavior of the muscle-tendon complex of human m. triceps surae in jumping. During one-legged vertical jumps of ten subjects ground reaction forces as well as cinematographic data were registered, and electromyograms were recorded from m.

  18. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise

    DEFF Research Database (Denmark)

    Crameri, Regina M; Langberg, Henning; Magnusson, Peter

    2004-01-01

    increase in mononuclear cells staining for the neural cell adhesion molecule (N-CAM) and fetal antigen 1 (FA1) were observed within the exercised human vastus lateralis muscle on days 4 and 8 post exercise. In addition, a significant increase in the concentration of the FA1 protein was determined...

  19. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte

    2005-01-01

    Contracting muscle fibers produce and release IL-6, and plasma levels of this cytokine are markedly elevated in response to physical exercise. We recently showed autocrine regulation of IL-6 in human skeletal muscle in vivo and hypothesized that this may involve up-regulation of the IL-6 receptor....... Infusion of rhIL-6 to humans had no effect on the mRNA level of the IL-6 receptor, whereas there was an increase at the protein level. IL-6 receptor mRNA increased similarly in muscle of both IL-6 KO mice and wild-type mice in response to exercise. In conclusion, exercise increases IL-6 receptor production....... Therefore, we investigated IL-6 receptor regulation in response to exercise and IL-6 infusion in humans. Furthermore, using IL-6-deficient mice, we investigated the role of IL-6 in the IL-6 receptor response to exercise. Human skeletal muscle biopsies were obtained in relation to: 3 h of bicycle exercise...

  20. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming...

  1. Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects

    DEFF Research Database (Denmark)

    Davegårdh, Cajsa; Broholm, Christa; Perfilyev, Alexander

    2017-01-01

    enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic...

  2. Assessment of satellite cell number and activity status in human skeletal muscle biopsies

    DEFF Research Database (Denmark)

    Mackey, Abigail; Kjaer, Michael; Charifi, Nadia

    2009-01-01

    The primary aim of our study was to validate the assessment of myonuclear and satellite cell number in biopsies from human skeletal muscle. We found that 25 type I and 25 type II fibers are sufficient to estimate the mean number of myonuclei per fiber. In contrast, the assessment of satellite cells...

  3. Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise

    DEFF Research Database (Denmark)

    Vissing, Kristian; Schjerling, Peter

    2014-01-01

    Few studies have investigated exercise-induced global gene expression responses in human skeletal muscle and these have typically focused at one specific mode of exercise and not implemented non-exercise control models. However, interpretation on effects of differentiated exercise necessitate dir...

  4. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities.

    Science.gov (United States)

    Takamura, Toshinari; Kita, Yuki; Nakagen, Masatoshi; Sakurai, Masaru; Isobe, Yuki; Takeshita, Yumie; Kawai, Kohzo; Urabe, Takeshi; Kaneko, Shuichi

    2017-07-01

    To test the hypothesis that preserved muscle mass is protective against obesity-associated insulin resistance and metabolic abnormalities, we analyzed the relationship of lean body mass and computed tomography-assessed sectional areas of specific skeletal muscles with insulin resistance and metabolic abnormalities in a healthy cohort. A total of 195 subjects without diabetes who had completed a medical examination were included in this study. Various anthropometric indices such as circumferences of the arm, waist, hip, thigh, and calf were measured. Body composition (fat and lean body mass) was determined by bioelectrical impedance analysis. Sectional areas of specific skeletal muscles (iliopsoas, erector spinae, gluteus, femoris, and rectus abdominis muscles) were measured using computed tomography. Fat and lean body mass were significantly correlated with metabolic abnormalities and insulin resistance indices. When adjusted by weight, relationships of fat and lean body mass with metabolic parameters were mirror images of each other. The weight-adjusted lean body mass negatively correlated with systolic and diastolic blood pressures; fasting plasma glucose, HbA1c, alanine aminotransferase, and triglyceride, and insulin levels; and hepatic insulin resistance indices, and positively correlated with HDL-cholesterol levels and muscle insulin sensitivity indices. Compared with weight-adjusted lean body mass, weight-adjusted sectional areas of specific skeletal muscles showed similar, but not as strong, correlations with metabolic parameters. Among anthropometric measures, the calf circumference best reflected lean body mass, and weight-adjusted calf circumference negatively correlated with metabolic abnormalities and insulin resistance indices. Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective

  5. Relationship between muscle water and glycogen recovery after prolonged exercise in the heat in humans.

    Science.gov (United States)

    Fernández-Elías, Valentín E; Ortega, Juan F; Nelson, Rachael K; Mora-Rodriguez, Ricardo

    2015-09-01

    It is usually stated that glycogen is stored in human muscle bound to water in a proportion of 1:3 g. We investigated this proportion in biopsy samples during recovery from prolonged exercise. On two occasions, nine aerobically trained subjects ([Formula: see text] = 54.4 ± 1.05 mL kg(-1) min(-1); mean ± SD) dehydrated 4.6 ± 0.2 % by cycling 150 min at 65 % [Formula: see text] in a hot-dry environment (33 ± 4 °C). One hour after exercise subjects ingested 250 g of carbohydrates in 400 mL of water (REHLOW) or the same syrup plus water to match fluid losses (i.e., 3170 ± 190 mL; REHFULL). Muscle biopsies were obtained before, 1 and 4 h after exercise. In both trials muscle water decreased from pre-exercise similarly by 13 ± 6 % and muscle glycogen by 44 ± 10 % (P recovery, glycogen levels were similar in both trials (79 ± 15 and 87 ± 18 g kg(-1) dry muscle; P = 0.20) while muscle water content was higher in REHFULL than in REHLOW (3814 ± 222 vs. 3459 ± 324 g kg(-1) dm, respectively; P recovery ratio 1:3) while during REHFULL this ratio was higher (1:17). Our findings agree with the long held notion that each gram of glycogen is stored in human muscle with at least 3 g of water. Higher ratios are possible (e.g., during REHFULL) likely due to water storage not bound to glycogen.

  6. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.

    Science.gov (United States)

    Barszap, Alexander G; Skavhaug, Ida-Maria; Joshi, Sanjay S

    2016-10-01

    Electromyography-based human-computer interface development is an active field of research. However, knowledge on the effects of muscle fatigue for specific devices is limited. We have developed a novel myoelectric human-computer interface in which subjects continuously navigate a cursor to targets by manipulating a single surface electromyography (sEMG) signal. Two-dimensional control is achieved through simultaneous adjustments of power in two frequency bands through a series of dynamic low-level muscle contractions. Here, we investigate the potential effects of muscle fatigue during the use of our interface. In the first session, eight subjects completed 300 cursor-to-target trials without breaks; four using a wrist muscle and four using a head muscle. The wrist subjects returned for a second session in which a static fatiguing exercise took place at regular intervals in-between cursor-to-target trials. In the first session we observed no declines in performance as a function of use, even after the long period of use. In the second session, we observed clear changes in cursor trajectories, paired with a target-specific decrease in hit rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A new Caenorhabditis elegans model of human huntingtin 513 aggregation and toxicity in body wall muscles.

    Directory of Open Access Journals (Sweden)

    Amy L Lee

    Full Text Available Expanded polyglutamine repeats in different proteins are the known determinants of at least nine progressive neurodegenerative disorders whose symptoms include cognitive and motor impairment that worsen as patients age. One such disorder is Huntington's Disease (HD that is caused by a polyglutamine expansion in the human huntingtin protein (htt. The polyglutamine expansion destabilizes htt leading to protein misfolding, which in turn triggers neurodegeneration and the disruption of energy metabolism in muscle cells. However, the molecular mechanisms that underlie htt proteotoxicity have been somewhat elusive, and the muscle phenotypes have not been well studied. To generate tools to elucidate the basis for muscle dysfunction, we engineered Caenorhabditis elegans to express a disease-associated 513 amino acid fragment of human htt in body wall muscle cells. We show that this htt fragment aggregates in C. elegans in a polyglutamine length-dependent manner and is toxic. Toxicity manifests as motor impairment and a shortened lifespan. Compared to previous models, the data suggest that the protein context in which a polyglutamine tract is embedded alters aggregation propensity and toxicity, likely by affecting interactions with the muscle cell environment.

  8. SREBP inhibits VEGF expression in human smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Motoyama, Koka [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Fukumoto, Shinya [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Koyama, Hidenori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Emoto, Masanori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Shimano, Hitoshi [Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Ibaraki (Japan); Maemura, Koji [Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo (Japan); Nishizawa, Yoshiki [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan)

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  9. SREBP inhibits VEGF expression in human smooth muscle cells

    International Nuclear Information System (INIS)

    Motoyama, Koka; Fukumoto, Shinya; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-01-01

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs

  10. Tissue culture media supplemented with 10% fetal calf serum contains a castrate level of testosterone.

    NARCIS (Netherlands)

    Sedelaar, J.P.M.; Isaacs, J.T.

    2009-01-01

    BACKGROUND: Human prostate cancer cells are routinely maintained in media supplemented with 10% Fetal Calf Serum (FCS) to provide androgen. In the present study, total and free testosterone levels in 10%FCS supplemented tissue culture media were determined and compared to levels in intact and

  11. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  12. GM-CSF production from human airway smooth muscle cells is potentiated by human serum

    Directory of Open Access Journals (Sweden)

    Maria B. Sukkar

    2000-01-01

    Full Text Available Recent evidence suggests that airway smooth muscle cells (ASMC actively participate in the airway inflammatory process in asthma. Interleukin–1β (IL–1β and tumour necrosis factor–α (TNF–α induce ASMC to release inflammatory mediators in vitro. ASMC mediator release in vivo, however, may be influenced by features of the allergic asthmatic phenotype. We determined whether; (1 allergic asthmatic serum (AAS modulates ASMC mediator release in response to IL–1β and TNF–α, and (2 IL–1β/TNF–α prime ASMC to release mediators in response to AAS. IL–5 and GMCSF were quantified by ELISA in culture supernatants of; (1 ASMC pre-incubated with either AAS, non-allergic non-asthmatic serum (NAS or MonomedTM (a serum substitute and subsequently stimulated with IL–1β and TNF–α and (2 ASMC stimulated with IL–1β/TNF–α and subsequently exposed to either AAS, NAS or MonomedTM. IL-1g and TNF–α induced GM-CSF release in ASMC pre-incubated with AAS was not greater than that in ASMC pre-incubated with NAS or MonomedTM. IL–1β and TNF–α, however, primed ASMC to release GM-CSF in response to human serum. GM-CSF production following IL–1β/TNF–α and serum exposure (AAS or NAS was significantly greater than that following IL–1β /TNF–α and MonomedTM exposure or IL–1β/TNF–α exposure only. Whilst the potentiating effects of human serum were not specific to allergic asthma, these findings suggest that the secretory capacity of ASMC may be up-regulated during exacerbations of asthma, where there is evidence of vascular leakage.

  13. Exercise increases TBC1D1 phosphorylation in human skeletal muscle

    Science.gov (United States)

    Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders

    2011-01-01

    Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS

  14. Unusual metabolic characteristics in skeletal muscles of transgenic rabbits for human lipoprotein lipase

    Directory of Open Access Journals (Sweden)

    Viglietta Céline

    2004-12-01

    Full Text Available Abstract Background The lipoprotein lipase (LPL hydrolyses circulating triacylglycerol-rich lipoproteins. Thereby, LPL acts as a metabolic gate-keeper for fatty acids partitioning between adipose tissue for storage and skeletal muscle primarily for energy use. Transgenic mice that markedly over-express LPL exclusively in muscle, show increases not only in LPL activity, but also in oxidative enzyme activities and in number of mitochondria, together with an impaired glucose tolerance. However, the role of LPL in intracellular nutrient pathways remains uncertain. To examine differences in muscle nutrient uptake and fatty acid oxidative pattern, transgenic rabbits harboring a DNA fragment of the human LPL gene (hLPL and their wild-type littermates were compared for two muscles of different metabolic type, and for perirenal fat. Results Analyses of skeletal muscles and adipose tissue showed the expression of the hLPL DNA fragment in tissues of the hLPL group only. Unexpectedly, the activity level of LPL in both tissues was similar in the two groups. Nevertheless, mitochondrial fatty acid oxidation rate, measured ex vivo using [1-14C]oleate as substrate, was lower in hLPL rabbits than in wild-type rabbits for the two muscles under study. Both insulin-sensitive glucose transporter GLUT4 and muscle fatty acid binding protein (H-FABP contents were higher in hLPL rabbits than in wild-type littermates for the pure oxidative semimembranosus proprius muscle, but differences between groups did not reach significance when considering the fast-twitch glycolytic longissimus muscle. Variations in both glucose uptake potential, intra-cytoplasmic binding of fatty acids, and lipid oxidation rate observed in hLPL rabbits compared with their wild-type littermates, were not followed by any modifications in tissue lipid content, body fat, and plasma levels in energy-yielding metabolites. Conclusions Expression of intracellular binding proteins for both fatty acids and

  15. Effect of lipopolysaccharide on inflammation and insulin action in human muscle.

    Science.gov (United States)

    Liang, Hanyu; Hussey, Sophie E; Sanchez-Avila, Alicia; Tantiwong, Puntip; Musi, Nicolas

    2013-01-01

    Accumulating evidence from animal studies suggest that chronic elevation of circulating intestinal-generated lipopolysaccharide (LPS) (i.e., metabolic endotoxemia) could play a role in the pathogenesis of insulin resistance. However, the effect of LPS in human muscle is unclear. Moreover, it is unknown whether blockade/down regulation of toll-like receptor (TLR)4 can prevent the effect of LPS on insulin action and glucose metabolism in human muscle cells. In the present study we compared plasma LPS concentration in insulin resistant [obese non-diabetic and obese type 2 diabetic (T2DM)] subjects versus lean individuals. In addition, we employed a primary human skeletal muscle cell culture system to investigate the effect of LPS on glucose metabolism and whether these effects are mediated via TLR4. Obese non-diabetic and T2DM subjects had significantly elevated plasma LPS and LPS binding protein (LBP) concentrations. Plasma LPS (r = -0.46, P = 0.005) and LBP (r = -0.49, P = 0.005) concentrations negatively correlated with muscle insulin sensitivity (M). In human myotubes, LPS increased JNK phosphorylation and MCP-1 and IL-6 gene expression. This inflammatory response led to reduced insulin-stimulated IRS-1, Akt and AS160 phosphorylation and impaired glucose transport. Both pharmacologic blockade of TLR4 with TAK-242, and TLR4 gene silencing, suppressed the inflammatory response and insulin resistance caused by LPS in human muscle cells. Taken together, these findings suggest that elevations in plasma LPS concentration found in obese and T2DM subjects could play a role in the pathogenesis of insulin resistance and that antagonists of TLR4 may improve insulin action in these individuals.

  16. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.

    Science.gov (United States)

    van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick

    2016-08-01

    A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

  17. Unloaded shortening velocity of voluntarily and electrically activated human dorsiflexor muscles in vivo.

    Directory of Open Access Journals (Sweden)

    Kazushige Sasaki

    Full Text Available We have previously shown that unloaded shortening velocity (V(0 of human plantar flexors can be determined in vivo, by applying the "slack test" to submaximal voluntary contractions (J Physiol 567:1047-1056, 2005. In the present study, to investigate the effect of motor unit recruitment pattern on V(0 of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC. The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V(0, with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68-0.95. Regression analysis showed that V(0 of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R(2 = 0.52, P<0.001. By contrast, V(0 of electrically activated dorsiflexor muscles remained unchanged (R(2<0.001, P = 0.98 among three different stimulus conditions showing a large variation of tetanic torque. These results suggest that the recruitment pattern of motor units, which is quite different between voluntary and electrically elicited contractions, plays an important role in determining shortening velocity of human skeletal muscle in vivo.

  18. Characterisation of L-Type Amino Acid Transporter 1 (LAT1 Expression in Human Skeletal Muscle by Immunofluorescent Microscopy

    Directory of Open Access Journals (Sweden)

    Nathan Hodson

    2017-12-01

    Full Text Available The branch chain amino acid leucine is a potent stimulator of protein synthesis in skeletal muscle. Leucine rapidly enters the cell via the L-Type Amino Acid Transporter 1 (LAT1; however, little is known regarding the localisation and distribution of this transporter in human skeletal muscle. Therefore, we applied immunofluorescence staining approaches to visualise LAT1 in wild type (WT and LAT1 muscle-specific knockout (mKO mice, in addition to basal human skeletal muscle samples. LAT1 positive staining was visually greater in WT muscles compared to mKO muscle. In human skeletal muscle, positive LAT1 staining was noted close to the sarcolemmal membrane (dystrophin positive staining, with a greater staining intensity for LAT1 observed in the sarcoplasmic regions of type II fibres (those not stained positively for myosin heavy-chain 1, Type II—25.07 ± 5.93, Type I—13.71 ± 1.98, p < 0.01, suggesting a greater abundance of this protein in these fibres. Finally, we observed association with LAT1 and endothelial nitric oxide synthase (eNOS, suggesting LAT1 association close to the microvasculature. This is the first study to visualise the distribution and localisation of LAT1 in human skeletal muscle. As such, this approach provides a validated experimental platform to study the role and regulation of LAT1 in human skeletal muscle in response to various physiological and pathophysiological models.

  19. Dynamics of force and muscle stimulation in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, M.F.; van Zandwijk, J.P.

    1999-01-01

    PURPOSE: The purpose of this study was to gain insight into the importance of stimulation dynamics for force development in human vertical jumping. METHODS: Maximum height squat jumps were performed by 21 male subjects. As a measure of signal dynamics, rise time (RT) was used, i.e., the time taken

  20. Cigarette Smoke and Estrogen Signaling in Human Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Venkatachalem Sathish

    2015-06-01

    Full Text Available Aims: Cigarette smoke (CS in active smokers and second-hand smoke exposure exacerbate respiratory disorders such as asthma and chronic bronchitis. While women are known to experience a more asthmatic response to CS than emphysema in men, there is limited information on the mechanisms of CS-induced airway dysfunction. We hypothesize that CS interferes with a normal (protective bronchodilatory role of estrogens, thus worsening airway contractility. Methods: We tested effects of cigarette smoke extract (CSE on 17β-estradiol (E2 signaling in enzymatically-dissociated bronchial airway smooth muscle (ASM obtained from lung samples of non-smoking female patients undergoing thoracic surgery. Results: In fura-2 loaded ASM cells, CSE increased intracellular calcium ([Ca2+]i responses to 10µM histamine. Acute exposure to physiological concentrations of E2 decreased [Ca2+]i responses. However, in 24h exposed CSE cells, although expression of estrogen receptors was increased, the effect of E2 on [Ca2+]i was blunted. Acute E2 exposure also decreased store-operated Ca2+ entry and inhibited stromal interaction molecule 1 (STIM1 phosphorylation: effects blunted by CSE. Acute exposure to E2 increased cAMP, but less so in 24h CSE-exposed cells. 24h CSE exposure increased S-nitrosylation of ERα. Furthermore, 24h CSE-exposed bronchial rings showed increased bronchoconstrictor agonist responses that were not reduced as effectively by E2 compared to non-CSE controls. Conclusion: These data suggest that CS induces dysregulation of estrogen signaling in ASM, which could contribute to increased airway contractility in women exposed to CS.

  1. Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Bjerregaard, P; Richter, Erik

    1988-01-01

    rats, cardiomyopathic hamsters, and human subjects. These methods have earlier been shown to quantify the Na+,K+-ATPase concentration in muscle tissue with high accuracy. When rats were swim trained for six weeks the heart ventricular muscle Na+,K+-ATPase concentration was increased by 20% (p less than...... was increased by up to 46% (p less than 0.001) and decreased by up to 30% (p less than 0.005) after training and immobilisation respectively. Cardiomyopathic hamsters showed a reduction of 33% (p less than 0.005) in the heart ventricular Na+,K+-ATPase concentration compared with normal hamsters. This decrease...

  2. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J

    2011-12-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  4. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.

    Science.gov (United States)

    Capitanio, Daniele; Fania, Chiara; Torretta, Enrica; Viganò, Agnese; Moriggi, Manuela; Bravatà, Valentina; Caretti, Anna; Levett, Denny Z H; Grocott, Michael P W; Samaja, Michele; Cerretelli, Paolo; Gelfi, Cecilia

    2017-08-29

    In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.

  5. Short-latency crossed responses in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew J T; Kamavuako, Ernest N; Geertsen, Svend Sparre

    2015-01-01

    Interlimb reflexes contribute to the central neural coordination between different limbs in both humans and animals. Although commissural interneurons have only been directly identified in animals, spinally mediated interlimb reflexes have been discovered in a number of human lower limb muscles......, indicating their existence in humans. The aim of the present study was to investigate whether short-latency crossed-spinal reflexes are present in the contralateral biceps femoris (cBF) muscle following ipsilateral knee (iKnee) joint rotations during a sitting task, where participants maintained a slight pre...... pathways (likely involving commissural interneurons) from ipsilateral afferents to common motoneurons in the contralateral leg can likely explain the perturbation direction-dependent reversal in the sign of the short-latency cBF reflex. This article is protected by copyright. All rights reserved....

  6. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Langberg, H; Helmark, I C

    2009-01-01

    Despite the widespread consumption of nonsteroidal anti-inflammatory drugs (NSAIDs), the influence of these drugs on muscle satellite cells is not fully understood. The aim of the present study was to investigate the effect of a local NSAID infusion on satellite cells after unaccustomed eccentric...... exercise in vivo in human skeletal muscle. Eight young healthy males performed 200 maximal eccentric contractions with each leg. An NSAID was infused via a microdialysis catheter into the vastus lateralis muscle of one leg (NSAID leg) before, during, and for 4.5 h after exercise, with the other leg working...... cells (CD68(+) or CD16(+) cells) was not significantly increased in either of the legs 8 days after exercise and was unaffected by the NSAID. The main finding in the present study was that the NSAID infusion for 7.5 h during the exercise day suppressed the exercise-induced increase in the number...

  7. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Guul, Martin Kjær; Nielsen, A. N.

    2017-01-01

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre...... of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve...... healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior...

  8. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth Tingsted

    2005-01-01

    before exercise and 2, 5, 8, and 24 hours after exercise. Muscle glycogen was restored to near resting levels within 5 hours in the HC trial, but remained depressed through 24 hours in the LC trial. During the 2- to 8-hour recovery period, leg glucose uptake was 5- to 15-fold higher with HC ingestion......In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, 9...... male subjects (aged 22-27) completed 75 minutes of cycling exercise at 75% V¿o2max on 2 occasions, consuming either a high-carbohydrate (HC) or low-carbohydrate (LC) diet during the subsequent 24 hours of recovery. Nuclei were isolated and tissue frozen from vastus lateralis muscle biopsies obtained...

  9. Direct effects of FGF21 on glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Mashili, Fredirick L; Austin, Reginald L; Deshmukh, Atul S

    2011-01-01

    21 were determined in normal glucose tolerant (n = 40) and type 2 diabetic (T2D; n = 40) subjects. We determined whether FGF21 has direct effects on glucose metabolism in cultured myotubes (n = 8) and extensor digitorum longus skeletal muscle. RESULTS: Serum FGF21 levels increased 20% in T2D versus...... normal glucose tolerant subjects (p muscle mRNA expression was unaltered. Fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR), waist circumference, and body mass index (BMI) significantly correlated with serum FGF21 levels in T2D (p ... and insulin-stimulated glucose uptake in human myotubes, coincident with increased glucose transporter 1 mRNA, and enhanced glucose transporter 1 abundance at the plasma membrane. In isolated extensor digitorum longus muscle, FGF21 potentiated insulin-stimulated glucose transport, without altering...

  10. Reflexes in the shoulder muscles elicited from the human coracoacromial ligament

    DEFF Research Database (Denmark)

    Diederichsen, L.P.; Norregaard, J.; Krogsgaard, M.

    2004-01-01

    into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim...... activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted......-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1...

  11. Repeated static contractions increase mitochondrial vulnerability toward oxidative stress in human skeletal muscle

    DEFF Research Database (Denmark)

    Sahlin, Kent; Nielsen, Jens Steen; Mogensen, Martin

    2006-01-01

    Repeated static contractions (RSC) induce large fluctuations in tissue oxygen tension and increase the generation of reactive oxygen species (ROS). This study investigated the effect of RSC on muscle contractility, mitochondrial respiratory function, and in vitro sarcoplasmic reticulum (SR) Ca(2......+) kinetics in human muscle. Ten male subjects performed five bouts of static knee extension with 10-min rest in between. Each bout of RSC (target torque 66% of maximal voluntary contraction torque) was maintained to fatigue. Muscle biopsies were taken preexercise and 0.3 and 24 h postexercise from vastus...... lateralis. Mitochondria were isolated and respiratory function measured after incubation with H(2)O(2) (HPX) or control medium (Con). Mitochondrial function was not affected by RSC during Con. However, RSC exacerbated mitochondrial dysfunction during HPX, resulting in decreased respiratory control index...

  12. Monosynaptic Ia projections from intrinsic hand muscles to forearm motoneurones in humans.

    Science.gov (United States)

    Marchand-Pauvert, V; Nicolas, G; Pierrot-Deseilligny, E

    2000-05-15

    Heteronymous Ia excitatory projections from intrinsic hand muscles to human forearm motoneurones (MNs) were investigated. Changes in firing probability of single motor units (MUs) in the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC) were studied after electrical stimuli were applied to the median and ulnar nerve at wrist level and to the corresponding homonymous nerve at elbow level. Homonymous facilitation, occurring at the same latency as the H reflex, and therefore attributed to monosynaptic Ia EPSPs, was found in all the sampled units. In many MUs an early facilitation was also evoked by heteronymous low-threshold afferents from intrinsic hand muscles. The low threshold (between 0.5 and 0.6 times motor threshold (MT)) and the inability of a pure cutaneous stimulation to reproduce this effect indicate that it is due to stimulation of group I muscle afferents. Evidence for a similar central delay (monosynaptic) in heteronymous as in homonymous pathways was accepted when the difference in latencies of the homonymous and heteronymous peaks did not differ from the estimated supplementary afferent conduction time from wrist to elbow level by more than 0.5 ms (conduction velocity in the fastest Ia afferents between wrist and elbow levels being equal to 69 m s-1). A statistically significant heteronymous monosynaptic Ia excitation from intrinsic hand muscles supplied by both median and ulnar nerves was found in MUs belonging to all forearm motor nuclei tested (although not in ECU MUs after ulnar stimulation). It was, however, more often found in flexors than in extensors, in wrist than in finger muscles and in muscles operating in the radial than in the ulnar side. It is argued that the connections of Ia afferents from intrinsic hand muscles to forearm MNs, which are stronger and more widely distributed than in the cat

  13. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise.

    Science.gov (United States)

    D'Lugos, Andrew C; Patel, Shivam H; Ormsby, Jordan C; Curtis, Donald P; Fry, Christopher S; Carroll, Chad C; Dickinson, Jared M

    2018-04-01

    Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6 Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1 Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before

  14. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans

    International Nuclear Information System (INIS)

    Consoli, A.; Nurjhan, N.; Reilly, J.J. Jr.; Bier, D.M.; Gerich, J.E.

    1990-01-01

    To quantitate alanine and lactate gluconeogenesis in postabsorptive humans and to test the hypothesis that muscle is the principal source of these precursors, we infused normal volunteers with [3-14C]lactate, [3-13C]alanine, and [6-3H]glucose and calculated alanine and lactate incorporation into plasma glucose corrected for tricarboxylic acid cycle carbon exchange, the systemic appearance of these substrates, and their forearm fractional extraction, uptake, and release. Forearm alanine and lactate fractional extraction averaged 37 +/- 3 and 27 +/- 2%, respectively; muscle alanine release (2.94 +/- 0.27 mumol.kg body wt-1.min-1) accounted for approximately 70% of its systemic appearance (4.18 +/- 0.31 mumol.kg body wt-1.min-1); muscle lactate release (5.51 +/- 0.42 mumol.kg body wt-1.min-1) accounted for approximately 40% of its systemic appearance (12.66 +/- 0.77 mumol.kg body wt-1.min-1); muscle alanine and lactate uptake (1.60 +/- 0.7 and 3.29 +/- 0.36 mumol.kg body wt-1.min-1, respectively) accounted for approximately 30% of their overall disappearance from plasma, whereas alanine and lactate incorporation into plasma glucose (1.83 +/- 0.20 and 4.24 +/- 0.44 mumol.kg body wt-1.min-1, respectively) accounted for approximately 50% of their disappearance from plasma. We therefore conclude that muscle is the major source of plasma alanine and lactate in postabsorptive humans and that factors regulating their release from muscle may thus exert an important influence on hepatic gluconeogenesis

  15. Protein translation, proteolysis and autophagy in human skeletal muscle atrophy after spinal cord injury.

    Science.gov (United States)

    Lundell, L S; Savikj, M; Kostovski, E; Iversen, P O; Zierath, J R; Krook, A; Chibalin, A V; Widegren, U

    2018-02-08

    Spinal cord injury-induced loss of skeletal muscle mass does not progress linearly. In humans, peak muscle loss occurs during the first 6 weeks postinjury, and gradually continues thereafter. The aim of this study was to delineate the regulatory events underlying skeletal muscle atrophy during the first year following spinal cord injury. Key translational, autophagic and proteolytic proteins were analysed by immunoblotting of human vastus lateralis muscle obtained 1, 3 and 12 months following spinal cord injury. Age-matched able-bodied control subjects were also studied. Several downstream targets of Akt signalling decreased after spinal cord injury in skeletal muscle, without changes in resting Akt Ser 473 and Akt Thr 308 phosphorylation or total Akt protein. Abundance of mTOR protein and mTOR Ser 2448 phosphorylation, as well as FOXO1 Ser 256 phosphorylation and FOXO3 protein, decreased in response to spinal cord injury, coincident with attenuated protein abundance of E3 ubiquitin ligases, MuRF1 and MAFbx. S6 protein and Ser 235/236 phosphorylation, as well as 4E-BP1 Thr 37/46 phosphorylation, increased transiently after spinal cord injury, indicating higher levels of protein translation early after injury. Protein abundance of LC3-I and LC3-II decreased 3 months postinjury as compared with 1 month postinjury, but not compared to able-bodied control subjects, indicating lower levels of autophagy. Proteins regulating proteasomal degradation were stably increased in response to spinal cord injury. Together, these data provide indirect evidence suggesting that protein translation and autophagy transiently increase, while whole proteolysis remains stably higher in skeletal muscle within the first year after spinal cord injury. © 2018 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  16. Dyskospondylitis and paravertebral abscesses in a calf

    International Nuclear Information System (INIS)

    Testoni, S.

    2006-01-01

    A case of progressive spastic paraparesis due to a dyskospondylitis at the level of T9-T10 is described in a four-month old Holstein female calf. The calf was recumbent, but bright, alert and willing to suckle. Despite repeated attempts, the calf was not able to assume the sternal recumbency. The radiological findings were decisive for the in life diagnosis. Spinal radiography of the thoraco-lumbar region revealed lysis and collapse of T9 and T10 vertebral bodies; irregular proliferative new bone was evident. Lumbo-sacral myelography showed a narrowing and dorsal displacement of the ventral contrast column at the same spinal level, indicating a severe ventral extradural compression of the spinal cord. At the level of the thoracic cavity, a 20 x 15 cm diameter opacity extending ventrally to T8-T13 and caudo-dorsally to the heart was also evident. At gross necroscopy, two approximately 15 cm diameter encapsulated paravertebral abscesses were evident in the thoracis cavity just below the spinal column. A pure culture of Fusobacterium necrophorum was obtained from them. A saggital section of the spine showed an erosive suppurative process of T9 and T10 vertebral bodies that provoked the compression of the thoracic tract of the spinal cord [it

  17. Multi-muscle FES force control of the human arm for arbitrary goals.

    Science.gov (United States)

    Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M

    2014-05-01

    We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.

  18. A human in vitro model of Duchenne muscular dystrophy muscle formation and contractility.

    Science.gov (United States)

    Nesmith, Alexander P; Wagner, Matthew A; Pasqualini, Francesco S; O'Connor, Blakely B; Pincus, Mark J; August, Paul R; Parker, Kevin Kit

    2016-10-10

    Tongue weakness, like all weakness in Duchenne muscular dystrophy (DMD), occurs as a result of contraction-induced muscle damage and deficient muscular repair. Although membrane fragility is known to potentiate injury in DMD, whether muscle stem cells are implicated in deficient muscular repair remains unclear. We hypothesized that DMD myoblasts are less sensitive to cues in the extracellular matrix designed to potentiate structure-function relationships of healthy muscle. To test this hypothesis, we drew inspiration from the tongue and engineered contractile human muscle tissues on thin films. On this platform, DMD myoblasts formed fewer and smaller myotubes and exhibited impaired polarization of the cell nucleus and contractile cytoskeleton when compared with healthy cells. These structural aberrations were reflected in their functional behavior, as engineered tongues from DMD myoblasts failed to achieve the same contractile strength as healthy tongue structures. These data suggest that dystrophic muscle may fail to organize with respect to extracellular cues necessary to potentiate adaptive growth and remodeling. © 2016 Nesmith et al.

  19. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys.

    Science.gov (United States)

    St Andre, Michael; Johnson, Mark; Bansal, Prashant N; Wellen, Jeremy; Robertson, Andrew; Opsahl, Alan; Burch, Peter M; Bialek, Peter; Morris, Carl; Owens, Jane

    2017-11-09

    The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. We demonstrated that the potent anti-myostatin antibody mRK35 and

  20. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  1. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans

    Directory of Open Access Journals (Sweden)

    da Luz Claudia R

    2011-12-01

    Full Text Available Abstract Branched-chain amino acids (BCAA supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE-derived biochemical markers of muscle soreness (creatine kinase (CK, aldolase, myoglobin, soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality.

  2. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering.

    Science.gov (United States)

    Maffioletti, Sara Martina; Sarcar, Shilpita; Henderson, Alexander B H; Mannhardt, Ingra; Pinton, Luca; Moyle, Louise Anne; Steele-Stallard, Heather; Cappellari, Ornella; Wells, Kim E; Ferrari, Giulia; Mitchell, Jamie S; Tyzack, Giulia E; Kotiadis, Vassilios N; Khedr, Moustafa; Ragazzi, Martina; Wang, Weixin; Duchen, Michael R; Patani, Rickie; Zammit, Peter S; Wells, Dominic J; Eschenhagen, Thomas; Tedesco, Francesco Saverio

    2018-04-17

    Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells.

    Directory of Open Access Journals (Sweden)

    Teruyo Oishi

    Full Text Available Heterotopic ossification (HO is defined as the formation of ectopic bone in soft tissue outside the skeletal tissue. HO is thought to result from aberrant differentiation of osteogenic progenitors within skeletal muscle. However, the precise origin of HO is still unclear. Skeletal muscle contains two kinds of progenitor cells, myogenic progenitors and mesenchymal progenitors. Myogenic and mesenchymal progenitors in human skeletal muscle can be identified as CD56(+ and PDGFRα(+ cells, respectively. The purpose of this study was to investigate the osteogenic differentiation potential of human skeletal muscle-derived progenitors. Both CD56(+ cells and PDGFRα(+ cells showed comparable osteogenic differentiation potential in vitro. However, in an in vivo ectopic bone formation model, PDGFRα(+ cells formed bone-like tissue and showed successful engraftment, while CD56(+ cells did not form bone-like tissue and did not adapt to an osteogenic environment. Immunohistological analysis of human HO sample revealed that many PDGFRα(+ cells were localized in proximity to ectopic bone formed in skeletal muscle. MicroRNAs (miRNAs are known to regulate many biological processes including osteogenic differentiation. We investigated the participation of miRNAs in the osteogenic differentiation of PDGFRα(+ cells by using microarray. We identified miRNAs that had not been known to be involved in osteogenesis but showed dramatic changes during osteogenic differentiation of PDGFRα(+ cells. Upregulation of miR-146b-5p and -424 and downregulation of miR-7 during osteogenic differentiation of PDGFRα(+ cells were confirmed by quantitative real-time RT-PCR. Inhibition of upregulated miRNAs, miR-146b-5p and -424, resulted in the suppression of osteocyte maturation, suggesting that these two miRNAs have the positive role in the osteogenesis of PDGFRα(+ cells. Our results suggest that PDGFRα(+ cells may be the major source of HO and that the newly identified mi

  4. Rapid effects of phytoestrogens on human colonic smooth muscle are mediated by oestrogen receptor beta.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    Epidemiological studies have correlated consumption of dietary phytoestrogens with beneficial effects on colon, breast and prostate cancers. Genomic and non-genomic mechanisms are responsible for anti-carcinogenic effects but, until now, the effect on human colon was assumed to be passive and remote. No direct effect on human colonic smooth muscle has previously been described. Institutional research board approval was granted. Histologically normal colon was obtained from the proximal resection margin of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended under 1g of tension in organ baths containing oxygenated Krebs solution at 37 degrees C. After an equilibration period, tissues were exposed to diarylpropionitrile (DPN) (ER beta agonist) and 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (ER alpha agonist) or to the synthetic phytoestrogen compounds genistein (n=8), daidzein (n=8), fisetin (n=8) and quercetin (n=8) in the presence or absence of fulvestrant (oestrogen receptor antagonist). Mechanism of action was investigated by inhibition of downstream pathways. The cholinergic agonist carbachol was used to induce contractile activity. Tension was recorded isometrically. Phytoestrogens inhibit carbachol-induced colonic contractility. In keeping with a non-genomic, rapid onset direct action, the effect was within minutes, reversible and similar to previously described actions of 17 beta oestradiol. No effect was seen in the presence of fulvestrant indicating receptor modulation. While the DPN exerted inhibitory effects, PPT did not. The effect appears to be reliant on a p38\\/mitogen activated protein kinase mediated induction of nitric oxide production in colonic smooth muscle. The present data set provides the first description of a direct effect of genistein, daidzein, fisetin and quercetin on human colonic smooth muscle. The presence of ER in colonic smooth muscle has been functionally proven and the beta

  5. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  6. Firing rate modulation of human motor units in different muscles during isometric contraction with various forces.

    Science.gov (United States)

    Seki, K; Narusawa, M

    1996-05-06

    To examine the factors affecting the control of human motor units, rate coding strategies of the motor units were investigated in upper limb and intrinsic hand muscles during voluntary isometric contraction of steady force levels up to 80% of maximal voluntary contraction. Numerous spike trains from single motor units were recorded from the m. first dorsal interosseous (FDI) and the m. biceps brachii (BB) of eight human subjects by means of tungsten micro-electrodes, and the mean firing rate (MFR) was calculated for each subject and inter-individual comparisons made. The MFRs of the FDI were larger than that of the BB at the higher force level, and substantial differences were not found between these muscles at the lower force level. The slope of the linear regression line of MFRs vs. exerted forces for the FDI was more than twice that for the BB. Therefore, isometric force control of the FDI depends more on the rate coding strategy. The difference in rate coding between the FDI and BB motor units may be determined by factors other than muscle fiber composition, because both muscles are known to possess a similar composition of fiber types. Possible mechanisms underlying these characteristics of rate coding strategy are considered in this report.

  7. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    Science.gov (United States)

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P insulin sensitivity (both P insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  8. Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique.

    Science.gov (United States)

    Kurihara, Toshiyuki; Yamauchi, Junichiro; Otsuka, Mitsuo; Tottori, Nobuaki; Hashimoto, Takeshi; Isaka, Tadao

    2014-01-01

    The aims of this study were to investigate the relationships between the maximum isometric toe flexor muscle strength (TFS) and cross-sectional area (CSA) of the plantar intrinsic and extrinsic muscles and to identify the major determinant of maximum TFS among CSA of the plantar intrinsic and extrinsic muscles. Twenty six young healthy participants (14 men, 12 women; age, 20.4 ± 1.6 years) volunteered for the study. TFS was measured by a specific designed dynamometer, and CSA of plantar intrinsic and extrinsic muscles were measured using magnetic resonance imaging (MRI). To measure TFS, seated participants optimally gripped the bar with their toes and exerted maximum force on the dynamometer. For each participant, the highest force produced among three trials was used for further analysis. To measure CSA, serial T1-weighted images were acquired. TFS was significantly correlated with CSA of the plantar intrinsic and extrinsic muscles. Stepwise multiple linear regression analyses identified that the major determinant of TFS was CSA of medial parts of plantar intrinsic muscles (flexor hallucis brevis, flexor digitorum brevis, quadratus plantae, lumbricals and abductor hallucis). There was no significant difference between men and women in TFS/CSA. CSA of the plantar intrinsic and extrinsic muscles is one of important factors for determining the maximum TFS in humans.

  9. Hypoxia in Combination With Muscle Contraction Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle via the HIF-1α Pathway.

    Science.gov (United States)

    Görgens, Sven W; Benninghoff, Tim; Eckardt, Kristin; Springer, Christian; Chadt, Alexandra; Melior, Anita; Wefers, Jakob; Cramer, Andrea; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Al-Hasani, Hadi; Eckel, Jürgen

    2017-11-01

    Skeletal muscle insulin resistance is the hallmark of type 2 diabetes and develops long before the onset of the disease. It is well accepted that physical activity improves glycemic control, but the knowledge on underlying mechanisms mediating the beneficial effects remains incomplete. Exercise is accompanied by a decrease in intramuscular oxygen levels, resulting in induction of HIF-1α. HIF-1α is a master regulator of gene expression and might play an important role in skeletal muscle function and metabolism. Here we show that HIF-1α is important for glucose metabolism and insulin action in skeletal muscle. By using a genome-wide gene expression profiling approach, we identified RAB20 and TXNIP as two novel exercise/HIF-1α-regulated genes in skeletal muscle. Loss of Rab20 impairs insulin-stimulated glucose uptake in human and mouse skeletal muscle by blocking the translocation of GLUT4 to the cell surface. In addition, exercise/HIF-1α downregulates the expression of TXNIP , a well-known negative regulator of insulin action. In conclusion, we are the first to demonstrate that HIF-1α is a key regulator of glucose metabolism in skeletal muscle by directly controlling the transcription of RAB20 and TXNIP These results hint toward a novel function of HIF-1α as a potential pharmacological target to improve skeletal muscle insulin sensitivity. © 2017 by the American Diabetes Association.

  10. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.

    Science.gov (United States)

    Iwamoto, Masami; Nakahira, Yuko

    2015-11-01

    Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics.

  11. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    Science.gov (United States)

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocityankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Ultrasonography as a tool to study afferent feedback from the muscle-tendon complex during human walking

    DEFF Research Database (Denmark)

    Cronin, Neil J.; Klint, Richard af; Grey, Michael James

    2011-01-01

    In humans, one of the most common tasks in everyday life is walking, and sensory afferent feedback from peripheral receptors, particularly the muscle spindles and Golgi tendon organs (GTO), makes an important contribution to the motor control of this task. One factor that can complicate the ability...... with an examination of muscle activation to give a broader insight to neuromuscular interaction during walking. Despite the advances in understanding that these techniques have brought, there is clearly still a need for more direct methods to study both neural and mechanical parameters during human walking in order...... of these receptors to act as length, velocity and force transducers is the complex pattern of interaction between muscle and tendinous tissues, as tendon length is often considerably greater than muscle fibre length in the human lower limb. In essence, changes in muscle-tendon mechanics can influence the firing...

  13. GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus

    DEFF Research Database (Denmark)

    Jørgensen, Jens O L; Jessen, Niels; Pedersen, Steen Bønløkke

    2006-01-01

    Growth hormone (GH) regulates muscle and fat metabolism, which impacts on body composition and insulin sensitivity, but the underlying GH signaling pathways have not been studied in vivo in humans. We investigated GH signaling in biopsies from muscle and abdominal fat obtained 30 (n = 3) or 60 (n...... was measured by in vitro phosphorylation of PI. STAT5 DNA binding activity was assessed with EMSA, and the expression of IGF-I and SOCS mRNA was measured by real-time RT-PCR. GH induced a 52% increase in circulating FFA levels with peak values after 155 min (P = 0.03). Tyrosine-phosphorylated STAT5...... tended to increase after GH in muscle and fat, respectively. We conclude that 1) STAT5 is acutely activated in human muscle and fat after a GH bolus, but additional downstream GH signaling was significant only in fat; 2) the direct GH effects in muscle need further characterization; and 3) this human...

  14. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention

    Science.gov (United States)

    Cho, Yong-il

    2014-01-01

    Calf diarrhea is a commonly reported disease in young animals, and still a major cause of productivity and economic loss to cattle producers worldwide. In the report of the 2007 National Animal Health Monitoring System for U.S. dairy, half of the deaths among unweaned calves was attributed to diarrhea. Multiple pathogens are known or postulated to cause or contribute to calf diarrhea development. Other factors including both the environment and management practices influence disease severity or outcomes. The multifactorial nature of calf diarrhea makes this disease hard to control effectively in modern cow-calf operations. The purpose of this review is to provide a better understanding of a) the ecology and pathogenesis of well-known and potential bovine enteric pathogens implicated in calf diarrhea, b) describe diagnostic tests used to detect various enteric pathogens along with their pros and cons, and c) propose improved intervention strategies for treating calf diarrhea. PMID:24378583

  15. Coronary and muscle blood flow during physical exercise in humans; heterogenic alliance.

    Science.gov (United States)

    Zoladz, Jerzy A; Majerczak, Joanna; Duda, Krzysztof; Chlopicki, Stefan

    2015-08-01

    In this review, we present the relation between power generation capabilities and pulmonary oxygen uptake during incremental cycling exercise in humans and the effect of exercise intensity on the oxygen cost of work. We also discuss the importance of oxygen delivery to the working muscles as a factor determining maximal oxygen uptake in humans. Subsequently, we outline the importance of coronary blood flow, myocardial oxygen uptake and myocardial metabolic stability for exercise tolerance. Finally, we describe mechanisms of endothelium-dependent regulation of coronary and skeletal muscle blood flow, dysregulation of which may impair exercise capacity and increase the cardiovascular risk of exercise. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. All rights reserved.

  16. Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Vissing, K.; Overgaard, K.; Nedergaard, A.

    2008-01-01

    , and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified...... for muscle Ca2+-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P ... eccentric exercise bout (P muscle Ca2+-content did not differ between interventions. mRNA levels for calpain 2 and calpastatin were upregulated exclusively by eccentric exercise 24 h post-exercise (P

  17. Esmolol acutely alters oxygen supply-demand balance in exercising muscles of healthy humans.

    Science.gov (United States)

    Proctor, David N; Luck, J Carter; Maman, Stephan R; Leuenberger, Urs A; Muller, Matthew D

    2018-04-01

    Beta-adrenoreceptor antagonists (β blockers) reduce systemic O 2 delivery and blood pressure (BP) during exercise, but the subsequent effects on O 2 extraction within the active limb muscles are unknown. In this study, we examined the effects of the fast-acting, β 1 selective blocker esmolol on systemic hemodynamics and leg muscle O 2 saturation (near infrared spectroscopy, NIRS) during submaximal leg ergometry. Our main hypothesis was that esmolol would augment exercise-induced reductions in leg muscle O 2 saturation. Eight healthy adults (6 men, 2 women; 23-67 year) performed light and moderate intensity bouts of recumbent leg cycling before (PRE), during (β 1 -blocked), and 45 min following (POST) intravenous infusion of esmolol. Oxygen uptake, heart rate (HR), BP, and O 2 saturation (SmO 2 ) of the vastus lateralis (VL) and medial gastrocnemius (MG) muscles were measured continuously. Esmolol attenuated the increases in HR and systolic BP during light (-12 ± 9 bpm and -26 ± 12 mmHg vs. PRE) and moderate intensity (-20 ± 10 bpm and -40 ± 18 mmHg vs. PRE) cycling (all P Exercise-induced reductions in SmO 2 occurred to a greater extent during the β 1 -blockade trial in both the VL (P = 0.001 vs. PRE) and MG muscles (P = 0.022 vs. PRE). HR, SBP and SmO 2 were restored during POST (all P exercising muscles of healthy humans. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Reflexes in the shoulder muscles elicited from the human coracoacromial ligament.

    Science.gov (United States)

    Diederichsen, Louise Pyndt; Nørregaard, Jesper; Krogsgaard, Michael; Fischer-Rasmussen, Torsten; Dyhre-Poulsen, Poul

    2004-09-01

    Morphological studies have demonstrated mechanoreceptors in the capsuloligamentous structures of the shoulder joint, however knowledge of the role these joint receptors play in the control of shoulder stability is limited. We therefore investigated the effect of electrically induced afferent activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1) and 73+/-5 ms (stim-2) during isometric extension. In study II the average latency (mean+/-SE) of the response was 66+/-4 ms (stim-1) during isometric flexion. Our results demonstrated a response, probably of reflex origin, from mechanoreceptors in the CAL to the shoulder muscles. The existence of this synaptic connection between mechanoreceptors in CAL and the shoulder muscles suggest a role of these receptors in muscle coordination and in the functional joint stability.

  19. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology.

    Science.gov (United States)

    Drew, Rachel C

    2017-12-01

    Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease. Copyright © 2017 the American Physiological Society.

  20. Effect of stimulus parameters and contraction level on inhibitory responses in human jaw-closing muscles: Implications for contingent stimulation

    DEFF Research Database (Denmark)

    Jadidi, F; Wang, K; Arendt-Nielsen, Lars

    2009-01-01

      Objective: Examine the effect of stimulus duration as well as stimulus intensity and level of muscle contraction on the inhibitory responses in human jaw-closing muscles. Design: The inhibitory jaw-reflexes, ES1 and ES2, were recorded in the surface electromyogram (EMG) of masseter and temporal...

  1. GLUT4 expression at the plasma membrane is related to fibre volume in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Gaster, M; Vach, W; Beck-Nielsen, H

    2002-01-01

    In this study we examined the relationship between GLUT4 expression at the plasma membrane and muscle fibre size in fibre-typed human muscle fibres by immunocytochemistry and morphometry in order to gain further insight into the regulation of GLUT4 expression. At the site of the plasma membrane...

  2. Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle.

    NARCIS (Netherlands)

    Mulder, A.H.; Dijk, A.P.J. van; Smits, P.; Tack, C.J.J.

    2008-01-01

    OBJECTIVE: Muscle capillary perfusion can be measured by contrast-enhanced ultrasound. We examined whether a less time-consuming ultrasound technique, called "real-time imaging," could be used to measure capillary recruitment in human forearm skeletal muscle. METHODS: We measured microvascular blood

  3. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training

    DEFF Research Database (Denmark)

    Jakobsen, Jens R.; Mackey, A L; Knudsen, A B

    2017-01-01

    The myotendinous junction (MTJ) is a common site of strain injury and yet understanding of its composition and ability to adapt to loading is poor. The main aims of this study were to determine the profile of selected collagens and macrophage density in human MTJ and adjoining muscle fibers...... 4 weeks of training may reflect a training-induced protection against strain injuries in this region....

  4. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    OpenAIRE

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Na?ra; Rau, Fr?d?rique; Jollet, Arnaud; Edom-Vovard, Fr?d?rique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois

    2017-01-01

    International audience; Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded rep...

  5. Comparison of collagen profile and tenderness of muscles from ...

    African Journals Online (AJOL)

    Calving and age at slaughter did not influence cooking loss of semimembranosus (SEM) and infraspinatus (INF) muscles or the shear force of SEM. The ventral part of the INF muscle from single-calf cows exhibited higher shear force values. In both muscles, higher water-soluble and lower acid-soluble collagen contents ...

  6. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention.

    Directory of Open Access Journals (Sweden)

    Mingming Yang

    Full Text Available Bioenergetics of artery smooth muscle cells is critical in cardiovascular health and disease. An acute rise in metabolic demand causes vasodilation in systemic circulation while a chronic shift in bioenergetic profile may lead to vascular diseases. A decrease in intracellular ATP level may trigger physiological responses while dedifferentiation of contractile smooth muscle cells to a proliferative and migratory phenotype is often observed during pathological processes. Although it is now possible to dissect multiple building blocks of bioenergetic components quantitatively, detailed cellular bioenergetics of artery smooth muscle cells is still largely unknown. Thus, we profiled cellular bioenergetics of human coronary artery smooth muscle cells and effects of metabolic intervention. Mitochondria and glycolysis stress tests utilizing Seahorse technology revealed that mitochondrial oxidative phosphorylation accounted for 54.5% of ATP production at rest with the remaining 45.5% due to glycolysis. Stress tests also showed that oxidative phosphorylation and glycolysis can increase to a maximum of 3.5 fold and 1.25 fold, respectively, indicating that the former has a high reserve capacity. Analysis of bioenergetic profile indicated that aging cells have lower resting oxidative phosphorylation and reduced reserve capacity. Intracellular ATP level of a single cell was estimated to be over 1.1 mM. Application of metabolic modulators caused significant changes in mitochondria membrane potential, intracellular ATP level and ATP:ADP ratio. The detailed breakdown of cellular bioenergetics showed that proliferating human coronary artery smooth muscle cells rely more or less equally on oxidative phosphorylation and glycolysis at rest. These cells have high respiratory reserve capacity and low glycolysis reserve capacity. Metabolic intervention influences both intracellular ATP concentration and ATP:ADP ratio, where subtler changes may be detected by the latter.

  7. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts.

    Directory of Open Access Journals (Sweden)

    Maléne E Lindholm

    2016-09-01

    Full Text Available Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity.

  8. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    Science.gov (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  9. On the mechanism by which dietary nitrate improves human skeletal muscle function

    Directory of Open Access Journals (Sweden)

    Charles eAffourtit

    2015-07-01

    Full Text Available Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favourably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome – both ageing-related medical disorders – has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects.

  10. Postmortem muscle protein degradation in humans as a tool for PMI delimitation.

    Science.gov (United States)

    Pittner, Stefan; Ehrenfellner, Bianca; Monticelli, Fabio C; Zissler, Angela; Sänger, Alexandra M; Stoiber, Walter; Steinbacher, Peter

    2016-11-01

    Forensic estimation of time since death relies on diverse approaches, including measurement and comparison of environmental and body core temperature and analysis of insect colonization on a dead body. However, most of the applied methods have practical limitations or provide insufficient results under certain circumstances. Thus, new methods that can easily be implemented into forensic routine work are required to deliver more and discrete information about the postmortem interval (PMI). Following a previous work on skeletal muscle degradation in the porcine model, we analyzed human postmortem skeletal muscle samples of 40 forensic cases by Western blotting and casein zymography. Our results demonstrate predictable protein degradation processes in human muscle that are distinctly associated with temperature and the PMI. We provide information on promising degradation markers for certain periods of time postmortem, which can be useful tools for time since death delimitation. In addition, we discuss external influencing factors such as age, body mass index, sex, and cause of death that need to be considered in future routine application of the method in humans.

  11. Ultrasonographic findings of the various diseases presenting as calf pain.

    Science.gov (United States)

    Lee, Sun Joo; Kim, Ok Hwa; Choo, Hye Jung; Park, Jun Ho; Park, Yeong-Mi; Jeong, Hae Woong; Lee, Sung Moon; Cho, Kil Ho; Choi, Jung-Ah; Jacobson, Jon A

    2016-01-01

    There are various causes of calf pain. The differential diagnoses affecting the lower leg include cystic lesions, trauma-related lesions, infection or inflammation, vascular lesions, neoplasms, and miscellaneous entities. Ultrasound (US) provide detailed anatomical information of the calf structures, and it offers the ability to confirm, other calf abnormalities, particularly when deep vein thrombosis (DVT) is ruled out. The purpose of this article is to review the causes of a painful calf presenting as DVT and incidental findings found as part of the work-up of DVT, and to provide a broad overview of US findings and clinical features of these pathologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations.

    Science.gov (United States)

    Zajac, Felix E; Neptune, Richard R; Kautz, Steven A

    2002-12-01

    Current understanding of how muscles coordinate walking in humans is derived from analyses of body motion, ground reaction force and EMG measurements. This is Part I of a two-part review that emphasizes how muscle-driven dynamics-based simulations assist in the understanding of individual muscle function in walking, especially the causal relationships between muscle force generation and walking kinematics and kinetics. Part I reviews the strengths and limitations of Newton-Euler inverse dynamics and dynamical simulations, including the ability of each to find the contributions of individual muscles to the acceleration/deceleration of the body segments. We caution against using the concept of biarticular muscles transferring power from one joint to another to infer muscle coordination principles because energy flow among segments, even the adjacent segments associated with the joints, cannot be inferred from computation of joint powers and segmental angular velocities alone. Rather, we encourage the use of dynamical simulations to perform muscle-induced segmental acceleration and power analyses. Such analyses have shown that the exchange of segmental energy caused by the forces or accelerations induced by a muscle can be fundamentally invariant to whether the muscle is shortening, lengthening, or neither. How simulation analyses lead to understanding the coordination of seated pedaling, rather than walking, is discussed in this first part because the dynamics of pedaling are much simpler, allowing important concepts to be revealed. We elucidate how energy produced by muscles is delivered to the crank through the synergistic action of other non-energy producing muscles; specifically, that a major function performed by a muscle arises from the instantaneous segmental accelerations and redistribution of segmental energy throughout the body caused by its force generation. Part II reviews how dynamical simulations provide insight into muscle coordination of walking.

  13. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Paulsen, G; Schjerling, P

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response...... in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal...

  14. Calf Compression Sleeves Change Biomechanics but Not Performance and Physiological Responses in Trail Running

    Directory of Open Access Journals (Sweden)

    Hugo A. Kerhervé

    2017-04-01

    Full Text Available Introduction: The aim of this study was to determine whether calf compression sleeves (CS affects physiological and biomechanical parameters, exercise performance, and perceived sensations of muscle fatigue, pain and soreness during prolonged (~2 h 30 min outdoor trail running.Methods: Fourteen healthy trained males took part in a randomized, cross-over study consisting in two identical 24-km trail running sessions (each including one bout of running at constant rate on moderately flat terrain, and one period of all-out running on hilly terrain wearing either degressive CS (23 ± 2 mmHg or control sleeves (CON, <4 mmHg. Running time, heart rate and muscle oxygenation of the medial gastrocnemius muscle (measured using portable near-infrared spectroscopy were monitored continuously. Muscle functional capabilities (power, stiffness were determined using 20 s of maximal hopping before and after both sessions. Running biomechanics (kinematics, vertical and leg stiffness were determined at 12 km·h−1 at the beginning, during, and at the end of both sessions. Exercise-induced Achilles tendon pain and delayed onset calf muscles soreness (DOMS were assessed using visual analog scales.Results: Muscle oxygenation increased significantly in CS compared to CON at baseline and immediately after exercise (p < 0.05, without any difference in deoxygenation kinetics during the run, and without any significant change in run times. Wearing CS was associated with (i higher aerial time and leg stiffness in running at constant rate, (ii with lower ground contact time, higher leg stiffness, and higher vertical stiffness in all-out running, and (iii with lower ground contact time in hopping. Significant DOMS were induced in both CS and CON (>6 on a 10-cm scale with no difference between conditions. However, Achilles tendon pain was significantly lower after the trial in CS than CON (p < 0.05.Discussion: Calf compression did not modify muscle oxygenation during ~2 h 30

  15. Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise.

    Science.gov (United States)

    LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F

    2002-10-01

    The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.

  16. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.

    Science.gov (United States)

    Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran

    2017-09-01

    Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P glycogen synthesis.

  17. Muscle-tendon interaction and elastic energy usage in human walking

    DEFF Research Database (Denmark)

    Ishikawa, Masaki; Komi, Paavo V.; Grey, Michael James

    2005-01-01

    The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo......-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous...

  18. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans.

    Science.gov (United States)

    Krustrup, Peter; Secher, Niels H; Relu, Mihai U; Hellsten, Ylva; Söderlund, Karin; Bangsbo, Jens

    2008-12-15

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.

  19. Influence of glutamate-evoked pain and sustained elevated muscle activity on blood oxygenation in the human masseter muscle.

    Science.gov (United States)

    Suzuki, Shunichi; Arima, Taro; Kitagawa, Yoshimasa; Svensson, Peter; Castrillon, Eduardo

    2017-12-01

    This study aimed to investigate the effect of glutamate-evoked masseter muscle pain on intramuscular oxygenation during rest and sustained elevated muscle activity (SEMA). Seventeen healthy individuals participated in two sessions in which they were injected with glutamate and saline in random order. Each session was divided into three, 10-min periods. During the first (period 1) and the last (period 3) 10-min periods, participants performed five intercalated 1-min bouts of masseter SEMA with 1-min periods of 'rest'. At onset of the second 10-min period, glutamate (0.5 ml, 1 M; Ajinomoto, Tokyo, Japan) or isotonic saline (0.5 ml; 0.9%) was injected into the masseter muscle and the participants kept the muscle relaxed in a resting position for 10 min (period 2). The hemodynamic characteristics of the masseter muscle were recorded simultaneously during the experiment by a laser blood-oxygenation monitor. The results demonstrated that glutamate injections caused significant levels of self-reported pain in the masseter muscle; however, this nociceptive input did not have robust effects on intramuscular oxygenation during rest or SEMA tasks. Interestingly, these findings suggest an uncoupling between acute nociceptive activity and hemodynamic parameters in both resting and low-level active jaw muscles. Further studies are needed to explore the pathophysiological significance of blood-flow changes for persistent jaw-muscle pain conditions. © 2017 Eur J Oral Sci.

  20. Motor unit recruitment in human genioglossus muscle in response to hypercapnia.

    Science.gov (United States)

    Nicholas, Christian L; Bei, Bei; Worsnop, Christopher; Malhotra, Atul; Jordan, Amy S; Saboisky, Julian P; Chan, Julia K M; Duckworth, Ella; White, David P; Trinder, John

    2010-11-01

    single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. sleep research laboratory. sixteen healthy men. each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.

  1. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities.

    Science.gov (United States)

    Lang, Thomas; Van Loon, Jack J W A; Bloomfield, Susan; Vico, Laurence; Chopard, Angele; Rittweger, Joern; Kyparos, Antonios; Blottner, Dieter; Vuori, Ilkka; Gerzer, Rupert; Cavanagh, Peter R

    2017-01-01

    Without effective countermeasures, the musculoskeletal system is altered by the microgravity environment of long-duration spaceflight, resulting in atrophy of bone and muscle tissue, as well as in deficits in the function of cartilage, tendons, and vertebral disks. While inflight countermeasures implemented on the International Space Station have evidenced reduction of bone and muscle loss on low-Earth orbit missions of several months in length, important knowledge gaps must be addressed in order to develop effective strategies for managing human musculoskeletal health on exploration class missions well beyond Earth orbit. Analog environments, such as bed rest and/or isolation environments, may be employed in conjunction with large sample sizes to understand sex differences in countermeasure effectiveness, as well as interaction of exercise with pharmacologic, nutritional, immune system, sleep and psychological countermeasures. Studies of musculoskeletal biomechanics, involving both human subject and computer simulation studies, are essential to developing strategies to avoid bone fractures or other injuries to connective tissue during exercise and extravehicular activities. Animal models may be employed to understand effects of the space environment that cannot be modeled using human analog studies. These include studies of radiation effects on bone and muscle, unraveling the effects of genetics on bone and muscle loss, and characterizing the process of fracture healing in the mechanically unloaded and immuno-compromised spaceflight environment. In addition to setting the stage for evidence-based management of musculoskeletal health in long-duration space missions, the body of knowledge acquired in the process of addressing this array of scientific problems will lend insight into the understanding of terrestrial health conditions such as age-related osteoporosis and sarcopenia.

  2. Skeletal muscle munc18c and syntaxin 4 in human obesity

    Directory of Open Access Journals (Sweden)

    Bessesen Daniel H

    2008-07-01

    Full Text Available Abstract Background Animal and cell culture data suggest a critical role for Munc18c and Syntaxin 4 proteins in insulin mediated glucose transport in skeletal muscle, but no studies have been published in humans. Methods We investigated the effect of a 12 vs. 48 hr fast on insulin action and skeletal muscle Munc18c and Syntaxin 4 protein in lean and obese subjects. Healthy lean (n = 14; age = 28.0 +/- 1.4 yr; BMI = 22.8 +/- 0.42 kg/m2 and obese subjects (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5 kg/m2 were studied twice following a 12 and 48 hr fast. Skeletal muscle biopsies were obtained before a 3 hr 40 mU/m2/min hyperinsulinemic-euglycemic clamp with [6,6-2H2]glucose infusion. Results Glucose rate of disappearance (Rd during the clamp was lower in obese vs. lean subjects after the 12 hr fast (obese: 6.25 +/- 0.67 vs. lean: 9.42 +/- 1.1 mg/kgFFM/min, p = 0.007, and decreased significantly in both groups after the 48 hr fast (obese 3.49 +/- 0.31 vs. lean: 3.91 +/- 0.42 mg/kgFFM/min, p = 0.002. Munc18c content was not significantly different between lean and obese subjects after the 12 hour fast, and decreased after the 48 hr fast in both groups (p = 0.013. Syntaxin 4 content was not altered by obesity or fasting duration. There was a strong positive relationship between plasma glucose concentration and Munc18c content in lean and obese subjects during both 12 and 48 hr fasts (R2 = 0.447, p = 0.0015. Significant negative relationships were also found between Munc18c and FFA (p = 0.041, beta-hydroxybutyrate (p = 0.039, and skeletal muscle AKT content (p = 0.035 in lean and obese subjects. Conclusion These data indicate Munc18c and Syntaxin 4 are present in human skeletal muscle. Munc18c content was not significantly different between lean and obese subjects, and is therefore unlikely to explain obesity-induced insulin resistance. Munc18c content decreased after prolonged fasting in lean and obese subjects concurrently with reduced insulin

  3. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    Science.gov (United States)

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces. Copyright © 2013 Wiley Periodicals, Inc.

  4. Examination of transcript amounts and activity of protein kinase CK2 in muscle lysates of different types of human muscle pathologies.

    Science.gov (United States)

    Heuss, Dieter; Klascinski, Janine; Schubert, Steffen W; Moriabadi, Tehmur; Lochmüller, Hanns; Hashemolhosseini, Said

    2008-09-01

    Motoneurons release the heparansulfate proteoglycan agrin and thereby activate the muscle-specific receptor tyrosine kinase (MuSK), which is the main organizer of subsynaptic specializations at the neuromuscular junction. Recently, we showed that (1) the protein kinase CK2 interacts with the intracellular region of MuSK; (2) the CK2 protein is enriched and co-localized with MuSK at postsynaptic specializations; (3) CK2-mediated phosphorylation of serine residues within a specific MuSK epitope, named the kinase insert, regulates acetylcholine receptor (AChR) clustering; (4) muscle-specific CK2beta knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function (see Genes Dev 20(13):1800-1816, 2006). Here, we investigated for the first time if CK2 is modulated in biopsies from human patients. To this end, we measured transcript amounts of the subunits CK2alpha and CK2beta and determined holoenzyme CK2 activity in 34 muscle biopsies of human patients with different muscle pathologies.

  5. Performance and Health of Group-Housed Calves Kept in Igloo Calf Hutches and Calf Barn

    Directory of Open Access Journals (Sweden)

    Jerzy Wójcik*, Renata Pilarczyk, Anna Bilska, Ottfried Weiher1 and Peter Sanftleben1

    2013-04-01

    Full Text Available Group-reared calves are usually housed in common buildings, such as calf barns of all sorts; however, there are concerns about this practice due to problems such as an increased incidence of diseases and poor performance of the calves. Group calf rearing using igloo hutches may be a solution combining the benefits of individual and group housing systems. The aim of this study was to evaluate group-reared calves housed in Igloo-type hutches compared with those housed in common calf barns. The experiment was carried out on a large private dairy farm located in Vorpommern, Germany. A total of 90 Deutsche-Holstein bull calves were assigned to 2 treatment groups: the calf-barn group, with calves grouped in pens in a building, and the Igloo-hutch group, with calves housed in outdoor enclosures with an access to group igloo-style hutches. Calves entering the 84-day experiment were at an average age of about three weeks, with the mean initial body weight of about 50 kg. The calves housed in the group Igloo hutches attained higher daily weight gains compared to those housed in the calf barn (973 vs 721 g/day, consumed more solid feeds (concentrate, corn grain and maize silage: (1.79 vs 1.59 kg/day, and less milk replacer (5.51 vs 6.19 kg/day, had also a lower incidence of respiratory diseases (1.24 vs 3.57% with a shorter persistence of the illness.

  6. Efficacy of calf:cow ratios for estimating calf production of arctic caribou

    Science.gov (United States)

    Cameron, R.D.; Griffith, B.; Parrett, L.S.; White, R.G.

    2013-01-01

    Caribou (Rangifer tarandus granti) calf:cow ratios (CCR) computed from composition counts obtained on arctic calving grounds are biased estimators of net calf production (NCP, the product of parturition rate and early calf survival) for sexually-mature females. Sexually-immature 2-year-old females, which are indistinguishable from sexually-mature females without calves, are included in the denominator, thereby biasing the calculated ratio low. This underestimate increases with the proportion of 2-year-old females in the population. We estimated the magnitude of this error with deterministic simulations under three scenarios of calf and yearling annual survival (respectively: low, 60 and 70%; medium, 70 and 80%; high, 80 and 90%) for five levels of unbiased NCP: 20, 40, 60, 80, and 100%. We assumed a survival rate of 90% for both 2-year-old and mature females. For each NCP, we computed numbers of 2-year-old females surviving annually and increased the denominator of CCR accordingly. We then calculated a series of hypothetical “observed” CCRs, which stabilized during the last 6 years of the simulations, and documented the degree to which each 6-year mean CCR differed from the corresponding NCP. For the three calf and yearling survival scenarios, proportional underestimates of NCP by CCR ranged 0.046–0.156, 0.058–0.187, and 0.071–0.216, respectively. Unfortunately, because parturition and survival rates are typically variable (i.e., age distribution is unstable), the magnitude of the error is not predictable without substantial supporting information. We recommend maintaining a sufficient sample of known-age radiocollared females in each herd and implementing a regular relocation schedule during the calving period to obtain unbiased estimates of both parturition rate and NCP.

  7. A new paradigm for the role of smooth muscle cells in the human cervix.

    Science.gov (United States)

    Vink, Joy Y; Qin, Sisi; Brock, Clifton O; Zork, Noelia M; Feltovich, Helen M; Chen, Xiaowei; Urie, Paul; Myers, Kristin M; Hall, Timothy J; Wapner, Ronald; Kitajewski, Jan K; Shawber, Carrie J; Gallos, George

    2016-10-01

    Premature cervical remodeling resulting in spontaneous preterm birth may begin with premature failure or relaxation at the internal os (termed "funneling"). To date, we do not understand why the internal os fails or why funneling occurs in some cases of premature cervical remodeling. Although the human cervix is thought to be mostly collagen with minimal cellular content, cervical smooth muscle cells are present in the cervix and can cause cervical tissue contractility. To understand why the internal os relaxes or why funneling occurs in some cases of premature cervical remodeling, we sought to evaluate cervical smooth muscle cell content and distribution throughout human cervix and correlate if cervical smooth muscle organization influences regional cervical tissue contractility. Using institutional review board-approved protocols, nonpregnant women cervix, whole cervical slices were obtained from the internal os, midcervix, and external os and immunostained with smooth muscle actin. To correlate tissue structure with function, whole slices from the internal and external os were stimulated to contract with 1 μmol/L of oxytocin in organ baths. In separate samples, we tested if the cervix responds to a common tocolytic, nifedipine. Cervical slices from the internal os were treated with oxytocin alone or oxytocin + increasing doses of nifedipine to generate a dose response and half maximal inhibitory concentration. Student t test was used where appropriate. Cervical tissue was collected from 41 women. Immunohistochemistry showed cervical smooth muscle cells at the internal and external os expressed mature smooth muscle cell markers and contraction-associated proteins. The cervix exhibited a gradient of cervical smooth muscle cells. The area of the internal os contained 50-60% cervical smooth muscle cells that were circumferentially organized in the periphery of the stroma, which may resemble a sphincter-like pattern. The external os contained approximately 10

  8. Myofibrillar proteolysis in response to voluntary or electrically stimulated muscle contractions in humans

    DEFF Research Database (Denmark)

    Hansen, M; Trappe, T; Crameri, R M

    2008-01-01

    Knowledge about the effects of exercise on myofibrillar protein breakdown in human subjects is limited. Our purpose was to measure the changes in the degradation of myofibrillar proteins in response to different ways of eliciting muscle contractions using the local interstitial 3-methyl-histidine......Knowledge about the effects of exercise on myofibrillar protein breakdown in human subjects is limited. Our purpose was to measure the changes in the degradation of myofibrillar proteins in response to different ways of eliciting muscle contractions using the local interstitial 3-methyl....... Only after ES did the histochemical stainings show significant disruption of cytoskeletal proteins. Furthermore, intracellular disruption and destroyed Z-lines were markedly more pronounced in ES vs VOL. In conclusion, the local level of interstitial 3-MH in the skeletal muscle was significantly...... enhanced after ES compared with VOL immediately after exercise, while the level of 3-MH did not change in the post-exercise period after VOL. These results indicate that the local myofibrillar breakdown is accelerated after ES associated with severe myofiber damage....

  9. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    International Nuclear Information System (INIS)

    Lundby, Carsten; Pilegaard, Henriette; Hall, Gerrit van; Sander, Mikael; Calbet, Jose; Loft, Steffen; Moeller, Peter

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA glycosylase (FPG) protein was unaltered. The expression of 8-oxoguanine DNA glycosylase 1 (OGG1), determined by quantitative RT-PCR of mRNA levels did not significantly change during high-altitude hypoxia, although the data could not exclude a minor upregulation. The expression of heme oxygenase-1 (HO-1) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite increased generation of oxidative DNA damage

  10. Overexpression of functional TrkA receptors after internalisation in human airway smooth muscle cells.

    Science.gov (United States)

    Freund-Michel, Véronique; Frossard, Nelly

    2008-10-01

    Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.

  11. Haemodynamic responses to temperature changes of human skeletal muscle studied by laser-Doppler flowmetry

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Tchernin, David; Richiardi, Jonas; Van De Ville, Dimitri; Hyacinthe, Jean-Noël

    2012-01-01

    Using a small, but very instructive experiment, it is demonstrated that laser-Doppler flowmetry (LDF) at large interoptode spacing represents a unique tool for new investigations of thermoregulatory processes modulating the blood flow of small muscle masses in humans. It is shown on five healthy subjects that steady-state values of blood flow (perfusion) in the thenar eminence muscle group depend in a complex manner on both the local intramuscular temperature and local skin temperature, while the values of blood flow parameters measured during physiological transients, such as the post-ischaemic hyperhaemic response, depend only on the intramuscular temperature. In addition, it is shown that the so-called biological zero (i.e. remaining LDF signal during arterial occlusion) is influenced not only as expected by the intramuscular temperature, but also by the skin temperature. The proposed results reveal that the skeletal muscle has unique thermoregulatory characteristics compared, for example, to human skin. These and other observations represent new findings and we hope that they will serve as a stimulus for the creation of new experimental protocols leading to better understanding of blood flow regulation. (paper)

  12. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle

    International Nuclear Information System (INIS)

    Cederblad, G.; Carlin, J.I.; Constantin-Teodosiu, D.; Harper, P.; Hultman, E.

    1990-01-01

    Radioisotopic assays for the determination of acetyl-CoA, CoASH, and acetylcarnitine have been modified for application to the amount of human muscle tissue that can be obtained by needle biopsy. In the last step common to all three methods, acetyl-CoA is condensed with [14C]oxaloacetate by citrate synthase to give [14C]-citrate. For determination of CoASH, CoASH is reacted with acetylphosphate in a reaction catalyzed by phosphotransacetylase to yield acetyl-CoA. In the assay for acetylcarnitine, acetylcarnitine is reacted with CoASH in a reaction catalyzed by carnitine acetyltransferase to form acetyl-CoA. Inclusion of new simple steps in the acetylcarnitine assay and conditions affecting the reliability of all three methods are also described. Acetylcarnitine and free carnitine levels in human rectus abdominis muscle were 3.0 +/- 1.5 (SD) and 13.5 +/- 4.0 mumol/g dry wt, respectively. Values for acetyl-CoA and CoASH were about 500-fold lower, 6.7 +/- 1.8 and 21 +/- 8.9 nmol/g dry wt, respectively. A strong correlation between acetylcarnitine (y) and short-chain acylcarnitine (x), determined as the difference between total and free carnitine, was found in biopsies from the vastus lateralis muscle obtained during intense muscular effort, y = 1.0x + 0.5; r = 0.976

  13. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  14. The history of Latin terminology of human skeletal muscles (from Vesalius to the present).

    Science.gov (United States)

    Musil, Vladimir; Suchomel, Zdenek; Malinova, Petra; Stingl, Josef; Vlcek, Martin; Vacha, Marek

    2015-01-01

    The aim of this literary search was to chart the etymology of 32 selected human skeletal muscles, representative of all body regions. In researching this study, analysis of 15 influential Latin and German anatomical textbooks, dating from the sixteenth to the nineteenth century, was undertaken, as well as reference to four versions of the official Latin anatomical terminologies. Particular emphasis has been placed on the historical development of muscular nomenclature, and the subsequent division of these data into groups, defined by similarities in the evolution of their names into the modern form. The first group represents examples of muscles whose names have not changed since their introduction by Vesalius (1543). The second group comprises muscles which earned their definitive names during the seventeenth and eighteenth century. The third group is defined by acceptance into common anatomical vernacular by the late nineteenth century, including those outlined in the first official Latin terminology (B.N.A.) of 1895. The final group is reserved for six extra-ocular muscles with a particularly poetic history, favoured and popularised by the anatomical giants of late Renaissance and 1,700 s. As this study will demonstrate, it is evident that up until introduction of the B.N.A. there was an extremely liberal approach to naming muscles, deserving great respect in the retrospective terminological studies if complete and relevant results are to be achieved. Without this knowledge of the vernacular of the ages past, modern researchers can find themselves 'reinventing the wheel' in looking for their answers.

  15. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  16. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    Directory of Open Access Journals (Sweden)

    Ludovic Arandel

    2017-04-01

    Full Text Available Myotonic dystrophy type 1 (DM1 and type 2 (DM2 are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.

  17. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    Science.gov (United States)

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  18. Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia

    DEFF Research Database (Denmark)

    Hojman, Pernille; Pedersen, Maria; Nielsen, Anders Rinnov

    2009-01-01

    DESIGN AND METHODS: We studied muscular FGF-21 expression and plasma FGF-21 after acute insulin stimulation in young healthy men during a hyperinsulinemic-euglycemic clamp. Furthermore, we investigated systemic levels and muscle FGF-21 expression in humans with or without insulin resistance and chronic...... elevated insulin. RESULTS: FGF-21 was barely detectable in young healthy men before insulin infusion. After 3 or 4 h of insulin infusion during a hyperinsulinemic-euglycemic clamp, muscular FGF-21 expression increased significantly. Plasma FGF-21 followed the same pattern. In individuals with chronic...... elevated insulin, muscular FGF-21 expression was associated with hyperinsulinemia in men but not in women. In plasma, hyperinsulinemia and fasting glucose were positively associated with plasma FGF-21 while plasma FGF-21 correlated negatively with HDL cholesterol. No associations between muscle and plasma...

  19. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects

    DEFF Research Database (Denmark)

    Larsen, Steen; Nielsen, Joachim; Hansen, Christina Neigaard

    2012-01-01

    Key points  Several biochemical measures of mitochondrial components are used as biomarkers of mitochondrial content and muscle oxidative capacity. However, no studies have validated these surrogates against a morphological measure of mitochondrial content in human subjects.  The most commonly used...... markers (citrate synthase activity, cardiolipin content, mitochondrial DNA content (mtDNA), complex I-V protein, and complex I-IV activity) were correlated with a measure of mitochondrial content (transmission electron microscopy) and muscle oxidative capacity (respiration in permeabilized fibres......).  Cardiolipin content followed by citrate synthase activity and complex I activity were the biomarkers showing the strongest association with mitochondrial content.  mtDNA was found to be a poor biomarker of mitochondrial content.  Complex IV activity was closely associated with mitochondrial oxidative...

  20. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    , we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...... of different mitochondrial phosphopeptides (87 ± 7 vs 40 ± 7, p = 0.015) and phosphoproteins (46 ± 2 vs 26 ± 3, p = 0.005) identified in each mitochondrial preparation. Almost half of the mitochondrial phosphorylation sites (n = 94) were exclusively identified in the insulin-stimulated state and included...

  1. Lactate dehydrogenase is not a mitochondrial enzyme in human and mouse vastus lateralis muscle

    DEFF Research Database (Denmark)

    Rasmussen, Hans N; van Hall, Gerrit; Rasmussen, Ulla F

    2002-01-01

    The presence of lactate dehydrogenase in skeletal muscle mitochondria was investigated to clarify whether lactate is a possible substrate for mitochondrial respiration. Mitochondria were prepared from 100 mg samples of human and mouse vastus lateralis muscle. All fractions from the preparation...... procedure were assayed for marker enzymes and lactate dehydrogenase (LDH). The mitochondrial fraction contained no LDH activity (detection limit approximately 0.05 % of the tissue activity) and the distribution of LDH activity among the fractions paralleled that of pyruvate kinase, i.e. LDH was fractionated...... as a cytoplasmic enzyme. Respiratory experiments with the mitochondrial fraction also indicated the absence of LDH. Lactate did not cause respiration, nor did it affect the respiration of pyruvate + malate. The major part of the native cytochrome c was retained in the isolated mitochondria, which, furthermore...

  2. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation

    DEFF Research Database (Denmark)

    Suetta, Charlotte

    2017-01-01

    not be achieved with the use of neuromuscular electrical stimulation or conventional rehabilitation efforts alone. Collectively, these findings strongly underline the importance of implementing resistive exercises in future rehabilitation programs for elderly individuals. In addition, comparing young and old able...... gains in myofibre area, in parallel with smaller increases in satellite cell number despite no age-related differences were observed in factors known to promote skeletal muscle hypertrophy and myogenic stem cell proliferation (IGF-Ea, MGF, MyoD, myogenin, HGF). Moreover, an age-specific regulation...... and satellite cell proliferation in the acute phase of re-loading, these data indicates that myostatin play an important role in the impaired ability of aged human skeletal muscle....

  3. Liver and Muscle Contribute Differently to the Plasma Acylcarnitine Pool During Fasting and Exercise in Humans

    DEFF Research Database (Denmark)

    Xu, G.; Hansen, J S; Zhao, Jian-xin

    2016-01-01

    BACKGROUND: Plasma acylcarnitine levels are elevated by physiological conditions such as fasting and exercise but also in states of insulin resistance and obesity. AIM: To elucidate the contribution of liver and skeletal muscle to plasma acylcarnitines in the fasting state and during exercise...... in humans. METHODS: In 2 independent studies, young healthy males were fasted overnight and performed an acute bout of exercise to investigate either acylcarnitines in skeletal muscle biopsies and arterial-to-venous plasma differences over the exercising and resting leg (n = 9) or the flux over the hepato......-splanchnic bed (n = 10). RESULTS: In the fasting state, a pronounced release of C2- and C3-carnitines from the hepato-splanchnic bed and an uptake of free carnitine by the legs were detected. Exercise further increased the release of C3-carnitine from the hepato-splanchnic bed and the uptake of free carnitine...

  4. Skeletal muscle collagen content in humans after high-force eccentric contractions

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, Alan E; Turpeenniemi-Hujanen, Taina

    2004-01-01

    The purpose of this study was to investigate the effects of high-force eccentric muscle contractions on collagen remodeling and on circulating levels of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in humans. Nine volunteers [5 men and 4 women, mean age 23 (SD...... 4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary...... contractile force declined by 39 +/- 23% (mean +/- SD) on day 2 postexercise and recovered thereafter. Serum creatine kinase activity peaked on day 4 postexercise (P Collagen type IV staining intensity increased significantly on day 22 postexercise to 126 +/- 29% (mean +/- SD) of preexercise values...

  5. Digestibility of cow's tritiated milk powder by calf and pig

    International Nuclear Information System (INIS)

    Bruwaene, R. van; Kirchmann, R.; Charles, P.; Hoek, J. van den

    1976-01-01

    Milk obtained from a lactating cow, maintained in a byre and fed on tritiated drinking water (266 μCi/1), was used in these experiments. Tritium moves into the different metabolic pathways that eventually produce milk. After administration of this continuous oral dose of tritiated water, the tritium content of the whole milk and of the dry matter reaches a plateau 10 days after the beginning of the ingestion of THO. Analysis of the radioactivity in the several milk constituents indicated that tritium was incorporated to different extents in different components. This in vivo tritiated milk powder was fed to two calves and three pigs in their rations. Daily samples of faeces were taken. For determining the digestibility and the incorporation of this milk powder the animals were slaughtered and several organs examined. The tritium activity was determined in the dry matter of the organs and the faeces. The data obtained in these experiments indicate that the milk powder is better absorbed by the calf if the digestibility coefficient is taken into consideration, but the milk powder is better incorporated in the organic matter of the muscle and liver of the pig. (author)

  6. Effects of elevated iodine in milk replacer on calf performance.

    Science.gov (United States)

    Jenkins, K J; Hidiroglou, M

    1990-03-01

    Calves were fed milk replacer containing .57, 10, 50, 100, or 200 ppm iodine (from ethylenediaminedihydroiodide) in DM, from 3 to 38 d of age, to estimate the minimum toxic concentration of iodine. Only the 200 ppm iodine intake reduced weight gains, DM intake, feed efficiency, and DM digestibility. At the 100 and 200 ppm iodine intakes, protein digestibility was reduced, and calves showed typical symptoms of iodine toxicity (nasal discharge, excessive tear and saliva formation, and coughing from tracheal congestion). Thyroid iodine increased with every elevation in iodine intake. Iodine in plasma, bile, and non-thyroid tissues started to increase at the 50 ppm intake and, except for muscle, tended to increase again at the 100 and 200 ppm intakes. Thus, the preruminant calf tolerated up to 50 ppm iodine in milk replacer DM for 5 wk postpartum. However, as iodine concentrations in plasma and nonthyroid tissues started to increase at 50 ppm iodine, an upper limit of 10 ppm would be more preferable.

  7. Morphology of the lateral pterygoid muscle associated to the mandibular condyle in the human prenatal stage.

    Science.gov (United States)

    Carranza, Miriam L; Carda, Carmen; Simbrón, Alicia; Quevedo, María C Sánchez; Celaya, Gabriela; de Ferraris, Maria Elsa Gómez

    2006-01-01

    The lateral pterygoid muscle (LPM) inserts at the condyle and the articular disc and plays a central role in mandibular movement via the Temporomandibular Articular Complex. The aim of this study was to examine the association between the morphology of LPM muscular fascicles and the degree of mineralization of the mandibular condyle in the prenatal stage employing structural, ultrastructural and microanalytical evaluation. Sixteen human fetuses at 11-37 weeks of gestation, with no apparent pathology and resulting from spontaneous abortions, were included in the study. Samples from lateral pterygoid muscle and the mandibular condyle were processed for light microscopy and electron microscopy and microanalysis. Desmin immunolabeling (dilution 1: 25 Dako) and alpha sarcomeric actin immunolabeling (dilution 1:50 Dako) employing the avidin-biotin system were used in paraffin embedded samples. Contralateral samples were examine by transmission electron microscopy. Four condyles (at 17-21 weeks of gestation) were used to measure the relative content of calcium and phosphorous employing the X-ray diffraction microanalytical technique. At 11-16 weeks of gestation, the LPM was composed of secondary myotubes associated to satellite cells and nerve fibers. At 18 weeks, the muscle exhibited multiple compact fascicles and the condyle showed a thin, external, subperiostal mineralized layer with few central bone spicules. At 20 weeks, at the site of insertion of the LPM, the bone trabeculae of the condyle contained an electrondense matrix with abundant mineralization nuclei. At 17-21 weeks of gestation no significant variations in the contents of phosphorous and calcium were observed. At 24 weeks, transmission electron calcium and microscopy studies revealed a marked increase in the functional units of the muscle fascicles. Also, at this age muscle fibers exhibited differences in the expression of desmin and alpha sarcomeric actin. At 37 weeks the muscle became multipennate in

  8. Center of pressure motion after calf vibration is more random in fallers than non-fallers : Prospective study of older individuals

    NARCIS (Netherlands)

    van den Hoorn, Wolbert; Kerr, Graham K.; van Dieën, Jaap H.; Hodges, Paul W.

    2018-01-01

    Aging is associated with changes in balance control and elderly take longer to adapt to changing sensory conditions, which may increase falls risk. Low amplitude calf muscle vibration stimulates local sensory afferents/receptors and affects sense of upright when applied in stance. It has been used

  9. The slack test does not assess maximal shortening velocity of muscle fascicle in human.

    Science.gov (United States)

    Hager, Robin; Dorel, Sylvain; Nordez, Antoine; Rabita, Giuseppe; Couturier, Antoine; Hauraix, Hugo; Duchateau, Jacques; Guilhem, Gaël

    2018-06-14

    The application of a series of extremely high accelerative motor-driven quick releases while muscles contract isometrically (i.e. slack test) has been proposed to assess unloaded velocity in human muscle. This study aimed to measure gastrocnemius medialis fascicle (V F ) and tendinous tissues shortening velocity during motor-driven quick releases performed at various activation levels to assess the applicability of the slack test method in human. Maximal fascicle shortening velocity and joint velocity recorded during quick releases and during fast contraction without external load (ballistic condition) were compared. Gastrocnemius medialis fascicle behaviour was investigated from 25 participants using high-frame rate ultrasound during quick releases performed at various activation levels (from 0% to 60% of maximal voluntary isometric torque) and ballistic contractions. Unloaded joint velocity calculated using the slack test method increased whereas V F decreased with muscle activation level (P≤0.03). Passive and low-level quick releases elicited higher V F values (≥ 41.4±9.7 cm.s -1 ) compared to ballistic condition (36.3±8.7 cm.s -1 ), while quick releases applied at 60% of maximal voluntary isometric torque produced the lowest V F These findings suggest that initial fascicle length, complex fascicle-tendon interactions, unloading reflex and motor-driven movement pattern strongly influence and limit the shortening velocity achieved during the slack test. Furthermore, V F elicited by quick releases is likely to reflect substantial contributions of passive processes. Therefore, the slack test is not appropriate to assess maximal muscle shortening velocity in vivo. © 2018. Published by The Company of Biologists Ltd.

  10. Giant atypical ossifying fibromyxoid tumour of the calf

    International Nuclear Information System (INIS)

    Harish, Srinivasan; Polson, Alexander; Griffiths, Meryl; Morris, Paul; Malata, Charles; Bearcroft, Philip W.P.

    2006-01-01

    We present a case of giant atypical ossifying fibromyxoid tumour (OFMT) of soft tissue, occurring in the calf, in a 77-year-old woman. The patient presented with a history of bleeding ulcer over a calf lump that had been present for over 4 years. Clinical presentation, radiological features and histopathologic findings are described, and the relevant literature is reviewed. (orig.)

  11. CalfScience: Extension Education at Many Levels

    Science.gov (United States)

    Moore, Dale A.; Tellessen, Kathlyn; Sischo, William M.

    2010-01-01

    The issue of antimicrobial resistance in food animal agriculture was addressed by conducting clinical trials to assess alternatives to antimicrobials in dairy calf-raising and developing outreach to three different audiences. Current research was integrated into Extension programs for calf-raisers, animal science and veterinary students, and food…

  12. Preventative programs for respiratory disease in cow/calf operations.

    Science.gov (United States)

    Engelken, T J

    1997-11-01

    Control of respiratory disease in cow/calf operations presents many challenges. The incidence of disease in the suckling calf is not well documented and the logistics of handling range animals make control programs difficult to implement. Health programs have to be built around normal working patterns, and these patterns may not provide the best "fit" for immune management of the calf. Weaned calves undergo significant disease challenge when they enter typical marketing channels. This provides the potential for high levels of calf morbidity, mortality, medicine costs, and losses from decreased performance as they arrive at a stocker operation or feedyard. If preweaning calf health and preconditioning programs are used, they must be planned so that the producer has an opportunity to obtain a return on their investment. Options for increasing calf weight marketed, certified calf health sales, or retained ownership through the next phase of production should be evaluated carefully. Any potential increase in calf value must be weighed against program costs. This affords the veterinarian an opportunity to build on traditional disease management and prevention skills and expand their influence in overall ranch management.

  13. Effects of phyto-oestrogens on veal calf prostate histology

    NARCIS (Netherlands)

    Groot, M.J.

    2006-01-01

    In veal calf production plant-based proteins are frequently included in milk replacer fed to the animals. Since soy products, which are mostly used, are known for their high levels of phyto-oestrogens, the effects of these feeds on the veal calf prostate were examined. Goal was to determine whether

  14. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  15. Conduction velocity of action potentials measured from unidimensional latency-topography in human and frog skeletal muscle fibers.

    Science.gov (United States)

    Homma, S; Nakajima, Y; Hayashi, K; Toma, S

    1986-01-01

    Conduction of an action potential along skeletal muscle fibers was graphically displayed by unidimensional latency-topography, UDLT. Since the slopes of the equipotential line were linear and the width of the line was constant, it was possible to calculate conduction velocity from the slope. To determine conduction direction of the muscle action potential elicited by electric stimulation applied directly to the muscle, surface recording electrodes were placed on a two-dimensional plane over a human muscle. Thus a bi-dimensional topography was obtained. Then, twelve or sixteen surface electrodes were placed linearly along the longitudinal direction of the action potential conduction which was disclosed by the bi-dimensional topography. Thus conduction velocity of muscle action potential in man, calculated from the slope, was for m. brachioradialis, 3.9 +/- 0.4 m/s; for m. biceps brachii, 3.6 +/- 0.2 m/s; for m. sternocleidomastoideus, 3.6 +/- 0.4 m/s. By using a tungsten microelectrode to stimulate the motor axons, a convex-like equipotential line of an action potential in UDLT was obtained from human muscle fibers. Since a similar pattern of UDLT was obtained from experiments on isolated frog muscles, in which the muscle action potential was elicited by stimulating the motor axon, it was assumed that the maximum of the curve corresponds to the end-plate region, and that the slopes on both sides indicate bi-directional conduction of the action potential.

  16. Influences of supplemental feeding on winter elk calf:cow ratios in the southern Greater Yellowstone Ecosystem

    Science.gov (United States)

    M. Foley, Aaron; Cross, Paul C.; Christianson, David A; Scurlock, Brandon M.; Creely, Scott

    2015-01-01

    Several elk herds in the Greater Yellowstone Ecosystem are fed during winter to alleviate interactions with livestock, reduce damage to stored crops, and to manage for high elk numbers. The effects of supplemental feeding on ungulate population dynamics has rarely been examined, despite the fact that supplemental feeding is partially justified as necessary for maintaining or enhancing population growth rates. We used linear regression to assess how the presence of feedgrounds, snowpack, summer rainfall, indices of grizzly bear density and wolves per elk, elk population trend counts, brucellosis seroprevalence, and survey date were correlated with midwinter calf:cow ratios, a metric correlated with population growth, from 1983–2010 from 12 ecologically similar elk herd units (7 fed and 5 unfed) in Wyoming, USA. Our statistical approach allowed for rigorous tests of the hypotheses that supplemental feeding had positive effects on calf:cow ratios and reduced sensitivity of calf:cow ratios to bottom-up limitation relative to top-down limitation from native predators. Calf:cow ratios generally declined across all herd units over the study period and varied widely among units with feedgrounds. We found no evidence that the presence of feedgrounds had positive effects on midwinter calf:cow ratios in Wyoming. Further, fed elk showed stronger correlations with environmental factors, whereas calf:cow ratios for unfed elk showed stronger correlations with predator indices. Although we found no consistent association between winter feeding and higher calf:cow ratios, we did not assess late winter mortality and differences in human offtake between fed and unfed regions, which remain a priority for future research. 

  17. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  18. Rotator cuff muscle degeneration and tear severity related to myogenic, adipogenic, and atrophy genes in human muscle.

    Science.gov (United States)

    Shah, Shivam A; Kormpakis, Ioannis; Cavinatto, Leonardo; Killian, Megan L; Thomopoulos, Stavros; Galatz, Leesa M

    2017-12-01

    Large rotator cuff tear size and advanced muscle degeneration can affect reparability of tears and compromise tendon healing. Clinicians often rely on direct measures of rotator cuff tear size and muscle degeneration from magnetic resonance imaging (MRI) to determine whether the rotator cuff tear is repairable. The objective of this study was to identify the relationship between gene expression changes in rotator cuff muscle degeneration to standard data available to clinicians. Radiographic assessment of preoperative rotator cuff tear severity was completed for 25 patients with varying magnitudes of rotator cuff tears. Tear width and retraction were measured using MRI, and Goutallier grade, tangent (tan) sign, and Thomazeau grade were determined. Expression of myogenic-, adipogenic-, atrophy-, and metabolism-related genes in biopsied muscles were correlated with tear width, tear retraction, Goutallier grade, tan sign, and Thomazeau grade. Tear width positively correlated with Goutallier grade in both the supraspinatus (r = 0.73) and infraspinatus (r = 0.77), along with tan sign (r = 0.71) and Thomazeau grade (r = 0.68). Decreased myogenesis (Myf5), increased adipogenesis (CEBPα, Lep, Wnt10b), and decreased metabolism (PPARα) correlated with radiographic assessments. Gene expression changes suggest that rotator cuff tears lead to a dramatic molecular response in an attempt to maintain normal muscle tissue, increase adipogenesis, and decrease metabolism. Fat accumulation and muscle atrophy appear to stem from endogenous changes rather than from changes mediated by infiltrating cells. Results suggest that chronic unloading of muscle, induced by rotator cuff tear, disrupts muscle homeostasis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2808-2814, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Newborn calf welfare: a review focusing on mortality rates.

    Science.gov (United States)

    Uetake, Katsuji

    2013-02-01

    Calf mortality control is vitally important for farmers, not only to improve animal welfare, but also to increase productivity. High calf mortality rates can be related to larger numbers of calves in a herd, employee performance, severe weather, and the neonatal period covering the first 4 weeks of life. Although the basic premise of preventing newborn calf mortality is early detection and treatment of calves at risk for failure of passive transfer of immunoglobulins, calf mortality due to infectious diseases such as acute diarrhea increases in the presence of these physical and psychological stressors. This suggests that farmers should not ignore the effects of secondary environmental factors. For prevention rather than cure, the quality of the environment should be improved, which will improve not only animal welfare but also productivity. This paper presents a review of the literature on newborn calf mortality and discusses its productivity implications. © 2012 Japanese Society of Animal Science.

  20. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content

    DEFF Research Database (Denmark)

    Steensberg, A; Febbraio, M A; Osada, T

    2001-01-01

    1. Prolonged exercise results in a progressive decline in glycogen content and a concomitant increase in the release of the cytokine interleukin-6 (IL-6) from contracting muscle. This study tests the hypothesis that the exercise-induced IL-6 release from contracting muscle is linked to the intram......1. Prolonged exercise results in a progressive decline in glycogen content and a concomitant increase in the release of the cytokine interleukin-6 (IL-6) from contracting muscle. This study tests the hypothesis that the exercise-induced IL-6 release from contracting muscle is linked...... to the intramuscular glycogen availability. 2. Seven men performed 5 h of a two-legged knee-extensor exercise, with one leg with normal, and one leg with reduced, muscle glycogen content. Muscle biopsies were obtained before (pre-ex), immediately after (end-ex) and 3 h into recovery (3 h rec) from exercise in both...... legs. In addition, catheters were placed in one femoral artery and both femoral veins and blood was sampled from these catheters prior to exercise and at 1 h intervals during exercise and into recovery. 3. Pre-exercise glycogen content was lower in the glycogen-depleted leg compared with the control...

  1. Morphometric analysis of somatotropic cells of the adenohypophysis and muscle fibers of the psoas muscle in the process of aging in humans.

    Science.gov (United States)

    Antić, Vladimir M; Stefanović, Natalija; Jovanović, Ivan; Antić, Milorad; Milić, Miroslav; Krstić, Miljan; Kundalić, Braca; Milošević, Verica

    2015-07-01

    The aim of this research was to quantify changes of the adenohypophyseal somatotropes and types 1 and 2 muscle fibers with aging, as well as to establish mutual interactions and correlations with age. Material was samples of hypophysis and psoas major muscle of 27 cadavers of both genders, aged from 30 to 90 years. Adenohypophyseal and psoas major tissue sections were immunohistochemically processed and stained by anti-human growth hormone and anti-fast myosin antibodies, respectively. Morphometric analysis was performed by ImageJ. Results of morphometric analysis showed a significant increase in the somatotrope area, and significant decrease in somatotrope volume density and nucleocytoplasmic ratio with age. Cross-sectional areas of types 1 and 2, and volume density of type 2 muscle fibers decreased significantly with age. One Way ANOVA showed that the latter cited changes in the somatotropes and types 1 and 2 muscle fibers mostly become significant after the age of 70. Significant positive correlation was observed between the area of the somatotropes and volume density of type 2 muscle fibers. A significant negative correlation was detected between the nucleocytoplasmic ratio of the somatotropes and cross-sectional areas of types 1 and 2 muscle fibers. So, it can be concluded that after the age of 70, there is significant loss of the anterior pituitary's somatotropes associated with hypertrophy and possible functional decline of the remained cells. Age-related changes in the somatotropes are correlated with the simultaneous atrophy of type 1, as well as with the atrophy and loss of type 2 muscle fibers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Zinc Methionine Supplementation Impacts Gene and Protein Expression in Calf-fed Holstein Steers with Miniaml Impact on Feedlot Performance

    Science.gov (United States)

    Calf-fed Holstein steers were supplemented with a zinc (Zn) methionine supplement (ZnMet; ZINPRO®; Zinpro Corporation, Eden Prairie, MN) for 115±5 days prior to harvest along with zilpaterol hydrochloride (ZH; Zilmax®; Merck Animal Health, Summit, NJ) for the last 20 days with a 3 day withdrawal to ...

  3. A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles.

    Science.gov (United States)

    Caron, Leslie; Kher, Devaki; Lee, Kian Leong; McKernan, Robert; Dumevska, Biljana; Hidalgo, Alejandro; Li, Jia; Yang, Henry; Main, Heather; Ferri, Giulia; Petek, Lisa M; Poellinger, Lorenz; Miller, Daniel G; Gabellini, Davide; Schmidt, Uli

    2016-09-01

    : Facioscapulohumeral muscular dystrophy (FSHD) represents a major unmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies. We developed a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response, and cell adhesion. This cellular model will be a powerful tool for studying FSHD and will ultimately assist in the development of effective treatments for muscular dystrophies. This work describes an efficient and highly scalable monolayer system to differentiate human pluripotent stem cells (hPSCs) into skeletal muscle cells (SkMCs) and demonstrates disease-specific phenotypes in SkMCs derived from both embryonic and induced hPSCs affected with facioscapulohumeral muscular dystrophy. This study represents the first human stem cell-based cellular model for a muscular dystrophy that is suitable for high-throughput screening and drug development. ©AlphaMed Press.

  4. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    Directory of Open Access Journals (Sweden)

    King Nicholas JC

    2006-05-01

    Full Text Available Abstract Background Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscle cells (HASM. We hypothesised that rhinovirus induction of inflammatory cytokine release from airway smooth muscle is augmented and differentially regulated in asthmatic compared to normal HASM cells. Methods HASM cells, isolated from either asthmatic or non-asthmatic subjects, were infected with rhinovirus. Cytokine production was assayed by ELISA, ICAM-1 cell surface expression was assessed by FACS, and the transcription regulation of IL-6 was measured by luciferase activity. Results RV-induced IL-6 release was significantly greater in HASM cells derived from asthmatic subjects compared to non-asthmatic subjects. This response was RV specific, as 5% serum- induced IL-6 release was not different in the two cell types. Whilst serum stimulated IL-8 production in cells from both subject groups, RV induced IL-8 production in only asthmatic derived HASM cells. The transcriptional induction of IL-6 was differentially regulated via C/EBP in the asthmatic and NF-κB + AP-1 in the non-asthmatic HASM cells. Conclusion This study demonstrates augmentation and differential transcriptional regulation of RV specific innate immune response in HASM cells derived from asthmatic and non-asthmatics, and may give valuable insight into the mechanisms of RV-induced asthma exacerbations.

  5. Camphor induces cold and warm sensations with increases in skin and muscle blood flow in human.

    Science.gov (United States)

    Kotaka, Tomohiko; Kimura, Shoji; Kashiwayanagi, Makoto; Iwamoto, Jun

    2014-01-01

    Application of camphor to the skin has been empirically thought to improve blood circulation. However, camphor's effects on blood circulation to the skin and on thermal sensation have not been well elucidated. In this study, we examined its effects on the quality of sensation as well as on skin and muscle blood flow in human. Nine adults (average age 37±9.4 years) participated in the study. Petroleum jelly containing 5%, 10%, 20% camphor, or 2% menthol was separately applied to the skin on the medial side of one forearm of each subject. Just after the application, camphor at each concentration induced a cold sensation in a dose-dependent manner. Within 10 min, each subject reported that the cold sensation had faded, after which it was replaced by a warm sensation. As reported previously, a cold sensation was induced by application of 2% menthol, but the subjects did not adapt to that sensation. In addition, menthol did not induce a warm sensation at all. Application of menthol has been shown to increase blood flow in the skin. Finally, we measured blood flow in skin and muscle after the application of camphor or menthol. Application of camphor or menthol separately induced increases in local blood flow in the skin and muscle. The present results indicate that camphor induces both cold and warm sensations and improves blood circulation.

  6. A Novel Method for Intraoral Access to the Superior Head of the Human Lateral Pterygoid Muscle

    Directory of Open Access Journals (Sweden)

    Aleli Tôrres Oliveira

    2014-01-01

    Full Text Available Background. The uncoordinated activity of the superior and inferior parts of the lateral pterygoid muscle (LPM has been suggested to be one of the causes of temporomandibular joint (TMJ disc displacement. A therapy for this muscle disorder is the injection of botulinum toxin (BTX, of the LPM. However, there is a potential risk of side effects with the injection guide methods currently available. In addition, they do not permit appropriate differentiation between the two bellies of the muscle. Herein, a novel method is presented to provide intraoral access to the superior head of the human LPM with maximal control and minimal hazards. Methods. Computational tomography along with digital imaging software programs and rapid prototyping techniques were used to create a rapid prototyped guide to orient BTX injections in the superior LPM. Results. The method proved to be feasible and reliable. Furthermore, when tested in one volunteer it allowed precise access to the upper head of LPM, without producing side effects. Conclusions. The prototyped guide presented in this paper is a novel tool that provides intraoral access to the superior head of the LPM. Further studies will be necessary to test the efficacy and validate this method in a larger cohort of subjects.

  7. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles.

    Science.gov (United States)

    Teitti, S; Määttä, S; Säisänen, L; Könönen, M; Vanninen, R; Hannula, H; Mervaala, E; Karhu, J

    2008-04-15

    Structural studies in primates have shown that, in addition to the primary motor cortex (M1), premotor areas are a source of corticospinal tracts. The function of these putative corticospinal neuronal tracts in humans is still unclear. We found frontal non-primary motor areas (NPMAs), which react to targeted non-invasive magnetic pulses and activate peripheral muscles as fast as or even faster than those in M1. Hand muscle movements were observed in all our subjects about 20 ms after transcranial stimulation of the superior frontal gyrus (Brodmann areas 6 and 8). Stimulation of NPMA could activate both proximal and distal upper limb muscles with the same delay as a stimulation of the M1, indicating converging motor representations with direct functional connections to the hand. We suggest that these non-primary cortical motor representations provide additional capacity for the fast execution of movements. Such a capacity may play a role in motor learning and in recovery from motor deficits.

  8. Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria

    DEFF Research Database (Denmark)

    Rasmussen, U.F.; Rasmussen, H.N.; Krustrup, Peter

    2001-01-01

    The aim of the present study was to examine whether parameters of isolated mitochondria could account for the in vivo maximum oxygen uptake ( O2 max) of human skeletal muscle. O2 max and work performance of the quadriceps muscle of six volunteers were measured in the knee extensor model (range 10......-18 mmol O2 · min 1 · kg 1 at work rates of 22-32 W/kg). Mitochondria were isolated from the same muscle at rest. Strong correlations were obtained between O2 max and a number of mitochondrial parameters (mitochondrial protein, cytochrome aa3, citrate synthase, and respiratory activities). The activities...... of citrate synthase, succinate dehydrogenase, and pyruvate dehydrogenase, measured in isolated mitochondria, corresponded to, respectively, 15, 3, and 1.1 times the rates calculated from O2 max. The respiratory chain activity also appeared sufficient. Fully coupled in vitro respiration, which is limited...

  9. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  10. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte

    2006-01-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle....... Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  11. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle.

    Science.gov (United States)

    Ulbricht, Anna; Gehlert, Sebastian; Leciejewski, Barbara; Schiffer, Thorsten; Bloch, Wilhelm; Höhfeld, Jörg

    2015-01-01

    Chaperone-assisted selective autophagy (CASA) is a tension-induced degradation pathway essential for muscle maintenance. Impairment of CASA causes childhood muscle dystrophy and cardiomyopathy. However, the importance of CASA for muscle function in healthy individuals has remained elusive so far. Here we describe the impact of strength training on CASA in a group of healthy and moderately trained men. We show that strenuous resistance exercise causes an acute induction of CASA in affected muscles to degrade mechanically damaged cytoskeleton proteins. Moreover, repeated resistance exercise during 4 wk of training led to an increased expression of CASA components. In human skeletal muscle, CASA apparently acts as a central adaptation mechanism that responds to acute physical exercise and to repeated mechanical stimulation.

  12. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  13. Human induced pluripotent stem cell-derived vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Ayoubi, Sohrab; Sheikh, Søren P; Eskildsen, Tilde V

    2017-01-01

    . To this end, human induced pluripotent stem cells (hiPSCs) have generated great enthusiasm, and have been a driving force for development of novel strategies in drug discovery and regenerative cell-therapy for the last decade. Hence, investigating the mechanisms underlying the differentiation of hi......PSCs into specialized cell types such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs) may lead to a better understanding of developmental cardiovascular processes and potentiate progress of safe autologous regenerative therapies in pathological conditions. In this review, we summarize...

  14. Crotoxin in humans: analysis of the effects on extraocular and facial muscles

    Directory of Open Access Journals (Sweden)

    Geraldo de Barros Ribeiro

    2012-12-01

    Full Text Available PURPOSE: Crotoxin is the main neurotoxin of South American rattlesnake Crotalus durissus terrificus. The neurotoxic action is characterized by a presynaptic blockade. The purpose of this research is to assess the ability of crotoxin to induce temporary paralysis of extraocular and facial muscles in humans. METHODS: Doses of crotoxin used ranged from 2 to 5 units (U, each unit corresponding to one LD50. We first applied 2U of crotoxin in one of the extraocular muscles of 3 amaurotic individuals to be submitted to ocular evisceration. In the second stage, we applied crotoxin in 12 extraocular muscles of 9 patients with strabismic amblyopia. In the last stage, crotoxin was used in the treatment of blepharospasm in another 3 patients. RESULTS: No patient showed any systemic side effect or change in vision or any eye structure problem after the procedure. The only local side effects observed were slight conjunctival hyperemia, which recovered spontaneously. In 2 patients there was no change in ocular deviation after 2U crotoxin application. Limitation of the muscle action was observed in 8 of the 12 applications. The change in ocular deviation after application of 2U of crotoxin (9 injections was in average 15.7 prism diopters (PD. When the dose was 4U (2 applications the change was in average 37.5 PD and a single application of 5U produced a change of 16 PD in ocular deviation. This effect lasted from 1 to 3 months. Two of the 3 patients with blepharospasm had the hemifacial spasm improved with crotoxin, which returned after 2 months. CONCLUSIONS: This study provides data suggesting that crotoxin may be a useful new therapeutic option for the treatment of strabismus and blepharospasm. We expect that with further studies crotoxin could be an option for many other medical areas.