WorldWideScience

Sample records for human calf muscle

  1. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Oezdemir, Mahir S; Reyngoudt, Harmen; Deene, Yves de; Sazak, Hakan S; Fieremans, Els; Delputte, Steven; D'Asseler, Yves; Derave, Wim; Lemahieu, Ignace; Achten, Eric

    2007-01-01

    Carnosine has been shown to be present in the skeletal muscle and in the brain of a variety of animals and humans. Despite the various physiological functions assigned to this metabolite, its exact role remains unclear. It has been suggested that carnosine plays a role in buffering in the intracellular physiological pH i range in skeletal muscle as a result of accepting hydrogen ions released in the development of fatigue during intensive exercise. It is thus postulated that the concentration of carnosine is an indicator for the extent of the buffering capacity. However, the determination of the concentration of this metabolite has only been performed by means of muscle biopsy, which is an invasive procedure. In this paper, we utilized proton magnetic resonance spectroscopy ( 1 H MRS) in order to perform absolute quantification of carnosine in vivo non-invasively. The method was verified by phantom experiments and in vivo measurements in the calf muscles of athletes and untrained volunteers. The measured mean concentrations in the soleus and the gastrocnemius muscles were found to be 2.81 ± 0.57/4.8 ± 1.59 mM (mean ± SD) for athletes and 2.58 ± 0.65/3.3 ± 0.32 mM for untrained volunteers, respectively. These values are in agreement with previously reported biopsy-based results. Our results suggest that 1 H MRS can provide an alternative method for non-invasively determining carnosine concentration in human calf muscle in vivo

  2. Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise

    DEFF Research Database (Denmark)

    Green, S; Langberg, Henning; Skovgaard, D

    2000-01-01

    +. Calf muscle pain was assessed using a visual analogue scale. On average, [K+]I was 4.4 mmol l(-1) at rest and increased during minutes 3-5 of incremental exercise by approximately 1-7 mmol l(-1) as a positive function of power output. K+ release also increased as a function of exercise intensity......Changes in the concentration of interstitial K+ surrounding skeletal muscle fibres ([K+]I) probably play some role in the regulation of cardiovascular adjustments to muscular activity, as well as in the aetiology of muscle pain and fatigue during high-intensity exercise. However, there is very...... little information on the response of [K+]I to exercise in human skeletal muscle. Five young healthy subjects performed plantar flexion exercise for four 5 min periods at increasing power outputs ( approximately 1-6 W) with 10 min intervening recovery periods, as well as for two 5 min periods...

  3. Diffusion tensor imaging of the human calf : Variation of inter- and intramuscle-specific diffusion parameters

    NARCIS (Netherlands)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-01-01

    Purpose: To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Materials and Methods: Whole calf muscles of 18 healthy

  4. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Green, Sara Marie Ehrenreich

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise......, and (2) whether blood flow is coupled to oxidative metabolism. 2. Seven individuals performed dynamic plantar flexion from 1 to 9 W. Radial artery and popliteal venous blood were sampled for O2, peritendinous blood flow was determined by 133Xe-washout, calf blood flow by plethysmography, cardiac output...

  5. Calf Muscle Performance Deficits Remain 7 Years After an Achilles Tendon Rupture.

    Science.gov (United States)

    Brorsson, Annelie; Grävare Silbernagel, Karin; Olsson, Nicklas; Nilsson Helander, Katarina

    2018-02-01

    Optimizing calf muscle performance seems to play an important role in minimizing impairments and symptoms after an Achilles tendon rupture (ATR). The literature lacks long-term follow-up studies after ATR that describe calf muscle performance over time. The primary aim was to evaluate calf muscle performance and patient-reported outcomes at a mean of 7 years after ATR in patients included in a prospective, randomized controlled trial. A secondary aim was to evaluate whether improvement in calf muscle performance continued after the 2-year follow-up. Cohort study; Level of evidence, 2. Sixty-six subjects (13 women, 53 men) with a mean age of 50 years (SD, 8.5 years) were evaluated at a mean of 7 years (SD, 1 year) years after their ATR. Thirty-four subjects had surgical treatment and 32 had nonsurgical treatment. Patient-reported outcomes were evaluated with Achilles tendon Total Rupture Score (ATRS) and Physical Activity Scale (PAS). Calf muscle performance was evaluated with single-leg standing heel-rise test, concentric strength power heel-rise test, and single-legged hop for distance. Limb Symmetry Index (LSI = injured side/healthy side × 100) was calculated for side-to-side differences. Seven years after ATR, the injured side showed decreased values in all calf muscle performance tests ( P performance did not continue after the 2-year follow-up. Heel-rise height increased significantly ( P = .002) between the 1-year (10.8 cm) and the 7-year (11.5 cm) follow-up assessments. The median ATRS was 96 (of a possible score of 100) and the median PAS was 4 (of a possible score of 6), indicating minor patient-reported symptoms and fairly high physical activity. No significant differences were found in calf muscle performance or patient-reported outcomes between the treatment groups except for the LSI for heel-rise repetitions. Continued deficits in calf muscle endurance and strength remained 7 years after ATR. No continued improvement in calf muscle performance

  6. EFFECT OF MUSCLE ENERGY TECHNIQUE ON FLEXIBILITY OF HAMSTRING AND CALF MUSCLES AND SPRINTING PERFORMANCE IN SPRINTERS

    Directory of Open Access Journals (Sweden)

    M. Prasad Naik

    2015-10-01

    Full Text Available Background: Muscle energy technique is used for restoring normal tone in hypertonic muscles, strengthening weak muscles, preparing muscle for subsequent stretching, one of the main uses of this method is to normalize joint range which may help in increase flexibility and performance in sprinters. The aim of the study is to evaluate the effect of muscle energy technique on flexibility of hamstrings and calf muscles and sprinting performance in sprinters. The objective of the study is to determine the muscle energy technique on hamstrings and calf muscle flexibility and sprinting performance in sprinters by using goniometer and timing of sprinting performance. Method: The study design is an experimental study in which 30 male sprinters were recruited in this study. The study sample included all male healthy sprinters, aged between 15 -30 years. All subjects received warm up, muscle energy technique and cool down exercises daily for a period of 6weeks.The outcome measures are 90°-90°popliteal angle for assessing hamstring flexibility and ROM of ankle joint for calf muscles by universal goniometer and sprinting performance time by using stopwatch. Results: Independent t-test and paired t- test are used to analyse the data. A significant difference was found between pre and post values of hamstring and calf muscle flexibility and sprinting performance after the analysis in this study. Conclusion: This study shows that there was a significant effect of MET on hamstring and calf muscle flexibility and sprinting performance.

  7. [A swollen, painless calf caused by neurogenic muscle (pseudo)-hypertrophy

    NARCIS (Netherlands)

    Warrenburg, B.P.C. van de; Zwarts, M.J.; Engelen, B.G.M. van

    2003-01-01

    Neurogenic muscle (pseudo) hypertrophy of the calf was diagnosed in a 60-year-old man, who presented with chronic, painless and unilateral calf enlargement caused by a chronic S1 radiculopathy due to a lumbar disc hernia in the L5-S1 interspace. The differential diagnosis of a swelling of the calf

  8. Calf muscle involvement in Becker muscular dystrophy: when size does not matter.

    Science.gov (United States)

    Monforte, Mauro; Mercuri, Eugenio; Laschena, Francesco; Ricci, Enzo; Tasca, Giorgio

    2014-12-15

    Calf hypertrophy is a common feature in Becker muscular dystrophy (BMD), and it is still debated to which extent fatty degeneration or true muscle hypertrophy account for it. We wanted to investigate the relative contribution of these two components using a simple image analysis approach and their possible correlation with disease severity. Twenty-nine BMD patients' MRI scans were analyzed. A semiquantitative visual score assessing fatty replacement of calf muscles (calf MRI score, CMS) was calculated and correlated with the cross sectional area (CSA) of lower leg posterior compartment muscles, digitally measured on acquired images. The correlation between CSA and CMS was not significant. CMS in contrast correlated with disease severity (p<0.001) while CSA did not (p=0.969). In BMD, a major contribution to calf hypertrophy is provided by real muscle hypertrophy rather than by fatty degeneration. CMS appears to be a potential surrogate marker of disease severity. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Factors associated with night-time calf muscle cramps: a case-control study.

    Science.gov (United States)

    Hawke, Fiona; Chuter, Vivienne; Burns, Joshua

    2013-03-01

    Although highly prevalent and painful, night-time calf muscle cramping is poorly understood, and no treatment has shown consistent efficacy or safety. One hundred sixty adults were recruited from New South Wales, Australia, including 80 who had night-time calf cramping at least once per week and 80 age- and gender-matched adults who did not. Participants were assessed using reliable tests of lower limb strength, flexibility, morphometrics, circulation, and sensation, and were questioned about health and lifestyle factors, diet, medications, exercise, symptomatology, sleeping habits, and footwear. Conditional logistic regression identified 3 factors independently associated with night-time calf muscle cramps: muscle twitching (OR 4.6, 95% CI 1.6-15.5, P = 0.01); lower limb tingling (OR 4.1, 95% CI 1.6-10.3, P = 0.003); and foot dorsiflexion weakness (OR 1.02, 95% CI 1.01-1.03, P = 0.002), which represented other measures of lower limb weakness in the model. Night-time calf muscle cramps were associated with markers of neurological dysfunction and potential musculoskeletal therapeutic targets. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  10. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults.

    Science.gov (United States)

    Behringer, M; Moser, M; Montag, J; McCourt, M; Tenner, D; Mester, J

    2015-06-01

    Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.

  11. Connective tissue injury in calf muscle tears and return to play: MRI correlation.

    Science.gov (United States)

    Prakash, Ashutosh; Entwisle, Tom; Schneider, Michal; Brukner, Peter; Connell, David

    2017-10-26

    The aim of our study was to assess a group of patients with calf muscle tears and evaluate the integrity of the connective tissue boundaries and interfaces. Further, we propose a novel MRI grading system based on integrity of the connective tissue and assess any correlation between the grading score and time to return to play. We have also reviewed the anatomy of the calf muscles. We retrospectively evaluated 100 consecutive patients with clinical suspicion and MRI confirmation of calf muscle injury. We evaluated each calf muscle tear with MRI for the particular muscle injured, location of injury within the muscle and integrity of the connective tissue structure at the interface. The muscle tears were graded 0-3 depending on the degree of muscle and connective tissue injury. The time to return to play for each patient and each injury was found from the injury records and respective sports doctors. In 100 patients, 114 injuries were detected. Connective tissue involvement was observed in 63 out of 100 patients and failure (grade 3 injury) in 18. Mean time to return to play with grade 0 injuries was 8 days, grade 1 tears was 17 days, grade 2 tears was 25 days and grade 3 tears was 48 days (pmuscle tears. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Measurement of Gender Differences of Gastrocnemius Muscle and Tendon Using Sonomyography during Calf Raises: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Guang-Quan Zhou

    2017-01-01

    Full Text Available Skeletal muscles are essential to the gender-specific characteristics of human movements. Sonomyography, a new signal for quantifying muscle activation, is of great benefit to understand muscle function through monitoring the real-time muscle architectural changes. The purpose of this pilot study was to investigate gender differences in the architectural changes of gastronomies muscle and tendon by using sonomyography during performing two-legged calf raising exercises. A motion analysis system was developed to extract sonomyography from ultrasound images together with kinematic and kinetic measurements. Tiny fascicle length changes among seven male subjects were observed at the initial part of calf raising, whereas the fascicle of seven female subjects shortened immediately. This result suggested that men would generate higher mechanical power output of plantar flexors to regulate their heavier body mass. In addition, the larger regression coefficient between the fascicle length and muscle force for the male subjects implied that higher muscle stiffness for the men was required in demand of maintaining their heavier body economically. The findings from the current study suggested that the body mass might play a factor in the gender difference in structural changes of muscle and tendon during motion. The sonomyography may provide valuable information in the understanding of the gender difference in human movements.

  13. Effects of noxious stimulation to the back or calf muscles on gait stability.

    Science.gov (United States)

    van den Hoorn, Wolbert; Hug, François; Hodges, Paul W; Bruijn, Sjoerd M; van Dieën, Jaap H

    2015-11-26

    Gait stability is the ability to deal with small perturbations that naturally occur during walking. Changes in motor control caused by pain could affect this ability. This study investigated whether nociceptive stimulation (hypertonic saline injection) in a low back (LBP) or calf (CalfP) muscle affects gait stability. Sixteen participants walked on a treadmill at 0.94ms(-1) and 1.67ms(-1), while thorax kinematics were recorded using 3D-motion capture. From 110 strides, stability (local divergence exponent, LDE), stride-to-stride variability and root mean squares (RMS) of thorax linear velocities were calculated along the three movement axes. At 0.94ms(-1), independent of movement axes, gait stability was lower (higher LDE) and stride-to-stride variability was higher, during LBP and CalfP than no pain. This was more pronounced during CalfP, likely explained by the biomechanical function of calf muscles in gait, as supported by greater mediolateral RMS and stance time asymmetry than in LBP and no pain. At 1.67ms(-1), independent of movement axes, gait stability was greater and stride-to-stride variability was smaller with LBP than no pain and CalfP, whereas CalfP was not different from no pain. Opposite effects of LBP on gait stability between speeds suggests a more protective strategy at the faster speed. Although mediolateral RMS was greater and participants had more asymmetric stance times with CalfP than LBP and no pain, limited effect of CalfP at the faster speed could relate to greater kinematic constraints and smaller effects of calf muscle activity on propulsion at this speed. In conclusion, pain effects on gait stability depend on pain location and walking speed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Muscle specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat

    DEFF Research Database (Denmark)

    Olesen, Annesofie Thorup; Jensen, Bente Rona; Uhlendorf, Toni L

    2014-01-01

    length, passive stiffness and passive force of spastic GA were decreased whereas those of spastic SO were increased. No mechanical interaction between the calf muscles and TA was found. As GA was lengthened, force from SO and PL declined despite a constant muscle-tendon unit length of SO and PL. However......, the extent of this interaction was not different in the spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes seen for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate......The purpose of the present study was to investigate muscle mechanical properties and mechanical interaction between muscles in the lower hindlimb of the spastic mutant rat. Length-force characteristics of gastrocnemius (GA), soleus (SO) and plantaris (PL) were assessed in anesthetized spastic...

  15. Relative strengths of the calf muscles based on MRI volume measurements.

    Science.gov (United States)

    Jeng, Clifford L; Thawait, Gaurav K; Kwon, John Y; Machado, Antonio; Boyle, James W; Campbell, John; Carrino, John A

    2012-05-01

    In 1985, Silver et al. published a cadaver study which determined the relative order of strength of the muscles in the calf. Muscle strength, which is proportional to volume, was obtained by dissecting out the individual muscles, weighing them, and then multiplying by the specific gravity. No similar studies have been performed using {\\it in vivo} measurements of muscle volume. Ten normal subjects underwent 3-Tesla MRI's of both lower extremities using non-fat-saturated T2 SPACE sequences. The volume for each muscle was determined by tracing the muscle contour on sequential axial images and then interpolating the volume using imaging software. The results from this study differ from Silver's original article. The lateral head of the gastrocnemius was found to be stronger than the tibialis anterior muscle. The FHL and EDL muscles were both stronger than the peroneus longus. There was no significant difference in strength between the peroneus longus and brevis muscles. This revised order of muscle strengths in the calf based on in vivo MRI findings may assist surgeons in determining the optimal tendons to transfer in order to address muscle weakness and deformity.

  16. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters.

    Science.gov (United States)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-10-01

    To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.

  17. No change in calf muscle passive stiffness after botulinum toxin injection in children with cerebral palsy.

    Science.gov (United States)

    Alhusaini, Adel A A; Crosbie, Jack; Shepherd, Roberta B; Dean, Catherine M; Scheinberg, Adam

    2011-06-01

    Stiffness and shortening of the calf muscle due to neural or mechanical factors can profoundly affect motor function. The aim of this study was to investigate non-neurally mediated calf-muscle tightness in children with cerebral palsy (CP) before and after botulinum toxin type A (BoNT-A) injection. Sixteen children with spastic CP (seven females, nine males; eight at Gross Motor Function Classification System level I, eight at level II; age range 4-10 y) and calf muscle spasticity were tested before and during the pharmaceutically active phase after injection of BoNT-A. Measures of passive muscle compliance and viscoelastic responses, hysteresis, and the gradient of the torque-angle curve were computed and compared before and after injection. Although there was a slight, but significant increase in ankle range of motion after BoNT-A injection and a small, significant decrease in the torque required to achieve plantigrade and 5° of dorsiflexion, no significant difference in myotendinous stiffness or hysteresis were detected after BoNT-A injection. Despite any effect on neurally mediated responses, the compliance of the calf muscle was not changed and the muscle continued to offer significant resistance to passive motion of the ankle. These findings suggest that additional treatment approaches are required to supplement the effects of BoNT-A injections when managing children with calf muscle spasticity. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  18. CONGENITAL NUTRITIONAL MYODEGENERATION (WHITE MUSCLE DISEASE) IN A GIRAFFE ( GIRAFFA CAMELOPARDALIS) CALF.

    Science.gov (United States)

    Bos, Jan H; Klip, Fokko C; Kik, Marja J L

    2017-12-01

    It is well known that vitamin E and selenium deficiencies in domestic ruminants can lead to white muscle disease. After a clinically normal gestation period at Ouwehand Zoo in the Netherlands, a newborn giraffe ( Giraffa camelopardalis) calf showed clinical signs of white muscle disease almost immediately after birth. The calf was rejected by the mother and was euthanized 3 days later because of deterioration of clinical signs. At necropsy, pulmonary edema and pallor of skeletal and heart muscles was noted. Histologically, there was hyaline degeneration of skeletal muscle myocytes and pulmonary edema. Blood concentrations of vitamin E were ≤ 0.7 mg/L. Based on clinical, biochemical, and gross and microscopic pathological findings, congenital nutritional myodegeneration was diagnosed. This case of neonatal white muscle disease is particularly remarkable given that the diet of the dam contained more than the recommended amount of vitamin E.

  19. Time-resolved phosphorous magnetization transfer of the human calf muscle at 3 T and 7 T: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Valkovič, Ladislav, E-mail: siegfried.trattnig@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Institute of Measurement Science, Department of Imaging Methods, Slovak Academy of Sciences, 841 04 Bratislava, Dúbravska cesta 9 (Slovakia); Chmelík, Marek, E-mail: marek.chmelik@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Just Kukurova, Ivica, E-mail: ivica.kukurova@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Krššák, Martin, E-mail: martin.krssak@meduniwien.ac.at [Department of Internal Medicine III, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Gruber, Stephan, E-mail: stephan@nmr.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Frollo, Ivan, E-mail: umerollo@savba.sk [Institute of Measurement Science, Department of Imaging Methods, Slovak Academy of Sciences, 841 04 Bratislava, Dúbravska cesta 9 (Slovakia); Trattnig, Siegfried, E-mail: siegfried.trattnig@meduniwien.ac.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria); Bogner, Wolfgang, E-mail: wolfgang@nmr.at [MR Center of Excellence, Department of Radiology, Medical University Vienna, A-1090 Wien, Lazarettgasse 14 (Austria)

    2013-05-15

    Phosphorous ({sup 31}P) magnetization transfer (MT) experiments enable the non-invasive investigation of human muscle metabolism in various physiological and pathological conditions. The purpose of our study was to investigate the feasibility of time-resolved MT, and to compare the results of MT experiments at 3 T and 7 T. Six healthy volunteers were examined on a 3 T and a 7 T MR scanner using the same setup and identical measurement protocols. In the calf muscle of all volunteers, four separate MT experiments (each ∼10 min duration) were performed in one session. The forward rate constant of the ATP synthesis reaction (k{sub ATP}) and creatine kinase reaction (k{sub CK}), as well as corresponding metabolic fluxes (F{sub ATP}, F{sub CK}), were estimated. A comparison of these exchange parameters, apparent T{sub 1}s, data quality, quantification precision, and reproducibility was performed. The data quality and reproducibility of the same MT experiments at 7 T was significantly higher (i.e., k{sub ATP} 2.7 times higher and k{sub CK} 3.4 times higher) than at 3 T (p < 0.05). The values for k{sub ATP} (p = 0.35) and k{sub CK} (p = 0.09) at both field strengths were indistinguishable. Even a single MT experiment at 7 T provided better data quality than did a 4 times-longer MT experiment at 3 T. The minimal time-resolution to reliably quantify both F{sub ATP} and F{sub CK} at 7 T was ∼6 min. Our results show that MT experiments at 7 T can be at least 4 times faster than 3 T MT experiments and still provide significantly better quantification. This enables time-resolved MT experiments for the observation of slow metabolic changes in the human calf muscle at 7 T.

  20. Time-resolved phosphorous magnetization transfer of the human calf muscle at 3 T and 7 T: A feasibility study

    International Nuclear Information System (INIS)

    Valkovič, Ladislav; Chmelík, Marek; Just Kukurova, Ivica; Krššák, Martin; Gruber, Stephan; Frollo, Ivan; Trattnig, Siegfried; Bogner, Wolfgang

    2013-01-01

    Phosphorous ( 31 P) magnetization transfer (MT) experiments enable the non-invasive investigation of human muscle metabolism in various physiological and pathological conditions. The purpose of our study was to investigate the feasibility of time-resolved MT, and to compare the results of MT experiments at 3 T and 7 T. Six healthy volunteers were examined on a 3 T and a 7 T MR scanner using the same setup and identical measurement protocols. In the calf muscle of all volunteers, four separate MT experiments (each ∼10 min duration) were performed in one session. The forward rate constant of the ATP synthesis reaction (k ATP ) and creatine kinase reaction (k CK ), as well as corresponding metabolic fluxes (F ATP , F CK ), were estimated. A comparison of these exchange parameters, apparent T 1 s, data quality, quantification precision, and reproducibility was performed. The data quality and reproducibility of the same MT experiments at 7 T was significantly higher (i.e., k ATP 2.7 times higher and k CK 3.4 times higher) than at 3 T (p < 0.05). The values for k ATP (p = 0.35) and k CK (p = 0.09) at both field strengths were indistinguishable. Even a single MT experiment at 7 T provided better data quality than did a 4 times-longer MT experiment at 3 T. The minimal time-resolution to reliably quantify both F ATP and F CK at 7 T was ∼6 min. Our results show that MT experiments at 7 T can be at least 4 times faster than 3 T MT experiments and still provide significantly better quantification. This enables time-resolved MT experiments for the observation of slow metabolic changes in the human calf muscle at 7 T

  1. A novel approach to sonographic examination in a patient with a calf muscle tear: a case report

    Directory of Open Access Journals (Sweden)

    Chen Carl PC

    2009-06-01

    Full Text Available Abstract Introduction Rupture of the distal musculotendinous junction of the medial head of the gastrocnemius, also known as "tennis leg", can be readily examined using a soft tissue ultrasound. Loss of muscle fiber continuity and the occurrence of bloody fluid accumulation can be observed using ultrasound with the patient in the prone position; however, some cases may have normal ultrasound findings in this conventional position. We report a case of a middle-aged man with tennis leg. Ultrasound examination had normal findings during the first two attempts. During the third attempt, with the patient's calf muscles examined in an unconventional knee flexed position, sonographic findings resembling tennis leg were detected. Case presentation A 60-year-old man in good health visited our rehabilitation clinic complaining of left calf muscle pain. On suspicion of a ruptured left medial head gastrocnemius muscle, a soft tissue ultrasound examination was performed. An ultrasound examination revealed symmetrical findings of bilateral calf muscles without evidence of muscle rupture. A roentgenogram of the left lower limb did not reveal any bony lesions. An ultrasound examination one week later also revealed negative sonographic findings. However, he still complained of persistent pain in his left calf area. A different ultrasound examination approach was then performed with the patient lying in the supine position with his knee flexed at 90 degrees. The transducer was then placed pointing upwards to examine the muscles and well-defined anechoic fluid collections with areas of hypoechoic surroundings were observed. Conclusion For patients suffering from calf muscle area pain and suspicion of tennis leg, a soft tissue ultrasound is a simple tool to confirm the diagnosis. However, in the case of negative sonographic findings, we recommend trying a different positional approach to examine the calf muscles by ultrasound before the diagnosis of tennis leg can

  2. A novel approach to sonographic examination in a patient with a calf muscle tear: a case report.

    Science.gov (United States)

    Chen, Carl Pc; Tang, Simon Ft; Hsu, Chih-Chin; Chen, Ruo Li; Hsu, Rex Ch; Wu, Chin-Wen; Chen, Max Jl

    2009-06-25

    Rupture of the distal musculotendinous junction of the medial head of the gastrocnemius, also known as "tennis leg", can be readily examined using a soft tissue ultrasound. Loss of muscle fiber continuity and the occurrence of bloody fluid accumulation can be observed using ultrasound with the patient in the prone position; however, some cases may have normal ultrasound findings in this conventional position. We report a case of a middle-aged man with tennis leg. Ultrasound examination had normal findings during the first two attempts. During the third attempt, with the patient's calf muscles examined in an unconventional knee flexed position, sonographic findings resembling tennis leg were detected. A 60-year-old man in good health visited our rehabilitation clinic complaining of left calf muscle pain. On suspicion of a ruptured left medial head gastrocnemius muscle, a soft tissue ultrasound examination was performed. An ultrasound examination revealed symmetrical findings of bilateral calf muscles without evidence of muscle rupture. A roentgenogram of the left lower limb did not reveal any bony lesions. An ultrasound examination one week later also revealed negative sonographic findings. However, he still complained of persistent pain in his left calf area. A different ultrasound examination approach was then performed with the patient lying in the supine position with his knee flexed at 90 degrees. The transducer was then placed pointing upwards to examine the muscles and well-defined anechoic fluid collections with areas of hypoechoic surroundings were observed. For patients suffering from calf muscle area pain and suspicion of tennis leg, a soft tissue ultrasound is a simple tool to confirm the diagnosis. However, in the case of negative sonographic findings, we recommend trying a different positional approach to examine the calf muscles by ultrasound before the diagnosis of tennis leg can be ruled out.

  3. Mitochondrial dysfunction in calf muscles of patients with combined peripheral arterial disease and diabetes type 2

    DEFF Research Database (Denmark)

    Lindegaard Pedersen, Brian; Bækgaard, Niels; Quistorff, Bjørn

    2017-01-01

    BACKGROUND: This study elucidate the effects on muscle mitochondrial function in patients suffering from combined peripheral arterial disease (PAD) and type 2 diabetes (T2D) and the relation to patient symptoms and treatment. METHODS: Near Infra Red Spectroscopy (NIRS) calf muscle exercise tests...... were conducted on Forty subjects, 15 (PAD), 15 (PAD+T2D) and 10 healthy age matched controls (CTRL) recruited from the vascular outpatient clinic at Gentofte County Hospital, Denmark. Calf muscle biopsies (~ 80 mg) (Gastrocnemius and Anterior tibial muscles) were sampled and mitochondrial function...... group. This was confirmed by a ~30% reduction in oxygen consumption in the muscle biopsy tests for the PAD+T2D compared to the PAD group (P

  4. Pseudohypertrophy of the calf muscles in a patient with diabetic neuropathy: a case report

    International Nuclear Information System (INIS)

    Lee, Eun Jin; Lee, Young Hwan; Jung, Kyung Jae; Park, Young Chan; Kim, Ho Kyun; Kim, Ok Dong

    2007-01-01

    Partial or complete loss of innervation of skeletal muscle leads to muscle weakness and atrophic changes, resulting in decreased muscle volume with fatty replacement. Rarely, enlargement of the affected muscle may occur, related to two processes: true hypertrophy and pseudohypertrophy. We report CT and MR findings of the pseudohypertrophy of calf muscles, especially the soleus and gastrocnemius muscles, in a patient with diabetic neuropathy that showed increased muscle volume with diffuse fatty replacement and the presence of scanty muscle fibers

  5. Pseudohypertrophy of the calf muscles in a patient with diabetic neuropathy: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Jin; Lee, Young Hwan; Jung, Kyung Jae; Park, Young Chan; Kim, Ho Kyun; Kim, Ok Dong [School of Medicine, Catholic University of Daegu, Daegu (Korea, Republic of)

    2007-09-15

    Partial or complete loss of innervation of skeletal muscle leads to muscle weakness and atrophic changes, resulting in decreased muscle volume with fatty replacement. Rarely, enlargement of the affected muscle may occur, related to two processes: true hypertrophy and pseudohypertrophy. We report CT and MR findings of the pseudohypertrophy of calf muscles, especially the soleus and gastrocnemius muscles, in a patient with diabetic neuropathy that showed increased muscle volume with diffuse fatty replacement and the presence of scanty muscle fibers.

  6. Ultrasonographic evaluation of the calf muscle mass and architecture in elderly patients with and without sarcopenia.

    Science.gov (United States)

    Kuyumcu, Mehmet Emin; Halil, Meltem; Kara, Özgür; Çuni, Bledjan; Çağlayan, Gökhan; Güven, Serdar; Yeşil, Yusuf; Arık, Güneş; Yavuz, Burcu Balam; Cankurtaran, Mustafa; Özçakar, Levent

    2016-01-01

    To sonographically assess the muscle mass and architecture of sarcopenic elderly subjects, and to explore the utility of ultrasound (US) measurements in predicting sarcopenia. One hundred elderly subjects were enrolled in this cross-sectional study. Mean age value of our study population was 73.08±6.18years. The diagnosis of sarcopenia was confirmed by measuring fat-free mass index (using bioelectrical impedance analysis) and handgrip strength. Calf circumference was measured and US evaluations comprised bilateral gastrocnemius muscle (MG) thickness, fascicle length and pennate angles; subcutaneous fat and dermis thicknesses in the calf. Bilateral muscle thickness and fascicle length values were significantly lower in patients with sarcopenia (both psarcopenia (all values>76.92%). Gastrocnemius muscle thickness and fascicle length values are lower in sarcopenic elderly and these two parameters can serve as alternative measurements for predicting/quantifying sarcopenia. Calf circumference measurements alone may not be appropriate for assessing sarcopenia. Instead, US imaging can conveniently be used to evaluate different compartments of the musculoskelal system in (sarcopenic) elderly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Local and Systemic Changes in Pain Sensitivity After 4 Weeks of Calf Muscle Stretching in a Nonpainful Population

    DEFF Research Database (Denmark)

    Bartholdy, Cecilie; Zangger, Graziella; Hansen, Lisbeth

    2016-01-01

    BACKGROUND: Stretching is often used in clinical practice for a variety of purposes, including pain therapy. The possible mechanism behind the effect of stretching remains to be clarified. AIM: To investigate whether 4 weeks of unilateral stretching of the calf muscles would affect local...... and central pain sensitivity. METHOD: This study was a randomized assessor-blinded clinical study. Healthy participants (age 18 to 40) were included and randomized. Participants in the intervention group were instructed to perform 2 stretching exercises targeting the calf muscles; 3 times 30 seconds, 7 days...... a week for 4 weeks on the dominant leg. Participants in the control group were instructed not to do any stretching for 4 weeks. Pressure pain threshold (PPT) and temporal summation (TS) of pressure pain were measured on the stretched calf, the contra-lateral calf, and contra-lateral lower arm using...

  8. Muscular Calf Injuries in Runners.

    Science.gov (United States)

    Fields, Karl B; Rigby, Michael D

    2016-01-01

    Calf pain is a common complaint among runners of all ages but is most frequent in masters athletes. This article focuses on injuries to the triceps surae or true 'calf muscles.' The most common calf injury is a tear of the medial gastrocnemius muscle (Tennis Leg) but other structures including the lateral gastrocnemius, plantaris and soleus also may be the cause of muscular pain. This article looks at the presentation, evaluation, and treatment of these injuries. We also highlight some examples of musculoskeletal ultrasound which is a valuable tool for rapid diagnosis of the cause and extent of injury.

  9. Effects of exercise training on calf muscle oxygen extraction and blood flow in patients with peripheral artery disease.

    Science.gov (United States)

    Baker, Wesley B; Li, Zhe; Schenkel, Steven S; Chandra, Malavika; Busch, David R; Englund, Erin K; Schmitz, Kathryn H; Yodh, Arjun G; Floyd, Thomas F; Mohler, Emile R

    2017-12-01

    We employed near-infrared optical techniques, diffuse correlation spectroscopy (DCS), and frequency-domain near-infrared spectroscopy (FD-NIRS) to test the hypothesis that supervised exercise training increases skeletal muscle microvascular blood flow and oxygen extraction in patients with peripheral artery disease (PAD) who experience claudication. PAD patients ( n = 64) were randomly assigned to exercise and control groups. Patients in the exercise group received 3 mo of supervised exercise training. Calf muscle blood flow and oxygen extraction were optically monitored before, during, and after performance of a graded treadmill protocol at baseline and at 3 mo in both groups. Additionally, measurements of the ankle-brachial index (ABI) and peak walking time (PWT) to maximal claudication were made during each patient visit. Supervised exercise training was found to increase the maximal calf muscle blood flow and oxygen extraction levels during treadmill exercise by 29% (13%, 50%) and 8% (1%, 12%), respectively [ P group population were significantly higher than corresponding changes in the control group ( P training also increased PWT by 49% (18%, 101%) ( P = 0.01). However, within statistical error, the ABI, resting calf muscle blood flow and oxygen extraction, and the recovery half-time for hemoglobin\\myoglobin desaturation following cessation of maximal exercise were not altered by exercise training. The concurrent monitoring of both blood flow and oxygen extraction with the hybrid DCS/FD-NIRS instrument revealed enhanced muscle oxidative metabolism during physical activity from exercise training, which could be an underlying mechanism for the observed improvement in PWT. NEW & NOTEWORTHY We report on noninvasive optical measurements of skeletal muscle blood flow and oxygen extraction dynamics before/during/after treadmill exercise in peripheral artery disease patients who experience claudication. The measurements tracked the effects of a 3-mo supervised

  10. Sport socks do not enhance calf muscle pump function but inelastic wraps do.

    Science.gov (United States)

    Partsch, H; Mosti, G

    2014-12-01

    Aim of the study was to measure the effect of elastic and inelastic compression on calf muscle pump function in healthy male athletes. This was an experimental study which included 21 healthy male athletes. The ejection fraction (EF) of the venous calf pump was measured comparing the effects of a variety of compression materials: 1) sport compression stockings; 2) light zinc paste bandages; 3) sport compression stockings with additional Velcro® wraps over the calf. The influence of sport stocking and wraps on the venous calibre at the largest calf circumference in the lying and standing position was investigated using MRI. Inelastic compression exerting a median pressure in the standing position of 37.5 mmHg (zinc paste) and 48 mmHg (loosely applied straps over a sport stocking) achieved a significant increase of EF up to 100%. Sport stockings alone with a standing pressure of 19-24 mmHg did not show a significant change of EF. MRI demonstrated some venous narrowing in the lying but not in the standing position. By wrapping inelastic straps over the stocking an emptying of the veins in the lying and a considerable narrowing in the standing position could be observed. Venous calf pump function in athletes is not influenced by elastic sport stockings, but inelastic wraps either alone or applied over sport stockings lead to a significant enhancement.

  11. Bilateral idiopathic calf muscle hypertrophy: an exceptional cause of unsightly leg curvature.

    Science.gov (United States)

    Herlin, C; Chaput, B; Rivier, F; Doucet, J C; Bigorre, M; Captier, G

    2015-04-01

    The authors present the management of a young female patient who presented with longstanding bilateral calf muscle hypertrophy, with no known cause. Taking into account the patient's wishes and the fact that the hypertrophy was mainly located in the posteromedial compartment, we chose to carry out a subtotal bilateral resection of medial gastrocnemius muscles. This procedure was performed with an harmonic scalpel, permitting a excellent cosmetic result while avoiding complications or functional impairment. After a reviewing of the commonly used techniques, the authors discuss the chosen surgical approach taking into account its clinical particularity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function.

    Science.gov (United States)

    Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N

    2015-07-01

    The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery-vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

  13. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Søndergård, Stine D; Dela, Flemming; Helge, Jørn W

    2016-01-01

    Actovegin, a deproteinized haemodialysate of calf blood, is suggested to have ergogenic properties, but this potential effect has never been investigated in human skeletal muscle. To investigate this purported ergogenic effect, we measured the mitochondrial respiratory capacity in permeabilized h...

  14. Quantitative assessment of calf circumference in Duchenne muscular dystrophy patients

    NARCIS (Netherlands)

    Beenakker, EAC; de Vries, Joeke; Fock, JM; van Tol, M; Brouwer, OF; Maurits, NM; van der Hoeven, JH

    2002-01-01

    Duchenne muscular dystrophy is clinically characterised by progressive muscle weakness and a gradual increase in the size of some affected muscles, especially calf muscles. The extent of calf enlargement is usually determined by subjective visual assessment. The purpose of this study was to

  15. Spontaneous calf haematoma: case report.

    Science.gov (United States)

    Zubaidah, N H; Liew, N C

    2014-02-01

    Spontaneous calf haematoma is a rare condition and few case reports have been published in the English literature. Common conditions like deep vein thrombosis and traumatic gastrocnemius muscle tear need to be considered when a patient presents with unilateral calf swelling and tenderness. Ultrasound and Magnetic Resonance Imaging are essential for confirmation of diagnosis. The purpose of this paper is to report on a rare case of spontaneous calf hematoma and its diagnosis and management.

  16. Ankle-foot orthoses that restrict dorsiflexion improve walking in polio survivors with calf muscle weakness

    NARCIS (Netherlands)

    Ploeger, Hilde E.; Bus, Sicco A.; Brehm, Merel-Anne; Nollet, Frans

    2014-01-01

    In polio survivors with calf muscle weakness, dorsiflexion-restricting ankle-foot orthoses (DR-AFOs) aim to improve gait in order to reduce walking-related problems such as instability or increased energy cost. However, evidence on the efficacy of DR-AFOs in polio survivors is lacking. We

  17. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin.

    Directory of Open Access Journals (Sweden)

    Wolfgang Nachbauer

    Full Text Available Friedreich ataxia (FRDA is caused by a GAA repeat expansion in the FXN gene leading to reduced expression of the mitochondrial protein frataxin. Recombinant human erythropoietin (rhuEPO is suggested to increase frataxin levels, alter mitochondrial function and improve clinical scores in FRDA patients. Aim of the present pilot study was to investigate mitochondrial metabolism of skeletal muscle tissue in FRDA patients and examine effects of rhuEPO administration by phosphorus 31 magnetic resonance spectroscopy (31P MRS. Seven genetically confirmed FRDA patients underwent 31P MRS of the calf muscles using a rest-exercise-recovery protocol before and after receiving 3000 IU of rhuEPO for eight weeks. FRDA patients showed more rapid phosphocreatine (PCr depletion and increased accumulation of inorganic phosphate (Pi during incremental exercise as compared to controls. After maximal exhaustive exercise prolonged regeneration of PCR and slowed decline in Pi can be seen in FRDA. PCr regeneration as hallmark of mitochondrial ATP production revealed correlation to activity of complex II/III of the respiratory chain and to demographic values. PCr and Pi kinetics were not influenced by rhuEPO administration. Our results confirm mitochondrial dysfunction and exercise intolerance due to impaired oxidative phosphorylation in skeletal muscle tissue of FRDA patients. MRS did not show improved mitochondrial bioenergetics after eight weeks of rhuEPO exposition in skeletal muscle tissue of FRDA patients.EU Clinical Trials Register2008-000040-13.

  18. Phosphorus Spectroscopy of Calf Muscles before and after Exercise

    International Nuclear Information System (INIS)

    Wcisło, Bożena; Cichocka, Monika; Urbanik, Andrzej

    2014-01-01

    The aim of this study was to determine 31 PMRS reference spectrum and intracellular pH of calf muscles in the dominant limb of healthy, young, male volunteers before and after intense physical effort. Examinations were performed with a 1.5 T MR system. FID CSI (Free Induction Decay Chemical Shift Imaging) sequence was used with the following parameters: TR=4000 ms, FA=90°, NEX=2 and VOI (Volume Of Interest)=8×8×8 cm 3 (512 cm 3 ) involving in calf muscles. Raw data was preprocessed using SAGE (GE) software. Authors analyzed relative concentrations ratios of selected metabolites: PCr/ATP and PCr/P i . Intracellular pH and relative concentrations ratios of each metabolite (P i , PCr, α-ATP, β-ATP, γ-ATP, ATP) were also calculated relative to the sum of concentrations of all metabolites. Results were compared with a t-test. Based on statistical analysis of results significant differences (p<0.05) were demonstrated for some of the studied metabolites and for intracellular pH. Increase in PCr concentration in relation to the sum of concentrations of all metabolites and to ATP concentration was noted. However, β-ATP, α-ATP and ATP concentrations relative to the sum of concentrations of all metabolites become reduced. Decrease in pH after physical effort was demonstrated. There were no significant differences (p<0.05) in concentrations of remaining metabolites before and after exercise. Increase in PCr concentration relative to P i concentration and decrease of P i and γ-ATP concentration relative to the sum of concentrations of all metabolites were demonstrated. The 31 PMRS method enables assessment of concentrations of phosphorus-containing metabolites as well as intercellular pH before and after exercise. This method is still under examination, but it has already shown promise as a diagnostic tool for the future

  19. CALF BLOOD-FLOW AND POSTURE - DOPPLER ULTRASOUND MEASUREMENTS DURING AND AFTER EXERCISE

    NARCIS (Netherlands)

    VANLEEUWEN, BE; BARENDSEN, GJ; LUBBERS, J; DEPATER, L

    To investigate the joint effects of body posture and calf muscle pump, the calf blood flow of eight healthy volunteers was measured with pulsed Doppler equipment during and after 3 min of rhythmic exercise on a calf ergometer in the supine, sitting, and standing postures. Muscle contractions

  20. A case of polyarteritis nodosa limited to the right calf muscles, fascia, and skin: a case report

    Directory of Open Access Journals (Sweden)

    Brett Francesca

    2011-09-01

    Full Text Available Abstract Introduction Limited polyarteritis nodosa is a rare benign disease that usually responds well to systemic corticosteroid treatment. We report a case limited to calf muscles, fascia, and skin treated with local corticosteroid therapy directed to the affected areas by ultrasound guidance. Case presentation A 36-year-old Caucasian woman presented with a 10-month history of progressive right calf pain and swelling, which were unresponsive to treatment with non-steroidal anti-inflammatory drugs and physiotherapy. An examination revealed a swollen tender right calf with indurated overlying skin. Laboratory investigations showed an erythrocyte sedimentation rate of 24 mm/hour and a C-reactive protein of 15 mg/dl. Full blood count, renal profile, and creatinine kinase level were normal. A full autoantibody screen and hepatitis B and C serology results were negative. A chest X-ray was unremarkable. Magnetic resonance imaging of the right leg revealed increased signal intensity in T2-weighted images and this was suggestive of extensive inflammatory changes of the gastrocnemius muscle and, to a lesser extent, the soleus muscle. There were marked inflammatory changes throughout the gastrocnemius muscle and the subcutaneous tissue circumferentially around the right lower leg. A biopsy of affected skin, muscle, and fascia showed histopathological features consistent with polyarteritis nodosa, including small-vessel vasculitis with fibrinoid changes in the vessel wall and intense perivascular and focal mural chronic inflammatory changes. Our patient declined treatment with oral steroids. She received a course of ultrasound-guided injections of steroid (Depo-Medrone, methylprednisolone in the involved muscle area and commenced maintenance azathioprine with a good response. Conclusions Limited polyarteritis nodosa is rare and affects middle-aged individuals. In most cases, treatment with moderate- to high-dose corticosteroids gives symptomatic relief

  1. The long-term clinical and MRI results following eccentric calf muscle training in chronic Achilles tendinosis

    International Nuclear Information System (INIS)

    Gaerdin, Anna; Shalabi, Adel; Movin, Tomas; Svensson, Leif

    2010-01-01

    To evaluate the long-term results following eccentric calf-muscle training in patients with chronic Achilles tendinopathy. A total of 24 patients with chronic Achilles tendinopathy were included in a study evaluating MRI findings and clinical symptoms before and after 3 months of daily eccentric calf-muscle strength training. Median duration of symptoms was 18 months (range 6-120). Four of the patients did not perform the prescribed treatment for different reasons and were followed for 14 months. The resulting 20 treated patients completed 4.2-year (range 29-58 months) follow up. Tendon volume was evaluated by using 3D seed growing technique and signal abnormalities were visually semi-quantitatively graded. Level of pain and performance was categorized using a questionnaire completed by the patient. In the symptomatic treated patients, median intensity level of pain decreased from moderate/severe at time of inclusion to mild at follow up (p 3 (SD 2.0) at time of inclusion and 6.4 cm 3 (SD 2.0) at follow up (p = 0.18). The four symptomatic non-treated tendons did not improve regarding pain, performance, intratendinous signal or tendon volume. We found decreased pain, improved performance and decreased intratendinous signal both compared to index examination and immediately after the 3 months training regimen in a 4.2-year clinical and MRI follow up, in a group of patients treated with heavy loaded eccentric calf-muscle training for chronic Achilles tendinopathy. The improvements were greater at 4.2-year follow up, despite no further active treatment, than immediately after the treatment. This may indicate a good long-term prognosis for Achilles tendinosis patients. (orig.)

  2. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

    Directory of Open Access Journals (Sweden)

    Guido Gambara

    Full Text Available Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus. Adult C57Bl/N6 male mice (n = 5 flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013, a sex and age-matched cohort were housed in standard vivarium cages (n = 5, or in a replicate flight habitat as ground control (n = 5. Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response. Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6 were further validated by quantitative real-time PCR (qRT-PCR. Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.

  3. Recurrent painful calf swelling associated with gout.

    Science.gov (United States)

    Kovarsky, J; Young, M B

    1978-01-01

    A 30-year-old man had a recurrent painful calf swelling associated with gout that mimicked thrombophlebitis and possibly muscle tear. This painful calf swelling occurred in the absence of a subjective history of arthritis of the knee. A constellation of clinical signs was highly suggestive that gout was the cause of the painful calf swellings. Patients with similar conditions, after careful exclusion of thrombophlebitis, might be spared unnecessary and potentially dangerous anticoagulation or surgical intervention by early diagnosis of gout.

  4. Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise

    DEFF Research Database (Denmark)

    Green, S; Langberg, Henning; Skovgaard, D

    2000-01-01

    little information on the response of [K+]I to exercise in human skeletal muscle. Five young healthy subjects performed plantar flexion exercise for four 5 min periods at increasing power outputs ( approximately 1-6 W) with 10 min intervening recovery periods, as well as for two 5 min periods...

  5. Calf blood flow at rest evaluated by thermal measurement with tissue temperature and heat flow and 133Xe clearance

    International Nuclear Information System (INIS)

    Tamura, Toshiyo; Togawa, Tatsuo; Fukuoka, Masakazu; Kawakami, Kenji.

    1982-01-01

    The regional blood flow in the calf was determined simultaneously by thermal measurement and by 133 Xe clearance technique. Calf blood flow (Ft) by thermal measurement was accounted for by the equation of the form Ft=(CdT*d+Ho-Mb)/rho sub(b)c su b(D) (Ta-Td), where Cd is thermal capacitance of the calf compartment, T*d is the change of calf tissue temperature, Ta is arterila blood temperature, Td is calf tissue temperature, Ho is the heat dissipation from the compartment to the environment, Mb is estimated metabolism of the calf tissue and rho sub(b)c sub(b) is the product of density and specific heat of blood. The healthy men were chosen for the experiments. Total calf blood flow was 2.53+-1.31ml/(min-100ml calf), and muscle blood flow was 2.63+-1.69ml/(min- 100ml muscle) and skin blood flow 7.19+-3.83ml/(min-100ml skin) measured by 133 Xe clearance. On the basis of the results, an estimate has been made of the proportions of the calf volume which can be ascribed to skin and muscle respectively. Estimated muscle and skin blood flow were correlated with total calf blood flow(r=0.98). (author)

  6. Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy.

    Science.gov (United States)

    Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele

    2012-08-01

    To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Calf muscle volume estimates: Implications for Botulinum toxin treatment?

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Sonne-Holm, Stig; Thomsen, Carsten

    2007-01-01

    An optimal botulinum toxin dose may be related to the volume of the targeted muscle. We investigated the suitability of using ultrasound and anthropometry to estimate gastrocnemius and soleus muscle volume. Gastrocnemius and soleus muscle thickness was measured in 11 cadaveric human legs, using...

  8. MRI assessment of calf injuries in Australian Football League players: findings that influence return to play

    International Nuclear Information System (INIS)

    Waterworth, George; Wein, Sara; Rotstein, Andrew H.; Gorelik, Alexandra

    2017-01-01

    Calf muscle strains have become increasingly prevalent in recent seasons of the Australian Football League (AFL) and represent a significant cause of time lost from competition. The purpose of this study was to examine the association between MRI features of calf muscle strains and games missed and to thereby identify parameters that are of prognostic value. A retrospective analysis of MRI scans of AFL players with calf strains referred to a musculoskeletal radiology clinic over a 5-year period (2008-2012) was performed. The muscle(s) and muscle component affected, the site and size of strain, and the presence of an intramuscular tendon tear or intermuscular fluid were recorded. These data were cross-referenced with whether a player missed at least one game. Imaging features of prognostic value were thus identified. Sixty-three athletes had MRI scans for calf muscle strains. Soleus strains were more common than strains of other muscles. Players with soleus strains were more likely to miss at least one game if they had multiple muscle involvement (p = 0.017), musculotendinous junction strains (p = 0.046), and deep strains (p = 0.036). In a combined analysis of gastrocnemius and soleus strains, intramuscular tendon tears were observed in a significantly greater proportion of players who missed games (p = 0.010). Amongst AFL players with calf injuries, there is an association between missing at least one game and multiple muscle involvement, musculotendinous junction strains, deep strain location, and intramuscular tendon tears. In this setting, MRI may therefore provide prognostic information to help guide return-to-play decisions. (orig.)

  9. MRI assessment of calf injuries in Australian Football League players: findings that influence return to play

    Energy Technology Data Exchange (ETDEWEB)

    Waterworth, George; Wein, Sara; Rotstein, Andrew H. [Victoria House Medical Imaging, Prahran, Victoria (Australia); Gorelik, Alexandra [Royal Melbourne Hospital, University of Melbourne, Melbourne Epicentre, Parkville (Australia)

    2017-03-15

    Calf muscle strains have become increasingly prevalent in recent seasons of the Australian Football League (AFL) and represent a significant cause of time lost from competition. The purpose of this study was to examine the association between MRI features of calf muscle strains and games missed and to thereby identify parameters that are of prognostic value. A retrospective analysis of MRI scans of AFL players with calf strains referred to a musculoskeletal radiology clinic over a 5-year period (2008-2012) was performed. The muscle(s) and muscle component affected, the site and size of strain, and the presence of an intramuscular tendon tear or intermuscular fluid were recorded. These data were cross-referenced with whether a player missed at least one game. Imaging features of prognostic value were thus identified. Sixty-three athletes had MRI scans for calf muscle strains. Soleus strains were more common than strains of other muscles. Players with soleus strains were more likely to miss at least one game if they had multiple muscle involvement (p = 0.017), musculotendinous junction strains (p = 0.046), and deep strains (p = 0.036). In a combined analysis of gastrocnemius and soleus strains, intramuscular tendon tears were observed in a significantly greater proportion of players who missed games (p = 0.010). Amongst AFL players with calf injuries, there is an association between missing at least one game and multiple muscle involvement, musculotendinous junction strains, deep strain location, and intramuscular tendon tears. In this setting, MRI may therefore provide prognostic information to help guide return-to-play decisions. (orig.)

  10. MRI assessment of calf injuries in Australian Football League players: findings that influence return to play.

    Science.gov (United States)

    Waterworth, George; Wein, Sara; Gorelik, Alexandra; Rotstein, Andrew H

    2017-03-01

    Calf muscle strains have become increasingly prevalent in recent seasons of the Australian Football League (AFL) and represent a significant cause of time lost from competition. The purpose of this study was to examine the association between MRI features of calf muscle strains and games missed and to thereby identify parameters that are of prognostic value. A retrospective analysis of MRI scans of AFL players with calf strains referred to a musculoskeletal radiology clinic over a 5-year period (2008-2012) was performed. The muscle(s) and muscle component affected, the site and size of strain, and the presence of an intramuscular tendon tear or intermuscular fluid were recorded. These data were cross-referenced with whether a player missed at least one game. Imaging features of prognostic value were thus identified. Sixty-three athletes had MRI scans for calf muscle strains. Soleus strains were more common than strains of other muscles. Players with soleus strains were more likely to miss at least one game if they had multiple muscle involvement (p = 0.017), musculotendinous junction strains (p = 0.046), and deep strains (p = 0.036). In a combined analysis of gastrocnemius and soleus strains, intramuscular tendon tears were observed in a significantly greater proportion of players who missed games (p = 0.010). Amongst AFL players with calf injuries, there is an association between missing at least one game and multiple muscle involvement, musculotendinous junction strains, deep strain location, and intramuscular tendon tears. In this setting, MRI may therefore provide prognostic information to help guide return-to-play decisions.

  11. Effects of isokinetic calf muscle exercise program on muscle strength and venous function in patients with chronic venous insufficiency.

    Science.gov (United States)

    Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B

    2018-05-01

    Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.

  12. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Pfirrmann, Christian W.A.; Buck, Florian M. [University Hospital Balgrist, Radiology, Zurich (Switzerland); Espinosa, Norman [University Hospital Balgrist, Department of Orthopedic Surgery, Zurich (Switzerland); Raptis, Dimitri A. [University Hospital Zurich, Clinic of Visceral and Transplant Surgery, Zurich (Switzerland)

    2014-06-15

    To quantify the muscle fat-content (MFC) in phantoms, volunteers and patients with achillodynia using two-point Dixon-based magnetic resonance imaging (2pt-MRI{sub DIXON}) in comparison to MR spectroscopy (MRS) and visual assessment of MFC. Two-point Dixon-based MRI was used to measure the MFC of 15 phantoms containing 0-100 % fat-content and calf muscles in 30 patients (13 women; 57 ± 15 years) with achillodynia and in 20 volunteers (10 women; 30 ± 14 years) at 1.5 T. The accuracy of 2pt-MRI{sub DIXON} in quantification of MFC was assessed in vitro using phantoms and in vivo using MRS as the standard of reference. Fat-fractions derived from 2pt-MRI{sub DIXON} (FF{sub DIXON}) and MRS (FF{sub MRS}) were related to visual assessment of MFC (Goutallier grades 0-4) and Achilles-tendon quality (grade 0-4). Excellent linear correlation was demonstrated for FF{sub DIXON} with phantoms and with FF{sub MRS} in patients (p{sub c} = 0.997/0.995; p < 0.001). FF{sub DIXON} of the gastrocnemius muscle was significantly higher (p = 0.002) in patients (7.0 % ± 4.7 %) compared with volunteers (3.6 % ± 0.7 %), whereas visual-grading showed no difference between both groups (p > 0.05). FF{sub MRS} and FF{sub DIXON} were significantly higher in subjects with (>grade 1) structural damage of the Achilles-tendon (p = 0.01). Two-point Dixon-based MRI allows for accurate quantification of MFC, outperforming visual assessment of calf muscle fat. Structural damage of the Achilles tendon is associated with a significantly higher MFC. (orig.)

  13. Muscle function-dependent sarcopenia and cut-off values of possible predictors in community-dwelling Turkish elderly: calf circumference, midarm muscle circumference and walking speed.

    Science.gov (United States)

    Akın, S; Mucuk, S; Öztürk, A; Mazıcıoğlu, M; Göçer, Ş; Arguvanlı, S; Şafak, E D

    2015-10-01

    The aim of this study was to determine the prevalence of muscle strength-based sarcopenia and to determine possible predictors. This is a cross-sectional population-based study in the community-dwelling Turkish elderly. Anthropometric measurements, namely body height, weight, triceps skin fold (TSF), mid upper arm circumference (MUAC), waist circumference (WC) and calf circumference (CC), were noted. The midarm muscle circumference (MAMC) was calculated by using MUAC and TSF measurement. Sarcopenia was assessed, adjusted for body mass index (BMI) and gender, according to muscle strength. Physical performance was determined by 4 m walking speed (WS; m/s). The receiver operating curve analysis was performed to determine cut-offs of CC, MAMC and 4 m WS. A total of 879 elderly subjects, 50.1% of whom were female, were recruited. The mean handgrip strength (HGS) and s.d. was 24.2 (8.8) kg [17.9 (4.8) female, 30.6 (7.1) male]. The muscle function-dependent sarcopenia was 63.4% (female 73.5%, male 53.2%). The muscle mass-dependent sarcopenia for CC (sarcopenia. An adequate muscle mass may not mean a reliable muscle function. Muscle function may describe sarcopenia better compared with muscle mass. The CC, MAMC and 4 m WS cut-offs may be used to assess sarcopenia in certain age groups.

  14. Clinical and morphological study of calf enlargement following S-1 radiculopathy

    Directory of Open Access Journals (Sweden)

    Osvaldo J. M. Nascimento

    1992-09-01

    Full Text Available Calf enlargement following sciatica is a rare condition. It is reported the case of a 28-year-old woman who complained of repeated episodes of lower back pain radiating into the left buttock and foot. One year after the beginning of her symptoms, she noticed enlargement of her left calf. X-ray studies disclosed L5-S1 disk degeneration. EMG showed muscle denervation with normal motor conduction velocity. Open biopsies of the gastrocnemius muscles were performed. The left gastrocnemius muscle showed hypertrophic type 2 fibers in comparison with the right gastrocnemius. Electron microscopy showed mildly increased number of mitochondria in these fibers. A satisfactory explanation for denervation hypertrophy has yet to be provided.

  15. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine.

    Science.gov (United States)

    Gabr, Refaat E; El-Sharkawy, Abdel-Monem M; Schär, Michael; Weiss, Robert G; Bottomley, Paul A

    2011-07-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans. Using localized phosphorus magnetic resonance spectroscopy, we measured D(PCr) in the calf muscle of 11 adults as a function of direction and diffusion time. The results show that the diffusion of PCr is anisotropic, with significantly higher diffusion along the muscle fibers, and that the diffusion of PCr is restricted to a ∼28-μm pathlength assuming a cylindrical model, with an unbounded diffusion coefficient of ∼0.69 × 10(-3) mm(2)/s. This distance is comparable in size to the myofiber radius. On the basis of prior measures of CK reaction kinetics in human muscle, the expected diffusion distance of PCr during its half-life in the CK reaction is ∼66 μm. This distance is much greater than the average distances between mitochondria and myofibrils. Thus these first measurements of PCr diffusion in human muscle in vivo support the view that PCr diffusion is not a factor limiting high-energy phosphate transport between the mitochondria and the myofibrils in healthy resting myocytes.

  16. Young, healthy subjects can reduce the activity of calf muscles when provided with EMG biofeedback in upright stance

    Directory of Open Access Journals (Sweden)

    Taian M. Vieira

    2016-04-01

    Full Text Available Recent evidence suggests the minimisation of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimising the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimise the level of muscle activation during standing without increasing the excursion of the centre of pressure (CoP. CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from ten healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects’ responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P<0.05 and an increase in tibialis anterior EMG (~10%; P<0.05. Furthermore, CoP mean position significantly shifted backward (~30 mm. In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at

  17. Evaluation of skeletal muscle during calf exercise by 31P MR spectroscopy in patients on statin medications

    Science.gov (United States)

    Buettner, Catherine; Smithline, Howard; Ngo, Long H; Greenman, Robert L.

    2012-01-01

    Introduction Muscle pain is a common side effect of statin medications, however, the cause is poorly understood. Methods We characterized phosphocreatine (PCr) exercise recovery kinetics in 10 patients with hypercholesterolemia before and after a 4 week regimen of statin therapy using 31P magnetic resonance spectroscopy (31P-MRS). 31P spectra were obtained before, during, and following exercise on a calf flexion pedal ergometer. Creatine kinase (CK) serum levels were drawn before and after statin therapy. Results The mean metabolic recovery time constant in subjects increased from 28.1s (SE=6.5s) to 55.4s (SE=7.4s) following statin therapy. The unweighted mean of the pre-post recovery time difference was -27.3s (SE=12.4s); (p-value = 0.02). Pre- and post-therapy CK levels were not significantly different (p-value = 0.50). Discussion Metabolic recovery time in the calf is prolonged in patients following statin use. This suggests that statins impair mitochondrial oxidative function, and 31P –MRS is a potential study model for statin-associated myopathy. PMID:21171098

  18. Calf enlargement associated with neurologic disease: two uncommon cases.

    Science.gov (United States)

    Harwood, S C; Honet, J C

    1988-01-01

    Muscle enlargement and hypertrophy are rare findings in neurogenic lesions. The two in combination have been reported in cases of peripheral nerve lesions, polyneuropathy, and poliomyelitis. True and pseudo muscle hypertrophy are the two possible etiologies, whereas infiltration, stretch, or exercise of the muscle are the causative factors. We report two cases of unilateral calf enlargement, one occurring after surgery for S1 radiculopathy with associated cramping, and the other after poliomyelitis.

  19. Development of Human Muscle Protein Measurement with MRI

    Science.gov (United States)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity

  20. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    Science.gov (United States)

    English, K. L.; Mulavara, A.; Bloomberg, J.; Ploutz-Snyder, LL

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.

  1. Differential diagnosis of calf pain by ultrasonography

    Directory of Open Access Journals (Sweden)

    Luciano Augusto Botter

    2008-03-01

    Full Text Available This paper aims to evaluate the recent and numerous applications of ultrasonography in the differential diagnosis of conditions that affect the popliteal fossa and lower limbs, resulting in calf pain. Popliteal cysts and their ruptures, aneurysms, hematomas, cellulitis, abscesses, soft tissue tumors and other fluid collections are easily identified by this technique. Moreover, post-trauma and inflammatory conditions affecting muscles and tendons, muscle necrosis, deep venous thrombosis and superficial thrombophlebitis are very well demonstrated by the ultrasonographic screening.

  2. Evaluation of skeletal muscle during calf exercise by 31-phosphorus magnetic resonance spectroscopy in patients on statin medications.

    Science.gov (United States)

    Wu, Jim S; Buettner, Catherine; Smithline, Howard; Ngo, Long H; Greenman, Robert L

    2011-01-01

    Muscle pain is a common side effect of statin medications, but the cause is poorly understood. We characterized phosphocreatine (PCr) exercise recovery kinetics in 10 patients with hypercholesterolemia before and after a 4-week regimen of statin therapy using 31-phosphorus magnetic resonance spectroscopy ((31) P-MRS). (31) P spectra were obtained before, during, and after exercise on a calf flexion pedal ergometer. Creatine kinase (CK) serum levels were drawn before and after statin therapy. The mean metabolic recovery time constant in subjects increased from 28.1 s (SE = 6.5 s) to 55.4 s (SE = 7.4 s) after statin therapy. The unweighted mean of the pre/post-recovery time difference was -27.3 s (SE = 12.4 s; P = 0.02). Pre- and post-therapy CK levels were not significantly different (P = 0.50). Metabolic recovery time in the calf is prolonged in patients after statin use. This suggests that statins impair mitochondrial oxidative function, and (31) P MRS is a potential study model for statin-associated myopathy. Copyright © 2010 Wiley Periodicals, Inc.

  3. An exploration of diffusion tensor eigenvector variability within human calf muscles.

    Science.gov (United States)

    Rockel, Conrad; Noseworthy, Michael D

    2016-01-01

    To explore the effect of diffusion tensor imaging (DTI) acquisition parameters on principal and minor eigenvector stability within human lower leg skeletal muscles. Lower leg muscles were evaluated in seven healthy subjects at 3T using an 8-channel transmit/receive coil. Diffusion-encoding was performed with nine signal averages (NSA) using 6, 15, and 25 directions (NDD). Individual DTI volumes were combined into aggregate volumes of 3, 2, and 1 NSA according to number of directions. Tensor eigenvalues (λ1 , λ2 , λ3 ), eigenvectors (ε1 , ε2 , ε3 ), and DTI metrics (fractional anisotropy [FA] and mean diffusivity [MD]) were calculated for each combination of NSA and NDD. Spatial maps of signal-to-noise ratio (SNR), λ3 :λ2 ratio, and zenith angle were also calculated for region of interest (ROI) analysis of vector orientation consistency. ε1 variability was only moderately related to ε2 variability (r = 0.4045). Variation of ε1 was affected by NDD, not NSA (P < 0.0002), while variation of ε2 was affected by NSA, not NDD (P < 0.0003). In terms of tensor shape, vector variability was weakly related to FA (ε1 :r = -0.1854, ε2 : ns), but had a stronger relation to the λ3 :λ2 ratio (ε1 :r = -0.5221, ε2 :r = -0.1771). Vector variability was also weakly related to SNR (ε1 :r = -0.2873, ε2 :r = -0.3483). Zenith angle was found to be strongly associated with variability of ε1 (r = 0.8048) but only weakly with that of ε2 (r = 0.2135). The second eigenvector (ε2 ) displayed higher directional variability relative to ε1 , and was only marginally affected by experimental conditions that impacted ε1 variability. © 2015 Wiley Periodicals, Inc.

  4. Raising the standards of the calf-raise test: a systematic review.

    Science.gov (United States)

    Hébert-Losier, Kim; Newsham-West, Richard J; Schneiders, Anthony G; Sullivan, S John

    2009-11-01

    The calf-raise test is used by clinicians and researchers in sports medicine to assess properties of the calf muscle-tendon unit. The test generally involves repetitive concentric-eccentric muscle action of the plantar-flexors in unipedal stance and is quantified by the number of raises performed. Although the calf-raise test appears to have acceptable reliability and face validity, and is commonly used for medical assessment and rehabilitation of injuries, no universally acceptable test parameters have been published to date. A systematic review of the existing literature was conducted to investigate the consistency as well as universal acceptance of the evaluation purposes, test parameters, outcome measurements and psychometric properties of the calf-raise test. Nine electronic databases were searched during the period May 30th to September 21st 2008. Forty-nine articles met the inclusion criteria and were quality assessed. Information on study characteristics and calf-raise test parameters, as well as quantitative data, were extracted; tabulated; and statistically analysed. The average quality score of the reviewed articles was 70.4+/-12.2% (range 44-90%). Articles provided various test parameters; however, a consensus was not ascertained. Key testing parameters varied, were often unstated, and few studies reported reliability or validity values, including sensitivity and specificity. No definitive normative values could be established and the utility of the test in subjects with pathologies remained unclear. Although adapted for use in several disciplines and traditionally recommended for clinical assessment, there is no uniform description of the calf-raise test in the literature. Further investigation is recommended to ensure consistent use and interpretation of the test by researchers and clinicians.

  5. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains

    Directory of Open Access Journals (Sweden)

    John Orchard

    2010-09-01

    Full Text Available John Orchard1, Patrick Farhart2, Alex Kountouris3, Trefor James3, Marc Portus31School of Public Health, University of Sydney, Australia; 2Punjab Kings XI team, Indian Premier League, India; 3Cricket Australia, Melbourne, AustraliaObjective: To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains.Methods: This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998–1999 to 2008–2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI] were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture.Results: Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4–7.1. Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03–2.1 and quadriceps strain (RR = 2.0; 95% CI: 1.1–3.5 were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4–1.1. Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group.Conclusion: Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a

  6. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    Science.gov (United States)

    Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter

    2013-01-01

    Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  7. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse

    Directory of Open Access Journals (Sweden)

    Michele Salanova

    2013-01-01

    Full Text Available Activity-induced nitric oxide (NO imbalance and “nitrosative stress” are proposed mechanisms of disrupted Ca2+ homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study without and with exercise as countermeasure in order to assess (i the negative effects of chronic muscle disuse by nitrosative stress, (ii to test for possible attenuation by exercise countermeasure in bed rest and (iii to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre and at end (End from a bed rest disuse control group (CTR, n=9 and two bed rest resistive exercise groups either without (RE, n=7 or with superimposed vibration stimuli (RVE, n=7. At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, –SERCA1 and –PMCA and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  8. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities.

    Science.gov (United States)

    Takamura, Toshinari; Kita, Yuki; Nakagen, Masatoshi; Sakurai, Masaru; Isobe, Yuki; Takeshita, Yumie; Kawai, Kohzo; Urabe, Takeshi; Kaneko, Shuichi

    2017-07-01

    To test the hypothesis that preserved muscle mass is protective against obesity-associated insulin resistance and metabolic abnormalities, we analyzed the relationship of lean body mass and computed tomography-assessed sectional areas of specific skeletal muscles with insulin resistance and metabolic abnormalities in a healthy cohort. A total of 195 subjects without diabetes who had completed a medical examination were included in this study. Various anthropometric indices such as circumferences of the arm, waist, hip, thigh, and calf were measured. Body composition (fat and lean body mass) was determined by bioelectrical impedance analysis. Sectional areas of specific skeletal muscles (iliopsoas, erector spinae, gluteus, femoris, and rectus abdominis muscles) were measured using computed tomography. Fat and lean body mass were significantly correlated with metabolic abnormalities and insulin resistance indices. When adjusted by weight, relationships of fat and lean body mass with metabolic parameters were mirror images of each other. The weight-adjusted lean body mass negatively correlated with systolic and diastolic blood pressures; fasting plasma glucose, HbA1c, alanine aminotransferase, and triglyceride, and insulin levels; and hepatic insulin resistance indices, and positively correlated with HDL-cholesterol levels and muscle insulin sensitivity indices. Compared with weight-adjusted lean body mass, weight-adjusted sectional areas of specific skeletal muscles showed similar, but not as strong, correlations with metabolic parameters. Among anthropometric measures, the calf circumference best reflected lean body mass, and weight-adjusted calf circumference negatively correlated with metabolic abnormalities and insulin resistance indices. Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective

  9. Isolated tear of the tendon to the medial head of gastrocnemius presenting as a painless lump in the calf.

    Science.gov (United States)

    Watura, Christopher; Harries, William

    2009-01-01

    We report on a case of isolated tear of the medial head of gastrocnemius tendon. The patient presented with a painless lump in the right calf and denied any prior history of trauma or strain to the leg. A longitudinal split of the tendon was demonstrated at ultrasound and magnetic resonance imaging (MRI). There were no other abnormalities and the gastrocnemius muscle was normal. There are no reports in the literature of isolated gastrocnemius tendon tear. To date the calf muscle complex injury described in this area is tearing of the medial head of gastrocnemius muscle, sometimes referred to as "tennis leg". We conclude that an isolated tear of the tendon to the medial head of gastrocnemius should be considered in the differential diagnosis of a lump or swelling in the upper medial area of the calf and we recommend ultrasound or MRI as the investigations of choice.

  10. Pace bowlers in cricket with history of lumbar stress fracture have increased risk of lower limb muscle strains, particularly calf strains.

    Science.gov (United States)

    Orchard, John; Farhart, Patrick; Kountouris, Alex; James, Trefor; Portus, Marc

    2010-01-01

    To assess whether a history of lumbar stress fracture in pace bowlers in cricket is a risk factor for lower limb muscle strains. This was a prospective cohort risk factor study, conducted using injury data from contracted first class pace bowlers in Australia during seasons 1998-1999 to 2008-2009 inclusive. There were 205 pace bowlers, 33 of whom suffered a lumbar stress fracture when playing first class cricket. Risk ratios ([RR] with 95% confidence intervals[CI]) were calculated to compare the seasonal incidence of various injuries between bowlers with a prior history of lumbar stress fracture and those with no history of lumbar stress fracture. Risk of calf strain was strongly associated with prior lumbar stress fracture injury history (RR = 4.1; 95% CI: 2.4-7.1). Risks of both hamstring strain (RR = 1.5; 95% CI: 1.03-2.1) and quadriceps strain (RR = 2.0; 95% CI: 1.1-3.5) were somewhat associated with history of lumbar stress fracture. Risk of groin strain was not associated with history of lumbar stress fracture (RR = 0.7; 95% CI: 0.4-1.1). Other injuries showed little association with prior lumbar stress fracture, although knee cartilage injuries were more likely in the non-stress fracture group. Bony hypertrophy associated with lumbar stress fracture healing may lead to subsequent lumbar nerve root impingement, making lower limb muscle strains more likely to occur. Confounders may be responsible for some of the findings. In particular, bowling speed is likely to be independently correlated with risk of lumbar stress fracture and risk of muscle strain. However, as the relationship between lumbar stress fracture history and calf strain was very strong, and that there is a strong theoretical basis for the connection, it is likely that this is a true association.

  11. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  12. Isolated tear of the tendon to the medial head of gastrocnemius presenting as a painless lump in the calf

    OpenAIRE

    Watura, Christopher; Harries, William

    2009-01-01

    We report on a case of isolated tear of the medial head of gastrocnemius tendon. The patient presented with a painless lump in the right calf and denied any prior history of trauma or strain to the leg. A longitudinal split of the tendon was demonstrated at ultrasound and magnetic resonance imaging (MRI). There were no other abnormalities and the gastrocnemius muscle was normal. There are no reports in the literature of isolated gastrocnemius tendon tear. To date the calf muscle complex injur...

  13. Cellular toxicity of calf blood extract on human corneal epithelial cells in vitro.

    Science.gov (United States)

    Park, Young Min; Kim, Su Jin; Han, Young Sang; Lee, Jong Soo

    2015-01-01

    To investigate the biologic effects of the calf blood extract on corneal epithelial cells in vitro. The effects on corneal epithelial cells were evaluated after 1, 4, 12, and 24 h of exposure to various concentrations of calf blood extract (3, 5, 8 and 16%). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was performed to measure levels of cellular metabolic activity. The lactate dehydrogenase (LDH) assay was performed to determine the extent of cellular damage. Cellular morphology was examined using phase-contrast microscopy. The scratch wound assay was performed to quantify the migration of corneal epithelial cells. At the 3 and 5% concentrations of calf blood extract, MTT values were similar to those observed in the control group. However, at a concentration of 8 and 16%, cellular metabolic activity was significantly decreased after 4 h of exposure to calf blood extract. After 12 h of exposure to 8 and 16% concentrations of calf blood extract, LDH activity and cellular morphological damage to the corneal epithelial cells were significantly increased. There was no evidence of cellular migration after 12 h exposure to 5% or higher concentration of calf blood extract because of cellular toxicity. Compared with normal corneal epithelial cells, the cellular activity was decreased, and toxicity was increased after over 12 h of exposure to more than 5% concentration of calf blood extract. Further clinical studies will be necessary to determine the optimal concentration and exposure time for the topical application of eye drops containing calf blood extract.

  14. Mitochondrial Respiration after One Session of Calf Raise Exercise in Patients with Peripheral Vascular Disease and Healthy Older Adults.

    Science.gov (United States)

    van Schaardenburgh, Michel; Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J R

    2016-01-01

    Mitochondria are essential for energy production in the muscle cell and for this they are dependent upon a sufficient supply of oxygen by the circulation. Exercise training has shown to be a potent stimulus for physiological adaptations and mitochondria play a central role. Whether changes in mitochondrial respiration are seen after exercise in patients with a reduced circulation is unknown. The aim of the study was to evaluate the time course and whether one session of calf raise exercise stimulates mitochondrial respiration in the calf muscle of patients with peripheral vascular disease. One group of patients with peripheral vascular disease (n = 11) and one group of healthy older adults (n = 11) were included. Patients performed one session of continuous calf raises followed by 5 extra repetitions after initiation of pain. Healthy older adults performed 100 continuous calf raises. Gastrocnemius muscle biopsies were collected at baseline and 15 minutes, one hour, three hours and 24 hours after one session of calf raise exercise. A multi substrate (octanoylcarnitine, malate, adp, glutamate, succinate, FCCP, rotenone) approach was used to analyze mitochondrial respiration in permeabilized fibers. Mixed-linear model for repeated measures was used for statistical analyses. Patients with peripheral vascular disease have a lower baseline respiration supported by complex I and they increase respiration supported by complex II at one hour post-exercise. Healthy older adults increase respiration supported by electron transfer flavoprotein and complex I at one hour and 24 hours post-exercise. Our results indicate a shift towards mitochondrial respiration supported by complex II as being a pathophysiological component of peripheral vascular disease. Furthermore exercise stimulates mitochondrial respiration already after one session of calf raise exercise in patients with peripheral vascular disease and healthy older adults. ClinicalTrials.gov NCT01842412.

  15. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  16. Adipose tissue and skeletal muscle blood flow during mental stress

    International Nuclear Information System (INIS)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation

  17. Calf Compression Sleeves Change Biomechanics but Not Performance and Physiological Responses in Trail Running

    Directory of Open Access Journals (Sweden)

    Hugo A. Kerhervé

    2017-04-01

    Full Text Available Introduction: The aim of this study was to determine whether calf compression sleeves (CS affects physiological and biomechanical parameters, exercise performance, and perceived sensations of muscle fatigue, pain and soreness during prolonged (~2 h 30 min outdoor trail running.Methods: Fourteen healthy trained males took part in a randomized, cross-over study consisting in two identical 24-km trail running sessions (each including one bout of running at constant rate on moderately flat terrain, and one period of all-out running on hilly terrain wearing either degressive CS (23 ± 2 mmHg or control sleeves (CON, <4 mmHg. Running time, heart rate and muscle oxygenation of the medial gastrocnemius muscle (measured using portable near-infrared spectroscopy were monitored continuously. Muscle functional capabilities (power, stiffness were determined using 20 s of maximal hopping before and after both sessions. Running biomechanics (kinematics, vertical and leg stiffness were determined at 12 km·h−1 at the beginning, during, and at the end of both sessions. Exercise-induced Achilles tendon pain and delayed onset calf muscles soreness (DOMS were assessed using visual analog scales.Results: Muscle oxygenation increased significantly in CS compared to CON at baseline and immediately after exercise (p < 0.05, without any difference in deoxygenation kinetics during the run, and without any significant change in run times. Wearing CS was associated with (i higher aerial time and leg stiffness in running at constant rate, (ii with lower ground contact time, higher leg stiffness, and higher vertical stiffness in all-out running, and (iii with lower ground contact time in hopping. Significant DOMS were induced in both CS and CON (>6 on a 10-cm scale with no difference between conditions. However, Achilles tendon pain was significantly lower after the trial in CS than CON (p < 0.05.Discussion: Calf compression did not modify muscle oxygenation during ~2 h 30

  18. [Melanosis maculosa in a calf].

    Science.gov (United States)

    Camenzind, D; Winzap, B; Hässig, M

    2003-07-01

    This work describes findings in a fattened calf, which were seen in a routine slaughter. The most important findings by the meat inspector were diffuse, black spots between 2 and 70 mm in diameter. This hyperpigmentation was observed on the entire carcass as well as on the outside and inside of all internal organs. Removal of the spinal cord produced black colored liquor. Subsequent microbiological examination of the meat resulted in sterile findings. The muscle pH was 5.8. On histological examination many macrophages containing melanin were found in the lung and liver. Based on these findings the diagnosis of Melanosis maculosa was made.

  19. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  20. Anatomical study of the nerve regeneration after selective neurectomy in the rabbit: clinical application for esthetic calf reduction

    OpenAIRE

    Shin, Kang-Jae; Yoo, Ja-Young; Lee, Ju-Young; Gil, Young-Chun; Kim, Jeong-Nam; Koh, Ki-Seok; Song, Wu-Chul

    2015-01-01

    The purposes of this study were therefore to characterize the degeneration and regeneration of nerves to the calf muscles after selective neurectomy, both macroscopically and microscopically, and to determine the incidence of such regeneration in a rabbit model. Seventy four New Zealand white rabbits were used. Selective neurectomy to the triceps surae muscles was performed, and the muscles were subsequently harvested and weighed 1-4 months postneurectomy. The gastrocnemius muscles were stain...

  1. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    Science.gov (United States)

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a

  2. Serial water changes in human skeletal muscles on exercise studied with proton magnetic resonance spectroscopy and imaging

    International Nuclear Information System (INIS)

    Ogino, Toru; Ikehira, Hiroo; Arimizu, Noboru

    1994-01-01

    In vivo 1 H-magnetic resonance imaging (MRI) enabled us to study the distribution of water in living tissues and to document changes in human skeletal muscles during physical exercise. The purpose of the present study was to determine the total muscle water changes after exercise using water in 1 H-MR spectroscopy and to compare these changes to the signal intensity change on T 2 * -weighted images and/or to the T 2 value change. Seven young male volunteers were positioned in a 1.5 T Philips MR imaging system. They were then asked to dorsiflex their ankle joint against a 2 kg weight once every 2 seconds for 2 minutes. The peak height of water declined according to the clearance curve after exercise in all seven cases with the 1 H-MRS similar to the signal intensity. The increasing rate at peak height of total muscle water exceeded both the signal intensity and the T 2 value because the water peak height on the 1 H-MRS included the extracellular water. In addition, we measured the changes in signal intensity in both calf muscles after walking race exercise. The time intensity curves were used to draw a clearance curve for each muscle group after exercise. It was possible to discern which muscle was used most from the T 2 * -weighted image that was obtained once after exercise. (author)

  3. Unknotting night-time muscle cramp: a survey of patient experience, help-seeking behaviour and perceived treatment effectiveness

    Directory of Open Access Journals (Sweden)

    Blyton Fiona

    2012-03-01

    Full Text Available Abstract Background Night-time calf cramping affects approximately 1 in 3 adults. The aim of this study was to explore the experience of night-time calf cramp; if and where people seek treatment advice; and perceived treatment effectiveness. Methods 80 adults who experienced night-time calf cramp at least once per week were recruited from the Hunter region, NSW, Australia through newspaper, radio and television advertisements. All participants completed a pilot-tested survey about muscle cramp. Quantitative data were analysed with independent-sample t-tests, Chi square tests and Fisher's tests. Qualitative data were transcribed and sorted into categories to identify themes. Results Median recalled age of first night-time calf cramp was 50 years. Most participants recalled being awoken from sleep by cramping, and experiencing cramping of either calf muscle, calf-muscle soreness in the days following cramp and cramping during day-time. Despite current therapies, mean usual pain intensity was 66 mm on a 100 mm visual analogue scale. Participants described their cramps as being 'unbearable', 'unmanageable' and 'cruel'. One participant stated that 'sometimes I just wish I could cut my legs open' and another reported 'getting about 2 h sleep a night due to cramps'. Most participants had sought advice about their night-time calf cramps from a health professional. Participants identified 49 different interventions used to prevent night-time calf cramp. Of all treatment ratings, 68% described the intervention used to prevent cramp as being 'useless' or of 'a little help'. Of 14 participants who provided additional information regarding their use of quinine, eight had a current prescription of quinine for muscle cramp at the time of the survey. None had been asked by their prescribing doctor to stop using quinine. Conclusion Night time calf cramps typically woke sufferers from sleep, affected either leg and caused ongoing pain. Most participants

  4. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  5. Calf Contouring with Endoscopic Fascial Release, Calf Implant, and Structural Fat Grafting

    Directory of Open Access Journals (Sweden)

    Ercan Karacaoglu, MD

    2013-08-01

    Conclusions: A novel endoscopic approach for lower leg contouring is discussed. Endoscopic fasciotomy technique with calf implant and structural fat grafting for improved lower leg aesthetics is a simple, effective, reliable, and predictable technique for calf contouring.

  6. Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers.

    OpenAIRE

    Thompson, C H; Kemp, G J; Sanderson, A L; Dixon, R M; Styles, P; Taylor, D J; Radda, G K

    1996-01-01

    OBJECTIVE: To examine the effect of a relatively low dose of creatine on skeletal muscle metabolism and oxygen supply in a group of training athletes. METHODS: 31P magnetic resonance and near-infrared spectroscopy were used to study calf muscle metabolism in a group of 10 female members of a university swimming team. Studies were performed before and after a six week period of training during which they took either 2 g creatine daily or placebo. Calf muscle metabolism and creatine/choline rat...

  7. Hypoxia Aggravates Inactivity-Related Muscle Wasting

    Directory of Open Access Journals (Sweden)

    Tadej Debevec

    2018-05-01

    Full Text Available Poor musculoskeletal state is commonly observed in numerous clinical populations such as chronic obstructive pulmonary disease (COPD and heart failure patients. It, however, remains unresolved whether systemic hypoxemia, typically associated with such clinical conditions, directly contributes to muscle deterioration. We aimed to experimentally elucidate the effects of systemic environmental hypoxia upon inactivity-related muscle wasting. For this purpose, fourteen healthy, male participants underwent three 21-day long interventions in a randomized, cross-over designed manner: (i bed rest in normoxia (NBR; PiO2 = 133.1 ± 0.3 mmHg, (ii bed rest in normobaric hypoxia (HBR; PiO2 = 90.0 ± 0.4 mmHg and ambulatory confinement in normobaric hypoxia (HAmb; PiO2 = 90.0 ± 0.4 mmHg. Peripheral quantitative computed tomography and vastus lateralis muscle biopsies were performed before and after the interventions to obtain thigh and calf muscle cross-sectional areas and muscle fiber phenotype changes, respectively. A significant reduction of thigh muscle size following NBR (-6.9%, SE 0.8%; P < 0.001 was further aggravated following HBR (-9.7%, SE 1.2%; P = 0.027. Bed rest-induced muscle wasting in the calf was, by contrast, not exacerbated by hypoxic conditions (P = 0.47. Reductions in both thigh (-2.7%, SE 1.1%, P = 0.017 and calf (-3.3%, SE 0.7%, P < 0.001 muscle size were noted following HAmb. A significant and comparable increase in type 2× fiber percentage of the vastus lateralis muscle was noted following both bed rest interventions (NBR = +3.1%, SE 2.6%, HBR = +3.9%, SE 2.7%, P < 0.05. Collectively, these data indicate that hypoxia can exacerbate inactivity-related muscle wasting in healthy active participants and moreover suggest that the combination of both, hypoxemia and lack of activity, as seen in COPD patients, might be particularly harmful for muscle tissue.

  8. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1992-01-01

    changes in human muscle. The aim of this study was to develop a method by which EMG and NMR spectroscopy measurements could be performed simultaneously. All measurements were performed in a whole body 1.5 Tesla NMR scanner. A calf muscle ergometer, designed for use in a whole body NMR scanner, was used....... The subject had the left foot strapped to the ergometer. The anterior tibial EMG was recorded by bipolar surface electrodes. A surface coil was strapped to the anterior tibial muscle next to the EMG electrodes. Simultaneous measurements of surface EMG and surface coil 31P NMR spectroscopy were performed...

  9. Skeletal muscle metaboreflex in patients with chronic renal failure.

    Science.gov (United States)

    Vieira, Paulo J C; Silva, Leonardo R; Maldamer, Vinicius Z; Cipriano, Gerson; Chiappa, Adriana M G; Schuster, Rodrigo; Boni, Victor H F; Grandi, Tatiani; Wolpat, Andiara; Roseguini, Bruno T; Chiappa, Gaspar R

    2017-03-01

    The sympathetic nervous system is affected in patients with chronic renal failure (CRF). This study tested the hypothesis that patients with CRF have an altered skeletal muscle metaboreflex. Twenty patients with CRF and 18 healthy subjects of similar age participated in the study. The muscle metaboreflex was determined based on heart rate (HR), mean arterial pressure, calf blood flow and calf vascular resistance (CVR) in response to handgrip exercise. The control of vascular resistance in the calf muscle mediated by the metaboreflex was estimated by subtracting the area under the curve with circulatory occlusion from that without occlusion. Arterial pressure and HR responses during exercise and recovery were similar in two groups of subjects. In the control group, CVR increased during exercise and remained elevated during circulatory occlusion, whereas no significant change was seen in the patients. Thus, the index of the metaboreflex was 7·82 ± 9·57 in the patients versus16·52 ± 14 units in the controls. The findings demonstrate that patients with CRF have a decreased vascular resistance response in the calf during the handgrip exercise, which suggests that CRF condition attenuates this reflex. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Phosphocreatine recovery overshoot after high intensity exercise in human skeletal muscle is associated with extensive muscle acidification and a significant decrease in phosphorylation potential.

    Science.gov (United States)

    Zoladz, Jerzy A; Korzeniewski, Bernard; Kulinowski, Piotr; Zapart-Bukowska, Justyna; Majerczak, Joanna; Jasiński, Andrzej

    2010-09-01

    The phosphocreatine (PCr) recovery overshoot in skeletal muscle is a transient increase of PCr concentration above the resting level after termination of exercise. In the present study [PCr], [ATP], [P(i)] and pH were measured in calf muscle during rest, during plantar flexion exercise until exhaustion and recovery, using the (31)P NMR spectroscopy. A significantly greater acidification of muscle cells and significantly lower phosphorylation potential (DeltaG (ATP)) at the end of exercise was encountered in the group of subjects that evidenced the [PCr] overshoot as well as [ADP] and [P(i)] undershoots than in the group that did not. We postulate that the role of the PCr overshoot-related transiently elevated [ATP]/[ADP(free)] ratio is to activate different processes (including protein synthesis) that participate in repairing numerous damages of the muscle cells caused by intensive exercise-induced stressing factors, such as extensive muscle acidification, a significant decrease in DeltaG (ATP), an elevated level of reactive oxygen species or mechanical disturbances.

  11. The pH heterogeneity in human calf muscle during neuromuscular electrical stimulation.

    Science.gov (United States)

    Stutzig, Norman; Rzanny, Reinhard; Moll, Kevin; Gussew, Alexander; Reichenbach, Jürgen R; Siebert, Tobias

    2017-06-01

    The aim of the study was to examine pH heterogeneity during fatigue induced by neuromuscular electrical stimulation (NMES) using phosphorus magnetic resonance spectroscopy ( 31 P-MRS). It is hypothesized that three pH components would occur in the 31 P-MRS during fatigue, representing three fiber types. The medial gastrocnemius of eight subjects was stimulated within a 3-Tesla whole body MRI scanner. The maximal force during stimulation (F stim ) was examined by a pressure sensor. Phosphocreatine (PCr), adenosintriphosphate, inorganic phosphate (Pi), and the corresponding pH were estimated by a nonvolume-selective 31 P-MRS using a small loop coil at rest and during fatigue. During fatigue, F stim and PCr decreased to 27% and 33% of their initial levels, respectively. In all cases, the Pi peak increased when NMES was started and split into three different peaks. Based on the single Pi peaks during fatigue, an alkaline (6.76 ± 0.08), a medium (6.40 ± 0.06), and an acidic (6.09 ± 0.05) pH component were observed compared to the pH (7.02 ± 0.02) at rest. It is suggested that NMES is able to induce pH heterogeneity in the medial gastrocnemius, and that the single Pi peaks represent the different muscle fiber types of the skeletal muscle. Magn Reson Med 77:2097-2106, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities

    Directory of Open Access Journals (Sweden)

    Toshinari Takamura

    2017-07-01

    Interpretation: Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective marker against obesity-associated metabolic abnormalities.

  13. The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness.

    Science.gov (United States)

    Morrissey, Dylan; Roskilly, Anna; Twycross-Lewis, Richard; Isinkaye, Tomide; Screen, Hazel; Woledge, Roger; Bader, Dan

    2011-03-01

    To compare in vivo effects of eccentric and concentric calf muscle training on Achilles tendon stiffness, in subjects without tendinopathy. Thirty-eight recreational athletes completed 6 weeks eccentric (6 males, 13 females, 21.6  ±  2.2 years) or concentric training (8 males, 11 females, 21.1  ±  2.0 years). Achilles tendon stiffness, tendon modulus and single-leg jump height were measured before and after intervention. Exercise adherence was recorded using a diary. All data are reported as mean  ±  SD. Groups were matched for height and weight but the eccentric training group were more active at baseline (P Tendon stiffness was higher in the eccentrically trained group at baseline compared to the concentrically trained group (20.9  ±  7.3 N/mm v 13.38  ±  4.66 N/mm; P = 0.001) and decreased significantly after eccentric training (to 17.2 ( ±  5.9) N/mm (P = 0.035)). There was no stiffness change in the concentric group (P = 0.405). Stiffness modulus showed similar changes to stiffness. An inverse correlation was found between initial, and subsequent, reduction in stiffness (r = -0.66). Jump height did not change and no correlation between stiffness change and adherence was observed in either group (r = 0.01). Six weeks of eccentric training can alter Achilles tendon stiffness while a matched concentric programme shows no similar effects. Studies in patients with Achilles tendinopathy are warranted.

  14. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  15. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  16. Comparison of collagen profile and tenderness of muscles from ...

    African Journals Online (AJOL)

    Calving and age at slaughter did not influence cooking loss of semimembranosus (SEM) and infraspinatus (INF) muscles or the shear force of SEM. The ventral part of the INF muscle from single-calf cows exhibited higher shear force values. In both muscles, higher water-soluble and lower acid-soluble collagen contents ...

  17. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  18. Center of Pressure Motion After Calf Vibration Is More Random in Fallers Than Non-fallers: Prospective Study of Older Individuals

    Directory of Open Access Journals (Sweden)

    Wolbert van den Hoorn

    2018-03-01

    Full Text Available Aging is associated with changes in balance control and elderly take longer to adapt to changing sensory conditions, which may increase falls risk. Low amplitude calf muscle vibration stimulates local sensory afferents/receptors and affects sense of upright when applied in stance. It has been used to assess the extent the nervous system relies on calf muscle somatosensory information and to rapidly change/perturb part of the somatosensory information causing balance unsteadiness by addition and removal of the vibratory stimulus. This study assessed the effect of addition and removal of calf vibration on balance control (in the absence of vision in elderly individuals (>65 years, n = 99 who did (n = 41 or did not prospectively report falls (n = 58, and in a group of young individuals (18–25 years, n = 23. Participants stood barefoot and blindfolded on a force plate for 135 s. Vibrators (60 Hz, 1 mm attached bilaterally over the triceps surae muscles were activated twice for 15 s; after 15 and 75 s (45 s for recovery. Balance measures were applied in a windowed (15 s epoch manner to compare center-of-pressure (CoP motion before, during and after removal of calf vibration between groups. In each epoch, CoP motion was quantified using linear measures, and non-linear measures to assess temporal structure of CoP motion [using recurrence quantification analysis (RQA and detrended fluctuation analysis]. Mean CoP displacement during and after vibration did not differ between groups, which suggests that calf proprioception and/or weighting assigned by the nervous system to calf proprioception was similar for the young and both groups of older individuals. Overall, compared to the elderly, CoP motion of young was more predictable and persistent. Balance measures were not different between fallers and non-fallers before and during vibration. However, non-linear aspects of CoP motion of fallers and non-fallers differed after removal of vibration, when

  19. Avaliação do volume de fluxo venoso da bomba sural por ultra-sonografia Doppler durante cinesioterapia ativa e passiva: um estudo piloto Evaluation of venous flow volume of the calf muscle pump by Doppler ultrasound during active and passive kinesiotherapy: a pilot study

    Directory of Open Access Journals (Sweden)

    Carmindo Carlos Cardoso Campos

    2008-12-01

    Full Text Available CONTEXTO: O fisioterapeuta na unidade hospitalar atua sobre os efeitos da hipoatividade ou inatividade do paciente acamado. Na prática diária, a contração do músculo da panturrilha é difundida entre os profissionais de saúde no ambiente hospitalar, principalmente nos períodos de pré e pós-operatório, como forma de diminuir a estase venosa e os riscos de trombose venosa profunda nos membros inferiores. OBJETIVO: Avaliar o volume de fluxo venoso na bomba sural, através de ultra-sonografia doppler, durante cinesioterapia ativa e passiva (flexão plantar do tornozelo. MÉTODOS: A amostra foi constituída por 30 indivíduos escolhidos aleatoriamente e submetidos a ultra-sonografia doppler da veia poplítea direita, visando mensurar o volume de fluxo sanguíneo em quatro momentos: repouso, compressão manual da panturrilha, movimentação passiva e ativa do tornozelo em flexão plantar. Na análise dos resultados, utilizou-se o teste t, sendo utilizado um valor de p BACKGROUND: In-hospital physical therapists work on the effects of hypoactivity or inactivity of bedridden patients. In daily practice, contraction of the calf muscle is commonly performed by health professionals in hospitals, especially in pre- and post-operative periods as a form of reducing venous stasis and risk of deep venous thrombosis in the lower limbs. OBJECTIVE: To assess venous flow volume at the calf muscle pump using color Doppler ultrasound during active and passive kinesiotherapy (ankle plantar flexion. METHODS: The sample consisted of 30 individuals randomly selected and submitted to color Doppler ultrasound of the right popliteal vein, aiming to measure blood flow volume in four periods: rest, manual calf compression, active and passive ankle movement in plantar flexion. The t test was used for statistical analysis, and p < 0.05 was used as an index of statistical significance. RESULTS: The sample consisted of 16 females and 14 males. Means were as follows: age

  20. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  1. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  2. Phosphorylation potential in the dominant leg is lower, and [ADPfree] is higher in calf muscles at rest in endurance athletes than in sprinters and in untrained subjects.

    Science.gov (United States)

    Zoladz, J A; Kulinowski, P; Zapart-Bukowska, J; Grandys, M; Majerczak, J; Korzeniewski, B; Jasiński, A

    2007-12-01

    It has been reported that various types of mammalian muscle fibers differ regarding the content of several metabolites at rest. However, to our knowledge no data have been reported in the literature, concerning the muscle energetic status at rest in high class athletes when considering the dominant and non-dominant leg separately. We have hypothesised that due to higher mechanical loads on the dominant leg in athletes, the metabolic profile in the dominant leg at rest in the calf muscles, characterized by [PCr], [ADP(free)], [AMP(free)] and DeltaG(ATP), will significantly differ among endurance athletes, sprinters and untrained individuals. In this study we determined the DeltaG(ATP) and adenine phosphates concentrations in the dominant and non-dominant legs in untrained subjects (n = 6), sprinters (n = 10) and endurance athletes (n = 7) at rest. The (mean +/- SD) age of the subjects was 23.4 +/- 4.3 years. Muscle metabolites were measured in the calf muscles at rest, by means of (31)P-MRS, using a 4.7 T superconducting magnet (Bruker). When taking into account mean values in the left and right leg, phosphocreatine concentration ([PCr]) and DeltaG(ATP) were significantly lower (p<0.05, Wilcoxon-Mann-Whitney test), and [ADP(free)] was significantly higher (p = 0.04) in endurance athletes than in untrained subjects. When considering the differences between the left and right leg, [PCr] in the dominant leg was significantly lower in endurance athletes than in sprinters (p = 0.01) and untrained subjects (p = 0.02) (25.91 +/- 2.87 mM; 30.02 +/- 3.12 mM and 30.71 +/- 2.88 mM, respectively). The [ADP(free)] was significantly higher (p = 0.02) in endurance athletes than in sprinters and untrained subjects (p = 0.02) (42.19 +/- 13.44 microM; 27.86 +/- 10.19 microM; 25.35 +/- 10.97 microM, respectively). The DeltaG(ATP) in the dominant leg was significantly lower (p = 0.02) in endurance athletes than in sprinters and untrained subjects (p = 0.01) (-60.53 +/- 2.03 kJ.M(-1

  3. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  4. Short-term immobilization and recovery affect skeletal muscle but not collagen tissue turnover in humans

    DEFF Research Database (Denmark)

    Christensen, Britt; Dyrberg, Eva; Aagaard, Per

    2008-01-01

    Not much is known about the effects of immobilization and subsequent recovery on tendon connective tissue. In the present study, healthy young men had their nondominant leg immobilized for a 2-wk period, followed by a recovery period of the same length. Immobilization resulted in a mean decrease...... of 6% (5,413 to 5,077 mm(2)) in cross-sectional area (CSA) of the triceps surae muscles and a mean decrease of 9% (261 to 238 N.m) in strength of the immobilized calf muscles. Two weeks of recovery resulted in a 6% increased in CSA (to 5,367 mm(2)), whereas strength remained suppressed (240 N...... muscle size and strength, while tendon size and collagen turnover were unchanged. While recovery resulted in an increase in muscle size, strength was unchanged. No significant difference in tendon size could be detected between the two legs after 2 wk of recovery, although collagen synthesis...

  5. Research on the performance of the spastic calf muscle of young adults with cerebral palsy.

    Science.gov (United States)

    Lampe, Renee; Mitternacht, Jurgen

    2011-02-12

    The aim of this study was to find an objective graduation of pes equinus in infantile cerebral palsy, especially with regard to functional aspects, to allow a differentiated choice of the therapeutic options. Very often raises the question of whether a surgical lengthening of the Achilles tendon may let expect a functional improvement. For this documentation 17 patients with pes equinus and a diagnosis of spastic cerebral palsy, primarily of the lower limbs, and hemiplegia were examined first clinically and then by a procedure for calculating the functional kinetic parameters from an in-shoe plantar pressure distribution measurement (novel pedar-X system), which is used in many orthopedic practices and clinics as a standard measuring device. Using additional video motion analysis, the flexion in the ankle joint and the ankle joint torque were determined. From this the physical performance of the spastically shortened calf muscle was calculated. The course of the curves of torque and joint performance allows a functional classification of the pes equinus. Approximately three quarters of all pes equinus demonstrated functional activity of the most part of the normal push-off propulsion power. Even the rigid pes equinus was capable of performing push-off propulsion work, provided it converted energy that was absorbed during the heel-strike phase and released it again during the push-off phase. This suggests that the function of paretic ankle joint is better than its kinematics of motion. A heel strike with a pes equinus triggers via stretching stimuli in the muscle-ligament structure reflex motor functions, thereby causing the typical spastic gait pattern. This remarkable gait pattern is often evaluated as dysfunctional and as absolutely requiring correction. However, an aspect possibly neglected in this instance is the fact that this gait pattern may be efficient for the patient and may in fact be a suitable means allowing for economic locomotion despite the cerebral

  6. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans

    DEFF Research Database (Denmark)

    Langberg, H; Bjørn, C; Boushel, Robert Christopher

    2002-01-01

    been established. Microdialysis (molecular mass cut-off 5 kDa) was performed simultaneously in calf muscle and peritendinous Achilles tissue at rest and during 10 min periods of incremental (0.75 W, 2 W, 3.5 W and 4.75 W) dynamic plantar flexion exercise in 10 healthy individuals (mean age 27 years...... increased both in muscle (from 0.48 +/- 0.07 micromol l(-1) to 1.59 +/- 0.35 micromol l(-1); P increases the interstitial concentrations......Bradykinin is known to cause vasodilatation in resistance vessels and may, together with adenosine, be an important regulator of tissue blood flow during exercise. Whether tissue concentrations of bradykinin change with exercise in skeletal muscle and tendon-related connective tissue has not yet...

  7. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  8. Efficacy of calf:cow ratios for estimating calf production of arctic caribou

    Science.gov (United States)

    Cameron, R.D.; Griffith, B.; Parrett, L.S.; White, R.G.

    2013-01-01

    Caribou (Rangifer tarandus granti) calf:cow ratios (CCR) computed from composition counts obtained on arctic calving grounds are biased estimators of net calf production (NCP, the product of parturition rate and early calf survival) for sexually-mature females. Sexually-immature 2-year-old females, which are indistinguishable from sexually-mature females without calves, are included in the denominator, thereby biasing the calculated ratio low. This underestimate increases with the proportion of 2-year-old females in the population. We estimated the magnitude of this error with deterministic simulations under three scenarios of calf and yearling annual survival (respectively: low, 60 and 70%; medium, 70 and 80%; high, 80 and 90%) for five levels of unbiased NCP: 20, 40, 60, 80, and 100%. We assumed a survival rate of 90% for both 2-year-old and mature females. For each NCP, we computed numbers of 2-year-old females surviving annually and increased the denominator of CCR accordingly. We then calculated a series of hypothetical “observed” CCRs, which stabilized during the last 6 years of the simulations, and documented the degree to which each 6-year mean CCR differed from the corresponding NCP. For the three calf and yearling survival scenarios, proportional underestimates of NCP by CCR ranged 0.046–0.156, 0.058–0.187, and 0.071–0.216, respectively. Unfortunately, because parturition and survival rates are typically variable (i.e., age distribution is unstable), the magnitude of the error is not predictable without substantial supporting information. We recommend maintaining a sufficient sample of known-age radiocollared females in each herd and implementing a regular relocation schedule during the calving period to obtain unbiased estimates of both parturition rate and NCP.

  9. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    Science.gov (United States)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  10. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women.

    Science.gov (United States)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C; Joseph, Gabby B; Yap, Samuel P; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M

    2012-07-01

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 ± 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P infiltration of muscle commonly occurs in many metabolic and neuromuscular diseases. • Image-based semi-quantitative classifications for assessing fat infiltration are not well validated. • Quantitative MRI techniques provide an accurate assessment of muscle fat.

  11. Phosphorylation of human skeletal muscle myosin

    International Nuclear Information System (INIS)

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-01-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30 0 C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with ( 30 P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ

  12. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    , but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  13. Characteristic of muscle involvement evaluated by CT scans in early stages of progressive muscular dystrophy

    International Nuclear Information System (INIS)

    Arai, Yumi

    1993-01-01

    Muscle CT scans were performed in order to compare the characteristic distribution of progressive muscle involvement in the early stages of Duchenne type (DMD) and Fukuyama type muscular dystrophy (FCMD). Muscle images at the levels of the 3rd lumbar vertebra, thigh and calf were assessed by visual inspection, and mean CT numbers calculated for individual muscles were statistically analysed. On visual inspection, intramuscular low density areas and muscular atrophy were observed in the muscles of older patients with either disease. These changes were, however, more extensive at thigh level in DMD, and at calf level in FCMD. Nevertheless, the mean CT numbers of muscles in which only slight changes were grossly visible on CT scans displayed progressive decreases with increasing age. Moreover, a significant negative relationship was recognizable between age and mean CT number in almost all muscles examined. Comparison of the slopes of the regression lines revealed that the so-called selective pattern of muscle involvement characteristic of the symptomatic stage had already partially manifested in the preclinical or early stages of both diseases. In FCMD, the rates of decrease in CT numbers were extremely rapid for calf muscles as compared with those in DMD, indicating that this is one reason for FCMD patients never becoming ambulatory. However, for almost all of the other muscles, the CT numbers in FCMD decreased in parallel with the corresponding CT numbers in DMD; thus, these diseases displayed a similarity in the pattern of muscle involvement, despite their different pathogenetic mechanisms and inheritance patterns. (author)

  14. Beef cow-calf production.

    Science.gov (United States)

    Feuz, Dillon M; Umberger, Wendy J

    2003-07-01

    Cow-calf production occurs in all 50 states over varied resource bases and under vastly different environmental conditions. Multiple breeds exist and management styles and objectives are as numerous as the number of cow-calf producers. There is not one area of the country, one breed of cattle, or one management style that is most profitable for producing cows and calves. There are, however, some common strategies that can be employed by cow-calf producers to enhance profitability. Costs need to be controlled without jeopardizing cow herd productivity or net returns. It appears that the cost associated with purchased and harvested feeds varies considerably across operations. Understanding cyclic and seasonal price patterns, weight-price slides, cattle shrink, and other marketing costs can help producers enhance their profit by marketing (and not by just selling) their cattle. Producers with superior cattle genetics can become part of a specific alliance or, at a minimum, document the performance of their cattle so that they can get paid for the superior genetics. The beef industry is changing and will likely continue to change. Cow-calf producers will need to examine their own management practices to determine whether they are optimal for the current industry. Those producers who are most adept at matching their management abilities to their cattle type, their resource base, and the appropriate market outlet will be the most successful in the future.

  15. Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Hasegawa, Satoshi; Kobayashi, Masahiko; Arai, Ryuzo; Tamaki, Akira; Nakamura, Takashi; Moritani, Toshio

    2011-08-01

    Following anterior cruciate ligament (ACL) reconstruction, restricted weight bearing and immobilization results in thigh and calf muscle atrophy and weakness. The purpose of this study was to assess the effect of electrical muscle stimulation (EMS) on prevention of muscle atrophy in patients during the early rehabilitation stage after ACL reconstruction. Twenty patients with acute ACL tears were divided into two groups randomly. The control group (CON group) participated in only the usual rehabilitation program. In addition to this protocol, the electrical muscle stimulation group (EMS group) received EMS training using the wave form of 20 Hz exponential pulse from the 2nd post-operative day to 4 weeks after the surgery. Muscle thickness of vastus lateralis and calf increased significantly 4 weeks after surgery in the EMS group, while it decreased significantly in the CON group. The decline of knee extension strength was significantly less in the EMS group than in the CON group at 4 weeks after the surgery, and the EMS group showed greater recovery of knee extension strength at 3 months after surgery. EMS implemented during the early rehabilitation stage is effective in maintaining and increasing muscle thickness and strength in the operated limb. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Performance and Health of Group-Housed Calves Kept in Igloo Calf Hutches and Calf Barn

    Directory of Open Access Journals (Sweden)

    Jerzy Wójcik*, Renata Pilarczyk, Anna Bilska, Ottfried Weiher1 and Peter Sanftleben1

    2013-04-01

    Full Text Available Group-reared calves are usually housed in common buildings, such as calf barns of all sorts; however, there are concerns about this practice due to problems such as an increased incidence of diseases and poor performance of the calves. Group calf rearing using igloo hutches may be a solution combining the benefits of individual and group housing systems. The aim of this study was to evaluate group-reared calves housed in Igloo-type hutches compared with those housed in common calf barns. The experiment was carried out on a large private dairy farm located in Vorpommern, Germany. A total of 90 Deutsche-Holstein bull calves were assigned to 2 treatment groups: the calf-barn group, with calves grouped in pens in a building, and the Igloo-hutch group, with calves housed in outdoor enclosures with an access to group igloo-style hutches. Calves entering the 84-day experiment were at an average age of about three weeks, with the mean initial body weight of about 50 kg. The calves housed in the group Igloo hutches attained higher daily weight gains compared to those housed in the calf barn (973 vs 721 g/day, consumed more solid feeds (concentrate, corn grain and maize silage: (1.79 vs 1.59 kg/day, and less milk replacer (5.51 vs 6.19 kg/day, had also a lower incidence of respiratory diseases (1.24 vs 3.57% with a shorter persistence of the illness.

  17. Center of pressure motion after calf vibration is more random in fallers than non-fallers : Prospective study of older individuals

    NARCIS (Netherlands)

    van den Hoorn, Wolbert; Kerr, Graham K.; van Dieën, Jaap H.; Hodges, Paul W.

    2018-01-01

    Aging is associated with changes in balance control and elderly take longer to adapt to changing sensory conditions, which may increase falls risk. Low amplitude calf muscle vibration stimulates local sensory afferents/receptors and affects sense of upright when applied in stance. It has been used

  18. Calf Augmentation and Restoration: Long-Term Results and the Review of the Reported Complications.

    Science.gov (United States)

    Niechajev, Igor; Krag, Christen

    2017-10-01

    Augmentation or reconstruction of the calves is indicated in patients with thin legs, for bodybuilders, or when there is a defect after an injury or illness. The principle of placing implants under the investing crural fascia was worked out in the 1980s. The senior author (I.N.) introduced many technical modifications and improvements for this operation, among them the new instrument, an inserter for the calf implants. Presented patient material is unique in that the more challenging reconstructive cases almost equal the numbers of the aesthetic cases. During the years 1991 through 2016, 50 patients underwent 60 calf contour corrections. Indications were aesthetic in 23 patients, six were bodybuilders, and 21 underwent lower leg reconstruction because of deformity caused by illness. According to evaluation by the surgeon, excellent-to-good results were obtained in 30 out of 37 followed patients. Patients rated their results as very good (18), good (10), acceptable (7) and bad (2). One 28-year-old professional bodybuilder sustained acute anterior compartment syndrome in one leg. Implants were removed 16 h after surgery, but he developed ischaemia in the anterior compartment leading to the necrosis of muscles. After several surgical operations, including microsurgical transfer of the innervated central caput of the quadriceps femoris muscle, he could resume his bodybuilding activities. Other complications were minor and manageable. Calf augmentation, performed properly, has evolved to be a safe, efficient and aesthetically pleasing operation. The possibility of acute compartment syndrome should be kept in mind. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  19. Recovery of atrophic leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1988-01-01

    Thirty-five patients with hemiplegia due to cerebrovascular accidents were studied with regared to the muscle wastings before and after rehabilitation training. Hemiplegics were composed of 12 improved and 23 non-improved patients. The CT scan was carried out at the midportion of the thigh and largest-diameter section of the calf. Muscle size of each cross-sectional area was measured on CT image and the increase of size (ΔS) in each muscle after training was calculated. The ΔS of quadriceps femoris was correlated with that of whole cross-section of the thigh. The gracilis in non-affected side was not correlated with that of whole muscles. In both legs, there was an increase in leg muscle size after training. These changes were nost marked in the non-affected side of the improved patients. After training the difference between the two limbs remained unchanged. Recovery of muscle wasting in both legs was seen first in the quadriceps in thigh and flexors in calf. Gracilis was relatively unchanged in comparison with other muscles. Remarkable increase of muscle size in non-affected side was worthwhile to note. (author)

  20. Preventative programs for respiratory disease in cow/calf operations.

    Science.gov (United States)

    Engelken, T J

    1997-11-01

    Control of respiratory disease in cow/calf operations presents many challenges. The incidence of disease in the suckling calf is not well documented and the logistics of handling range animals make control programs difficult to implement. Health programs have to be built around normal working patterns, and these patterns may not provide the best "fit" for immune management of the calf. Weaned calves undergo significant disease challenge when they enter typical marketing channels. This provides the potential for high levels of calf morbidity, mortality, medicine costs, and losses from decreased performance as they arrive at a stocker operation or feedyard. If preweaning calf health and preconditioning programs are used, they must be planned so that the producer has an opportunity to obtain a return on their investment. Options for increasing calf weight marketed, certified calf health sales, or retained ownership through the next phase of production should be evaluated carefully. Any potential increase in calf value must be weighed against program costs. This affords the veterinarian an opportunity to build on traditional disease management and prevention skills and expand their influence in overall ranch management.

  1. Unicompartmental muscle edema: an early sign of deep venous thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Patrick T. [Mayo Clinic Scottsdale, Department of Diagnostic Radiology, 13400 E. Shea Boulevard, Scottsdale, AZ 85259 (United States); Ilaslan, Hakan [Mayo Clinic Rochester, Department of Diagnostic Radiology, Rochester, Minnesota (United States)

    2003-01-01

    The finding of muscle edema restricted to a single muscle compartment on MRI usually indicates a diagnosis of traumatic injury, myositis, denervation or neoplasm. This case demonstrates that deep venous thrombosis can also be the cause of isolated deep posterior compartment muscle edema in the calf and should be considered in the differential diagnosis even in the absence of diffuse soft tissue or subcutaneous edema. (orig.)

  2. A 100-Year Review: Calf nutrition and management.

    Science.gov (United States)

    Kertz, A F; Hill, T M; Quigley, J D; Heinrichs, A J; Linn, J G; Drackley, J K

    2017-12-01

    The first calf paper, published in the May 1919 issue of the Journal of Dairy Science (JDS), described factors affecting birth body weight of different breeds of calves. Other studies were done on nonmilk ingredients, growth charts were developed, and early weaning was followed to conserve milk fed to calves. Calf papers did not report use of statistics to control or record variation or to determine whether treatment means were different. Many experiments were more observational than comparative. Typically fewer than 5 calves, and sometimes 1 or 2 calves, were used per treatment. During the next 20 yr, calf studies increased and included colostrum feeding, milk and milk replacer feeding, minerals and vitamins, and fats and oils. Many concepts fundamental to current knowledge and understanding of digestion, rumen development, and milk replacer formulation were developed during this period. In addition, the concept of using antibiotic growth promoters in dairy calf diets was first evaluated and developed during the 1950s. During the 20-yr period of January 1957 through December 1976, a large number of universities in the United States and 1 in Canada contributed almost 150 papers on a variety of calf-related topics. These topics included genetics, physiology of the calf, review of calf immunity, antibiotic feeding, and milk replacer ingredients. This became the golden era of calf rumen development studies, which also engendered studies of calf starter rations and ingredients. A classic review of management, feeding, and housing studies summarized research related to calf feeding and management systems up to that point with an emphasis on maintaining calf growth and health while reducing labor and feed costs. It was also during this period that metric measurements replaced English units. In the 20-yr period from 1977 to 1996, more than 400 articles on calf nutrition and management were published in JDS. With the growing research interest in calves, a paper outlining

  3. Interleaved localized 1H/31P nuclear magnetic resonance spectroscopy of skeletal muscle

    International Nuclear Information System (INIS)

    Meyerspeer, M.

    2005-09-01

    Nuclear magnetic resonance (NMR) has been used as a spectroscopic method in physics and chemistry before it was developed to become a diagnostic imaging tool in medicine. When NMR spectroscopy is applied to human tissue, metabolism can be studied in normal physiological and pathological states in vivo. Metabolite concentrations and rates can be monitored dynamically and with localization of a defined region of interest. The 'window' which is opened for observation, i.e. which quantities are measured, depends on the nucleus used for RF excitation. Mechanisms of adenosine tri-phosphate (ATP) resynthesis, as a direct source of energy for muscle contraction, are phosphocreatine (PCr) splitting, glycolysis, beta-oxidation and, finally, oxidative phosphorylation. Whilst the dependency of these processes' fractional contribution to muscular energy supply on exercise type and duration is well known, quantitative models of the regulating mechanisms involved are still subject of current research. A large fraction of the established knowledge about metabolism is based on biochemical analysis of tissue acquired invasively (e.g. microdialysis and open-flow microperfusion) or representing averaged metabolic concentrations for the whole body (via serum metabolites or gas exchange analysis). Localized NMR spectroscopy, however, is capable of non-invasively acquiring time-resolved data from a defined volume of interest, in vivo. In contrast to the vast majority of MRS studies investigating metabolism, where spectra of a single nucleus (commonly 1 H, 31 P or 13 C) were acquired or several MR spectra with different nuclei were measured in separate experiments, this work opens an additional 'window' on muscle metabolism by interleaved localized acquisition of 1 H and 31 P NMR spectra from human calf muscle in vivo, during rest, exercise and recovery, in a single experiment. Using this technique, the time courses of the concentrations of phosphocreatine, inorganic phosphate (Pi), ATP

  4. Congenital Liver Cyst in a Neonatal Calf

    Directory of Open Access Journals (Sweden)

    Nora Nogradi

    2013-01-01

    Full Text Available Congenital serous cysts attached to the liver capsule are usually small and multiple, but can be solitary, grow extremely large, and become symptomatic. They are considered rare incidental findings during laparotomies or necropsies and thier occurrence is well described in the human literature, with limited reports from the veterinary literature. This report describes the ante-mortem diagnosis and successful surgical removal of a large congenital liver cyst in a neonatal calf.

  5. Esterase profile of human masseter muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle...... the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and ii......C. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating...

  6. Trichinella spiralis in human muscle (image)

    Science.gov (United States)

    This is the parasite Trichinella spiralis in human muscle tissue. The parasite is transmitted by eating undercooked meats, especially pork. The cysts hatch in the intestines and produce large numbers of larvae that migrate into muscle tissue. The cysts ...

  7. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S. (Argonne National Lab., IL); Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  8. Validity of soft-tissue thickness of calf measured using MRI for assessing unilateral lower extremity lymphoedema secondary to cervical and endometrial cancer treatments

    International Nuclear Information System (INIS)

    Lu, Qing; Li, Yulai; Chen, Tian-Wu; Yao, Yuan; Zhao, Zizhou; Li, Yang; Xu, Jianrong; Jiang, Zhaohua; Hu, Jiani

    2014-01-01

    Aim: To determine whether soft-tissue thickness of the calf measured using MRI could be valid for assessing unilateral lower extremity lymphoedema (LEL) secondary to cervical and endometrial cancer treatments. Materials and methods: Seventy women with unilateral LEL and 25 without LEL after cervical or endometrial cancer treatments underwent MRI examinations of their calves. Total thickness of soft-tissue (TT), muscle thickness (MT), and subcutaneous tissue thickness (STT) of the calf, and the difference between the affected and contralateral unaffected calf regarding TT (DTT), MT (DMT), and STT (DSTT) were obtained using fat-suppressed T2-weighted imaging in the middle of the calves. The volume of the calf and difference in volume (DV) between calves were obtained by the method of water displacement. Statistical analysis was performed to determine the validity of MRI measurements by volume measurements in staging LEL. Results: There was a close correlation between volume and TT for the affected (r = 0.927) or unaffected calves (r = 0.896). STT of the affected calf, and DTT or DSTT of the calves were closely correlated with volume of the affected calf or DV of the calves (all p < 0.05). Multivariate analysis showed significant differences in TT, STT, volume of the affected calf, DTT, DSTT, and DV between stages except in volume of the affected calf or in DV between stage 0 and 1. For staging LEL, DSTT showed the best discrimination ability among all the parameters. Conclusions: Soft-tissue thickness of the calf measured at MRI could be valid for quantitatively staging unilateral LEL, and DSTT of the calves could be the best classifying factor. - Highlights: • The soft tissue thickness of calves on MRI could quantitatively assess secondary LEL. • Calf soft tissue thickness indicated concurrent or construct validity of calf volume. • The difference of subcutaneous tissue thickness of calves could be used to stage LEL

  9. The effect of calf neuromuscular electrical stimulation and intermittent pneumatic compression on thigh microcirculation.

    Science.gov (United States)

    Bahadori, Shayan; Immins, Tikki; Wainwright, Thomas W

    2017-05-01

    This study compares the effectiveness of a neuromuscular electrical stimulation (NMES) device and an intermittent pneumatic compression (IPC) device on enhancing microcirculatory blood flow in the thigh of healthy individuals, when stimulation is carried out peripherally at the calf. Blood microcirculation of ten healthy individuals was recorded using laser speckle contrast imaging (LSCI) technique. A region of interest (ROI) was marked on each participant thigh. The mean flux within the ROI was calculated at four states: rest, NMES device with visible muscle actuation (VMA), NMES device with no visible muscle actuation (NVMA) and IPC device. Both NMES and IPC devices increased blood flow in the thigh when stimulation was carried out peripherally at the calf. The NMES device increased mean blood perfusion from baseline by 399.8% at the VMA state and 150.6% at the NVMA state, IPC device increased the mean blood perfusion by 117.3% from baseline. The NMES device at VMA state increased microcirculation by more than a factor of 3 in contrast to the IPC device. Even at the NVMA state, the NMES device increased blood flow by 23% more than the IPC device. Given the association between increased microcirculation and reduced oedema, NMES may be a more effective modality than IPC at reducing oedema, therefore further research is needed to explore this. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo.

    Science.gov (United States)

    Yang, Peng-Fei; Kriechbaumer, Andreas; Albracht, Kirsten; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Shang, Peng; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2015-02-05

    The mechanical relationship between bone and muscle has been long recognized. However, it still remains unclear how muscles exactly load on bone. In this study, utilizing an optical segment tracking technique, the in vivo tibia loading regimes in terms of tibia segment deformation in humans were investigated during walking, forefoot and rear foot stair ascent and running and isometric plantar flexion. Results suggested that the proximal tibia primarily bends to the posterior aspect and twists to the external aspect with respect to the distal tibia. During walking, peak posterior bending and peak torsion occurred in the first half (22%) and second half (76%) of the stance phase, respectively. During stair ascent, two noticeable peaks of torsion were found with forefoot strike (38% and 82% of stance phase), but only one peak of torsion was found with rear foot strike (78% of stance phase). The torsional deformation angle during both stair ascent and running was larger with forefoot strike than rear foot strike. During isometric plantar flexion, the tibia deformation regimes were characterized more by torsion (maximum 1.35°) than bending (maximum 0.52°). To conclude, bending and torsion predominated the tibia loading regimes during the investigated activities. Tibia torsional deformation is closely related to calf muscle contractions, which further confirm the notion of the muscle-bone mechanical link and shift the focus from loading magnitude to loading regimes in bone mechanobiology. It thus is speculated that torsion is another, yet under-rated factor, besides the compression and tension, to drive long bone mechano-adaptation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Upper-limb exoskeleton for human muscle fatigue

    OpenAIRE

    Ali, SK; Tokhi, MO

    2017-01-01

    Human muscle fatigue is identified as one of the causes to musculuskeletal disorder (MSD). The objective of this paper is to investigate the effect of an exoskeleton in dealing with muscle fatigue in a virtual environment. The focus of this work is, for the exoskeleton to provide support as needed by human joint. A (Proportional, Integration and Derivative) controller is used for both human and exoskeleton. Simmechanics and Simulink are used to evaluate the performance of the exoskeleton. Exp...

  12. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    . Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular......Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans...

  13. Muscle reflexes during gait elicited by electrical stimulation of the posterior cruciate ligament in humans

    DEFF Research Database (Denmark)

    Fischer-Rasmussen, T; Krogsgaard, M R; Jensen, D B

    2002-01-01

    over the vastus medialis, rectus femoris, vastus lateralis, biceps femoris caput longum, and semitendinosus muscles. The stimuli consisted of four pulses delivered at 200 Hz; the stimulus amplitude was two to three times the sensory threshold. The electrical stimulation of the PCL inhibited the ongoing......We investigated the influence of electrical stimulation of the posterior cruciate ligament (PCL) on the motoneuron pool of the thigh and calf muscle during gait. The study group comprised eight young men without any history of injury to the knee joints. Multistranded teflon-insulated stainless...... steel wires were inserted into the PCL guided by sonography and in four subjects also into the fat pad of the knee. The PCL was electrically stimulated during gait on a treadmill at heel strike and 100 ms after heel strike. Electromyographic signals were recorded with bipolar surface electrodes placed...

  14. Tursiops truncatus calf

    African Journals Online (AJOL)

    1990-05-15

    May 15, 1990 ... rest, changes in respiration rate appear to be strongly associated with the metabolic state of the calf. Stress ... 02-C02 respiratory control in bottlenose dolphins ..... phenomenon should be of obvious husbandry interest in.

  15. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  16. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically...

  17. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a ri...

  18. Recovery of atrophic leg muscles in the hemiplegics due to cerebrovascular accidents. Computed tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1988-02-01

    Thirty-five patients with hemiplegia due to cerebrovascular accidents were studied with regared to the muscle wastings before and after rehabilitation training. Hemiplegics were composed of 12 improved and 23 non-improved patients. The CT scan was carried out at the midportion of the thigh and largest-diameter section of the calf. Muscle size of each cross-sectional area was measured on CT image and the increase of size (..delta..S) in each muscle after training was calculated. The ..delta..S of quadriceps femoris was correlated with that of whole cross-section of the thigh. The gracilis in non-affected side was not correlated with that of whole muscles. In both legs, there was an increase in leg muscle size after training. These changes were nost marked in the non-affected side of the improved patients. After training the difference between the two limbs remained unchanged. Recovery of muscle wasting in both legs was seen first in the quadriceps in thigh and flexors in calf. Gracilis was relatively unchanged in comparison with other muscles. Remarkable increase of muscle size in non-affected side was worthwhile to note.

  19. CalfScience: Extension Education at Many Levels

    Science.gov (United States)

    Moore, Dale A.; Tellessen, Kathlyn; Sischo, William M.

    2010-01-01

    The issue of antimicrobial resistance in food animal agriculture was addressed by conducting clinical trials to assess alternatives to antimicrobials in dairy calf-raising and developing outreach to three different audiences. Current research was integrated into Extension programs for calf-raisers, animal science and veterinary students, and food…

  20. Unilateral notomelia in a newborn Holstein calf.

    Science.gov (United States)

    Muirhead, Tammy L; Pack, LeeAnn; Radtke, Catherine L

    2014-07-01

    A 24-hour-old Holstein bull calf with notomelia was donated to the Atlantic Veterinary College. The extra limb was on the right side of the caudal neck adjacent to the withers. The limb was surgically removed under general anesthesia. The calf was adopted and discharged with no complications.

  1. Influence of environmental health in the cow-calf dyad system

    Directory of Open Access Journals (Sweden)

    Thayná Barcelos Fernandes

    2012-12-01

    Full Text Available Health factors influence the cow-calf dyad system in the postpartum period until the first suckling. The use of maternity paddock is a recommended management to facilitate the monitoring of parturient cows and calves. However, side effects occur due to environmental health conditions of maternity paddock that can affect the behaviour of the cow and result in the separation of calf from the mother, undermining sucking and the formation of the cow-calf dyad. To improve the understanding of this complex and dynamic system we built a conceptual model using the technique of causal loop diagram, Figure 1. By hypothesis, the environmental variables that act in maternity paddock influence the variable "Sources of pathogens in maternity". Those sources present a positive effect (in the same direction in the infection process of the calf and cow. Thus, a recommended practice is exposing the parturient cow to pathogens in maternity for sufficient period to stimulate their immune system and build disease resistance. That process contributes to improve the quality of colostrum that will be consumed by the calf during the first hours postpartum which has the function of increasing calf immunity, minimizing the occurrence of infections. In the model, sanitary environmental factors work in two Balance feedback loops (B1 and B2. The B1 cycle refers to the production of a healthy cow with a low level of infection by means of the variables: “Vaccine”, "Stimulation of cow immune system" and "Health resistance" with delay. The variable "Cow infection" has a negative influence (in the opposite direction in the "Maternal behaviour", thus the more infected the cow, the less investment will occur in maternal behaviour. The B2 cycle refers to the calf’s health condition, which is positively influenced by “Calf infection” which, in turn, has positive influence, contributing to the increase of "Calf diseases". The increase in “Calf diseases” generates an

  2. Influences of supplemental feeding on winter elk calf:cow ratios in the southern Greater Yellowstone Ecosystem

    Science.gov (United States)

    M. Foley, Aaron; Cross, Paul C.; Christianson, David A; Scurlock, Brandon M.; Creely, Scott

    2015-01-01

    Several elk herds in the Greater Yellowstone Ecosystem are fed during winter to alleviate interactions with livestock, reduce damage to stored crops, and to manage for high elk numbers. The effects of supplemental feeding on ungulate population dynamics has rarely been examined, despite the fact that supplemental feeding is partially justified as necessary for maintaining or enhancing population growth rates. We used linear regression to assess how the presence of feedgrounds, snowpack, summer rainfall, indices of grizzly bear density and wolves per elk, elk population trend counts, brucellosis seroprevalence, and survey date were correlated with midwinter calf:cow ratios, a metric correlated with population growth, from 1983–2010 from 12 ecologically similar elk herd units (7 fed and 5 unfed) in Wyoming, USA. Our statistical approach allowed for rigorous tests of the hypotheses that supplemental feeding had positive effects on calf:cow ratios and reduced sensitivity of calf:cow ratios to bottom-up limitation relative to top-down limitation from native predators. Calf:cow ratios generally declined across all herd units over the study period and varied widely among units with feedgrounds. We found no evidence that the presence of feedgrounds had positive effects on midwinter calf:cow ratios in Wyoming. Further, fed elk showed stronger correlations with environmental factors, whereas calf:cow ratios for unfed elk showed stronger correlations with predator indices. Although we found no consistent association between winter feeding and higher calf:cow ratios, we did not assess late winter mortality and differences in human offtake between fed and unfed regions, which remain a priority for future research. 

  3. Characteristic of muscle involvement evaluated by CT scans in early stages of progressive muscular dystrophy; Comparison between Duchenne and Fukuyama types

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Yumi (Tokyo Women' s Medical Coll. (Japan))

    1993-10-01

    Muscle CT scans were performed in order to compare the characteristic distribution of progressive muscle involvement in the early stages of Duchenne type (DMD) and Fukuyama type muscular dystrophy (FCMD). Muscle images at the levels of the 3rd lumbar vertebra, thigh and calf were assessed by visual inspection, and mean CT numbers calculated for individual muscles were statistically analysed. On visual inspection, intramuscular low density areas and muscular atrophy were observed in the muscles of older patients with either disease. These changes were, however, more extensive at thigh level in DMD, and at calf level in FCMD. Nevertheless, the mean CT numbers of muscles in which only slight changes were grossly visible on CT scans displayed progressive decreases with increasing age. Moreover, a significant negative relationship was recognizable between age and mean CT number in almost all muscles examined. Comparison of the slopes of the regression lines revealed that the so-called selective pattern of muscle involvement characteristic of the symptomatic stage had already partially manifested in the preclinical or early stages of both diseases. In FCMD, the rates of decrease in CT numbers were extremely rapid for calf muscles as compared with those in DMD, indicating that this is one reason for FCMD patients never becoming ambulatory. However, for almost all of the other muscles, the CT numbers in FCMD decreased in parallel with the corresponding CT numbers in DMD; thus, these diseases displayed a similarity in the pattern of muscle involvement, despite their different pathogenetic mechanisms and inheritance patterns. (author).

  4. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  5. Zinc Methionine Supplementation Impacts Gene and Protein Expression in Calf-fed Holstein Steers with Miniaml Impact on Feedlot Performance

    Science.gov (United States)

    Calf-fed Holstein steers were supplemented with a zinc (Zn) methionine supplement (ZnMet; ZINPRO®; Zinpro Corporation, Eden Prairie, MN) for 115±5 days prior to harvest along with zilpaterol hydrochloride (ZH; Zilmax®; Merck Animal Health, Summit, NJ) for the last 20 days with a 3 day withdrawal to ...

  6. Human calf muscular metabolism study with a home-made ergometer using 31P NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Peynsaert, J; Achten, E; Claeys, E [Ghent University Hospital (Belgium); Rousseaux, M [Ghent University Hospital (Belgium). Dept. of Sport Medicine

    1995-12-01

    Phosphorus-31 NMR measurements were performed to examine the variations in the concentration of phosphate metabolites in calf muscle during exercise. Therefore, volunteers, installed in the supine position, were asked to push repetitively on the pedal of a home-made ergometer. The produced work and the changes in phosphorus containing metabolites were measured continuously. Correlations were made between the inorganic phosphate/phosphocreatine ratio and the cumulative work and between the intracellular pH and the cumulative work. The exercise protocol could be changed interactively with respect to the imposed initial pressure, the maximum pressure, the pressure increase per level and the time a certain level was held. The whole experiment could be graphically followed on-line. In the first stadium, the in vitro reproducibility of the ergometer was tested for different protocols. These tests revealed that, though the deviation in produced work was markedly the highest at high working pressures, the relative error never exceeded 3%. Consequently, the ex vitro reproducibility of the data was examined with the equipment placed in the scanner. Generally, same conclusions could be derived. In a next stage, the work will be synchronized with the biochemical data. Extreme precautions will be taken to examine each volunteer every time under the same physical and psychological conditions.

  7. Human calf muscular metabolism study with a home-made ergometer using 31P NMR spectroscopy

    International Nuclear Information System (INIS)

    Peynsaert, J.; Achten, E.; Claeys, E. . Dept. of Magnetic Resonance; Rousseaux, M.

    1995-01-01

    Phosphorus-31 NMR measurements were performed to examine the variations in the concentration of phosphate metabolites in calf muscle during exercise. Therefore, volunteers, installed in the supine position, were asked to push repetitively on the pedal of a home-made ergometer. The produced work and the changes in phosphorus containing metabolites were measured continuously. Correlations were made between the inorganic phosphate/phosphocreatine ratio and the cumulative work and between the intracellular pH and the cumulative work. The exercise protocol could be changed interactively with respect to the imposed initial pressure, the maximum pressure, the pressure increase per level and the time a certain level was held. The whole experiment could be graphically followed on-line. In the first stadium, the in vitro reproducibility of the ergometer was tested for different protocols. These tests revealed that, though the deviation in produced work was markedly the highest at high working pressures, the relative error never exceeded 3%. Consequently, the ex vitro reproducibility of the data was examined with the equipment placed in the scanner. Generally, same conclusions could be derived. In a next stage, the work will be synchronized with the biochemical data. Extreme precautions will be taken to examine each volunteer every time under the same physical and psychological conditions

  8. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention

    Science.gov (United States)

    Cho, Yong-il

    2014-01-01

    Calf diarrhea is a commonly reported disease in young animals, and still a major cause of productivity and economic loss to cattle producers worldwide. In the report of the 2007 National Animal Health Monitoring System for U.S. dairy, half of the deaths among unweaned calves was attributed to diarrhea. Multiple pathogens are known or postulated to cause or contribute to calf diarrhea development. Other factors including both the environment and management practices influence disease severity or outcomes. The multifactorial nature of calf diarrhea makes this disease hard to control effectively in modern cow-calf operations. The purpose of this review is to provide a better understanding of a) the ecology and pathogenesis of well-known and potential bovine enteric pathogens implicated in calf diarrhea, b) describe diagnostic tests used to detect various enteric pathogens along with their pros and cons, and c) propose improved intervention strategies for treating calf diarrhea. PMID:24378583

  9. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-01-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO 2 ) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO 2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO 2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P 2 and tHb

  10. Newborn calf welfare: a review focusing on mortality rates.

    Science.gov (United States)

    Uetake, Katsuji

    2013-02-01

    Calf mortality control is vitally important for farmers, not only to improve animal welfare, but also to increase productivity. High calf mortality rates can be related to larger numbers of calves in a herd, employee performance, severe weather, and the neonatal period covering the first 4 weeks of life. Although the basic premise of preventing newborn calf mortality is early detection and treatment of calves at risk for failure of passive transfer of immunoglobulins, calf mortality due to infectious diseases such as acute diarrhea increases in the presence of these physical and psychological stressors. This suggests that farmers should not ignore the effects of secondary environmental factors. For prevention rather than cure, the quality of the environment should be improved, which will improve not only animal welfare but also productivity. This paper presents a review of the literature on newborn calf mortality and discusses its productivity implications. © 2012 Japanese Society of Animal Science.

  11. An ultrasonic methodology for muscle cross section measurement of support space flight

    Science.gov (United States)

    Hatfield, Thomas R.; Klaus, David M.; Simske, Steven J.

    2004-09-01

    The number one priority for any manned space mission is the health and safety of its crew. The study of the short and long term physiological effects on humans is paramount to ensuring crew health and mission success. One of the challenges associated in studying the physiological effects of space flight on humans, such as loss of bone and muscle mass, has been that of readily attaining the data needed to characterize the changes. The small sampling size of astronauts, together with the fact that most physiological data collection tends to be rather tedious, continues to hinder elucidation of the underlying mechanisms responsible for the observed changes that occur in space. Better characterization of the muscle loss experienced by astronauts requires that new technologies be implemented. To this end, we have begun to validate a 360° ultrasonic scanning methodology for muscle measurements and have performed empirical sampling of a limb surrogate for comparison. Ultrasonic wave propagation was simulated using 144 stations of rotated arm and calf MRI images. These simulations were intended to provide a preliminary check of the scanning methodology and data analysis before its implementation with hardware. Pulse-echo waveforms were processed for each rotation station to characterize fat, muscle, bone, and limb boundary interfaces. The percentage error between MRI reference values and calculated muscle areas, as determined from reflection points for calf and arm cross sections, was -2.179% and +2.129%, respectively. These successful simulations suggest that ultrasound pulse scanning can be used to effectively determine limb cross-sectional areas. Cross-sectional images of a limb surrogate were then used to simulate signal measurements at several rotation angles, with ultrasonic pulse-echo sampling performed experimentally at the same stations on the actual limb surrogate to corroborate the results. The objective of the surrogate sampling was to compare the signal

  12. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  13. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle...... fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...... GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle....

  14. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  15. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis

    NARCIS (Netherlands)

    Serlie, Mireille J. M.; de Haan, Jacco H.; Tack, Cees J.; Verberne, Hein J.; Ackermans, Mariette T.; Heerschap, Arend; Sauerwein, Hans P.

    2005-01-01

    The introduction of C-13 magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  16. Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells.

    Science.gov (United States)

    Fernandez-Rebollo, Eduardo; Mentrup, Birgit; Ebert, Regina; Franzen, Julia; Abagnale, Giulio; Sieben, Torsten; Ostrowska, Alina; Hoffmann, Per; Roux, Pierre-François; Rath, Björn; Goodhardt, Michele; Lemaitre, Jean-Marc; Bischof, Oliver; Jakob, Franz; Wagner, Wolfgang

    2017-07-11

    Culture medium of mesenchymal stromal cells (MSCs) is usually supplemented with either human platelet lysate (HPL) or fetal calf serum (FCS). Many studies have demonstrated that proliferation and cellular morphology are affected by these supplements - it is therefore important to determine if they favor outgrowth of different subpopulations and thereby impact on the heterogeneous composition of MSCs. We have isolated and expanded human bone marrow-derived MSCs in parallel with HPL or FCS and demonstrated that HPL significantly increases proliferation and leads to dramatic differences in cellular morphology. Remarkably, global DNA-methylation profiles did not reveal any significant differences. Even at the transcriptomic level, there were only moderate changes in pairwise comparison. Furthermore, the effects on proliferation, cytoskeletal organization, and focal adhesions were reversible by interchanging to opposite culture conditions. These results indicate that cultivation of MSCs with HPL or FCS has no systematic bias for specific cell types.

  17. Morphometric and Statistical Analysis of the Palmaris Longus Muscle in Human and Non-Human Primates

    Science.gov (United States)

    Aversi-Ferreira, Roqueline A. G. M. F.; Bretas, Rafael Vieira; Maior, Rafael Souto; Davaasuren, Munkhzul; Paraguassú-Chaves, Carlos Alberto; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre

    2014-01-01

    The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing. PMID:24860810

  18. Morphometric and Statistical Analysis of the Palmaris Longus Muscle in Human and Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Roqueline A. G. M. F. Aversi-Ferreira

    2014-01-01

    Full Text Available The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing.

  19. a-Adrenergic vasoconstrictor responsiveness is preserved in the heated human leg

    DEFF Research Database (Denmark)

    Keller, David M; Sander, Mikael; Stallknecht, Bente Merete

    2010-01-01

    This study tested the hypothesis that passive leg heating attenuates a-adrenergic vasoconstriction within that limb. Femoral blood flow (FBF, femoral artery ultrasound Doppler) and femoral vascular conductance (FVC, FBF/mean arterial blood pressure), as well as calf muscle blood flow (Calf...

  20. A 3-Dimensional Atlas of Human Tongue Muscles

    Science.gov (United States)

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  1. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  2. Physical inactivity and muscle oxidative capacity in humans.

    Science.gov (United States)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated in humans, and further studies are required to substantiate this hypothesis, which could expand our knowledge of the potential link between lifestyle-related diseases and muscle oxidative capacity. Furthermore, even though a large body of literature reports the effect of physical training on muscle oxidative capacity, the adaptations that occur with physical inactivity may not always be opposite to that of physical training. Thus, it is concluded that studies on the effect of physical inactivity per se on muscle oxidative capacity in functional human skeletal muscle are warranted.

  3. Muscle Coordination and Locomotion in Humans.

    Science.gov (United States)

    Sylos-Labini, Francesca; Zago, Myrka; Guertin, Pierre A; Lacquaniti, Francesco; Ivanenko, Yury P

    2017-01-01

    Locomotion is a semi-automatic daily task. Several studies show that muscle activity is fairly stereotyped during normal walking. Nevertheless, each human leg contains over 50 muscles and locomotion requires flexibility in order to adapt to different conditions as, for instance, different speeds, gaits, turning, obstacle avoidance, altered gravity levels, etc. Therefore, locomotor control has to deal with a certain level of flexibility and non-linearity. In this review, we describe and discuss different findings dealing with both simplicity and variability of the muscular control, as well as with its maturation during development. Despite complexity and redundancy, muscle activity patterns and spatiotemporal maps of spinal motoneuron output during human locomotion show both stereotypical features as well as functional re-organization. Flexibility and different solutions to adjust motor patterns should be considered when considering new rehabilitation strategies to treat disorders involving deficits in gait. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans].

    Science.gov (United States)

    Khorievin, V I; Horkovenko, A V; Vereshchaka, I V

    2013-01-01

    Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.

  5. Unique expression of cytoskeletal proteins in human soft palate muscles.

    Science.gov (United States)

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  6. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  7. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Hellsten, Ylva; Jensen, Mie B. F.

    2008-01-01

    The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study...... the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects...... was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells...

  8. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina

    2010-01-01

    Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...... lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min-1) by 17.4% (P improved insulin sensitivity by 19......, but their role in regulating human skeletal muscle adaptation remains unknown....

  9. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  10. Ultrasonographic findings of the various diseases presenting as calf pain.

    Science.gov (United States)

    Lee, Sun Joo; Kim, Ok Hwa; Choo, Hye Jung; Park, Jun Ho; Park, Yeong-Mi; Jeong, Hae Woong; Lee, Sung Moon; Cho, Kil Ho; Choi, Jung-Ah; Jacobson, Jon A

    2016-01-01

    There are various causes of calf pain. The differential diagnoses affecting the lower leg include cystic lesions, trauma-related lesions, infection or inflammation, vascular lesions, neoplasms, and miscellaneous entities. Ultrasound (US) provide detailed anatomical information of the calf structures, and it offers the ability to confirm, other calf abnormalities, particularly when deep vein thrombosis (DVT) is ruled out. The purpose of this article is to review the causes of a painful calf presenting as DVT and incidental findings found as part of the work-up of DVT, and to provide a broad overview of US findings and clinical features of these pathologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Evidence of epimeletic behavior involving a Pontoporia blainvillei calf (Cetacea, Pontoporiidae

    Directory of Open Access Journals (Sweden)

    Antonio José Tonello Júnior

    2006-06-01

    Full Text Available The present paper constitutes the second record of epimeletic behavior for the toninha, Pontoporia blainvillei. A toninha calf carcass was recovered at Enseada Beach, São Francisco do Sul, southern Brazil (26o13’S - 48o31’W on October 9, 2001. Its total length indicated that it was a neonate or a premature calf. The calf had many parallel scratches on it, which were freshly made and produced by adult teeth. There were scratches on the fin, flukes and flippers, and the position and size of the marks demonstrated the intention of the adult to rescue the calf. The anterior region of the body showed net marks, suggesting that the calf had been accidentally entangled. The epimeletic behavior evidenced by the tooth marks could have occurred during the entanglement and/or after its liberation, and we suggest that the causa mortis of the calf was drowning.

  12. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...

  13. Effects of duration of vitamin C supplementation during the finishing period on postmortem protein degradation, tenderness, and meat color of the longissimus muscle of calf-fed steers consuming a 0.31 or 0.59% sulfur diet.

    Science.gov (United States)

    Pogge, D J; Lonergan, S M; Hansen, S L

    2015-05-01

    High-S (HS) diets have been identified as a causative agent in the development of oxidative stress in cattle, which in postmortem muscle can negatively alter meat quality. Vitamin C (VC) is a potent antioxidant produced endogenously by cattle; however, exogenous supplementation of VC may be useful when HS diets are fed to cattle. The objective of this study was to examine the impact of duration of VC supplementation, for the first 56, 90, or 127 d, during the finishing period on meat color and tenderness of the longissimus thoracis (LT) collected from calf-fed steers consuming a 0.31 or 0.59% S diet. Angus steers ( n= 42) were stratified to pens by initial BW (304 ± 13 kg) and GeneMax marbling score (4.3 ± 0.12), and each pen was randomly assigned to 1 of 7 treatments (6 steers/pen, 1 pen/treatment), including HS (0.59% S, a combination of dried distillers grains plus solubles and sodium sulfate) control (HS CON), HS CON + 10 g VC·steer·(-1)d(-1) for the first 56 d (HS VC56), 90 d (HS VC90), or 127 d (HS VC127), low S (LS; 0.31% S) + 10 g VC·steer·(-1)d(-1) for the first 56 d (LS VC56), 90 d (LS VC90), or 127 d (LS VC127). Steers were harvested (n = 40) and, after a 24-h chill, rib sections (LT) were collected. pH was determined on each rib section before division into 3 sections for determination of 1) 7-d retail display and color and Warner-Bratzler shear force (WBSF), 2) 14-d WBSF determination, and 3) protein degradation and collagen content (2 d postmortem). Data were analyzed by ANOVA as a completely randomized design, with the fixed effect of treatment. Individual feed intake was recorded, and steer was the experimental unit. The HS steers had a greater and lesser percent of the 80- and 76-kDa subunits of calpain-1 (P ≤ 0.05), respectively, and tended to have less (P = 0.08) troponin T degradation (d2), and more (P = 0.02) collagen than LS steers. Increasing days of VC supplementation decreased (P = 0.05) the percentage of the 80 kDa subunit of

  14. Cetacean mother-calf behavior observed from a small aircraft off Southern California. Animal Behavior and Cognition

    Directory of Open Access Journals (Sweden)

    Mari A. Smultea

    2017-02-01

    Full Text Available During early developmental stages, cetacean calves are dependent on their mothers for survival. Protection of young whales engaged in behaviors that are biologically important is critical for population recovery, so that appropriate management actions can be taken to minimize human disturbance. However, the occurrence and frequency of whale nursing and calves back-riding their mothers (both considered important to calf survival have rarely been observed nor adequately quantified or defined. Therefore, it may not always be clear when disruption is occurring. We used extended behavioral observations, still photography, and video camera footage obtained during aircraft surveys in the Southern California Bight in 2008 – 2013 to characterize cetacean mother-calf interactions. Based on observations of four mother/calf pairs (two gray whale, Eschrichtius robustus, one fin whale, Balaenoptera physalus, and one blue whale, B. musculus and one killer whale presumed mother/yearling pair (Orcinus orca, we describe bouts of nursing and calves riding on the backs of their presumed mothers, including activity duration, frequency, and relative body positioning. We conclude with specific definitions useful to wildlife conservation agencies authorizing and establishing restrictions to certain human activities when they might constitute behavioral disruptions.

  15. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  16. The effect of whole body vibration exercise on muscle activation ...

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences ... The effect of whole body vibration exercise (WBV) on muscle activation has recently been a topic for discussion amongst some researchers. ... Participants then performed two different exercises: standing calf raises and prone bridging, without and with WBV.

  17. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    Science.gov (United States)

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (Pflow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  18. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  19. Evaluation of intra-cellular lipid of skeletal muscle by 1H-MR spectroscopy: in vivo and phantom study

    International Nuclear Information System (INIS)

    Ma Ling; Gao Zhenhua; Meng Quanfei; Lin Erjian; Zhang Xiaoling; Deng Demao

    2009-01-01

    Objective: To elucidate the spectrum of lipid peaks in 1 H-MRS of skeletal muscle and it's interpretation, to investigate the utility of 1 H-MRS in evaluating intramyocellular lipid (IMCL). Methods: 1 H-MRS was acquired in vivo on tibialis anterior muscle (TA) and soleus muscle (S) on 5 healthy volunteers. The spectrum of the lipid peak between 0.80 and 1.80 ppm was observed with different angle between the long axis of the calf and B 0 . Ex vivo phantom was an cluster of capillary tubers filled with soybean oil and fat emulsion, simulating the extramyocellular lipid (EMCL) and IMCL, respectively. The spectra of the lipid peaks were compared using different angles between the phantom and Bo field. Results: The lipid spectrum split to 3 to 4 peaks between 0.80 and 1.80 ppm on calf muscles, with 0.20 to 0.30 ppm interval between each neighbouring peak. The methylene peak of EMCL shifted to the right when the angle between long axis of the calf and B 0 increased. The phantom could simulate the spectrum of 1 H-MRS of the muscle, presenting two peaks with 0.20 to 0.30 ppm chemical shift difference between 0.80 and 1.80 ppm. They are methyl triglyceride and methylene, representing IMCL and EMCL, respectively. The peak splitting could be attributed to the high ordered muscle fibers and their chemical shift difference between inta-and extra-cellular distribution. The interval of IMCL and EMCL peaks attenuated when the angle between the muscle fiber and B 0 increased from 0 to the magic angle (54.7 degree). Conclusion: On 1 H- MRS spectrum, the peak of the EMCL and IMCL splits. This indicated that 1 H-MRS is an applicable method to detect IMCL noninvasively. TA is an optimizing muscle for 1 H-MRS study. (authors)

  20. EMG changes in thigh and calf muscles in fin swimming exercise.

    Science.gov (United States)

    Jammes, Y; Delliaux, S; Coulange, M; Jammes, C; Kipson, N; Brerro-Saby, C; Bregeon, F

    2010-08-01

    Because previous researchers have reported a reduced lactic acid production that accompanies a delayed or an absent ventilatory threshold (VTh) in water-based exercise, we hypothesized that the metaboreflex, activated by muscle acidosis, might be absent in fin swimming. This motor response, delaying the occurrence of fatigue, is characterized by a decreased median frequency (MF) of electromyographic (EMG) power spectrum. Seven healthy subjects performed a maximal fin swimming exercise protocol with simultaneous recordings of surface EMGs in VASTUS MEDIALIS (VM), TIBIALIS ANTERIOR (TA) and GASTROCNEMIUS MEDIALIS (GM). We computed the root mean square (RMS) and MF and recorded the compound evoked muscle potential (M-wave) in VM. We also measured the propulsive force and oxygen uptake (VO (2)), and determined VTh. VTh was absent in 4/7 subjects and measured at 70-90% of VO (2max) in the other three. In the three studied muscles, the global EMG activity (RMS) increased while the MF decreased in proportion of VO (2), the MF changes being significantly higher in VM (-29%) and GM (-39%) than in TA (-19%). Because no M-wave changes were noted, the MF decline was attributed to the recruitment of low-frequency, fatigue-resistant motor units. Our most important finding is the persistence of the metaboreflex even in a situation of reduced muscle acidosis. (c) Georg Thieme Verlag KG Stuttgart . New York.

  1. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Jensen, Line

    2012-01-01

    Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle...... atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2......-4 days) of human disuse-muscle atrophy along with a marked reduction in PGC-1α and PGC-1β (1-4 days) and a ∼10% decrease in myofiber size (4 days). Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days) of immobilization. In contrast...

  2. Selective activation of neuromuscular compartments within the human trapezius muscle

    DEFF Research Database (Denmark)

    Holtermann, A; Roeleveld, K; Mork, P J

    2009-01-01

    of the human trapezius muscle can be independently activated by voluntary command, indicating neuromuscular compartmentalization of the trapezius muscle. The independent activation of the upper and lower subdivisions of the trapezius is in accordance with the selective innervation by the fine cranial and main...... branch of the accessory nerve to the upper and lower subdivisions. These findings provide new insight into motor control characteristics, learning possibilities, and function of the clinically relevant human trapezius muscle....

  3. Differences in intramuscular vascular connections of human and dog latissimus dorsi muscles.

    Science.gov (United States)

    Yang, D; Morris, S F

    1999-02-01

    Distal ischemia and necrosis of the dog latissimus dorsi muscle flap used in experimental cardiomyoplasty have been reported. However, little information on the intramuscular vascular anatomy of the dog latissimus dorsi is available. It is unclear whether there are any anatomic factors relating to the muscle flap ischemia and necrosis, and whether the dog latissimus dorsi is a suitable experimental model. To study the intramuscular vascular territories in the dog latissimus dorsi muscle, and to compare the intramuscular vasculature of the dog with that of the human, 5 fresh dog cadavers and 7 fresh human cadavers were injected with a mixture of lead oxide, gelatin, and water (200 mL/kg) through the carotid artery. Both the dog and the human latissimus dorsi muscles and neurovascular pedicles were dissected and radiographed. The intramuscular vascular anatomy of the latissimus dorsi muscles was compared. Radiographs demonstrate clearly that the pattern of latissimus dorsi intramuscular anastomoses between branches of the thoracodorsal artery and the perforators of posterior intercostal arteries in the proximal half of the muscle are different between the dog and the human. In the dog muscle, vascular connections between the thoracodorsal artery and the posterior intercostal arteries are formed by reduced-caliber choke arteries, whereas four to six true anastomoses without a change in caliber between them are found in the human muscle. The portion of the latissimus dorsi muscle supplied by the dominant thoracodorsal vascular territory was 25.9% +/- 0.3% in the dog and 23.9% +/- 0.5% in the human. For further comparison, an extended vascular territory in the latissimus dorsi muscle was demonstrated, including both the thoracodorsal territory and the posterior intercostal territories. The area of the extended vascular territory was 52% +/- 0.5% of the total muscle. The dog latissimus dorsi model may not be a perfect predictor of the behavior of the human latissimus

  4. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    the increase in xanthine oxidase in the muscle there were no detectable changes in the levels of muscle malondialdehyde or in plasma antioxidant capacity up to 4 days post-exercise. 5. It is concluded that eccentric exercise leads to an increased level of xanthine oxidase in human muscle and that the increase...

  5. THE EFFECT OF FETAL CALF SERUM ON HUMAN DENTAL PULP STEM CELLS

    Directory of Open Access Journals (Sweden)

    Jakub Suchánek

    2013-01-01

    Full Text Available Aims: Authors studied potential side effects of fetal calf serum (FCS in cultivation media on human dental pulp stem cells (DPSC during long term cultivation. Methods: Two lines of DPSC obtained healthy donors (male 22 years, female 23 years were used. Both lines were cultivated under standard cultivation conditions in four different media containing 10% or 2% FCS and substituted with growth factors. During long term cultivation proliferation ability, karyotype and phenotype of DPSC were measured. Results: Both lines of DPSC cultivated in a media containing 2% FCS and ITS supplement showed the highest number of population doublings. On the other hand the proliferation rate of DPSC cultivated in a media with 2% FCS without ITS supplement was slowest. Proliferation rate of DPSC cultivated in 10% FCS media with or without FGF-2 was comparable. DPSC cultivated in a media with 10% FCS showed a significantly higher amount of chromosomal aberrations. These chromosomal aberrations do not seem to be clonal but surprisingly we found large amounts of tetraploid cells in the 9th passage in both media containing 10% FCS. Conclusions: Our study proved that cultivation of DPSC in media containing higher concentration of FCS has critical side effects on cell chromosomal stability.

  6. 31P magnetic resonance spectroscopy of skeletal muscle in patients with fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Jensen, K E; Thomsen, C

    1992-01-01

    31Phosphorous nuclear magnetic resonance (31P NMR) spectroscopy of painful calf muscle was performed in 12 patients with fibromyalgia (FS) and 7 healthy subjects during rest, aerobic and anaerobic exercising conditions, and postexercise recovery. Ratios of inorganic phosphate and creatinine...

  7. Giant atypical ossifying fibromyxoid tumour of the calf

    International Nuclear Information System (INIS)

    Harish, Srinivasan; Polson, Alexander; Griffiths, Meryl; Morris, Paul; Malata, Charles; Bearcroft, Philip W.P.

    2006-01-01

    We present a case of giant atypical ossifying fibromyxoid tumour (OFMT) of soft tissue, occurring in the calf, in a 77-year-old woman. The patient presented with a history of bleeding ulcer over a calf lump that had been present for over 4 years. Clinical presentation, radiological features and histopathologic findings are described, and the relevant literature is reviewed. (orig.)

  8. Rapid desensitization and resensitization of 5-HT2 receptor mediated phosphatidyl inositol hydrolysis by serotonin agonists in quiescent calf aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Pauwels, P.J.; Van Gompel, P.; Leysen, J.E.

    1990-01-01

    Agonist regulation of 5-hydroxytryptamine 2 (5-HT 2 ) receptors was studied in calf aortic smooth muscle cultures incubated in a quiescent, defined synthetic medium that does not stimulate cell proliferation, but that provides cells with supplements that maintain cell viability. In these cells, 5-hydroxytryptamine (5-HT)-induced [ 3 H]inositol phosphates accumulation showed the characteristics of a 5-HT 2 receptor coupled transducing system according to the inhibition of the response by 5-HT 2 antagonists at nanomolar concentrations. The 5-HT 2 receptor coupled response became rapidly desensitized during continued incubation with 5-HT and 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM); nearly full desensitization was obtained in two hours with 10 μM 5-HT and DOM pretreatment. The recovery of the response had a half-live of 5 hours after 2 hours pretreatment and of 9.5 to 12.5 hours after 24 to 96 hours agonist pretreatment. The DOM-induced desensitization of the 5-HT 2 receptor coupled response was fully blocked by 0.1 μM cinanserin. Cinanserin alone did not induce desensitization or up-regulation of the 5-HT 2 receptor coupled response at 0.1 μM

  9. CT findings of leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1987-01-01

    Muscle wastings in hemiplegics due to cerebrovascular accidents were studied with CT scanning in the mid-portion of the thigh and largest-diameter section of the calf bilaterally. Muscle size and average CT density of muscle were measured. The 80 patients were classified into one of the following three stages of disability, i.e. stage 1, severely disabled (wheel-chair-bound but capable of self care [20 patients]); stage 2, moderately disabled (poorly ambulatory [41 patients]); and stage 3, mildly disabled (well ambulatory [19 patients]). Muscle cross-sectional area and CT density in both legs of non-ambulatory patients were smaller and lower than those of other groups. The atrophic change was marked in the affected side, but it was also noticeable in the non-affected side. Gracilis muscle was relatively well spared in all 3 stages. These CT findings of hemiplegics were similar to those of disuse atropy in patients with knee or hip joint lesions. Atrophy was seen first in the quadriceps in thigh and flexor muscle group in calf. These findings were similar to the systemic myogenic or neurogenic atrophies. Although gracilis and sartorius muscles were spared in these systemic deseases, only gracilis muscle was spared in hemiplegics and in patients with disuse atrophy. The ratios of the size of quadriceps, adductor group and sartorius muscle of thigh in affected side to that of non-affected side were smaller in more severely disabled group. Those of the other muscles showed no differences among each stages. In stage 3, there was significant negative correlation between the ratio of quadriceps muscle and periods from the attack. There was no relationship between the severity of the muscle atrophy and parietal lobe lesion. The atrophy is considered to be the result of disuse from immobilization. (author)

  10. Effects of ageing on adaptation during vibratory stimulation of the calf and neck muscles.

    Science.gov (United States)

    Patel, M; Fransson, P A; Magnusson, M

    2009-01-01

    The ability to adapt and habituate based on prior experiences is important for human movement control, fall prevention and for the ability to enhance performance during various human activities. However, little is known about the ability for the elderly to adapt to balance perturbations in the lateral direction. To determine whether adaptation, i.e., the ability to adjust postural control to handle balance perturbations better over time, differed in the elderly subjects compared with young subjects in the anteroposterior and lateral directions, and whether the site of the balance perturbation or the presence or absence of vision affected the response. Postural stability was measured as anteroposterior and lateral torque variance in a young group (n = 18 (9 female and 9 male), average age = 29.1 years) and an elderly group (n = 16 (5 female and 11 male), average age = 71.5 years) with eyes open and closed during balance perturbations from calf and neck vibrations. After a 30-s period of quiet stance, these vibrations were repeated over a period of 200 s, so the adaptive responses could be analyzed by splitting the data into 50-s periods. The adaptive responses in the anteroposterior and lateral directions were different. Adaptation in the anteroposterior direction occurred to an almost equal extent in the elderly and young, whereas adaptation in the lateral direction was markedly larger in the elderly in all tests except for neck vibration with eyes closed. Age, vision and vibration site were all influential factors for recorded body movements, but no significant combined effects were found. Balance perturbation instigates an adaptive response in the elderly in both the anteroposterior and lateral directions. However, during perturbation, age and vision are both very influential factors for the stability, thus associating the previously documented age-related decline in visual functioning with a higher risk of falls in this age range. (c) 2008 S. Karger AG, Basel.

  11. Nutrition and muscle loss in humans during spaceflight

    Science.gov (United States)

    Stein, T. P.

    1999-01-01

    The protein loss in humans during spaceflight is partly due to a normal adaptive response to a decreased work load on the muscles involved in weight bearing. The process is mediated by changes in prostaglandin release, secondary to the decrease in tension on the affected muscles. On missions, where there is a high level of physical demands on the astronauts, there tends to be an energy deficit, which adds to the muscle protein loss and depletes the body fat reserves. While the adaptive response is a normal part of homeostasis, the additional protein loss from an energy deficit can, in the long run, have a negative effect on health and capability of humans to live and work in space and afterward return to Earth.

  12. CALFED--An experiment in science and decisionmaking

    Science.gov (United States)

    Taylor, Kimberly A.; Jacobs, Katharine L.; Luoma, Samuel N.

    2003-01-01

    The CALFED Bay-Delta Program faces a challenging assignment: to develop a collaborative state-federal management plan for the complex river system and involve multiple stakeholders (primarily municipal, agricultural, and environmental entities) whose interests frequently are in direct conflict. Although many resource-management issues involve multiple stakeholders and conflict is integral to their discussion, the CALFED experience is unique because of its shared state and federal roles, the magnitude and significance of stakeholder participation, and the complexity of the scientific issues involved.

  13. A young lady with swelling and stiffness of calf muscles

    Directory of Open Access Journals (Sweden)

    H S Kiran

    2011-01-01

    Full Text Available Hypothyroidism causes a variety of changes in the body. Though uncommon, hypothyroidism can present as myopathy. Hoffman′s syndrome is a specific, rare form of hypothyroid myopathy, which causes proximal weakness and pseudohypertrophy of muscles.

  14. Skeletal muscle fat content is inversely associated with bone strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Funk, Janet L; Chen, Zhao; Lisse, Jeffrey R; Blew, Robert M; Lee, Vinson R; Laudermilk, Monica; Lohman, Timothy G; Going, Scott B

    2011-09-01

    Childhood obesity is an established risk factor for metabolic disease. The influence of obesity on bone development, however, remains controversial and may depend on the pattern of regional fat deposition. Therefore, we examined the associations of regional fat compartments of the calf and thigh with weight-bearing bone parameters in girls. Data from 444 girls aged 9 to 12 years from the Jump-In: Building Better Bones study were analyzed. Peripheral quantitative computed tomography (pQCT) was used to assess bone parameters at metaphyseal and diaphyseal sites of the femur and tibia along with subcutaneous adipose tissue (SAT, mm(2) ) and muscle density (mg/cm(3) ), an index of skeletal muscle fat content. As expected, SAT was positively correlated with total-body fat mass (r = 0.87-0.89, p  .05), except the distal tibia (β = 0.09, p = .03). In conclusion, skeletal muscle fat content of the calf and thigh is inversely associated with weight-bearing bone strength in young girls. Copyright © 2011 American Society for Bone and Mineral Research.

  15. Effects of phyto-oestrogens on veal calf prostate histology

    NARCIS (Netherlands)

    Groot, M.J.

    2006-01-01

    In veal calf production plant-based proteins are frequently included in milk replacer fed to the animals. Since soy products, which are mostly used, are known for their high levels of phyto-oestrogens, the effects of these feeds on the veal calf prostate were examined. Goal was to determine whether

  16. Human skeletal muscle contains no detectable guanidinoacetic acid

    DEFF Research Database (Denmark)

    Ostojic, Sergej M; Ostojic, Jelena

    2018-01-01

    We analyzed data from previously completed trials to determine the effects of supplemental guanidinoacetic acid (GAA) on markers of muscle bioenergetics in healthy men using 1.5 T magnetic resonance spectroscopy. No detectable GAA (<0.1 μmol/L) was found in the vastus medialis muscle at baseline ...... nor at follow-up. This implies deficient GAA availability in the human skeletal muscle, suggesting absent or negligible potential for creatine synthesis from GAA inside this tissue, even after GAA loading....

  17. Prevalence of Giardia duodenalis assemblages in weaned cattle on cow-calf operations in the United States.

    Science.gov (United States)

    Santin, Monica; Dargatz, David; Fayer, Ronald

    2012-02-10

    To determine the prevalence of Giardia duodenalis in weaned beef calves on cow-calf operations in the United States, fecal specimens were collected from 819 calves (6-18 months of age) from 49 operations. After cleaning and concentration procedures to maximize recovery of cysts from feces, DNA was extracted from each of the 819 specimens. The presence of G. duodenalis was determined by nested PCR of a fragment of the SSU rRNA gene. All positive PCR products were subjected to sequence analysis. The overall sample level prevalence of Giardia was 33.5% with prevalence ranging from 0 to 100% among operations. The highest within herd prevalence of infected beef calves was found in one cow-calf operation from the South region (100%), followed by a cow-calf operation from the West region (90%), and three cow-calf operations from the Midwest region (87.5, 85, and 85%). Giardia was not detected in samples from 7 operations including 5 cow-calf operations from the South region, and 1 cow-calf operation each from the Midwest and West regions. Molecular analysis of the Giardia-positive samples identified assemblage E (or E-like) in 31.7% of all samples (260/819) and assemblage A in 1.2% (10/819). A mixed infection with assemblages A and E was observed in four calves from an operation in Midwest region. The potentially zoonotic assemblage A was detected in specimens from four operations in Midwest region. These findings indicate that most G. duodenalis found in weaned beef calves was assemblage E which represents no known zoonotic threat. However, the presence of assemblage A in a small number of animals poses a potential risk of infection to humans. Published by Elsevier B.V.

  18. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2012-07-15

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 {+-} 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. (orig.)

  19. Extracellular polysaccharides purified from Aureobasidium pullulans SM-2001 (Polycan) inhibit dexamethasone-induced muscle atrophy in mice

    Science.gov (United States)

    Cho, Hyung-Rae; Park, Dong-Chan; Jung, Go-Woon

    2018-01-01

    The present study assessed the beneficial skeletal muscle-preserving effects of extracellular polysaccharides from Aureobasidium pullulans SM-2001 (Polycan) (EAP) on dexamethasone (DEXA)-induced catabolic muscle atrophy in mice. To investigate whether EAP prevented catabolic DEXA-induced muscle atrophy, and to examine its mechanisms of action, EAP (100, 200 and 400 mg/kg) was administered orally, once a day for 24 days. EAP treatment was initiated 2 weeks prior to DEXA treatment (1 mg/kg, once a day for 10 days) in mice. Body weight alterations, serum biochemistry, calf thickness, calf muscle strength, gastrocnemius muscle thickness and weight, gastrocnemius muscle antioxidant defense parameters, gastrocnemius muscle mRNA expression, histology and histomorphometry were subsequently assessed. After 24 days, DEXA control mice exhibited muscle atrophy according to all criteria indices. However, these muscle atrophy symptoms were significantly inhibited by oral treatment with all three doses of EAP. Regarding possible mechanisms of action, EAP exhibited favorable ameliorating effects on DEXA-induced catabolic muscle atrophy via antioxidant and anti-inflammatory effects; these effects were mediated by modulation of the expression of genes involved in muscle protein synthesis (AKT serine/threonine kinase 1, phosphatidylinositol 3-kinase, adenosine A1 receptor and transient receptor potential cation channel subfamily V member 4) and degradation (atrogin-1, muscle RING-finger protein-1, myostatin and sirtuin 1). Therefore, these results indicated that EAP may be helpful in improving muscle atrophies of various etiologies. EAP at 400 mg/kg exhibited favorable muscle protective effects against DEXA-induced catabolic muscle atrophy, comparable with the effects of oxymetholone (50 mg/kg), which has been used to treat various muscle disorders. PMID:29138805

  20. Comparison between neurectomy and botulinum toxin A injection for denervated skeletal muscle.

    Science.gov (United States)

    Tsai, Feng-Chou; Hsieh, Ming-Shium; Chou, Chih-Ming

    2010-08-01

    Neurectomy and botulinum toxin A (BoNT-A) injection cause denervated muscle atrophy, but questions remain about their clinical utility. We investigated time-series alterations of rat muscle weight, functional deficits, signaling pathways, and microscopic structures, to gain an understanding of the clinical implications. Between 2008 and 2009, the maximal calf circumference of patients for calf reduction either by neurectomy or BoNT-A injections were recorded for study. A rat skeletal muscle model was established through repeated or dose-adjusted BoNT-A injections and neurectomy. The survival, apoptosis pathways, functional deficits, and microscopic structures were investigated using Western blot, sciatic functional index (SFI), and transmission electron microscopy (TEM), respectively. The rat muscle weight ratio of the BoNT-A group had recovered to 89.3 +/- 3.8% by week 58, but it never recovered in the neurectomy group. Muscle weight reduction by BoNT-A not only depended on the dose, but additive effects were also obtained through repeated injections. Rat SFI demonstrated rapid recovery in both groups. Molecular expressions showed a coherent and biphasic pattern. p-Akt and apoptosis-inducing factor (AIF) were upregulated significantly, with a peak at 8 weeks in the neurectomy group (p structure disruption and sarcomere discontinuity in the neurectomy and BoNT-A groups, respectively. We demonstrated that denervation induced lasting muscle weight and structural changes of different degrees. Muscle weight reduction by BoNT-A was related to frequency and dose. AIF-mediated caspase-independent apoptosis was significantly different for neurectomy and BoNT-A injection.

  1. Interactions of mean body and local skin temperatures in the modulation of human forearm and calf blood flows: a three-dimensional description.

    Science.gov (United States)

    Caldwell, Joanne N; Matsuda-Nakamura, Mayumi; Taylor, Nigel A S

    2016-02-01

    The inter-relationships between mean body and local skin temperatures have previously been established for controlling hand and foot blood flows. Since glabrous skin contains many arteriovenous anastomoses, it was important to repeat those experiments on non-glabrous regions using the same sample and experimental conditions. Mild hypothermia (mean body temperature 31.4 °C), normothermia (control: 36.0 °C) and moderate hyperthermia (38.3 °C) were induced and clamped (climate chamber and water-perfusion garment) in eight males. Within each condition, five localised thermal treatments (5, 15, 25, 33, 40 °C) were applied to the left forearm and right calf. Steady-state forearm and calf blood flows were measured (venous occlusion plethysmography) for each of the resulting 15 combinations of clamped mean body and local skin temperatures. Under the normothermic clamp, cutaneous blood flows averaged 4.2 mL 100 mL(-1) min(-1) (±0.28: forearm) and 5.4 mL 100 mL(-1) min(-1) (±0.27: calf). When mildly hypothermic, these segments were unresponsive to localised thermal stimuli, but tracked those changes when normothermic and moderately hyperthermic. For deep-body (oesophageal) temperature elevations, forearm blood flow increased by 5.1 mL 100 mL(-1) min(-1) °C(-1) (±0.9) relative to normothermia, while the calf was much less responsive: 3.3 mL 100 mL(-1) min(-1) °C(-1) (±1.5). Three-dimensional surfaces revealed a qualitative divergence in the control of calf blood flow, with vasoconstrictor tone apparently being released more gradually. These descriptions reinforce the importance of deep-tissue temperatures in controlling cutaneous perfusion, with this modulation being non-linear at the forearm and appearing linear for the calf.

  2. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    Science.gov (United States)

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, Ppush-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Tissue culture media supplemented with 10% fetal calf serum contains a castrate level of testosterone.

    NARCIS (Netherlands)

    Sedelaar, J.P.M.; Isaacs, J.T.

    2009-01-01

    BACKGROUND: Human prostate cancer cells are routinely maintained in media supplemented with 10% Fetal Calf Serum (FCS) to provide androgen. In the present study, total and free testosterone levels in 10%FCS supplemented tissue culture media were determined and compared to levels in intact and

  4. Estimation of carcass composition using rib dissection of calf-fed Holstein steers supplemented zilpaterol hydrochloride.

    Science.gov (United States)

    McEvers, T J; May, N D; Reed, J A; Walter, L J; Hutcheson, J P; Lawrence, T E

    2018-04-14

    A serial harvest was conducted every 28 d from 254 to 534 d on feed (DOF) to quantify changes in growth and composition of calf-fed Holstein steers (n = 115, initial body weight (BW) = 449.2 ± 19.9 kg). One-half were supplemented with the β-2 adrenergic agonist zilpaterol hydrochloride (ZH; 8.33 mg/kg 100% dry matter (DM) basis) during the final 20 d followed by a 3-d withdrawal prior to harvest; the remainder was fed a non-ZH control (CON) ration. Five steers were randomly selected and harvested after 226 DOF which served as a reference point for modeling purposes. Fabricated carcass soft tissue was ground, mixed, and subsampled for proximate analysis. Moreover, following the traditional method of rib dissection which includes the 9th, 10th, and 11th rib contained within the IMPS 103 primal, the relationship of carcass chemical composition to 9-10-11 rib composition was evaluated. Carcasses in this investigation had more (P carcasses and rib dissections. Using regression procedures, models were constructed to describe the relationship of rib dissection (RD) composition including separable lean (RDSL), separable fat (RDSF), separable bone (RDSB), ether extract (RDEE), protein (RDP), moisture (RDM), and ash (RDA) with carcass composition. Carcass lean (CL), carcass fat (CF), and carcass bone (CB) were correlated (P carcass, carcass ether extract (CEE), carcass protein (CP), carcass moisture (CM), and carcass ash (CA) were correlated (P ≤ 0.01) with simple r values of 0.75, 0.31, 0.66, and 0.37, respectively. Equations to predict carcass fatness from rib dissection variables and ZH supplementation status were only able to account for 50 and 56%, of the variability of CF and CEE, respectively. Overall, the relationships quantified and equations developed in this investigation do not support use of 9/10/11 rib dissection for estimation of carcass composition of calf-fed Holstein steers.

  5. Acute compartment syndrome after rupture of the medial head of the gastrocnemius muscle.

    Science.gov (United States)

    Russell, G V; Pearsall, A W; Caylor, M T; Nimityongskul, P

    2000-02-01

    Rupture of the gastrocnemius muscle is an uncommon injury, with most cases occurring in athletically active individuals. The presentation of a gastrocnemius rupture is the acute onset of calf pain and subsequent ecchymosis. Most of these injuries can be treated symptomatically with good results. We present an unusual case of gastrocnemius muscle tear complicated by acute compartment syndrome. Physicians need to be aware of this potentially devastating complication of gastrocnemius rupture.

  6. Noninvasive Cu-64-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, D.; Kjaer, M.; Madsen, J.

    2009-01-01

    the first PET/CT scan. Standardized uptake values (SUVs) were calculated for the Achilles tendons and triceps surae muscles and were correlated to gene expression of HIF1 alpha and CAIII using real-time polymerase chain reaction. Results: Immediately after the contractions, uptake of Cu-64-ATSM......The purpose of the present study was to investigate exercise-related changes in oxygenation in rat skeletal muscles and tendons noninvasively with PET/CT and the hypoxia-selective tracer Cu-64-diacetyl bis(N-4-methylthiosemicarbazone) (ATSM) and to quantitatively study concomitant changes in gene...... expression of 2 hypoxia-related genes, hypoxia-inducible factor 1 alpha (HIF1 alpha) and carbonic anhydrase III (CAIII). Methods: Two groups of Wistar rats performed 1-leg contractions of the calf muscle by electrostimulation of the sciatic nerve. After 10 min of muscle contractions, Cu-64-ATSM was injected...

  7. Noninvasive 64Cu-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Michael; Madsen, Jacob

    2009-01-01

    the first PET/CT scan. Standardized uptake values (SUVs) were calculated for the Achilles tendons and triceps surae muscles and were correlated to gene expression of HIF1alpha and CAIII using real-time polymerase chain reaction. RESULTS: Immediately after the contractions, uptake of (64)Cu......The purpose of the present study was to investigate exercise-related changes in oxygenation in rat skeletal muscles and tendons noninvasively with PET/CT and the hypoxia-selective tracer (64)Cu-diacetyl bis(N(4)-methylthiosemicarbazone) (ATSM) and to quantitatively study concomitant changes in gene...... expression of 2 hypoxia-related genes, hypoxia-inducible factor 1alpha (HIF1alpha) and carbonic anhydrase III (CAIII). METHODS: Two groups of Wistar rats performed 1-leg contractions of the calf muscle by electrostimulation of the sciatic nerve. After 10 min of muscle contractions, (64)Cu-ATSM was injected...

  8. Multi-frequency bioimpedance in human muscle assessment

    DEFF Research Database (Denmark)

    Bartels, Else Marie; Sørensen, Emma Rudbæk; Harrison, Adrian Paul

    2015-01-01

    Bioimpedance analysis (BIA) is a well-known and tested method for body mass and muscular health assessment. Multi-frequency BIA (mfBIA) equipment now makes it possible to assess a particular muscle as a whole, as well as looking at a muscle at the fiber level. The aim of this study was to test...... healthy human control subjects and three selected cases were examined to demonstrate the extent to which this method may be used clinically, and in relation to training in sport. The electrode setup is shown to affect the mfBIA parameters recorded. Our recommendation is the use of noble metal electrodes......, contracted state, and cell transport/metabolic activity, which relate to muscle performance. Our findings indicate that mfBIA provides a noninvasive, easily measurable and very precise momentary assessment of skeletal muscles....

  9. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-06-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.

  10. Calprotectin is released from human skeletal muscle tissue during exercise

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian

    2008-01-01

    Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle. IL-6 was infused for 3 h into healthy young males (n = 7) and muscle biopsies obtained...... in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known...... as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of approximately 50...

  11. Calf health from birth to weaning. III. housing and management of calf pneumonia

    Directory of Open Access Journals (Sweden)

    Lorenz Ingrid

    2011-10-01

    Full Text Available Abstract Calfhood diseases have a major impact on the economic viability of cattle operations. A three part review series has been developed focusing on calf health from birth to weaning. In this paper, the last of the three part series, we review disease prevention and management with particular reference to pneumonia, focusing primarily on the pre-weaned calf. Pneumonia in recently weaned suckler calves is also considered, where the key risk factors are related to the time of weaning. Weaning of the suckler calf is often combined with additional stressors including a change in nutrition, environmental change, transport and painful husbandry procedures (castration, dehorning. The reduction of the cumulative effects of these multiple stressors around the time of weaning together with vaccination programmes (preconditioning can reduce subsequent morbidity and mortality in the feedlot. In most studies, calves housed individually and calves housed outdoors with shelter, are associated with decreased risk of disease. Even though it poses greater management challenges, successful group housing of calves is possible. Special emphasis should be given to equal age groups and to keeping groups stable once they are formed. The management of pneumonia in calves is reliant on a sound understanding of aetiology, relevant risk factors, and of effective approaches to diagnosis and treatment. Early signs of pneumonia include increased respiratory rate and fever, followed by depression. The single most important factor determining the success of therapy in calves with pneumonia is early onset of treatment, and subsequent adequate duration of treatment. The efficacy and economical viability of vaccination against respiratory disease in calves remains unclear.

  12. Post-contractile BOLD contrast in skeletal muscle at 7 T reveals inter-individual heterogeneity in the physiological responses to muscle contraction.

    Science.gov (United States)

    Towse, Theodore F; Elder, Christopher P; Bush, Emily C; Klockenkemper, Samuel W; Bullock, Jared T; Dortch, Richard D; Damon, Bruce M

    2016-12-01

    Muscle blood oxygenation-level dependent (BOLD) contrast is greater in magnitude and potentially more influenced by extravascular BOLD mechanisms at 7 T than it is at lower field strengths. Muscle BOLD imaging of muscle contractions at 7 T could, therefore, provide greater or different contrast than at 3 T. The purpose of this study was to evaluate the feasibility of using BOLD imaging at 7 T to assess the physiological responses to in vivo muscle contractions. Thirteen subjects (four females) performed a series of isometric contractions of the calf muscles while being scanned in a Philips Achieva 7 T human imager. Following 2 s maximal isometric plantarflexion contractions, BOLD signal transients ranging from 0.3 to 7.0% of the pre-contraction signal intensity were observed in the soleus muscle. We observed considerable inter-subject variability in both the magnitude and time course of the muscle BOLD signal. A subset of subjects (n = 7) repeated the contraction protocol at two different repetition times (T R : 1000 and 2500 ms) to determine the potential of T 1 -related inflow effects on the magnitude of the post-contractile BOLD response. Consistent with previous reports, there was no difference in the magnitude of the responses for the two T R values (3.8 ± 0.9 versus 4.0 ± 0.6% for T R  = 1000 and 2500 ms, respectively; mean ± standard error). These results demonstrate that studies of the muscle BOLD responses to contractions are feasible at 7 T. Compared with studies at lower field strengths, post-contractile 7 T muscle BOLD contrast may afford greater insight into microvascular function and dysfunction. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    Science.gov (United States)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  14. Effects of exercise on insulin binding to human muscle

    International Nuclear Information System (INIS)

    Bonen, A.; Tan, M.H.; Clune, P.; Kirby, R.L.

    1985-01-01

    A procedure was developed to measure insulin binding to human skeletal muscle obtained via the percutaneous muscle biopsy technique. With this method the effects of exercise on insulin binding were investigated. Subjects (n = 9) exercised for 60 min on a bicycle ergometer at intensities ranging from 20-86% maximum O 2 consumption (VO 2 max). Blood samples were obtained before, during, and after exercise and analyzed for glucose and insulin. Muscle samples (250 mg) for the vastus lateralis were obtained 30 min before exercise, at the end of exercise, and 60 min after exercise. Two subjects rested during the experimental period. There was no linear relationship between exercise intensities and the changes in insulin binding to human muscle. At rest (n = 2) and at exercise intensities below 60% VO 2 max (n = 5) no change in insulin binding occurred (P greater than 0.05). However, when exercise occurred at greater than or equal to 69% VO 2 max (n = 4), a pronounced decrement in insulin binding (30-50%) was observed (P less than 0.05). This persisted for 60 min after exercise. These results indicate that insulin binding in human muscle is not altered by 60 min of exercise at less than or equal to 60% VO 2 max but that a marked decrement occurs when exercise is greater than or equal to 69% VO 2 max

  15. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  16. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  17. Human skeletal muscle drug transporters determine local exposure and toxicity of statins.

    Science.gov (United States)

    Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G

    2010-02-05

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.

  18. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study....

  19. Comparison of the prevalence of sarcopenia using skeletal muscle mass index and calf circumference applying the European consensus definition in elderly Mexican women.

    Science.gov (United States)

    Velazquez-Alva, Maria Consuelo; Irigoyen Camacho, Maria Esther; Lazarevich, Irina; Delgadillo Velazquez, Jaime; Acosta Dominguez, Patricia; Zepeda Zepeda, Marco A

    2017-01-01

    To compare the prevalence of sarcopenia using two indicators: skeletal muscle mass index (SMI) and calf circumference (CC) used in the algorithm proposed by the European Working Group on Sarcopenia in Mexican elderly women. This was a cross-sectional study. Lean body mass was determined by dual-energy X-ray absorptiometry. To define sarcopenia, the SMI was obtained using a cut-off value of 5.5 kg/m 2 , and the CC cut-off was 31 cm. For gait speed and handgrip strength, the cut-off values were 0.8 m/s and 20 kg, respectively. A total of 137 women (mean age 73.8 ± 6.7 years) participated in the study. The prevalence of sarcopenia was 14.6% using SMI and 11.0% using CC (P = 0.009). Body mass index was associated with a lower probability of sarcopenia applying SMI or CC (OR 0.75, P = 0.002 for SMI and OR 0.71, P = 0.004 for CC). Sarcopenia evaluated either with dual-energy X-ray absorptiometry or CC was not associated with physical performance, such as five times chair stand test, timed up and go test and short physical performance battery. Additionally, SMI was not associated with physical performance, five times chair stand test (P = 0.775) and timed up-and-go test (P = 0.341). The prevalence of sarcopenia in active elderly women was low. A higher prevalence of sarcopenia was detected using SMI compared with CC. It is important to identify the best methods to assess skeletal muscle mass to obtain a reliable diagnosis of sarcopenia. Geriatr Gerontol Int 2017; 17: 161-170. © 2015 Japan Geriatrics Society.

  20. Observational Study on the Occurrence of Muscle Spindles in Human Digastric and Mylohyoideus Muscles

    Directory of Open Access Journals (Sweden)

    Daniele Saverino

    2014-01-01

    Full Text Available Although the occurrence of muscle spindles (MS is quite high in most skeletal muscles of humans, few MS, or even absence, have been reported in digastric and mylohyoideus muscles. Even if this condition is generally accepted and quoted in many papers and books, observational studies are scarce and based on histological sections of a low number of specimens. The aim of the present study is to confirm previous data, assessing MS number in a sample of digastric and mylohyoideus muscles. We investigated 11 digastric and 6 mylohyoideus muscles from 13 donors. Muscle samples were embedded in paraffin wax, cross-sectioned in a rostrocaudal direction, and stained using haematoxylin-eosin. A mean of 5.1 ± 1.1 (range 3–7 MS was found in digastric muscles and mean of 0.5 ± 0.8 (range 0–2 in mylohyoideus muscles. A significant difference (P<0.001 was found with the control sample, confirming the correctness of the histological procedure. Our results support general belief that the absolute number of spindles is sparse in digastric and mylohyoideus muscles. External forces, such as food resistance during chewing or gravity, do not counteract jaw-opening muscles. It is conceivable that this condition gives them a limited proprioceptive importance and a reduced need for having specific receptors as MS.

  1. Calf management practices and associations with herd-level morbidity and mortality on beef cow-calf operations.

    Science.gov (United States)

    Murray, C F; Fick, L J; Pajor, E A; Barkema, H W; Jelinski, M D; Windeyer, M C

    2016-03-01

    The objective of this study was to investigate calf management practices on beef cow-calf operations and determine associations with herd-level morbidity and mortality of pre-weaned calves. A 40-question survey about management practices, morbidity and mortality was administered to cow-calf producers by distributing paper surveys and by circulating an online link through various media. A total of 267 producers completed the survey. Data were analyzed with descriptive statistics and multivariable linear regression models. Average herd-level treatment risk for pre-weaning calf diarrhea (PCD) and bovine respiratory disease (BRD) were 4.9% and 3.0%, respectively. Average herd-level mortality within the first 24 h of life (stillbirth), from 1 to 7 days and 7 days to weaning were 2.3%, 1.1%, and 1.4%, respectively. Operations that never intervened at parturition had 4.7% higher PCD than those that occasionally did. On operations using small elastrator bands for castration, PCD was 1.9% higher than those using other methods. For every increase of 100 cows in herd size, BRD decreased by 1.1%. The association between BRD and PCD varied by when calving season began. Operations that used off-farm, frozen colostrum had a 1.1% increase in stillbirths. Operations that verified a calf had suckled had 0.7% lower mortality from 1 to 7 days of age. Those that intervened when colostrum was abnormal or that used small elastrator bands for castration had 1.9% and 1.4% higher mortality during the 1st week of life, respectively, compared with other operations. Mortality from 7 days to weaning was lower by 0.7% when calving season started in April compared with January or February and was higher by 1.0% for each additional week of calving season. Operations that intervened with colostrum consumption for assisted calvings had lower mortality from 7 days to weaning by 0.8% compared with those that did not. For every 1.0% increase in BRD, mortality from 7 days to weaning increased by 1

  2. The severity of muscle ischemia during intermittent claudication.

    Science.gov (United States)

    Egun, Anselm; Farooq, Vasim; Torella, Francesco; Cowley, Richard; Thorniley, Maureen S; McCollum, Charles N

    2002-07-01

    The degree of ischemia during intermittent claudication is difficult to quantify. We evaluated calf muscle ischemia during exercise in patients with claudication with near infrared spectroscopy. A Critikon Cerebral Redox Model 2001 (Johnson & Johnson Medical, Newport, Gwent, United Kingdom) was used to measure calf muscle deoxygenated hemoglobin (HHb), oxygenated hemoglobin (O(2)Hb), and total hemoglobin levels and oxygenation index (HbD; HbD = O(2)Hb - HHb) in 16 patients with claudication and in 14 control subjects before, during, and after walking on a treadmill for 1 minute (submaximal exercise). These measures were repeated after a second maximal exercise in patients with claudication and after 7 minutes walking in control subjects. Near-infrared spectroscopy readings during maximal exercise were then compared with a model of total ischemia induced with tourniquet in 16 young control subjects. Total hemoglobin level changed little during exercise in both patients with claudication and control subjects. HHb levels rose, and O(2)Hb level and HbD falls were more pronounced in patients with claudication than in control subjects after submaximal and maximal exercise. During maximal exercise, HbD fell markedly by a median (interquartile range) of 210.5 micromol/cm (108.2 to 337.0 micromol/cm) in patients with claudication compared with 66.0 micromol/cm (44.0 to 101.0 micromol/cm) in elderly control subjects and 41.0 micromol/cm (36.0 to 65.0 micromol/cm) in young control subjects (P <.001). This fall also was greater than the HbD fall induced with tourniquet ischemia at 90.8 micromol/cm (57.6 to 126.2 micromol/cm; P =.006). Hemoglobin desaturation in exercising calf muscle is profound in patients with claudication, considerably greater even than that induced with three minutes of tourniquet occlusion. Further studies are necessary to investigate the relationship between the inflammatory response and near-infrared spectroscopy during exercise in patients with

  3. Artificial muscle: the human chimera is the future.

    Science.gov (United States)

    Tozzi, P

    2011-12-14

    Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

  4. Implementing a novel movement-based approach to inferring parturition and neonate caribou calf survival.

    Directory of Open Access Journals (Sweden)

    Maegwin Bonar

    Full Text Available In ungulates, parturition is correlated with a reduction in movement rate. With advances in movement-based technologies comes an opportunity to develop new techniques to assess reproduction in wild ungulates that are less invasive and reduce biases. DeMars et al. (2013, Ecology and Evolution 3:4149-4160 proposed two promising new methods (individual- and population-based; the DeMars model that use GPS inter-fix step length of adult female caribou (Rangifer tarandus caribou to infer parturition and neonate survival. Our objective was to apply the DeMars model to caribou populations that may violate model assumptions for retrospective analysis of parturition and calf survival. We extended the use of the DeMars model after assigning parturition and calf mortality status by examining herd-wide distributions of parturition date, calf mortality date, and survival. We used the DeMars model to estimate parturition and calf mortality events and compared them with the known parturition and calf mortality events from collared adult females (n = 19. We also used the DeMars model to estimate parturition and calf mortality events for collared female caribou with unknown parturition and calf mortality events (n = 43 and instead derived herd-wide estimates of calf survival as well as distributions of parturition and calf mortality dates and compared them to herd-wide estimates generated from calves fitted with VHF collars (n = 134. For our data, the individual-based method was effective at predicting calf mortality, but was not effective at predicting parturition. The population-based method was more effective at predicting parturition but was not effective at predicting calf mortality. At the herd-level, the predicted distributions of parturition date from both methods differed from each other and from the distribution derived from the parturition dates of VHF-collared calves (log-ranked test: χ2 = 40.5, df = 2, p < 0.01. The predicted distributions of calf

  5. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  6. Localized bioimpedance to assess muscle injury

    International Nuclear Information System (INIS)

    Nescolarde, L; Rosell-Ferrer, J; Yanguas, J; Lukaski, H; Alomar, X; Rodas, G

    2013-01-01

    Injuries to lower limb muscles are common among football players. Localized bioimpedance analysis (BIA) utilizes electrical measurements to assess soft tissue hydration and cell membrane integrity non-invasively. This study reports the effects of the severity of muscle injury and recovery on BIA variables. We made serial tetra-polar, phase-sensitive 50 kHz localized BIA measurements of quadriceps, hamstring and calf muscles of three male football players before and after injury and during recovery until return-to-play, to determine changes in BIA variables (resistance (R), reactance (Xc) and phase angle (PA)) in different degrees of muscle injury. Compared to non-injury values, R, Xc and PA decreased with increasing muscle injury severity: grade III (23.1%, 45.1% and 27.6%), grade II (20.6%, 31.6% and 13.3%) and grade I (11.9%, 23.5% and 12.1%). These findings indicate that decreases in R reflect localized fluid accumulation, and reductions in Xc and PA highlight disruption of cellular membrane integrity and injury. Localized BIA measurements of muscle groups enable the practical detection of soft tissue injury and its severity. (paper)

  7. Bilateral calf chronic compartment syndrome in an elderly male: a case report.

    LENUS (Irish Health Repository)

    Siau, Keith

    2009-01-01

    Leg pain is a common presentation to the outpatient department. Bilateral calf chronic compartment syndrome is a rare cause of bilateral calf pain. Although this condition has been well documented in young athletes, it has rarely been reported in the elderly. We present the case of a 68-year-old male bodybuilder with bilateral calf chronic compartment syndrome, describe the presentation and evaluation of the condition, and provide a review of the literature herewith.

  8. A frozen-thawed in vitro-matured bovine oocyte derived calf with normal growth and fertility.

    Science.gov (United States)

    Otoi, T; Yamamoto, K; Koyama, N; Tachikawa, S; Suzuki, T

    1996-08-01

    The growth and fertility of a female calf obtained from a frozen-thawed bovine oocyte was assessed. The birth weight of the calf was lower than the mean birth weight of calves from in vitro fertilized embryos (IVF-controls) and calves obtained by artificial insemination (AI-controls). The growth rate of the calf up to 6 months was slower than that of the IVF-controls, but similar to that of the AI-controls. When the calf developed into a heifer (200 kg), she was inseminated with frozen semen and 280 days later delivered a male calf. The chromosoms of this cow were normal. These findings suggest that the growth and fertility of the calf derived from the frozen oocyte are normal.

  9. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

    Science.gov (United States)

    Siebert, Tobias; Leichsenring, Kay; Rode, Christian; Wick, Carolin; Stutzig, Norman; Schubert, Harald; Blickhan, Reinhard; Böl, Markus

    2015-01-01

    The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or

  10. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

    Directory of Open Access Journals (Sweden)

    Tobias Siebert

    Full Text Available The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle and geometric (three-dimensional architecture, n = 3 per muscle muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle. Maximum shortening velocity (normalized to optimal fiber length of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components, enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic

  11. Effects of elevated iodine in milk replacer on calf performance.

    Science.gov (United States)

    Jenkins, K J; Hidiroglou, M

    1990-03-01

    Calves were fed milk replacer containing .57, 10, 50, 100, or 200 ppm iodine (from ethylenediaminedihydroiodide) in DM, from 3 to 38 d of age, to estimate the minimum toxic concentration of iodine. Only the 200 ppm iodine intake reduced weight gains, DM intake, feed efficiency, and DM digestibility. At the 100 and 200 ppm iodine intakes, protein digestibility was reduced, and calves showed typical symptoms of iodine toxicity (nasal discharge, excessive tear and saliva formation, and coughing from tracheal congestion). Thyroid iodine increased with every elevation in iodine intake. Iodine in plasma, bile, and non-thyroid tissues started to increase at the 50 ppm intake and, except for muscle, tended to increase again at the 100 and 200 ppm intakes. Thus, the preruminant calf tolerated up to 50 ppm iodine in milk replacer DM for 5 wk postpartum. However, as iodine concentrations in plasma and nonthyroid tissues started to increase at 50 ppm iodine, an upper limit of 10 ppm would be more preferable.

  12. The acute response of pericytes to muscle-damaging eccentric contraction and protein supplementation in human skeletal muscle.

    Science.gov (United States)

    De Lisio, Michael; Farup, Jean; Sukiennik, Richard A; Clevenger, Nicole; Nallabelli, Julian; Nelson, Brett; Ryan, Kelly; Rahbek, Stine K; de Paoli, Frank; Vissing, Kristian; Boppart, Marni D

    2015-10-15

    Skeletal muscle pericytes increase in quantity following eccentric exercise (ECC) and contribute to myofiber repair and adaptation in mice. The purpose of the present investigation was to examine pericyte quantity in response to muscle-damaging ECC and protein supplementation in human skeletal muscle. Male subjects were divided into protein supplement (WHY; n = 12) or isocaloric placebo (CHO; n = 12) groups and completed ECC using an isokinetic dynamometer. Supplements were consumed 3 times/day throughout the experimental time course. Biopsies were collected prior to (PRE) and 3, 24, 48, and 168 h following ECC. Reflective of the damaging protocol, integrin subunits, including α7, β1A, and β1D, increased (3.8-fold, 3.6-fold and 3.9-fold, respectively, P muscle-damaging ECC increases α7β1 integrin content in human muscle, yet pericyte quantity is largely unaltered. Future studies should focus on the capacity for ECC to influence pericyte function, specifically paracrine factor release as a mechanism toward pericyte contribution to repair and adaptation postexercise. Copyright © 2015 the American Physiological Society.

  13. Intermuscular force transmission between human plantarflexor muscles in vivo

    DEFF Research Database (Denmark)

    Bojsen-Møller, Jens; Schwartz, Sidse; Kalliokoski, Kari K

    2010-01-01

    of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary...... surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited...

  14. In vivo 31P-NMR studies on the energy metabolism of atrophic muscles in rate

    International Nuclear Information System (INIS)

    Yamagiwa, Tetsuo

    1988-01-01

    Using P-31 NMR spectra, energy metabolism in the rat calf muscle was examined. The body weight in the atrophy and control groups did not differ significantly. Both the wet weight and dry weight of the calf muscle were significantly lower in the atrophy group than the control group. The muscle weight relative to the body weight was significantly lower in the atrophy group as well than the control group. There was no significant difference in the P-31 NMR spectral pattern before tourniquet ischemia between the atrophy and control groups. Rapid decrease in phosphocreatine (PCr) and rapid increase in inorganic phosphate (Pi) were observed in both groups immediately after application of the tourniquet; however, the rates of these changes were slightly greater and the PCr/Pi ratio in the peak values was significantly smaller in the atrophy group than the control group. The pH value before the ischemia was 7.15 ± 0.02 for the control group and 7.16 ± 0.02 for the atrophy group, with no significant difference between the groups. During ischemia, the pH value decreased progressively in the two groups; however, it became significantly decreased in the atrophy group from 10 to 60 min after application of tourniquet. The decrease in pH became gradual 60 min later. Since the decrease in pH was more rapid in the atrophic muscle than the intact muscle, this buffering capacity seems to be reduced in the atrophic muscle. (N.K.)

  15. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  16. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exer......Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one......-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (phuman muscle....... The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p

  17. CT findings of leg muscles in the hemiplegics due to cerebrovascular accidents. Correlation to disuse atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi

    1987-09-01

    Muscle wastings in hemiplegics due to cerebrovascular accidents were studied with CT scanning in the mid-portion of the thigh and largest-diameter section of the calf bilaterally. Muscle size and average CT density of muscle were measured. The 80 patients were classified into one of the following three stages of disability, i.e. stage 1, severely disabled (wheel-chair-bound but capable of self care (20 patients)); stage 2, moderately disabled (poorly ambulatory (41 patients)); and stage 3, mildly disabled (well ambulatory (19 patients)). Muscle cross-sectional area and CT density in both legs of non-ambulatory patients were smaller and lower than those of other groups. The atrophic change was marked in the affected side, but it was also noticeable in the non-affected side. Gracilis muscle was relatively well spared in all 3 stages. These CT findings of hemiplegics were similar to those of disuse atropy in patients with knee or hip joint lesions. Atrophy was seen first in the quadriceps in thigh and flexor muscle group in calf. These findings were similar to the systemic myogenic or neurogenic atrophies. Although gracilis and sartorius muscles were spared in these systemic deseases, only gracilis muscle was spared in hemiplegics and in patients with disuse atrophy. The ratios of the size of quadriceps, adductor group and sartorius muscle of thigh in affected side to that of non-affected side were smaller in more severely disabled group. Those of the other muscles showed no differences among each stages. In stage 3, there was significant negative correlation between the ratio of quadriceps muscle and periods from the attack. There was no relationship between the severity of the muscle atrophy and parietal lobe lesion. The atrophy is considered to be the result of disuse from immobilization.

  18. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  19. COMPARATIVE EFFICIENCY OF CALF STARTER AND CONVENTIONAL RATIONS IN BUFFALO SUCKLING CALVES

    Directory of Open Access Journals (Sweden)

    F. Ahmad, M. A. Jabbar1, I. Ahmad2 , M. Rafique and I. Ahmad3

    2004-10-01

    Full Text Available Twenty-four buffalo calves, having similar age and initial body weight, were divided into two groups with equal number of calves of both sexes in each group to study the effect of calf starter ration on feed intake and weight gain. Calf starter and conventional dairy rations with crude protein 18% and total digestible nutrients 75–80% along with green fodder were offered ad libitum to calves of respective groups for a period of 113 days. The average daily feed intakes were 0.95 and 0.57 kg, average daily weight gains were 0.47 and 0.34 kg and feed conversion ratio averaged 2.00 and 1.70 in calf starter and conventional groups respectively. On the overall performance, calf starter group was found better than the conventional ration.

  20. The influence of training status on the drop in muscle strength after acute exercise

    DEFF Research Database (Denmark)

    Pingel, Jessica; Moerch, L; Kjaer, M

    2009-01-01

    to running exercise immediately after immobilization, the muscle strength of the triceps-surae muscles dropped even further, but just in the immobilized leg (41%; P importance of determining the muscle endurance when evaluating the effect of immobilization on muscle......Skeletal muscles fatigue after exercise, and reductions in maximal force appear. A difference in training status between the legs was introduced by unilateral immobilization of the calf muscles for 2 weeks in young men, who were randomly assigned to two groups, either a RUN group (n = 8......) that was exposed to prolonged exercise (1-h running: individual pace) or a REST group (n = 12) that did no exercise after immobilization. Cross-sectional area (CSA) of the triceps-surae muscles was calculated by magnetic resonance imaging (MRI), and maximal voluntary contraction (MVC) force of the plantar flexors...

  1. Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Prats Gavalda, Clara; Ploug, Thorkil

    2013-01-01

    Background: Impaired insulin sensitivity may partly arise from a dysregulated lipid metabolism in human skeletal muscle. This study investigates the expression levels of perilipin 2, 3, and 5, and four key lipases in human skeletal muscle from the subjects that exhibit a range from normal to very...

  2. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sara Martina Maffioletti

    2018-04-01

    Full Text Available Summary: Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. : Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons. Keywords: skeletal muscle, pluripotent stem cells, iPS cells, myogenic differentiation, tissue engineering, disease modeling, muscular dystrophy, organoids

  3. Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture.

    Science.gov (United States)

    Williams-Hatala, E M; Hatala, K G; Hiles, S; Rabey, K N

    2016-06-23

    Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses.

  4. The motor cortex drives the muscles during walking in human subjects

    DEFF Research Database (Denmark)

    Petersen, Tue Hvass; Willerslev-Olsen, Maria; Conway, B A

    2012-01-01

    Indirect evidence that the motor cortex and the corticospinal tract contribute to the control of walking in human subjects has been provided in previous studies. In the present study we used coherence analysis of the coupling between EEG and EMG from active leg muscles during human walking...... area and EMG from the anterior tibial muscle was found in the frequency band 24–40 Hz prior to heel strike during the swing phase of walking. This signifies that rhythmic cortical activity in the 24–40 Hz frequency band is transmitted via the corticospinal tract to the active muscles during walking...

  5. Influence of protein nutrition and virginiamycin supplementation on feedlot growth performance and digestive function of calf-fed Holstein steers.

    Science.gov (United States)

    Salinas-Chavira, J; Barreras, A; Plascencia, A; Montano, M F; Navarrete, J D; Torrentera, N; Zinn, R A

    2016-10-01

    Two experiments were conducted to examine the influence of protein and virginiamycin (VM) supplementation on feedlot growth performance, digestion, and metabolizable AA (MAA) supply of calf-fed Holstein steers. Growth performance and dietary energetics were evaluated in 120 Holstein steers (127 ± 9 kg). During the initial 112-d feeding period, a steam-flaked corn-based diet was balanced to meet either 100% (MAB) or 87% (UREA) of MAA requirements. Diets were supplemented with or without 22.5 mg/kg VM in a 2 × 2 factorial arrangement. Subsequently (d 112 to 308), all steers received the UREA diet with or without VM. During the initial 112-d, MAB increased ADG, G:F, and dietary NE ( 0.10) across initial supplementation treatments. Overall (d 1 to 308), MAB did not affect ADG ( > 0.10) but enhanced G:F efficiency ( = 0.03) and dietary NE ( = 0.05). During the initial 112-d period and through the remainder of the experiment, VM increased G:F ( 0.10) on ruminal digestion of OM, NDF, starch, microbial efficiency, or total tract digestion of OM and NDF. The MAB increased indispensable AA flow to the small intestine ( 0.10) total tract N digestion. Extrapolating from AA supplies in the metabolism study, MAB satisfied indispensable AA requirements during the initial 112-d period, whereas the UREA diet met 73.5% and 79.2% of methionine and lysine requirements, respectively. During the subsequent periods (d 112 to 308) indispensable AA supplies exceeded theoretical requirements. We conclude that enhancements in energy utilization when diets are balanced to meet MAA requirements of calf-fed Holstein steers during the initial 112-d feedlot period remain appreciable throughout time on feed. Virginiamycin enhanced efficiency of energy utilization throughout the feedlot growing-finishing period.

  6. Dyskospondylitis and paravertebral abscesses in a calf

    International Nuclear Information System (INIS)

    Testoni, S.

    2006-01-01

    A case of progressive spastic paraparesis due to a dyskospondylitis at the level of T9-T10 is described in a four-month old Holstein female calf. The calf was recumbent, but bright, alert and willing to suckle. Despite repeated attempts, the calf was not able to assume the sternal recumbency. The radiological findings were decisive for the in life diagnosis. Spinal radiography of the thoraco-lumbar region revealed lysis and collapse of T9 and T10 vertebral bodies; irregular proliferative new bone was evident. Lumbo-sacral myelography showed a narrowing and dorsal displacement of the ventral contrast column at the same spinal level, indicating a severe ventral extradural compression of the spinal cord. At the level of the thoracic cavity, a 20 x 15 cm diameter opacity extending ventrally to T8-T13 and caudo-dorsally to the heart was also evident. At gross necroscopy, two approximately 15 cm diameter encapsulated paravertebral abscesses were evident in the thoracis cavity just below the spinal column. A pure culture of Fusobacterium necrophorum was obtained from them. A saggital section of the spine showed an erosive suppurative process of T9 and T10 vertebral bodies that provoked the compression of the thoracic tract of the spinal cord [it

  7. ECONOMIC IMPACT OF CALF MORTALITY ON DAIRY FARMS IN KUWAIT

    Directory of Open Access Journals (Sweden)

    M. A. RAZZAQUE, M. BEDAIR, S. ABBAS AND T. AL-MUTAWA

    2009-07-01

    Full Text Available Objective of this study was to investigate the economic impact of mortality of pre-weaned calves on dairy cattle enterprise in Kuwait. Cost/benefit analysis model was applied to two different situations: in the first situation, a baseline scenario, field survey data without intervention using 1,280 newborn calves was used in first calving season. In the second situation, the intervention scenario (improved management, 665 newborn calves were used in second calving season during the following year. Calving seasons extended for 7 months from September to March. Calf performance studies were conducted from birth to weaning. Economic model was constructed on Microsoft Excel and used to evaluate the impact of calf mortality on calf enterprise. Results showed that gross margins increased from 13 to 35% as a result of implementation of intervention measures during the second calving season over baseline scenario. A significant correlation between increased veterinary expenses and an increase in revenues (r2 = 0.65, P<0.05 was observed. If the intervention measures such as colostrum feeding, nutrition and hygiene had not been implemented, the farms would have lose income from 12 to 51% of the gross revenues. Net income was influenced by costs of feeds, veterinary services and laborers. Discounted cash flow studies on a whole farm basis revealed that the impact of interventions was small (0-3%. Calf mortality could not be isolated from whole farm for assessing its impact on dairy farm economics. Economic studies demonstrated the cost/benefits of using the improved techniques of calf rearing.

  8. Vibration sensitivity of human muscle spindles and Golgi tendon organs.

    Science.gov (United States)

    Fallon, James B; Macefield, Vaughan G

    2007-07-01

    The responses of the various muscle receptors to vibration are more complicated than a naïve categorization into stretch (muscle spindle primary ending), length (muscle spindle secondary endings), and tension (Golgi tendon organs) receptors. To emphasize the similarity of responses to small length changes, we recorded from 58 individual muscle afferents subserving receptors in the ankle or toe dorsiflexors of awake human subjects (32 primary endings, 20 secondary endings, and six Golgi tendon organs). Transverse sinusoidal vibration was applied to the distal tendon of the receptor-bearing muscle, while subjects either remained completely relaxed or maintained a weak isometric contraction of the appropriate muscle. In relaxed muscle, few units responded in a 1:1 manner to vibration, and there was no evidence of a preferred frequency of activation. In active muscle the response profiles of all three receptor types overlapped, with no significant difference in threshold between receptor types. These results emphasize that when intramuscular tension increases during a voluntary contraction, Golgi tendon organs and muscle spindle secondary endings, not just muscle spindle primary endings, can effectively encode small imposed length changes.

  9. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8...... of slow fibers in the young (r = -0.45, P > 0.25) or in the elderly (r = 0. 11, P > 0.75) subjects. In conclusion, in human skeletal muscle, GLUT-4 expression is fiber type dependent and decreases with age, particularly in fast muscle fibers....

  10. Three-dimensional architecture of the whole human soleus muscle in vivo

    Science.gov (United States)

    Finni, Taija; D’Souza, Arkiev; Eguchi, Junya; Clarke, Elizabeth C.; Herbert, Robert D.

    2018-01-01

    Background Most data on the architecture of the human soleus muscle have been obtained from cadaveric dissection or two-dimensional ultrasound imaging. We present the first comprehensive, quantitative study on the three-dimensional anatomy of the human soleus muscle in vivo using diffusion tensor imaging (DTI) techniques. Methods We report three-dimensional fascicle lengths, pennation angles, fascicle curvatures, physiological cross-sectional areas and volumes in four compartments of the soleus at ankle joint angles of 69 ± 12° (plantarflexion, short muscle length; average ± SD across subjects) and 108 ± 7° (dorsiflexion, long muscle length) of six healthy young adults. Microdissection and three-dimensional digitisation on two cadaveric muscles corroborated the compartmentalised structure of the soleus, and confirmed the validity of DTI-based muscle fascicle reconstructions. Results The posterior compartments of the soleus comprised 80 ± 5% of the total muscle volume (356 ± 58 cm3). At the short muscle length, the average fascicle length, pennation angle and curvature was 37 ± 8 mm, 31 ± 3° and 17 ± 4 /m, respectively. We did not find differences in fascicle lengths between compartments. However, pennation angles were on average 12° larger (p < 0.01) in the posterior compartments than in the anterior compartments. For every centimetre that the muscle-tendon unit lengthened, fascicle lengths increased by 3.7 ± 0.8 mm, pennation angles decreased by −3.2 ± 0.9° and curvatures decreased by −2.7 ± 0.8 /m. Fascicles in the posterior compartments rotated almost twice as much as in the anterior compartments during passive lengthening. Discussion The homogeneity in fascicle lengths and inhomogeneity in pennation angles of the soleus may indicate a functionally different role for the anterior and posterior compartments. The data and techniques presented here demonstrate how DTI can be used to obtain detailed, quantitative measurements of the

  11. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  12. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-11-01

    Full Text Available Abstract Background The effects of fetal calf serum (FCS heat inactivation and bacterial lipopolysaccharide (LPS contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM cells were grown in FCS, either non-heated, or heat inactivated, having low ( Results A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE as compared to cells grown in media with non-heated FCS (NHE. Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1. Conclusion The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome.

  13. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  14. Effect of lipopolysaccharide on inflammation and insulin action in human muscle.

    Science.gov (United States)

    Liang, Hanyu; Hussey, Sophie E; Sanchez-Avila, Alicia; Tantiwong, Puntip; Musi, Nicolas

    2013-01-01

    Accumulating evidence from animal studies suggest that chronic elevation of circulating intestinal-generated lipopolysaccharide (LPS) (i.e., metabolic endotoxemia) could play a role in the pathogenesis of insulin resistance. However, the effect of LPS in human muscle is unclear. Moreover, it is unknown whether blockade/down regulation of toll-like receptor (TLR)4 can prevent the effect of LPS on insulin action and glucose metabolism in human muscle cells. In the present study we compared plasma LPS concentration in insulin resistant [obese non-diabetic and obese type 2 diabetic (T2DM)] subjects versus lean individuals. In addition, we employed a primary human skeletal muscle cell culture system to investigate the effect of LPS on glucose metabolism and whether these effects are mediated via TLR4. Obese non-diabetic and T2DM subjects had significantly elevated plasma LPS and LPS binding protein (LBP) concentrations. Plasma LPS (r = -0.46, P = 0.005) and LBP (r = -0.49, P = 0.005) concentrations negatively correlated with muscle insulin sensitivity (M). In human myotubes, LPS increased JNK phosphorylation and MCP-1 and IL-6 gene expression. This inflammatory response led to reduced insulin-stimulated IRS-1, Akt and AS160 phosphorylation and impaired glucose transport. Both pharmacologic blockade of TLR4 with TAK-242, and TLR4 gene silencing, suppressed the inflammatory response and insulin resistance caused by LPS in human muscle cells. Taken together, these findings suggest that elevations in plasma LPS concentration found in obese and T2DM subjects could play a role in the pathogenesis of insulin resistance and that antagonists of TLR4 may improve insulin action in these individuals.

  15. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans.......The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans....

  16. Popliteal vascular entrapment syndrome caused by a rare anomalous slip of the lateral head of the gastrocnemius muscle

    International Nuclear Information System (INIS)

    Liu, Patrick T.; Moyer, Adrian C.; Huettl, Eric A.; Fowl, Richard J.; Stone, William M.

    2005-01-01

    Popliteal vascular entrapment syndrome can result in calf claudication, aneurysm formation, distal arterial emboli, or popliteal vessel thrombosis. The most commonly reported causes of this syndrome have been anomalies of the medial head of the gastrocnemius muscle as it relates to the course of the popliteal artery. We report two cases of rare anomalous slips of the lateral head of the gastrocnemius muscle causing popliteal vascular entrapment syndrome. (orig.)

  17. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  18. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Directory of Open Access Journals (Sweden)

    Jared Markowitz

    2016-05-01

    Full Text Available Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG, and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  19. Video game-based neuromuscular electrical stimulation system for calf muscle training: a case study.

    Science.gov (United States)

    Sayenko, D G; Masani, K; Milosevic, M; Robinson, M F; Vette, A H; McConville, K M V; Popovic, M R

    2011-03-01

    A video game-based training system was designed to integrate neuromuscular electrical stimulation (NMES) and visual feedback as a means to improve strength and endurance of the lower leg muscles, and to increase the range of motion (ROM) of the ankle joints. The system allowed the participants to perform isotonic concentric and isometric contractions in both the plantarflexors and dorsiflexors using NMES. In the proposed system, the contractions were performed against exterior resistance, and the angle of the ankle joints was used as the control input to the video game. To test the practicality of the proposed system, an individual with chronic complete spinal cord injury (SCI) participated in the study. The system provided a progressive overload for the trained muscles, which is a prerequisite for successful muscle training. The participant indicated that he enjoyed the video game-based training and that he would like to continue the treatment. The results show that the training resulted in a significant improvement of the strength and endurance of the paralyzed lower leg muscles, and in an increased ROM of the ankle joints. Video game-based training programs might be effective in motivating participants to train more frequently and adhere to otherwise tedious training protocols. It is expected that such training will not only improve the properties of their muscles but also decrease the severity and frequency of secondary complications that result from SCI. Copyright © 2010 IPEM. All rights reserved.

  20. Plantarflexor muscle function in healthy and chronic Achilles tendon pain subjects evaluated by the use of EMG and PET imaging

    DEFF Research Database (Denmark)

    Masood, Tahir; Kalliokoski, Kari; Bojsen-Møller, Jens

    2014-01-01

    BACKGROUND: Achilles tendon pathologies may alter the coordinative strategies of synergistic calf muscles. We hypothesized that both surface electromyography and positron emission tomography would reveal differences between symptomatic and asymptomatic legs in Achilles tendinopathy patients and b...

  1. Muscle gene expression patterns in human rotator cuff pathology.

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J; Lieber, Richard L; Schenk, Simon; Lane, John G; Ward, Samuel R

    2014-09-17

    Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of myogenesis. These data highlight the

  2. Human Plasma and Human Platelet-rich Plasma as a Substitute for Fetal Calf Serum during Long-term Cultivation of Mesenchymal Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Tereza Suchánková Kleplová

    2014-01-01

    Full Text Available Aims: Our aims were to isolate and cultivate mesenchymal dental pulp stem cells (DPSC in various media enriched with human blood components, and subsequently to investigate their basic biological properties. Methods: DPSC were cultivated in five different media based on α MEM containing different concentrations of human plasma (HP, platelet-rich plasma (PRP, or fetal calf serum (FCS. The DPSC biological properties were examined periodically. Results: We cultivated DPSC in the various cultivation media over 15 population doublings except for the medium supplemented with 10% HP. Our results showed that DPSC cultivated in medium supplemented with 10% PRP showed the shortest average population doubling time (DT (28.6 ± 4.6 hours, in contrast to DPSC cultivated in 10% HP which indicated the longest DT (156.2 ± 17.8 hours; hence this part of the experiment had been cancelled in the 6th passage. DPSC cultivated in media with 2% FCS+ITS (DT 47.3 ± 10.4 hours, 2% PRP (DT 40.1 ± 5.7 hours and 2% HP (DT 49.0 ± 15.2 hours showed almost the same proliferative activity. DPSC’s viability in the 9th passage was over 90% except for the DPSC cultivated in the 10% HP media. Conclusions: We proved that human blood components are suitable substitution for FCS in cultivation media for long-term DPSC cultivation.

  3. Loci associated with adult stature also affect calf birth survival in cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Höglund, Johanna; Guldbrandtsen, Bernt

    2015-01-01

    growth and adult stature in several species. The QTL exhibited large effects on calf size and stature in Nordic Red cattle. Two deviant haplotypes (HAP1 and HAP2) were resolved which increased calf size at birth, and affected adult body conformation. However, the haplotypes also resulted in increased...

  4. Woodland caribou calf recruitment in relation to calving/post-calving landscape composition

    Directory of Open Access Journals (Sweden)

    Sara C. McCarthy

    2011-04-01

    Full Text Available Since the 1990s, Newfoundland’s woodland caribou (Rangifer tarandus caribou population has declined by an estimated 66%. Low calf recruitment has been associated to the decline, possibly triggered by increasing calf predation and/or decreasing resources. To investigate the role of landscape composition in this system, we studied the yearly (2005-2008 calving/post-calving range (CPCR of 104 satellite-collared females belonging to six herds. We mapped nine disturbance factors (e.g. roads, logging, etc, as well as vegetation cover types (e.g. coniferous, deciduous forests, etc, and determined the total area they occupied within CPCRs yearly for each herd. Using an information theoretic approach, we assessed the model that best explained variation in recruitment using these components. Based on corrected Akaike Information Criterion, the model that best explained variation in calf recruitment included total disturbance and deciduous forest area, both showing the expected negative relationship with calf recruitment. Other landscape variables among the models with ΔAICc < 2 were mixed forest, also with a suggested negative relationship, and barrens and wetlands with a significant positive trend. This study highlights the need to minimize total disturbance footprint and account for resulting changes in forest composition within CPCRs during land use planning. Expanding forestry operations and road infrastructure in critical woodland caribou habitat across Canada may additionally contribute to habitat loss via fragmentation. This in turn, may lead to range recession beyond the initial local avoidance footprint. We see the possibility of using calf recruitment models based on landscape parameters, among others, to predict the impact of new industrial developments on calf recruitment.

  5. Calf birth weight, gestation length, calving ease, and neonatal calf mortality in Holstein, Jersey, and crossbred cows in a pasture system.

    Science.gov (United States)

    Dhakal, K; Maltecca, C; Cassady, J P; Baloche, G; Williams, C M; Washburn, S P

    2013-01-01

    Holstein (HH), Jersey (JJ), and crosses of these breeds were mated to HH or JJ bulls to form purebreds, reciprocal crosses, backcrosses, and other crosses in a rotational mating system. The herd was located at the Center for Environmental Farming Systems in Goldsboro, North Carolina. Data for calf birth weight (CBW), calving ease (0 for unassisted, n=1,135, and 1 for assisted, n=96), and neonatal calf mortality (0 for alive, n=1,150, and 1 for abortions recorded after mid-gestation, stillborn, and dead within 48 h, n=81) of calves (n=1,231) were recorded over 9 calving seasons from 2003 through 2011. Gestation length (GL) was calculated as the number of days from last insemination to calving. Linear mixed models for CBW and GL included fixed effects of sex, parity (first vs. later parities), twin status, and 6 genetic groups: HH, JJ, reciprocal F(1) crosses (HJ, JH), crosses >50% Holsteins (HX) and crosses >50% Jerseys (JX), where sire breed is listed first. The CBW model also included GL as a covariate. Logistic regression for calving ease and neonatal calf mortality included fixed effects of sex, parity, and genetic group. Genetic groups were replaced by linear regression using percentage of HH genes as coefficients on the above models and included as covariates to determine various genetic effects. Year and dam were included as random effects in all models. Female calves (27.57±0.54 kg), twins (26.39±1.0 kg), and calves born to first-parity cows (27.67±0.56 kg) had lower CBW than respective male calves (29.53±0.53 kg), single births (30.71±0.19 kg), or calves born to multiparous cows (29.43±0.52 kg). Differences in genetic groups were observed for CBW and GL. Increased HH percentage in the calf increased CBW (+9.3±0.57 kg for HH vs. JJ calves), and increased HH percentage in the dams increased CBW (+1.71±0.53 kg for calves from HH dams vs. JJ dams); JH calves weighed 1.33 kg more than reciprocal HJ calves. Shorter GL was observed for twin births (272.6

  6. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering.

    Science.gov (United States)

    Maffioletti, Sara Martina; Sarcar, Shilpita; Henderson, Alexander B H; Mannhardt, Ingra; Pinton, Luca; Moyle, Louise Anne; Steele-Stallard, Heather; Cappellari, Ornella; Wells, Kim E; Ferrari, Giulia; Mitchell, Jamie S; Tyzack, Giulia E; Kotiadis, Vassilios N; Khedr, Moustafa; Ragazzi, Martina; Wang, Weixin; Duchen, Michael R; Patani, Rickie; Zammit, Peter S; Wells, Dominic J; Eschenhagen, Thomas; Tedesco, Francesco Saverio

    2018-04-17

    Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D) artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs) from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    Science.gov (United States)

    Jørgensen, Louise H.; Petersson, Stine J.; Sellathurai, Jeeva; Andersen, Ditte C.; Thayssen, Susanne; Sant, Dorte J.; Jensen, Charlotte H.; Schrøder, Henrik D.

    2009-01-01

    Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009) PMID:18796407

  8. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.

    Science.gov (United States)

    Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G

    2012-07-01

    Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  9. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    -specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  10. Architecture and functional ecology of the human gastrocnemius muscle-tendon unit.

    Science.gov (United States)

    Butler, Erin E; Dominy, Nathaniel J

    2016-04-01

    The gastrocnemius muscle-tendon unit (MTU) is central to human locomotion. Structural variation in the human gastrocnemius MTU is predicted to affect the efficiency of locomotion, a concept most often explored in the context of performance activities. For example, stiffness of the Achilles tendon varies among individuals with different histories of competitive running. Such a finding highlights the functional variation of individuals and raises the possibility of similar variation between populations, perhaps in response to specific ecological or environmental demands. Researchers often assume minimal variation in human populations, or that industrialized populations represent the human species as well as any other. Yet rainforest hunter-gatherers, which often express the human pygmy phenotype, contradict such assumptions. Indeed, the human pygmy phenotype is a potential model system for exploring the range of ecomorphological variation in the architecture of human hindlimb muscles, a concept we review here. © 2015 Anatomical Society.

  11. Detection of human muscle glycogen by natural abundance 13C NMR

    International Nuclear Information System (INIS)

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-01-01

    Natural abundance 13 C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated 1 H decoupling was used to obtain decoupled natural abundance 13 C NMR spectra of the C-1 position of muscle glycogen

  12. A Case Study of Respiratory Disease in a Veal Calf Operation

    Science.gov (United States)

    Palechek, Neil P.; Schoonderwoerd, Matt; Perry, Allen W.

    1987-01-01

    An outbreak of respiratory disease occurred in a central Alberta veal operation, after production capacity had been increased fourfold. Mortality rate reached 24.6% despite agressive antibiotic therapy. A review of the records revealed a cyclical disease pattern in each room. Weekly cleaning of occupied calf rooms was correlated with the disease pattern. Aerosols generated by a high pressure sprayer appeared to trigger transmission of respiratory pathogens in malnourished neonatal calves. Disease occurrence decreased and profitability increased sixfold after the introduction of the following measures: 1) discontinuing the use of the high pressure washer in the occupied calf rooms, 2) feeding calves a better quality milk replacer with supplemental milk for the poorest calves, 3) sale-yard calf purchases were abandoned in favor of direct buying. PMID:17422807

  13. Ultrastructure of striated muscle fibers in the middle third of the human esophagus

    OpenAIRE

    Faussone-Pellegrini, M.S; Cortesini, C.

    1986-01-01

    Striated muscle fibers and .their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimensioi~ (100-200 pm of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and ...

  14. Epitheliogenesis imperfecta in a crossbred Holstein calf, southwestern Iran

    Directory of Open Access Journals (Sweden)

    Shahrzad Azizi

    2016-08-01

    Full Text Available Epitheliogenesis imperfect (EI is a rare autosomal recessive skin defect that is clinically identified with absence of cutaneous epithelium of the limbs, muzzle and nostrils as well as oral mucous membranes. This congenital newborn desease is reported mainly in domestic animals. The present study described EI in a 13 day-old, female crossbred Holstein calf. Gross examination showed epithelium agenesis of two front and hind limbs skin around the carpal and tarsal joints, and also extensive areas of the metacarpal and metatarsal regions. The calf died 5 days after antibiotic therapy and use of topical cream.

  15. 31P magnetic resonance spectroscopy of skeletal muscle in patients with fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Jensen, K E; Thomsen, C

    1992-01-01

    31Phosphorous nuclear magnetic resonance (31P NMR) spectroscopy of painful calf muscle was performed in 12 patients with fibromyalgia (FS) and 7 healthy subjects during rest, aerobic and anaerobic exercising conditions, and postexercise recovery. Ratios of inorganic phosphate and creatinine...... phosphate (Pi/PCr) and pH were calculated from the collected 31P NMR spectra. Resting values of Pi/PCr were normal in the patients. Patients delivered only 49% of the muscle power of the controls (p = 0.005). Patients and controls had similar rates of Pi/PCr and pH changes during work and recovery...

  16. Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans.

    Directory of Open Access Journals (Sweden)

    Barbora de Courten

    Full Text Available Carnosine is a naturally present dipeptide abundant in skeletal muscle and an over-the counter food additive. Animal data suggest a role of carnosine supplementation in the prevention and treatment of obesity, insulin resistance, type 2 diabetes and cardiovascular disease but only limited human data exists.Samples of vastus lateralis muscle were obtained by needle biopsy. We measured muscle carnosine levels (high-performance liquid chromatography, % body fat (bioimpedance, abdominal subcutaneous and visceral adiposity (magnetic resonance imaging, insulin sensitivity (euglycaemic hyperinsulinemic clamp, resting energy expenditure (REE, indirect calorimetry, free-living ambulatory physical activity (accelerometers and lipid profile in 36 sedentary non-vegetarian middle aged men (45±7 years with varying degrees of adiposity and glucose tolerance. Muscle carnosine content was positively related to % body fat (r = 0.35, p = 0.04 and subcutaneous (r = 0.38, p = 0.02 but not visceral fat (r = 0.17, p = 0.33. Muscle carnosine content was inversely associated with insulin sensitivity (r = -0.44, p = 0.008, REE (r = -0.58, p<0.001 and HDL-cholesterol levels (r = -0.34, p = 0.048. Insulin sensitivity and physical activity were the best predictors of muscle carnosine content after adjustment for adiposity.Our data shows that higher carnosine content in human skeletal muscle is positively associated with insulin resistance and fasting metabolic preference for glucose. Moreover, it is negatively associated with HDL-cholesterol and basal energy expenditure. Intervention studies targeting insulin resistance, metabolic and cardiovascular disease risk factors are necessary to evaluate its putative role in the prevention and management of type 2 diabetes and cardiovascular disease.

  17. Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise

    International Nuclear Information System (INIS)

    Jemiolo, Bozena; Trappe, Scott

    2004-01-01

    Reverse transcription and real-time PCR have become the method of choice for the detection of low-abundance mRNA transcripts obtained from small human muscle biopsy samples. GAPDH, β-actin, β-2M, and 18S rRNA are widely employed as endogenous control genes, with the assumption that their expression is unregulated and constant for given experimental conditions. The aim of this study was to determine if mRNA transcripts could be performed on isolated human single muscle fibers and to determine reliable housekeeping genes (HKGs) using quantitative gene expression protocols at rest and in response to an acute exercise bout. Muscle biopsies were obtained from the gastrocnemius of three adult males before, immediately after, and 4 h following 30 min of treadmill running at 70% of VO 2 max. A total of 40 single fibers (MHC I and IIa) were examined for GAPDH, β-actin, β-2M, and 18S rRNA using quantitative RT-PCR and SYBR Green detection. All analyzed single fiber segments showed ribosomal RNA (28S/18S). No degradation or additional bands below ribosomal were detected (rRNA ratio 1.5-1.8). Also, no high or low-molecular weight genomic DNA contamination was observed. For each housekeeping gene the duplicate average SD was ±0.13 with a CV of 0.58%. Stable expression of GAPDH was observed at all time points for each fiber type (MHC I and IIa). Inconsistent expression of β-actin, β-2M, and 18S rRNA was observed during the post-exercise time points for each fiber type. These data indicate that successful extraction of high quality RNA from human single muscle fibers along with quantification of mRNA of selected genes can be performed. Furthermore, exercise does influence the expression of certain HKGs with GAPDH being the most stable

  18. Muscle oxygen kinetics at onset of intense dynamic exercise in humans

    DEFF Research Database (Denmark)

    Bangsbo, J; Krustrup, P; González-Alonso, J

    2000-01-01

    The present study examined the onset and the rate of rise of muscle oxidation during intense exercise in humans and whether oxygen availability limits muscle oxygen uptake in the initial phase of intense exercise. Six subjects performed 3 min of intense one-legged knee-extensor exercise [65.3 +/-...

  19. Leucine incorporation into mixed skeletal muscle protein in humans

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Griggs, R.C.

    1988-01-01

    Fractional mixed skeletal muscle protein synthesis (FMPS) was estimated in 10 postabsorptive healthy men by determining the increment in the abundance of [ 13 C]-leucine in quadriceps muscle protein during an intravenous infusion of L-[1- 13 C]leucine. Whole-body muscle protein synthesis (MPS) was calculated based on the estimation of muscle mass from creatinine excretion and compared with whole-body protein synthesis (WBPS) calculated from the nonoxidative portion of leucine flux. A significant correlation was found between MPS. The contribution of MPS to WBPS was 27 ± 1%, which is comparable to the reports in other species. Morphometric analyses of adjacent muscle samples in eight subjects demonstrated that the biopsy specimens consisted of 86.5 ± 2% muscular as opposed to other tissues. Because fiber type composition varies between biopsies, the authors examined the relationship between proportions of each fiber type and FMPS. Variation in the composition of biopsies and in fiber-type proportion did not affect the estimation of muscle protein synthesis rate. They conclude that stable isotope techniques using serial needle biopsies permit the direct measurement of FMPS in humans and that this estimation is correlated with an indirect estimation of WBPS

  20. Calf-raise senior: a new test for assessment of plantar flexor muscle strength in older adults: protocol, validity, and reliability.

    Science.gov (United States)

    André, Helô-Isa; Carnide, Filomena; Borja, Edgar; Ramalho, Fátima; Santos-Rocha, Rita; Veloso, António P

    2016-01-01

    This study aimed to develop a new field test protocol with a standardized measurement of strength and power in plantar flexor muscles targeted to functionally independent older adults, the calf-raise senior (CRS) test, and also evaluate its reliability and validity. Forty-one subjects aged 65 years and older of both sexes participated in five different cross-sectional studies: 1) pilot (n=12); 2) inter- and intrarater agreement (n=12); 3) construct (n=41); 4) criterion validity (n=33); and 5) test-retest reliability (n=41). Different motion parameters were compared in order to define a specifically designed protocol for seniors. Two raters evaluated each participant twice, and the results of the same individual were compared between raters and participants to assess the interrater and intrarater agreement. The validity and reliability studies involved three testing sessions that lasted 2 weeks, including a battery of functional fitness tests, CRS test in two occasions, accelerometry, and strength assessments in an isokinetic dynamometer. The CRS test presented an excellent test-retest reliability (intraclass correlation coefficient [ICC] =0.90, standard error of measurement =2.0) and interrater reliability (ICC =0.93-0.96), as well as a good intrarater agreement (ICC =0.79-0.84). Participants with better results in the CRS test were younger and presented higher levels of physical activity and functional fitness. A significant association between test results and all strength parameters (isometric, r =0.87, r 2 =0.75; isokinetic, r =0.86, r 2 =0.74; and rate of force development, r =0.77, r 2 =0.59) was shown. This study was successful in demonstrating that the CRS test can meet the scientific criteria of validity and reliability. The test can be a good indicator of ankle strength in older adults and proved to discriminate significantly between individuals with improved functionality and levels of physical activity.

  1. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions

    Directory of Open Access Journals (Sweden)

    Jose eGonzalez-Vargas

    2015-09-01

    Full Text Available Humans can efficiently walk across a large variety of terrains and locomotion conditions with little or no mental effort. It has been hypothesized that the nervous system simplifies neuromuscular control by using muscle synergies, thus organizing multi-muscle activity into a small number of coordinative co-activation modules. In the present study we investigated how muscle modularity is structured across a large repertoire of locomotion conditions including five different speeds and five different ground elevations. For this we have used the non-negative matrix factorization technique in order to explain EMG experimental data with a low-dimensional set of four motor components. In this context each motor components is composed of a non-negative factor and the associated muscle weightings. Furthermore, we have investigated if the proposed descriptive analysis of muscle modularity could be translated into a predictive model that could: 1 Estimate how motor components modulate across locomotion speeds and ground elevations. This implies not only estimating the non-negative factors temporal characteristics, but also the associated muscle weighting variations. 2 Estimate how the resulting muscle excitations modulate across novel locomotion conditions and subjects.The results showed three major distinctive features of muscle modularity: 1 the number of motor components was preserved across all locomotion conditions, 2 the non-negative factors were consistent in shape and timing across all locomotion conditions, and 3 the muscle weightings were modulated as distinctive functions of locomotion speed and ground elevation. Results also showed that the developed predictive model was able to reproduce well the muscle modularity of un-modeled data, i.e. novel subjects and conditions. Muscle weightings were reconstructed with a cross-correlation factor greater than 70% and a root mean square error less than 0.10. Furthermore, the generated muscle excitations

  2. Free-energy carriers in human cultured muscle cells

    NARCIS (Netherlands)

    Bolhuis, P. A.; de Zwart, H. J.; Ponne, N. J.; de Jong, J. M.

    1985-01-01

    Creatine phosphate (CrP), adenosine triphosphate (ATP), creatine kinase (CK), adenylate kinase (AK), protein, and DNA were quantified in human muscle cell cultures undergoing transition from dividing myoblasts to multinucleate myotubes. CrP is negligible in cultures grown in commonly applied media

  3. Evaluation of cottonseed oil-cake meal as a protein source in calf ...

    African Journals Online (AJOL)

    Unknown

    were encouraged to eat the calf starter meal by placing meal into the buckets after they had finished drinking milk. Calves were weaned at 35 days of age and thereafter they received only calf starter meal ad libitum. Fresh water was freely available from day 10. The quantity of meal offered was increased on an individual ...

  4. An animal model for human masseter muscle: histochemical characterization of mouse, rat, rabbit, cat, dog, pig, and cow masseter muscle

    DEFF Research Database (Denmark)

    Tuxen, A; Kirkeby, S

    1990-01-01

    The masseter muscle of several animal species was investigated by use of a histochemical method for the demonstration of acid-stable and alkali-stable myosin adenosine triphosphatase (ATPase). The following subdivisions of fiber types were used: Type I fibers show weak ATPase activity at pH 9...... II and I fibers, with type II predominating. Cow masseter muscle consisted mainly of type I fibers, although some cow masseter muscles contained a very small number of type II fibers. Pig masseter muscle had both type I, II, and IM fibers. One of the characteristics of human masseter muscle is type...... IM fibers, which are rarely seen in muscles other than the masticatory muscles. Therefore, pig masseter muscle might be a suitable animal model for experimental studies, such as an investigation of the distribution and diameter of fiber types in the masticatory muscles before and after orthognathic...

  5. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia.

    Science.gov (United States)

    Pannérec, Alice; Springer, Margherita; Migliavacca, Eugenia; Ireland, Alex; Piasecki, Mathew; Karaz, Sonia; Jacot, Guillaume; Métairon, Sylviane; Danenberg, Esther; Raymond, Frédéric; Descombes, Patrick; McPhee, Jamie S; Feige, Jerome N

    2016-04-01

    Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.

  6. Examination of transcript amounts and activity of protein kinase CK2 in muscle lysates of different types of human muscle pathologies.

    Science.gov (United States)

    Heuss, Dieter; Klascinski, Janine; Schubert, Steffen W; Moriabadi, Tehmur; Lochmüller, Hanns; Hashemolhosseini, Said

    2008-09-01

    Motoneurons release the heparansulfate proteoglycan agrin and thereby activate the muscle-specific receptor tyrosine kinase (MuSK), which is the main organizer of subsynaptic specializations at the neuromuscular junction. Recently, we showed that (1) the protein kinase CK2 interacts with the intracellular region of MuSK; (2) the CK2 protein is enriched and co-localized with MuSK at postsynaptic specializations; (3) CK2-mediated phosphorylation of serine residues within a specific MuSK epitope, named the kinase insert, regulates acetylcholine receptor (AChR) clustering; (4) muscle-specific CK2beta knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function (see Genes Dev 20(13):1800-1816, 2006). Here, we investigated for the first time if CK2 is modulated in biopsies from human patients. To this end, we measured transcript amounts of the subunits CK2alpha and CK2beta and determined holoenzyme CK2 activity in 34 muscle biopsies of human patients with different muscle pathologies.

  7. Short-latency crossed responses in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew J T; Kamavuako, Ernest N; Geertsen, Svend Sparre

    2015-01-01

    Interlimb reflexes contribute to the central neural coordination between different limbs in both humans and animals. Although commissural interneurons have only been directly identified in animals, spinally mediated interlimb reflexes have been discovered in a number of human lower limb muscles......, indicating their existence in humans. The aim of the present study was to investigate whether short-latency crossed-spinal reflexes are present in the contralateral biceps femoris (cBF) muscle following ipsilateral knee (iKnee) joint rotations during a sitting task, where participants maintained a slight pre...... pathways (likely involving commissural interneurons) from ipsilateral afferents to common motoneurons in the contralateral leg can likely explain the perturbation direction-dependent reversal in the sign of the short-latency cBF reflex. This article is protected by copyright. All rights reserved....

  8. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    International Nuclear Information System (INIS)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M.

    1990-01-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications

  9. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. (Stanford Univ. School of Medicine, CA (USA))

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  10. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  11. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  12. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    2014-05-01

    Full Text Available Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.

  13. Heterosis and direct effects for Charolais-sired calf weight and growth, cow weight and weight change, and ratios of cow and calf weights and weight changes across warm season lactation in Romosinuano, Angus, and F cows in Arkansas.

    Science.gov (United States)

    Riley, D G; Burke, J M; Chase, C C; Coleman, S W

    2016-01-01

    The use of Brahman in cow-calf production offers some adaptation to the harsh characteristics of endophyte-infected tall fescue. Criollo breeds, such as the Romosinuano, may have similar adaptation. The objectives were to estimate genetic effects in Romosinuano, Angus, and crossbred cows for their weights, weights of their calves, and ratios (calf weight:cow weight and cow weight change:calf weight gain) across lactation and to assess the influence of forage on traits and estimates. Cows ( = 91) were bred to Charolais bulls after their second parity. Calves ( = 214) were born from 2006 to 2009. Cows and calves were weighed in early (April and June), mid- (July), and late lactation (August and October). Animal was a random effect in analyses of calf data; sire was random in analyses of cow records and ratios. Fixed effects investigated included calf age, calf sex, cow age-year combinations, sire breed of cow, dam breed of cow, and interactions. Subsequent analyses evaluated the effect of forage grazed: endophyte-free or endophyte-infected tall fescue. Estimates of maternal heterosis for calf weight ranged from 9.3 ± 4.3 to 15.4 ± 5.7 kg from mid-lactation through weaning ( cow) were -6.8 ± 3.0 and -8.9 ± 4.2 kg for weights recorded in April and June. Calf weights and weight gains from birth were greater ( cows grazing endophyte-free tall fescue except in mid-summer. Cow weight change from April to each time was negative for Angus cows and lower ( Cows grazing endophyte-free tall fescue were heavier ( cows had the lowest ( cow weight change:calf weight gain, indicating an energy-deficit condition. Cows grazing endophyte-free tall fescue had more negative ( cow weight, 7.9 ± 3.0 to 15.8 ± 5.0 kg for cow weight change, and 0.07 ± 0.03 to 0.27 ± 0.1 for cow weight change:calf weight gain. Direct Romosinuano effects ranged from 14.8 ± 4.2 to 49.8 ± 7.7 kg for cow weight change and 0.2 ± 0.04 to 0.51 ± 0.14 for cow weight change:calf weight gain. The adaptive

  14. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte

    2005-01-01

    Contracting muscle fibers produce and release IL-6, and plasma levels of this cytokine are markedly elevated in response to physical exercise. We recently showed autocrine regulation of IL-6 in human skeletal muscle in vivo and hypothesized that this may involve up-regulation of the IL-6 receptor....... Infusion of rhIL-6 to humans had no effect on the mRNA level of the IL-6 receptor, whereas there was an increase at the protein level. IL-6 receptor mRNA increased similarly in muscle of both IL-6 KO mice and wild-type mice in response to exercise. In conclusion, exercise increases IL-6 receptor production....... Therefore, we investigated IL-6 receptor regulation in response to exercise and IL-6 infusion in humans. Furthermore, using IL-6-deficient mice, we investigated the role of IL-6 in the IL-6 receptor response to exercise. Human skeletal muscle biopsies were obtained in relation to: 3 h of bicycle exercise...

  15. Effects of coagulating enzyme types (commercial calf rennet ...

    African Journals Online (AJOL)

    Effects of coagulating enzyme types (commercial calf rennet, Aspergillus niger var. awamori as recombinant chymosin and rhizomucor miehei as microbial rennet) on the chemical and sensory characteristics of white pickled cheese.

  16. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.

    1998-01-01

    BACKGROUND: Adenosine has been proposed to be a locally produced regulator of blood flow in skeletal muscle. However, the fundamental questions of to what extent adenosine is formed in skeletal muscle tissue of humans, whether it is present in the interstitium, and where it exerts its vasodilatory...... rest (0.13+/-0.03, 0.07+/-0.03, and 0.07+/-0.02 micromol/L, respectively) to exercise (10 W; 2.00+/-1.32, 2.08+/-1.23, and 1.65+/-0.50 micromol/L, respectively; Pskeletal muscle...... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow....

  17. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice

    Directory of Open Access Journals (Sweden)

    Joo Wan Kim

    2015-01-01

    Full Text Available The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF on sciatic neurectomy- (NTX- induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation.

  18. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice

    Science.gov (United States)

    Kim, Joo Wan; Ku, Sae-Kwang; Kim, Ki Young; Kim, Sung Goo; Han, Min Ho; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min

    2015-01-01

    The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation. PMID:26064425

  19. Plasticity of human skeletal muscle: gene expression to in vivo function.

    Science.gov (United States)

    Harridge, Stephen D R

    2007-09-01

    Human skeletal muscle is a highly heterogeneous tissue, able to adapt to the different challenges that may be placed upon it. When overloaded, a muscle adapts by increasing its size and strength through satellite-cell-mediated mechanisms, whereby protein synthesis is increased and new nuclei are added to maintain the myonuclear domain. This process is regulated by an array of mechanical, hormonal and nutritional signals. Growth factors, such as insulin-like growth factor I (IGF-I) and testosterone, are potent anabolic agents, whilst myostatin acts as a negative regulator of muscle mass. Insulin-like growth factor I is unique in being able to stimulate both the proliferation and the differentiation of satellite cells and works as part of an important local repair and adaptive mechanism. Speed of movement, as characterized by maximal velocity of shortening (V(max)), is regulated primarily by the isoform of myosin heavy chain (MHC) contained within a muscle fibre. Human fibres can express three MHCs: MHC-I, -IIa and -IIx, in order of increasing V(max) and maximal power output. Training studies suggest that there is a subtle interplay between the MHC-IIa and -IIx isoforms, with the latter being downregulated by activity and upregulated by inactivity. However, switching between the two main isoforms appears to require significant challenges to a muscle. Upregulation of fast gene programs is caused by prolonged disuse, whilst upregulation of slow gene programs appears to require significant and prolonged activity. The potential mechanisms by which alterations in muscle composition are mediated are discussed. The implications in terms of contractile function of altering muscle phenotype are discussed from the single fibre to the whole muscle level.

  20. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...... or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel...... to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+....

  1. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Petersson, Stine J; Sellathurai, Jeeva

    2009-01-01

    indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis...

  2. Endurance training enhances skeletal muscle interleukin-15 in human male subjects

    DEFF Research Database (Denmark)

    Rinnov, Anders; Yfanti, Christina; Nielsen, Søren

    2014-01-01

    Regular endurance exercise promotes metabolic and oxidative changes in skeletal muscle. Overexpression of interleukin-15 (IL-15) in mice exerts similar metabolic changes in muscle as seen with endurance exercise. Muscular IL-15 production has been shown to increase in mice after weeks of regular...... endurance running. With the present study we aimed to determine if muscular IL-15 production would increase in human male subjects following 12 weeks of endurance training. In two different studies we obtained plasma and muscle biopsies from young healthy subjects performing: (1) 12 weeks of ergometer...... weeks of regular endurance training induced a 40% increase in basal skeletal muscle IL-15 protein content (p...

  3. Erythropoietin treatment enhances muscle mitochondrial capacity in humans

    DEFF Research Database (Denmark)

    Plenge, Ulla; Belhage, Bo; Guadalupe-Grau, Amelia

    2012-01-01

    in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over 8 weeks with oral iron (100 mg) supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis...

  4. Motor unit activity after eccentric exercise and muscle damage in humans.

    Science.gov (United States)

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  5. A study on the relationship between muscle function, functional mobility and level of physical activity in community-dwelling elderly.

    Science.gov (United States)

    Garcia, Patrícia A; Dias, João M D; Dias, Rosângela C; Santos, Priscilla; Zampa, Camila C

    2011-01-01

    to evaluate the relationship between lower extremity muscle function, calf circumference (CC), handgrip strength (HG), functional mobility and level of physical activity among age groups (65-69, 70-79, 80+) of older adults (men and women) and to identify the best parameter for screening muscle function loss in the elderly. 81 community-dwelling elderly (42 women and 39 men) participated. Walking speed (Multisprint Kit), HG (Jamar dynamometer), hip, knee and ankle muscle function (Biodex isokinetic dynamometer), level of physical activity (Human Activity Profile) and CC (tape measure) were evaluated. ANOVA, Pearson correlation and ROC curves were used for statistical analysis. Dominant CC (34.9±3 vs 37.7±3.6), habitual (1.1±0.2 vs 1.2±0.2) and fast (1.4±0.3 vs 1.7±0.3) walking speed, HG (23.8±7.5 vs 31.8±10.3), average peak torque and average hip, knee and ankle power (pphysical activity level among age groups. Moderate significant correlations were found between muscle function parameters, walking speed and HG; a fair degree of relationship was found between muscle function parameters, CC and level of physical activity (pwomen (p=0.03). This study demonstrated an association between muscle function, HG and fast walking speed, a decrease in these parameters with age and the possibility of using HG to screen for muscle function of the lower extremities.

  6. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.

    Science.gov (United States)

    Stubbs, Peter W; Walsh, Lee D; D'Souza, Arkiev; Héroux, Martin E; Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2018-06-01

    In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the

  7. IMP metabolism in human skeletal muscle after exhaustive exercise

    DEFF Research Database (Denmark)

    Tullson, P. C.; Bangsbo, Jens; Hellsten, Ylva

    1995-01-01

    This study addressed whether AMP deaminase (AMPD)myosin binding occurs with deamination during intense exercise in humans and the extent of purine loss from muscle during the initial minutes of recovery. Male subjects performed cycle exercise (265 +/- 2 W for 4.39 +/- 0.04 min) to stimulate muscle...... inosine 5'-monophosphate (IMP) formation. After exercise, blood flow to one leg was occluded. Muscle biopsies (vastus lateralis) were taken before and 3.6 +/- 0.2 min after exercise from the occluded leg and 0.7 +/- 0.0, 1.1 +/- 0.0, and 2.9 +/- 0.1 min postexercise in the nonoccluded leg. Exercise...... activated AMPD; at exhaustion IMP was 3.5 +/- 0.4 mmol/kg dry muscle. Before exercise, 16.0 +/- 1.6% of AMPD cosedimented with the myosin fraction; the extent of AMPD:myosin binding was unchanged by exercise. Inosine content increased about threefold during exercise and twofold more during recovery; by 2...

  8. Relationship between Human Aging Muscle and Oxidative System Pathway

    Directory of Open Access Journals (Sweden)

    Enrico Doria

    2012-01-01

    Full Text Available Ageing is a complex process that in muscle is usually associated with a decrease in mass, strength, and velocity of contraction. One of the most striking effects of ageing on muscle is known as sarcopenia. This inevitable biological process is characterized by a general decline in the physiological and biochemical functions of the major systems. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS generated by the addition of a single electron to the oxygen molecule. The aging process is characterized by an imbalance between an increase in the production of reactive oxygen species in the organism and the antioxidant defences as a whole. The goal of this review is to examine the results of existing studies on oxidative stress in aging human skeletal muscles, taking into account different physiological factors (sex, fibre composition, muscle type, and function.

  9. Clinical Coenurosis (Coenurus Cerebralis and Associated Pathological Findings in a Calf

    Directory of Open Access Journals (Sweden)

    Cumali Özkan*, Serkan Yildirim1 and Abdullah Kaya

    2011-06-01

    Full Text Available This study aims to investigate clinical and pathological findings of a clinical Coenurus cerebralis case in a 10-month-old Simmental male calf. Clinical examination of the calf revealed incoordination, irregular gait, failure to hold the head straight, leftward head tilt, and circling. The animal was diagnosed with C. cerebralis and euthanazia was recommended. The autopsy demonstrated a cyst (9x7 cm in the caudal of the left cerebral hemisphere within the cranium. The cyst caused compression over the ventral portion of the left cerebral hemisphere, while a marked perforation of 3-4 cm diameter was found on the sphenoid bone. Histopathologically, hyperemia and perivascular mononuclear cell infiltration were observed. In conclusion, we found it beneficial to present the clinical and pathological findings of this calf infected with C. cerebralis which is known to be a rare clinical entity among cattle.

  10. Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers

    International Nuclear Information System (INIS)

    Morrow, Jasper M.; Reilly, Mary M.; Hanna, Michael G.; Sinclair, Christopher D.J.; Yousry, Tarek A.; Thornton, John S.; Fischmann, Arne

    2014-01-01

    Quantitative magnetic resonance imaging (MRI) can potentially meet the pressing need for objective, sensitive, reproducible outcome measures in neuromuscular disease trials. We tested, in healthy volunteers, the consistency, reliability and sensitivity to normal inter-subject variation of MRI methods targeted to lower limb muscle pathology to inform the design of practical but comprehensive MRI outcome measure protocols for use in imminent patient studies. Forty-seven healthy volunteers, age 21-81 years, were subject at 3T to three-point Dixon fat-fraction measurement, T 1 -relaxometry, T 2 -relaxometry and magnetisation transfer ratio (MTR) imaging at mid-thigh and mid-calf level bilaterally. Fifteen subjects underwent repeat imaging at 2 weeks. Mean between-muscle fat fraction and T 2 differences were small, but significant (p 2 correlated positively, and MTR negatively with subject age in both the thigh and calf, with similar significant correlations with weight at thigh level only (p < 0.001 to p < 0.05). Scan-rescan and inter-observer intra-class correlation coefficients ranged between 0.62-0.84 and 0.79-0.99 respectively. Quantitative lower-limb muscle MRI using readily implementable methods was sensitive enough to demonstrate inter-muscle differences (small in health), and correlations with subject age and weight. In combination with high reliability, this strongly supports the suitability of these methods to provide longitudinal outcome measures in neuromuscular disease treatment trials. (orig.)

  11. Group Ia afferents likely contribute to short-latency interlimb reflexes in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Kamavuako, Ernest Nlandu; Geertsen, Svend Sparre

    2017-01-01

    amplitudes (4 vs. 8°) at the same 150°/s velocity (p’s > 0.08). Conclusion: Because fast conducting group Ia muscle spindle afferents are sensitive to changes in muscle stretch velocity, while group II spindle afferents are sensitive to changes in amplitude (Grey et al., JPhysiol., 2001; Matthews, Trends...... Neurosci., 1991), group Ia velocity sensitive muscle spindle afferents likely contribute to the short-latency crossed spinal reflexes in the cBF muscle following iKnee joint rotations. This supports the findings for the short-latency crossed responses in the human soleus muscle (Stubbs & Mrachacz...... neurons in humans, with primary contributions from group Ia muscle spindle afferents....

  12. Direct observation of glycogen synthesis in human muscle with 13C NMR

    International Nuclear Information System (INIS)

    Jue, T.; Rothman, D.L.; Shulman, G.I.; Tavitian, B.A.; DeFronzo, R.A.; Shulman, R.G.

    1989-01-01

    On the basis of previous indirect measurements, skeletal muscle has been implicated as the major site of glucose uptake and it has been suggested that muscle glycogen formation is the dominant pathway. However, direct measurements of the rates of glycogen synthesis have not been possible by previous techniques. The authors have developed 13 C NMR methods to measure directly the rate of human muscle glycogen formation from infused, isotopically labeled [1- 13 C]glucose. They show that under conditions of imposed hyperglycemia and hyperinsulinemia, a majority of the infused glucose was converted to muscle glycogen in a normal man. This directly shows that muscle is the major site of glucose disposal under these conditions, and provides quantitation of the glucose flux to muscle glycogen

  13. Causes and correlates of calf mortality in captive Asian elephants (Elephas maximus.

    Directory of Open Access Journals (Sweden)

    Khyne U Mar

    Full Text Available Juvenile mortality is a key factor influencing population growth rate in density-independent, predation-free, well-managed captive populations. Currently at least a quarter of all Asian elephants live in captivity, but both the wild and captive populations are unsustainable with the present fertility and calf mortality rates. Despite the need for detailed data on calf mortality to manage effectively populations and to minimize the need for capture from the wild, very little is known of the causes and correlates of calf mortality in Asian elephants. Here we use the world's largest multigenerational demographic dataset on a semi-captive population of Asian elephants compiled from timber camps in Myanmar to investigate the survival of calves (n = 1020 to age five born to captive-born mothers (n = 391 between 1960 and 1999. Mortality risk varied significantly across different ages and was higher for males at any age. Maternal reproductive history was associated with large differences in both stillbirth and liveborn mortality risk: first-time mothers had a higher risk of calf loss as did mothers producing another calf soon (<3.7 years after a previous birth, and when giving birth at older age. Stillbirth (4% and pre-weaning mortality (25.6% were considerably lower than those reported for zoo elephants and used in published population viability analyses. A large proportion of deaths were caused by accidents and lack of maternal milk/calf weakness which both might be partly preventable by supplementary feeding of mothers and calves and work reduction of high-risk mothers. Our results on Myanmar timber elephants with an extensive keeping system provide an important comparison to compromised survivorship reported in zoo elephants. They have implications for improving captive working elephant management systems in range countries and for refining population viability analyses with realistic parameter values in order to predict future population

  14. Effects of time of weaning, supplement, and sire breed of calf during the fall grazing period on cow and calf performance.

    Science.gov (United States)

    Short, R E; Grings, E E; MacNeil, M D; Heitschmidt, R K; Haferkamp, M R; Adams, D C

    1996-07-01

    A 4-yr experiment was conducted to determine effects of protein supplementation, age at weaning, and calf sire breed on cow and calf performance during fall grazing. Each year 48 pregnant, crossbred cows nursing steer calves (mean calving date = April 8) were assigned to a 2 x 2 x 2 factorial experiment replicated in three native range pastures. Treatment factors were: 1) no supplement (NS) or an individually fed supplement (S, 3 kg of a 34% protein supplement fed to cows every 3rd d); 2) calves weaned at the beginning (W, mid to late September) or at the end (NW, mid to late December) of the trial each year; or 3) calves sired by Hereford or Charolais bulls. Data were adjusted for cow size (initial hip height and initial and final weights and condition scores) by analyses of covariance using principal component coefficients as covariates. Change in cow weight and condition score were increased by S and W (P Forage intake was decreased (P intake (forage+supplement) was not affected by S but was decreased by W (P effects of treatments were observed the next spring in cow weight, condition score, and birth weight (NW decreased birth weight by 2 kg, P effects by the next fall on weaning weights or pregnancy rates. Milk yield decreased during the experimental period, and S maintained higher milk production in late lactation (P Calf ADG was increased by S and Charolais sires (P effects of feeding a 34% protein supplement to cows were to increase calf gains and improve persistency of lactation and efficiency; 2) delaying weaning decreased cow weight and condition score; 3) effects of weaning age and protein supplementation were highly dependent on forage and environmental conditions in any given year; and 4) whatever effects existed in a given year did not carry over to effects on next year's production as measured by pregnancy rates and weaning weights.

  15. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J

    2011-12-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Quantifying antimicrobial resistance at veal calf farms

    NARCIS (Netherlands)

    Bosman, A.B.; Wagenaar, J.A.; Stegeman, A.; Vernooij, H.; Mevius, D.J.

    2012-01-01

    This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From

  17. Gender differences in MR muscle tractography

    International Nuclear Information System (INIS)

    Okamoto, Yoshikazu; Minami, Manabu; Kunimatsu, Akira; Kono, Tatsuo; Sonobe, Jyunichi; Kujiraoka, Yuka

    2010-01-01

    Tractography of skeletal muscle can clearly reveal the 3-dimensional course of muscle fibers, and the procedure has great potential and could open new fields for diagnostic imaging. Studying this technique for clinical application, we noticed differences in the number of visualized tracts among volunteers and among muscles in the same volunteer. To comprehend why the number of visualized tracts varied so that we could acquire consistently high quality tractography of muscle fiber, we started to examine whether differences in individual parameters affected tractography visualization. The purpose of this study was to determine whether there are gender- and age-specific differences that differentiate the muscles by gender and age in MR tractography of skeletal muscle fiber. We divided 33 healthy volunteers by gender and age among 3 groups, A (13 younger men, aged 20 to 36 years), B (11 younger women, 25 to 39 years), and C (9 older men, 50 to 69), and we obtained from each volunteer tractographs of 8 fibers, including the bilateral gastrocnemius medialis (GCM), gastrocnemius lateralis (GCL), soleus (SOL), and anterior tibialis (AT) muscles. We classified the fibers into 5 grades depending on the extent of visualized tracts and used Mann-Whitney U-test to compare scores by gender (Group A versus B) and age (Group A versus C). Muscle tracts were significantly better visualized in women than men (median total visual score, 34 versus 24, P<0.05). In particular, the SOL muscles showed better visualization in the right (4.0 in women, 1.0 in men, P<0.05) and left (3.0 in women, 1.0 in men, P<0.05). Difference by age was not significant. The GCL was the highest scored muscle in all groups. Our results suggest that group differences, especially by gender, affected visualization of tractography of muscle fiber of the calf. (author)

  18. Digestibility of cow's tritiated milk powder by calf and pig

    International Nuclear Information System (INIS)

    Bruwaene, R. van; Kirchmann, R.; Charles, P.; Hoek, J. van den

    1976-01-01

    Milk obtained from a lactating cow, maintained in a byre and fed on tritiated drinking water (266 μCi/1), was used in these experiments. Tritium moves into the different metabolic pathways that eventually produce milk. After administration of this continuous oral dose of tritiated water, the tritium content of the whole milk and of the dry matter reaches a plateau 10 days after the beginning of the ingestion of THO. Analysis of the radioactivity in the several milk constituents indicated that tritium was incorporated to different extents in different components. This in vivo tritiated milk powder was fed to two calves and three pigs in their rations. Daily samples of faeces were taken. For determining the digestibility and the incorporation of this milk powder the animals were slaughtered and several organs examined. The tritium activity was determined in the dry matter of the organs and the faeces. The data obtained in these experiments indicate that the milk powder is better absorbed by the calf if the digestibility coefficient is taken into consideration, but the milk powder is better incorporated in the organic matter of the muscle and liver of the pig. (author)

  19. Blood flow in the peritendinous space of the human Achilles tendon during exercise

    DEFF Research Database (Denmark)

    Langberg, Henning; Bülow, J; Kjaer, M

    1998-01-01

    This study evaluated blood flow in the peritendinous space of the human Achilles tendon during rest and 40-min dynamical contraction of m. triceps surae. In 10 healthy volunteers 133Xe was injected in to the peritendinous space just ventrally to the Achilles tendon 2 and 5 cm proximal to the calc......This study evaluated blood flow in the peritendinous space of the human Achilles tendon during rest and 40-min dynamical contraction of m. triceps surae. In 10 healthy volunteers 133Xe was injected in to the peritendinous space just ventrally to the Achilles tendon 2 and 5 cm proximal....... Lymph drainage from the area was found to be negligible both during rest and exercise. We conclude that dynamical calf muscle contractions result in increased peritendinous blood flow at the Achilles tendon in humans....

  20. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  1. Activity of upper limb muscles during human walking.

    Science.gov (United States)

    Kuhtz-Buschbeck, Johann P; Jing, Bo

    2012-04-01

    The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  3. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.

    Science.gov (United States)

    van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick

    2016-08-01

    A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

  4. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...

  5. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys.

    Science.gov (United States)

    St Andre, Michael; Johnson, Mark; Bansal, Prashant N; Wellen, Jeremy; Robertson, Andrew; Opsahl, Alan; Burch, Peter M; Bialek, Peter; Morris, Carl; Owens, Jane

    2017-11-09

    The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. We demonstrated that the potent anti-myostatin antibody mRK35 and

  6. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  7. Bionic Humans Using EAP as Artificial Muscles Reality and Challenges

    Directory of Open Access Journals (Sweden)

    Yoseph Bar-Cohen

    2008-11-01

    Full Text Available For many years, the idea of a human with bionic muscles immediately conjures up science fiction images of a TV series superhuman character that was implanted with bionic muscles and portrayed with strength and speed far superior to any normal human. As fantastic as this idea may seem, recent developments in electroactive polymers (EAP may one day make such bionics possible. Polymers that exhibit large displacement in response to stimulation that is other than electrical signal were known for many years. Initially, EAP received relatively little attention due to their limited actuation capability. However, in the recent years, the view of the EAP materials has changed due to the introduction of effective new materials that significantly surpassed the capability of the widely used piezoelectric polymer, PVDF. As this technology continues to evolve, novel mechanisms that are biologically inspired are expected to emerge. EAP materials can potentially provide actuation with lifelike response and more flexible configurations. While further improvements in performance and robustness are still needed, there already have been several reported successes. In recognition of the need for cooperation in this multidisciplinary field, the author initiated and organized a series of international forums that are leading to a growing number of research and development projects and to great advances in the field. In 1999, he challenged the worldwide science and engineering community of EAP experts to develop a robotic arm that is actuated by artificial muscles to win a wrestling match against a human opponent. In this paper, the field of EAP as artificial muscles will be reviewed covering the state of the art, the challenges and the vision for the progress in future years.

  8. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  9. Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells.

    Directory of Open Access Journals (Sweden)

    Teruyo Oishi

    Full Text Available Heterotopic ossification (HO is defined as the formation of ectopic bone in soft tissue outside the skeletal tissue. HO is thought to result from aberrant differentiation of osteogenic progenitors within skeletal muscle. However, the precise origin of HO is still unclear. Skeletal muscle contains two kinds of progenitor cells, myogenic progenitors and mesenchymal progenitors. Myogenic and mesenchymal progenitors in human skeletal muscle can be identified as CD56(+ and PDGFRα(+ cells, respectively. The purpose of this study was to investigate the osteogenic differentiation potential of human skeletal muscle-derived progenitors. Both CD56(+ cells and PDGFRα(+ cells showed comparable osteogenic differentiation potential in vitro. However, in an in vivo ectopic bone formation model, PDGFRα(+ cells formed bone-like tissue and showed successful engraftment, while CD56(+ cells did not form bone-like tissue and did not adapt to an osteogenic environment. Immunohistological analysis of human HO sample revealed that many PDGFRα(+ cells were localized in proximity to ectopic bone formed in skeletal muscle. MicroRNAs (miRNAs are known to regulate many biological processes including osteogenic differentiation. We investigated the participation of miRNAs in the osteogenic differentiation of PDGFRα(+ cells by using microarray. We identified miRNAs that had not been known to be involved in osteogenesis but showed dramatic changes during osteogenic differentiation of PDGFRα(+ cells. Upregulation of miR-146b-5p and -424 and downregulation of miR-7 during osteogenic differentiation of PDGFRα(+ cells were confirmed by quantitative real-time RT-PCR. Inhibition of upregulated miRNAs, miR-146b-5p and -424, resulted in the suppression of osteocyte maturation, suggesting that these two miRNAs have the positive role in the osteogenesis of PDGFRα(+ cells. Our results suggest that PDGFRα(+ cells may be the major source of HO and that the newly identified mi

  10. Effect of ionizing radiation on human skeletal muscle precursor cells

    International Nuclear Information System (INIS)

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions

  11. Evaluation of human muscle in vivo by potassium radiometric measuring

    International Nuclear Information System (INIS)

    Sousa, Wanderson de P.

    2000-01-01

    Potassium is an essential element to the human metabolism and is present in all living cells, mainly in the striated muscular fibers. K-40 is one of the natural potassium isotopes with mass percentage of 0,0118% . This isotope emits beta particle and gamma rays with 1460 keV. The energy of K-40 photon and its uniform distribution within the human body allows its in vivo measurement. The objective of this study is to optimize this technique and evaluate the possibility of its medical application in order to quantify muscle increase during recovering procedures. Subjects of both sexes measured until this moment were divided into two groups. Subjects of Group 1 do not exercise routinely and subjects of Group 2 does. In Group 1 the average potassium mass, muscle mass and potassium concentration were (101±16)g of K, (20±3)kg of muscle and (1,3±0,3)g of K/kg of body mass, respectively, while in Group 2 average values were (125±38)g of K, (25±8)kg of muscle and (1,7±0,2)g of K/kg of body mass. The comparison between average values shows a clear difference, which allows to correlate a higher K mass with routine body activity. The technique has shown enough sensitivity for this application. (author)

  12. Exercise increases TBC1D1 phosphorylation in human skeletal muscle

    Science.gov (United States)

    Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders

    2011-01-01

    Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS

  13. Use of mesenteric lymphangiography in a calf with chylothorax and chyloperitoneum

    International Nuclear Information System (INIS)

    Cruz, A.M.; Riley, C.B.; Macdonald, D.G.; Ferguson, J.G.

    1995-01-01

    Lymphatic abnormalities resulting in chylous effusion into a body cavity are uncommon in domestic animals. In a 6-day-old calf admitted to our hospital because of failure to suckle and abdominal distention, however, mesenteric lymphangiography revealed an obstruction of lymphatic flow. Laparoscopic examination of the abdomen was unsuccessful. Fluid accumulation was resolved in this calf by drainage. In cattle with chylothorax and concurrent chyloperitoneum in which a traumatic lesion of the thoracic duct is possible, conservative management, with drainage and supportive treatment, should be attempted prior to considering surgical intervention

  14. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.

    Science.gov (United States)

    Knaepen, Kristel; Beyl, Pieter; Duerinck, Saartje; Hagman, Friso; Lefeber, Dirk; Meeusen, Romain

    2014-11-01

    Until today it is not entirely clear how humans interact with automated gait rehabilitation devices and how we can, based on that interaction, maximize the effectiveness of these exoskeletons. The goal of this study was to gain knowledge on the human-robot interaction, in terms of kinematics and muscle activity, between a healthy human motor system and a powered knee exoskeleton (i.e., KNEXO). Therefore, temporal and spatial gait parameters, human joint kinematics, exoskeleton kinetics and muscle activity during four different walking trials in 10 healthy male subjects were studied. Healthy subjects can walk with KNEXO in patient-in-charge mode with some slight constraints in kinematics and muscle activity primarily due to inertia of the device. Yet, during robot-in-charge walking the muscular constraints are reversed by adding positive power to the leg swing, compensating in part this inertia. Next to that, KNEXO accurately records and replays the right knee kinematics meaning that subject-specific trajectories can be implemented as a target trajectory during assisted walking. No significant differences in the human response to the interaction with KNEXO in low and high compliant assistance could be pointed out. This is in contradiction with our hypothesis that muscle activity would decrease with increasing assistance. It seems that the differences between the parameter settings of low and high compliant control might not be sufficient to observe clear effects in healthy subjects. Moreover, we should take into account that KNEXO is a unilateral, 1 degree-of-freedom device.

  15. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  16. Ultrasonography as a tool to study afferent feedback from the muscle-tendon complex during human walking

    DEFF Research Database (Denmark)

    Cronin, Neil J.; Klint, Richard af; Grey, Michael James

    2011-01-01

    In humans, one of the most common tasks in everyday life is walking, and sensory afferent feedback from peripheral receptors, particularly the muscle spindles and Golgi tendon organs (GTO), makes an important contribution to the motor control of this task. One factor that can complicate the ability...... with an examination of muscle activation to give a broader insight to neuromuscular interaction during walking. Despite the advances in understanding that these techniques have brought, there is clearly still a need for more direct methods to study both neural and mechanical parameters during human walking in order...... of these receptors to act as length, velocity and force transducers is the complex pattern of interaction between muscle and tendinous tissues, as tendon length is often considerably greater than muscle fibre length in the human lower limb. In essence, changes in muscle-tendon mechanics can influence the firing...

  17. Quantitative analysis of energy metabolism in human muscle using SLOOP 31P-MR-spectroscopy

    International Nuclear Information System (INIS)

    Beer, M.; Koestler, H.; Buchner, S.; Sandstede, J.; Hahn, D.

    2002-01-01

    Objective: Energy metabolism is vital for regular muscle function. In humans, in vivo analysis using 31 P-MR-spectroscopy (MRS) is mostly restricted to semiquantitative parameters due to technical demands. We applied spatial localization with optimal pointspread function (SLOOP) for quantification in human skeletal and cardiac muscle. Subjects/Methods: 10 healthy volunteers and 4 patients with myotonic dystrophy type 1 were examined using a 1.5 T system (Magnetom VISION) and chemical shift imaging (CSI) for data collection. Concentrations of PCr, ATP and P i as well as PCr/ATP ratios were calculated by SLOOP. Results: Concentrations of PCr, ATP and P i were 29.9±3.4, 7.1±0.9 and 5.7±1.2 [mmol/kg] in normal skeletal muscle, corresponding to previously published studies. Two of the patients with a duration of disease longer than 10 years and a pronounced muscle weakness showed a significant decrease of PCr and ATP in skeletal muscle below 10 and 5 mmol/kg. One of these patients had an additional reduction of PCr in cardiac muscle. (orig.) [de

  18. Effects of different flooring options in outside pens of hutches on dairy calf growth

    Science.gov (United States)

    Growth rates of dairy calves may vary due to many different factors, including housing. The objective of this study was to determine if calf growth was affected by different flooring options in the outside penned area of a calf hutch. For this study, 33 hutches were blocked in groups of 3 by locatio...

  19. Computed tomographic findings of leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Kotera, Minoru; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1986-01-01

    The computed tomography (CT) scan was performed in 52 hemiplegics due to cerebrovascular accidents and 12 normal controls on the mid-portion of the thigh and the largest-diameter section of the calf. Muscle size and average CT density of the muscle were measured. The salient feature was hypertrophic gracilis muscle of the hemiplegic side. Other muscles were more atrophied with lower CT density compared with those of the contralateral side. The size of the quadriceps muscle was especially small. The ratio of the quadriceps to all the thigh muscles in cross section was significantly smaller in affected side of hemiplegics than that of normal controls. This was observed even in normal side of the hemiplegics but the ratios of adductor and flexor muscles of the thigh showed no difference. Hypertrophy of gracilis muscle with high CT density was observed only on hemiplegic side. Muscle atrophies were marked in non-ambulatory patients. The ratios of quadriceps and saltorius muscles of thigh in non-ambulatory patients were significantly smaller than those of ambulatory patients. It could not be detected that there is relationship of the sevirity of the muscle atrophy and parietal lobe dysfunction. This atrophy considered to be the result of disuse of the paralyzed leg and pyramidal tract dysfunction. (author)

  20. Development of the epaxial muscles in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Eleonore KÖhler, S.; Lamers, Wouter H.

    2016-01-01

    Although the intrinsic muscles of the back are defined by their embryological origin and innervation pattern, no detailed study on their development is available. Human embryos (5-10 weeks development) were studied, using Amira3D® reconstruction and Cinema4D® remodeling software for visualization.

  1. The capillary pattern in human masseter muscle during ageing

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Janáček, Jiří; Kubínová, Lucie; Eržen, I.

    2013-01-01

    Roč. 32, č. 3 (2013), s. 135-144 ISSN 1580-3139 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : 3D analysis * capillaries * confocal microscopy * human * masseter * muscle Subject RIV: EA - Cell Biology Impact factor: 0.697, year: 2013

  2. Photobiomodulation in human muscle tissue: an advantage in sports performance?

    Science.gov (United States)

    Ferraresi, Cleber; Huang, Ying-Ying; Hamblin, Michael R

    2016-12-01

    Photobiomodulation (PBM) describes the use of red or near-infrared (NIR) light to stimulate, heal, and regenerate damaged tissue. Both preconditioning (light delivered to muscles before exercise) and PBM applied after exercise can increase sports performance in athletes. This review covers the effects of PBM on human muscle tissue in clinical trials in volunteers related to sports performance and in athletes. The parameters used were categorized into those with positive effects or no effects on muscle performance and recovery. Randomized controlled trials and case-control studies in both healthy trained and untrained participants, and elite athletes were retrieved from MEDLINE up to 2016. Performance metrics included fatigue, number of repetitions, torque, hypertrophy; measures of muscle damage and recovery such as creatine kinase and delayed onset muscle soreness. Searches retrieved 533 studies, of which 46 were included in the review (n = 1045 participants). Studies used single laser probes, cluster of laser diodes, LED clusters, mixed clusters (lasers and LEDs), and flexible LED arrays. Both red, NIR, and red/NIR mixtures were used. PBM can increase muscle mass gained after training, and decrease inflammation and oxidative stress in muscle biopsies. We raise the question of whether PBM should be permitted in athletic competition by international regulatory authorities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Series elasticity of the human triceps surae muscle : Measurement by controlled-release vs. resonance methods.

    NARCIS (Netherlands)

    Hof, AL; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    With a newly developed Controlled-Release Ergometer the complete characteristic of the series elastic component can be measured in human muscles. Previous estimates were based on the resonance method: muscle elasticity was assessed from the resonance frequency of the muscle elasticity connected to a

  4. Characterisation of L-Type Amino Acid Transporter 1 (LAT1 Expression in Human Skeletal Muscle by Immunofluorescent Microscopy

    Directory of Open Access Journals (Sweden)

    Nathan Hodson

    2017-12-01

    Full Text Available The branch chain amino acid leucine is a potent stimulator of protein synthesis in skeletal muscle. Leucine rapidly enters the cell via the L-Type Amino Acid Transporter 1 (LAT1; however, little is known regarding the localisation and distribution of this transporter in human skeletal muscle. Therefore, we applied immunofluorescence staining approaches to visualise LAT1 in wild type (WT and LAT1 muscle-specific knockout (mKO mice, in addition to basal human skeletal muscle samples. LAT1 positive staining was visually greater in WT muscles compared to mKO muscle. In human skeletal muscle, positive LAT1 staining was noted close to the sarcolemmal membrane (dystrophin positive staining, with a greater staining intensity for LAT1 observed in the sarcoplasmic regions of type II fibres (those not stained positively for myosin heavy-chain 1, Type II—25.07 ± 5.93, Type I—13.71 ± 1.98, p < 0.01, suggesting a greater abundance of this protein in these fibres. Finally, we observed association with LAT1 and endothelial nitric oxide synthase (eNOS, suggesting LAT1 association close to the microvasculature. This is the first study to visualise the distribution and localisation of LAT1 in human skeletal muscle. As such, this approach provides a validated experimental platform to study the role and regulation of LAT1 in human skeletal muscle in response to various physiological and pathophysiological models.

  5. Postmortem muscle protein degradation in humans as a tool for PMI delimitation.

    Science.gov (United States)

    Pittner, Stefan; Ehrenfellner, Bianca; Monticelli, Fabio C; Zissler, Angela; Sänger, Alexandra M; Stoiber, Walter; Steinbacher, Peter

    2016-11-01

    Forensic estimation of time since death relies on diverse approaches, including measurement and comparison of environmental and body core temperature and analysis of insect colonization on a dead body. However, most of the applied methods have practical limitations or provide insufficient results under certain circumstances. Thus, new methods that can easily be implemented into forensic routine work are required to deliver more and discrete information about the postmortem interval (PMI). Following a previous work on skeletal muscle degradation in the porcine model, we analyzed human postmortem skeletal muscle samples of 40 forensic cases by Western blotting and casein zymography. Our results demonstrate predictable protein degradation processes in human muscle that are distinctly associated with temperature and the PMI. We provide information on promising degradation markers for certain periods of time postmortem, which can be useful tools for time since death delimitation. In addition, we discuss external influencing factors such as age, body mass index, sex, and cause of death that need to be considered in future routine application of the method in humans.

  6. Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Jasper M.; Reilly, Mary M.; Hanna, Michael G. [UCL Institute of Neurology, Medical Research Council Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, London (United Kingdom); Sinclair, Christopher D.J.; Yousry, Tarek A.; Thornton, John S. [UCL Institute of Neurology, Medical Research Council Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, London (United Kingdom); UCL Institute of Neurology, Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, London (United Kingdom); Fischmann, Arne [University of Basel Hospital, Department of Radiology, Division of Diagnostic and Interventional Neuroradiology, Basel (Switzerland)

    2014-07-15

    Quantitative magnetic resonance imaging (MRI) can potentially meet the pressing need for objective, sensitive, reproducible outcome measures in neuromuscular disease trials. We tested, in healthy volunteers, the consistency, reliability and sensitivity to normal inter-subject variation of MRI methods targeted to lower limb muscle pathology to inform the design of practical but comprehensive MRI outcome measure protocols for use in imminent patient studies. Forty-seven healthy volunteers, age 21-81 years, were subject at 3T to three-point Dixon fat-fraction measurement, T{sub 1}-relaxometry, T{sub 2}-relaxometry and magnetisation transfer ratio (MTR) imaging at mid-thigh and mid-calf level bilaterally. Fifteen subjects underwent repeat imaging at 2 weeks. Mean between-muscle fat fraction and T{sub 2} differences were small, but significant (p < 0.001). Fat fraction and T{sub 2} correlated positively, and MTR negatively with subject age in both the thigh and calf, with similar significant correlations with weight at thigh level only (p < 0.001 to p < 0.05). Scan-rescan and inter-observer intra-class correlation coefficients ranged between 0.62-0.84 and 0.79-0.99 respectively. Quantitative lower-limb muscle MRI using readily implementable methods was sensitive enough to demonstrate inter-muscle differences (small in health), and correlations with subject age and weight. In combination with high reliability, this strongly supports the suitability of these methods to provide longitudinal outcome measures in neuromuscular disease treatment trials. (orig.)

  7. Integrating scientific knowledge into large-scale restoration programs: the CALFED Bay-Delta Program experience

    Science.gov (United States)

    Taylor, K.A.; Short, A.

    2009-01-01

    Integrating science into resource management activities is a goal of the CALFED Bay-Delta Program, a multi-agency effort to address water supply reliability, ecological condition, drinking water quality, and levees in the Sacramento-San Joaquin Delta of northern California. Under CALFED, many different strategies were used to integrate science, including interaction between the research and management communities, public dialogues about scientific work, and peer review. This paper explores ways science was (and was not) integrated into CALFED's management actions and decision systems through three narratives describing different patterns of scientific integration and application in CALFED. Though a collaborative process and certain organizational conditions may be necessary for developing new understandings of the system of interest, we find that those factors are not sufficient for translating that knowledge into management actions and decision systems. We suggest that the application of knowledge may be facilitated or hindered by (1) differences in the objectives, approaches, and cultures of scientists operating in the research community and those operating in the management community and (2) other factors external to the collaborative process and organization.

  8. Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: human MRSA carriage related with animal antimicrobial usage and farm hygiene.

    Science.gov (United States)

    Graveland, Haitske; Wagenaar, Jaap A; Heesterbeek, Hans; Mevius, Dik; van Duijkeren, Engeline; Heederik, Dick

    2010-06-08

    Recently a specific MRSA sequence type, ST398, emerged in food production animals and farmers. Risk factors for carrying MRSA ST398 in both animals and humans have not been fully evaluated. In this cross-sectional study, we investigated factors associated with MRSA colonization in veal calves and humans working and living on these farms. A sample of 102 veal calf farms were randomly selected and visited from March 2007-February 2008. Participating farmers were asked to fill in a questionnaire (n = 390) to identify potential risk factors. A nasal swab was taken from each participant. Furthermore, nasal swabs were taken from calves (n = 2151). Swabs were analysed for MRSA by selective enrichment and suspected colonies were confirmed as MRSA by using slide coagulase test and PCR for presence of the mecA-gene. Spa types were identified and a random selection of each spa type was tested with ST398 specific PCR. The Sequence Type of non ST398 strains was determined. Data were analyzed using logistic regression analysis. Human MRSA carriage was strongly associated with intensity of animal contact and with the number of MRSA positive animals on the farm. Calves were more often carrier when treated with antibiotics, while farm hygiene was associated with a lower prevalence of MRSA. This is the first study showing direct associations between animal and human carriage of ST398. The direct associations between animal and human MRSA carriage and the association between MRSA and antimicrobial use in calves implicate prudent use of antibiotics in farm animals.

  9. Duodenal ileus caused by a calf feeding nipple in a cow

    Directory of Open Access Journals (Sweden)

    Gerspach Christian

    2011-01-01

    Full Text Available Abstract Background The aim of this report was to describe duodenal obstruction caused by a rubber foreign body in a cow. Case Presentation The clinical, biochemical and ultrasonographic findings in a five-year-old Swiss Braunvieh cow with duodenal ileus caused by a calf feeding nipple are described. The main clinical signs were anorexia, ruminal tympany, decreased faecal output and abomasal reflux syndrome. Ultrasonographic examination revealed reticular hyperactivity and a dilated duodenum. A diagnosis of duodenal ileus was made and the cow underwent right-flank laparotomy, which revealed a dilation of the cranial part of the duodenum because of obstruction by a pliable foreign body. This was identified via enterotomy as a calf feeding nipple. The cow was healthy at the time of discharge four days after surgery and went on to complete a successful lactation. Conclusions To our knowledge, this is the first description of duodenal obstruction by a calf feeding nipple. This is an interesting case, which broadens the spectrum of the causes of duodenal ileus, which is usually caused by obstruction of the duodenum by a phytobezoar.

  10. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respira...

  11. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  12. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  13. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    Science.gov (United States)

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  14. Impact of exercising muscles to exhaustion on blood markers in weight-training

    Directory of Open Access Journals (Sweden)

    Roberto Burini

    2008-06-01

    Full Text Available Metabolic markers of physical exhaustion were evaluated in venous blood drawn from 8 men (20-30 years old with at least 3 years’ experience in weight-lifting training. They were submitted, in the morning, to an overload (exhaustion test starting at 80% of 1 RM (one repetition maximum on 8 muscle groups. Heart rate (HR was measured and samples of venous blood were collected before and immediately after the exhaustion test (ET and sent to a laboratory for blood gas analysis (pH, lactate, pO2, pCO2 and HCO-3 and measurement of electrolytes (Na+, Cl-, K+ and Ca++ and glycemia. The HR/kg ratios observed were in the following sequence of descending order: arm and hamstrings > shoulder and back > chest > quadriceps > calf. Results for NH4, pH, lactate and HCO-3 levels were changed in all 8 muscle groups, whereas Ca++, K+, Na+, Cl-, and uric acid did not change significantly after the ET. The muscle groups: back, biceps, triceps, chest, and hamstrings exhibited changes in seven to nine indicators while only 4 to 6 biochemical indicators changed in response to shoulder, calf, and quadriceps exercises. Thus, blood markers indicating acidosis, hemoconcentration and hyperglycemia were sensitive markers although with low specificity for the eight muscle groups. Calf and quadriceps had the highest tolerance for weight loading along with the smallest HR increase and lowest number of biochemical indicators changed. Therefore, it appears possible to reach muscle exhaustion with systemic responses in the blood by working out the arm muscles and hamstrings with lighter weights than for quadriceps and calf muscles.ResumoO impacto da exaustão (com pesos de grupos musculares, sobre indicadores sanguíneos de acidose e de hemoconcentração foi estudado em 8 jovens (20-30 anos treinados em musculação. Todos foram submetidos a sobrecarga inicial de 80% de 1RM, até a exaustão (TE, em 8 exercícios distintos, com coleta de sangue e registro da freqüência card

  15. Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector.

    Science.gov (United States)

    Çakar, Halil Ibrahim; Doğan, Serfiraz; Kara, Sadık; Rittweger, Jörn; Rawer, Rainer; Zange, Jochen

    2017-06-01

    In this study, we investigated the effects of vibration of the whole lower leg on the content and the oxygenation of hemoglobin in the unloaded relaxed lateral gastrocnemius muscle. Vibration was applied orthogonal to and in parallel with leg axis to examine whether the extrusion of blood depends on an alignment of main vessel direction, axis of vibration and gravity. The blood volume in the muscles was altered by horizontal and 30° upright body posture. Fifteen male subjects were exposed to 4 sets of experiments with both vibration directions and both tilt angles applied in permutated order. The absence of voluntary muscular activity and the potential occurrence of compound action potentials by stretch reflexes were monitored using electromyography. Total hemoglobin and tissue saturation index were measured with near infrared spectroscopy. Changes of lower leg circumference were measured with strain gauge system placed around the calf. Vibration caused decrease in tHb and increase in TSI indicating extrusion of predominantly venous blood from the muscle. In 30° tilted position, muscles contained more blood at baseline and vibration ejected more blood from the muscle compared with horizontal posture (p < 0.01). At 30° tilting deeper drop in tHb and steeper increase in TSI (p < 0.01) were observed when vibration was applied in parallel with the length axis of muscle. It is concluded that the vibration extrudes more blood in 30° head up posture and the vibration applied in parallel with the length axis of the muscle is more effective than orthogonal vibration.

  16. Neurogenic muscle hypertrophy in a 12-year-old girl.

    Science.gov (United States)

    Zutelija Fattorini, Matija; Gagro, Alenka; Dapic, Tomislav; Krakar, Goran; Marjanovic, Josip

    2017-01-01

    Muscular hypertrophy secondary to denervation is very rare, but well-documented phenomena in adults. This is the first report of a child with neurogenic unilateral hypertrophy due to S1 radiculopathy. A 12-year-old girl presented with left calf hypertrophy and negative history of low back pain or trauma. The serum creatinine kinase level and inflammatory markers were normal. Magnetic resonance imaging showed muscle hypertrophy of the left gastrocnemius and revealed a protruded lumbar disc at the L5-S1 level. The protruded disc abuts the S1 root on the left side. Electromyography showed mild left S1 radiculopathy. Passive stretching and work load might clarify the origin of neurogenic hypertrophy but there is still a need for further evidence. Clinical, laboratory, magnetic resonance imaging and electromyography findings showed that S1 radiculopathy could be a cause of unilateral calf swelling in youth even in the absence of a history of back or leg pain. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Diagnosis and rehabilitation of gastrocnemius muscle tear: a case report.

    Science.gov (United States)

    Nsitem, Virginia

    2013-12-01

    This case study presents the epidemiology, etiology, diagnostic criteria, and therapeutic interventions for a common clinical condition - gastrocnemius injury. A 44-year old male presented with acute calf pain with a palpable defect, loss of range of motion, and loss of strength after sustaining a soft tissue injury to the lower leg. The differential diagnosis of tear of the medial head of the gastrocnemius was confirmed by physical examination and diagnostic ultrasound imaging. The patient was treated over a 6 week period. Initially, rehabilitation was approached using the PRICE principles for symptomatic relief, followed by stretching, strengthening, proprioception, and conditioning exercises. At 9-month follow-up post injury, there was no residual impairment in the gastrocnemius muscle function. This case demonstrates the importance of epidemiology, clinical assessment, and the use of diagnostic ultrasound and MRI imaging in the diagnosis of a tear of the medial head of the gastrocnemius muscle. With an accurate diagnosis and comprehension of classification of muscle injuries, management of gastrocnemius tears is straightforward.

  18. [Calf circumference and its association with gait speed in elderly participants at Peruvian Naval Medical Center].

    Science.gov (United States)

    Díaz Villegas, Gregory Mishell; Runzer Colmenares, Fernando

    2015-01-01

    To evaluate the association between calf circumference and gait speed in elderly patients 65 years or older at Geriatric day clinic at Peruvian Centro Médico Naval. Cross-sectional, retrospective study. We assessed 139 participants, 65 years or older at Peruvian Centro Médico Naval including calf circumference, gait speed and Short Physical Performance Battery. With bivariate analyses and logistic regression model we search for association between variables. The age mean was 79.37 years old (SD: 8.71). 59.71% were male, the 30.97% had a slow walking speed and the mean calf circumference was 33.42cm (SD: 5.61). After a bivariate analysis, we found a calf circumference mean of 30.35cm (SD: 3.74) in the slow speed group and, in normal gait group, a mean of 33.51cm (SD: 3.26) with significantly differences. We used logistic regression to analyze association with slow gait speed, founding statistically significant results adjusting model by disability and age. Low calf circumference is associated with slow speed walk in population over 65 years old. Copyright © 2014. Published by Elsevier Espana.

  19. Subunit Stoichiometry of Human Muscle Chloride Channels

    OpenAIRE

    Fahlke, Christoph; Knittle, Timothy; Gurnett, Christina A.; Campbell, Kevin P.; George, Alfred L.

    1997-01-01

    Voltage-gated Cl? channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl? channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their ...

  20. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.

    Science.gov (United States)

    Barszap, Alexander G; Skavhaug, Ida-Maria; Joshi, Sanjay S

    2016-10-01

    Electromyography-based human-computer interface development is an active field of research. However, knowledge on the effects of muscle fatigue for specific devices is limited. We have developed a novel myoelectric human-computer interface in which subjects continuously navigate a cursor to targets by manipulating a single surface electromyography (sEMG) signal. Two-dimensional control is achieved through simultaneous adjustments of power in two frequency bands through a series of dynamic low-level muscle contractions. Here, we investigate the potential effects of muscle fatigue during the use of our interface. In the first session, eight subjects completed 300 cursor-to-target trials without breaks; four using a wrist muscle and four using a head muscle. The wrist subjects returned for a second session in which a static fatiguing exercise took place at regular intervals in-between cursor-to-target trials. In the first session we observed no declines in performance as a function of use, even after the long period of use. In the second session, we observed clear changes in cursor trajectories, paired with a target-specific decrease in hit rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Unloaded shortening velocity of voluntarily and electrically activated human dorsiflexor muscles in vivo.

    Directory of Open Access Journals (Sweden)

    Kazushige Sasaki

    Full Text Available We have previously shown that unloaded shortening velocity (V(0 of human plantar flexors can be determined in vivo, by applying the "slack test" to submaximal voluntary contractions (J Physiol 567:1047-1056, 2005. In the present study, to investigate the effect of motor unit recruitment pattern on V(0 of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC. The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V(0, with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68-0.95. Regression analysis showed that V(0 of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R(2 = 0.52, P<0.001. By contrast, V(0 of electrically activated dorsiflexor muscles remained unchanged (R(2<0.001, P = 0.98 among three different stimulus conditions showing a large variation of tetanic torque. These results suggest that the recruitment pattern of motor units, which is quite different between voluntary and electrically elicited contractions, plays an important role in determining shortening velocity of human skeletal muscle in vivo.

  2. Protein synthesis in muscle cultures from patients with duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Ionasescu, V.; Zellweger, H.; Ionasescu, R.; Lara-Braud, C.; Cancilla, P.A.

    1976-01-01

    Muscle samples for cultures were obtained from the quadriceps by open biopsy under local anesthesia in five patients with early stage of Duchenne muscular dystrophy (DMD) and 10 controls. Primary cultures were grown in Eagle's Minimum Essential Medium (MEM) with 20 per cent fetal calf serum. After 4 weeks, cells were trypsinized, counted, subcultured for 5 days in MEM with 5 per cent horse serum and finally incubated for 4 h with ( 3 H) leucine. Total protein synthesis showed a significant decrease (ALF OF CONTROL VALUES) only in muscle cultures from patients with DMD. Addition of calcium chloride alone or with A23187 ionophore normalized this defect in protein synthesis. By contrast, myosin heavy chain synthesis was measured and found normal in all patients. (author)

  3. The Effect of Calf Gender on Milk Production in Seasonal Calving Cows and Its Impact on Genetic Evaluations.

    Directory of Open Access Journals (Sweden)

    Melanie K Hess

    Full Text Available Gender of the calf whose birth initiates lactation could influence whole lactation milk yield of the dam due to hormonal influences on mammary gland development, or through calf gender effects on gestation length. Fetal gender could influence late lactation yields because cows become pregnant at peak lactation. The effects of calf gender sequences in parities 1-3 were assessed by separately fitting animal models to datasets from New Zealand comprising 274 000 Holstein Friesian and 85 000 Jersey cows, decreasing to 12 000 and 4 000 cows by parity 3. The lactation initiated by the birth of a female rather than a male calf was associated with a 0.33-1.1% (p≤0.05 higher milk yield. Female calf gender had carryover effects associated with higher milk yield in second lactations for Holstein Friesians (0.24%; p = 0.01 and third lactations for Jerseys (1.1%; p = 0.01. Cows giving birth to bull calves have 2 day longer gestations, which reduces lactation length in seasonal calving herds. Adding a covariate for lactation length to the animal model eroded some of these calf gender effects, such that calving a female led to higher milk yield only for second lactation Holstein Friesians (1.6%; p = 0.002. The interval centering method generates lower estimates of whole lactation yield when Wood's lactation curves are shifted to the right by 2 days for male calves and this explained the higher yield in female calves when differences in lactation length were considered. Correlations of estimated breeding values between models including or excluding calf gender sequence were 1.00 for bulls or cows. Calf gender primarily influences milk yield through increased gestation length of male calves, and bias associated with the interval centering method used to estimate whole lactation milk yields. Including information on calf gender is unlikely to have an effect on selection response in New Zealand dairy cattle.

  4. Patterns of stillbirth and dystocia in Ontario cow-calf herds.

    Science.gov (United States)

    McDermott, J J; Allen, O B; Martin, S W; Alves, D M

    1992-01-01

    The association between a number of individual animal and herd level factors and calving problems in beef cows and heifers were examined. Data were from the 1987 calving season for a subset of 123 herds which maintained individual-animal records, from a sample of 180 randomly selected Ontario cow-calf herds. The median herd dystocia rate was 5.8% and 24.4% of herds had no dystocias. The median herd stillbirth rate was 2.8%, and 33.3% of herds had no stillbirths. Dystocias and stillbirths were much more common in heifers than in cows. Separate statistical models of dystocia and stillbirth for cows and heifers were created. Dystocia in cows was associated with calf sex, previous calving assistance and large breed type and birth weight. Variations in 1987 cow herd dystocia rates were associated with calving season, location and density, and the herd dystocia rate in 1986. Dystocia in heifers was associated with large breed type and calf birth weight. Herd-level management practices associated with increased heifer dystocia rates included breeding heifers to calve earlier than cows and rearing heifers together with the cow herd. Stillbirths for both cows and heifers were associated with calving assistance, particularly hard assistance. Herd-level management and other factors were unassociated with stillbirths. PMID:1586893

  5. A comparison of intermittent pneumatic compression of the calf and whole leg in preventing deep venous thrombosis in urological surgery.

    Science.gov (United States)

    Soderdahl, D W; Henderson, S R; Hansberry, K L

    1997-05-01

    Intermittent pneumatic compression of the calf and/or thigh effectively decreases the incidence of deep venous thrombosis and other thrombotic sequelae but clinical data comparing these modalities are currently lacking. A total of 90 patients undergoing major urological surgery was randomly assigned to receive calf length or thigh length pneumatic compression for antithrombotic prophylaxis. Duplex ultrasound of the lower extremities was performed preoperatively and twice postoperatively to evaluate for deep venous thrombosis. Health care providers in the operating room, recovery room and ward were asked to compare the compression systems, and a cost analysis was performed. A total of 47 patients wore the thigh length sequential pneumatic sleeves and 43 wore calf length uniform compression systems. A pulmonary embolus without evidence of deep venous thrombosis was detected in 1 patient (2%) using the thigh length system. A thrombus was detected in the common femoral vein by duplex ultrasonography in 1 patient (2%) with the calf length system. Nursing personnel found the calf length sleeves easier to apply and more comfortable by patient account but they were satisfied with both systems. There was a significant cost savings with the calf length pneumatic compression system. Calf and thigh length pneumatic compression systems similarly decrease the risk of deep venous thrombosis in patients undergoing urological surgery. The calf length system has the added advantage of being less expensive and easier to use.

  6. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans

    Directory of Open Access Journals (Sweden)

    da Luz Claudia R

    2011-12-01

    Full Text Available Abstract Branched-chain amino acids (BCAA supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE-derived biochemical markers of muscle soreness (creatine kinase (CK, aldolase, myoglobin, soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality.

  7. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P contraction, subjects dropping in force showed lower ATP economy compared with those maintaining the force (3.......7 +/- 0.6 vs 5.3 +/- 0.6 N.s.micromol-1; P contraction could be due to an increase in the ATP economy of contracting muscle fibers offsetting the effects of increased temperature and low ATP economy...

  8. What do calves choose to eat and how do preferences affect calf behaviour and welfare?

    NARCIS (Netherlands)

    Webb, L.E.; Engel, B.; Berends, H.; Reenen, van C.G.; Gerrits, W.J.J.; Boer, de I.J.M.; Bokkers, E.A.M.

    2014-01-01

    Calves raised for milk or meat are fed diets that differ from feral-herd calf diets and are based on the nutritional requirements of the ‘average calf’. These diets may not meet the dietary preferences of each individual calf. This study explored diet preferences in calves with free dietary choice,

  9. Physical inactivity and muscle oxidative capacity in humans

    DEFF Research Database (Denmark)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present...... literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents...... of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated...

  10. Behavioural strategies towards human disturbances explain individual performance in woodland caribou.

    Science.gov (United States)

    Leclerc, Martin; Dussault, Christian; St-Laurent, Martin-Hugues

    2014-09-01

    Behavioural strategies may have important fitness, ecological and evolutionary consequences. In woodland caribou, human disturbances are associated with higher predation risk. Between 2004 and 2011, we investigated if habitat selection strategies of female caribou towards disturbances influenced their calf's survival in managed boreal forest with varying intensities of human disturbances. Calf survival was 53% and 43% after 30 and 90 days following birth, respectively, and 52% of calves that died were killed by black bear. The probability that a female lose its calf to predation was not influenced by habitat composition of her annual home range, but decreased with an increase in proportion of open lichen woodland within her calving home range. At the local scale, females that did not lose their calf displayed stronger avoidance of high road density areas than females that lost their calf to predation. Further, females that lost their calf to predation and that had a low proportion of ≤5-year-old cutovers within their calving home range were mostly observed in areas where these young cutovers were locally absent. Also, females that lost their calf to predation and that had a high proportion of ≤5-year-old cutovers within their calving home range were mostly observed in areas with a high local density of ≤5-year-old cutovers. Our study demonstrates that we have to account for human-induced disturbances at both local and regional scales in order to further enhance effective caribou management plans. We demonstrate that disturbances not only impact spatial distribution of individuals, but also their reproductive success.

  11. Absolute quantification of calf muscle metabolites by proton 1H-MR spectroscopy

    International Nuclear Information System (INIS)

    Ma Ling; Pan Bitao; Meng Qunfei; Gao Zhenhua; Zhang Xiaoling

    2010-01-01

    relaxation time was measured at 3.0 T of the metabolites in skeletal muscles of healthy adult human. After corrected by the relaxation times, the absolute concentrations calculated were consistent with the reported results. Quantitative knowledge of muscle NMR relaxation time was a prerequisite for absolute quantification of metabolites using the 1 H-MRS and also was useful for optimizing measurement protocols. (authors)

  12. Rotator cuff tear state modulates self-renewal and differentiation capacity of human skeletal muscle progenitor cells.

    Science.gov (United States)

    Thomas, Kelsey A; Gibbons, Michael C; Lane, John G; Singh, Anshuman; Ward, Samuel R; Engler, Adam J

    2017-08-01

    Full thickness rotator cuff tendon (RCT) tears have long-term effects on RC muscle atrophy and fatty infiltration, with lasting damage even after surgical tendon repair. Skeletal muscle progenitor cells (SMPs) are critical for muscle repair in response to injury, but the inability of RC muscles to recover from chronic RCT tear indicates possible deficits in repair mechanisms. Here we investigated if muscle injury state was a crucial factor during human SMP expansion and differentiation ex vivo. SMPs were isolated from muscles in patients with no, partial-thickness (PT), or full-thickness (FT) RCT tears. Despite using growth factors, physiological niche stiffness, and muscle-mimetic extracellular matrix (ECM) proteins, we found that SMPs isolated from human RC muscle with RCT tears proliferated slower but fused into myosin heavy chain (MHC)-positive myotubes at higher rates than SMPs from untorn RCTs. Proteomic analysis of RC muscle tissue revealed shifts in muscle composition with pathology, as muscle from massive RCT tears had increased ECM deposition compared with no tear RC muscle. Together these data imply that the remodeled niche in a torn RCT primes SMPs not for expansion but for differentiation, thus limiting longer-term self-renewal necessary for regeneration after surgical repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1816-1823, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Normal Values of Tissue-Muscle Perfusion Indexes of Lower Limbs Obtained with a Scintigraphic Method.

    Science.gov (United States)

    Manevska, Nevena; Stojanoski, Sinisa; Pop Gjorceva, Daniela; Todorovska, Lidija; Miladinova, Daniela; Zafirova, Beti

    2017-09-01

    Introduction Muscle perfusion is a physiologic process that can undergo quantitative assessment and thus define the range of normal values of perfusion indexes and perfusion reserve. The investigation of the microcirculation has a crucial role in determining the muscle perfusion. Materials and method The study included 30 examinees, 24-74 years of age, without a history of confirmed peripheral artery disease and all had normal findings on Doppler ultrasonography and pedo-brachial index of lower extremity (PBI). 99mTc-MIBI tissue muscle perfusion scintigraphy of lower limbs evaluates tissue perfusion in resting condition "rest study" and after workload "stress study", through quantitative parameters: Inter-extremity index (for both studies), left thigh/right thigh (LT/RT) left calf/right calf (LC/RC) and perfusion reserve (PR) for both thighs and calves. Results In our investigated group we assessed the normal values of quantitative parameters of perfusion indexes. Indexes ranged for LT/RT in rest study 0.91-1.05, in stress study 0.92-1.04. LC/RC in rest 0.93-1.07 and in stress study 0.93-1.09. The examinees older than 50 years had insignificantly lower perfusion reserve of these parameters compared with those younger than 50, LC (p=0.98), and RC (p=0.6). Conclusion This non-invasive scintigraphic method allows in individuals without peripheral artery disease to determine the range of normal values of muscle perfusion at rest and stress condition and to clinically implement them in evaluation of patients with peripheral artery disease for differentiating patients with normal from those with impaired lower limbs circulation.

  14. Delaying postpartum supplementation in cows consuming low-quality forage does not alter cow and calf productivity

    Science.gov (United States)

    Reducing the amount of supplemental feed postpartum without affecting productivity may enhance profitability of cow-calf operations. Therefore, sixteen 2-yr-old fall calving cows were used to evaluate effects of delaying postpartum supplementation on milk production, serum metabolites, cow and calf ...

  15. Motor units in the human medial gastrocnemius muscle are not spatially localized or functionally grouped.

    Science.gov (United States)

    Héroux, Martin E; Brown, Harrison J; Inglis, J Timothy; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2015-08-15

    Human medial gastrocnemius (MG) motor units (MUs) are thought to occupy small muscle territories or regions, with low-threshold units preferentially located distally. We used intramuscular recordings to measure the territory of muscle fibres from MG MUs and determine whether these MUs are grouped by recruitment threshold or joint action (ankle plantar flexion and knee flexion). The territory of MUs from the MG muscle varied from somewhat localized to highly distributed, with approximately half the MUs spanning at least half the length and width of the muscle. There was also no evidence of regional muscle activity based on MU recruitment thresholds or joint action. The CNS does not have the means to selectively activate regions of the MG muscle based on task requirements. Human medial gastrocnemius (MG) motor units (MUs) are thought to occupy small muscle territories, with low-threshold units preferentially located distally. In this study, subjects (n = 8) performed ramped and sustained isometric contractions (ankle plantar flexion and knee flexion; range: ∼1-40% maximal voluntary contraction) and we measured MU territory size with spike-triggered averages from fine-wire electrodes inserted along the length (seven electrodes) or across the width (five electrodes) of the MG muscle. Of 69 MUs identified along the length of the muscle, 32 spanned at least half the muscle length (≥ 6.9 cm), 11 of which spanned all recording sites (13.6-17.9 cm). Distal fibres had smaller pennation angles (P recruitment threshold or contraction type, nor was there a relationship between MU territory size and recruitment threshold (Spearman's rho = -0.20 and 0.13, P > 0.18). MUs in the human MG have larger territories than previously reported and are not localized based on recruitment threshold or joint action. This indicates that the CNS does not have the means to selectively activate regions of the MG muscle based on task requirements. © 2015 The Authors. The Journal of

  16. On the mechanism by which dietary nitrate improves human skeletal muscle function

    Directory of Open Access Journals (Sweden)

    Charles eAffourtit

    2015-07-01

    Full Text Available Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favourably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome – both ageing-related medical disorders – has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects.

  17. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Prats Gavalda, Clara; Qvortrup, Klaus

    2013-01-01

    The subcellular distribution and secretion of vascular endothelial growth factor (VEGF) was examined in skeletal muscle of healthy humans. Skeletal muscle biopsies were obtained from m.v. lateralis before and after a 2 h bout of cycling exercise. VEGF localization was conducted on preparations...... regions and between the contractile elements within the muscle fibers; and in pericytes situated on the skeletal muscle capillaries. Quantitation of the subsarcolemmal density of VEGF vesicles, calculated on top of myonuclei, in the muscle fibers revealed a ∼50% increase (P...

  18. CALF CIRCUMFERENCE AT BIRTH: A SCREENING METHOD FOR DETECTION OF LOW BIRTH WEIGHT

    Directory of Open Access Journals (Sweden)

    Sandip Kumar

    2012-12-01

    Full Text Available Background: Low Birth Weight (LBW babies run a higher risk of morbidity and mortality in the perinatal period. However, in our country where almost 70-80% births take place at home and peripheral hospitals, taking accurate weight is a problem due to unavailability of weighing scale and trained personnel. Hence there is a constant search for newer methods to detect LBW babies so that early interventions can be instituted. Various authors have used different surrogate anthropometric measurements from different parts of our country. In the present study, an attempt was made to validate the feasibility of using calf circumference as a predictor of LBW babies that can be used by a trained or untrained person. Objectives: To study various anthropometric measurements including calf circumference in newborns and to correlate various measurements with birth weight. Methods: The present study was conducted in the department of Social & Preventive Medicine, MLB Medical College, Jhansi (UP for a period of one year. The study included 1100 consecutively delivered neonates in the maternity ward of MLB Medical College Hospital, Jhansi (UP. The birth weight (Wt, crown heel length (CHL, crown rump length (CRL, head circumference (HC, chest circumference (CC, mid arm circumference (MAC, thigh circumference (TC and calf circumference (CC by standard techniques. All the measurements were taken by a single person throughout the study period with in 24 hours of delivery. Standard statistical methods were adopted for determination of critical limit, sensitivity, specificity and correlation coefficient of different anthropometric measurements in relation to birth weight. Results: Analysis of data indicates that out of 1100 newborns, 55.64% were low birth weight. The percentage of newborns > 2500gm was 44.36. Overall average birth weight was 2348 ± 505gm. Out of 1100 newborns, 608 (55.27% were males and 492 (44.73% were females. Average birth weight for males was 2412

  19. Complex Vertebral Malformation (CVM) in an Italian Holstein calf

    International Nuclear Information System (INIS)

    Gentile, A.; Diana, A.; Testoni, S.; Olzi, E.

    2004-01-01

    Complex Vertebral Malformation, a congenital and lethal genetic defect of Holstein breed, has been recently observed in different Countries all over the world. In this paper the AA describe the clinical and radiological aspects of CVM in a two day old female calf. The disease was characterized by low body weight, symmetrical arthrogryposis and partial rotation of all legs and scoliosis. Calf was alert and showed physiological appetite, but was not able to maintain the quadrupedal stance. Radiographs of the vertebral column showed multiple vertebral anomalies, including hemivertebrae, fused and misshapen vertebrae and ribs and scoliosis, that affected mainly the caudal, cervical and thoracic regions. At necropsy, besides the skeleton anomalies, complex malformation of the heart was observed, which included atrial and interventricular defects and patent ductus arteriosus. This is the first case of CVM completely documented and genetically tested in Italy [it

  20. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Lassiter, David G; Nylén, Carolina; Sjögren, Rasmus J O

    2018-01-01

    the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated...

  1. Intracellular Na+ regulation of Na+ pump sites in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Allen, J.C.; Navran, S.S.; Seidel, C.L.; Dennison, D.K.; Amann, J.M.; Jemelka, S.K.

    1989-01-01

    Enzymatically dispersed cells from canine saphenous vein and femoral artery were grown in fetal calf serum and studied at day 0 (freshly dispersed) through confluence in primary culture. Intracellular Na levels (Nai), but not intracellular K (Ki), were increased after 24 h in culture and then decreased to a steady state by 4 days. Na+ pump site number [( 3 H] ouabain binding) increased through day 3 and remained elevated. Nai was still elevated at 2 days when the Na+ pump site number began to increase. Total pump turnover (maximum ouabain-inhibited 86 Rb uptake) reflected the increase in Na+ pump site number. These key events precede the observed increases in both protein production and cellular proliferation. If the same cells are maintained in defined medium, without fetal calf serum, Nai, Ki, and the number of [ 3 H]ouabain binding sites do not change with time. These data are consistent with the suggestion that the initial mitogenic response of vascular smooth muscle cells to fetal calf serum involves an increased Na+ influx, and a Nai accumulation, caused by low Na+ pump density. The synthesis of new pump sites effects a decrease in the accumulated Nai, which may be related to cell proliferation

  2. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    Science.gov (United States)

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P motor activation in comparison to human subjects. © 2017 European Sleep Research Society.

  3. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  4. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  5. Performance of Angus and Brangus cow-calf pairs grazing Alicia bermudagrass and common bermudagrass-dallisgrass pastures.

    Science.gov (United States)

    Wyatt, W E; Gates, R N; Blouin, D C; Saxton, A M; Nelson, B D

    1997-07-01

    This research was designed to examine genotype x environment interactions in cow-calf growth performance of grazing animals. Angus and Brangus cow-calf pairs (minimum of six per breed) were allowed to rotationally graze (14-d intervals) treatment pastures from approximately May through early October in each of 2 yr. Treatment pastures contained relatively pure stands of Alicia bermudagrass (AP) or a mixed stand of common bermudagrass and dallisgrass (CDP). Forage allowance was equalized, using "put-and-take" cow-calf pairs, among forage and breed types at the initiation of each 14-d grazing interval. Forage samples were obtained in each paddock at the initiation of each grazing interval. Forage CP concentration was greater (P < .05; 13.5 vs 11.6%) and NDF concentration was less (P < .05; 63.8 vs 70.6%) for CDP than for AP. Daily weight loss was similar for Angus and Brangus cows, but it was greater (P < .05) for cows grazing AP than for cows grazing CDP. Calf ADG during the grazing season was 35% greater (P < .05) for CDP than for AP pastures and was 23% greater (P < .01) for Brangus than for Angus calves. Relative performance of Angus and Brangus cow-calf pairs was consistent between forages; no breed x forage interactions were observed.

  6. The effect of acute exercise on collagen turnover in human tendons

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Pingel, Jessica; Boesen, Mikael

    2013-01-01

    Mechanical loading of human tendon stimulates collagen synthesis, but the relationship between acute loading responses and training status of the tendon is not clear. We tested the effect of prolonged load deprivation on the acute loading-induced collagen turnover in human tendons, by applying...... the contra-lateral leg was used habitually. Following the procedure both Achilles tendons and calf muscles were loaded with the same absolute load during a 1-h treadmill run. Tissue collagen turnover was measured by microdialysis performed post-immobilization but pre-exercise around both Achilles tendons...... and compared to values obtained by 72-h post-exercise. Power Doppler was used to monitor alterations in intratendinous blood flow velocity of the Achilles tendon and MRI used to quantitate changes in tendon cross-section area. Acute loading resulted in an increased collagen synthesis 72 h after the run in both...

  7. Human skeletal muscle digitalis glycoside receptors (Na,K-ATPase)--importance during digitalization.

    Science.gov (United States)

    Schmidt, T A; Holm-Nielsen, P; Kjeldsen, K

    1993-02-01

    The aims of the present study were to evaluate in humans the putative importance of skeletal muscle digitalis glycoside receptors (Na,K-ATPase) in the volume of distribution of digoxin and to assess whether therapeutic digoxin exposure might cause digitalis receptor upregulation in skeletal muscle. Samples of the vastus lateralis were obtained postmortem from 11 long-term (9 months to 9 years) digitalized (125-187.5 micrograms daily) and eight undigitalized subjects. In intact samples from digitalized patients, vanadate-facilitated 3H-ouabain binding increased 15% (p 0.30) before and after washing in specific digoxin antibody fragments, respectively. Thus, the present study indicates a approximately 13% occupancy of skeletal muscle digitalis glycoside receptors with digoxin during digitalization. In light of the large skeletal muscle contribution to body mass, this indicates that the skeletal muscle Na,K-ATPase pool constitutes a major volume of distribution for digoxin during digitalization. The results gave no indication of skeletal muscle digitalis glycoside receptor upregulation in response to digoxin treatment. On the contrary, there was evidence of significantly lower (37%, p digitalized patients, which may be of importance for skeletal muscle incapacity in heart failure.

  8. The impact of obesity on skeletal muscle strength and structure through adolescence to old age.

    Science.gov (United States)

    Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys

    2016-06-01

    Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.

  9. The effects of degradable and undegradable intake protein on the performance of lactating first-calf heifers.

    Science.gov (United States)

    Anderson, L P; Paterson, J A; Ansotegui, R P; Cecava, M; Schmutz, W

    2001-08-01

    Two 60-d experiments were conducted to evaluate the effects of supplementing degradable (DIP) and(or) undegradable (UIP) intake protein on the performance of lactating first-calf heifers. Diets were formulated to meet the requirements for either DIP, metabolizable protein (MP), or both when diets contained low-quality grass hay and an efficiency of microbial protein synthesis estimate of 10%. In Exp. 1, 32 individually fed first-calf heifers (avg 395 kg) were allotted to a 2 x 2 factorial arrangement of treatments (main effects of DIP, MP, and DIP x MP interaction) 1 d after calving. Cows consumed a basal diet of chopped crested wheat grass hay (4.3% CP, 67% DIP) ad libitum. Supplemental DIP and UIP were supplied by varying the ratios of soybean meal (75% DIP) and a heat-treated, protected soybean meal (70% UIP). Cow weight gain was better (P calf weight gain was not increased by supplementing the cow with DIP. Supplemental UIP did not (P > 0.40) improve cow or calf weight gain. Blood urea N levels were higher (P milk production estimates were similar among treatments, as were digestibilities of OM and ADF. Nitrogen digestibility was greater when supplemental DIP was fed, but providing additional UIP did not (P = 0.15) change N digestibilities. Experiment 2 evaluated similar supplements using the same experimental design to determine changes in cow and calf weight gain, body condition score, and pregnancy rate. Seventy-two first-calf heifers (avg 441 kg) were allotted to supplement treatments 1 d after calving and were fed grass hay (5% CP, 53% DIP, 10% microbial efficiency) for ad libitum consumption for 60 d. Supplements were individually fed three times/week. Varying the ratios of soybean meal, heat-treated soybean meal, and corn gluten meal provided additional DIP and UIP. Unlike in Exp. 1, supplemental UIP improved (P calf gains. Data suggest that the efficiency of microbial protein synthesis for this forage-based diet was probably less than 10%.

  10. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    International Nuclear Information System (INIS)

    Wei, Yan; Li, Yuan; Chen, Chao; Stoelzel, Katharina; Kaufmann, Andreas M.; Albers, Andreas E.

    2011-01-01

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  11. Lactate oxidation in human skeletal muscle mitochondria

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B

    2013-01-01

    of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P = 0.003). The addition...... of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within...

  12. Detection of titin fragments in urine in response to exercise-induced muscle damage.

    Directory of Open Access Journals (Sweden)

    Kazue Kanda

    Full Text Available Many studies have attempted to determine the associations between blood biomarkers and exercise-induced muscle damage. However, poor correlations between the changes in biomarker levels and the magnitude of muscle symptoms have been reported. Recent advances in proteomic tools offer a strategy for the comprehensive analysis of protein expression, which can be used to identify biomarkers. Here, we used a proteomic analysis to identify urinary proteins that appear in response to a calf-raise exercise, including repetitive eccentric muscle contractions, and found that a titin (also known as connectin N-terminal fragment molecule appears in the urine after eccentric exercise. We measured the titin fragment in urine samples from nine individuals before and after eccentric exercise using a newly-established enzyme-linked immunosorbent assay and found that the titin fragment excretion rate increased 96 h after the exercise (5.1 to 77.6 pg/min, p <0.01. The changes in the titin fragment excretion rate were correlated strongly with blood markers of muscle damage and with muscle symptoms. These findings suggest that the urinary titin fragment is potentially a noninvasive biomarker of muscle damage.

  13. Muscle MRI of classic infantile pompe patients: Fatty substitution and edema-like changes.

    Science.gov (United States)

    Pichiecchio, Anna; Rossi, Marta; Cinnante, Claudia; Colafati, Giovanna Stefania; De Icco, Roberto; Parini, Rossella; Menni, Francesca; Furlan, Francesca; Burlina, Alberto; Sacchini, Michele; Donati, Maria Alice; Fecarotta, Simona; Casa, Roberto Della; Deodato, Federica; Taurisano, Roberta; Di Rocco, Maja

    2017-06-01

    The aim of this study was to evaluate the muscle MRI pattern of 9 patients (median age: 6.5 ± 2.74 years) affected by classic infantile-onset Pompe disease who were treated with enzyme replacement therapy. We performed and qualitatively scored T1-weighted (T1-w) sequences of the facial, shoulder girdle, paravertebral, and lower limb muscles and short-tau inversion recovery (STIR) sequences of the lower limbs using the Mercuri and Morrow scales, respectively. On T1-w images, mild (grade 1) or moderate (grade 2) involvement was found in the tongue in 6 of 6 patients and in the adductor magnus muscle in 6 of 9. STIR hyperintensity was detected in all areas examined and was categorized as limited to mild in 5 of 8 patients. On T1-w sequences, mild/moderate adipose substitution in the adductor magnus and tongue muscles was documented. STIR edema-like alterations of thigh and calf muscles are novel findings. Correlations with biopsy findings and clinical parameters are needed to fully understand these findings. Muscle Nerve 55: 841-848, 2017. © 2016 Wiley Periodicals, Inc.

  14. Uji Biologis Konsumsi Pakan, Populasi Bakteri Rumen dan pH Pellet Complete Calf Starter pada Pedet Friesian Holstein Pra Sapih

    Directory of Open Access Journals (Sweden)

    Nadia Maharani

    2015-04-01

    Full Text Available (Biological test feed intake, population rumen bacteria and ph pellet complete calf starter friesian holstein on pre weaning calf  ABSTRACT. The study aims to assess the quality of the formula Complete Calf Starter (CCS with 5% molasses instead of milk to the development of rumen microbial calf Holstein Friesian (HF pre-weaning. The material used is 20 head calf FH pre weaning age of 2 weeks. Feed intake data taken from 20 respondents consisted of 16 females and 4 calf tail male calf. Data rumen bacterial populations and pH were taken from 5 head of cattle slaughtered at the age of 2 weeks (one tail, 4 weeks (2-tailed and 6 weeks (2-tailed. The study was designed as a descriptive non-parametric. Parameters measured were rumen bacterial populations, pH and feed intake. The results showed the average consumption of dry matter (DM and CCS calf milk FH ages 2, 4, 6 weeks respectively at 506, 517, 528 grams. Rumen bacterial populations in calves aged 2, 4, and 6 weeks of 80x106, 45x106 and 19x106 kol/m. ruminal pH in calves aged 2, 4 and 6 weeks was 5.71, 5.36 and 5.55. Biological test showed that the use of complete calf starter (CCS in the form of pellets FH calves at the age of 2 weeks to stimulate the development of the rumen (feed intake, the population of bacteria and pH but not in calves aged 4 and 6 weeks. This is because the number of bacterial populations declined due to impaired absorption is impaired absorption of VFA marked low rumen pH.

  15. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  16. Association between cow reproduction and calf growth traits and ELISA scores for paratuberculosis in a multibreed herd of beef cattle.

    Science.gov (United States)

    Elzo, M A; Rae, D O; Lanhart, S E; Hembry, F G; Wasdin, J G; Driver, J D

    2009-08-01

    The objective of this research was to assess the association between 4 cow reproductive and weight traits, and 2 preweaning calf traits and ELISA scores for paratuberculosis (0 = negative, 1 = suspect, 2 = weak-positive, and 3 = positive) in a multibreed herd of cows ranging from 100% Angus (A) to 100% Brahman (B). Cow data were 624 gestation lengths (GL), 358 records of time open (TO), 605 calving intervals (CI), and 1240 weight changes from November to weaning in September (WC) from 502 purebred and crossbred cows. Calf data consisted of 956 birth weights (BWT), and 923 weaning weights adjusted to 205 d of age (WW205) from 956 purebred and crossbred calves. Traits were analyzed individually using multibreed mixed models that assumed homogeneity of variances across breed groups. Covariances among random effects were assumed to be zero. Fixed effects were year, age of cow, sex of calf, year x age of cow interaction (except WC), age of cow x sex of calf interaction (only for WC), and covariates for B fraction of sire and cow, heterosis of cow and calf, and ELISA score. Random effects were sire (except for TO and CI), dam, and residual. Regression estimates of cow and calf traits on ELISA scores indicated that lower cow fertility (longer TO), lower ability of cows to maintain weight (negative WC), lower calf BWT, and lower calf WW205 were associated with higher cow ELISA scores. Further research on the effects of subclinical paratuberculosis in beef cattle at regional and national levels seems advisable considering the large potential economic cost of this disease.

  17. Detection of Botulinum Toxin Muscle Effect in Humans Using Magnetic Resonance Imaging: A Qualitative Case Series.

    Science.gov (United States)

    O'Dell, Michael W; Villanueva, Mark; Creelman, Carly; Telhan, Gaurav; Nestor, Jaclyn; Hentel, Keith D; Ballon, Douglas; Dyke, Jonathan P

    2017-12-01

    Although important for dosing and dilution, there are few data describing botulinum toxin (BT) movement in human muscle. To better understand BT movement within human muscle. Proof-of-concept study with descriptive case series. Outpatient academic practice. Five subjects with stroke who were BT naive with a mean age of 60.4 ± 14 years and time poststroke of 4.6 ± 3.7 years. Three standardized injections were given to the lateral gastrocnemius muscle (LGM): 2 contained 25 units (U) of onabotulinumtoxinA (Botox) in 0.25 mL of saline solution and the third 0.25 mL of saline solution only. The tibialis anterior muscle (TAM) was not injected in any subject. A leg magnetic resonance image was obtained at baseline, 2 months, and 3 months later with a 3.0 Tesla Siemens scanner. Three muscles, the LGM, lateral soleus muscle (LSM), and TAM, were manually outlined on the T2 mapping sequence at each time point. A histogram of T2 relaxation times (T2-RT) for all voxels at baseline was used to calculate a mean and standard deviation (SD) T2-RT for each muscle. Botulinum toxin muscle effect (BTME) at 2 months and 3 months was defined as a subject- and muscle-specific T2-RT voxel threshold ≥3 SD above the baseline mean at or near BT injection sites. BTME volume for each leg magnetic resonance imaging slice at 3 time points and 3 muscles for all subjects. One subject missed the 3-month scan, leaving 18 potential observations of BTME. Little to no BTME effect was seen in the noninjected TAM. A BTME was detected in the LGM in 13 of 18 possible observations, and no effect was detected in 5 observations. Possible BTME effect was seen in the LSM in 3 subjects due to either diffusion through fascia or needle misplacement. Volume of BTME, as defined here, appeared to be substantially greater than the 0.25-mL injection volume. This descriptive case series is among the first attempts to quantify BTME within human muscle. Our findings are preliminary and are limited by a few

  18. Coronary and muscle blood flow during physical exercise in humans; heterogenic alliance.

    Science.gov (United States)

    Zoladz, Jerzy A; Majerczak, Joanna; Duda, Krzysztof; Chlopicki, Stefan

    2015-08-01

    In this review, we present the relation between power generation capabilities and pulmonary oxygen uptake during incremental cycling exercise in humans and the effect of exercise intensity on the oxygen cost of work. We also discuss the importance of oxygen delivery to the working muscles as a factor determining maximal oxygen uptake in humans. Subsequently, we outline the importance of coronary blood flow, myocardial oxygen uptake and myocardial metabolic stability for exercise tolerance. Finally, we describe mechanisms of endothelium-dependent regulation of coronary and skeletal muscle blood flow, dysregulation of which may impair exercise capacity and increase the cardiovascular risk of exercise. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. All rights reserved.

  19. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    Science.gov (United States)

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Mucosal disease-like syndrome in a calf persistently infected by Hobi-like pestivirus.

    Science.gov (United States)

    Decaro, Nicola; Lanave, Gianvito; Lucente, Maria Stella; Mari, Viviana; Varello, Katia; Losurdo, Michele; Larocca, Vittorio; Bozzetta, Elena; Cavaliere, Nicola; Martella, Vito; Buonavoglia, Canio

    2014-08-01

    A calf persistently infected with Hobi-like pestivirus displayed severe clinical signs and subsequently died. Gross lesions and histopathological changes were suggestive of hemorrhagic and necrotic inflammation involving several tissues. A Hobi-like pestivirus pair was isolated from the dead calf, i.e., cytopathogenic (CP) and noncytopathogenic (NCP) strains strictly related to each other and to Italian prototype isolates at the genetic level. Two biotype-specific real-time reverse transcription-PCR assays determined the time of the emergence of the CP virus as 1 month before the calf's death. This highest RNA titers were reached in lymphoid and nervous system tissues, whereas only traces of CP viral RNA were found in blood. In contrast, great NCP virus loads were present in all tissues and biological fluids. The present report provides new insights into the pathogenesis and molecular mechanisms of this emerging group of pestiviruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Motor unit recruitment in human genioglossus muscle in response to hypercapnia.

    Science.gov (United States)

    Nicholas, Christian L; Bei, Bei; Worsnop, Christopher; Malhotra, Atul; Jordan, Amy S; Saboisky, Julian P; Chan, Julia K M; Duckworth, Ella; White, David P; Trinder, John

    2010-11-01

    single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. sleep research laboratory. sixteen healthy men. each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.

  2. Effects of trehalose supplementation on cell viability and oxidative stress variables in frozen-thawed bovine calf testicular tissue.

    Science.gov (United States)

    Zhang, Xiao-Gang; Wang, Yan-Hua; Han, Cong; Hu, Shan; Wang, Li-Qiang; Hu, Jian-Hong

    2015-06-01

    Trehalose is widely used for cryopreservation of various cells and tissues. Until now, the effect of trehalose supplementation on cell viability and antioxidant enzyme activity in frozen-thawed bovine calf testicular tissue remains unexplored. The objective of the present study was to compare the effect of varying doses of trehalose in cryomedia on cell viability and key antioxidant enzymes activities in frozen-thawed bovine calf testicular tissue. Bovine calf testicular tissue samples were collected and cryopreserved in the cryomedias containing varying doses (0, 5, 10, 15, 20 and 25%; v/v) of trehalose, respectively. Cell viability, total antioxidant capacity (T-AOC) activity, catalase (CAT) activity, superoxide dismutase (SOD) activity, glutathione (GSH) content and malondialdehyde (MDA) content were measured and analyzed. The results showed that cell viability, T-AOC activity, SOD activity, CAT activity and GSH content of frozen-thawed bovine calf testicular tissue was decreased compared with that of fresh group (Pcell viability and antioxidant enzyme activity (SOD and CAT) among frozen-thawed groups (P0.05). In conclusion, the cryomedia added 15% trehalose reduced the oxidative stress and improved the cryoprotective effect of bovine calf testicular tissue. Further studies are required to obtain more concrete results on the determination of antioxidant capacity of trehalose in frozen-thawed bovine calf testicular tissue. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction.

    Science.gov (United States)

    Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A

    1997-09-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.

  4. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina D; Vissing, John; González-Alonso, José

    2012-01-01

    Oxygen (O(2)) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can incr...

  5. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.

    Science.gov (United States)

    Iwamoto, Masami; Nakahira, Yuko

    2015-11-01

    Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics.

  6. Skeletal muscle munc18c and syntaxin 4 in human obesity

    Directory of Open Access Journals (Sweden)

    Bessesen Daniel H

    2008-07-01

    Full Text Available Abstract Background Animal and cell culture data suggest a critical role for Munc18c and Syntaxin 4 proteins in insulin mediated glucose transport in skeletal muscle, but no studies have been published in humans. Methods We investigated the effect of a 12 vs. 48 hr fast on insulin action and skeletal muscle Munc18c and Syntaxin 4 protein in lean and obese subjects. Healthy lean (n = 14; age = 28.0 +/- 1.4 yr; BMI = 22.8 +/- 0.42 kg/m2 and obese subjects (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5 kg/m2 were studied twice following a 12 and 48 hr fast. Skeletal muscle biopsies were obtained before a 3 hr 40 mU/m2/min hyperinsulinemic-euglycemic clamp with [6,6-2H2]glucose infusion. Results Glucose rate of disappearance (Rd during the clamp was lower in obese vs. lean subjects after the 12 hr fast (obese: 6.25 +/- 0.67 vs. lean: 9.42 +/- 1.1 mg/kgFFM/min, p = 0.007, and decreased significantly in both groups after the 48 hr fast (obese 3.49 +/- 0.31 vs. lean: 3.91 +/- 0.42 mg/kgFFM/min, p = 0.002. Munc18c content was not significantly different between lean and obese subjects after the 12 hour fast, and decreased after the 48 hr fast in both groups (p = 0.013. Syntaxin 4 content was not altered by obesity or fasting duration. There was a strong positive relationship between plasma glucose concentration and Munc18c content in lean and obese subjects during both 12 and 48 hr fasts (R2 = 0.447, p = 0.0015. Significant negative relationships were also found between Munc18c and FFA (p = 0.041, beta-hydroxybutyrate (p = 0.039, and skeletal muscle AKT content (p = 0.035 in lean and obese subjects. Conclusion These data indicate Munc18c and Syntaxin 4 are present in human skeletal muscle. Munc18c content was not significantly different between lean and obese subjects, and is therefore unlikely to explain obesity-induced insulin resistance. Munc18c content decreased after prolonged fasting in lean and obese subjects concurrently with reduced insulin

  7. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  8. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  9. Computed tomographic findings in a calf with actinomycosis: a case report

    International Nuclear Information System (INIS)

    Mohamed, T.; Al-Sobayil, F.; Kurwasawa, T.; Nakade, T.; Floeck, M.

    2011-01-01

    In this report a case of actinomycosis in a five-month-old Holstein calf is described. The patient displayed a hard and immobile swelling in the mandible and fever. Computed tomography (CT) imaging of the skull was performed under deep sedation and revealed an asymmetrical appearance of the mandible with the presence of intra-mandibular hypodense lesions. Haematologic and serum biochemical profiles revealed leukocytosis, neutrophilia, hypoalbuminaemia and hypergammaglobulinaemia. Treatment consisted of flushing the lesion and administration of antibiotics and non-steroidal anti-inflammatory drugs. The calf responded to therapy and had recovered almost completely four months later. The present case indicates that CT is an effective non-invasive means of identifying mandibular lesions in cattle

  10. [Uterine torsion in cattle--therapy and consequences for calf and cow].

    Science.gov (United States)

    Erteld, E; Krohn, J; Dzhakupov, I T; Wehrend, A

    2014-01-01

    To summarize the available literature on the therapy of uterine torsion in cattle and the consequences for cow and calf. Analysis of the literature using electronic libraries (PubMed, Medline), German veterinary medical journals and obstetrical textbooks. The therapy includes the attempt to rotate the uterus back into its physiological position. Direct and indirect methods of retorsion are available and applied according to the case conditions. Subsequently, the extraction of the calf can be performed via vaginal delivery or caesarean section. The presence of uterine torsion always leads to dystocia. Following a successful retorsion, the time and degree of uterine torsion strongly influence the progress of the birth. The prognosis also depends on the aforementioned factors and varies between good to unsuccessful. The vitality of the calf displays great variation depending on the literature (14-90%), however, is generally greater under field than clinical conditions. Focussing on the puerperal development of the cow, all grades from mild irritations of the uterine involution to fatal complications occur. The influence on fertility depends on the progress of the birth and existing secondary complications. The risk for electrolyte disturbances is increased (approximately 50%) as is the risk of birth-associated injuries (approximately 20%). The incidence of placental retention varies widely between different authors (3-52%).

  11. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    Science.gov (United States)

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces. Copyright © 2013 Wiley Periodicals, Inc.

  12. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2006-01-01

    -Thr-172 AMPK phosphorylation (r2 = 0.84, P important actor in exercise-regulated AMPK signalling in human skeletal muscle, probably mediating phosphorylation of ACCß.......5'AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK a/ß/¿-heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between...... total AMPK activity and regulation of its target acetyl-CoA-carboxylase (ACC)ß. Also, exercise training decreases expression of the regulatory ¿3 AMPK subunit and attenuates a2 AMPK activity during exercise. We hypothesize that these observations reflect a differential regulation of the AMPK...

  13. Effects of Calf Rearing Package Introduced to Smallholder Dairy Farms in Bahati Division, Nakuru District, Kenya

    International Nuclear Information System (INIS)

    Lanyasunya, T.P.; Wekesa, F.W.; Sinkeet, S.N.O.; Jong, R.; Udo, H.; Mukisira, E.A.

    1999-01-01

    A Calf rearing package of Individual (mobile) pens , milk and fodder feeding was introduced on smallholder farms of Bahati Division, Nakuru District, Kenya. The study investigated the effects of changes in Calf rearing practices on calf performance and the responses of the production systems to the investigations. 46 farmers were selected on the basis of their willingness to participate in the study and were allocated to Control (23 and Test (23). both types of farmers were trained but only test farms received building materials and forage seeds. Socio-economic and calf performance data were collected. Calves were supplemented with sweet potato vines (SPV) + Green leaf desmodium (DES) and/or fodder shrubs (FOD) Leucaena leucocephala and Sesbania sesban. Analysis of variance (ANOVA) models and Chi-square test were applied on the data collected. The study revealed that there were variations in off-farm, livestock and crop incomes. The gross Margins (GM) were higher (P < 0.01) for the test than the Control farmers. Calves raised in Test farms Demonstrated higher (P < 0.05) growth rates than those in Control farms (370 versus 307 g/d). Female calves gained (P < 0.05) 57 g/d more than mal calves.Those with assorted farm grown legumes (SPV + FOD) performed better (375 and 417 g/d, respectively) compared to those supplemented with SPV alone or not supplemented (345 and 321 g/d, respectively). Improved calf performance in Test farms suggests that, farm grown forage legumes, could be used as a cheap alternative protein supplement by resource-poor farmers. Calf mortality rates for Control farms (33%) were higher (P < 0.05) than those for Test farms (12.5%). The study concluded that the interventions/measures taken improve the overall performance of calves on-farm

  14. Contrasting actions of philanthotoxin-343 and philanthotoxin-(12) on human muscle nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Brier, Tim J; Mellor, Ian R; Tikhonov, Denis B

    2003-01-01

    Whole-cell recordings and outside-out patch recordings from TE671 cells were made to investigate antagonism of human muscle nicotinic acetylcholine receptors (nAChR) by the philanthotoxins, PhTX-343 and PhTX-(12). When coapplied with acetylcholine (ACh), PhTX-343 caused activation-dependent, nonc......Whole-cell recordings and outside-out patch recordings from TE671 cells were made to investigate antagonism of human muscle nicotinic acetylcholine receptors (nAChR) by the philanthotoxins, PhTX-343 and PhTX-(12). When coapplied with acetylcholine (ACh), PhTX-343 caused activation...

  15. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    Science.gov (United States)

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.

  16. Effects of black bear relocation on elk calf recruitment at Great Smoky Mountains National Park

    Science.gov (United States)

    Yarkovich, J.; Clark, J.D.; Murrow, J.L.

    2011-01-01

    Previous research from 2001 to 2006 on an experimentally released elk (Cervus elaphus) population at Great Smoky Mountains National Park (GSMNP or Park) indicated that calf recruitment (i.e., calves reaching 1 yr of age per adult female elk) was low (0.306, total SE = 0.090) resulting in low or negative population growth (λ = 0.996, 95% CI = 0.945–1.047). Black bear (Ursus americanus) predation was the primary calf mortality factor. From 2006 to 2008, we trapped and relocated 49 bears (30 of which were radiocollared) from the primary calving areas in the Park and radiomonitored 67 (28 M:39 F) adult elk and 42 calves to compare vital rates and population growth with the earlier study. A model with annual calf recruitment rate correlating with the number of bears relocated each year was supported (ΔAICc = 0.000; β = 0.070, 95% CI = 0.028–0.112) and a model with annual calf recruitment differing from before to during bear relocation revealed an increase to 0.544 (total SE = 0.098; β = −1.092, 95% CI = −1.180 to −0.375). Using vital rates and estimates of process standard errors observed during our study, 25-yr simulations maintained a mean positive growth rate in 100% of the stochastic trials with λ averaging 1.118 (95% CI = 1.096–1.140), an increase compared with rates before bear relocation. A life table response experiment revealed that increases in population growth were mostly (67.1%) due to changes in calf recruitment. We speculate that behavioral adaptation of the elk since release also contributed to the observed increases in recruitment and population growth. Our results suggest that managers interested in elk reintroduction within bear range should consider bear relocation as a temporary means of increasing calf recruitment.

  17. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans

    International Nuclear Information System (INIS)

    Consoli, A.; Nurjhan, N.; Reilly, J.J. Jr.; Bier, D.M.; Gerich, J.E.

    1990-01-01

    To quantitate alanine and lactate gluconeogenesis in postabsorptive humans and to test the hypothesis that muscle is the principal source of these precursors, we infused normal volunteers with [3-14C]lactate, [3-13C]alanine, and [6-3H]glucose and calculated alanine and lactate incorporation into plasma glucose corrected for tricarboxylic acid cycle carbon exchange, the systemic appearance of these substrates, and their forearm fractional extraction, uptake, and release. Forearm alanine and lactate fractional extraction averaged 37 +/- 3 and 27 +/- 2%, respectively; muscle alanine release (2.94 +/- 0.27 mumol.kg body wt-1.min-1) accounted for approximately 70% of its systemic appearance (4.18 +/- 0.31 mumol.kg body wt-1.min-1); muscle lactate release (5.51 +/- 0.42 mumol.kg body wt-1.min-1) accounted for approximately 40% of its systemic appearance (12.66 +/- 0.77 mumol.kg body wt-1.min-1); muscle alanine and lactate uptake (1.60 +/- 0.7 and 3.29 +/- 0.36 mumol.kg body wt-1.min-1, respectively) accounted for approximately 30% of their overall disappearance from plasma, whereas alanine and lactate incorporation into plasma glucose (1.83 +/- 0.20 and 4.24 +/- 0.44 mumol.kg body wt-1.min-1, respectively) accounted for approximately 50% of their disappearance from plasma. We therefore conclude that muscle is the major source of plasma alanine and lactate in postabsorptive humans and that factors regulating their release from muscle may thus exert an important influence on hepatic gluconeogenesis

  18. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy.

    Science.gov (United States)

    Benedetti, Sara; Uno, Narumi; Hoshiya, Hidetoshi; Ragazzi, Martina; Ferrari, Giulia; Kazuki, Yasuhiro; Moyle, Louise Anne; Tonlorenzi, Rossana; Lombardo, Angelo; Chaouch, Soraya; Mouly, Vincent; Moore, Marc; Popplewell, Linda; Kazuki, Kanako; Katoh, Motonobu; Naldini, Luigi; Dickson, George; Messina, Graziella; Oshimura, Mitsuo; Cossu, Giulio; Tedesco, Francesco Saverio

    2018-02-01

    Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  20. Migratory herds of wildebeests and zebras indirectly affect calf survival of giraffes.

    Science.gov (United States)

    Lee, Derek E; Kissui, Bernard M; Kiwango, Yustina A; Bond, Monica L

    2016-12-01

    In long-distance migratory systems, local fluctuations in the predator-prey ratio can exhibit extreme variability within a single year depending upon the seasonal location of migratory species. Such systems offer an opportunity to empirically investigate cyclic population density effects on short-term food web interactions by taking advantage of the large seasonal shifts in migratory prey biomass.We utilized a large-mammal predator-prey savanna food web to evaluate support for hypotheses relating to the indirect effects of "apparent competition" and "apparent mutualism" from migratory ungulate herds on survival of resident megaherbivore calves, mediated by their shared predator. African lions ( Panthera leo ) are generalist predators whose primary, preferred prey are wildebeests ( Connochaetes taurinus ) and zebras ( Equus quagga ), while lion predation on secondary prey such as giraffes ( Giraffa camelopardalis ) may change according to the relative abundance of the primary prey species.We used demographic data from five subpopulations of giraffes in the Tarangire Ecosystem of Tanzania, East Africa, to test hypotheses relating to direct predation and indirect effects of large migratory herds on calf survival of a resident megaherbivore. We examined neonatal survival via apparent reproduction of 860 adult females, and calf survival of 449 giraffe calves, during three precipitation seasons over 3 years, seeking evidence of some effect on neonate and calf survival as a consequence of the movements of large herds of migratory ungulates.We found that local lion predation pressure (lion density divided by primary prey density) was significantly negatively correlated with giraffe neonatal and calf survival probabilities. This supports the apparent mutualism hypothesis that the presence of migratory ungulates reduces lion predation on giraffe calves.Natural predation had a significant effect on giraffe calf and neonate survival, and could significantly affect giraffe

  1. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection.

    Science.gov (United States)

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-01-01

    If muscle force is a primary source for triggering bone adaptation, with disuse and reloading, bone changes should follow muscle changes. We examined the timing and magnitude of changes in muscle cross-sectional area (MCSA) and bone architecture in response to muscle inactivity following botulinum toxin (BTX) injection. We hypothesized that MCSA would return to baseline levels sooner than bone properties following BTX injection. Female BALB mice (15 weeks old) were injected with 20 muL of BTX (1 U/100 g body mass, n=18) or saline (SAL, n=18) into the posterior calf musculature of one limb. The contralateral limb (CON) served as an internal control. MCSA and bone properties were assessed at baseline, 2, 4, 8, 12, and 16 weeks post-injection using in vivo micro-CT at the tibia proximal metaphysis (bone only) and diaphysis. Muscles were dissected and weighed after sacrifice. Significant GroupxLegxTime interactions indicated that the maximal decrease in MCSA (56%), proximal metaphyseal BV/TV (38%) and proximal diaphyseal Ct.Ar (7%) occurred 4 weeks after injection. There was no delay prior to bone recovery as both muscle and bone properties began to recover after this time, but MCSA and BV/TV remained 15% and 20% lower, respectively, in the BTX-injected leg than the BTX-CON leg 16 weeks post-injection. Gastrocnemius mass (primarily fast-twitch) was 14% lower in the BTX-injected leg than the SAL-injected leg, while soleus mass (primarily slow-twitch) was 15% greater in the BTX group than the SAL group. Our finding that muscle size and bone began to recover at similar times after BTX injection was unexpected. This suggested that partial weight-bearing and/or return of slow-twitch muscle activity in the BTX leg may have been sufficient to stimulate bone recovery. Alternatively, muscle function may have recovered sooner than MCSA. Our results indicated that muscle cross-sectional area, while important, may not be the primary factor associated with bone loss and recovery

  2. THE EFFECT OF CALF STARTER RATION FOR PRE-WEANING ONGOLE GRADE (PO CALVES ON BODY WEIGHT GAIN

    Directory of Open Access Journals (Sweden)

    E. Winarti

    2016-12-01

    Full Text Available The objective of study was to determine the effect of calf starter in the pre-weaning calves against the daily body weight gain. Twenty Ongole grade (PO calves age of 1 month divided into 4 treatment groups of feed, 5 calves for each treatment. Treatment (P1 fed with extra soybean groats; (P2 soybean groats 50% + Gliricidia 50%; (P3 soybean groats 50%+ rice bran 50%; (P4 soybean groats 50%+ rejected bread 50%. Calf starter was given at age 1 month to 3 months. Observation was carried out on calves daily weight gain. This experiment was designed in Completely Randomized Design. Data was  analyzed by analysis of variance and continued Least Significant Difference Test. Statistical analysis showed that feed of (P <0.05 significantly affected the daily weight gain of the calves. Results of the study can be concluded that calf starter with soya groats provide the best daily weight gain of pre-weaning calf.

  3. Comparing localized and nonlocalized dynamic 31P magnetic resonance spectroscopy in exercising muscle at 7T

    Science.gov (United States)

    Meyerspeer, Martin; Robinson, Simon; Nabuurs, Christine I; Scheenen, Tom; Schoisengeier, Adrian; Unger, Ewald; Kemp, Graham J; Moser, Ewald

    2012-01-01

    By improving spatial and anatomical specificity, localized spectroscopy can enhance the power and accuracy of the quantitative analysis of cellular metabolism and bioenergetics. Localized and nonlocalized dynamic 31P magnetic resonance spectroscopy using a surface coil was compared during aerobic exercise and recovery of human calf muscle. For localization, a short echo time single-voxel magnetic resonance spectroscopy sequence with adiabatic refocusing (semi-LASER) was applied, enabling the quantification of phosphocreatine, inorganic phosphate, and pH value in a single muscle (medial gastrocnemius) in single shots (TR = 6 s). All measurements were performed in a 7 T whole body scanner with a nonmagnetic ergometer. From a series of equal exercise bouts we conclude that: (a) with localization, measured phosphocreatine declines in exercise to a lower value (79 ± 7% cf. 53 ± 10%, P = 0.002), (b) phosphocreatine recovery shows shorter half time (t1/2 = 34 ± 7 s cf. t1/2 = 42 ± 7 s, nonsignificant) and initial postexercise phosphocreatine resynthesis rate is significantly higher (32 ± 5 mM/min cf. 17 ± 4 mM/min, P = 0.001) and (c) in contrast to nonlocalized 31P magnetic resonance spectroscopy, no splitting of the inorganic phosphate peak is observed during exercise or recovery, just an increase in line width during exercise. This confirms the absence of contaminating signals originating from weaker-exercising muscle, while an observed inorganic phosphate line broadening most probably reflects variations across fibers in a single muscle. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc. PMID:22334374

  4. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle

    DEFF Research Database (Denmark)

    Kristiansen, S; Hargreaves, Mark; Richter, Erik

    1996-01-01

    contractions may induce trafficking of GLUT-4-containing vesicles via a mechanism similar to neurotransmitter release. Our results demonstrate for the first time exercise-induced translocation of GLUT-4 and VAMP-2 to the plasma membrane of human muscle and increased sarcolemmal glucose transport.......A major effect of muscle contractions is an increase in sarcolemmal glucose transport. We have used a recently developed technique to produce sarcolemmal giant vesicles from human muscle biopsy samples obtained before and after exercise. Six men exercised for 10 min at 50% maximal O2 uptake (Vo2max...

  5. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans.

    Science.gov (United States)

    Gray, Stuart R; De Vito, Giuseppe; Nimmo, Myra A; Farina, Dario; Ferguson, Richard A

    2006-02-01

    The effect of temperature on skeletal muscle ATP turnover and muscle fiber conduction velocity (MFCV) was studied during maximal power output development in humans. Eight male subjects performed a 6-s maximal sprint on a mechanically braked cycle ergometer under conditions of normal (N) and elevated muscle temperature (ET). Muscle temperature was passively elevated through the combination of hot water immersion and electric blankets. Anaerobic ATP turnover was calculated from analysis of muscle biopsies obtained before and immediately after exercise. MFCV was measured during exercise using surface electromyography. Preexercise muscle temperature was 34.2 degrees C (SD 0.6) in N and 37.5 degrees C (SD 0.6) in ET. During ET, the rate of ATP turnover for phosphocreatine utilization [temperature coefficient (Q10) = 3.8], glycolysis (Q10 = 1.7), and total anaerobic ATP turnover [Q10 = 2.7; 10.8 (SD 1.9) vs. 14.6 mmol x kg(-1) (dry mass) x s(-1) (SD 2.3)] were greater than during N (P < 0.05). MFCV was also greater in ET than in N [3.79 (SD 0.47) to 5.55 m/s (SD 0.72)]. Maximal power output (Q10 = 2.2) and pedal rate (Q10 = 1.6) were greater in ET compared with N (P < 0.05). The Q10 of maximal and mean power were correlated (P < 0.05; R = 0.82 and 0.85, respectively) with the percentage of myosin heavy chain type IIA. The greater power output obtained with passive heating was achieved through an elevated rate of anaerobic ATP turnover and MFCV, possibly due to a greater effect of temperature on power production of fibers, with a predominance of myosin heavy chain IIA at the contraction frequencies reached.

  6. Effect of calf sex on some productive, reproductive and health traits in Holstein cows

    International Nuclear Information System (INIS)

    Chegini, A.; Hossein-Zadeh, N.G.; Hosseini-Moghadam, H.

    2015-01-01

    Records of Holstein cows from March 1992 to April 2008 from 194 large herds and comprising from 402,716 records for productive traits to 178,344 records of somatic cell count were used to study the effect of calf sex in different parities and calving season on the subsequent productive, reproductive and health traits in Holstein cows. T-test procedure of SAS software was used to investigate the effect of calf sex and season of calving on aforementioned traits. Cows with female calves had higher milk and fat yield, persistency of milk and fat yield and longer lactation length, while cows that gave birth to male calves had shorter calving interval and longer productive life. Also, cows with female calves had higher milk yield per day of lactation in the first two parities, but there was no difference in milk yield per day of lactation for parities ≥ 3. There was no relationship among mean somatic cell count and sex of born calf. Fall calves had the highest adjusted milk yield and milk yield per day of lactation, however, winter calves had the longest lactation lengthand productive life and the highest somatic cell count. Results from this study demonstrate that it seems necessary to consider the effect of calf sex on aforementioned traits when making decision to use sexed semen or conventional semen. (Author)

  7. Effect of calf sex on some productive, reproductive and health traits in Holstein cows

    Energy Technology Data Exchange (ETDEWEB)

    Chegini, A.; Hossein-Zadeh, N.G.; Hosseini-Moghadam, H.

    2015-07-01

    Records of Holstein cows from March 1992 to April 2008 from 194 large herds and comprising from 402,716 records for productive traits to 178,344 records of somatic cell count were used to study the effect of calf sex in different parities and calving season on the subsequent productive, reproductive and health traits in Holstein cows. T-test procedure of SAS software was used to investigate the effect of calf sex and season of calving on aforementioned traits. Cows with female calves had higher milk and fat yield, persistency of milk and fat yield and longer lactation length, while cows that gave birth to male calves had shorter calving interval and longer productive life. Also, cows with female calves had higher milk yield per day of lactation in the first two parities, but there was no difference in milk yield per day of lactation for parities ≥ 3. There was no relationship among mean somatic cell count and sex of born calf. Fall calves had the highest adjusted milk yield and milk yield per day of lactation, however, winter calves had the longest lactation lengthand productive life and the highest somatic cell count. Results from this study demonstrate that it seems necessary to consider the effect of calf sex on aforementioned traits when making decision to use sexed semen or conventional semen. (Author)

  8. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  9. Multi-muscle FES force control of the human arm for arbitrary goals.

    Science.gov (United States)

    Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M

    2014-05-01

    We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.

  10. Hereditary Neuropathies

    Science.gov (United States)

    ... calf muscles (having the appearance of an inverted champagne glass) or scoliosis (curvature of the spine). The ... calf muscles (having the appearance of an inverted champagne glass) or scoliosis (curvature of the spine). The ...

  11. Supplementation of organic and inorganic selenium to late gestation and early lactation beef cows effect on cow and preweaning calf performance.

    Science.gov (United States)

    Muegge, C R; Brennan, K M; Schoonmaker, J P

    2016-08-01

    Angus × Simmental cows ( = 48; BW = 595 ± 17.4 kg, BCS = 5.26 ± 0.05, and age = 2.3 ± 0.07 yr), pregnant with male fetuses, were used to determine the effect of Se source during the last 80 d of gestation and first 108 d of lactation on cow and calf performance. At 203 d in gestation, cows were blocked by BW, breed composition, age, and calf sire and randomly allotted to organic Se, inorganic Se, or no Se treatments. Diets contained corn silage, corn stover, haylage, dried distillers' grains with solubles, and minerals and were formulated to contain 10.4% CP and 0.90 Mcal/kg NEg during gestation and 12.1% CP and 1.01 Mcal/kg NEg during lactation. Diets were fed daily as a total mixed ration and none, 3 mg/d Se as sodium selenite, or 3 mg/d Se as Sel-Plex were top-dressed daily. At 68 d postpartum (DPP), milk production was calculated using the weigh-suckle-weigh procedure and a milk sample was collected to determine composition. At 108 DPP, cow-calf pairs were commingled until weaning at 210 DPP. Cow BW and BCS ( ≥ 0.56) did not differ between treatments at any time point during the study. Milk production, milk fat, and total solids ( ≥ 0.38) did not differ among treatments. Milk protein tended to increase in cows fed inorganic Se compared with cows fed organic Se ( = 0.07) and milk lactose tended to be greatest in cows fed organic Se ( = 0.10). Conception to AI and overall pregnancy rates did not differ between treatments ( ≥ 0.39). Calf weights and ADG did not differ through 108 DPP ( ≥ 0.77) or for the preweaning period ( ≥ 0.33). Plasma Se concentration was adequate for all cows and did not differ among treatments for cows ( ≥ 0.37) or calves ( ≥ 0.90). Liver Se concentrations in cows fed inorganic or organic Se were greater than in control cows ( < 0.01). Longissimus muscles biopsies taken from progeny at 108 DPP also did not differ between treatments ( = 0.45). In conclusion, dietary Se source did not affect cow performance, milk production

  12. Skeletal muscle abnormalities and exercise capacity in adults with a Fontan circulation.

    Science.gov (United States)

    Cordina, Rachael; O'Meagher, Shamus; Gould, Haslinda; Rae, Caroline; Kemp, Graham; Pasco, Julie A; Celermajer, David S; Singh, Nalin

    2013-10-01

    The peripheral muscle pump is key in promoting cardiac filling during exercise, especially in subjects who lack a subpulmonary ventricle (the Fontan circulation). A muscle-wasting syndrome exists in acquired heart failure but has not been assessed in Fontan subjects. We sought to investigate whether adults with the Fontan circulation exhibit reduced skeletal muscle mass and/or metabolic abnormalities. Sixteen New York Heart Association Class I/II Fontan adults (30±2 years) underwent cardiopulmonary exercise testing and lean mass quantification with dual x-ray absorptiometry (DXA); eight had calf muscle (31)P magnetic resonance spectroscopy as did eight healthy age-matched and sex-matched controls. DXA results were compared with Australian reference data. Single tertiary referral centre. Peak VO2 was 1.9±0.1 L/min (66±3% of predicted values). Skeletal muscle mass assessed by relative appendicular lean mass index was significantly reduced compared with age-matched and sex-matched reference values (Z-score -1.46±0.22, pskeletal muscle mass correlated with poorer VO2 max (r=0.67, p=0.004). Overall, skeletal muscle mass T-score (derived from comparison with young normal reference mean) was -1.47±0.21; 4/16 Fontan subjects had sarcopenic range muscle wasting (T-score Muscle aerobic capacity, measured by the rate constant (k) of postexercise phosphocreatine resynthesis, was significantly impaired in Fontan adults versus controls (1.48±0.13 vs 2.40±0.33 min(-1), p=0.02). Fontan adults have reduced skeletal muscle mass and intrinsic muscle metabolic abnormalities.

  13. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Between a rock and a hard place: habitat selection in female-calf humpback whale (Megaptera novaeangliae Pairs on the Hawaiian breeding grounds.

    Directory of Open Access Journals (Sweden)

    Rachel Cartwright

    Full Text Available The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40-60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap.

  15. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  16. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Rasmussen, Lotte Klejs; Kadi, Fawzi

    2016-01-01

    muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared...... activation of satellite cells and muscle remodeling during large-scale regeneration of injured human skeletal muscle.-Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human......With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation-induced injury to the leg extensor...

  17. Reflexes in the shoulder muscles elicited from the human coracoacromial ligament

    DEFF Research Database (Denmark)

    Diederichsen, L.P.; Norregaard, J.; Krogsgaard, M.

    2004-01-01

    into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim...... activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted......-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1...

  18. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    Science.gov (United States)

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocityankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Use of a clinical sepsis score for predicting bacteremia in neonatal dairy calves on a calf rearing farm.

    OpenAIRE

    Fecteau, G; Paré, J; Van Metre, D C; Smith, B P; Holmberg, C A; Guterbock, W; Jang, S

    1997-01-01

    In human, equine, and bovine neonates, early diagnosis of bacteremia remains a challenge for the internist. The objective of this study was to develop a predictive model for risk of bacteremia, based on a clinical evaluation system called the clinical sepsis score. Blood from 90 ill calves, 1- to 14-days-old from a calf-raising farm in the San Joaquin Valley of California was cultured. The calves were also scored according to a clinical score for hydration status, fecal appearance, general at...

  20. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional...

  1. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, Henning; Gemmer, Carsten

    2002-01-01

    The vascular endothelium is an important mediator of tissue vasodilatation, yet the role of the specific substances, nitric oxide (NO) and prostaglandins (PG), in mediating the large increases in muscle perfusion during exercise in humans is unclear. Quadriceps microvascular blood flow......, respectively (P exercise in humans. These findings demonstrate an important synergistic role of NO and PG for skeletal muscle vasodilatation and hyperaemia during muscular contraction....... was quantified by near infrared spectroscopy and indocyanine green in six healthy humans during dynamic knee extension exercise with and without combined pharmacological inhibition of NO synthase (NOS) and PG by L-NAME and indomethacin, respectively. Microdialysis was applied to determine interstitial release...

  2. Blood pressure and the contractility of a human leg muscle.

    Science.gov (United States)

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  3. Human and rodent muscle Na(+)-K(+)-ATPase in diabetes related to insulin, starvation, and training

    DEFF Research Database (Denmark)

    Schmidt, T A; Hasselbalch, S; Farrell, P A

    1994-01-01

    cerebral cortex Na(+)-K(+)-ATPase concentration as a result of diabetes, semistarvation, or insulin treatment. In human subjects, Na(+)-K(+)-ATPase concentration in vastus lateralis muscle biopsies was 17 and 22% greater (P dependent diabetes...... mellitus (n = 24) and insulin-dependent diabetes mellitus (n = 7) than in control subjects (n = 8). A positive linear correlation between muscle Na(+)-K(+)-ATPase and plasma insulin concentrations was observed (r = 0.50, P = 0.006; n = 29). Thus, insulin seems a regulator of muscle Na......(+)-K(+)-ATPase concentration, reduction of muscle Na(+)-K(+)-ATPase concentration with untreated diabetes bears similarities with undernourishment, and physical conditioning may ameliorate the muscle Na(+)-K(+)-ATPase concentration decrease induced by diabetes....

  4. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    Science.gov (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  5. Acidification of calf bedding reduces fly development and bacterial abundance.

    Science.gov (United States)

    Calvo, M S; Gerry, A C; McGarvey, J A; Armitage, T L; Mitloehner, F M

    2010-03-01

    Environmental stressors, such as high fly density, can affect calf well-being. Sodium bisulfate (SBS) is an acidifier that reduces the pH of flooring and bedding, creating a medium that neither bacteria nor immature flies (also known as larvae or maggots) can thrive in. Two experiments were conducted to investigate the application of SBS to a mixture of rice hull calf bedding and calf slurry (BED) to reduce house fly (Musca domestica L.) larval density and the abundance of bacteria. In experiment 1, dish pans containing 1L of BED and 3,000 house fly eggs were treated with SBS at concentrations of 0, 8.9, 17.7, and 26.5g of SBS/0.05m(2) of BED (CON, LOW, MED, and HIGH, respectively), with each SBS concentration applied to 4 individual pans (16 pans total). Reapplication of the same SBS concentrations in each pan occurred 3 times/wk throughout the 23-d trial. Larval house fly survival was significantly reduced in all pans with SBS relative to CON pans, with lowest survival rates in the MED and HIGH pans (99% and 100% reduction, respectively). The mean pH for each treatment was inversely related to the SBS concentration. In experiment 2, pans containing 1L of BED and 3,000 house fly eggs were treated with either 0g of SBS (CON), 8.9g of SBS/0.05m(2) of BED with reapplication of the acidifier 3 times/wk (SB3x), or 8.9g of SBS/0.05m(2) of BED applied only once at 48h before the end of the 8 d-trial (SB48). Larval house fly survival and bacterial concentrations were reduced (90% larval reduction and 68% bacterial reduction) in the SB3x treatment relative to the CON. Mean pH was also reduced in SB3x pans relative to CON or SB48 pans. Overall, acidification of calf BED using the acidifier SBS resulted in a reduction of bacteria and house fly larval survival. This form of fly control might be expected to reduce adult fly production and, therefore, fly-related stress in calves.

  6. A human in vitro model of Duchenne muscular dystrophy muscle formation and contractility.

    Science.gov (United States)

    Nesmith, Alexander P; Wagner, Matthew A; Pasqualini, Francesco S; O'Connor, Blakely B; Pincus, Mark J; August, Paul R; Parker, Kevin Kit

    2016-10-10

    Tongue weakness, like all weakness in Duchenne muscular dystrophy (DMD), occurs as a result of contraction-induced muscle damage and deficient muscular repair. Although membrane fragility is known to potentiate injury in DMD, whether muscle stem cells are implicated in deficient muscular repair remains unclear. We hypothesized that DMD myoblasts are less sensitive to cues in the extracellular matrix designed to potentiate structure-function relationships of healthy muscle. To test this hypothesis, we drew inspiration from the tongue and engineered contractile human muscle tissues on thin films. On this platform, DMD myoblasts formed fewer and smaller myotubes and exhibited impaired polarization of the cell nucleus and contractile cytoskeleton when compared with healthy cells. These structural aberrations were reflected in their functional behavior, as engineered tongues from DMD myoblasts failed to achieve the same contractile strength as healthy tongue structures. These data suggest that dystrophic muscle may fail to organize with respect to extracellular cues necessary to potentiate adaptive growth and remodeling. © 2016 Nesmith et al.

  7. Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle.

    NARCIS (Netherlands)

    Mulder, A.H.; Dijk, A.P.J. van; Smits, P.; Tack, C.J.J.

    2008-01-01

    OBJECTIVE: Muscle capillary perfusion can be measured by contrast-enhanced ultrasound. We examined whether a less time-consuming ultrasound technique, called "real-time imaging," could be used to measure capillary recruitment in human forearm skeletal muscle. METHODS: We measured microvascular blood

  8. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  9. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content......, maximal activity and subunit specific mRNA level (a1, a2, ß1, ß2, ß3) in deltoid and vastus lateralis muscle were investigated. Before treatment, maximal Na+,K+ pump activity, as well as a1, a2, ß1 and ß2 mRNA levels were higher (P ... increased Na+,K+ pump maximal activity in vastus lateralis and deltoid by 14 ± 7% (P Na+,K+ pump content by 18 ± 9% (P

  10. Weighted Mean of Signal Intensity for Unbiased Fiber Tracking of Skeletal Muscles: Development of a New Method and Comparison With Other Correction Techniques.

    Science.gov (United States)

    Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Resinger, Christoph; Thorsten, Feiweier; Traxler, Hannes; Trattnig, Siegfried; Bogner, Wolfgang

    2017-08-01

    The aim of this study was to investigate the origin of random image artifacts in stimulated echo acquisition mode diffusion tensor imaging (STEAM-DTI), assess the role of averaging, develop an automated artifact postprocessing correction method using weighted mean of signal intensities (WMSIs), and compare it with other correction techniques. Institutional review board approval and written informed consent were obtained. The right calf and thigh of 10 volunteers were scanned on a 3 T magnetic resonance imaging scanner using a STEAM-DTI sequence.Artifacts (ie, signal loss) in STEAM-based DTI, presumably caused by involuntary muscle contractions, were investigated in volunteers and ex vivo (ie, human cadaver calf and turkey leg using the same DTI parameters as for the volunteers). An automated postprocessing artifact correction method based on the WMSI was developed and compared with previous approaches (ie, iteratively reweighted linear least squares and informed robust estimation of tensors by outlier rejection [iRESTORE]). Diffusion tensor imaging and fiber tracking metrics, using different averages and artifact corrections, were compared for region of interest- and mask-based analyses. One-way repeated measures analysis of variance with Greenhouse-Geisser correction and Bonferroni post hoc tests were used to evaluate differences among all tested conditions. Qualitative assessment (ie, images quality) for native and corrected images was performed using the paired t test. Randomly localized and shaped artifacts affected all volunteer data sets. Artifact burden during voluntary muscle contractions increased on average from 23.1% to 77.5% but were absent ex vivo. Diffusion tensor imaging metrics (mean diffusivity, fractional anisotropy, radial diffusivity, and axial diffusivity) had a heterogeneous behavior, but in the range reported by literature. Fiber track metrics (number, length, and volume) significantly improved in both calves and thighs after artifact

  11. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  12. GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus

    DEFF Research Database (Denmark)

    Jørgensen, Jens O L; Jessen, Niels; Pedersen, Steen Bønløkke

    2006-01-01

    Growth hormone (GH) regulates muscle and fat metabolism, which impacts on body composition and insulin sensitivity, but the underlying GH signaling pathways have not been studied in vivo in humans. We investigated GH signaling in biopsies from muscle and abdominal fat obtained 30 (n = 3) or 60 (n...... was measured by in vitro phosphorylation of PI. STAT5 DNA binding activity was assessed with EMSA, and the expression of IGF-I and SOCS mRNA was measured by real-time RT-PCR. GH induced a 52% increase in circulating FFA levels with peak values after 155 min (P = 0.03). Tyrosine-phosphorylated STAT5...... tended to increase after GH in muscle and fat, respectively. We conclude that 1) STAT5 is acutely activated in human muscle and fat after a GH bolus, but additional downstream GH signaling was significant only in fat; 2) the direct GH effects in muscle need further characterization; and 3) this human...

  13. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    Science.gov (United States)

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P insulin sensitivity (both P insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  14. Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique.

    Science.gov (United States)

    Kurihara, Toshiyuki; Yamauchi, Junichiro; Otsuka, Mitsuo; Tottori, Nobuaki; Hashimoto, Takeshi; Isaka, Tadao

    2014-01-01

    The aims of this study were to investigate the relationships between the maximum isometric toe flexor muscle strength (TFS) and cross-sectional area (CSA) of the plantar intrinsic and extrinsic muscles and to identify the major determinant of maximum TFS among CSA of the plantar intrinsic and extrinsic muscles. Twenty six young healthy participants (14 men, 12 women; age, 20.4 ± 1.6 years) volunteered for the study. TFS was measured by a specific designed dynamometer, and CSA of plantar intrinsic and extrinsic muscles were measured using magnetic resonance imaging (MRI). To measure TFS, seated participants optimally gripped the bar with their toes and exerted maximum force on the dynamometer. For each participant, the highest force produced among three trials was used for further analysis. To measure CSA, serial T1-weighted images were acquired. TFS was significantly correlated with CSA of the plantar intrinsic and extrinsic muscles. Stepwise multiple linear regression analyses identified that the major determinant of TFS was CSA of medial parts of plantar intrinsic muscles (flexor hallucis brevis, flexor digitorum brevis, quadratus plantae, lumbricals and abductor hallucis). There was no significant difference between men and women in TFS/CSA. CSA of the plantar intrinsic and extrinsic muscles is one of important factors for determining the maximum TFS in humans.

  15. The impact of dystocia on dairy calf health, welfare, performance and survival.

    Science.gov (United States)

    Barrier, A C; Haskell, M J; Birch, S; Bagnall, A; Bell, D J; Dickinson, J; Macrae, A I; Dwyer, C M

    2013-01-01

    Up to one-third of dairy calves are born after dystocia and this is a major cause of calf mortality. This study investigated the neonatal physiology, survival, health and subsequent growth of dairy calves following dystocia and is the first longitudinal study to analyse multiple effects and to look beyond the perinatal period. A total of 455 live born Holstein calves (N: No assistance, n=360; FN: Farmer assistance but normally presented calf, n=82; FM: Farmer assistance of malpresented calf, n=13) were followed from birth to first service (heifers) or until leaving the farm (bulls). Compared to N calves, FN and FM animals had higher salivary cortisol concentrations at day 1 (PDystocia had no biologically significant impact on rectal temperature throughout the first 4 days (P>0.05). During the first 60 days, FM calves had a higher proportion of days with non-routine health treatments (Pdystocia category (P>0.05). Calves which survive dystocia experience lower passive immunity transfer, higher mortality and higher indicators of physiological stress. Such calves have poorer welfare in the neonatal period and possibly beyond. Strategies need to be implemented to improve the subsequent health and welfare of such calves and to lower the incidence of dystocia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Standardized intermittent static exercise increases peritendinous blood flow in human leg

    DEFF Research Database (Denmark)

    Langberg, Henning; Bülow, J; Kjaer, M

    1999-01-01

    . The radioactive isotope xenon-133 was injected just ventrally to the Achilles tendon 5 cm proximal to the tendon's insertion on the calcaneous. The disappearance of 133Xe was used to determine blood flow during intermittent static exercise of the calf muscle (1.5 s exercise/1.5 s rest) for 30 min at a workload...

  17. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  18. Myofibrillar proteolysis in response to voluntary or electrically stimulated muscle contractions in humans

    DEFF Research Database (Denmark)

    Hansen, M; Trappe, T; Crameri, R M

    2008-01-01

    Knowledge about the effects of exercise on myofibrillar protein breakdown in human subjects is limited. Our purpose was to measure the changes in the degradation of myofibrillar proteins in response to different ways of eliciting muscle contractions using the local interstitial 3-methyl-histidine......Knowledge about the effects of exercise on myofibrillar protein breakdown in human subjects is limited. Our purpose was to measure the changes in the degradation of myofibrillar proteins in response to different ways of eliciting muscle contractions using the local interstitial 3-methyl....... Only after ES did the histochemical stainings show significant disruption of cytoskeletal proteins. Furthermore, intracellular disruption and destroyed Z-lines were markedly more pronounced in ES vs VOL. In conclusion, the local level of interstitial 3-MH in the skeletal muscle was significantly...... enhanced after ES compared with VOL immediately after exercise, while the level of 3-MH did not change in the post-exercise period after VOL. These results indicate that the local myofibrillar breakdown is accelerated after ES associated with severe myofiber damage....

  19. Occurrence of Mycobacterium avium subspecies paratuberculosis and Neospora caninum in Alberta cow-calf operations.

    Science.gov (United States)

    Pruvot, M; Kutz, S; Barkema, H W; De Buck, J; Orsel, K

    2014-11-01

    Mycobacterium avium subsp. paratuberculosis (MAP) and Neospora caninum (NC) are two pathogens causing important production limiting diseases in the cattle industry. Significant impacts of MAP and NC have been reported on dairy cattle herds, but little is known about the importance, risk factors and transmission patterns in western Canadian cow-calf herds. In this cross-sectional study, the prevalence of MAP and NC infection in southwest Alberta cow-calf herds was estimated, risk factors for NC were identified, and the reproductive impacts of the two pathogens were assessed. Blood and fecal samples were collected from 840 cows on 28 cow-calf operations. Individual cow and herd management information was collected by self-administered questionnaires and one-on-one interviews. Bayesian estimates of the true prevalence of MAP and NC were computed, and bivariable and multivariable statistical analysis were done to assess the association between the NC serological status and ranch management risk factors, and the clinical effects of the two pathogens. Bayesian estimates of true prevalence indicated that 20% (95% probability interval: 8-38%) of herds had at least one MAP-positive cow, with a within-herd prevalence in positive herds of 22% (8-45%). From the Bayesian posterior distributions of NC prevalence, the median herd-level prevalence was 66% (33-95%) with 10% (4-21%) cow-level prevalence in positive herds. Multivariable analysis indicated that introducing purchased animals in the herd might increase the risk of NC. The negative association of NC with proper carcass disposal and presence of horses on ranch (possibly in relation to herd monitoring and guarding activities), may suggest the importance of wild carnivores in the dynamics of this pathogen in the study area. We also observed an association between MAP and NC serological status and the number of abortions. Additional studies should be done to further examine specific risk factors for MAP and NC, assess the

  20. Direct effects of FGF21 on glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Mashili, Fredirick L; Austin, Reginald L; Deshmukh, Atul S

    2011-01-01

    21 were determined in normal glucose tolerant (n = 40) and type 2 diabetic (T2D; n = 40) subjects. We determined whether FGF21 has direct effects on glucose metabolism in cultured myotubes (n = 8) and extensor digitorum longus skeletal muscle. RESULTS: Serum FGF21 levels increased 20% in T2D versus...... normal glucose tolerant subjects (p muscle mRNA expression was unaltered. Fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR), waist circumference, and body mass index (BMI) significantly correlated with serum FGF21 levels in T2D (p ... and insulin-stimulated glucose uptake in human myotubes, coincident with increased glucose transporter 1 mRNA, and enhanced glucose transporter 1 abundance at the plasma membrane. In isolated extensor digitorum longus muscle, FGF21 potentiated insulin-stimulated glucose transport, without altering...

  1. Muscle-specific integrins in masseter muscle fibers of chimpanzees: an immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Gianluigi Vaccarino

    2010-05-01

    Full Text Available Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern human and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes. The most peculiar aspect of hominoid karyotypes is that human have 46 chromosomes whereas gorillas and chimpanzees have 48. Interestingly, human and chimpanzees do share identical inversions on chromosome 7 and 9 that are not evident in the gorilla karyotype. Thus, the general phylogeny suggests that humans and chimpanzees are sister taxa; based on this, it seems that human-chimpanzee sequence similarity is an astonishing 99%. At this purpose, of particular interest is the inactivation of the myosin heavy chain 16 (MYH16 gene, most prominently expressed in the masticatory muscle of mammals. It has been showed that the loss of this gene in humans may have resulted in smaller masticatory muscle and consequential changes to cranio-facial morphology and expansion of the human brain case. Powerful masticatory muscles are found in most primates; contrarily, in both modern and fossil member Homo, these muscles are considerably smaller. The evolving hominid masticatory apparatus shifted towards a pattern of gracilization nearly simultaneously with accelerated encephalization in early Homo. To better comprehend the real role of the MYH16 gene, we studied the primary proteins present in the muscle fibers of humans and non-humans, in order to understand if they really can be influenced by MYH16 gene. At this aim we examined the muscle-specific integrins, alpha 7B and beta 1D-integrins, and their relative fetal isoforms, alpha 7A and beta 1A-integrins, analyzing, by immunohistochemistry, muscle biopsies of two components of a chimpanzee's group in captivity, an alpha male and a non-alpha male subjects; all these integrins participate in vital biological processes such as maintenance of tissue integrity, embryonic development, cell

  2. Anatomical study on The Arm Greater Yang Small Intestine Meridian Muscle in Human

    Directory of Open Access Journals (Sweden)

    Kyoung-Sik, Park

    2004-06-01

    Full Text Available This study was carried to identify the component of Small Intestine Meridian Muscle in human, dividing the regional muscle group into outer, middle, and inner layer. the inner part of body surface were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Small Intestine Meridian Muscle. We obtained the results as follows; 1. Small Intestine Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows ; 1 Muscle ; Abd. digiti minimi muscle(SI-2, 3, 4, pisometacarpal lig.(SI-4, ext. retinaculum. ext. carpi ulnaris m. tendon.(SI-5, 6, ulnar collateral lig.(SI-5, ext. digiti minimi m. tendon(SI-6, ext. carpi ulnaris(SI-7, triceps brachii(SI-9, teres major(SI-9, deltoid(SI-10, infraspinatus(SI-10, 11, trapezius(Sl-12, 13, 14, 15, supraspinatus(SI-12, 13, lesser rhomboid(SI-14, erector spinae(SI-14, 15, levator scapular(SI-15, sternocleidomastoid(SI-16, 17, splenius capitis(SI-16, semispinalis capitis(SI-16, digasuicus(SI-17, zygomaticus major(Il-18, masseter(SI-18, auriculoris anterior(SI-19 2 Nerve ; Dorsal branch of ulnar nerve(SI-1, 2, 3, 4, 5, 6, br. of mod. antebrachial cutaneous n.(SI-6, 7, br. of post. antebrachial cutaneous n.(SI-6,7, br. of radial n.(SI-7, ulnar n.(SI-8, br. of axillary n.(SI-9, radial n.(SI-9, subscapular n. br.(SI-9, cutaneous n. br. from C7, 8(SI-10, 14, suprascapular n.(SI-10, 11, 12, 13, intercostal n. br. from T2(SI-11, lat. supraclavicular n. br.(SI-12, intercostal n. br. from C8, T1(SI-12, accessory n. br.(SI-12, 13, 14, 15, 16, 17, intercostal n. br. from T1,2(SI-13, dorsal scapular n.(SI-14, 15, cutaneous n. br. from C6, C7(SI-15, transverse cervical n.(SI-16, lesser occipital n. & great auricular n. from

  3. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    Science.gov (United States)

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, P<0.001, P≤0.02, and P≤0.03, respectively), whereas only in RVE ankle plantar flexor CSA and isometric ankle plantar flexion force reached significance or a tendency, respectively, (time effect, P=0.015 and P=0.069, respectively; intervention effect also for the latter, P=0.006). Drop jump contact time did significantly more improve in RVE (interaction effect, P=0.042). Conclusions: RVE showed better training effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  4. Relationship between muscle water and glycogen recovery after prolonged exercise in the heat in humans.

    Science.gov (United States)

    Fernández-Elías, Valentín E; Ortega, Juan F; Nelson, Rachael K; Mora-Rodriguez, Ricardo

    2015-09-01

    It is usually stated that glycogen is stored in human muscle bound to water in a proportion of 1:3 g. We investigated this proportion in biopsy samples during recovery from prolonged exercise. On two occasions, nine aerobically trained subjects ([Formula: see text] = 54.4 ± 1.05 mL kg(-1) min(-1); mean ± SD) dehydrated 4.6 ± 0.2 % by cycling 150 min at 65 % [Formula: see text] in a hot-dry environment (33 ± 4 °C). One hour after exercise subjects ingested 250 g of carbohydrates in 400 mL of water (REHLOW) or the same syrup plus water to match fluid losses (i.e., 3170 ± 190 mL; REHFULL). Muscle biopsies were obtained before, 1 and 4 h after exercise. In both trials muscle water decreased from pre-exercise similarly by 13 ± 6 % and muscle glycogen by 44 ± 10 % (P recovery, glycogen levels were similar in both trials (79 ± 15 and 87 ± 18 g kg(-1) dry muscle; P = 0.20) while muscle water content was higher in REHFULL than in REHLOW (3814 ± 222 vs. 3459 ± 324 g kg(-1) dm, respectively; P recovery ratio 1:3) while during REHFULL this ratio was higher (1:17). Our findings agree with the long held notion that each gram of glycogen is stored in human muscle with at least 3 g of water. Higher ratios are possible (e.g., during REHFULL) likely due to water storage not bound to glycogen.

  5. Reflexes in the shoulder muscles elicited from the human coracoacromial ligament.

    Science.gov (United States)

    Diederichsen, Louise Pyndt; Nørregaard, Jesper; Krogsgaard, Michael; Fischer-Rasmussen, Torsten; Dyhre-Poulsen, Poul

    2004-09-01

    Morphological studies have demonstrated mechanoreceptors in the capsuloligamentous structures of the shoulder joint, however knowledge of the role these joint receptors play in the control of shoulder stability is limited. We therefore investigated the effect of electrically induced afferent activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1) and 73+/-5 ms (stim-2) during isometric extension. In study II the average latency (mean+/-SE) of the response was 66+/-4 ms (stim-1) during isometric flexion. Our results demonstrated a response, probably of reflex origin, from mechanoreceptors in the CAL to the shoulder muscles. The existence of this synaptic connection between mechanoreceptors in CAL and the shoulder muscles suggest a role of these receptors in muscle coordination and in the functional joint stability.

  6. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  7. Simplified data access on human skeletal muscle transcriptome responses to differentiated exercise

    DEFF Research Database (Denmark)

    Vissing, Kristian; Schjerling, Peter

    2014-01-01

    Few studies have investigated exercise-induced global gene expression responses in human skeletal muscle and these have typically focused at one specific mode of exercise and not implemented non-exercise control models. However, interpretation on effects of differentiated exercise necessitate dir...

  8. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system.

    Science.gov (United States)

    Guo, Xiufang; Das, Mainak; Rumsey, John; Gonzalez, Mercedes; Stancescu, Maria; Hickman, James

    2010-12-01

    To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.

  9. Veterinarians’ and agricultural advisors’ perception of calf health and welfare in organic dairy production in Norway

    DEFF Research Database (Denmark)

    Ellingsen, Kristian; Mejdell, C. M.; Hansen, B.

    2012-01-01

    and opinions on calf health and welfare in organic dairy farming. The response rate was 52 % for veterinarians and 54 % for advisors. In direct comparison, both groups thought that the calves’ overall health status and well-being did not differ in organic and conventional dairy farming systems. However...... of respondents considered the routine of keeping calves with their mothers and the good care of the calves by stockpersons as important welfare advantages. Among all factors related to health, welfare, morbidity and mortality, low calf mortality and adequate treatment of disease and injury received the best...... scores. Body condition and growth, as well as the use of calf health recording cards, received the worst scores. The two professions differed in their views on the most important welfare challenges for calves in an organic environment: while both groups agreed on poor feed quality, veterinarians...

  10. Benign acute childhood myositis: an unusual cause of calf pain

    Energy Technology Data Exchange (ETDEWEB)

    Panghaal, Vikash; Levin, Terry L. [Montefiore Medical Center, Department of Radiology, Bronx, NY (United States); Ortiz-Romero, Sara [Albert Einstein College of Medicine, Bronx, NY (United States); Lovinsky, Stephanie [Montefiore Medical Center, Department of Pediatrics, Bronx, NY (United States)

    2008-06-15

    We present a 17-year-old boy with benign acute childhood myositis (BACM) who presented with acute onset of right calf pain, swelling, and difficulty walking. The MR findings are reviewed. MR may be useful in diagnosing BACM and in differentiating it from other causes of myositis. (orig.)

  11. Benign acute childhood myositis: an unusual cause of calf pain

    International Nuclear Information System (INIS)

    Panghaal, Vikash; Levin, Terry L.; Ortiz-Romero, Sara; Lovinsky, Stephanie

    2008-01-01

    We present a 17-year-old boy with benign acute childhood myositis (BACM) who presented with acute onset of right calf pain, swelling, and difficulty walking. The MR findings are reviewed. MR may be useful in diagnosing BACM and in differentiating it from other causes of myositis. (orig.)

  12. MRI diagnosis of diabetic muscle infarction: report of two cases

    International Nuclear Information System (INIS)

    Khoury, N.J.; El-Khoury, G.Y.; Kathol, M.H.

    1997-01-01

    Diabetic muscle infarction (DMI) is a rare complication of diabetes mellitus occurring in patients with poorly controlled insulin-dependent diabetes. In previous reports, the diagnosis of this condition was based on the pathologic studies, although MRI examinations were performed in a few patients as part of the diagnostic work-up. In this report, we describe two additional cases of DMI where the diagnosis was based on the MRI findings in conjunction with the clinical picture and laboratory studies. The patients usually present with thigh or calf pain and swelling, are afebrile, and have normal white blood cell count. MRI examination typically shows diffuse swelling and increased signal intensity on T2-weighted images in the affected muscles, with no focal fluid collections. In the proper clinical setting, these findings are diagnostic of DMI and patients should be spared unnecessary invasive diagnostic examinations such as lower extremity venograms and biopsies. (orig.). With 4 figs

  13. Muscle-tendon interaction and elastic energy usage in human walking

    DEFF Research Database (Denmark)

    Ishikawa, Masaki; Komi, Paavo V.; Grey, Michael James

    2005-01-01

    The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo......-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous...

  14. A new Caenorhabditis elegans model of human huntingtin 513 aggregation and toxicity in body wall muscles.

    Directory of Open Access Journals (Sweden)

    Amy L Lee

    Full Text Available Expanded polyglutamine repeats in different proteins are the known determinants of at least nine progressive neurodegenerative disorders whose symptoms include cognitive and motor impairment that worsen as patients age. One such disorder is Huntington's Disease (HD that is caused by a polyglutamine expansion in the human huntingtin protein (htt. The polyglutamine expansion destabilizes htt leading to protein misfolding, which in turn triggers neurodegeneration and the disruption of energy metabolism in muscle cells. However, the molecular mechanisms that underlie htt proteotoxicity have been somewhat elusive, and the muscle phenotypes have not been well studied. To generate tools to elucidate the basis for muscle dysfunction, we engineered Caenorhabditis elegans to express a disease-associated 513 amino acid fragment of human htt in body wall muscle cells. We show that this htt fragment aggregates in C. elegans in a polyglutamine length-dependent manner and is toxic. Toxicity manifests as motor impairment and a shortened lifespan. Compared to previous models, the data suggest that the protein context in which a polyglutamine tract is embedded alters aggregation propensity and toxicity, likely by affecting interactions with the muscle cell environment.

  15. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka

    2007-01-01

    receptor blockade. BF heterogeneity within muscles was calculated from 16-mm(3) voxels in BF images and heterogeneity among the muscles from the mean values of the four QF compartments. Mean BF in the whole QF and its four parts increased, and heterogeneity decreased with workload both without......Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...... and with theophylline (P heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing...

  16. Nutrition Coupled with High-Load Traditional or Low-Load Blood Flow Restricted Exercise During Human Limb Suspension

    Science.gov (United States)

    Hackney, K. J.; Everett, M.; Ploutz-Snyder, L. L.

    2011-01-01

    High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (HRE vs. BFR, respectively. Leg press training loads were 44 +/- 7 kg in HRE compared to 11 +/- 1 kg in BFR. Similarly, calf raise training loads were 81 +/- 11 kg in HRE and 16 +/- 1 kg in BFR. Pre to post-ULLS training adaptations in the unloaded leg are shown in the table. CONCLUSION: The preliminary results of this investigation suggest when HRE is optimized for muscle anabolism during unloading muscle size and strength are preserved (or enhanced) at the expense of muscle endurance. In contrast, when BFR exercise is optimized for muscle anabolism during unloading muscle endurance is preserved (or enhanced) at the expense of muscle size and strength

  17. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Science.gov (United States)

    Camera, Donny M; Burniston, Jatin G; Pogson, Mark A; Smiles, William J; Hawley, John A

    2017-12-01

    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. © FASEB.

  18. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Guul, Martin Kjær; Nielsen, A. N.

    2017-01-01

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre...... of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve...... healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior...

  19. Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Bjerregaard, P; Richter, Erik

    1988-01-01

    rats, cardiomyopathic hamsters, and human subjects. These methods have earlier been shown to quantify the Na+,K+-ATPase concentration in muscle tissue with high accuracy. When rats were swim trained for six weeks the heart ventricular muscle Na+,K+-ATPase concentration was increased by 20% (p less than...... was increased by up to 46% (p less than 0.001) and decreased by up to 30% (p less than 0.005) after training and immobilisation respectively. Cardiomyopathic hamsters showed a reduction of 33% (p less than 0.005) in the heart ventricular Na+,K+-ATPase concentration compared with normal hamsters. This decrease...

  20. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  1. Gamma-ray decontamination of a milk substitute for calf feeding

    International Nuclear Information System (INIS)

    Blasco, M. I.; Roberti, A.; Horak, Celina I.; Narvaiz, Patricia; Kairiyama, Eulogia

    1999-01-01

    A contaminated milk substitute for calf feeding has been irradiated to reduce the content of bacteria and fungi. The results of microbiological, chemical and physico-chemical studies demonstrate that an irradiation doses of 7 kGy reduce to an acceptable level the content of contaminants without damaging the milk substitute. (author)

  2. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.

    Science.gov (United States)

    Capitanio, Daniele; Fania, Chiara; Torretta, Enrica; Viganò, Agnese; Moriggi, Manuela; Bravatà, Valentina; Caretti, Anna; Levett, Denny Z H; Grocott, Michael P W; Samaja, Michele; Cerretelli, Paolo; Gelfi, Cecilia

    2017-08-29

    In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.

  3. Impact of an AI heifer calf rearing scheme on dairy stock development in the Western province of Sri Lanka.

    NARCIS (Netherlands)

    Nettisinghe, A.M.P.; Udo, H.M.J.; Steenstra, F.A.

    2004-01-01

    This study evaluated the impact of an AI heifer calf rearing scheme on dairy stock development, in a coconut grazing and a peri-urban smallholder dairy production system in the Western Province of Sri Lanka. The heifer rearing scheme included free advice on calf rearing, drugs, acaricides, minerals

  4. Experimental characterization of post rigor mortis human muscle subjected to small tensile strains and application of a simple hyper-viscoelastic model.

    Science.gov (United States)

    Gras, Laure-Lise; Laporte, Sébastien; Viot, Philippe; Mitton, David

    2014-10-01

    In models developed for impact biomechanics, muscles are usually represented with one-dimensional elements having active and passive properties. The passive properties of muscles are most often obtained from experiments performed on animal muscles, because limited data on human muscle are available. The aim of this study is thus to characterize the passive response of a human muscle in tension. Tensile tests at different strain rates (0.0045, 0.045, and 0.45 s⁻¹) were performed on 10 extensor carpi ulnaris muscles. A model composed of a nonlinear element defined with an exponential law in parallel with one or two Maxwell elements and considering basic geometrical features was proposed. The experimental results were used to identify the parameters of the model. The results for the first- and second-order model were similar. For the first-order model, the mean parameters of the exponential law are as follows: Young's modulus E (6.8 MPa) and curvature parameter α (31.6). The Maxwell element mean values are as follows: viscosity parameter η (1.2 MPa s) and relaxation time τ (0.25 s). Our results provide new data on a human muscle tested in vitro and a simple model with basic geometrical features that represent its behavior in tension under three different strain rates. This approach could be used to assess the behavior of other human muscles. © IMechE 2014.

  5. Recruitment of single human low-threshold motor units with increasing loads at different muscle lengths.

    Science.gov (United States)

    McNulty, P A; Cresswell, A G

    2004-06-01

    We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (Precruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.

  6. Changes in recruitment order of motor units in the human biceps muscle

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Denier van der Gon, J.J.; Gielen, C.C.A.M.

    1982-01-01

    Changes in recruitment threshold of individual motor units of the human biceps (caput longum), a multifunctional muscle, were investigated during different tasks, i.e., isometric flexion of the elbow, isometric supination of the forearm, and isometric exorotation of the humerus of the 110° flexed

  7. Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: technical aspects

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1994-01-01

    The bioenergetics of human skeletal muscle can be studied by 31P NMR spectroscopy (31P-MRS) and by surface electromyography (SEMG). Simultaneous 31P-MRS and SEMG permit accurate and noninvasive studies of the correlation between metabolic and electrical changes in exercising and recovering human....... A nonmagnetic ergometer was used for ankle dorsiflexions that activated only the anterior tibial muscle as verified by post exercise imaging. The coil design and the adiabatic sech/tanh pulse improved sensitivity by 45% and 56% respectively, compared with standard techniques. Simultaneous electromyographic...... recordings did not deteriorate the NMR spectra. The VARPRO time domain fitting routine was very suitable for estimating 31P muscle spectra. With these methods it was possible to accurately estimate parameters describing metabolic and electrical changes during rest, exercise and the entire recovery period...

  8. Simultaneous thigh muscle metastasis from lung cancer and Escherichia coli gas producing myonecrosis

    International Nuclear Information System (INIS)

    Martinez, Gonzalo E.; Coursey, Courtney A.; Martinez, Salutario; Dodd, Leslie

    2008-01-01

    We present the case of a 41-year-old man with known large cell lung cancer who had undergone left pneumonectomy 7 months prior and who presented with a large intramuscular mass involving the posterior left thigh and upper calf. This thigh mass was ultimately surgically explored, and specimens yielded both Escherichia coli organisms and cells reflecting a skeletal muscle metastasis from the patient's known lung cancer. The patient was also found to have a rectal metastasis from his lung cancer. Intramuscular abscesses produced by gastrointestinal tract flora are a well-known presentation of colon cancer. To our knowledge, this is the first case report of the simultaneous occurrence of a skeletal muscle metastasis and an E. coli abscess in the same anatomic location. We believe the patient's rectal metastasis may have been the intermediate step in this process. (orig.)

  9. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (...... = 13) performed 3 days of treadmill running. Cellular proliferation was investigated 3 days before and 48 h after the running exercise with the use of FLT and positron emission tomography/computed tomography (PET/CT). Results were compared to a sedentary control group (n = 10). Image......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  10. Conduction velocity of action potentials measured from unidimensional latency-topography in human and frog skeletal muscle fibers.

    Science.gov (United States)

    Homma, S; Nakajima, Y; Hayashi, K; Toma, S

    1986-01-01

    Conduction of an action potential along skeletal muscle fibers was graphically displayed by unidimensional latency-topography, UDLT. Since the slopes of the equipotential line were linear and the width of the line was constant, it was possible to calculate conduction velocity from the slope. To determine conduction direction of the muscle action potential elicited by electric stimulation applied directly to the muscle, surface recording electrodes were placed on a two-dimensional plane over a human muscle. Thus a bi-dimensional topography was obtained. Then, twelve or sixteen surface electrodes were placed linearly along the longitudinal direction of the action potential conduction which was disclosed by the bi-dimensional topography. Thus conduction velocity of muscle action potential in man, calculated from the slope, was for m. brachioradialis, 3.9 +/- 0.4 m/s; for m. biceps brachii, 3.6 +/- 0.2 m/s; for m. sternocleidomastoideus, 3.6 +/- 0.4 m/s. By using a tungsten microelectrode to stimulate the motor axons, a convex-like equipotential line of an action potential in UDLT was obtained from human muscle fibers. Since a similar pattern of UDLT was obtained from experiments on isolated frog muscles, in which the muscle action potential was elicited by stimulating the motor axon, it was assumed that the maximum of the curve corresponds to the end-plate region, and that the slopes on both sides indicate bi-directional conduction of the action potential.

  11. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.

    Science.gov (United States)

    Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran

    2017-09-01

    Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P glycogen synthesis.

  12. Effects of muscle activation on shear between human soleus and gastrocnemius muscles.

    Science.gov (United States)

    Finni, T; Cronin, N J; Mayfield, D; Lichtwark, G A; Cresswell, A G

    2017-01-01

    Lateral connections between muscles provide pathways for myofascial force transmission. To elucidate whether these pathways have functional roles in vivo, we examined whether activation could alter the shear between the soleus (SOL) and lateral gastrocnemius (LG) muscles. We hypothesized that selective activation of LG would decrease the stretch-induced shear between LG and SOL. Eleven volunteers underwent a series of knee joint manipulations where plantar flexion force, LG, and SOL muscle fascicle lengths and relative displacement of aponeuroses between the muscles were obtained. Data during a passive full range of motion were recorded, followed by 20° knee extension stretches in both passive conditions and with selective electrical stimulation of LG. During active stretch, plantar flexion force was 22% greater (P stronger (stiffer) connectivity between the two muscles, at least at flexed knee joint angles, which may serve to facilitate myofascial force transmission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. A rare case of monozygotic iniodymic diprosopiasis in a German Holstein calf.

    Science.gov (United States)

    Weber, Jim; Behn, Holger; Freick, Markus

    2017-06-01

    Craniofacial duplication abnormity is a rare phenomenon in buiatric practice. This report attends to a male German Holstein calf which could be classified as a diprosopic iniodymus. A fetus exhibiting a doubled face was delivered after fetotomy. To our knowledge, this is the first description of diprosopiasis with two cranial cavities as well as two separate encephala in a calf showing the potential extent of duplication. Throughout this work also the question is answered of whether this malformation in a bovine species arose from one embryo or rather, there is a dizygotic background by genotyping of tissue samples from both parts of the diprosopus. Regarding etiology, not only hereditary dispositions including among others a failed function of the signaling molecule Sonic hedgehog mediating regulation of craniofacial morphogenesis, but also incompletely separated monozygotic twins are discussed.

  14. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    Science.gov (United States)

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  15. Economic Pasture-Based Cow-Calf Systems for Appalachia

    OpenAIRE

    Emenheiser, Joseph Carl

    2014-01-01

    Pasture-based beef production is well-suited for the Appalachian region of the United States. This research investigated pasture, beef cattle, and economics components within the cow-calf sector of pasture beef production, and presents implications of their interplay for the vitality of the whole system. Samples of forage DM mass and CP, ADF, NDF, and ash contents in each paddock of a rotational stocking system were collected monthly for 4 grazing seasons. Effects of month, stockpiling, hay f...

  16. Experimental model of human corpus cavernosum smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Rommel P. Regadas

    2010-08-01

    Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.

  17. Estimation of normal hydration in dialysis patients using whole body and calf bioimpedance analysis.

    Science.gov (United States)

    Zhu, Fansan; Kotanko, Peter; Handelman, Garry J; Raimann, Jochen G; Liu, Li; Carter, Mary; Kuhlmann, Martin K; Seibert, Eric; Leonard, Edward F; Levin, Nathan W

    2011-07-01

    Prescription of an appropriate dialysis target weight (dry weight) requires accurate evaluation of the degree of hydration. The aim of this study was to investigate whether a state of normal hydration (DW(cBIS)) as defined by calf bioimpedance spectroscopy (cBIS) and conventional whole body bioimpedance spectroscopy (wBIS) could be characterized in hemodialysis (HD) patients and normal subjects (NS). wBIS and cBIS were performed in 62 NS (33 m/29 f) and 30 HD patients (16 m/14 f) pre- and post-dialysis treatments to measure extracellular resistance and fluid volume (ECV) by the whole body and calf bioimpedance methods. Normalized calf resistivity (ρ(N)(,5)) was defined as resistivity at 5 kHz divided by the body mass index. The ratio of wECV to total body water (wECV/TBW) was calculated. Measurements were made at baseline (BL) and at DW(cBIS) following the progressive reduction of post-HD weight over successive dialysis treatments until the curve of calf extracellular resistance is flattened (stabilization) and the ρ(N)(,5) was in the range of NS. Blood pressures were measured pre- and post-HD treatment. ρ(N)(,5) in males and females differed significantly in NS. In patients, ρ(N)(,5) notably increased with progressive decrease in body weight, and systolic blood pressure significantly decreased pre- and post-HD between BL and DW(cBIS) respectively. Although wECV/TBW decreased between BL and DW(cBIS), the percentage of change in wECV/TBW was significantly less than that in ρ(N)(,5) (-5.21 ± 3.2% versus 28 ± 27%, p hydration between BL and DW(cBIS).

  18. Effect of exercise on insulin action in human skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Mikines, K J; Galbo, Henrik

    1989-01-01

    The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization...... was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2...... consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp...

  19. Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lecourt, Severine, E-mail: severine.lecourt@sls.aphp.fr [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Marolleau, Jean-Pierre, E-mail: Marolleau.Jean-Pierre@chu-amiens.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); CHU Amiens Hopital Sud, Service d' Hematologie Clinique, UPJV, Amiens (France); Fromigue, Olivia, E-mail: olivia.fromigue@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); Vauchez, Karine, E-mail: k.vauchez@institut-myologie.org [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Genzyme S.A.S., Saint-Germain en Laye (France); Andriamanalijaona, Rina, E-mail: rinandria@yahoo.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Ternaux, Brigitte, E-mail: brigitte.ternaux@orange.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Lacassagne, Marie-Noelle, E-mail: mnlacassagne@free.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Robert, Isabelle, E-mail: isa-robert@hotmail.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Boumediene, Karim, E-mail: karim.boumediene@unicaen.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Chereau, Frederic, E-mail: fchereau@pervasistx.com [Myosix S.A., Saint-Germain en Laye (France); Marie, Pierre, E-mail: pierre.marie@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); and others

    2010-09-10

    Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56{sup +} cells grew rapidly, a population of CD15{sup +} cells emerged, partly from CD56{sup +} cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56{sup +} and CD15{sup +} cells shared osteogenic and chondrogenic abilities, while CD56{sup +} cells presented a myogenic capacity and CD15{sup +} cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.

  20. A rare cause of calf swelling: the Morel-Lavallee lesion.

    LENUS (Irish Health Repository)

    Moriarty, J M

    2011-03-01

    Calf swelling is a common clinical presentation with a wide and varied differential diagnosis. The Morel-Lavallee is a rare cause of subcutaneous swelling, caused by post-traumatic shearing of the hypodermis from the underlying fascia. The potential space so created fills with blood, lymph and necrotic fat giving specific findings on MR evaluation.