WorldWideScience

Sample records for human breath analysis

  1. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis

    Directory of Open Access Journals (Sweden)

    Thalakkotur Lazar Mathew

    2015-02-01

    Full Text Available This review elucidates the technologies in the field of exhaled breath analysis. Exhaled breath gas analysis offers an inexpensive, noninvasive and rapid method for detecting a large number of compounds under various conditions for health and disease states. There are various techniques to analyze some exhaled breath gases, including spectrometry, gas chromatography and spectroscopy. This review places emphasis on some of the critical biomarkers present in exhaled human breath, and its related effects. Additionally, various medical monitoring techniques used for breath analysis have been discussed. It also includes the current scenario of breath analysis with nanotechnology-oriented techniques

  2. Modular Sampling and Analysis Techniques for the Real-Time Analysis of Human Breath

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M; Farquar, G; Adams, K; Bogan, M; Martin, A; Benner, H; Spadaccini, C; Steele, P; Davis, C; Loyola, B; Morgan, J; Sankaran, S

    2007-07-09

    At LLNL and UC Davis, we are developing several techniques for the real-time sampling and analysis of trace gases, aerosols and exhaled breath that could be useful for a modular, integrated system for breath analysis. Those techniques include single-particle bioaerosol mass spectrometry (BAMS) for the analysis of exhaled aerosol particles or droplets as well as breath samplers integrated with gas chromatography mass spectrometry (GC-MS) or MEMS-based differential mobility spectrometry (DMS). We describe these techniques and present recent data obtained from human breath or breath condensate, in particular, addressing the question of how environmental exposure influences the composition of breath.

  3. Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration.

    Science.gov (United States)

    Ma, Wei; Liu, Xinyu; Pawliszyn, Janusz

    2006-08-01

    The detection of volatile organic compounds (VOCs) in human breath can be useful for the clinical routine diagnosis of several diseases in a non-invasive manner. Traditional methods of breath analysis have some major technical problems and limitations. Membrane extraction with a sorbent interface (MESI), however, has many advantages over current methods, including good selectivity and sensitivity, and is well suited for breath analysis. The aim of this project was to develop a simple and reproducible sampling device and method based on the MESI system for breath analysis. The feasibility and validity of the MESI system was tested with real human breath samples. Internal standard calibration methods were used for the quantitative analysis of various breath samples. Calibration curves for some main components (target analytes such as acetone and pentane) were determined in the research. The optimized stripping-side and feeding-side gas velocities were determined. The use of breath CO2 as an internal standard for the analysis of breath VOCs is an effective method to solve the difficulties associated with variations in the target analyte concentrations in a sample, which are attributed to mass losses and different breathing patterns of different subjects. In this study, the concentration of breath acetone was successfully expressed normalized to CO2 as in the alveolar air. Breath acetone of healthy males and females profiled at different times of the day was plotted using the MESI system, and results were consistent with the literature. This technique can be used for monitoring breath acetone concentrations of diabetic patients and for applications with other biomarker monitoring.

  4. Analysis of coordination between breathing and walking rhythms in humans.

    Science.gov (United States)

    Rassler, B; Kohl, J

    1996-12-01

    We investigated the coordination between breathing and walking in humans to elucidate whether the coordination degree depends more on metabolic load or on breathing or stride frequencies and whether coordination causes energetic economization expressed by reduction of oxygen uptake (VO2). Eighteen healthy volunteers walked on a treadmill at three load levels realized by different velocities and slopes. We analyzed the time intervals between step onset and the onset of inspiration or expiration related to stride duration (relative phase, phi) and computed the relative-phase histogram to assess the degree of coordination. The degree of coordination between breathing and stepping enhanced with increasing walking speed. Increased work load achieved by slope at constant walking speed improved coordination only slightly. No significant VO2 reduction due to coordination was found. VO2 was more strongly related to ventilation variations occurring during coordination. Also the sympathetic tone reflected by the spectral power of heart rate variability was not reduced during coordination. We conclude that during walking the coordination degree increases with increasing stride frequency and that coordination does not necessarily cause energetic economization.

  5. Analysis of human exhaled breath in a population of young volunteers

    Directory of Open Access Journals (Sweden)

    Zarić Božidarka

    2014-01-01

    Full Text Available Analysis of volatile organic compounds (VOCs in human breath can provide information about the current physiological state of an individual, such as clinical conditions and exposure to exogenous pollutants. The blood-borne VOCs present in exhaled breath offer the possibility of exploring physiological and pathological processes in a noninvasive way. However, the field of exhaled breath analysis is still in its infancy. We undertook this study in order to define interindividual variation and common compounds in breath VOCs of 48 young human volunteers. Alveolar breath samples were analyzed by automated thermal desorption, gas chromatography with flame ionization detector (FID and electron capture detector (ECD using SUPELCO standards with 66 compounds. Predominant compounds in the alveolar breath of analyzed subjects are ethylbenzene, 1-ethyl-4-methylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene (over 50% of the subjects. Isopropyl alcohol, propylene, acetone, ethanol were found as well. We detected substituted compounds in exhaled breath. [Projekat Ministarstva nauke Republike Srbije, br. 172001

  6. Human Breath Gas Analysis in the Screening of Gestational Diabetes Mellitus

    Science.gov (United States)

    Halbritter, Susanne; Fedrigo, Mattia; Höllriegl, Vera; Szymczak, Wilfried; Maier, Joerg M.; Hummel, Michael

    2012-01-01

    Abstract Background We present a pilot study on the feasibility of the application and advantages of online, noninvasive breath gas analysis (BGA) by proton transfer reaction quadrupole mass spectrometry for the screening of gestational diabetes mellitus (GDM) in 52 pregnant women by means of an oral glucose tolerance test (OGTT). Subjects and Methods We collected and identified samples of end-tidal breath gas from patients during OGTT. Time evolution parameters of challenge-responsive volatile organic compounds (VOCs) in human breath gas were estimated. Multivariate analysis of variance and permutation analysis were used to assess feasibility of BGA as a diagnostic tool for GDM. Results Standard OGTT diagnosis identified pregnant women as having GDM (n=8), impaired glucose tolerance (n=12), and normal glucose tolerance (n=32); a part of this latter group was further subdivided into a “marginal” group (n=9) because of a marginal high 1-h or 2-h OGTT value. We observed that OGTT diagnosis (four metabolic groups) could be mapped into breath gas data. The time evolution of oxidation products of glucose and lipids, acetone metabolites, and thiols in breath gas after a glucose challenge was correlated with GDM diagnosis (P=0.035). Furthermore, basal (fasting) values of dimethyl sulfide and values of methanol in breath gas were inversely correlated with phenotype characteristics such as homeostasis model assessment of insulin resistance index (R=−0.538; P=0.0002, Pcorrected=0.0034) and pregestational body mass index (R=−0.433; P=0.0013, Pcorrected=0.022). Conclusions Noninvasive BGA in challenge response studies was successfully applied to GDM diagnosis and offered an insight into metabolic pathways involved. We propose a new approach to the identification of diagnosis thresholds for GDM screening. PMID:22775148

  7. Circadian variation of the human metabolome captured by real-time breath analysis.

    Directory of Open Access Journals (Sweden)

    Pablo Martinez-Lozano Sinues

    Full Text Available Circadian clocks play a significant role in the correct timing of physiological metabolism, and clock disruption might lead to pathological changes of metabolism. One interesting method to assess the current state of metabolism is metabolomics. Metabolomics tries to capture the entirety of small molecules, i.e. the building blocks of metabolism, in a given matrix, such as blood, saliva or urine. Using mass spectrometric approaches we and others have shown that a significant portion of the human metabolome in saliva and blood exhibits circadian modulation; independent of food intake or sleep/wake rhythms. Recent advances in mass spectrometry techniques have introduced completely non-invasive breathprinting; a method to instantaneously assess small metabolites in human breath. In this proof-of-principle study, we extend these findings about the impact of circadian clocks on metabolomics to exhaled breath. As previously established, our method allows for real-time analysis of a rich matrix during frequent non-invasive sampling. We sampled the breath of three healthy, non-smoking human volunteers in hourly intervals for 24 hours during total sleep deprivation, and found 111 features in the breath of all individuals, 36-49% of which showed significant circadian variation in at least one individual. Our data suggest that real-time mass spectrometric "breathprinting" has high potential to become a useful tool to understand circadian metabolism, and develop new biomarkers to easily and in real-time assess circadian clock phase and function in experimental and clinical settings.

  8. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Kam Kong; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Short, Michael; Lam, Stephen; McWilliams, Annette [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada)

    2014-09-15

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm{sup −1}. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  9. News from the Breath Analysis Summit 2011.

    Science.gov (United States)

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    (oxygen, nitrogen, water vapour and CO(2)) in patient respiratory monitoring have served as a platform for technological growth in clinical breath-testing applications. A few exhaled breath tests have demonstrated clinical utility and are in widespread use, and several FDA-approved devices are available. These widely used exhaled breath tests include detection of blood alcohol concentration and exhaled CO(2). Other clinical applications of exhaled breath analysis include testing for H. pylori infection, lactose intolerance, heart transplant rejection and, more recently, monitoring of airway inflammation by means of exhaled NO. Examination of exhaled breath has the potential to change the existing routine approaches in human medicine. The rapidly developing new analytical and computer technologies along with novel, unorthodox ideas are prerequisites for future advances in this field. Scientists who participated in the Breath Analysis Summit 2011 were invited to submit a full length paper to the Journal of Breath Research and this issue includes eight articles which describe the different applications of breath analysis. We thank all the authors for their valuable contribution and we trust that this collection will provide useful information and an update to this rapidly evolving field, giving an example of integration among scientists who address the same topic-breath analysis-from different and complementary perspectives, from basic to clinical research.

  10. Human breath analysis may support the existence of individual metabolic phenotypes.

    Directory of Open Access Journals (Sweden)

    Pablo Martinez-Lozano Sinues

    Full Text Available The metabolic phenotype varies widely due to external factors such as diet and gut microbiome composition, among others. Despite these temporal fluctuations, urine metabolite profiling studies have suggested that there are highly individual phenotypes that persist over extended periods of time. This hypothesis was tested by analyzing the exhaled breath of a group of subjects during nine days by mass spectrometry. Consistent with previous metabolomic studies based on urine, we conclude that individual signatures of breath composition exist. The confirmation of the existence of stable and specific breathprints may contribute to strengthen the inclusion of breath as a biofluid of choice in metabolomic studies. In addition, the fact that the method is rapid and totally non-invasive, yet individualized profiles can be tracked, makes it an appealing approach.

  11. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Rindzevicius, Tomas; Molin, Søren;

    2015-01-01

    ) at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS)-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band...

  12. Functional Analysis and Intervention for Breath Holding.

    Science.gov (United States)

    Kern, Lee; And Others

    1995-01-01

    A functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome indicated that breath holding served an operant function, primarily to gain access to attention. Use of extinction, scheduled attention, and a picture card communication system decreased breath holding. (Author/SW)

  13. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Rindzevicius, Tomas; Molin, Søren

    2015-01-01

    ) at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS)-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band...... at ∼2133 cm-1, is an excellent case for the SERS-based detection due to the infrequent occurrence of triple bonds in nature. For demonstration of direct HCN detection in the gas phase, a gold-coated silicon nanopillar substrate was exposed to 5 ppm HCN in N2. Results showed that HCN adsorbed on the SERS......). Lower KCN concentrations of 10 and 100 nM (corresponding to 0.18 and 1.8 ppb) produced SERS intensities that were relatively similar to the reference signal. Since HCN concentration in the breath of PA colonized CF children is reported to be ∼13.5 ppb, the detection of cyanide is within the required...

  14. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications

    Directory of Open Access Journals (Sweden)

    Célia Lourenço

    2014-06-01

    Full Text Available Breath analysis is a promising field with great potential for non-invasive diagnosis of a number of disease states. Analysis of the concentrations of volatile organic compounds (VOCs in breath with an acceptable accuracy are assessed by means of using analytical techniques with high sensitivity, accuracy, precision, low response time, and low detection limit, which are desirable characteristics for the detection of VOCs in human breath. “Breath fingerprinting”, indicative of a specific clinical status, relies on the use of multivariate statistics methods with powerful in-built algorithms. The need for standardisation of sample collection and analysis is the main issue concerning breath analysis, blocking the introduction of breath tests into clinical practice. This review describes recent scientific developments in basic research and clinical applications, namely issues concerning sampling and biochemistry, highlighting the diagnostic potential of breath analysis for disease diagnosis. Several considerations that need to be taken into account in breath analysis are documented here, including the growing need for metabolomics to deal with breath profiles.

  15. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    Directory of Open Access Journals (Sweden)

    Rikke Kragh Lauridsen

    2015-09-01

    Full Text Available Lung infections with Pseudomonas aeruginosa (PA is the most common cause of morbidity and mortality in cystic fibrosis (CF patients. Due to its ready adaptation to the dehydrated mucosa of CF airways, PA infections tend to become chronic, eventually killing the patient. Hydrogen cyanide (HCN at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band at ∼2133 cm−1, is an excellent case for the SERS-based detection due to the infrequent occurrence of triple bonds in nature. For demonstration of direct HCN detection in the gas phase, a gold-coated silicon nanopillar substrate was exposed to 5 ppm HCN in N2. Results showed that HCN adsorbed on the SERS substrate can be consistently detected under different experimental conditions and up to 9 days after exposure. For detection of lower cyanide concentrations serial dilution experiments using potassium cyanide (KCN demonstrated cyanide quantification down to 1 μM in solution (corresponding to 18 ppb. Lower KCN concentrations of 10 and 100 nM (corresponding to 0.18 and 1.8 ppb produced SERS intensities that were relatively similar to the reference signal. Since HCN concentration in the breath of PA colonized CF children is reported to be ∼13.5 ppb, the detection of cyanide is within the required range.

  16. Multiplex analysis inflammatory cytokines in human blood, breath condensate, and urine matrices

    Science.gov (United States)

    Scientific evidence suggests that inflammation is associated with human health effects and health endpoints, yet most studies have focused on human populations that are already considered “unhealthy”.  As such, it is pertinent to measure inflammatory biomarkers in human biologica...

  17. Multiplex analysis inflammatory cytokines in human blood, breath condensate, and urine matrices

    Science.gov (United States)

    Scientific evidence suggests that inflammation is associated with human health effects and health endpoints, yet most studies have focused on human populations that are already considered “unhealthy”.  As such, it is pertinent to measure inflammatory biomarkers in human biologica...

  18. [Breath-analysis tests in gastroenetrological diagnosis].

    Science.gov (United States)

    Caspary, W F

    1975-12-01

    The introduction of a simple method for analysis of 14CO2 in breath allowed a more widely application of breath-tests in the diagnosis of gastroenterological diseases. During a breath-test a 14C-labelled compound is administered orally and 14CO2 is subsequently measured in breath by discontinuous samplings of 14CO2 by virtue of a trapping solution (hyamine hydroxide). Most helpful tests in gastroenterology are the 14C-glycyl-cholate breath test for detecting increased deconjugation of bile acids due to small intestinal bacterial overgrowth or bile acid malabsorption in ileal resection or Crohn's disease of the ileum, the 14C-lactose breath test in lactase deficiency, whereas the 14C-tripalmitin test seems less helpful in the diagnosis of fat malabsorption. A 14C-aminopyrine breath test may turn out to be a simple and valuable liver function test. Oral loading tests with breath analysis of H2 have shown to be helpful in the diagnosis of carbohydrate malabsorption, determination of intestinal transit time and intestinal gas production. Due to technical reasons (gas-chromatographie analysis) H2-breath analysis is still limited to research centers. Despite low radiation doses after oral administration of 14C-labelled compounds oral loading tests with H2- or 13C-analysis might be preferable in the future.

  19. Analysis of inflammatory cytokines in human blood, breath condensate, and urine using a multiplex immunoassay platform

    Science.gov (United States)

    A change in the expression of cytokines in human biological media indicates an inflammatory response to external stressors and reflects an early step along the adverse outcome pathway (AOP) for various health endpoints. To characterize and interpret this inflammatory response, m...

  20. Breath analysis and blood alcohol concentration.

    NARCIS (Netherlands)

    Mulder, J.A.G. & Noordzij, P.C.

    1978-01-01

    Devices for breath analysis are intended to meet the need for a simple method for determining the blood alcohol concentration. Devices have already been developed for several purposes. For applying breath analyses a compromise has to be found between users' requirements and technical

  1. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits.

    Science.gov (United States)

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  2. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  3. Electronic Nose Functionality for Breath Gas Analysis during Parabolic Flight

    Science.gov (United States)

    Dolch, Michael E.; Hummel, Thomas; Fetter, Viktor; Helwig, Andreas; Lenic, Joachim; Moukhamedieva, Lana; Tsarkow, Dimitrij; Chouker, Alexander; Schelling, Gustav

    2017-02-01

    The presence of humans in space represents a constant threat for their health and safety. Environmental factors such as living in a closed confinement, as well as exposure to microgravity and radiation, are associated with significant changes in bone metabolism, muscular atrophy, and altered immune response, which has impacts on human performance and possibly results in severe illness. Thus, maintaining and monitoring of crew health status has the highest priority to ensure whole mission success. With manned deep space missions to moon or mars appearing at the horizon where short-term repatriation back to earth is impossible the availability of appropriate diagnostic platforms for crew health status is urgently needed. In response to this need, the present experiment evaluated the functionality and practicability of a metal oxide based sensor system (eNose) together with a newly developed breath gas collecting device under the condition of altering acceleration. Parabolic flights were performed with an Airbus A300 ZeroG at Bordeaux, France. Ambient air and exhaled breath of five healthy volunteers was analyzed during steady state flight and parabolic flight maneuvres. All volunteers completed the study, the breath gas collecting device valves worked appropriately, and breathing through the collecting device was easy and did not induce discomfort. During breath gas measurements, significant changes in metal oxide sensors, mainly sensitive to aromatic and sulphur containing compounds, were observed with alternating conditions of acceleration. Similarly, metal oxide sensors showed significant changes in all sensors during ambient air measurements. The eNose as well as the newly developed breath gas collecting device, showed appropriate functionality and practicability during alternating conditions of acceleration which is a prerequisite for the intended use of the eNose aboard the International Space Station (ISS) for breath gas analysis and crew health status

  4. Electronic Nose Functionality for Breath Gas Analysis during Parabolic Flight

    Science.gov (United States)

    Dolch, Michael E.; Hummel, Thomas; Fetter, Viktor; Helwig, Andreas; Lenic, Joachim; Moukhamedieva, Lana; Tsarkow, Dimitrij; Chouker, Alexander; Schelling, Gustav

    2017-06-01

    The presence of humans in space represents a constant threat for their health and safety. Environmental factors such as living in a closed confinement, as well as exposure to microgravity and radiation, are associated with significant changes in bone metabolism, muscular atrophy, and altered immune response, which has impacts on human performance and possibly results in severe illness. Thus, maintaining and monitoring of crew health status has the highest priority to ensure whole mission success. With manned deep space missions to moon or mars appearing at the horizon where short-term repatriation back to earth is impossible the availability of appropriate diagnostic platforms for crew health status is urgently needed. In response to this need, the present experiment evaluated the functionality and practicability of a metal oxide based sensor system (eNose) together with a newly developed breath gas collecting device under the condition of altering acceleration. Parabolic flights were performed with an Airbus A300 ZeroG at Bordeaux, France. Ambient air and exhaled breath of five healthy volunteers was analyzed during steady state flight and parabolic flight maneuvres. All volunteers completed the study, the breath gas collecting device valves worked appropriately, and breathing through the collecting device was easy and did not induce discomfort. During breath gas measurements, significant changes in metal oxide sensors, mainly sensitive to aromatic and sulphur containing compounds, were observed with alternating conditions of acceleration. Similarly, metal oxide sensors showed significant changes in all sensors during ambient air measurements. The eNose as well as the newly developed breath gas collecting device, showed appropriate functionality and practicability during alternating conditions of acceleration which is a prerequisite for the intended use of the eNose aboard the International Space Station (ISS) for breath gas analysis and crew health status

  5. Epiglottic movements during breathing in humans

    Science.gov (United States)

    Amis, T C; O'Neill, N; Di Somma, E; Wheatley, J R

    1998-01-01

    Using X-ray fluoroscopy we measured antero-posterior (A–P) and cranio-caudal (C–C) displacements of the epiglottic tip (ET), corniculate cartilage and hyoid bone in seven seated, normal human subjects (age 34 ± 3 years; mean ±s.e.m.; 4 males, 3 females) breathing via a nasal mask or mouthpiece with (RL) and without (UB) a fixed resistive load.During UB, via either mouth or nose, there were no significant A-P ET movements. During RL via the nose the ET at peak expiratory flow was 2.6 ± 1.3 mm cranial to its position at peak inspiratory flow (P <0.05, ANOVA). C–C movements of the ET correlated strongly with C-C movements of the corniculate cartilage and hyoid bone.The ET, corniculate cartilage and hyoid bone (at zero airflow) were situated more caudally during oral UB than for any other condition.When present, epiglottic movements during breathing do not appear to be independent of those of the larynx and hyoid. Furthermore, epiglottic position may be related to the level of upper airway resistance. PMID:9729637

  6. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  7. A fibre-optic oxygen sensor for monitoring human breathing.

    Science.gov (United States)

    Chen, Rongsheng; Formenti, Federico; Obeid, Andy; Hahn, Clive E W; Farmery, Andrew D

    2013-09-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min(-1). A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min(-1), and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn.

  8. System of Optoelectronic Sensors for Breath Analysis

    Directory of Open Access Journals (Sweden)

    Mikołajczyk Janusz

    2016-09-01

    Full Text Available The paper describes an integrated laser absorption system as a potential tool for breath analysis for clinical diagnostics, online therapy monitoring and metabolic disorder control. The sensors operate basing on cavity enhanced spectroscopy and multi-pass spectroscopy supported by wavelength modulation spectroscopy. The aspects concerning selection of operational spectral range and minimization of interference are also discussed. Tests results of the constructed devices collected with reference samples of biomarkers are also presented. The obtained data provide an opportunity to analyse applicability of optoelectronic sensors in medical screening.

  9. A human breathing lung-on-a-chip.

    Science.gov (United States)

    Huh, Dongeun Dan

    2015-03-01

    Here we describe a microphysiological system that replicates the functional unit of the living human lung. This human "breathing lung-on-a-chip" microdevice provides unique capabilities to reconstitute three-dimensional microarchitecture, dynamic mechanical activity, and integrated physiological function of the alveolar-capillary interface. We demonstrate the potential of this microengineered biomimetic model for screening environmental particulates and modeling complex human disease processes.

  10. An adaptive breath sampler for use with human subjects with an impaired respiratory function.

    Science.gov (United States)

    Basanta, M; Koimtzis, T; Singh, D; Wilson, I; Thomas, C L P

    2007-02-01

    An adaptive sampler for collecting 2.5 dm(3) samples of exhaled air from human subjects with an impaired respiratory function is described. Pressure in the upper respiratory tract is continuously monitored and the data used to control an automated system to collect select portions of the expired breathing cycle onto a mixed bed Tenax(trade mark) and Carbotrap(trade mark) adsorbent trap for analysis by GC-MS. The sampling approach is intended for use in metabolomic profiling of volatiles in human breath at concentrations greater than microg m(-3). The importance of experimental reproducibility in metabolomic data is emphasised and consequently a high purity air supply is used to maintain a stable exogenous volatile organic compound profile at concentrations in the range 5 to 30 microg m(-3). The results of a 90 day stability study showed that exogenous VOCs were maintained at significantly lower levels (40 times lower for isopropyl alcohol) and with significantly higher reproducibility (80 times lower standard deviation for isopropyl alcohol) than would have been be the case if ambient air had been used. The sampling system was evaluated with healthy controls alongside subjects with chronic obstructive pulmonary disease. Subjects were able to breathe normally with control subjects observed to breathe at a rate of 9 to 17 breaths per minute, compared to 16 to 30 breaths per minute for subjects with COPD. This study presents, for the first time, observations and estimates of intra-subject breath sample reproducibility from human subjects. These reproducibility studies indicated that VOCs in exhaled breath exhibit a variety of dynamic behaviours, with some species recovered with a RSD <30%, while other species were observed to have significantly more variable concentrations, 30 to 130% RSD. The approach was also demonstrated to reliably differentiate the differences in the VOC profiles between alveolar and dead space air.

  11. Realistic glottal motion and airflow rate during human breathing.

    Science.gov (United States)

    Scheinherr, Adam; Bailly, Lucie; Boiron, Olivier; Lagier, Aude; Legou, Thierry; Pichelin, Marine; Caillibotte, Georges; Giovanni, Antoine

    2015-09-01

    The glottal geometry is a key factor in the aerosol delivery efficiency for treatment of lung diseases. However, while glottal vibrations were extensively studied during human phonation, the realistic glottal motion during breathing is poorly understood. Therefore, most current studies assume an idealized steady glottis in the context of respiratory dynamics, and thus neglect the flow unsteadiness related to this motion. This is particularly important to assess the aerosol transport mechanisms in upper airways. This article presents a clinical study conducted on 20 volunteers, to examine the realistic glottal motion during several breathing tasks. Nasofibroscopy was used to investigate the glottal geometrical variations simultaneously with accurate airflow rate measurements. In total, 144 breathing sequences of 30s were recorded. Regarding the whole database, two cases of glottal time-variations were found: "static" or "dynamic" ones. Typically, the peak value of glottal area during slow breathing narrowed from 217 ± 54 mm(2) (mean ± STD) during inspiration, to 178 ± 35 mm(2) during expiration. Considering flow unsteadiness, it is shown that the harmonic approximation of the airflow rate underevaluates the inertial effects as compared to realistic patterns, especially at the onset of the breathing cycle. These measurements provide input data to conduct realistic numerical simulations of laryngeal airflow and particle deposition. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites.

    Science.gov (United States)

    Lu, Yan; Niu, Wenqi; Zou, Xue; Shen, Chengyin; Xia, Lei; Huang, Chaoqun; Wang, Hongzhi; Jiang, Haihe; Chu, Yannan

    2017-03-23

    Breath analysis is a non-invasive approach which may be applied to disease diagnosis and pharmacokinetic study. In the case of offline analysis, the exhaled gas needs to be collected and the sampling bag is often used as the storage vessel. However, the sampling bag usually releases some extra compounds, which may interfere with the result of the breath test. In this study, a novel breath sampling glass bottle was developed with a syringe needle sampling port for solid phase microextraction (SPME). Such a glass bottle scarcely liberates compounds and can be used to collect exhaled gas for ensuing analysis by gas chromatography-mass spectrometry (GC-MS). The glass bottle sampling SPME-GC-MS analysis was carried out to investigate the breath metabolites of myrtol, a multicompound drug normally used in the treatment of bronchitis and sinusitis. Four compounds, α-pinene, 2,3-dehydro-1,8-cineole, d-limonene and 1,8-cineole were found in the exhaled breath of all eight volunteers who had taken the myrtol. While for other ten subjects who had not used the myrtol, these compounds were undetectable. In the SPME-GC-MS analysis of the headspace of myrtol, three compounds were detected including α-pinene, d-limonene and 1,8-cineole. Comparing the results of breath and headspace analysis, it indicates that 2,3-dehydro-1,8-cineole in the breath is the metabolite of 1,8-cineole. It is the first time that this metabolite was identified in human breath. The study demonstrates that the glass bottle sampling SPME-GC-MS method is applicable to exhaled gas analysis including breath metabolites investigation of drugs like myrtol.

  13. The physiology and pathophysiology of human breath-hold diving.

    Science.gov (United States)

    Lindholm, Peter; Lundgren, Claes E G

    2009-01-01

    This is a brief overview of physiological reactions, limitations, and pathophysiological mechanisms associated with human breath-hold diving. Breath-hold duration and ability to withstand compression at depth are the two main challenges that have been overcome to an amazing degree as evidenced by the current world records in breath-hold duration at 10:12 min and depth of 214 m. The quest for even further performance enhancements continues among competitive breath-hold divers, even if absolute physiological limits are being approached as indicated by findings of pulmonary edema and alveolar hemorrhage postdive. However, a remarkable, and so far poorly understood, variation in individual disposition for such problems exists. Mortality connected with breath-hold diving is primarily concentrated to less well-trained recreational divers and competitive spearfishermen who fall victim to hypoxia. Particularly vulnerable are probably also individuals with preexisting cardiac problems and possibly, essentially healthy divers who may have suffered severe alternobaric vertigo as a complication to inadequate pressure equilibration of the middle ears. The specific topics discussed include the diving response and its expression by the cardiovascular system, which exhibits hypertension, bradycardia, oxygen conservation, arrhythmias, and contraction of the spleen. The respiratory system is challenged by compression of the lungs with barotrauma of descent, intrapulmonary hemorrhage, edema, and the effects of glossopharyngeal insufflation and exsufflation. Various mechanisms associated with hypoxia and loss of consciousness are discussed, including hyperventilation, ascent blackout, fasting, and excessive postexercise O(2) consumption. The potential for high nitrogen pressure in the lungs to cause decompression sickness and N(2) narcosis is also illuminated.

  14. Extending breath analysis to the cellular level: current thoughts on the human microbiome and the expression of organic compounds in the human exposome

    Science.gov (United States)

    Human biomarkers are comprised of compounds from cellular metabolism, oxidative stress, and the microbiome of bacteria in the gut, genitourinary, and pulmonary tracts. When we examine patterns in human biomarkers to discern human health state or diagnose specific diseases, it is...

  15. Mathematical analysis of [13CO2]-expiration curves from human breath tests using [1-13C]-amino acids as oral substrate

    NARCIS (Netherlands)

    Schreurs, V.V.A.M.; Krawielitzki, K.

    2003-01-01

    A [13CO2]-breath test examines the expiration of [13CO2] as function of time after oral intake of a [13C]-labelled test substrate (single dose). In clinical settings, breath test studies are often used as a simple and non-invasive tool to diagnose the activity of metabolic functions. From a nutritio

  16. Mathematical analysis of [13CO2]-expiration curves from human breath tests using [1-13C]-amino acids as oral substrate

    NARCIS (Netherlands)

    Schreurs, V.V.A.M.; Krawielitzki, K.

    2003-01-01

    A [13CO2]-breath test examines the expiration of [13CO2] as function of time after oral intake of a [13C]-labelled test substrate (single dose). In clinical settings, breath test studies are often used as a simple and non-invasive tool to diagnose the activity of metabolic functions. From a

  17. Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy

    Science.gov (United States)

    Dahnke, H.; Kleine, D.; Hering, P.; Mürtz, M.

    2001-06-01

    We report on spectroscopic real-time analysis of ethane traces in exhaled human breath. Ethane is considered the most important volatile marker of free-radical induced lipid peroxidation and cell damage in the human body. Our measurements were carried out by means of mid-infrared cavity leak-out spectroscopy in the 3 μm region, a cw variant of cavity ring-down spectroscopy. The spectrometer is based on a CO overtone laser with tunable microwave sidebands. The resulting system proved to be an unique tool with high sensitivity and selectivity for rapid and precise breath testing. With a 5 s integration time, we achieved a detection limit on the order of 100 parts per trillion ethane in human breath. Thus, sample preconcentration is unnecessary. Time-resolved monitoring of the decaying ethane fraction in breath after smoking a cigarette is demonstrated.

  18. Breath analysis: clinical research to the end-user market.

    Science.gov (United States)

    Smith, T

    2011-09-01

    Breath research is now well established and is solving some of the applications in the area of identifying volatiles for medical diagnosis. This paper looks at how this research has been taken to an end-user market. It is not intended to be an indepth study of the science but simply to draw attention to the role of the commercial link between the researcher and end-user. This market is not only in research but exists in hospitals, clinics, sports medicine and even homecare. The link between research and the end-user market is a vital one to avoid breath analysis being the tool of researchers only. The ubiquitous use of breath analysis depends upon it. This is a review of some of the success stories in commercializing the important breath analysis research that has been conducted over the last few decades. In order to make breath analysis the new blood test, products that have end-user appeal need to be developed and routes to market established.

  19. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath.

    Science.gov (United States)

    Mühlberger, F; Streibel, T; Wieser, J; Ulrich, A; Zimmermann, R

    2005-11-15

    Single-photon ionization (SPI) using vacuum ultraviolet (VUV) light produced by an electron beam pumped rare gas excimer source has been coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). The novel device enables real-time on-line monitoring of organic trace substances in complex gaseous matrixes down to the ppb range. The pulsed VUV radiation of the light source is employed for SPI in the ion source of the TOFMS. Ion extraction is also carried out in a pulsed mode with a short time delay with respect to ionization. The experimental setup of the interface VUV light source/time-of-flight mass spectrometer is described, and the novel SPI-TOFMS system is characterized by means of standard calibration gases. Limits of detection down to 50 ppb for aliphatic and aromatic hydrocarbons were achieved. First on-line applications comprised real-time measurements of aromatic and aliphatic trace compounds in mainstream cigarette smoke, which represents a highly dynamic fluctuating gaseous matrix. Time resolution was sufficient to monitor the smoking process on a puff-by-puff resolved basis. Furthermore, human breath analysis has been carried out to detect differences in the breath of a smoker and a nonsmoker, respectively. Several well-known biomarkers for smoke could be identified in the smoker's breath. The possibility for even shorter measurement times while maintaining the achieved sensitivity makes this new device a promising tool for on-line analysis of organic trace compounds in process gases or biological systems.

  20. Human respiratory deposition of particles during oronasal breathing

    Science.gov (United States)

    Swift, David L.; Proctor, Donald F.

    Deposition of particles in the tracheobronchial and pulmonary airways is computed as a function of particle size, correcting for deposition in the parallel nasal and oral airways with oronasal breathing. Thoracic deposition is lower at all sizes for oronasal breathing than for mouth breathing via tube, and is negligible for aerodynamic equivalent diameters of 10 μm or larger.

  1. Flow in the human upper airway: work of breathing and the compliant soft palate and tongue

    Science.gov (United States)

    Jermy, Mark; Adams, Cletus; Aplin, Jonathan; Buchajczyk, Marcin; van Hove, Sibylle; Kabaliuk, Natalia; Geoghegan, Patrick; Cater, John

    2016-11-01

    The human upper airway (nasal cavity, pharynx and trachea) filters, heats and humidifies inspired air. Its pressure drop affects the work of breathing (WOB, energy expended to inspire and expire) to a degree which varies from person to person, and which is altered by breathing therapy devices. We report experimental studies using 3D printed models of the upper airway based on CT scans of single individuals (adult and paediatric), and average geometries based on PCA analysis of 150 individuals. Particle Image Velocimetry (PIV), gas concentration and pressure measurements, coupled with CFD simulation. These reveal the details of the washout of CO2 rich exhaled gas, the direction-dependent time-varying pressure drop, and the effect of high-flow nasal therapy (HFNT) on these phenomena. A 1D multi-compartment model is used to estimate the work of breathing. For the first time, soft (compliant) elements have been included in the model airways and show that the assumption of rigid tissue is acceptable for unassisted breathing, but unrealistic for therapy-assisted flows.

  2. European interlaboratory comparison of breath (CO2)-C-13 analysis

    NARCIS (Netherlands)

    Stellaard, F; Geypens, B

    1998-01-01

    The BIOMED I programme Stable Isotopes in Gastroenterology and Nutrition (SIGN) has focused upon evaluation and standardisation of stable isotope breath tests using C-13 labelled substrates. The programme dealt with comparison of C-13 substrates, test meats, test conditions, analysis techniques, and

  3. The Human-Fostered Gorilla Koko Shows Breath Control in Play with Wind Instruments

    Directory of Open Access Journals (Sweden)

    Marcus Perlman

    2012-11-01

    Full Text Available Breath control is critical to the production of spoken language and commonly postulated as a unique human adaptation specifically for this function. In contrast, non-human primates are often assumed to lack volitional control over their vocalizations, and implicitly, their breath. This paper takes an embodied perspective on the development of breath control in a human-fostered gorilla, examining her sound play with musical wind instruments. The subject Koko was video recorded in her play with plastic recorders, harmonicas and whistles. The results show that Koko exercises volitional control over her breath during instrument play. More generally, the findings suggest that all great apes share the potential to develop breath control, and that the original adaptive value of breath control was its flexible development for the service of behaviors that happened to be useful within particular sociocultural and physical environments.

  4. Design and Evaluation of a Breath Analysis System for Occupational Exposure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, Kelvin L.; Thrall, Karla D.

    2001-06-01

    Exposure assessment is an integral part of industrial hygiene and occupational health. To ensure the health and safety of workers, integrated industrial hygiene methodologies often include biological monitoring strategies. Exhaled breath is an ideal matrix for measuring volatile biomarkers, particularly since the non-invasive collection of breath may improve volunteer participation. A real-time, field-portable system was developed to analyze undiluted exhaled air from experimental animals and humans. The system combines (1) an ion-trap mass spectrometer capable of atmospheric sampling; (2) a breath interface for continual analysis of the exhaled breath stream; (3) chemical dosimeters that are analyzed in the field/workplace; and (4) physiologically based pharmacokinetic (PBPK) models to estimate total exposure and internal target tissue dosimetry. The intent of this development was to provide new instrumentation to evaluate volatile chemical exposures as part of a daily monitoring pro gram. For example, the system was designed to monitor a worker every time they enter and leave a work environment - a vast improvement over current 8-hr integrated monitoring strategies. To evaluate the system in actual work environments, field tests were conducted using volunteers providing exhaled breath samples before and after each specific job task. In these field studies, several volunteers had post-task breath levels higher than pre-task levels. Compared to the breath analysis findings, chemical dosimeters underpredicted exposures, particularly for longer sampling intervals where the volume of air sampled may have diluted exposures. The results of these field studies illustrate the utility of monitoring workers for exposures at numerous times throughout the day, particularly when job-specific tasks may indicate a potential for exposure.

  5. Medical Diagnostic Breath Analysis by Cavity Ring Down Spectroscopy

    Science.gov (United States)

    Guss, Joseph S.; Metsälä, Markus; Halonen, Lauri

    2009-06-01

    Certain medical conditions give rise to the presence of chemicals in the bloodstream. These chemicals - known as biomarkers - may also be present in low concentrations in human breath. Cavity ring down spectroscopy possesses the requisite selectivity and sensitivity to detect such biomarkers in the congested spectrum of a breath sample. The ulcer-causing bacterium, Helicobacter pylori, is a prolific producer of the enzyme urease, which catalyses the breakdown of urea ((NH_2)_2CO) in the stomach as follows: (NH_2)_2CO + H_2O ⟶ CO_2 + 2NH_3 Currently, breath tests seeking altered carbon-isotope ratios in exhaled CO_2 after the ingestion of ^{13}C- or ^{14}C-labeled urea are used to diagnose H. pylori infection. We present recent results from an ongoing collaboration with Tampere Area University Hospital. The study involves 100 patients (both infected and uninfected) and concerns the possible correlation between the bacterial infection and breath ammonia. D. Y. Graham, P. D. Klein, D. J. Evans, Jr, D. G. Evans, L. C. Alpert, A. R. Opekun, T. W. Boutton, Lancet 1(8543), 1174-7 March 1987.

  6. Estimate of production of gaseous nitrogen in the human body based on (15)N analysis of breath N2 after administration of [(15)N2]urea.

    Science.gov (United States)

    Junghans, Peter

    2013-01-01

    After oral administration of [(15)N2]urea (1.5 mmol, 95 atom% (15)N), we found that breath N2 was significantly (15)N-labelled. The result suggests that molecular nitrogen in breath must be partly produced endogenously. Based on a metabolic model, the endogenous N2 production was estimated to be 0.40±0.25 mmol kg(-1) d(-1) or 2.9±1.8 % of the total (urinary and faecal) N excretion in fasted healthy subjects (n=4). In patients infected with Helicobacter pylori (n=5), the endogenous N2 production was increased to 1.24±0.59 mmol kg(-1) d(-1) or 9.0±4.3 % of the total N excretion compared to the healthy controls (pstress-related diseases such as H. pylori infections.

  7. Medical diagnostics by laser-based analysis of exhaled breath

    Science.gov (United States)

    Giubileo, Gianfranco

    2002-08-01

    IMany trace gases can be found in the exhaled breath, some of them giving the possibility of a non invasive diagnosis of related diseases or allowing the monitoring of the disease in the course of its therapy. In the present lecture the principle of medical diagnosis based on the breath analysis will be introduced and the detection of trace gases in exhaled breath by high- resolution molecular spectroscopy in the IR spectral region will be discussed. A number of substrates and the optical systems for their laser detection will be reported. The following laser based experimental systems has been realised in the Molecular Spectroscopy Laboratory in ENEA in Frascati for the analysis of specific substances in the exhaled breath. A tuneable diode laser absorption spectroscopy (TDLAS) appartus for the measurement of 13C/12C isotopic ratio in carbon dioxide, a TDLAS apparatus for the detection of CH4 and a CO2 laser based photoacoustic system to detect trace ethylene at atmospheric pressure. The experimental set-up for each one of the a.m. optical systems will be shown and the related medical applications will be illustrated. The concluding remarks will be focuses on chemical species that are of major interest for medical people today and their diagnostic ability.

  8. Chemical Analysis of Whale Breath Volatiles: A Case Study for Non-Invasive Field Health Diagnostics of Marine Mammals

    Directory of Open Access Journals (Sweden)

    Raquel Cumeras

    2014-09-01

    Full Text Available We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs. Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap. The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME and gas chromatography/mass spectrometry (GC/MS. A total of 70 chemicals were identified (58 positively identified in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research.

  9. Analysis of breath volatile organic compounds as a screening tool for detection of Tuberculosis in cattle

    Science.gov (United States)

    • Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose • Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. • Methods: ...

  10. An Experimental Study of Human Exhalation during Breathing and Coughing in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Liu, Li; Lia, Yuguo; Nielsen, Peter V.;

    2009-01-01

    This study investigates the characteristics of human exhalation during breathing and coughing. Experiments employing one breathing thermal manikin are conducted in a full-scale test room with a mixing ventilation system. Two artificial lungs are used to generate discontinuous airflows with specific...... flow rates and temperatures for breathing and coughing, respectively. Smoke visualizations are conducted to show the formation, movement and vanishing of the exhalation jets from nose and mouth separately. The transient velocity distribution generated by breathing and coughing in different places...

  11. An Experimental Study of Human Exhalation during Breathing and Coughing in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Liu, Li; Lia, Yuguo; Nielsen, Peter V.

    2009-01-01

    This study investigates the characteristics of human exhalation during breathing and coughing. Experiments employing one breathing thermal manikin are conducted in a full-scale test room with a mixing ventilation system. Two artificial lungs are used to generate discontinuous airflows with specific...... flow rates and temperatures for breathing and coughing, respectively. Smoke visualizations are conducted to show the formation, movement and vanishing of the exhalation jets from nose and mouth separately. The transient velocity distribution generated by breathing and coughing in different places...

  12. 4DCT-based assessment of regional airflow distribution in healthy human lungs during tidal breathing

    Science.gov (United States)

    Choi, Jiwoong; Jahani, Nariman; Choi, Sanghun; Hoffman, Eric; Lin, Ching-Long

    2014-11-01

    Nonlinear dynamics of regional airflow distribution in healthy human lungs are studied with four-dimensional computed tomography (4DCT) quantitative imaging of four subjects. During the scanning session, subjects continuously breathed with tidal volumes controlled by the dual piston system. For each subject, 10 instantaneous volumetric image data sets (5 inspiratory and 5 expiratory phases) were reconstructed. A mass-preserving image registration was then applied to pairs of these image data to construct a breathing lung model. Regional distributions of local flow rate fractions are computed from time-varying local air volumes. The 4DCT registration-based method provides the link between local and global air volumes of the lung, allowing derivation of time-varying regional flow rates during the tidal breathing for computational fluid dynamics analysis. The local flow rate fraction remains greater in the lower lobes than in the upper lobes, being qualitatively consistent with those derived from three static CT (3SCT) images (Yin et al. JCP 2013). However, unlike 3SCT, the 4DCT data exhibit lung hysteresis between inspiration and expiration, providing more sensitive measures of regional ventilation and lung mechanics. NIH Grants U01-HL114494, R01-HL094315 and S10-RR022421.

  13. An off-line breath sampling and analysis method suitable for large screening studies

    NARCIS (Netherlands)

    Steeghs, M.M.L.; Cristescu, S.M.; Munnik, P.; Zanen, P.; Harren, F.J.M.

    2007-01-01

    We present a new, off-line breath collection and analysis method, suitable for large screening studies. The breath collection system is based on the guidelines of the American Thoracic Society for the sampling of exhaled NO. Breath containing volatile gases is collected in custom-made black-layered

  14. Language and thinking: analysis of breathing-related phraseology.

    Science.gov (United States)

    Niebrój, L T

    2005-09-01

    In the contemporary bioethics, patient's autonomy is often recognized as the most important issue. This autonomy is interpreted as the right to self-determination regarding all medical-related decisions. An essential condition of autonomous decisions is the adequate knowledge of the issues involved. The "informed consent" has become a gold standard of bioethics. All this leads to focusing on the problems related to communication, and, in consequence, on the language as a fundamental tool of communication. The aim of the article was to reveal the meaning of "breath(e)/breathing" and in that way to contribute to a better communication between doctors and patients. An analysis was performed using a method of non-analytical philosophy of language. English, Italian, and Polish were chosen as subjects of this study. The results clearly show the multiplicity and variety of meanings that assume breathing-related linguistic expressions. All of them are classified in four main groups. In conclusion, the author submits that an improvement in the understanding of different meanings of words used in the doctor-patient relationship can contribute to maintaining ethical standards in medical practice.

  15. Study of the Human Breathing Flow Profile in a Room with three Different Ventilation Strategies

    DEFF Research Database (Denmark)

    Olmedo, Ines; Nielsen, Peter V.; de Adana, Manuel Ruiz;

    2010-01-01

    This study investigates the characteristics of human exhalation through the mouth with three different ventilation strategies: displacement ventilation, mixing ventilation and without ventilation. Experiments were conducted with one breathing thermal manikin in a full scale test room where the ex...

  16. Study of the Human Breathing Flow Profile with Three Different Ventilation Strategies

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Cortes, Ines Olmedo; Ruiz de Adana, Manuel

    2011-01-01

    This study investigates the characteristics of human exhalation through the mouth with three different ventilation strategies: displacement ventilation, mixing ventilation and without ventilation. Experiments were conducted with one breathing thermal manikin in a full scale test room where the ex...

  17. Estimating sleep disordered breathing based on heart rate analysis.

    Science.gov (United States)

    Penzel, Thomas; Glos, Martin; Schobel, Christoph; Lal, Sara; Fietze, Ingo

    2013-01-01

    Heart rate variability and the analysis of the ECG with ECG derived respiration has been used to diagnose sleep disordered breathing. Recently it was possible to distinguish obstructive sleep apnea and central sleep apnea. This can be achieved by analyzing both, heart rate variability and the more mechanically induced ECG derived respiration in parallel. In addition the analysis of cardiopulmonary coupling facilitates to predict the personal risk factor for cardiovascular disorders. The analysis of heart rate, ECG and respiration goes beyond this analysis. Some studies indicate that it is possible to derive sleep stages from these signals. In order to derive sleep stages a more complex analysis of the signals is applied taking into account non-linear properties by using methods of statistical physics. To extract coupling information supports the distinction between sleep stages. Results are reported in this review.

  18. Impact of breathing on the thermal plume above a human body

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew;

    2011-01-01

    The characteristics of the thermal plume above a human body should be well-defined in order to properly design the indoor environment and allow correct simulation of the indoor conditions by CFD or experimentally. The objective of the presented study was to investigate the influence of breathing....... A thermal manikin with female body shape equipped with an artificial lung was used to simulate the dry heat loss and breathing process of a sitting occupant. Three cases were examined: non-breathing, exhalation through nose, and exhalation through mouth. Measurements of the air temperature and speed...

  19. 人体皮肤电阻与呼吸、情绪关系的测量及分析%Measurement and Analysis of the Relationship between Human Skin Resistance and Breath and Emotion

    Institute of Scientific and Technical Information of China (English)

    李豪; 刘杰

    2012-01-01

    研究人体皮肤电阻的测量方法以及与呼吸、情绪的关系.设计了一个新颖的皮肤电阻的测量系统,详细讨论了关键的检测电路部分的设计.基于这一测量系统设计的相关实验,测量出了因呼吸、情绪变化而引起的皮肤电阻阻值变化情况.特别是探讨了通过测量皮肤电阻来实现对呼吸状态的监测,这为病人的呼吸状态监测提供了新的思路.从实验结果与生理的角度分析了呼吸、情绪变化引起皮肤电阻阻值变化的原因,指出了这一生理参数测量的应用前景.%Human skin resistance measurement method and the relationship with breathing and emotional are studied. First, a new measurement system of human skin resistance is designed and the key detection circuit is discussed in detail. Then, the experiments based on this measurement system are designed. The changes in skin resistance caused by breathing and emotional changes are measured. Especially discusses the skin resistance measurement to realize condition monitoring for the breathing, this for the patients respiratory condition monitoring provides new ideas. At last, from the experimental results and physiological perception, the changed reasons of skin resistance caused by the changes of breathing and emotion is analyzed, and point out that the application prospect of the physiological parameters measurement.

  20. Fractionated irradiation combined with carbogen breathing and nicotinamide of two human glioblastomas grafted in nude mice

    OpenAIRE

    Sun, Lin-Quan; Buchegger, Franz; Coucke, Philippe; MIRIMANOFF

    2001-01-01

    This study addressed the potential radiosensitizing effect of nicotinamide and/or carbogen on human glioblastoma xenografts in nude mice. U-87MG and LN-Z308 tumors were irradiated with either 20 fractions over 12 days or 5 fractions over 5 days in air-breathing mice, mice injected with nicotinamide, mice breathing carbogen, or mice receiving nicotinamide plus carbogen. The responses to treatment were assessed using local control and moist desquamation. In U-87MG tumors, the enhancement ratios...

  1. Fractionated irradiation combined with carbogen breathing and nicotinamide of two human glioblastomas grafted in nude mice

    OpenAIRE

    SUN, Lin-Quan; Buchegger, Franz; Coucke, Philippe; MIRIMANOFF

    2001-01-01

    This study addressed the potential radiosensitizing effect of nicotinamide and/or carbogen on human glioblastoma xenografts in nude mice. U-87MG and LN-Z308 tumors were irradiated with either 20 fractions over 12 days or 5 fractions over 5 days in air-breathing mice, mice injected with nicotinamide, mice breathing carbogen, or mice receiving nicotinamide plus carbogen. The responses to treatment were assessed using local control and moist desquamation. In U-87MG tumors, the enhancement ratios...

  2. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    Science.gov (United States)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  3. In Vivo 3D Analysis of Thoracic Kinematics: Changes in Size and Shape During Breathing and Their Implications for Respiratory Function in Recent Humans and Fossil Hominins.

    Science.gov (United States)

    Bastir, Markus; García-Martínez, Daniel; Torres-Tamayo, Nicole; Sanchis-Gimeno, Juan Alberto; O'Higgins, Paul; Utrilla, Cristina; Torres Sánchez, Isabel; García Río, Francisco

    2017-02-01

    The human ribcage expands and contracts during respiration as a result of the interaction between the morphology of the ribs, the costo-vertebral articulations and respiratory muscles. Variations in these factors are said to produce differences in the kinematics of the upper thorax and the lower thorax, but the extent and nature of any such differences and their functional implications have not yet been quantified. Applying geometric morphometrics we measured 402 three-dimensional (3D) landmarks and semilandmarks of 3D models built from computed tomographic scans of thoraces of 20 healthy adult subjects in maximal forced inspiration (FI) and expiration (FE). We addressed the hypothesis that upper and lower parts of the ribcage differ in kinematics and compared different models of functional compartmentalization. During inspiration the thorax superior to the level of the sixth ribs undergoes antero-posterior expansion that differs significantly from the medio-lateral expansion characteristic of the thorax below this level. This supports previous suggestions for dividing the thorax into a pulmonary and diaphragmatic part. While both compartments differed significantly in mean size and shape during FE and FI the size changes in the lower compartment were significantly larger. Additionally, for the same degree of kinematic shape change, the pulmonary thorax changes less in size than the diaphragmatic thorax. Therefore, variations in the form and function of the diaphragmatic thorax will have a strong impact on respiratory function. This has important implications for interpreting differences in thorax shape in terms of respiratory functional differences within and among recent humans and fossil hominins. Anat Rec, 300:255-264, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis.

    Science.gov (United States)

    Procházka, Aleš; Schätz, Martin; Vyšata, Oldřich; Vališ, Martin

    2016-06-28

    This paper is devoted to a new method of using Microsoft (MS) Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com). The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human-machine interaction.

  5. Model of human breathing reflected signal received by PN-UWB radar.

    Science.gov (United States)

    Mabrouk, Mohamed; Rajan, Sreeraman; Bolic, Miodrag; Batkin, Izmail; Dajani, Hilmi R; Groza, Voicu Z

    2014-01-01

    Human detection is an integral component of civilian and military rescue operations, military surveillance and combat operations. Human detection can be achieved through monitoring of vital signs. In this article, a mathematical model of human breathing reflected signal received in PN-UWB radar is proposed. Unlike earlier published works, both chest and abdomen movements are considered for modeling the radar return signal along with the contributions of fundamental breathing frequency and its harmonics. Analyses of recorded reflected signals from three subjects in different postures and at different ranges from the radar indicate that ratios of the amplitudes of the harmonics contain information about posture and posture change.

  6. Students' Learning Strategies with Multiple Representations: Explanations of the Human Breathing Mechanism

    Science.gov (United States)

    Won, Mihye; Yoon, Heojeong; Treagust, David F.

    2014-01-01

    The purpose of this study was to understand how students utilized multiple representations to learn and explain science concepts, in this case the human breathing mechanism. The study was conducted with Grade 11 students in a human biology class. Semistructured interviews and a two-tier diagnostic test were administered to evaluate students'…

  7. Electronic Noses for Well-Being: Breath Analysis and Energy Expenditure.

    Science.gov (United States)

    Gardner, Julian W; Vincent, Timothy A

    2016-06-23

    The wealth of information concealed in a single human breath has been of interest for many years, promising not only disease detection, but also the monitoring of our general well-being. Recent developments in the fields of nano-sensor arrays and MEMS have enabled once bulky artificial olfactory sensor systems, or so-called "electronic noses", to become smaller, lower power and portable devices. At the same time, wearable health monitoring devices are now available, although reliable breath sensing equipment is somewhat missing from the market of physical, rather than chemical sensor gadgets. In this article, we report on the unprecedented rise in healthcare problems caused by an increasingly overweight population. We first review recently-developed electronic noses for the detection of diseases by the analysis of basic volatile organic compounds (VOCs). Then, we discuss the primary cause of obesity from over eating and the high calorific content of food. We present the need to measure our individual energy expenditure from our exhaled breath. Finally, we consider the future for handheld or wearable devices to measure energy expenditure; and the potential of these devices to revolutionize healthcare, both at home and in hospitals.

  8. Breath hydrogen analysis in patients with ileoanal pouch anastomosis

    DEFF Research Database (Denmark)

    Bruun, E; Meyer, J N; Rumessen, J J;

    1995-01-01

    The possible influence on functional outcomes of hydrogen production in the ileoanal pouch after restorative proctocolectomy was investigated by means of lactulose H2 breath tests. Eight of 15 patients had significant increases in breath hydrogen after 10 g lactulose. One patient declined to part...

  9. Study of the Human Breathing Flow Profile in a Room with three Different Ventilation Strategies

    DEFF Research Database (Denmark)

    Olmedo, Ines; Nielsen, Peter V.; de Adana, Manuel Ruiz

    2010-01-01

    This study investigates the characteristics of human exhalation through the mouth with three different ventilation strategies: displacement ventilation, mixing ventilation and without ventilation. Experiments were conducted with one breathing thermal manikin in a full scale test room where...... the exhalation airflow was analyzed. In order to simulate the gaseous exhaled substances in human breathing, N2O was used as a tracer gas. The concentration of N2O and the velocity of the exhaled flow were measured in the center line of the exhalation flow. The velocity decay of the exhalation flow versus...

  10. Study of the Human Breathing Flow Profile with Three Different Ventilation Strategies

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Cortes, Ines Olmedo; Ruiz de Adana, Manuel

    2011-01-01

    This study investigates the characteristics of human exhalation through the mouth with three different ventilation strategies: displacement ventilation, mixing ventilation and without ventilation. Experiments were conducted with one breathing thermal manikin in a full scale test room where...... the exhalation airflow was analyzed. In order to simulate the gaseous exhaled substances in human breathing, N2O was used as a tracer gas. The concentration of N2O and the velocity of the exhaled flow were measured in the center line of the exhalation flow. The velocity decay of the exhalation flow versus...... distance was analyzed for the three ventilation strategies. The relationship between gas concentration values and distance from the manikin was also examined. The measurements showed that the exhalation flow of breathing depends to some extent on the air distribution system. Two equations could be applied...

  11. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NO{sub x} in exhaled human breath

    Energy Technology Data Exchange (ETDEWEB)

    Riess, Ulrich; Tegtbur, Uwe [Hannover Medical School, Sports Physiology and Sports Medicine, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Fauck, Christian; Fuhrmann, Frank; Markewitz, Doreen [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54 E, 38108 Braunschweig (Germany); Salthammer, Tunga, E-mail: tunga.salthammer@wki.fraunhofer.de [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54 E, 38108 Braunschweig (Germany)

    2010-06-11

    Different analytical devices were tested and evaluated for their suitability of breath gas analysis by examining the physiological parameters and chemical substances in the exhaled breath of ten healthy probands during light cycling in dependence of methanol-rich nutrition. The probands exercised under normal breathing conditions on a bicycle ergometer. Breath air was exhaled into a glass cylinder and collected under steady-state conditions. Non-invasively measured parameters were pulse rate, breath frequency, temperature, relative humidity, NO{sub x}, total volatile organic compounds (TVOC{sub PAS}), carbon dioxide (CO{sub 2}), formaldehyde, methanol, acetaldehyde, acetone, isoprene and volatile organic compounds (VOCs). Methanol rich food and beverages strongly influenced the concentration of methanol and other organic substances in human breath. On the other hand, nutrition and smoking had no clear effect on the physical conditions of the probands. The proton transfer reaction mass spectrometry (PTR-MS) method was found to be very suitable for the analysis of breath gas but the m/z 31, if assigned to formaldehyde, is sensitive to interferences. The time vs. concentration curves of nitric oxide showed sudden peaks up to 120 ppb in most of the measurements. In one case a strong interference of the NO{sub x} signal was observed. The time resolved analysis of exhaled breath gas is of high capability and significance for different applications if reliable analytical techniques are used. Some compounds like nitric oxide (NO), methanol, different VOCs as well as sum parameters like TVOC{sub PAS} are especially suitable as markers. Formaldehyde, which is rapidly metabolized in the human body, could be measured reliably as a trace component by the acetylacetone (acac) method but not by PTR-MS.

  12. Nonlinear Dynamic Behaviors of Rotated Blades with Small Breathing Cracks Based on Vibration Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Hailong Xu

    2016-01-01

    Full Text Available Rotated blades are key mechanical components in turbomachinery and high cycle fatigues often induce blade cracks. Accurate detection of small cracks in rotated blades is very significant for safety, reliability, and availability. In nature, a breathing crack model is fit for a small crack in a rotated blade rather than other models. However, traditional vibration displacements-based methods are less sensitive to nonlinear characteristics due to small breathing cracks. In order to solve this problem, vibration power flow analysis (VPFA is proposed to analyze nonlinear dynamic behaviors of rotated blades with small breathing cracks in this paper. Firstly, local flexibility due to a crack is derived and then time-varying dynamic model of the rotated blade with a small breathing crack is built. Based on it, the corresponding vibration power flow model is presented. Finally, VPFA-based numerical simulations are done to validate nonlinear behaviors of the cracked blade. The results demonstrate that nonlinear behaviors of a crack can be enhanced by power flow analysis and VPFA is more sensitive to a small breathing crack than displacements-based vibration analysis. Bifurcations will occur due to breathing cracks and subharmonic resonance factors can be defined to identify breathing cracks. Thus the proposed method can provide a promising way for detecting and predicting small breathing cracks in rotated blades.

  13. Design of a breath analysis system for diabetes screening and blood glucose level prediction.

    Science.gov (United States)

    Yan, Ke; Zhang, David; Wu, Darong; Wei, Hua; Lu, Guangming

    2014-11-01

    It has been reported that concentrations of several biomarkers in diabetics' breath show significant difference from those in healthy people's breath. Concentrations of some biomarkers are also correlated with the blood glucose levels (BGLs) of diabetics. Therefore, it is possible to screen for diabetes and predict BGLs by analyzing one's breath. In this paper, we describe the design of a novel breath analysis system for this purpose. The system uses carefully selected chemical sensors to detect biomarkers in breath. Common interferential factors, including humidity and the ratio of alveolar air in breath, are compensated or handled in the algorithm. Considering the intersubject variance of the components in breath, we build subject-specific prediction models to improve the accuracy of BGL prediction. A total of 295 breath samples from healthy subjects and 279 samples from diabetic subjects were collected to evaluate the performance of the system. The sensitivity and specificity of diabetes screening are 91.51% and 90.77%, respectively. The mean relative absolute error for BGL prediction is 21.7%. Experiments show that the system is effective and that the strategies adopted in the system can improve its accuracy. The system potentially provides a noninvasive and convenient method for diabetes screening and BGL monitoring as an adjunct to the standard criteria.

  14. Online breath gas analysis in unrestrained mice by hs-PTR-MS.

    Science.gov (United States)

    Szymczak, Wilfried; Rozman, Jan; Höllriegl, Vera; Kistler, Martin; Keller, Stefan; Peters, Dominika; Kneipp, Moritz; Schulz, Holger; Hoeschen, Christoph; Klingenspor, Martin; de Angelis, Martin Hrabě

    2014-04-01

    The phenotyping of genetic mouse models for human disorders may greatly benefit from breath gas analysis as a noninvasive tool to identify metabolic alterations in mice. Phenotyping screens such as the German Mouse Clinic demand investigations in unrestrained mice. Therefore, we adapted a breath screen in which exhaled volatile organic compounds (VOCs) were online monitored by proton transfer reaction mass spectrometry (hs-PTR-MS). The source strength of VOCs was derived from the dynamics in the accumulation profile of exhaled VOCs of a single mouse in a respirometry chamber. A careful survey of the accumulation revealed alterations in the source strength due to confounders, e.g., urine and feces. Moreover changes in the source strength of humidity were triggered by changes in locomotor behavior as mice showed a typical behavioral pattern from activity to settling down in the course of subsequent accumulation profiles. We demonstrated that metabolic changes caused by a dietary intervention, e.g., after feeding a high-fat diet (HFD) a sample of 14 male mice, still resulted in a statistically significant shift in the source strength of exhaled VOCs. Applying a normalization which was derived from the distribution of the source strength of humidity and accounted for varying locomotor behaviors improved the shift. Hence, breath gas analysis may provide a noninvasive, fast access to monitor the metabolic adaptation of a mouse to alterations in energy balance due to overfeeding or fasting and dietary macronutrient composition as well as a high potential for systemic phenotyping of mouse mutants, intervention studies, and drug testing in mice.

  15. Simulation of Human Respiration with Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Bjørn, Erik

    The human respiration contains carbon dioxide, bioeffluents, and perhaps virus or bacteria. People may also indulge in activities that produce contaminants, as for example tobacco smoking. For these reasons, the human respiration remains one of the main contributors to contamination of the indoor...

  16. Tunable fiber laser based photoacoustic spectrometer for breath ammonia analysis during hemodialysis

    Science.gov (United States)

    Wang, J. W.; Xie, H.; Liang, L. R.; Zhang, W.; Peng, W.; Yu, Q. X.

    2011-11-01

    A photoacoustic (PA) spectrometer based on a near-IR tunable fiber laser is developed and used for breath ammonia analysis. We successfully measured the breath ammonia level variation of six patients with end-stage renal disease while they were undergoing hemodialysis in the hospital. The measurement results showed that the initial concentration level of the breath ammonia were from 1600 to 2200 ppb before dialysis treatment, the levels decreased to 200-600 ppb in the end stage of dialysis, which close to the levels of healthy persons. Further improvement and applications of this PA spectrometer are discussed.

  17. Progress in SIFT-MS: breath analysis and other applications.

    Science.gov (United States)

    Spaněl, Patrik; Smith, David

    2011-01-01

    The development of selected ion flow tube mass spectrometry, SIFT-MS, is described from its inception as the modified very large SIFT instruments used to demonstrate the feasibility of SIFT-MS as an analytical technique, towards the smaller but bulky transportable instruments and finally to the current smallest Profile 3 instruments that have been located in various places, including hospitals and schools to obtain on-line breath analyses. The essential physics and engineering principles are discussed, which must be appreciated to design and construct a SIFT-MS instrument. The versatility and sensitivity of the Profile 3 instrument is illustrated by typical mass spectra obtained using the three precursor ions H(3)O(+), NO(+) and O(2)(+)·, and the need to account for differential ionic diffusion and mass discrimination in the analytical algorithms is emphasized to obtain accurate trace gas analyses. The performance of the Profile 3 instrument is illustrated by the results of several pilot studies, including (i) on-line real time quantification of several breath metabolites for cohorts of healthy adults and children, which have provided representative concentration/population distributions, and the comparative analyses of breath exhaled via the mouth and nose that identify systemic and orally-generated compounds, (ii) the enhancement of breath metabolites by drug ingestion, (iii) the identification of HCN as a marker of Pseudomonas colonization of the airways and (iv) emission of volatile compounds from urine, especially ketone bodies, and from skin. Some very recent developments are discussed, including the quantification of carbon dioxide in breath and the combination of SIFT-MS with GC and ATD, and their significance. Finally, prospects for future SIFT-MS developments are alluded to.

  18. Evaluation of the Electromagnetic Power Absorption in Humans Exposed to Plane Waves: The Effect of Breathing Activity

    Directory of Open Access Journals (Sweden)

    Marta Cavagnaro

    2013-01-01

    Full Text Available The safety aspects of the exposure of people to uniform plane waves in the frequency range from 900 MHz to 5 GHz are analyzed. Starting from a human body model available in the literature, representing a man in resting state, two new anatomical models are considered, representing different phases of the respiratory activity: tidal breath and deep breath. These models have been used to evaluate the whole body Specific Absorption Rate (SAR and the 10-g averaged and 1-g averaged SAR. The analysis is performed using a parallel implementation of the finite difference time domain method. A uniform plane wave, with vertical polarization, is used as an incident field since this is the canonical exposure situation used in safety guidelines. Results show that if the incident electromagnetic field is compliant with the reference levels promulgated by the International Commission on Non-Ionizing Radiation Protection and by IEEE, the computed SAR values are lower than the corresponding basic restrictions, as expected. On the other side, when the Federal Communications Commission reference levels are considered, 1-g SAR values exceeding the basic restrictions for exposure at 4 GHz and above are obtained. Furthermore, results show that the whole body SAR values increase passing from the resting state model to the deep breath model, for all the considered frequencies.

  19. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation.

    Science.gov (United States)

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica

    2016-03-01

    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a "Confined Pitot Tube," is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics(®) software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method.

  20. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection.

    Science.gov (United States)

    Berna, Amalia Z; McCarthy, James S; Wang, Rosalind X; Saliba, Kevin J; Bravo, Florence G; Cassells, Julie; Padovan, Benjamin; Trowell, Stephen C

    2015-10-01

    Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers.

  1. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.

    Science.gov (United States)

    Smith, David; Španěl, Patrik

    2016-06-01

    This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.

  2. When Breathing Interferes with Cognition: Experimental Inspiratory Loading Alters Timed Up-and-Go Test in Normal Humans.

    Science.gov (United States)

    Nierat, Marie-Cécile; Demiri, Suela; Dupuis-Lozeron, Elise; Allali, Gilles; Morélot-Panzini, Capucine; Similowski, Thomas; Adler, Dan

    2016-01-01

    Human breathing stems from automatic brainstem neural processes. It can also be operated by cortico-subcortical networks, especially when breathing becomes uncomfortable because of external or internal inspiratory loads. How the "irruption of breathing into consciousness" interacts with cognition remains unclear, but a case report in a patient with defective automatic breathing (Ondine's curse syndrome) has shown that there was a cognitive cost of breathing when the respiratory cortical networks were engaged. In a pilot study of putative breathing-cognition interactions, the present study relied on a randomized design to test the hypothesis that experimentally loaded breathing in 28 young healthy subjects would have a negative impact on cognition as tested by "timed up-and-go" test (TUG) and its imagery version (iTUG). Progressive inspiratory threshold loading resulted in slower TUG and iTUG performance. Participants consistently imagined themselves faster than they actually were. However, progressive inspiratory loading slowed iTUG more than TUG, a finding that is unexpected with regard to the known effects of dual tasking on TUG and iTUG (slower TUG but stable iTUG). Insofar as the cortical networks engaged in response to inspiratory loading are also activated during complex locomotor tasks requiring cognitive inputs, we infer that competition for cortical resources may account for the breathing-cognition interference that is evidenced here.

  3. Leak in the breathing circuit: CO2 absorber and human error.

    Science.gov (United States)

    Umesh, Goneppanavar; Jasvinder, Kaur; Sagarnil, Roy

    2010-04-01

    A couple of reports in literature have mentioned CO2 absorbers to be the cause for breathing circuit leak during anesthesia. Defective canister, failure to close the absorber chamber and overfilling of the chamber with sodalime were the problems in these reports. Among these, the last two are reports of human error resulting in problems. We report a case where despite taking precautions in this regard, we experienced a significant leak in the system due to a problem with the CO2 absorber, secondary to human error.

  4. Real-Time Quantitative Analysis of Valproic Acid in Exhaled Breath by Low Temperature Plasma Ionization Mass Spectrometry

    Science.gov (United States)

    Gong, Xiaoxia; Shi, Songyue; Gamez, Gerardo

    2017-04-01

    Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized. Tandem mass spectrometry (MS/MS) with collision-induced dissociation (CID) was carried out in order to identify γ-valprolactone molecular ions ( m/z 143), and the key fragment ion ( m/z 97) was used for quantitation. In addition, the fragmentation of ammonium adduct ions to protonated molecular ions was performed in-source to improve the signal-to-noise ratio. At optimum conditions, signal reproducibility with an RSD of 8% was achieved. The concentration of γ-valprolactone in exhaled breath was determined for the first time to be 4.83 (±0.32) ng/L by using standard addition method. Also, a calibration curve was obtained with a linear range from 0.7 to 22.5 ng/L, and the limit of detection was 0.18 ng/L for γ-valprolactone in standard gas samples. Our results show that LTP-MS is a powerful analytical platform with high sensitivity for quantitative analysis of volatile organic compounds in human breath, and can have potential applications in pharmacokinetics or for patient monitoring and treatment.

  5. Collecting Protein Biomarkers in Breath Using Electret Filters: A Preliminary Method on New Technical Model and Human Study.

    Directory of Open Access Journals (Sweden)

    Wang Li

    Full Text Available Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p0.05. In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance.

  6. A systematic review of breath analysis and detection of volatile organic compounds in COPD

    DEFF Research Database (Denmark)

    Christiansen, Anders; Davidsen, Jesper Rømhild; Titlestad, Ingrid;

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is, according to the WHO, the fifth leading cause of death worldwide, and is expected to increase to rank third in 2030. Few robust biomarkers for COPD exist, and several attempts have been made to find suitable molecular marker candidates. One rising...... research area is breath analysis, with several published attempts to find exhaled compounds as diagnostic markers. The field is broad and no review of published COPD breath analysis studies exists yet. We have conducted a systematic review examining the state of art and identified 12 suitable papers, which...

  7. Characterising infant inter-breath interval patterns during active and quiet sleep using recurrence plot analysis.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M

    2009-01-01

    Breathing patterns are characteristically different between active and quiet sleep states in infants. It has been previously identified that breathing dynamics are governed by a non-linear controller which implies the need for a nonlinear analytical tool. Further, it has been shown that quantified nonlinear variables are different between adult sleep states. This study aims to determine whether a nonlinear analytical tool known as recurrence plot analysis can characterize breath intervals of active and quiet sleep states in infants. Overnight polysomnograms were obtained from 32 healthy infants. The 6 longest periods each of active and quiet sleep were identified and a software routine extracted inter-breath interval data for recurrence plot analysis. Determinism (DET), laminarity (LAM) and radius (RAD) values were calculated for an embedding dimension of 4, 6, 8 and 16, and fixed recurrence of 0.5, 1, 2, 3.5 and 5%. Recurrence plots exhibited characteristically different patterns for active and quiet sleep. Active sleep periods typically had higher values of RAD, DET and LAM than for quiet sleep, and this trend was invariant to a specific choice of embedding dimension or fixed recurrence. These differences may provide a basis for automated sleep state classification, and the quantitative investigation of pathological breathing patterns.

  8. A Stereo Pair Based Method for Contactless Evaluation of the Human Breathing Pattern

    Directory of Open Access Journals (Sweden)

    V. S. Gnatiuk

    2015-01-01

    Full Text Available The development of contactless monitoring methods of human vital signs is an important goal for modern medicine. The particular relevance of this issue appears with the control of the patient at home on their own, for example, to estimate the parameters of breathing during sleep, quality assessment and identification of various kinds of sleep disorders, such as, for example, sleep apnea disorder (a condition, which is characterized by the cessation of pulmonary ventilation more than for 10 seconds and fall of blood oxygen saturation.In this article we have implemented and tested an algorithm for non-contact monitoring of breathing pattern by two entrenched webcams aimed at the person. The algorithm is based on using the methods of computer vision and processing of video sequences.Authors pay particular attention to disparity map construction approaches and improving the signal / noise ratio by a combination of known functions comparing the intensity of pixels: AD - a function of absolute differences, and Census function, comparing bit strings of investigated image regions.An important role in the noise minimization plays a simple, but effective assumption for aggregation, the gist of which is that pixels having similar intensity belong to the same structures in the image, and hence have a similar disparity. The variability of input parameters of the method and the ability to adjust the number of iterations provide accurate disparity maps for the input image of almost any quality (testing was conducted for webcams CBR CW 833M.The main result of this approach is the breathing profile based on the reconstructed depth maps, reflecting the respiration rate of the person under examination and presenting data on the amplitude variations of his chest.The main difference of the proposed method from other publications is a high accuracy and the breath profile calculation in real-time. It was achieved through OpenCL technology and parallel computations

  9. Scaling analysis of paces of fetal breathing, gross-body and extremity movements

    OpenAIRE

    Govindan, R. B.; Wilson, J D; Murphy, P; Russel, W.A.; Lowery, C L

    2007-01-01

    Using detrended fluctuation analysis (DFA), we studied the scaling properties of the time instances (occurrence) of the fetal breathing, gross-body, and extremity movements scored on a second by second basis from the recorded ultrasound measurements of 49 fetuses. The DFA exponent α of all the three movements of the fetuses varied between 0.63 and 1.1. We found an increase in α obtained for the movement due to breathing as a function of the gestational age while this trend was not observed fo...

  10. Pure-rotational spectrometry: a vintage analytical method applied to modern breath analysis.

    Science.gov (United States)

    Hrubesh, Lawrence W; Droege, Michael W

    2013-09-01

    Pure-rotational spectrometry (PRS) is an established method, typically used to study structures and properties of polar gas-phase molecules, including isotopic and isomeric varieties. PRS has also been used as an analytical tool where it is particularly well suited for detecting or monitoring low-molecular-weight species that are found in exhaled breath. PRS is principally notable for its ultra-high spectral resolution which leads to exceptional specificity to identify molecular compounds in complex mixtures. Recent developments using carbon aerogel for pre-concentrating polar molecules from air samples have extended the sensitivity of PRS into the part-per-billion range. In this paper we describe the principles of PRS and show how it may be configured in several different modes for breath analysis. We discuss the pre-concentration concept and demonstrate its use with the PRS analyzer for alcohols and ammonia sampled directly from the breath.

  11. Breath-based meditation: A mechanism to restore the physiological and cognitive reserves for optimal human performance.

    Science.gov (United States)

    Carter, Kirtigandha Salwe; Carter, Robert

    2016-04-16

    Stress can be associated with many physiological changes resulting in significant decrements in human performance. Due to growing interests in alternative and complementary medicine by Westerners, many of the traditions and holistic yogic breathing practices today are being utilized as a measure for healthier lifestyles. These state-of-the-art practices can have a significant impact on common mental health conditions such as depression and generalized anxiety disorder. However, the potential of yogic breathing on optimizing human performance and overall well-being is not well known. Breathing techniques such as alternate nostril, Sudarshan Kriya and bhastrika utilizes rhythmic breathing to guide practitioners into a deep meditative state of relaxation and promote self-awareness. Furthermore, yogic breathing is physiologically stimulating and can be described as a natural "technological" solution to optimize human performance which can be categorized into: (1) cognitive function (i.e., mind, vigilance); and (2) physical performance (i.e., cardiorespiratory, metabolism, exercise, whole body). Based on previous studies, we postulate that daily practice of breathing meditation techniques play a significant role in preserving the compensatory mechanisms available to sustain physiological function. This preservation of physiological function may help to offset the time associated with reaching a threshold for clinical expression of chronic state (i.e., hypertension, depression, dementia) or acute state (i.e., massive hemorrhage, panic attic) of medical conditions. However, additional rigorous biomedical research is needed to evaluate the physiological mechanisms of various forms of meditation (i.e., breath-based, mantra, mindfulness) on human performance. These efforts will help to define how compensatory reserve mechanisms of cardiovascular and immune systems are modulated by breath-based meditation. While it has been suggested that breath-based meditation is easier for

  12. Experimental Dynamic Analysis of a Breathing Cracked Rotor

    Science.gov (United States)

    Guo, Chao-Zhong; Yan, Ji-Hong; Bergman, Lawrence A.

    2017-09-01

    Crack fault diagnostics plays a critical role for rotating machinery in the traditional and Industry 4.0 factory. In this paper, an experiment is set up to study the dynamic response of a rotor with a breathing crack as it passes through its 1/2, 1/3, 1/4 and 1/5 subcritical speeds. A cracked shaft is made by applying fatigue loads through a three-point bending apparatus and then placed in a rotor testbed. The vibration signals of the testbed during the coasting-up process are collected. Whirl orbit evolution at these subcritical speed zones is analyzed. The Fourier spectra obtained by FFT are used to investigate the internal frequencies corresponding to the typical orbit characteristics. The results show that the appearance of the inner loops and orientation change of whirl orbits in the experiment are agreed well with the theoretical results obtained previously. The presence of higher frequencies 2X, 3X, 4X and 5X in Fourier spectra reveals the causes of subharmonic resonances at these subcritical speed zones. The experimental investigation is more systematic and thorough than previously reported in the literature. The unique dynamic behavior of the orbits and frequency spectra are feasible features for practical crack diagnosis. This paper provides a critical technology support for the self-aware health management of rotating machinery in the Industry 4.0 factory.

  13. Non Invasive Biomedical Analysis - Breath Networking Session at PittCon 2011, Atlanta, Georgia

    Science.gov (United States)

    This was the second year that our breath colleagues organized a networking session at the Pittsburgh Conference and Exposition or ''PittCon'' (http://www.pincon.org/).This time it was called "Non-invasive Biomedical Analysis" to broaden the scope a bit, but the primary focus rema...

  14. The classification of the patients with pulmonary diseases using breath air samples spectral analysis

    Science.gov (United States)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.

    2016-08-01

    Technique of exhaled breath sampling is discussed. The procedure of wavelength auto-calibration is proposed and tested. Comparison of the experimental data with the model absorption spectra of 5% CO2 is conducted. The classification results of three study groups obtained by using support vector machine and principal component analysis methods are presented.

  15. Non Invasive Biomedical Analysis - Breath Networking Session at PittCon 2011, Atlanta, Georgia

    Science.gov (United States)

    This was the second year that our breath colleagues organized a networking session at the Pittsburgh Conference and Exposition or ''PittCon'' (http://www.pincon.org/).This time it was called "Non-invasive Biomedical Analysis" to broaden the scope a bit, but the primary focus rema...

  16. Nonlinear Steady-State Vibration Analysis of a Beam with Breathing Cracks

    Science.gov (United States)

    Kamiya, Keisuke; Yoshinaga, Terumitsu

    This paper presents a method for analysis of steady-state vibration of a beam with breathing cracks, which open and close during vibration. There are several papers treating problems of vibration analysis of a beam with breathing cracks. However, due to their treatments of the condition which determines the switch between the open and closed states of the crack, it is difficult for one to obtain steady-state vibration efficiently by methods such as the incremental harmonic balance method. Since opening and closing of a breathing crack depends on the sign of the bending moment, or the curvature, of the beam, the key point to this problem is explicit treatment of the bending moment. The mixed variational principle allows one to use deflection as well as bending moment as primary variables in the governing equation. In this paper a governing equation of a beam with breathing cracks is derived by a finite element procedure based on the mixed variational principle. Then, the derived governing equations are solved by combining the iteration method and the harmonic balance method. Finally, examples of analysis by the presented method are given.

  17. Analysis of breath samples for lung cancer survival

    Energy Technology Data Exchange (ETDEWEB)

    Schmekel, Birgitta [Division of of Clinical Physiology, County Council of Östergötland, Linköping (Sweden); Clinical Physiology, Department of Medicine and Health, Faculty of Health Sciences, Linköping University, Linköping (Sweden); Winquist, Fredrik, E-mail: frw@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83 (Sweden); Vikström, Anders [Department of Pulmonary Medicine, University hospital of Linköping, County Council of Östergötland, Linköping (Sweden)

    2014-08-20

    Graphical abstract: Predictions of survival days for lung cancer patients. - Highlights: • Analyses of exhaled air offer a large diagnostic potential. • Patientswith diagnosed lung cancer were studied using an electronic nose. • Excellent predictions and stable models of survival day were obtained. • Consecutive measurements were very important. - Abstract: Analyses of exhaled air by means of electronic noses offer a large diagnostic potential. Such analyses are non-invasive; samples can also be easily obtained from severely ill patients and repeated within short intervals. Lung cancer is the most deadly malignant tumor worldwide, and monitoring of lung cancer progression is of great importance and may help to decide best therapy. In this report, twenty-two patients with diagnosed lung cancer and ten healthy volunteers were studied using breath samples collected several times at certain intervals and analysed by an electronic nose. The samples were divided into three sub-groups; group d for survivor less than one year, group s for survivor more than a year and group h for the healthy volunteers. Prediction models based on partial least square and artificial neural nets could not classify the collected groups d, s and h, but separated well group d from group h. Using artificial neural net, group d could be separated from group s. Excellent predictions and stable models of survival day for group d were obtained, both based on partial least square and artificial neural nets, with correlation coefficients 0.981 and 0.985, respectively. Finally, the importance of consecutive measurements was shown.

  18. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen

    Science.gov (United States)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.

    1979-01-01

    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  19. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen

    Science.gov (United States)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.

    1979-01-01

    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  20. Airflow in a Multiscale Subject-Specific Breathing Human Lung Model

    CERN Document Server

    Choi, Jiwoong; Hoffman, Eric A; Tawhai, Merryn H; Lin, Ching-Long

    2013-01-01

    The airflow in a subject-specific breathing human lung is simulated with a multiscale computational fluid dynamics (CFD) lung model. The three-dimensional (3D) airway geometry beginning from the mouth to about 7 generations of airways is reconstructed from the multi-detector row computed tomography (MDCT) image at the total lung capacity (TLC). Along with the segmented lobe surfaces, we can build an anatomically-consistent one-dimensional (1D) airway tree spanning over more than 20 generations down to the terminal bronchioles, which is specific to the CT resolved airways and lobes (J Biomech 43(11): 2159-2163, 2010). We then register two lung images at TLC and the functional residual capacity (FRC) to specify subject-specific CFD flow boundary conditions and deform the airway surface mesh for a breathing lung simulation (J Comput Phys 244:168-192, 2013). The 1D airway tree bridges the 3D CT-resolved airways and the registration-derived regional ventilation in the lung parenchyma, thus a multiscale model. Larg...

  1. Volatiles in Breath and Headspace Analysis - Diagnostic Markers

    Science.gov (United States)

    2017-07-24

    Tuberculosis; Gastric Cancer; Peptic Ulcer; Atrophic Gastritis; Intestinal Metaplasia; Gastric Dysplasia; Colorectal Cancer; Colorectal Polyp; Colorectal Adenoma; Pancreatic Cancer; Pancreatitis, Chronic; Liver Cancer; Liver Cirrhosis; Flu, Human; Other Infectious Diseases; Inflammatory Bowel Diseases

  2. Time-frequency methods and voluntary ramped-frequency breathing: a powerful combination for exploration of human neurophysiological mechanisms.

    Science.gov (United States)

    Stankovski, Tomislav; Cooke, William H; Rudas, László; Stefanovska, Aneta; Eckberg, Dwain L

    2013-12-01

    We experimentally altered the timing of respiratory motoneuron activity as a means to modulate and better understand otherwise hidden human central neural and hemodynamic oscillatory mechanisms. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, tidal carbon dioxide concentrations, and muscle sympathetic nerve activity in 13 healthy supine young men who gradually increased or decreased their breathing frequencies between 0.05 and 0.25 Hz over 9-min periods. We analyzed results with traditional time- and frequency-domain methods, and also with time-frequency methods (wavelet transform, wavelet phase coherence, and directional coupling). We determined statistical significance and identified frequency boundaries by comparing measurements with randomly generated surrogates. Our results support several major conclusions. First, respiration causally modulates both sympathetic (weakly) and vagal motoneuron (strongly) oscillations over a wide frequency range-one that extends well below the frequency of actual breaths. Second, breathing frequency broadly modulates vagal baroreflex gain, with peak gains registered in the low frequency range. Third, breathing frequency does not influence median levels of sympathetic or vagal activity over time. Fourth, phase relations between arterial pressure and sympathetic and vagal motoneurons are unaffected by breathing, and are therefore likely secondary to intrinsic responsiveness of these motoneurons to other synaptic inputs. Finally, breathing frequency does not affect phase coherence between diastolic pressure and muscle sympathetic oscillations, but it augments phase coherence between systolic pressure and R-R interval oscillations over a limited portion of the usual breathing frequency range. These results refine understanding of autonomic oscillatory processes and those physiological mechanisms known as the human respiratory gate.

  3. Real-time breath gas analysis of CO and CO2 using an EC-QCL

    Science.gov (United States)

    Ghorbani, Ramin; Schmidt, Florian M.

    2017-05-01

    Real-time breath gas analysis is a promising, non-invasive tool in medical diagnostics, and well-suited to investigate the physiology of carbon monoxide (CO), a potential biomarker for oxidative stress and respiratory diseases. A sensor for precise, breath-cycle resolved, simultaneous detection of exhaled CO (eCO) and carbon dioxide (eCO2) was developed based on a continuous wave, external-cavity quantum cascade laser (EC-QCL), a low-volume multi-pass cell and wavelength modulation spectroscopy. The system achieves a noise-equivalent (1σ) sensitivity of 8.5 × 10-8 cm-1 Hz-1/2 and (2σ) detection limits of 9 ± 2 ppbv and 650 ± 7 ppmv at 0.14 s spectrum acquisition time for CO and CO2, respectively. Integration over 15 s yields a precision of 0.6 ppbv for CO. The fact that the eCO2 expirograms measured by capnography and laser spectroscopy have essentially identical shape confirms true real-time detection. It is found that the individual eCO exhalation profiles from healthy non-smokers have a slightly different shape than the eCO2 profiles and exhibit a clear dependence on exhalation flow rate and breath-holding time. Detection of indoor air CO and broadband breath profiling across the 93 cm-1 mode-hop-free tuning range of the EC-QCL are also demonstrated.

  4. Breathing Difficulties

    Science.gov (United States)

    ... to breathe. Decrease work of breathing and promote airway clearance Positioning: Elevating the head of the bed. This ... to Breathing Changes.” Equipment to support ventilation and airway clearance: Portable suction units can help remove secretions from ...

  5. Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates.

    Science.gov (United States)

    Huang, Jing; Deng, Hongtao; Song, Dandan; Xu, Hui

    2015-06-09

    In the current study, we introduced a novel polystyrene/graphene (PS/G) composite nanofiber film for thin film microextraction (TFME) for the first time. The PS/G nanofiber film was fabricated on the surface of filter paper by a facile electrospinning method. The morphology and extraction performance of the resultant composite film were investigated systematically. The PS/G nanofiber film exhibited porous fibrous structure, large surface area and strong hydrophobicity. A new thin film microextraction-high performance liquid chromatography (TFME-HPLC) method was developed for the determination of six aldehydes in human exhaled breath condensates. The method showed high enrichment efficiency and fast analysis speed. Under the optimal conditions, the linear ranges of the analytes were in the range of 0.02-30 μmol L(-1) with correlation coefficients above 0.9938, and the recoveries were between 79.8% and 105.6% with the relative standard deviation values lower than 16.3% (n=5). The limits of quantification of six aldehydes ranged from 13.8 to 64.6 nmol L(-1). The established method was successfully applied for the quantification of aldehyde metabolites in exhaled breath condensates of lung cancer patients and healthy people. Taken together, the TFME-HPLC method provides a simple, rapid, sensitive, cost-effective, non-invasion approach for the analysis of linear aliphatic aldehydes in human exhaled breath condensates.

  6. Oxidative Stress and Exhaled Breath Analysis: A Promising Tool for Detection of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Paul S. Thomas

    2010-02-01

    Full Text Available Lung cancer is one of the few neoplasia in which the principal aetiology is known, with cigarette smoke donating a considerable oxidative burden to the lungs. This may be part of the aetiology of lung cancer, but the neoplastic process is also associated with increased oxidative stress. Nonetheless, it is difficult to study the mechanisms behind the induction of lung cancer in smokers, but newer techniques of breath analysis targeting markers of oxidative stress and anti-oxidant capacity show promise in unravelling some of the pathways. This review highlights recent developments in the assessment of oxidative stress by non-invasive methods of breath analysis which are becoming powerful research techniques with possible clinical applications.

  7. Noninvasive Strategy Based on Real-Time in Vivo Cataluminescence Monitoring for Clinical Breath Analysis.

    Science.gov (United States)

    Zhang, Runkun; Huang, Wanting; Li, Gongke; Hu, Yufei

    2017-03-21

    The development of noninvasive methods for real-time in vivo analysis is of great significant, which provides powerful tools for medical research and clinical diagnosis. In the present work, we described a new strategy based on cataluminescence (CTL) for real-time in vivo clinical breath analysis. To illustrate such strategy, a homemade real-time CTL monitoring system characterized by coupling an online sampling device with a CTL sensor for sevoflurane (SVF) was designed, and a real-time in vivo method for the monitoring of SVF in exhaled breath was proposed. The accuracy of the method was evaluated by analyzing the real exhaled breath samples, and the results were compared with those obtained by GC/MS. The measured data obtained by the two methods were in good agreement. Subsequently, the method was applied to real-time monitoring of SVF in exhaled breath from rat models of the control group to investigate elimination pharmacokinetics. In order to further probe the potential of the method for clinical application, the elimination pharmacokinetics of SVF from rat models of control group, liver fibrosis group alcohol liver group, and nonalcoholic fatty liver group were monitored by the method. The raw data of pharmacokinetics of different groups were normalized and subsequently subjected to linear discriminant analysis (LDA). These data were transformed to canonical scores which were visualized as well-clustered with the classification accuracy of 100%, and the overall accuracy of leave-one-out cross-validation procedure is 88%, thereby indicating the utility of the potential of the method for liver disease diagnosis. Our strategy undoubtedly opens up a new door for real-time clinical analysis in a pain-free and noninvasive way and also guides a promising development direction for CTL.

  8. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis

    Directory of Open Access Journals (Sweden)

    Aleš Procházka

    2016-06-01

    Full Text Available This paper is devoted to a new method of using Microsoft (MS Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com. The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human–machine interaction.

  9. Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA

    Energy Technology Data Exchange (ETDEWEB)

    Talukder, Srijeeta; Sen, Shrabani; Chaudhury, Pinaki, E-mail: pinakc@rediffmail.com [Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009 (India); Chakraborti, Prantik; Banik, Suman K., E-mail: skbanik@jcbose.ac.in [Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009 (India); Metzler, Ralf, E-mail: rmetzler@uni-potsdam.de [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany and Physics Department, Tampere University of Technology, FI-33101 Tampere (Finland)

    2014-03-28

    We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction ε{sub hb}(AT) for an AT base pair and the ring factor ξ turn out to be the most sensitive parameters. In addition, the stacking interaction ε{sub st}(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization.

  10. Single-breath analysis using a novel simple sampler and capillary electrophoresis with contactless conductometric detection.

    Science.gov (United States)

    Greguš, Michal; Foret, František; Kubáň, Petr

    2015-02-01

    The analysis of ionic content of exhaled breath condensate (EBC) from one single breath by CE with C(4) D is demonstrated for the first time. A miniature sampler made from a 2-mL syringe and an aluminum cooling cylinder for collection of EBC was developed. Various parameters of the sampler that influence its collection efficiency, repeatability, and effect of respiratory patterns were studied in detail. Efficient procedures for the cleanup of the miniature sampler were also developed and resulted in significant improvement of sampling repeatability. Analysis of EBC was performed by CE-C(4) D in a 60 mM MES/l-histidine BGE with 30 μM CTAB and 2 mM 18-crown-6 at pH 6 and excellent repeatability of migration times (RSD < 1.3% (n = 7)) and peak areas (RSD < 7% (n = 7)) of 12 inorganic anions, cations, and organic acids was obtained. It has been shown that the breathing pattern has a significant impact on the concentration of the analytes in the collected EBC. As the ventilatory pattern can be easily controlled during single exhalation, the developed collection system and method provides a highly reproducible and fast way of collecting EBC with applicability in point-of-care diagnostics.

  11. Human chest wall function while awake and during halothane anesthesia. I. Quiet breathing.

    Science.gov (United States)

    Warner, D O; Warner, M A; Ritman, E L

    1995-01-01

    Data concerning chest wall configuration and the activities of the major respiratory muscles that determine this configuration during anesthesia in humans are limited. The aim of this study was to determine the effects of halothane anesthesia on respiratory muscle activity and chest wall shape and motion during spontaneous breathing. Six human subjects were studied while awake and during 1 MAC halothane anesthesia. Respiratory muscle activity was measured using fine-wire electromyography electrodes. Chest wall configuration was determined using images of the thorax obtained by three-dimensional fast computed tomography. Tidal changes in gas volume were measured by integrating respiratory gas flow, and the functional residual capacity was measured by a nitrogen dilution technique. While awake, ribcage expansion was responsible for 25 +/- 4% (mean +/- SE) of the total change in thoracic volume (delta Vth) during inspiration. Phasic inspiratory activity was regularly present in the diaphragm and parasternal intercostal muscles. Halothane anesthesia (1 MAC) abolished activity in the parasternal intercostal muscles and increased phasic expiratory activity in the abdominal muscles and lateral ribcage muscles. However, halothane did not significantly change the ribcage contribution to delta Vth (18 +/- 4%). Intrathoracic blood volume, measured by comparing changes in total thoracic volume and gas volume, increased significantly during inspiration both while awake and while anesthetized (by approximately 20% of delta Vth, P < 0.05). Halothane anesthesia significantly reduced the functional residual capacity (by 258 +/- 78 ml), primarily via an inward motion of the end-expiratory position of the ribcage. Although the diaphragm consistently changed shape, with a cephalad displacement of posterior regions and a caudad displacement of anterior regions, the diaphragm did not consistently contribute to the reduction in the functional residual capacity. Halothane anesthesia

  12. Extrathoracic and intrathoracic removal of O3 in tidal-breathing humans

    Energy Technology Data Exchange (ETDEWEB)

    Gerrity, T.R.; Weaver, R.A.; Berntsen, J.; House, D.E.; O' Neil, J.J.

    1988-07-01

    We measured the efficiency of O3 removal from inspired air by the extrathoracic and intrathoracic airways in 18 healthy, nonsmoking, young male volunteers. Removal efficiencies were measured as a function of O3 concentration (0.1, 0.2, and 0.4 ppm), mode of breathing (nose only, mouth only, and oronasal), and respiration frequency (12 and 24 breaths/min). Subjects were placed in a controlled environmental chamber into which O3 was introduced. A small polyethylene tube was then inserted into the nose of each subject, with the tip positioned in the posterior pharynx. Samples of air were collected from the posterior pharynx through the tube and into a rapidly responding O3 analyzer yielding inspiratory and expiratory O3 concentrations in the posterior pharynx. The O3 removal efficiency of the extrathoracic airways was computed with the use of the inspiratory concentration and the chamber concentration, and intrathoracic removal efficiency was computed with the use of the inspiratory and expiratory concentrations. The mean extrathoracic removal efficiency for all measurements was 39.6 +/- 0.7% (SE), and the mean intrathoracic removal efficiency was 91.0 +/- 0.5%. Significantly less O3 was removed both extrathoracically and intrathoracically when subjects breathed at 24 breaths/min compared with 12 breaths/min (P less than 0.001). O3 concentration had no effect on extrathoracic removal efficiency, but there was a significantly greater intrathoracic removal efficiency at 0.4 ppm than at 0.1 ppm (P less than 0.05). Mode of breathing significantly affected extrathoracic removal efficiency, with less O3 removed during nasal breathing than during either mouth breathing or oronasal breathing (P less than 0.01).

  13. Atrial distension, arterial pulsation, and vasopressin release during negative pressure breathing in humans

    DEFF Research Database (Denmark)

    Pump, B; Damgaard, M; Gabrielsen, A

    2001-01-01

    in eight healthy males, we tested the hypothesis that with similar increases in LA diameter, suppression of AVP release is dependent on the degree of increase in PP. LA diameter increased similarly during the posture change and negative pressure breathing (-9 to -24 mmHg) from between 30 and 31 +/- 1 to 34......During an antiorthostatic posture change, left atrial (LA) diameter and arterial pulse pressure (PP) increase, and plasma arginine vasopressin (AVP) is suppressed. By comparing the effects of a 15-min posture change from seated to supine with those of 15-min seated negative pressure breathing...... +/- 1 mm (P breathing from 36 +/- 3 to 42 +/- 3 mmHg (P

  14. Atrial distension, arterial pulsation, and vasopressin release during negative pressure breathing in humans

    DEFF Research Database (Denmark)

    Pump, B; Damgaard, M; Gabrielsen, A;

    2001-01-01

    During an antiorthostatic posture change, left atrial (LA) diameter and arterial pulse pressure (PP) increase, and plasma arginine vasopressin (AVP) is suppressed. By comparing the effects of a 15-min posture change from seated to supine with those of 15-min seated negative pressure breathing...... in eight healthy males, we tested the hypothesis that with similar increases in LA diameter, suppression of AVP release is dependent on the degree of increase in PP. LA diameter increased similarly during the posture change and negative pressure breathing (-9 to -24 mmHg) from between 30 and 31 +/- 1 to 34...... +/- 1 mm (P breathing from 36 +/- 3 to 42 +/- 3 mmHg (P

  15. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview.

    Science.gov (United States)

    Pereira, Jorge; Porto-Figueira, Priscilla; Cavaco, Carina; Taunk, Khushman; Rapole, Srikanth; Dhakne, Rahul; Nagarajaram, Hampapathalu; Câmara, José S

    2015-01-09

    Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.

  16. Breath Analysis as a Potential and Non-Invasive Frontier in Disease Diagnosis: An Overview

    Directory of Open Access Journals (Sweden)

    Jorge Pereira

    2015-01-01

    Full Text Available Currently, a small number of diseases, particularly cardiovascular (CVDs, oncologic (ODs, neurodegenerative (NDDs, chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc. allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.

  17. Factors that influence the volatile organic compound content in human breath

    NARCIS (Netherlands)

    Blanchet, L.; Smolinska, Agnieszka; Baranska, Agnieszka; Tigchelaar-Feenstra, E.; Swertz, M.; Zhernakova, A.; Dallinga, J. W.; Wijmenga, C.; van Schooten, Frederik J.

    Background. Thousands of endogenous and exogenous volatile organic compounds (VOCs) are excreted in each breath. Inflammatory and deviant metabolic processes affect the level of endogeneous VOCs, which can serve as specific biomarkers for clinical diagnosis and disease monitoring. Important issues

  18. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites.

    Science.gov (United States)

    Smith, David; Spanel, Patrik

    2015-04-01

    The experimental challenges presented by the analysis of trace volatile organic compounds (VOCs) in exhaled breath with the objective of identifying reliable biomarkers are brought into focus. It is stressed that positive identification and accurate quantification of the VOCs are imperative if they are to be considered as discreet biomarkers. Breath sampling procedures are discussed and it is suggested that for accurate quantification on-line real time sampling and analysis is desirable. Whilst recognizing such real time analysis is not always possible and sample collection is often required, objective recognition of the pitfalls involved in this is essential. It is also emphasized that mouth-exhaled breath is always contaminated to some degree by orally generated compounds and so, when possible, analysis of nose-exhaled breath should be performed. Some difficulties in breath analysis are mitigated by the choice of analytical instrumentation used, but no single instrument can provide solutions to all the analytical challenges. Analysis and interpretation of breath analysis data, however acquired, needs to be treated circumspectly. In particular, the excessive use of statistics to treat imperfect mass spectrometry/mobility spectra should be avoided, since it can result in unjustifiable conclusions. It is should be understood that recognition of combinations of VOCs in breath that, for example, apparently describe particular cancer states, will not be taken seriously until they are replicated in other laboratories and clinics. Finally, the inhibiting notion that single biomarkers of infection and disease will not be identified and utilized clinically should be dispelled by the exemplary and widely used single biomarkers NO and H2 and now, as indicated by recent selected ion flow tube mass spectroscopy (SIFT-MS) results, triatomic hydrogen cyanide and perhaps pentane and acetic acid. Hopefully, these discoveries will provide encouragement to research workers to be

  19. Influence of the respiratory cycle structure on the flow field in human nasal cavity at a fixed level of breath depth

    Science.gov (United States)

    Bosykh, L. Yu.; Ganimedov, V. L.; Muchnaya, M. I.; Sadovskii, A. S.

    2016-10-01

    The evolution of air flow field in the human nasal cavity has studied during the respiratory cycle. Real tomographic scans of the adult without abnormalities in the upper airway have been used to construct the geometric model. Quiet breathing mode is selected: the duration of the respiratory cycle is 4.3 sec and the depth of breathing is 600 ml, which provides pulmonary ventilation at 8.4 liters of air per minute. The system of Navier - Stokes equations was used to describe the flow. Laminar flow regime was postulated. The Lagrange approach was used for calculation of submicron particles motion. The numerical solution was built on the basis of gas-dynamic solver FLUENT of software package ANSYS 12. Calculations were made for two cases in which the same value of the integral characteristic (the depth of breathing) was reached, but which had different kind of boundary conditions on the exit. In the first case, the velocity was assumed symmetrical with respect to inhalation - exhalation and was approximated by sinusoid. In the second case, the velocity as a function of time is determined by processing of the real person spirogram. For the both variants the flow fields were obtained and compared. Analysis of the results showed that in non-stationary case the use of symmetric boundary condition leads to an underestimation of respiratory effort for the implementation of the required depth of breathing. In cyclic flow the flow fields in acceleration and deceleration phases are, basically, the same as in the corresponding steady flow. At the same time taking into account of non-symmetry of respiratory cycle influences on deposition pattern of particles significantly.

  20. An ultrasonic contactless sensor for breathing monitoring.

    Science.gov (United States)

    Arlotto, Philippe; Grimaldi, Michel; Naeck, Roomila; Ginoux, Jean-Marc

    2014-08-20

    The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569).

  1. An Ultrasonic Contactless Sensor for Breathing Monitoring

    Directory of Open Access Journals (Sweden)

    Philippe Arlotto

    2014-08-01

    Full Text Available The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569.

  2. Breathing Problems

    Science.gov (United States)

    ... getting enough air. Sometimes you can have mild breathing problems because of a stuffy nose or intense ... panic attacks Allergies If you often have trouble breathing, it is important to find out the cause.

  3. Quantitative Analysis of Periodic Breathing and Very Long Apnea in Preterm Infants

    Science.gov (United States)

    Mohr, Mary A.

    Electronic signals from bedside monitors in University of Virginia's Neonatal Intensive Care Unit (NICU) are routinely collected and stored. The overall goal of our research is predictive monitoring: we seek patterns in signals that give early warning of impending pathology. This work focuses on apnea (pauses in regular respiration), and on periodic breathing (regular cycles of breathing and apnea). Our examination of apnea events revealed a disturbing number of cases in which the cessation of breathing lasted at least 60 seconds. These observations were validated, clinical correlations of these events were identified, and a theory was developed that partially explains how they occur. Periodic breathing in neonates is a normal developmental phenomenon. It arises when there is instability in the respiratory control system. A mathematical model of periodic breathing was developed to analyze the stability of the control system in infants. Periodic breathing has long been thought to be benign, however, exaggerated durations of periodic breathing may be an indicator of pathology. Characterization of periodic breathing has previously been limited to short monitoring times in small numbers of infants. An automated system for measurement and characterization of periodic breathing was developed and applied to 5 years of data from the NICU. The amount of periodic breathing that infants had was found to increase with gestational age (up to 32 weeks). Also, times of excessive periodic breathing were recorded and clinical correlations were sought. A significant increase in periodic breathing in the 24 hours before diagnosis of necrotizing enterocolitis was found.

  4. Tonsillectomy versus tonsillotomy for sleep-disordered breathing in children: a meta analysis.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Tonsillotomy has gained popular acceptance as an alternative to the traditional tonsillectomy in the management of sleep-disordered breathing in children. Many studies have evaluated the outcomes of the two techniques, but uncertainty remains with regard to the efficacy and complications of tonsillotomy versus a traditional tonsillectomy. This study was designed to investigate the efficacy and complications of tonsillotomy versus tonsillectomy, in terms of the short- and long-term results.We collected data from electronic databases including MEDLINE, EMBASE, and the Cochrane Library. The following inclusion criteria were applied: English language, children, and prospective studies that directly compared tonsillotomy and tonsillectomy in the management of sleep disordered breathing. Subgroup analysis was then performed.In total, 10 eligible studies with 1029 participants were included. Tonsillotomy was shown to be advantageous over tonsillectomy in short-term measures, such as a lower hemorrhage rate, shorter operation time, and faster pain relief. In long-term follow-up, there was no significant difference in resolution of upper-airway obstructive symptoms, the quality of life, or postoperative immune function between the tonsillotomy and tonsillectomy groups. The risk ratio of SDB recurrence was 3.33 (95% confidence interval = 1.62 6.82, P = 0.001, favoring tonsillectomy at an average follow-up of 31 months.Tonsillotomy may be advantageous over tonsillectomy in the short term measures and there are no significant difference of resolving obstructive symptoms, quality of life and postoperative immune function. For the long run, the dominance of tonsillotomy may be less than tonsillectomy with regard to the rate of sleep-disordered breathing recurrence.

  5. Effects of tetrahydrobiopterin and phenylalanine on in vivo human phenylalanine hydroxylase by phenylalanine breath test.

    Science.gov (United States)

    Okano, Yoshiyuki; Takatori, Kazuhiko; Kudo, Satoshi; Sakaguchi, Tomoko; Asada, Minoru; Kajiwara, Masahiro; Yamano, Tsunekazu

    2007-12-01

    BH(4) administration results in the reduction of blood phenylalanine level in patients with tetrahydrobiopterin (BH(4))-responsive phenylalanine hydroxylase (PAH) deficiency. The mechanism underlying BH(4) response remains unknown. Here, we studied the effects of BH(4) and phenylalanine on in vivo PAH activity of normal controls using the phenylalanine breath test (PBT) by converting l-[1-(13)C] phenylalanine to (13)CO(2). Phenylalanine oxidation rates were expressed as Delta(13)C ((13)CO(2)/(12+13)CO(2), per thousand) and cumulative recovery rates over 120min (CRR(120), %; total amount of (13)CO(2)/the administered dose of (13)C-phenylalanine). Under physiological conditions of blood phenylalanine, BH(4) administration reduced the Delta(13)C peak from 40.8 per thousand to 21.6 per thousand and CRR(120) from 16.9% to 10.2%. Under high blood phenylalanine conditions, administration of BH(4) increased the Delta(13)C peak from 30.7 per thousand to 46.0 per thousand, while the CRR(120) was similar between phenylalanine (19.9%) and phenylalanine+BH(4) (21.1%) groups. Corrected Delta(13)C and CRR(120) were calculated against serum phenylalanine levels to remove the effects of phenylalanine loading. After BH(4) administration, the corrected Delta(13)C peak increased from 82.7 per thousand to 112.6 per thousand, while the corrected CRR(120) was similar (47.6% and 45.6%). These results indicate that phenylalanine worked as a regulator of in vivo PAH by serving as both a substrate and an activator for the enzyme. Excessive dosages of BH(4) inhibited PAH under normal phenylalanine conditions and activated PAH under conditions of high phenylalanine. The regulation system is therefore designed to maintain phenylalanine levels in the human body. Appropriate BH(4) supplementation must be reviewed in patients with BH(4)-responsive PAH deficiency.

  6. Detection of Helicobacter pylori infection by examination of human breath odor using electronic nose Bloodhound-214ST

    Science.gov (United States)

    Shnayder, E. P.; Moshkin, M. P.; Petrovskii, D. V.; Shevela, A. I.; Babko, A. N.; Kulikov, V. G.

    2009-05-01

    Our aim was to examine the possibility of use e-nose Bloodhound-214ST to determine presence or absence of H. pylori infection using exhalation samples of patients. Breath samples were collected twice: at baseline and after oral administration of 500 mg of urea. H. pylori status of patients was confirmed by antral biopsy. Using two approaches for the data analysis we showed the possibility to distinguish H. pylori free and infected patients.

  7. Coordination-related changes in the rhythms of breathing and walking in humans.

    Science.gov (United States)

    Rassler, B; Kohl, J

    2000-07-01

    Coordination of the respiratory rhythm with the rhythm of limb movements has often been observed during rhythmical exercise (e.g. in locomotion). It is usually associated with changes in the respiratory time course, but not in the locomotor rhythm. Therefore, we hypothesised that in walking, the extent of coordination-related changes (CRC) in respiratory parameters would increase with closer coordination. With respect to the controversially discussed question of a possible energetic advantage due to coordination, we devoted particular interest to the CRC in oxygen uptake (VO2). In addition, we investigated the incidence and the extent of CRC in the stepping rhythm. We examined 18 volunteers walking on a treadmill at three different workload levels, which were adjusted by altering either the velocity or slope of the treadmill. Each walking test was carried out twice, once with spontaneous breathing and once with breathing paced by a step-related acoustic signal to enhance the coordination between breathing and walking. No correlation was found between the CRC in the analysed parameters and the degree of coordination. However, the extent of CRC of ventilation and VO2 decreased with increasing workload. With the transition to coordination, increases and decreases of VO2 occurred about equally often. From this we conclude that energetic economisation in walking, as reflected by a reduction in VO2, is rather a side-effect of coordination, and is probably due to a more precise regulation of the breathing pattern. The economisation was more pronounced at higher work loads than at lower work loads. Our results revealed that coordination is also associated with changes in the stepping rate, which occurred more frequently when the variability of breathing was restricted by acoustic pacing of the breathing rhythm. This finding suggests that the choice of walking rhythm is not completely free, but can be influenced by the breathing rhythm. CRC in the walking rhythm might

  8. Attractor structure discriminates sleep states: recurrence plot analysis applied to infant breathing patterns.

    Science.gov (United States)

    Terrill, Philip Ian; Wilson, Stephen James; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2010-05-01

    Breathing patterns are characteristically different between infant active sleep (AS) and quiet sleep (QS), and statistical quantifications of interbreath interval (IBI) data have previously been used to discriminate between infant sleep states. It has also been identified that breathing patterns are governed by a nonlinear controller. This study aims to investigate whether nonlinear quantifications of infant IBI data are characteristically different between AS and QS, and whether they may be used to discriminate between these infant sleep states. Polysomnograms were obtained from 24 healthy infants at six months of age. Periods of AS and QS were identified, and IBI data extracted. Recurrence quantification analysis (RQA) was applied to each period, and recurrence calculated for a fixed radius in the range of 0-8 in steps of 0.02, and embedding dimensions of 4, 6, 8, and 16. When a threshold classifier was trained, the RQA variable recurrence was able to correctly classify 94.3% of periods in a test dataset. It was concluded that RQA of IBI data is able to accurately discriminate between infant sleep states. This is a promising step toward development of a minimal-channel automatic sleep state classification system.

  9. Fabry-Perot microcavity sensor for H2-breath-test analysis

    Science.gov (United States)

    Vincenti, Maria Antonietta; De Sario, Marco; Petruzzelli, V.; D'Orazio, Antonella; Prudenzano, Francesco; de Ceglia, Domenico; Scalora, Michael

    2007-10-01

    Leak detection of hydrogen for medical purposes, based on the monitoring of the optical response of a simple Fabry-Perot microcavity, is proposed to investigate either the occurrence of lactose intolerance, or lactose malabsorption condition. Both pathologic conditions result in bacterial overgrowth in the intestine, which causes increased spontaneous emission of H2 in the human breath. Two sensitivity figures of merit are introduced to inspect changes in the sensor response, and to relate the microcavity response to a pathologic condition, which is strictly related to a different level of exhaled hydrogen. Different sensor configurations using a metal-dielectric microcavity are reported and discussed in order to make the most of the well-known ability of palladium to spontaneously absorb hydrogen.

  10. Facial pattern categories of sleep breathing-disordered children using Ricketts analysis.

    Science.gov (United States)

    Kikuchi, Makoto; Higurashi, Naoki; Miyazaki, Soichiro; Itasaka, Yoshiaki; Chiba, Sintaro; Nezu, Hiroshi

    2002-06-01

    The facial patterns of 29 children under the age of 15 years with tonsil and/or adenoid and sleep disorder problems was analysed. The lateral-cephalograms of these patients was digitized in a zero-based computer program using Ricketts analysis to examine facial patterns. Results of the analysis were compared with the mean of the control group, n = 41 (9-year-old Japanese children). There were significant differences (P < 0.01-0.001) between the patient group and the control group when comparing the facial axis, lower facial height, mandibular arc, total facial height, and McNamara-Pogonion. The facial pattern of children with sleep breathing disorders was discovered to be the dolico facial pattern.

  11. Use of a least absolute shrinkage and selection operator (LASSO) model to selected ion flow tube mass spectrometry (SIFT-MS) analysis of exhaled breath to predict the efficacy of dialysis: a pilot study.

    Science.gov (United States)

    Wang, Maggie Haitian; Chong, Ka Chun; Storer, Malina; Pickering, John W; Endre, Zoltan H; Lau, Steven Yf; Kwok, Chloe; Lai, Maria; Chung, Hau Yin; Ying Zee, Benny Chung

    2016-09-28

    Selected ion flow tube-mass spectrometry (SIFT-MS) provides rapid, non-invasive measurements of a full-mass scan of volatile compounds in exhaled breath. Although various studies have suggested that breath metabolites may be indicators of human disease status, many of these studies have included few breath samples and large numbers of compounds, limiting their power to detect significant metabolites. This study employed a least absolute shrinkage and selective operator (LASSO) approach to SIFT-MS data of breath samples to preliminarily evaluate the ability of exhaled breath findings to monitor the efficacy of dialysis in hemodialysis patients. A process of model building and validation showed that blood creatinine and urea concentrations could be accurately predicted by LASSO-selected masses. Using various precursors, the LASSO models were able to predict creatinine and urea concentrations with high adjusted R-square (>80%) values. The correlation between actual concentrations and concentrations predicted by the LASSO model (using precursor H3O(+)) was high (Pearson correlation coefficient  =  0.96). Moreover, use of full mass scan data provided a better prediction than compounds from selected ion mode. These findings warrant further investigations in larger patient cohorts. By employing a more powerful statistical approach to predict disease outcomes, breath analysis using SIFT-MS technology could be applicable in future to daily medical diagnoses.

  12. The analysis of volatile organic compounds in exhaled breath and biomarkers in exhaled breath condensate in children - clinical tools or scientific toys?

    Science.gov (United States)

    van Mastrigt, E; de Jongste, J C; Pijnenburg, M W

    2015-07-01

    Current monitoring strategies for respiratory diseases are mainly based on clinical features, lung function and imaging. As airway inflammation is the hallmark of many respiratory diseases in childhood, noninvasive methods to assess the presence and severity of airway inflammation might be helpful in both diagnosing and monitoring paediatric respiratory diseases. At present, the measurement of fractional exhaled nitric oxide is the only noninvasive method available to assess eosinophilic airway inflammation in clinical practice. We aimed to evaluate whether the analysis of volatile organic compounds (VOCs) in exhaled breath (EB) and biomarkers in exhaled breath condensate (EBC) is helpful in diagnosing and monitoring respiratory diseases in children. An extensive literature search was conducted in Medline, Embase and PubMed on the analysis and applications of VOCs in EB and EBC in children. We retrieved 1165 papers, of which nine contained original data on VOCs in EB and 84 on biomarkers in EBC. These were included in this review. We give an overview of the clinical applications in childhood and summarize the methodological issues. Several VOCs in EB and biomarkers in EBC have the potential to distinguish patients from healthy controls and to monitor treatment responses. Lack of standardization of collection methods and analysis techniques hampers the introduction in clinical practice. The measurement of metabolomic profiles may have important advantages over detecting single markers. There is a lack of longitudinal studies and external validation to reveal whether EB and EBC analysis have added value in the diagnostic process and follow-up of children with respiratory diseases. In conclusion, the use of VOCs in EB and biomarkers in EBC as markers of inflammatory airway diseases in children is still a research tool and not validated for clinical use.

  13. Interaction of convective flow generated by human body with room ventilation flow: impact on transport of pollution to the breathing zone

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2014-01-01

    concentration by factor of 5.5. Downward flow of 0.175 m/s does not change airflow patterns and pollutant concentration in the breathing zone, while the velocity of 0.425 m/s offsets the thermal plume and minimizes the concentration. Since the downward flow at 0.30 m/s collides with the CBL at the forehead......This study aims to investigate the interaction between the human convective boundary layer (CBL) and uniform airflow from two directions and with different velocities. The study has two objectives: first, to characterize the velocity field in the breathing zone of a thermal manikin under its...... interaction with opposing flow from above and assisting flow from below; and secondly, implication of such a flow interaction on the particle transport from the feet to the breathing zone is examined. The results reveal that the human body heat transports the pollution to the breathing zone and increases...

  14. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  15. ABA-Cloud: support for collaborative breath research.

    Science.gov (United States)

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  16. Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip.

    Science.gov (United States)

    Benam, Kambez H; Novak, Richard; Nawroth, Janna; Hirano-Kobayashi, Mariko; Ferrante, Thomas C; Choe, Youngjae; Prantil-Baun, Rachelle; Weaver, James C; Bahinski, Anthony; Parker, Kevin K; Ingber, Donald E

    2016-11-23

    Smoking represents a major risk factor for chronic obstructive pulmonary disease (COPD), but it is difficult to characterize smoke-induced injury responses under physiological breathing conditions in humans due to patient-to-patient variability. Here, we show that a small airway-on-a-chip device lined by living human bronchiolar epithelium from normal or COPD patients can be connected to an instrument that "breathes" whole cigarette smoke in and out of the chips to study smoke-induced pathophysiology in vitro. This technology enables true matched comparisons of biological responses by culturing cells from the same individual with or without smoke exposure. These studies led to identification of ciliary micropathologies, COPD-specific molecular signatures, and epithelial responses to smoke generated by electronic cigarettes. The smoking airway-on-a-chip represents a tool to study normal and disease-specific responses of the human lung to inhaled smoke across molecular, cellular and tissue-level responses in an organ-relevant context. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-01-01

    180-W exercise (from 47 to 53 cm/s), and this increment became larger with facial immersion (76 cm/s, approximately 62%; P brain with a >100% increase in MCA V(mean), largely...... perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P...... exercise, a breath hold increased Pa(CO(2)) from 5.9 to 8.2 kPa (P

  18. Perspective: Crowd-based breath analysis: assessing behavior, activity, exposures, and emotional response of people in groups

    Science.gov (United States)

    A new concept for exhaled breath analysis has emerged wherein groups, or even crowds of people are simultaneously sampled in enclosed environments to detect overall trends in their activities and recent exposures. The basic idea is to correlate the temporal profile of known breat...

  19. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-01-01

    perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P...

  20. Discrimination and characterization of breath from smokers and non-smokers via electronic nose and GC/MS analysis.

    Science.gov (United States)

    Witt, Katharina; Reulecke, Sina; Voss, Andreas

    2011-01-01

    The objective of this study was to prove the general applicability of an electronic nose for analyzing exhaled breath considering the dependency on smoking. At first, odor compounds from spices (n=6) were detected via the electronic nose and further characterized and classified with gas chromatography/ mass spectrometry to demonstrate the principle ability of the electronic nose. Then, the exhaled breath from smokers and non-smokers were analyzed to prove the influence of smoking on breath analyses with the electronic nose. The exhaled breath was sampled from 11 smokers and 11 non-smokers in a special sampling bag with the mounted sensor chip of the electronic nose. Additionally, solid phase micro-extraction (SPME) technique was established for detection of the specific chemical compounds with gas chromatography and mass spectrometry (GC/MS). For analyses of the sensor signals the principle component analysis (PCA) was applied and the groups were differentiated by linear discriminant function analysis. In accordance to the discrimination between the different spices and between smokers and non-smokers the PCA analysis leads to an optimum accuracy of 100%. The results of this study show that an electronic nose has the ability to detect different changes of odor components and provides separation of smoking side effects in smelling different diseases.

  1. Determination of breath isoprene allows the identification of the expiratory fraction of the propofol breath signal during real-time propofol breath monitoring.

    Science.gov (United States)

    Hornuss, Cyrill; Dolch, Michael E; Janitza, Silke; Souza, Kimberly; Praun, Siegfried; Apfel, Christian C; Schelling, Gustav

    2013-10-01

    Real-time measurement of propofol in the breath may be used for routine clinical monitoring. However, this requires unequivocal identification of the expiratory phase of the respiratory propofol signal as only expiratory propofol reflects propofol blood concentrations. Determination of CO2 breath concentrations is the current gold standard for the identification of expiratory gas but usually requires additional equipment. Human breath also contains isoprene, a volatile organic compound with low inspiratory breath concentration and an expiratory concentration plateau. We investigated whether breath isoprene could be used similarly to CO2 to identify the expiratory fraction of the propofol breath signal. We investigated real-time breath data obtained from 40 study subjects during routine anesthesia. Propofol, isoprene, and CO2 breath concentrations were determined by a combined ion molecule reaction/electron impact mass spectrometry system. The expiratory propofol signal was identified according to breath CO2 and isoprene concentrations and presented as median of intervals of 30 s duration. Bland-Altman analysis was applied to detect differences (bias) in the expiratory propofol signal extracted by the two identification methods. We investigated propofol signals in a total of 3,590 observation intervals of 30 s duration in the 40 study subjects. In 51.4 % of the intervals (1,844/3,590) both methods extracted the same results for expiratory propofol signal. Overall bias between the two data extraction methods was -0.12 ppb. The lower and the upper limits of the 95 % CI were -0.69 and 0.45 ppb. Determination of isoprene breath concentrations allows the identification of the expiratory propofol signal during real-time breath monitoring.

  2. Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2004-01-01

    Full Text Available Abstract Background Removal of exhaled air from total body emanations or artificially standardising carbon dioxide (CO2 outputs has previously been shown to eliminate differential attractiveness of humans to certain blackfly (Simuliidae and mosquito (Culicidae species. Whether or not breath contributes to between-person differences in relative attractiveness to the highly anthropophilic malaria vector Anopheles gambiae sensu stricto remains unknown and was the focus of the present study. Methods The contribution to and possible interaction of breath (BR and body odours (BO in the attraction of An. gambiae s.s. to humans was investigated by conducting dual choice tests using a recently developed olfactometer. Either one or two human subjects were used as bait. The single person experiments compared the attractiveness of a person's BR versus that person's BO or a control (empty tent with no odour. His BO and total emanations (TE = BR+BO were also compared with a control. The two-person experiments compared the relative attractiveness of their TE, BO or BR, and the TE of each person against the BO of the other. Results Experiments with one human subject (P1 as bait found that his BO and TE collected more mosquitoes than the control (P = 0.005 and P 1 attracted more mosquitoes than that of another person designated P8 (P 8 attracted more mosquitoes than the BR of P1 (P = 0.001. The attractiveness of the BO of P1 versus the BO of P8 did not differ (P = 0.346. The BO from either individual was consistently more attractive than the TE from the other (P Conclusions We demonstrated for the first time that human breath, although known to contain semiochemicals that elicit behavioural and/or electrophysiological responses (CO2, ammonia, fatty acids in An. gambiae also contains one or more constituents with allomonal (~repellent properties, which inhibit attraction and may serve as an important contributor to between-person differences in the relative

  3. Ethylene and ammonia traces measurements from the patients' breath with renal failure via LPAS method

    Science.gov (United States)

    Popa, C.; Dutu, D. C. A.; Cernat, R.; Matei, C.; Bratu, A. M.; Banita, S.; Dumitras, D. C.

    2011-11-01

    The application of laser photoacoustic spectroscopy (LPAS) for fast and precise measurements of breath biomarkers has opened up new promises for monitoring and diagnostics in recent years, especially because breath test is a non-invasive method, safe, rapid and acceptable to patients. Our study involved assessment of breath ethylene and breath ammonia levels in patients with renal failure receiving haemodialysis (HD) treatment. Breath samples from healthy subjects and from patients with renal failure were collected using chemically inert aluminized bags and were subsequently analyzed using the LPAS technique. We have found out that the composition of exhaled breath in patients with renal failure contains not only ethylene, but also ammonia and gives valuable information for determining efficacy and endpoint of HD. Analysis of ethylene and ammonia traces from the human breath may provide insight into severity of oxidative stress and metabolic disturbances and may ensure optimal therapy and prevention of pathology at patients on continuous HD.

  4. Fine-scale analysis of synchronous breathing in wild Indo-Pacific bottlenose dolphins (Tursiops aduncus).

    Science.gov (United States)

    Sakai, Mai; Morisaka, Tadamichi; Kogi, Kazunobu; Hishii, Toru; Kohshima, Shiro

    2010-01-01

    We quantitatively analysed synchronous breathing for dyads in Indo-Pacific bottlenose dolphins at Mikura Island, Tokyo, Japan. For most cases, we observed dyads swimming in the same direction (97%), in close proximity (i.e., less than 1.5m) and with their body axes parallel as they breathed synchronously. Moreover, the pairs engaged in identical behaviour before and after the synchronous breathing episodes. These results suggest that the dolphins synchronize their movements, and that synchronous breathing is a component of "pair-swimming", an affiliative social behaviour. Same sex pairs of the same age class frequently engaged in synchronous breathing for adults and subadults, as well as mother-calf and escort-calf pairs. The distance between individuals during synchronous breathing for mother-calf pairs was less than for other pairs. The distance observed between individuals for female pairs was less than for male pairs. The time differences between each exhale for each of the two dolphins involved in synchronous breathing episodes for female pairs were smaller than for male pairs, and time differences for adult pairs were smaller than subadult pairs. These results suggest that age and sex class influenced the characteristics of this behaviour.

  5. White Grape Juice Elicits a Lower Breath Hydrogen Response Compared with Apple Juice in Healthy Human Subjects: A Randomized Controlled Trial.

    Science.gov (United States)

    Erickson, Jennifer; Wang, Qi; Slavin, Joanne

    2017-06-01

    Diets low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPS) are used to manage symptoms in individuals with irritable bowel syndrome. Although effective at reducing symptoms, the diet can be complex and restrictive. In addition, there are still large gaps in the literature and many foods with unclear effects in the gastrointestinal (GI) tract, like fruit juice. Although many fruits are allowable on a low-FODMAP diet, consumption of all fruit juice is generally cautioned due to the large fructose load contained in juice, regardless of the glucose concentration. Very little research exists regarding the importance of limiting fructose load during a low-FODMAP diet; therefore, individuals following a low-FODMAP diet may be unnecessarily restricting their diets. To determine whether there is a difference in GI tolerance between juice from a high-FODMAP fruit (apple juice) and juice from a low-FODMAP fruit (white grape juice) in healthy human subjects. The goal is to provide insight into the role of juice in a low-FODMAP diet. A double-blind, randomized, controlled crossover study was conducted with 40 healthy adults. Fasted subjects consumed 12 oz of either apple juice or white grape juice. Breath hydrogen measures were taken at baseline, 1, 2, and 3 hours. Subjective GI tolerance surveys were completed at the same time intervals and at 12 and 24 hours. Breath hydrogen and GI symptoms were assessed with area under the curve analysis. Significance was determined with a two-sided t test with a P value juice resulted in a greater mean breath hydrogen area under the curve at 23.3 ppm/hour (95% CI 13.0 to 33.6) compared with white grape juice at 5.8 ppm/hour (95% CI -4.6 to 16.1) (Pjuices were well tolerated and neither produced any severe symptoms in healthy adults. White grape juice consumption resulted in only a small rise in breath hydrogen, which may suggest excluding foods only because of the high fructose load could be

  6. Attention deficit hyperactivity disorder and sleep disordered breathing in pediatric populations: a meta-analysis.

    Science.gov (United States)

    Sedky, Karim; Bennett, David S; Carvalho, Karen S

    2014-08-01

    A relationship between attention deficit hyperactivity disorder (ADHD) and sleep disordered breathing (SDB) in children and adolescents has been suggested by some authors. Yet, this topic remains highly controversial in the literature. A meta-analysis was conducted in order to examine the extent of relationship between SDB and ADHD symptoms in pediatric populations and whether there are differences in ADHD symptoms pre- versus post-adenotonsillectomy in pediatric populations. PubMed/Medline, PsychInfo and Cochrane databases were searched using the key words "attention deficit hyperactivity disorder" or "ADHD" and "obstructive sleep apnea" or "OSA" or "sleep disordered breathing" (SDB) or "SDB". English language publications through September 2012 were surveyed. Meta-analysis was conducted to assess the relationship between SDB and ADHD symptoms in the first part of the study, and the extent of change in ADHD symptoms before and after adenotonsillectomy in the second part. Eighteen studies satisfied the inclusion criteria for the first part of the study. This represented 1113 children in the clinical group (874 diagnosed with SDB who were examined for ADHD symptoms; 239 diagnosed with ADHD who were examined for SDB) and 1405 in the control-group. Findings indicate that there is a medium relationship between ADHD symptoms and SDB (Hedges' g = 0.57, 95% confidence interval: 0.36-0.78; p = 0.000001). A high apnea hypopnea index (AHI) cutoff was associated with lower effect sizes, while child age, gender and body mass index did not moderate the relationship between SDB and ADHD. Study quality was associated with larger effect sizes. In the second part of the study, twelve studies were identified assessing pre- versus post-surgery ADHD symptoms. Hedges' g was 0.43 (95% confidence interval = 0.30-0.55; p < 0.001; N = 529) suggesting a medium effect, as adenotonsillectomy was associated with decreased ADHD symptoms at 2-13 months post-surgery. The findings of this meta-analysis

  7. Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training.

    OpenAIRE

    Lindstrom, A B; Pleil, J D; Berkoff, D C

    1997-01-01

    Alveolar breath sampling was used to assess trihalomethane (THM) exposures encountered by collegiate swimmers during a typical 2-hr training period in an indoor natatorium. The breath samples were collected at regular intervals before, during, and for 3 hr after a moderately intense training workout. Integrated and grab whole-air samples were collected during the training period to help determine inhalation exposures, and pool water samples were collected to help assess dermal exposures. Resu...

  8. Methodological aspects of breath hydrogen (H2) analysis. Evaluation of a H2 monitor and interpretation of the breath H2 test

    DEFF Research Database (Denmark)

    Rumessen, J J; Kokholm, G; Gudmand-Høyer, E

    1987-01-01

    The reliability of end-expiratory hydrogen (H2) breath tests were assessed and the significance of some important pitfalls were studied, using a compact, rapid H2-monitor with electrochemical cells. The H2 response was shown to be linear and stable. The reproducibility of the breath collection...... were studied in 10 healthy adults during a 4-month period and they showed very marked inter- and intra-individual variability (16% above 40 p.p.m.). Initial peaks (early, short-lived H2 rises unrelated to carbohydrate malabsorption) were identified in 25% of the breath tests (in 4% above 20 p.......p.m). It is concluded that the technique used for interval sampling of end-expiratory breath samples for H2 concentration gives reliable results. The biological significance of H2 concentration increments can only be evaluated if the limitations of the technical procedures and the individual ability to produce H2...

  9. Analysis of volatile compounds in exhaled breath condensate in patients with severe pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    J K Mansoor

    Full Text Available BACKGROUND: An important challenge to pulmonary arterial hypertension (PAH diagnosis and treatment is early detection of occult pulmonary vascular pathology. Symptoms are frequently confused with other disease entities that lead to inappropriate interventions and allow for progression to advanced states of disease. There is a significant need to develop new markers for early disease detection and management of PAH. METHODOLGY AND FINDINGS: Exhaled breath condensate (EBC samples were compared from 30 age-matched normal healthy individuals and 27 New York Heart Association functional class III and IV idiopathic pulmonary arterial hypertenion (IPAH patients, a subgroup of PAH. Volatile organic compounds (VOC in EBC samples were analyzed using gas chromatography/mass spectrometry (GC/MS. Individual peaks in GC profiles were identified in both groups and correlated with pulmonary hemodynamic and clinical endpoints in the IPAH group. Additionally, GC/MS data were analyzed using autoregression followed by partial least squares regression (AR/PLSR analysis to discriminate between the IPAH and control groups. After correcting for medicaitons, there were 62 unique compounds in the control group, 32 unique compounds in the IPAH group, and 14 in-common compounds between groups. Peak-by-peak analysis of GC profiles of IPAH group EBC samples identified 6 compounds significantly correlated with pulmonary hemodynamic variables important in IPAH diagnosis. AR/PLSR analysis of GC/MS data resulted in a distinct and identifiable metabolic signature for IPAH patients. CONCLUSIONS: These findings indicate the utility of EBC VOC analysis to discriminate between severe IPAH and a healthy population; additionally, we identified potential novel biomarkers that correlated with IPAH pulmonary hemodynamic variables that may be important in screening for less severe forms IPAH.

  10. Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph.

    Science.gov (United States)

    Tanda, Naoko; Hinokio, Yoshinori; Washio, Jumpei; Takahashi, Nobuhiro; Koseki, Takeyoshi

    2014-11-24

    Ketone bodies including acetone are disease biomarkers for diabetes that sometimes causes severe ketoacidosis. The present study was undertaken to clarify the significance of exhaled acetone and plasma ketone bodies at bedside in a clinical setting. The oral glucose tolerance test (OGTT) was performed in 10 healthy Japanese volunteers (five females and five males). Exhaled breath acetone and volatile sulfide compounds (VSCs) in mouth air were measured simultaneously with blood sampling during the OGTT using a portable gas chromatograph equipped with an In2O3 thick-film type gas sensor and a VSC monitor. Acetone, β-hydroxybutyrate (β-OHB) and acetoacetate (AcAc) in blood plasma as well as glucose and insulin were examined. Oral conditions were examined based on the Community Periodontal Index (CPI) by one dentist. In addition, the same type of analysis was applied to two uncontrolled type 2 diabetes mellitus patients hospitalized at Tohoku University Hospital. Exhaled acetone was measured at the same time as blood withdrawal in the morning before breakfast and at night before bed at the beginning, the middle, and the end of hospitalization. All volunteers showed normal OGTT patterns with no ketonuria and periodontitis; however, there were significant correlations between breath acetone and plasma β-ΟΗΒ and between breath acetone and plasma AcAc under fasting conditions. Breath acetone of the type 2 diabetes mellitus patients showed positive correlations with plasma glucose when the level of plasma glucose tended to decrease during hospitalization. In spite of a very limited number of cases, our results support the idea that exhaled breath acetone may be related to plasma β-OHB and AcAc, which reflect glucose metabolism in the body.

  11. Monitoring of exposure to cyclohexanone through the analysis of breath and urine.

    Science.gov (United States)

    Ong, C N; Chia, S E; Phoon, W H; Tan, K T; Kok, P W

    1991-12-01

    Occupational exposure to cyclohexanone was studied for 59 workers through the analysis of environmental air, alveolar air, and urinary cyclohexanol. Environmental cyclohexanone exposure was measured by personal sampling with a carbon-felt passive dosimeter. Cyclohexanone in alveolar air and cyclohexanol in urine were determined with gas chromatography with a flame ionization detector. The end-of-shift urinary cyclohexanol levels correlated well with the time-weighted average environmental cyclohexanone values (r = 0.66). Urinary cyclohexanol corrected for creatinine correlated best with cyclohexanone in air (r = 0.77); when corrected for specific gravity, it gave a similar correlation coefficient (r = 0.73). When the time-weighted average of the exposure was 25 ppm, the corresponding calculated concentration for urinary cyclohexanol was 54.5 mg/1, 23.3 mg/g of creatinine, or 43.5 mg/l at a specific gravity of 1.018. The relationship between cyclohexanone exposure and its concentration in exhaled breath was found to be poorer than that for cyclohexanone exposure and the urinary metabolite (r = 0.51).

  12. Empty alcohol containers and breath alcohol analysis measures of alcohol consumption at a college volleyball championship.

    Science.gov (United States)

    Podstawski, Robert; Wesołowska, Elżbieta; Choszcz, Dariusz

    2015-01-01

    This article provides information on the amount of alcohol consumed by students during college sports events. It examines the relationship between alcohol consumption and the rank of the match, sex of the players (male vs. female league), and sex of the spectators. The study was carried out during an interdepartmental volleyball championship (cup system) at the University of Warmia and Mazury in Olsztyn (Poland), which included 16 matches (in both male and female leagues). The research sample consisted of 2,683 students between ages 19 and 24 years (including 1,768 men and 915 women) who came to cheer on their peers at the matches. Two objective measurements of alcohol consumption were used: (a) the number of empty alcohol packages left behind by the spectators at the sports facilities after each match and (b) breath alcohol analysis tests given to volunteering spectators after each match (in which 323 persons consented to participate). Male league games were accompanied by more alcohol consumption than were female league games, and male spectators drank more than female spectators. The most drinking occurred among men watching the male league, and the least amount of drinking occurred among women watching the female league. Alcohol intoxication increased with the rank of the match mostly among men watching the male league. The sex of players and spectators seems to be a mediating factor in the relationship between the rank of a match and the amount of alcohol consumed.

  13. Applications of external cavity diode laser-based technique to noninvasive clinical diagnosis using expired breath ammonia analysis: chronic kidney disease, epilepsy

    Science.gov (United States)

    Bayrakli, Ismail; Turkmen, Aysenur; Akman, Hatice; Sezer, M. Tugrul; Kutluhan, Suleyman

    2016-08-01

    An external cavity laser (ECL)-based off-axis cavity-enhanced absorption spectroscopy was applied to noninvasive clinical diagnosis using expired breath ammonia analysis: (1) the correlation between breath ammonia levels and blood parameters related to chronic kidney disease (CKD) was investigated and (2) the relationship between breath ammonia levels and blood concentrations of valproic acid (VAP) was studied. The concentrations of breath ammonia in 15 healthy volunteers, 10 epilepsy patients (before and after taking VAP), and 27 patients with different stages of CKD were examined. The range of breath ammonia levels was 120 to 530 ppb for healthy subjects and 710 to 10,400 ppb for patients with CKD. There was a statistically significant positive correlation between breath ammonia concentrations and urea, blood urea nitrogen, creatinine, or estimated glomerular filtration rate in 27 patients. It was demonstrated that taking VAP gave rise to increasing breath ammonia levels. A statistically significant difference was found between the levels of exhaled ammonia (NH3) in healthy subjects and in patients with epilepsy before and after taking VAP. The results suggest that our breath ammonia measurement system has great potential as an easy, noninvasive, real-time, and continuous monitor of the clinical parameters related to epilepsy and CKD.

  14. Breath tests: principles, problems, and promise

    Energy Technology Data Exchange (ETDEWEB)

    Lo, C.W.; Carter, E.A.; Walker, W.A.

    1982-01-01

    Breath tests rely on the measurement of gases produced in the intestine, absorbed, and expired in the breath. Carbohydrates, such as lactose and sucrose, can be administered in ysiologic doses; if malabsorbed, they will be metabolized to hydrogen by colonic bacteria. Since hydrogen is not produced by human metabolic reactions, a rise in breath hydrogen, as measured by gas chromatography, is evidence of carbohydrate malabsorption. Likewise, a rise in breath hydrogen marks the transit time of nonabsorbable carbohydrates such as lactulose through the small intestine into the colon. Simple end-expiratory interval collection into nonsiliconized vacutainer tubes has made these noninvasive tests quite convenient to perform, but various problems, including changes in stool pH intestinal motility, or metabolic rate, may influence results. Another group of breath tests uses substrates labeled with radioactive or stable isotopes of carbon. Labeled fat substrates such as trioctanoin, tripalmitin, and triolein do not produce the expected rise in labeled breath CO/sub 2/ if there is fat malabsorption. Bile acid malabsorption and small intestinal bacterial overgrowth can be measured with labeled cholylglycine or cholyltaurine. Labeled drugs such as aminopyrine, methacetin, and phenacetin can be used as an indication of drug metabolism and liver function. Radioactive substrates have been used to trace metabolic pathways and can be measured by scintillation counters. The availability of nonradioactive stable isotopes has made these ideal for use in children and pregnant women, but the cost of substrates and the mass spectrometers to measure them has so far limited their use to research centers. It is hoped that new techniques of processing and measurement will allow further realization of the exciting potential breath analysis has in a growing list of clinical applications.

  15. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry.

    Directory of Open Access Journals (Sweden)

    Hiroshi Handa

    Full Text Available Conventional methods for lung cancer detection including computed tomography (CT and bronchoscopy are expensive and invasive. Thus, there is still a need for an optimal lung cancer detection technique.The exhaled breath of 50 patients with lung cancer histologically proven by bronchoscopic biopsy samples (32 adenocarcinomas, 10 squamous cell carcinomas, 8 small cell carcinomas, were analyzed using ion mobility spectrometry (IMS and compared with 39 healthy volunteers. As a secondary assessment, we compared adenocarcinoma patients with and without epidermal growth factor receptor (EGFR mutation.A decision tree algorithm could separate patients with lung cancer including adenocarcinoma, squamous cell carcinoma and small cell carcinoma. One hundred-fifteen separated volatile organic compound (VOC peaks were analyzed. Peak-2 noted as n-Dodecane using the IMS database was able to separate values with a sensitivity of 70.0% and a specificity of 89.7%. Incorporating a decision tree algorithm starting with n-Dodecane, a sensitivity of 76% and specificity of 100% was achieved. Comparing VOC peaks between adenocarcinoma and healthy subjects, n-Dodecane was able to separate values with a sensitivity of 81.3% and a specificity of 89.7%. Fourteen patients positive for EGFR mutation displayed a significantly higher n-Dodecane than for the 14 patients negative for EGFR (p<0.01, with a sensitivity of 85.7% and a specificity of 78.6%.In this prospective study, VOC peak patterns using a decision tree algorithm were useful in the detection of lung cancer. Moreover, n-Dodecane analysis from adenocarcinoma patients might be useful to discriminate the EGFR mutation.

  16. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  17. Regarding the quantification of peripheral microcirculation--Comparing responses evoked in the in vivo human lower limb by postural changes, suprasystolic occlusion and oxygen breathing.

    Science.gov (United States)

    Silva, Henrique; Ferreira, Hugo; Bujan, Ma Julia; Rodrigues, Luis Monteiro

    2015-05-01

    The human skin is an interesting model to explore microcirculation, particularly if using noninvasive technologies such as LDF (Laser Doppler Flowmetry) and tc (transcutaneous) gasimetry and methods as near as possible from the normal physiological state. In this study, we combined those technologies with three classical approaches--leg raising from supine, suprasystolic occlusion (in the ankle), and normobaric oxygen breathing to explore distal peripheral circulation in the foot. These methods are often cited, but a comparative assessment has not been done. The goal of this study was to identify relevant flow related descriptors, method-related advantages and pitfalls, and eventually, to find the best experimental approach. Volunteers (both genders, 22.1 ± 3.7 years old) were subjected to these methods and variables registered during basal, challenge and stabilization phases. Descriptive and comparative statistics were obtained, adopting a 95% confidence level. All flow-related quantitative descriptors potentially useful for the analysis were identified and compared. As expected, male patients consistently showed higher LDF levels and transepidermal water loss (TEWL) and lower tcpO2 values. However, lower results were recorded in the supine position, suggesting a postural dependence. Both leg raising and suprasystolic occlusion produced a hyperemic response after provocation, although different in magnitude, significantly reducing LDF and tcpO2 during provocation. The oxygen breathing method provided the most patient-friendly protocol, consistently reducing LDF (potentially by the inhibition of production of local vasodilators). TEWL increased during the provocation phase in all protocols, although not significantly. Baseline tcpO2 was found to correlate positively with the peak tcpO2 during oxygen breathing and basal LDF with peak flow during leg raising and suprasystolic occlusion. No statistical correlation between TEWL and LDF could be demonstrated under the

  18. Quantitative analysis of 8-isoprostane and hydrogen peroxide in exhaled breath condensate

    NARCIS (Netherlands)

    Hoydonck, P.G.A.; Wuyts, W.A.; Vanaudenaerde, B.M.; Schouten, E.G.; Dupont, I.J.; Temme, E.H.M.

    2004-01-01

    Exhaled breath condensate (EBC) provides a noninvasive means of sampling the lower respiratory tract. Collection of EBC might be useful in the assessment of airway oxidative stress in smokers. The aim of this study was to determine 8-isoprostane and hydrogen peroxide levels in EBC, and, in addition,

  19. Sensitivity Analysis of Personal Exposure Assessment Using a Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.; Jensen, Mikael K.

    2009-01-01

    The present work deals with the investigation of uncertainties related to personal exposure assessment using a breathing thermal manikin subject to a partly uniform velocity field in a wind channel. Several parameters are investigated: velocity level, thermal manikin heat flux, Archimedes number...

  20. The impacts of open-mouth breathing on upper airway space in obstructive sleep apnea: 3-D MDCT analysis.

    Science.gov (United States)

    Kim, Eun Joong; Choi, Ji Ho; Kim, Kang Woo; Kim, Tae Hoon; Lee, Sang Hag; Lee, Heung Man; Shin, Chol; Lee, Ki Yeol; Lee, Seung Hoon

    2011-04-01

    Open-mouth breathing during sleep is a risk factor for obstructive sleep apnea (OSA) and is associated with increased disease severity and upper airway collapsibility. The aim of this study was to investigate the effect of open-mouth breathing on the upper airway space in patients with OSA using three-dimensional multi-detector computed tomography (3-D MDCT). The study design included a case-control study with planned data collection. The study was performed at a tertiary medical center. 3-D MDCT analysis was conducted on 52 patients with OSA under two experimental conditions: mouth closed and mouth open. Under these conditions, we measured the minimal cross-sectional area of the retropalatal and retroglossal regions (mXSA-RP, mXSA-RG), as well as the upper airway length (UAL), defined as the vertical dimension from hard palate to hyoid. We also computed the volume of the upper airway space by 3-D reconstruction of both conditions. When the mouth was open, mXSA-RP and mXSA-RG significantly decreased and the UAL significantly increased, irrespective of the severity of OSA. However, between the closed- and open-mouth states, there was no significant change in upper airway volume at any severity of OSA. Results suggest that the more elongated and narrow upper airway during open-mouth breathing may aggravate the collapsibility of the upper airway and, thus, negatively affect OSA severity.

  1. Molecular cloning and expression analysis of fushi tarazu factor 1 in the brain of air-breathing catfish, Clarias gariepinus.

    Directory of Open Access Journals (Sweden)

    Parikipandla Sridevi

    Full Text Available BACKGROUND: Fushi tarazu factor 1 (FTZ-F1 encodes an orphan nuclear receptor belonging to the nuclear receptor family 5A (NR5A which includes adrenal 4-binding protein or steroidogenic factor-1 (Ad4BP/SF-1 and liver receptor homologue 1 (LRH-1 and plays a pivotal role in the regulation of aromatases. METHODOLOGY/PRINCIPAL FINDINGS: Present study was aimed to understand the importance of FTZ-F1 in relation to brain aromatase (cyp19a1b during development, recrudescence and after human chorionic gonadotropin (hCG induction. Initially, we cloned FTZ-F1 from the brain of air-breathing catfish, Clarias gariepinus through degenerate primer RT-PCR and RACE. Its sequence analysis revealed high homology with other NR5A1 group members Ad4BP/SF-1 and LRH-1, and also analogous to the spatial expression pattern of the latter. In order to draw functional correlation of cyp19a1b and FTZ-F1, we analyzed the expression pattern of the latter in brain during gonadal ontogeny, which revealed early expression during gonadal differentiation. The tissue distribution both at transcript and protein levels revealed its prominent expression in brain along with liver, kidney and testis. The expression pattern of brain FTZ-F1 during reproductive cycle and after hCG induction, in vivo was analogous to that of cyp19a1b shown in our earlier study indicating its involvement in recrudescence. CONCLUSIONS/SIGNIFICANCE: Based on our previous results on cyp19a1b and the present data, it is plausible to implicate potential roles for brain FTZ-F1 in ovarian differentiation and recrudescence process probably through regulation of cyp19a1b in teleosts. Nevertheless, these interactions would require primary coordinated response from ovarian aromatase and its related transcription factors.

  2. Mechanisms linking metabolism of Helicobacter pylori to (18)O and (13)C-isotopes of human breath CO2.

    Science.gov (United States)

    Som, Suman; De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Ghosh, Chiranjit; Pal, Mithun; Daschakraborty, Sunil B; Chaudhuri, Sujit; Jana, Subhra; Pradhan, Manik

    2015-06-03

    The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 ((18)O) and carbon-13 ((13)C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of (18)O/(16)O and (13)C/(12)C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections exhibited significantly higher isotopic enrichments of (18)O in breath CO2 during the 2h-glucose metabolism regardless of the isotopic nature of the substrate, while no significant enrichments of (18)O in breath CO2 were manifested in individuals without the infections. In contrast, the (13)C-isotopic enrichments of breath CO2 were significantly higher in individuals with Helicobacter pylori compared to individuals without infections in response to (13)C-enriched glucose uptake, whereas a distinguishable change of breath (13)C/(12)C-isotope ratios was also evident when Helicobacter pylori utilize natural glucose. Moreover, monitoring the (18)O and (13)C-isotopic exchange in breath CO2 successfully diagnosed the eradications of Helicobacter pylori infections following a standard therapy. Our findings suggest that breath (12)C(18)O(16)O and (13)C(16)O(16)O can be used as potential molecular biomarkers to distinctively track the pathogenesis of Helicobacter pylori and also for eradication purposes and thus may open new perspectives into the pathogen's physiology along with isotope-specific non-invasive diagnosis of the infection.

  3. Numerical simulation of micro-particle deposition in a realistic human upper respiratory tract model during transient breathing cycle

    Institute of Scientific and Technical Information of China (English)

    Jian hua Huang; Lian zhong Zhang

    2011-01-01

    An more reliable human upper respiratory tract model that consisted of an oropharynx and four generations of asymmetric tracheo-bronchial (TB) airways has been constructed to investigate the micro-particle deposition pattern and mass distribution in five lobes under steady inspiratory condition in former work by Huang and Zhang (2011 ).In the present work,transient airflow patterns and particle deposition during both inspiratory and expiratory processes were numerically simulated in the realistic human upper respiratory tract model with 14 cartilaginous rings (CRs) in the tracheal tube.The present model was validated under steady inspiratory flow rates by comparing current results with the theoretical models and published experimental data.The transient deposition fraction was found to strongly depend on breathing flow rate and particle diameter but slightly on turbulence intensity.Particles were mainly distributed in the high axial speed zones and traveled basically following the secondary flow.“Hot spots” of deposition were found in the lower portion of mouth cavity and posterior wall of pharynx/larynx during inspiration,but transferred to upper portion of mouth and interior wall of pharynx/larynx during expiration.The deposition fraction in the trachea during expiration was found to be much higher than that during inspiration because of the stronger secondary flow.

  4. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.

    Science.gov (United States)

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-12-05

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  5. Understanding the Potential of WO3 Based Sensors for Breath Analysis

    Science.gov (United States)

    Staerz, Anna; Weimar, Udo; Barsan, Nicolae

    2016-01-01

    Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO3 is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO3 samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO3-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods. PMID:27801881

  6. Analysis of Dragon's Breath and Scattered Light Detector Anomalies on WFC3/UVIS

    Science.gov (United States)

    Fowler, Julia; Markwardt, Larissa; Bourque, Matthew; Anderson, Jay

    2017-02-01

    We summarize the examination of the light anomalies known as Dragon's Breath and Scattered Light for the UVIS channel of Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We present three methods for WFC3 users to help avoid these effects during observation planning. We analyzed all of the full-frame wide and long pass filters with exposure times ≥ 300 seconds, comprising ∼13% of WFC3/UVIS on-orbit data (∼20% of all full-frame data, and ∼35% of all full-frame ≥300 second exposures.) We find that stars producing Dragon's Breath peak at specific orientations to the detector and V-band magnitudes. The bulk of these stars fall along the vertical and horizontal edges, within ∼490 pixels of the image frame. The corners of the detector show significantly fewer instances of Dragon's Breath and Scattered Light, though still a few occurrences. Furthermore, matching stars outside the field of the image to V-band magnitude data from the Hubble Guide Star Catalog II (GSC-II) shows that stars causing the anomaly consistently peak around a V-band magnitude of 11.9 or 14.6, whereas the general trend of objects lying outside the field instead peaks around a magnitude of 16.5 within our exposure time and filter selection.

  7. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Reardon, Michael A. [Department of Radiology, University of Virginia, Charlottesville, VA (United States); Geesey, Constance [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Wijesooriya, Krishni, E-mail: kw5wx@hscmail.mcc.virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  8. Breath-holding and its breakpoint.

    Science.gov (United States)

    Parkes, M J

    2006-01-01

    This article reviews the basic properties of breath-holding in humans and the possible causes of the breath at breakpoint. The simplest objective measure of breath-holding is its duration, but even this is highly variable. Breath-holding is a voluntary act, but normal subjects appear unable to breath-hold to unconsciousness. A powerful involuntary mechanism normally overrides voluntary breath-holding and causes the breath that defines the breakpoint. The occurrence of the breakpoint breath does not appear to be caused solely by a mechanism involving lung or chest shrinkage, partial pressures of blood gases or the carotid arterial chemoreceptors. This is despite the well-known properties of breath-hold duration being prolonged by large lung inflations, hyperoxia and hypocapnia and being shortened by the converse manoeuvres and by increased metabolic rate. Breath-holding has, however, two much less well-known but important properties. First, the central respiratory rhythm appears to continue throughout breath-holding. Humans cannot therefore stop their central respiratory rhythm voluntarily. Instead, they merely suppress expression of their central respiratory rhythm and voluntarily 'hold' the chest at a chosen volume, possibly assisted by some tonic diaphragm activity. Second, breath-hold duration is prolonged by bilateral paralysis of the phrenic or vagus nerves. Possibly the contribution to the breakpoint from stimulation of diaphragm muscle chemoreceptors is greater than has previously been considered. At present there is no simple explanation for the breakpoint that encompasses all these properties.

  9. Breath in the technoscientific imaginary.

    Science.gov (United States)

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses.

  10. Analysis of co-ordination between breathing and exercise rhythms in man.

    Science.gov (United States)

    Bernasconi, P; Kohl, J

    1993-11-01

    1. The purpose of the present study was to analyse the incidence and type of coordination between breathing rhythm and leg movements during running and to assess the effect of co-ordination on the running efficiency, as well as to compare the results with those found during cycling. 2. The experiments were carried out on thirty-four untrained volunteers exercising at two work loads (60 and 80% of subject's physical work capacity 170) on a treadmill. In addition nineteen of the subjects exercised at the same two work loads on a bicycle ergometer. The subjects were running at both work loads in three different modes in randomized order: with normal arm movements, without arm movements and with breathing paced by an acoustic signal which was triggered by the leg movement. 3. Respiratory variables, oxygen uptake and leg movements were continuously recorded and evaluated on-line. The degree of co-ordination was expressed as a percentage of inspirations and/or expirations starting in the same phase of the step or pedalling cycle. 4. The average degree of co-ordination was higher during running (up to 40%) than during cycling (about 20%) during both work loads. The difference in the degree of co-ordination between running and cycling is probably not due to the lack of arm movements during cycling since the degree of co-ordination during running with and without arm movements was the same. 5. The degree of co-ordination during running increased slightly but not significantly with increasing work load and could be increased significantly by paced breathing. 6. The co-ordination between breathing and running rhythms occurred in three different patterns: (a) breathing was co-ordinated all the time with the same phase of step, (b) co-ordination switched suddenly from one phase of step to another and (c) co-ordination ensued alternatively once on the right and once on the left leg movement. During cycling the pattern described in (a) occurred almost exclusively. 7. During

  11. 21 CFR 862.3080 - Breath nitric oxide test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath nitric oxide test system. 862.3080 Section... Systems § 862.3080 Breath nitric oxide test system. (a) Identification. A breath nitric oxide test system is a device intended to measure fractional nitric oxide in human breath. Measurement of changes...

  12. New Zealand's breath and blood alcohol testing programs: further data analysis and forensic implications.

    Science.gov (United States)

    Stowell, A R; Gainsford, A R; Gullberg, R G

    2008-07-01

    Paired blood and breath alcohol concentrations (BAC, in g/dL, and BrAC, in g/210 L), were determined for 11,837 drivers apprehended by the New Zealand Police. For each driver, duplicate BAC measurements were made using headspace gas chromatography and duplicate BrAC measurements were made with either Intoxilyzer 5000, Seres 679T or Seres 679ENZ Ethylometre infrared analysers. The variability of differences between duplicate results is described in detail, as well as the variability of differences between the paired BrAC and BAC results. The mean delay between breath and blood sampling was 0.73 h, ranging from 0.17 to 3.1 8h. BAC values at the time of breath testing were estimated by adjusting BAC results using an assumed blood alcohol clearance rate. The paired BrAC and time-adjusted BAC results were analysed with the aim of estimating the proportion of false-positive BrAC results, using the time-adjusted BAC results as references. When BAC results were not time-adjusted, the false-positive rate (BrAC>BAC) was 31.3% but after time-adjustment using 0.019 g/dL/h as the blood alcohol clearance rate, the false-positive rate was only 2.8%. However, harmful false-positives (defined as cases where BrAC>0.1 g/210L, while BACtest results were used as the evidential results instead of the means, the harmful false-positive rate dropped to 0.04%.

  13. Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training.

    Science.gov (United States)

    Lindstrom, A B; Pleil, J D; Berkoff, D C

    1997-06-01

    Alveolar breath sampling was used to assess trihalomethane (THM) exposures encountered by collegiate swimmers during a typical 2-hr training period in an indoor natatorium. The breath samples were collected at regular intervals before, during, and for 3 hr after a moderately intense training workout. Integrated and grab whole-air samples were collected during the training period to help determine inhalation exposures, and pool water samples were collected to help assess dermal exposures. Resulting breath samples collected during the workout demonstrated a rapid uptake of two THMs (chloroform and bromodichloromethane), with chloroform concentrations exceeding the natatorium air levels within 8 min after the exposure began. Chloroform levels continued to rise steeply until they were more than two times the indoor levels, providing evidence that the dermal route of exposure was relatively rapid and ultimately more important than the inhalation route in this training scenario. Chloroform elimination after the exposure period was fitted to a three compartment model that allowed estimation of compartmental half-lives, resulting minimum bloodborne dose, and an approximation of the duration of elevated body burdens. We estimated the dermal exposure route to account for 80% of the blood chloroform concentration and the transdermal diffusion efficiency from the water to the blood to in excess of 2%. Bromodichloromethane elimination was fitted to a two compartment model which provided evidence of a small, but measurable, body burden of this THM resulting from vigorous swim training. These results suggest that trihalomethane exposures for competitive swimmers under prolonged, high-effort training are common and possibly higher than was previously thought and that the dermal exposure route is dominant. The exposures and potential risks associated with this common recreational activity should be more thoroughly investigated.

  14. Transfer function analysis of the autonomic response to respiratory activity during random interval breathing

    Science.gov (United States)

    Chen, M. H.; Berger, R. D.; Saul, J. P.; Stevenson, K.; Cohen, R. J.

    1987-01-01

    We report a new method for the noninvasive characterization of the frequency response of the autonomic nervous system (ANS) in mediating fluctuations in heart rate (HR). The approach entails computation of the transfer function magnitude and phase between instantaneous lung volume and HR. Broad band fluctuations in lung volume were initiated when subjects breathed on cue to a sequence of beeps spaced randomly in time. We studied 10 subjects in both supine and standing positions. The transfer function, averaged among all the subjects, showed systematic differences between the two postures, reflecting the differing frequency responses of the sympathetic and parasympathetic divisions of the ANS.

  15. Transfer function analysis of the autonomic response to respiratory activity during random interval breathing

    Science.gov (United States)

    Chen, M. H.; Berger, R. D.; Saul, J. P.; Stevenson, K.; Cohen, R. J.

    1987-01-01

    We report a new method for the noninvasive characterization of the frequency response of the autonomic nervous system (ANS) in mediating fluctuations in heart rate (HR). The approach entails computation of the transfer function magnitude and phase between instantaneous lung volume and HR. Broad band fluctuations in lung volume were initiated when subjects breathed on cue to a sequence of beeps spaced randomly in time. We studied 10 subjects in both supine and standing positions. The transfer function, averaged among all the subjects, showed systematic differences between the two postures, reflecting the differing frequency responses of the sympathetic and parasympathetic divisions of the ANS.

  16. The use of a portable breath analysis device in monitoring type 1 diabetes patients in a hypoglycaemic clamp: validation with SIFT-MS data.

    Science.gov (United States)

    Walton, C; Patel, M; Pitts, D; Knight, P; Hoashi, S; Evans, M; Turner, C

    2014-09-01

    Monitoring blood glucose concentrations is a necessary but tedious task for people suffering from diabetes. It has been noted that breath in people suffering with diabetes has a different odour and thus it may be possible to use breath analysis to monitor the blood glucose concentration. Here, we evaluate the analysis of breath using a portable device containing a single mixed metal oxide sensor during hypoglycaemic glucose clamps and compare that with the use of SIFT-MS described in previously published work on the same set of patients. Outputs from both devices have been correlated with the concentration of blood glucose in eight volunteers suffering from type 1 diabetes mellitus. The results demonstrate that acetone as measured by SIFT-MS and the sensor output from the breath sensing device both correlate linearly with blood glucose; however, the sensor response and acetone concentrations differ greatly between patients with the same blood glucose. It is therefore unlikely that breath analysis can entirely replace blood glucose testing.

  17. Nasal Dilators (Breathe Right Strips and NoZovent for Snoring and OSA: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Macario Camacho

    2016-01-01

    Full Text Available Objective. To systematically review the international literature for studies evaluating internal (NoZovent and external (Breathe Right Strips nasal dilators as treatment for obstructive sleep apnea (OSA. Study Design. Systematic review with meta-analysis. Methods. Four databases, including PubMed/MEDLINE, were searched through September 29, 2016. Results. One-hundred twelve studies were screened, fifty-eight studies were reviewed, and fourteen studies met criteria. In 147 patients, the apnea-hypopnea index (AHI was reported, and there was an improvement from a mean ± standard deviation (M ± SD of 28.7±24.0 to 27.4±23.3 events/hr, p value 0.64. There was no significant change in AHI, lowest oxygen saturation, or snoring index in OSA patients when using nasal dilators. However, a subanalysis demonstrated a slight reduction in apnea index (AI with internal nasal dilators (decrease by 4.87 events/hr versus minimal change for external nasal dilators (increase by 0.64 events/hr. Conclusion. Although nasal dilators have demonstrated improved nasal breathing, they have not shown improvement in obstructive sleep apnea outcomes, with the exception of mild improvement in apnea index when internal nasal dilators were used.

  18. Breath alcohol test

    Science.gov (United States)

    Alcohol test - breath ... There are various brands of breath alcohol tests. Each one uses a different method to test the level of alcohol in the breath. The machine may be electronic or manual. One ...

  19. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  20. Breathing difficulties - first aid

    Science.gov (United States)

    Difficulty breathing - first aid; Dyspnea - first aid; Shortness of breath - first aid ... Breathing difficulty is almost always a medical emergency. An exception is feeling slightly winded from normal activity, ...

  1. Nuclear matter incompressibility from a semi-empirical analysis of breathing-mode energies

    Science.gov (United States)

    Sharma, M. M.; Stocker, W.; Gleissl, P.; Brack, M.

    1989-11-01

    We check the validity and applicability of a liquid-drop model type expansion for the incompressibility KA of finite nuclei: K A = K V + K SA {-1}/{3} + (higher-order terms). Our theoretical considerations are based upon calculations of breathing-mode energies following from a density variational framework taking into account various Skyrme interactions. Using a semi-empirical procedure based upon this expansion of KA, we corroborate that new precision data for the monopole energies favour a volume coefficient KV (300±25) MeV and an appreciable surface coefficient KS (-750±80) MeV. We discuss the implication of this result for the incompressibility K∞ of infinite nuclear matter.

  2. Modeling and Analysis of an Air-Breathing Flexible Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Xi-bin Zhang

    2014-01-01

    Full Text Available By using light-weighted material in hypersonic vehicle, the vehicle body can be easily deformed. The mutual couplings in aerodynamics, flexible structure, and propulsion system will bring great challenges for vehicle modeling. In this work, engineering estimated method is used to calculate the aerodynamic forces, moments, and flexible modes to get the physics-based model of an air-breathing flexible hypersonic vehicle. The model, which contains flexible effects and viscous effects, can capture the physical characteristics of high-speed flight. To overcome the analytical intractability of the model, a simplified control-oriented model of the hypersonic vehicle is presented with curve fitting approximations. The control-oriented model can not only reduce the complexity of the model, but also retain aero-flexible structure-propulsion interactions of the physics-based model and can be applied for nonlinear control.

  3. Breathing exercises improve post-operative pulmonary function and quality of life in patients with lung cancer: A meta-analysis.

    Science.gov (United States)

    Liu, Wei; Pan, Ying-Li; Gao, Cai-Xiang; Shang, Zuo; Ning, Li-Juan; Liu, Xing

    2013-04-01

    Previous research has shown that breathing exercises may improve the prognosis and health status in patients with lung cancer by enhancing pulmonary function and quality of life (QOL). However, individually published results are inconclusive. The aim of the present meta-analysis was to evaluate the clinical value of breathing exercises on post-operative pulmonary function and QOL in patients with lung cancer. A literature search of Pubmed, Embase, the Web of Science and CBM databases was conducted from their inception through to October 2012. Crude standardized mean differences (SMDs) with 95% confidence intervals (CIs) were used to assess the effect of breathing exercises. A total of eight clinical studies were ultimately included with 398 lung cancer patients. When all the eligible studies were pooled into the meta-analysis, there was a significant difference between the pre-intervention and post-intervention results of breathing exercises on post-operative pulmonary function; forced expiratory volume in 1 sec (FEV1): SMD, 3.37; 95% CI, 1.97-4.77; Pintervention with breathing exercises; there were significant differences between the pre-intervention and post-intervention results on the ability of self-care in daily life (SMD, -1.00; 95% CI, -1.467 to -0.52; P<0.001), social activities (SMD, -0.94; 95% CI, -1.73 to -0.15; P=0.02), symptoms of depression (SMD, -0.91; 95% CI, -1.25 to -0.57; P<0.001) and symptoms of anxiety (SMD, -0.91; 95% CI, -1.20 to -0.63; P<0.001). Results from the present meta-analysis suggest that breathing exercises may significantly improve post-operative pulmonary function and QOL in patients with lung cancer.

  4. A rapid method for the chromatographic analysis of volatile organic compounds in exhaled breath of tobacco cigarette and electronic cigarette smokers.

    Science.gov (United States)

    Marco, Esther; Grimalt, Joan O

    2015-09-04

    A method for the rapid analysis of volatile organic compounds (VOCs) in smoke from tobacco and electronic cigarettes and in exhaled breath of users of these smoking systems has been developed. Both disposable and rechargeable e-cigarettes were considered. Smoke or breath were collected in Bio-VOCs. VOCs were then desorbed in Tenax cartridges which were subsequently analyzed by thermal desorption coupled to gas chromatography-mass spectrometry. The method provides consistent results when comparing the VOC compositions from cigarette smoke and the equivalent exhaled breath of the smokers. The differences in composition of these two sample types are useful to ascertain which compounds are retained in the respiratory system after tobacco cigarette or e-cigarette smoking. Strong differences were observed in the VOC composition of tobacco cigarette smoke and exhaled breath when comparing with those of e-cigarette smoking. The former involved transfers of a much larger burden of organic compounds into smokers, including benzene, toluene, naphthalene and other pollutants of general concern. e-Cigarettes led to strong absorptions of propylene glycol and glycerin in the users of these systems. Tobacco cigarettes were also those showing highest concentration differences between nicotine concentrations in smoke and exhaled breath. The results from disposable e-cigarettes were very similar to those from rechargeable e-cigarettes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The analysis of linear and monomethylalkanes in exhaled breath samples by GC×GC-FID and GC-MS/MS.

    Science.gov (United States)

    Hengerics Szabó, Alexandra; Podolec, Peter; Ferenczy, Viktória; Kubinec, Róbert; Blaško, Jaroslav; Soják, Ladislav; Górová, Renáta; Addová, Gabriela; Ostrovský, Ivan; Višňovský, Jozef; Bierhanzl, Václav; Čabala, Radomír; Amann, Anton

    2015-01-26

    A new arrangement of the INCAT (inside needle capillary adsorption trap) device with Carbopack X and Carboxen 1000 as sorbent materials was applied for sampling, preconcentration and injection of C6C19n-alkanes and their monomethyl analogs in exhaled breath samples. For the analysis both GC-MS/MS and GC×GC-FID techniques were used. Identification of the analytes was based on standards, measured retention indices and selective SRM transitions of the individual isomers. The GC-MS/MS detection limits were in the range from 2.1 pg for n-tetradecane to 86 pg for 5-methyloctadecane. The GC×GC-FID detection limits ranged from 19 pg for n-dodecane to 110 pg for 3-methyloctane.

  6. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections

    DEFF Research Database (Denmark)

    Joensen, Odin; Paff, Tamara; Haarman, Eric G;

    2014-01-01

    The current diagnostic work-up and monitoring of pulmonary infections may be perceived as invasive, is time consuming and expensive. In this explorative study, we investigated whether or not a non-invasive exhaled breath analysis using an electronic nose would discriminate between cystic fibrosis...... (CF) and primary ciliary dyskinesia (PCD) with or without various well characterized chronic pulmonary infections. We recruited 64 patients with CF and 21 with PCD based on known chronic infection status. 21 healthy volunteers served as controls. An electronic nose was employed to analyze exhaled......, this method significantly discriminates CF patients suffering from a chronic pulmonary P. aeruginosa (PA) infection from CF patients without a chronic pulmonary infection. Further studies are needed for verification and to investigate the role of electronic nose technology in the very early diagnostic workup...

  7. Software Tool for Analysis of Breathing-Related Errors in Transthoracic Electrical Bioimpedance Spectroscopy Measurements

    Science.gov (United States)

    Abtahi, F.; Gyllensten, I. C.; Lindecrantz, K.; Seoane, F.

    2012-12-01

    During the last decades, Electrical Bioimpedance Spectroscopy (EBIS) has been applied in a range of different applications and mainly using the frequency sweep-technique. Traditionally the tissue under study is considered to be timeinvariant and dynamic changes of tissue activity are ignored and instead treated as a noise source. This assumption has not been adequately tested and could have a negative impact and limit the accuracy for impedance monitoring systems. In order to successfully use frequency-sweeping EBIS for monitoring time-variant systems, it is paramount to study the effect of frequency-sweep delay on Cole Model-based analysis. In this work, we present a software tool that can be used to simulate the influence of respiration activity in frequency-sweep EBIS measurements of the human thorax and analyse the effects of the different error sources. Preliminary results indicate that the deviation on the EBIS measurement might be significant at any frequency, and especially in the impedance plane. Therefore the impact on Cole-model analysis might be different depending on method applied for Cole parameter estimation.

  8. Analysis of flexural wave propagation through beams with a breathing crack using wavelet spectral finite element method

    Science.gov (United States)

    Joglekar, D. M.; Mitra, M.

    2016-08-01

    An analytical-numerical method, based on the use of wavelet spectral finite elements (WSFE), is presented for studying the nonlinear interaction of flexural waves with a breathing crack present in a slender beam. The cracked beam is discretized using wavelet spectral finite elements which use compactly supported Daubechies scaling functions for approximating the temporal dependence of the transverse displacement. Rotational spring is used to model the open crack condition, and behavior of the beam in closed-crack condition is assumed to be similar to that of an intact beam. An intermittent switching between the open- and closed-crack conditions simulates crack-breathing, leading to a set of nonlinear equations which is solved using an iterative method. Results of the proposed method are compared with those obtained using the Fourier spectral finite element (FSFE) and 1D finite element (FE) methods, which show a close agreement. Existence of the higher-order harmonic components, indicative of the crack-induced bilinearity, is confirmed in the frequency domain response. Moreover, the time domain analysis reveals separation of harmonics resulting from the dispersive nature of the waveguide, which is further used for localizing the damage. A parametric study is presented to bring out the influence of crack-severity and -location on the extent of harmonic separation and on the relative strength of higher order harmonic. In addition to elaborating the use of WSFE in addressing the nonlinear wave-damage interaction, results of the present investigation can be potentially useful in devising strategies for an inverse analysis.

  9. Submarines, Spacecraft, and Exhaled Breath

    Science.gov (United States)

    The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled b...

  10. APPLYING OF GAS ANALYSIS IN DIAGNOSIS OF BRONCHOPULMONARY DISEASES

    Directory of Open Access Journals (Sweden)

    Ye. B. Bukreyeva

    2014-01-01

    Full Text Available Bronchopulmonary system diseases are on the first place among the causes of people's death. Most of methods for lung diseases diagnosis are invasive or not suitable for children and patients with severe disease. One of the promising methods of clinical diagnosis and disease activity monitoring of bronchopulmonary system is analyzing of human breath. Directly exhaled breath or exhaled breath condensate are using for human breaths analyzing. Analysis of human breath can apply for diagnostic, long monitoring and evaluation of efficacy of the treatment bronchopulmonary diseases. Differential diagnostic between chronic obstructive lung disease (COPD and bronchial asthma is complicated because they have differences in pathogenesis. Analysis of human breath allows to explore features of COPD and bronchial asthma and to improve differential diagnostic of these diseases. Human breaths analyzing can apply for diagnostic dangerous diseases, such as tuberculosis, lung cancer. The analysis of breath air by spectroscopy methods is new noninvasive way for diagnosis of bronchopulmonary diseases.

  11. Breath acetone monitoring by portable Si:WO{sub 3} gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel [Particle Technology Laboratory, Department of Mechanical and Process Engineering ETH Zurich, CH-8092 Zurich (Switzerland); Schmid, Alex; Amann, Anton [Univ.-Clinic for Anesthesia, Innsbruck Medical University, A-6020 Innsbruck (Austria); Breath Research Institute of the Austrian Academy of Sciences, A-6850 Dornbirn (Austria); Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch [Particle Technology Laboratory, Department of Mechanical and Process Engineering ETH Zurich, CH-8092 Zurich (Switzerland)

    2012-08-13

    Highlights: Black-Right-Pointing-Pointer Portable sensors were developed and tested for monitoring acetone in the human breath. Black-Right-Pointing-Pointer Acetone concentrations down to 20 ppb were measured with short response times (<30 s). Black-Right-Pointing-Pointer The present sensors were highly selective to acetone over ethanol and water. Black-Right-Pointing-Pointer Sensors were applied to human breath: good agreement with highly sensitive PTR-MS. Black-Right-Pointing-Pointer Tests with people at rest and during physical activity showed the sensor robustness. - Abstract: Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO{sub 3} nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone ({approx}20 ppb) with short response (10-15 s) and recovery times (35-70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80-90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.

  12. Aeroservoelastic modeling and analysis of a canard-configured air-breathing hypersonic vehicles

    Institute of Scientific and Technical Information of China (English)

    Zeng Kaichun; Xiang Jinwu; Li Daochun

    2013-01-01

    Air-breathing hypersonic vehicles (HSVs) are typically characterized by interactions ofelasticity,propulsion and rigid-body flight dynamics,which may result in intractable aeroservoelas-tic problem.When canard is added,this problem would be even intensified by the introduction oflow-frequency canard pivot mode.This paper concerns how the aeroservoelastic stability of acanard-configured HSV is affected by the pivot stiffnesses of all-moveable horizontal tail (HT)and canard.A wing/pivot system model is developed by considering the pivot torsional flexibility,fuselage vibration,and control input.The governing equations of the aeroservoelastic system areestablished by combining the equations of rigid-body motion,elastic fuselage model,wing/pivotsystem models and actuator dynamics.An unsteady aerodynamic model is developed by steadyShock-Expansion theory with an unsteady correction using local piston theory.A baseline control-ler is given to provide approximate inflight characteristics of rigid-body modes.The vehicle istrimmed for equilibrium state,around which the linearized equations are derived for stability anal-ysis.A comparative study of damping ratios,closed-loop poles and responses are conducted withvarying controller gains and pivot stiffnesses.Available bandwidth for control design is discussedand feasible region for pivot stiffnesses of HT and canard is given.

  13. Oxidative stress and airway inflammation after allergen challenge evaluated by exhaled breath condensate analysis.

    Science.gov (United States)

    Brussino, L; Badiu, I; Sciascia, S; Bugiani, M; Heffler, E; Guida, G; Malinovschi, A; Bucca, C; Rolla, G

    2010-11-01

    Allergen exposure may increase airway oxidative stress, which causes lipid membrane peroxidation and an increased formation of 8-isoprostane. The aim of the study was to investigate oxidative stress induced by allergen challenge in mild asthmatics, by measuring 8-isoprostane in exhaled breath condensate (EBC), and to examine their relationship with mediators derived from arachidonic acid. Methods 8-isoprostane, cysteinyl leukotrienes (cys-LTs) and prostaglandin E2 (PGE(2) ) concentrations in EBC were measured at baseline and after allergen challenge in 12 patients with mild allergic asthma sensitized to cat allergen. At 24 h after allergen challenge, compared with baseline values, EBC 8-isoprostane increased [48.64 pg/mL (44.14-53.61) vs. 21.56 pg/mL (19.92, 23.35), Poxidative stress in allergic asthma. The strict correlation between cys-LTs and 8-isoprostane underlines the relationship between allergic inflammation and oxidative stress. A shift of arachidonic acid metabolism towards lipoxygenase pathway is induced by the allergen challenge. Airway oxidative stress occurs after allergen challenge even in patients with mild intermittent allergic asthma. © 2010 Blackwell Publishing Ltd.

  14. Time domain analysis of nonlinear frequency mixing in a slender beam for localizing a breathing crack

    Science.gov (United States)

    Joglekar, D. M.; Mitra, Mira

    2017-02-01

    The nonlinear interaction of a dual frequency flexural wave with a breathing crack generates a peculiar frequency mixing phenomena, which is manifested in form of the side bands or peaks at combinations frequencies in frequency spectrum of the response. Although these peaks have been proven useful in ascertaining the presence of crack, they barely carry any information about the crack location. In this regards, the present article analyzes the time domain representation of the response obtained by employing a wavelet spectral finite element method. The study reveals that the combination tones generated at the crack location travel with dissimilar speeds along the waveguide, owing to its dispersive nature. The separation between the lobes corresponding to these combination tones therefore, depends on the distance that they have travelled. This observation is then used to formulate a method to predict the crack location with respect to the sensor. A brief parametric study shows marginal errors in predicting the crack location, which ascertains the validity of the method. This article also studies the frequency spectrum of the response. The peaks at combination tones are quantified in terms of a modulate parameter which depends on the severity of the crack. The inferences drawn from the time and the frequency domain study can be instrumental in designing a robust strategy for detecting location and severity of the crack.

  15. Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Directory of Open Access Journals (Sweden)

    Brüning Thomas

    2009-11-01

    Full Text Available Abstract Background The collection of exhaled breath condensate (EBC is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments. Methods EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB4, PGE2, 8-isoprostane and cys-LTs were determined. Results EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB4 and PGE2 or showed higher concentrations (8-isoprostane. However, NOx was detected only in EBC sampled by ECoScreen. Conclusion ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.

  16. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing.

    Science.gov (United States)

    Chang, Yi-Chung; Huon, Leh-Kiong; Pham, Van-Truong; Chen, Yunn-Jy; Jiang, Sun-Fen; Shih, Tiffany Ting-Fang; Tran, Thi-Thao; Wang, Yung-Hung; Lin, Chen; Tsao, Jenho; Lo, Men-Tzung; Wang, Pa-Chun

    2014-12-01

    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 2 ± 11%; vibration time, 0.2 ± 0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13 ± 7% [P ≤ 0.0001]; vibration time, 1.2 ± 0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics.

  17. A NON-INVASIVE DIAGNOSIS OF INTESTINAL ISCHEMIA BY EXHALED BREATH ANALYSIS USING GAS CHROMATOGRAPHY AND MASS SPECTROMETRY-PRELIMINARY RESULTS

    Science.gov (United States)

    To explore the potential of exhaled breath analysis by Column Chromatography-Mass Spectrometry (GC-MS) as a non invasive and sensitive approach to evaluate mesenteric ischemia in pigs. Domestic pigs (n=3) were anesthetized with Guaifenesin/ Fentanyl/ Ketamine/ Xylazine...

  18. A NON-INVASIVE DIAGNOSIS OF INTESTINAL ISCHEMIA BY EXHALED BREATH ANALYSIS USING GAS CHROMATOGRAPHY AND MASS SPECTROMETRY-PRELIMINARY RESULTS

    Science.gov (United States)

    To explore the potential of exhaled breath analysis by Column Chromatography-Mass Spectrometry (GC-MS) as a non invasive and sensitive approach to evaluate mesenteric ischemia in pigs. Domestic pigs (n=3) were anesthetized with Guaifenesin/ Fentanyl/ Ketamine/ Xylazine...

  19. Additional Value of CH₄ Measurement in a Combined (13)C/H₂ Lactose Malabsorption Breath Test: A Retrospective Analysis.

    Science.gov (United States)

    Houben, Els; De Preter, Vicky; Billen, Jaak; Van Ranst, Marc; Verbeke, Kristin

    2015-09-07

    The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H₂) excretion after an oral dose of lactose. We use a combined (13)C/H₂ lactose breath test that measures breath (13)CO₂ as a measure of lactose digestion in addition to H₂ and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 (13)C/H₂ lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH₄ in addition to H₂ and (13)CO₂. Based on the (13)C/H₂ breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO), and 599 with normal lactose digestion. Additional measurement of CH₄ further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H₂-excretion were found to excrete CH₄. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH₄-concentrations has an added value to the (13)C/H₂ breath test to identify methanogenic subjects with lactose malabsorption or SIBO.

  20. Characterization of the Fetal Diaphragmatic Magnetomyogram and the Effect of Breathing Movements on Cardiac Metrics of Rate and Variability

    Science.gov (United States)

    Gustafson, Kathleen M.; Allen, John J. B.; Yeh, Hung-wen; May, Linda E.

    2011-01-01

    Breathing movements are one of the earliest fetal motor behaviors to emerge andare ahallmark of fetal well-being. Fetal respiratory sinus arrhythmia (RSA) has been documented but efforts to quantify the influence of breathing on heart rate (HR) and heart rate variability (HRV) are difficult due to the episodic nature of fetal breathing activity. We used a dedicated fetal biomagnetometer to acquire the magnetocardiogram (MCG) between 36-38 weeks gestational age (GA). We identified and characterized a waveform observed in the raw data and independent component decomposition that we attribute to fetal diaphragmatic movements during breathing episodes. RSA and increased high frequency power in a time-frequency analysis of the IBI time-series was observed during fetal breathing periods. Using the diaphragmatic magnetomyogram (dMMG) as a marker, we compared time and frequency domain metrics of heartrate and heart rate variability between breathing and non-breathing epochs. Fetal breathing activity resulted in significantly lower HR, increased high frequency power, greater sympathovagal balance, increased short-term HRV andgreater parasympathetic input relative to non-breathing episodesconfirming the specificity of fetal breathing movements on parasympathetic cardiac influence. No significant differences between breathing and non-breathing epochs were found in two metrics reflecting total HRVor very low, low and intermediate frequency bands. Using the fetal dMMG as a marker, biomagnetometry can help to elucidate the electrophysiologic mechanisms associated with diaphragmatic motor function and may be used to study the longitudinal development of human fetal cardiac autonomic control and breathing activity. PMID:21497027

  1. Breath isoprene concentrations in persons undergoing general anesthesia and in healthy volunteers.

    Science.gov (United States)

    Hornuss, Cyrill; Zagler, Armin; Dolch, Michael E; Wiepcke, Dirk; Praun, Siegfried; Boulesteix, Anne-Laure; Weis, Florian; Apfel, Christian C; Schelling, Gustav

    2012-12-01

    Human breath contains an abundance of volatile organic compounds (VOCs). Analysis of breath VOC may be used for diagnosis of various diseases or for on-line monitoring in anesthesia and intensive care. However, VOC concentrations largely depend on the breath sampling method and have a large inter-individual variability. For the development of breath tests, the influence of breath sampling methods and study subject characteristics on VOC concentrations has to be known. Therefore, we investigated the VOC isoprene in 62 study subjects during anesthesia and 16 spontaneously breathing healthy volunteers to determine (a) the influence of artificial and spontaneous ventilation and (b) the influence of study subject characteristics on breath isoprene concentrations. We used ion molecule reaction mass spectrometry for high-resolution breath-by-breath analysis of isoprene. We found that persons during anesthesia had significantly increased inspiratory and end-expiratory isoprene breath concentrations. Measured isoprene concentrations (median [first quartile-third quartile]) were in the anesthesia group: 54 [40-79] ppb (inspiratory) and 224 [171-309] ppb (end-expiratory), volunteer group: 14 [11-17] ppb (inspiratory) and 174 [124-202] ppb (end-expiratory). Higher end-tidal CO(2) concentrations in ventilated subjects were associated with higher expiratory isoprene levels. Furthermore, inspiratory and end-expiratory isoprene concentrations were correlated during anesthesia (r = 0.603, p < 0.001). Multivariate analysis showed that men had significantly higher end-expiratory isoprene concentrations than women. Rebreathing of isoprene from the anesthesia machine possibly accounts for the observed increase in isoprene in the anesthesia group.

  2. Breath Tests in Respiratory and Critical Care Medicine: From Research to Practice in Current Perspectives

    Directory of Open Access Journals (Sweden)

    Attapon Cheepsattayakorn

    2013-01-01

    Full Text Available Today, exhaled nitric oxide has been studied the most, and most researches have now focusd on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future.

  3. Possible Impact of Salivary Influence on Cytokine Analysis in Exhaled Breath Condensate

    Directory of Open Access Journals (Sweden)

    T. Ichikawa

    2007-01-01

    Full Text Available Background: Exhaled breath condensate (EBC is thought to contain substances of the lower airway epithelial lining fluid (ELF aerosolized by turbulent flow. However, contamination by saliva may affect the EBC when collected orally.Objective: The purpose of this study was to compare the cytokine expression levels in EBC with those in saliva, and to clarify the influence of saliva on cytokine measurements of EBC.Methods: EBC and saliva samples were obtained from 10 adult subjects with stable asthma. To estimate differences in the contents of substances between EBC and saliva, the total protein concentration of each sample was measured. Further, we also measured the total protein concentration of ELF obtained from another patient group with suspected lung cancer using a micro sampling probe during bronchoscopic examination and roughly estimated the dilution of EBC by comparing the total protein concentration of EBC and ELF from those two patient groups. The cytokine expression levels of EBC and saliva from asthmatic group were assessed by a cytokine protein array.Results: The mean total protein concentrations in EBC, saliva and ELF were 4.6 μg/ml, 2,398 μg/ml and 14,111 μg/ml, respectively. The dilution of EBC could be estimated as 1:3000. Forty cytokines were analyzed by a cytokine protein array and each cytokine expression level of EBC was found to be different from that of saliva. Corrected by the total protein concentration, all cytokine expression levels of EBC were significantly higher than those of saliva.Conclusion: These results suggest that the salivary influence on the cytokine assessment in EBC may be negligible.

  4. Performance of an N95 filtering facepiece particulate respirator and a surgical mask during human breathing: two pathways for particle penetration.

    Science.gov (United States)

    Grinshpun, Sergey A; Haruta, Hiroki; Eninger, Robert M; Reponen, Tiina; McKay, Roy T; Lee, Shu-An

    2009-10-01

    The protection level offered by filtering facepiece particulate respirators and face masks is defined by the percentage of ambient particles penetrating inside the protection device. There are two penetration pathways: (1) through the faceseal leakage, and the (2) filter medium. This study aimed at differentiating the contributions of these two pathways for particles in the size range of 0.03-1 microm under actual breathing conditions. One N95 filtering facepiece respirator and one surgical mask commonly used in health care environments were tested on 25 subjects (matching the latest National Institute for Occupational Safety and Health fit testing panel) as the subjects performed conventional fit test exercises. The respirator and the mask were also tested with breathing manikins that precisely mimicked the prerecorded breathing patterns of the tested subjects. The penetration data obtained in the human subject- and manikin-based tests were compared for different particle sizes and breathing patterns. Overall, 5250 particle size- and exercise-specific penetration values were determined. For each value, the faceseal leakage-to-filter ratio was calculated to quantify the relative contributions of the two penetration pathways. The number of particles penetrating through the faceseal leakage of the tested respirator/mask far exceeded the number of those penetrating through the filter medium. For the N95 respirator, the excess was (on average) by an order of magnitude and significantly increased with an increase in particle size (p < 0.001): approximately 7-fold greater for 0.04 microm, approximately 10-fold for 0.1 microm, and approximately 20-fold for 1 microm. For the surgical mask, the faceseal leakage-to-filter ratio ranged from 4.8 to 5.8 and was not significantly affected by the particle size for the tested submicrometer fraction. Facial/body movement had a pronounced effect on the relative contribution of the two penetration pathways. Breathing intensity and

  5. Noninvasive Recognition and Biomarkers of Early Allergic Asthma in Cats Using Multivariate Statistical Analysis of NMR Spectra of Exhaled Breath Condensate

    Science.gov (United States)

    Fulcher, Yan G.; Fotso, Martial; Chang, Chee-Hoon; Rindt, Hans; Reinero, Carol R.

    2016-01-01

    Asthma is prevalent in children and cats, and needs means of noninvasive diagnosis. We sought to distinguish noninvasively the differences in 53 cats before and soon after induction of allergic asthma, using NMR spectra of exhaled breath condensate (EBC). Statistical pattern recognition was improved considerably by preprocessing the spectra with probabilistic quotient normalization and glog transformation. Classification of the 106 preprocessed spectra by principal component analysis and partial least squares with discriminant analysis (PLS-DA) appears to be impaired by variances unrelated to eosinophilic asthma. By filtering out confounding variances, orthogonal signal correction (OSC) PLS-DA greatly improved the separation of the healthy and early asthmatic states, attaining 94% specificity and 94% sensitivity in predictions. OSC enhancement of multi-level PLS-DA boosted the specificity of the prediction to 100%. OSC-PLS-DA of the normalized spectra suggest the most promising biomarkers of allergic asthma in cats to include increased acetone, metabolite(s) with overlapped NMR peaks near 5.8 ppm, and a hydroxyphenyl-containing metabolite, as well as decreased phthalate. Acetone is elevated in the EBC of 74% of the cats with early asthma. The noninvasive detection of early experimental asthma, biomarkers in EBC, and metabolic perturbation invite further investigation of the diagnostic potential in humans. PMID:27764146

  6. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  7. Analysis of Heart Rate Variability During Breath-Holding Using Fast and Continuous Calculation Method of Frequency and Power

    Science.gov (United States)

    Yoshida, Yutaka; Yokoyama, Kiyoko; Ishii, Naohiro

    Many reports show that dominant frequency of high frequency component(HF:0.15∼0.4Hz) of heart rate time series is synchronized with the respiratory frequency. In this paper, we proposed the method for estimating the condition of respiration continuously using dominant frequency and power of HF (HFP) of heart rate time series. Dominant frequency and HFP is calculated from the interval of the neighboring two extreme points and the subtraction of the neighboring two extremals.In the experimental results, high frequency components did not disappear completely during breath-holding. This fact is different from the previous study. Subjects were classified into two groups. In one group, dominant frequency of the HF is significant increased during breath-holding compared with normal breathing. In the other group, this phenomenon was not observed. On the other hand, HFP of total subjects significantly decreased during breath-holding compared with normal breathing. Correct rate during breath-holding and error rate during rest and recovery are calculated using HFP. In the results, average and S. D. of correct rate during breath-holding were 65.0±26.3%. Correct rate of 18 subjects was 80.0±14.1% and correct rate of other 8 subjects was 31.5±11.9%. Our method is expected to apply to the development of the respiratory monitor which can measure respiratory condition with non-restricted in continuously.

  8. Ecological sounds affect breath duration more than artificial sounds.

    Science.gov (United States)

    Murgia, Mauro; Santoro, Ilaria; Tamburini, Giorgia; Prpic, Valter; Sors, Fabrizio; Galmonte, Alessandra; Agostini, Tiziano

    2016-01-01

    Previous research has demonstrated that auditory rhythms affect both movement and physiological functions. We hypothesized that the ecological sounds of human breathing can affect breathing more than artificial sounds of breathing, varying in tones for inspiration and expiration. To address this question, we monitored the breath duration of participants exposed to three conditions: (a) ecological sounds of breathing, (b) artificial sounds of breathing having equal temporal features as the ecological sounds, (c) no sounds (control). We found that participants' breath duration variability was reduced in the ecological sound condition, more than in the artificial sound condition. We suggest that ecological sounds captured the timing of breathing better than artificial sounds, guiding as a consequence participants' breathing. We interpreted our results according to the Theory of Event Coding, providing further support to its validity, and suggesting its possible extension in the domain of physiological functions which are both consciously and unconsciously controlled.

  9. Visual Analysis of Humans

    CERN Document Server

    Moeslund, Thomas B

    2011-01-01

    This unique text/reference provides a coherent and comprehensive overview of all aspects of video analysis of humans. Broad in coverage and accessible in style, the text presents original perspectives collected from preeminent researchers gathered from across the world. In addition to presenting state-of-the-art research, the book reviews the historical origins of the different existing methods, and predicts future trends and challenges. This title: features a Foreword by Professor Larry Davis; contains contributions from an international selection of leading authorities in the field; includes

  10. Sleep disordered breathing in mucopolysaccharidosis I: a multivariate analysis of patient, therapeutic and metabolic correlators modifying long term clinical outcome.

    Science.gov (United States)

    Pal, Abhijit Ricky; Langereis, Eveline J; Saif, Muhammad A; Mercer, Jean; Church, Heather J; Tylee, Karen L; Wynn, Robert F; Wijburg, Frits A; Jones, Simon A; Bruce, Iain A; Bigger, Brian W

    2015-04-10

    The lysosomal storage disorder, mucopolysaccharidosis I (MPS I), commonly manifests with upper airway obstruction and sleep disordered breathing (SDB). The success of current therapies, including haematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) may be influenced by a number of factors and monitored using biomarkers of metabolic correction. We describe the pattern of SDB seen in the largest MPS I cohort described to date and determine therapies and biomarkers influencing the severity of long-term airway disease. Therapeutic, clinical and biomarker data, including longitudinal outcome parameters from 150 sleep oximetry studies were collected in 61 MPS I (44 Hurler, 17 attenuated) patients between 6 months pre to 16 years post-treatment (median follow-up 22 months). The presence and functional nature of an immune response to ERT was determined using ELISA and a cellular uptake inhibition assay. Multivariate analysis was performed to determine significant correlators of airway disease. The incidence of SDB in our cohort is 68%, while 16% require therapeutic intervention for airway obstruction. A greater rate of progression (73%) and requirement for intervention is seen amongst ERT patients in contrast to HSCT treated individuals (24%). Multivariate analysis identifies poorer metabolic clearance, as measured by a rise in the biomarker urinary dermatan sulphate: chondroitin sulphate (DS:CS) ratio, as a significant correlator of increased presence and severity of SDB in MPS I patients (p = 0.0017, 0.008). Amongst transplanted Hurler patients, delivered enzyme (leukocyte iduronidase) at one year is significantly raised in those without SDB (p = 0.004). Cellular uptake inhibitory antibodies in ERT treated patients correlate with reduced substrate clearance and occurrence of severe SDB (p = 0.001). We have identified biochemical and therapeutic factors modifying airway disease across the phenotypic spectrum in MPS I

  11. Effect of breath-hold on blood gas analysis in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens).

    Science.gov (United States)

    Terasawa, Fumio; Ohizumi, Hiroshi; Ohshita, Isao

    2010-09-01

    The effect of a breath-hold on blood gas was evaluated in captive Pacific white-sided dolphins (Lagenorhynchus obliquidens). Serial blood collections were performed from a vessel on the ventral surface of the flukes during breath-hold. In total, 178 blood samples were taken from three dolphins for five trials in each animal. During a breath-hold, partial pressure of oxygen (Po₂) decreased from 152.5 to 21.8 mmHg and partial pressure of carbon dioxide (Po₂) conversely increased from 31.8 to 83.6 mmHg. The range of pH was 7.54 to 7.25, suggesting drastic change from alkalemia to acidemia. These wide ranges of blood gas imply a considerable change of oxygen affinity caused by the Bohr effect during breath-hold, which enable effective uptake and distribution of oxygen to metabolizing tissues.

  12. 42 CFR 84.115 - Breathing tubes; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.115 Section 84.115 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL... § 84.115 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with...

  13. Validation of low activity {sup 14}C-urea breath test in diagnosis of ``Helicobacter pylori``in humans

    Energy Technology Data Exchange (ETDEWEB)

    Bielanski, W.; Konturek, S.J.; Dobrzanka, M.J.; Plonka, M.; Sito, E.; Stachura, J. [Uniwersytet Jagiellonski, Cracow (Poland); Hoffman, S.R.; Marshall, B.J. [Tri-Med Specialtis, Charlottenville, VA (United States)

    1996-12-31

    Etiologic role for ``Helicobacter pylori`` (HP) seems to be well established in gastric pathology. The high urease activity of HP can be used to detect this bacterium by non-invasive urea breath tests (UBT). We validated the low activity version of the test in which 37 kBq {sup 14}C-urea is given orally in capsule. With the cut off value {>=} 1.66 Bq (100 DPM) as positive, UBT results correlated highly significant with combined results for invasive methods, i.e. CLO-test + Histology score. The reproducibility of the test was 100%. The results obtained for the breath test performed locally were almost identical with that read at remote laboratory. The data found for fasting and fed states of subjects agreed in 87%. When {sup 14}C-urea was confined in the mouth of both HP positive and HP negative patients UBT showed the presence of urease activity in the mouth cavity. (author). 21 refs, 2 figs, 1 tab.

  14. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode

    Science.gov (United States)

    Zhang, Jianqiang; Wang, Zhenguo; Li, Qinglian

    2017-09-01

    The efficiency calculation and cycle optimization were carried out for the Synergistic Air-Breathing Rocket Engine (SABRE) with deeply precooled combined cycle. A component-level model was developed for the engine, and exergy efficiency analysis based on the model was carried out. The methods to improve cycle efficiency have been proposed. The results indicate cycle efficiency of SABRE is between 29.7% and 41.7% along the flight trajectory, and most of the wasted exergy is occupied by the unburned hydrogen in exit gas. Exergy loss exists in each engine component, and the sum losses of main combustion chamber(CC), pre-burner(PB), precooler(PC) and 3# heat exchanger(HX3) are greater than 71.3% of the total loss. Equivalence ratio is the main influencing factor of cycle, and it can be regulated by adjusting parameters of helium loop. Increase the maximum helium outlet temperature of PC by 50 K, the total assumption of hydrogen will be saved by 4.8%, and the cycle efficiency is advanced by 3% averagely in the trajectory. Helium recirculation scheme introduces a helium recirculation loop to increase local helium flow rate of PC. It turns out the total assumption of hydrogen will be saved by 9%, that's about 1740 kg, and the cycle efficiency is advanced by 5.6% averagely.

  15. What Causes Bad Breath?

    Science.gov (United States)

    ... A Week of Healthy Breakfasts Shyness What Causes Bad Breath? KidsHealth > For Teens > What Causes Bad Breath? A A A en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  16. Breath sounds

    Science.gov (United States)

    ... notice them. The following tests may be done: Analysis of a sputum sample ( sputum culture , sputum Gram stain ) Blood tests (including an arterial blood gas ) Chest x-ray CT scan of the chest ...

  17. Effects of yoga breathing exercises on pulmonary function in patients with Duchenne muscular dystrophy: an exploratory analysis*, **

    Science.gov (United States)

    Rodrigues, Marcos Rojo; Carvalho, Celso Ricardo Fernandes; Santaella, Danilo Forghieri; Lorenzi-Filho, Geraldo; Marie, Suely Kazue Nagahashi

    2014-01-01

    OBJECTIVE: Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in children, and children with DMD die prematurely because of respiratory failure. We sought to determine the efficacy and safety of yoga breathing exercises, as well as the effects of those exercises on respiratory function, in such children. METHODS: This was a prospective open-label study of patients with a confirmed diagnosis of DMD, recruited from among those followed at the neurology outpatient clinic of a university hospital in the city of São Paulo, Brazil. Participants were taught how to perform hatha yoga breathing exercises and were instructed to perform the exercises three times a day for 10 months. RESULTS: Of the 76 patients who entered the study, 35 dropped out and 15 were unable to perform the breathing exercises, 26 having therefore completed the study (mean age, 9.5 ± 2.3 years; body mass index, 18.2 ± 3.8 kg/m2). The yoga breathing exercises resulted in a significant increase in FVC (% of predicted: 82.3 ± 18.6% at baseline vs. 90.3 ± 22.5% at 10 months later; p = 0.02) and FEV1 (% of predicted: 83.8 ± 16.6% at baseline vs. 90.1 ± 17.4% at 10 months later; p = 0.04). CONCLUSIONS: Yoga breathing exercises can improve pulmonary function in patients with DMD. PMID:24831396

  18. Effects of yoga breathing exercises on pulmonary function in patients with Duchenne muscular dystrophy: an exploratory analysis

    Directory of Open Access Journals (Sweden)

    Marcos Rojo Rodrigues

    2014-04-01

    Full Text Available OBJECTIVE: Duchenne muscular dystrophy (DMD is the most common form of muscular dystrophy in children, and children with DMD die prematurely because of respiratory failure. We sought to determine the efficacy and safety of yoga breathing exercises, as well as the effects of those exercises on respiratory function, in such children. METHODS: This was a prospective open-label study of patients with a confirmed diagnosis of DMD, recruited from among those followed at the neurology outpatient clinic of a university hospital in the city of São Paulo, Brazil. Participants were taught how to perform hatha yoga breathing exercises and were instructed to perform the exercises three times a day for 10 months. RESULTS: Of the 76 patients who entered the study, 35 dropped out and 15 were unable to perform the breathing exercises, 26 having therefore completed the study (mean age, 9.5 ± 2.3 years; body mass index, 18.2 ± 3.8 kg/m2. The yoga breathing exercises resulted in a significant increase in FVC (% of predicted: 82.3 ± 18.6% at baseline vs. 90.3 ± 22.5% at 10 months later; p = 0.02 and FEV1 (% of predicted: 83.8 ± 16.6% at baseline vs. 90.1 ± 17.4% at 10 months later; p = 0.04. CONCLUSIONS: Yoga breathing exercises can improve pulmonary function in patients with DMD.

  19. In vitro SIFT-MS validation of a breath fractionating device using a model VOC and ventilation system.

    Science.gov (United States)

    Seeley, Matthew J; Hu, Wan-Ping; Scotter, Jennifer M; Storer, Malina K; Shaw, Geoffrey M

    2009-03-01

    The measurement of volatile organic compounds in exhaled breath is becoming recognized as a method of disease diagnosis and therapeutic monitoring. The aim of this study was to validate the collection of breath from intubated patients in the intensive care setting. This was done by assembling a system of ventilators and humidification to emulate the human respiratory system. A known concentration of acetone was spiked into the system to simulate alveolar and dead-space 'breath'. Selected-ion flow tube mass spectrometry (SIFT-MS) was used to directly measure gas at two separate points (headspace, distal circuit end) and from Tedlar bags collected using a remote breath fractionator. The mean acetone concentration for headspace, distal circuit end and Tedlar bag concentrations were calculated. The fractionator was effective in separating the early (dead space) and late phases of exhaled breath. Results from the late Tedlar bag samples collected by the remote breath fractionator showed a clear correlation with headspace and distal circuit end acetone concentrations. The collection for remote analysis of breath samples from immobile patients is made possible using the breath fractionator in conjunction with SIFT-MS analysis.

  20. Abortion--the breath of life.

    Science.gov (United States)

    Joling, R J

    1974-01-01

    A scholarly review of medical-legal and biblical authority on the su bject of abortion supports abortion as a woman's right when it is performed before the fetus has had its "breath of life." Based on biblical evidence, a person becomes a living being when the soul, the "breath of life" is breathed into it. Without the "breath of life" no person exists. A fetus less than 28 weeks old is incapable of breathing alone; thus an aborted fetus that age is not truly a living human being capable of surviving independently of its mother's womb. Legal aspects include supreme, local and state court decisions defining abortion. It is ultimately expected that each person will determine what approach to take towards the abortion question. Abortion is still a personal problem regardless of supreme court decisions or ecclesiastical determinants. Religion and moral concepts should be the guiding conscience involved in the question of abortion.

  1. A flexible proximity sensor formed by duplex screen/screen-offset printing and its application to non-contact detection of human breathing

    Science.gov (United States)

    Nomura, Ken-Ichi; Kaji, Ryosaku; Iwata, Shiro; Otao, Shinobu; Imawaka, Naoto; Yoshino, Katsumi; Mitsui, Ryosuke; Sato, Junya; Takahashi, Seiya; Nakajima, Shin-Ichiro; Ushijima, Hirobumi

    2016-01-01

    We describe a flexible capacitance-type sensor that can detect an approaching human without contact, fabricated by developing and applying duplex conductive-ink printing to a film substrate. The results of our calculations show that the difference in size between the top and bottom electrodes of the sensor allows for the spatial extension of the electric field distribution over the electrodes. Hence, such a component functions as a proximity sensor. This thin and light device with a large form factor can be arranged at various places, including curved surfaces and the back of objects such that it is unnoticeable. In our experiment, we attached it to the back of a bed, and found that our device successfully detected the breathing of a subject on the bed without contacting his body. This should contribute to reducing the physical and psychological discomfort among patients during medical checks, or when their condition is being monitored.

  2. On the nature of heart rate variability in a breathing normal subject: a stochastic process analysis.

    Science.gov (United States)

    Buchner, Teodor; Petelczyc, Monika; Zebrowski, Jan J; Prejbisz, Aleksander; Kabat, Marek; Januszewicz, Andrzej; Piotrowska, Anna Justyna; Szelenberger, Waldemar

    2009-06-01

    Human heart rate is moderated by the autonomous nervous system acting predominantly through the sinus node (the main cardiac physiological pacemaker). One of the dominant factors that determine the heart rate in physiological conditions is its coupling with the respiratory rhythm. Using the language of stochastic processes, we analyzed both rhythms simultaneously taking the data from polysomnographic recordings of two healthy individuals. Each rhythm was treated as a sum of a deterministic drift term and a diffusion term (Kramers-Moyal expansion). We found that normal heart rate variability may be considered as the result of a bidirectional coupling of two nonlinear oscillators: the heart itself and the respiratory system. On average, the diffusion (noise) component measured is comparable in magnitude to the oscillatory (deterministic) term for both signals investigated. The application of the Kramers-Moyal expansion may be useful for medical diagnostics providing information on the relation between respiration and heart rate variability. This interaction is mediated by the autonomous nervous system, including the baroreflex, and results in a commonly observed phenomenon--respiratory sinus arrhythmia which is typical for normal subjects and often impaired by pathology.

  3. On the nature of heart rate variability in a breathing normal subject: A stochastic process analysis

    Science.gov (United States)

    Buchner, Teodor; Petelczyc, Monika; Żebrowski, Jan J.; Prejbisz, Aleksander; Kabat, Marek; Januszewicz, Andrzej; Piotrowska, Anna Justyna; Szelenberger, Waldemar

    2009-06-01

    Human heart rate is moderated by the autonomous nervous system acting predominantly through the sinus node (the main cardiac physiological pacemaker). One of the dominant factors that determine the heart rate in physiological conditions is its coupling with the respiratory rhythm. Using the language of stochastic processes, we analyzed both rhythms simultaneously taking the data from polysomnographic recordings of two healthy individuals. Each rhythm was treated as a sum of a deterministic drift term and a diffusion term (Kramers-Moyal expansion). We found that normal heart rate variability may be considered as the result of a bidirectional coupling of two nonlinear oscillators: the heart itself and the respiratory system. On average, the diffusion (noise) component measured is comparable in magnitude to the oscillatory (deterministic) term for both signals investigated. The application of the Kramers-Moyal expansion may be useful for medical diagnostics providing information on the relation between respiration and heart rate variability. This interaction is mediated by the autonomous nervous system, including the baroreflex, and results in a commonly observed phenomenon—respiratory sinus arrhythmia which is typical for normal subjects and often impaired by pathology.

  4. Multiscale Entropy Analysis of Heart Rate Variability for Assessing the Severity of Sleep Disordered Breathing

    Directory of Open Access Journals (Sweden)

    Wen-Yao Pan

    2015-01-01

    Full Text Available Obstructive sleep apnea (OSA is an independent cardiovascular risk factor to which autonomic nervous dysfunction has been reported to be an important contributor. Ninety subjects recruited from the sleep center of a single medical center were divided into four groups: normal snoring subjects without OSA (apnea hypopnea index, AHI < 5, n = 11, mild OSA (5 ≤ AHI < 15, n = 10, moderate OSA (15 ≤ AHI < 30, n = 24, and severe OSA (AHI ≥ 30, n = 45. Demographic (i.e., age, gender, anthropometric (i.e., body mass index, neck circumference, and polysomnographic (PSG data were recorded and compared among the different groups. For each subject, R-R intervals (RRI from 10 segments of 10-minute electrocardiogram recordings during non-rapid eye movement sleep at stage N2 were acquired and analyzed for heart rate variability (HRV and sample entropy using multiscale entropy index (MEI that was divided into small scale (MEISS, scale 1–5 and large scale (MEILS, scale 6–10. Our results not only demonstrated that MEISS could successfully distinguish normal snoring subjects and those with mild OSA from those with moderate and severe disease, but also revealed good correlation between MEISS and AHI with Spearman correlation analysis (r = −0.684, p < 0.001. Therefore, using the two parameters of EEG and ECG, MEISS may serve as a simple preliminary screening tool for assessing the severity of OSA before proceeding to PSG analysis.

  5. The analysis of components that lead to increased work of breathing in chronic obstructive pulmonary disease patients

    Science.gov (United States)

    Chen, Sibei; Li, Ying; Zheng, Zeguang; Luo, Qun

    2016-01-01

    Background This study is to explore the components and related mechanism responsible for the increase of work of breathing (WB) in chronic obstructive pulmonary disease (COPD) patients. Methods Eight COPD patients and eight healthy volunteers were recruited in the study. The rebreathing method was used to increase end-tidal CO2 partial pressure (PetCO2) and stimulate the increase in ventilation (VE). The increase in VE, WB, and changes in the compositions of WB were observed and analyzed. The WB and its components were calculated using the Campbell diagram. Results The inspiratory work (Wi) of breathing, a major component of total work of breathing (Wtot), in the COPD group was significantly higher than the control group during quiet breathing (Plung/chest-wall elastance (Wel) indicated that the slope of increase (response to VE increase) of Wrs was not significantly different between the two groups (P>0.05) although the Wrs in the COPD group was always higher than the normal group (Phyperinflation in COPD patients. PMID:27621878

  6. Multiple breath-hold proton spectroscopy of human liver at 3T: Relaxation times and concentrations of glycogen, choline, and lipids.

    Science.gov (United States)

    Weis, Jan; Kullberg, Joel; Ahlström, Håkan

    2017-04-17

    To evaluate the feasibility of an expiration multiple breath-hold (1) H-MRS technique to measure glycogen (Glycg), choline-containing compounds (CCC), and lipid relaxation times T1 , T2 , and their concentrations in normal human liver. Thirty healthy volunteers were recruited. Experiments were performed at 3T. Multiple expiration breath-hold single-voxel point-resolved spectroscopy (PRESS) technique was used for localization. Water-suppressed spectra were used for the estimation of Glycg, CCC, lipid methylene (CH2 )n relaxation times and concentrations. Residual water lines were removed by the Hankel Lanczos singular value decomposition filter. After phase correction and frequency alignment, spectra were averaged and processed by LCModel. Summed signals of Glycg resonances H2H4', H3, and H5 between 3.6 and 4 ppm were used to estimate their apparent relaxation times and concentration. Glycg, CCC, and lipid content were estimated from relaxation corrected spectral intensity ratios to unsuppressed water line. Relaxation times were measured for liver Glycg (T1 , 892 ± 126 msec; T2 , 13 ± 4 msec), CCC (T1 , 842 ± 75 msec; T2 , 50 ± 5 msec), lipid (CH2 )n (T1 , 402 ± 19 msec; T2 , 52 ± 3 msec), and water (T1 , 990 ± 89 msec; T2 , 30 ± 2 msec). Mean CCC and lipid concentrations of healthy liver were 7.8 ± 1.3 mM and 15.8 ± 23.6 mM, respectively. Glycg content was found lower in the morning (48 ± 21 mM) compared to the afternoon (145 ± 50 mM). Multiple breath-hold (1) H-MRS together with dedicated postprocessing is a feasible technique for the quantification of liver Glycg, CCC, and lipid relaxation times and concentrations. 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Neural mechanisms underlying breathing complexity.

    Directory of Open Access Journals (Sweden)

    Agathe Hess

    Full Text Available Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD. COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI, we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL medulla (pre-Bötzinger complex and the caudal VL pons (parafacial group. fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in

  8. Discriminating between Nasal and Mouth Breathing

    CERN Document Server

    Curran, Kevin; Coyle, Damian

    2010-01-01

    The recommendation to change breathing patterns from the mouth to the nose can have a significantly positive impact upon the general well being of the individual. We classify nasal and mouth breathing by using an acoustic sensor and intelligent signal processing techniques. The overall purpose is to investigate the possibility of identifying the differences in patterns between nasal and mouth breathing in order to integrate this information into a decision support system which will form the basis of a patient monitoring and motivational feedback system to recommend the change from mouth to nasal breathing. Our findings show that the breath pattern can be discriminated in certain places of the body both by visual spectrum analysis and with a Back Propagation neural network classifier. The sound file recoded from the sensor placed on the hollow in the neck shows the most promising accuracy which is as high as 90%.

  9. Relationships between deprivation and duration of children's emergency admissions for breathing difficulty, feverish illness and diarrhoea in North West England: an analysis of hospital episode statistics

    Directory of Open Access Journals (Sweden)

    Kyle Richard G

    2012-03-01

    Full Text Available Abstract Background In the United Kingdom there has been a long term pattern of increases in children's emergency admissions and a substantial increase in short stay unplanned admissions. The emergency admission rate (EAR per thousand population for breathing difficulty, feverish illness and diarrhoea varies substantially between children living in different Primary Care Trusts (PCTs. However, there has been no examination of whether disadvantage is associated with short stay unplanned admissions at PCT-level. The aim of this study was to determine whether differences between emergency hospital admission rates for breathing difficulty, feverish illness and diarrhoea are associated with population-level measures of multiple deprivation and child well-being, and whether there is variation by length of stay and age. Methods Analysis of hospital episode statistics and secondary analysis of Index of Multiple Deprivation (IMD 2007 and Local Index of Child Well-being (CWI 2009 in ten adjacent PCTs in North West England. The outcome measure for each PCT was the emergency admission rate to hospital for breathing difficulty, feverish illness and diarrhoea. Results 23,496 children aged 0-14 were discharged following emergency admission for breathing difficulty, feverish illness and/or diarrhoea during 2006/07. The emergency admission rate ranged from 27.9 to 62.7 per thousand. There were no statistically significant relationships between shorter (0 to 3 day hospitalisations and the IMD or domains of the CWI. The rate for hospitalisations of 4 or more days was associated with the IMD (Kendall's taub = 0.64 and domains of the CWI: Environment (taub = 0.60; Crime (taub = 0.56; Material (taub = 0.51; Education (taub = 0.51; and Children in Need (taub = 0.51. This pattern was also evident in children aged under 1 year, who had the highest emergency admission rates. There were wide variations between the proportions of children discharged on the day of admission

  10. The Effect of Inhalation Volume and Breath-Hold Duration on the Retention of Nicotine and Solanesol in the Human Respiratory Tract and on Subsequent Plasma Nicotine Concentrations During Cigarette Smoking

    Directory of Open Access Journals (Sweden)

    Armitage AK

    2014-12-01

    Full Text Available The influence of inhalation depth and breath-hold duration on the retention of nicotine and solanesol in the human respiratory tract and on nicotine uptake was studied in ten cigarette smokers. In a first series of experiments, the subjects took seven puffs from a 10 mg ‘tar’ yield, test cigarette and a fixed volume of air (0, 75, 250, 500 or 1000 mL, as required by the protocol was inhaled after each puff in order to give a controlled ‘depth’ of inhalation. The inhalation was drawn from a bag containing the required volume of air. Following a 2 s breath-hold, subjects exhaled normally, with the first exhalation after each puff passing through a single acidified filter pad for collection of the non-retained nicotine and solanesol. Blood samples were taken before and at intervals during and after smoking for the sessions with 0, 75 and 500 mL inhalation volumes for determination of plasma nicotine and carboxyhaemoglobin levels. Another series of experiments was conducted with a fixed inhalation volume (500 mL and two further breath-hold durations (0 and 10 s in addition to 2 s from above. Nicotine and solanesol retentions were measured for each breath-hold condition. The amounts of nicotine retained within the respiratory system, expressed as a percentage of the amount taken into the mouth, were consistently higher than the corresponding values for solanesol in all five inhalation conditions (0-1000 mL, 2 s breath-hold. Nicotine retention increased from 46.5% at zero inhalation to 99.5% at 1000 mL inhalation (2 s breath-hold and from 98.0% at zero breath-hold to 99.9% at 10 s breath-hold (500 mL inhalation. Solanesol retention increased from 34.2% at zero inhalation volume to 71.9% at 1000 mL inhalation (2 s breath-hold and from 51.8% at zero breath-hold to 87.6% at 10 s breath-hold (500 mL inhalation. Plasma nicotine decreased from pre-smoking levels after zero inhalation indicating that the nicotine retained within the mouth was poorly

  11. Evolution of environmental exposure science: Using breath-borne biomarkers for “discovery” of the human exposome

    Science.gov (United States)

    According to recent research, 70-90% of long-term latency and chronic human disease incidence is attributable to environmental (human exposome) factors through the gene x environment interaction. Environmental exposures are complex and involve many thousands of chemicals, a mult...

  12. Evolution of environmental exposure science: Using breath-borne biomarkers for “discovery” of the human exposome

    Science.gov (United States)

    According to recent research, 70-90% of long-term latency and chronic human disease incidence is attributable to environmental (human exposome) factors through the gene x environment interaction. Environmental exposures are complex and involve many thousands of chemicals, a mult...

  13. Breathing and sleep at high altitude.

    Science.gov (United States)

    Ainslie, Philip N; Lucas, Samuel J E; Burgess, Keith R

    2013-09-15

    We provide an updated review on the current understanding of breathing and sleep at high altitude in humans. We conclude that: (1) progressive changes in pH initiated by the respiratory alkalosis do not underlie early (48 h), complex cellular and neurochemical re-organization occurs both in the peripheral chemoreceptors as well as within the central nervous system. The latter is likely influenced by central acid-base changes secondary to the extent of the initial respiratory responses to initial exposure to high altitude; (3) sleep at high altitude is disturbed by various factors, but principally by periodic breathing; (4) the extent of periodic breathing during sleep at altitude intensifies with duration and severity of exposure; (5) complex interactions between hypoxic-induced enhancement in peripheral and central chemoreflexes and cerebral blood flow--leading to higher loop gain and breathing instability--underpin this development of periodic breathing during sleep; (6) because periodic breathing may elevate rather than reduce mean SaO2 during sleep, this may represent an adaptive rather than maladaptive response; (7) although oral acetazolamide is an effective means to reduce periodic breathing by 50-80%, recent studies using positive airway pressure devices to increase dead space, hyponotics and theophylline are emerging but appear less practical and effective compared to acetazolamide. Finally, we suggest avenues for future research, and discuss implications for understanding sleep pathology.

  14. From breathing to respiration.

    Science.gov (United States)

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  15. Running and Breathing in Mammals

    Science.gov (United States)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  16. Magnitude of shift of tumor position as a function of moderated deep inspiration breath-hold: An analysis of pooled data of lung patients with active breath control in image-guided radiotherapy

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2008-01-01

    Full Text Available The purpose of this study was to evaluate the reproducibility and magnitude of shift of tumor position by using active breathing control and iView-GT for patients with lung cancer with moderate deep-inspiration breath-hold (mDIBH technique. Eight patients with 10 lung tumors were studied. CT scans were performed in the breath-holding phase. Moderate deep-inspiration breath-hold under spirometer-based monitoring system was used. Few important bony anatomic details were delineated by the radiation oncologist. To evaluate the interbreath-hold reproducibility of the tumor position, we compared the digital reconstruction radiographs (DRRs from planning system with the DRRs from the iView-GT in the machine room. We measured the shift in x, y, and z directions. The reproducibility was defined as the difference between the bony landmarks from the DRR of the planning system and those from the DRR of the iView-GT. The maximum shift of the tumor position was 3.2 mm, 3.0 mm, and 2.9 mm in the longitudinal, lateral, and vertical directions. In conclusion, the moderated deep-inspiration breath-hold method using a spirometer is feasible, with relatively good reproducibility of the tumor position for image-guided radiotherapy in lung cancers.

  17. Decreased chewing activity during mouth breathing.

    Science.gov (United States)

    Hsu, H-Y; Yamaguchi, K

    2012-08-01

    This study examined the effect of mouth breathing on the strength and duration of vertical effect on the posterior teeth using related functional parameters during 3 min of gum chewing in 39 nasal breathers. A CO(2) sensor was placed over the mouth to detect expiratory airflow. When no airflow was detected from the mouth throughout the recording period, the subject was considered a nasal breather and enrolled in the study. Electromyographic (EMG) activity was recorded during 3 min of gum chewing. The protocol was repeated with the nostrils occluded. The strength of the vertical effect was obtained as integrated masseter muscle EMG activity, and the duration of vertical effect was also obtained as chewing stroke count, chewing cycle variation and EMG activity duration above baseline. Baseline activity was obtained from the isotonic EMG activity during jaw movement at 1.6 Hz without making tooth contact. The duration represented the percentage of the active period above baseline relative to the 3-min chewing period. Paired t-test and repeated analysis of variance were used to compare variables between nasal and mouth breathing. The integrated EMG activity and the duration of EMG activity above baseline, chewing stroke count and chewing cycle significantly decreased during mouth breathing compared with nasal breathing (Pmouth breathing was significantly greater than nasal breathing (PMouth breathing reduces the vertical effect on the posterior teeth, which can affect the vertical position of posterior teeth negatively, leading to malocclusion.

  18. Observing the Human Exposome as Reflected in Breath Biomarkers: Heat Map Data Interpretation for Environmental and Intelligence Research

    Science.gov (United States)

    Over the past decade, the research of human systems biology and the interactions with the external environment has permeated all phases of environmental, medical, and public health research. Similarly to the fields of genomics and proteomics research, the advent of new instrumen...

  19. Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath-hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide-point modelling analysis of left ventricular function

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, Holger C.; Jensen, Christoph J.; Sabin, Georg V.; Naber, Christoph K.; Bruder, Oliver [Elisabeth Hospital, Department of Cardiology and Angiology, Essen (Germany); Nassenstein, Kai; Schlosser, Thomas [University of Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen (Germany)

    2010-01-15

    We compared four-dimensional guide-point modelling left ventricular function analysis (4DVF) results of cine images in four short-axis and two long-axis slices acquired in a single breath-hold, obtained with the temporal parallel acquisition technique (TPAT), with standard left ventricular function (LVF) analysis results determined by the summation of discs method, in patients who had recently suffered myocardial infarction. Despite wall motion abnormalities, 4DVF yields results for left ventricular ejection fractions and end-diastolic and end-systolic volumes that are in excellent agreement with standard LVF analysis results in these patients. A shortened cardiac magnetic resonance (CMR) protocol using single breath-hold cine image acquisition could facilitate the assessment of left ventricular function soon after myocardial infarction in critically ill patients who are unable to comply with the multiple breath-holds required for standard LVF analysis. (orig.)

  20. Pulse Ejection Presentation System Synchronized with Breathing

    Science.gov (United States)

    Kadowaki, Ami; Sato, Junta; Ohtsu, Kaori; Bannai, Yuichi; Okada, Kenichi

    Trials on transmission of olfactory information together with audio/visual information are currently being conducted in the field of multimedia. However, continuous emission of scents in high concentration creates problems of human adaptation and remnant odors in air. To overcome such problems we developed an olfactory display in conjunction with Canon Inc. This display has high emission control in the ink-jet so that it can provide stable pulse emission of scents. Humans catch a scent when they breathe in and inhale smell molecules in air. Therefore, it is important that the timing of scent presentation is synchronized with human breathing. We also developed a breath sensor which detects human inspiration. In this study, we combined the olfactory display with the breath sensor to make a pulse ejection presentation system synchronized the breath. The experimental evaluation showed that the system had more than 90 percent of detection rate. Another evaluation was held at KEIO TECHNO-MALL 2007. From questionnaire results of the participants, we found that the system made the user feel continuous sense of smell avoiding adaptation. It is expected that our system enables olfactory information to be synchronized with audio/visual information in arbitrary duration at any time.

  1. Voluntary control of breathing does not alter vagal modulation of heart rate

    Science.gov (United States)

    Patwardhan, A. R.; Evans, J. M.; Bruce, E. N.; Eckberg, D. L.; Knapp, C. F.

    1995-01-01

    Variations in respiratory pattern influence the heart rate spectrum. It has been suggested, hence, that metronomic respiration should be used to correctly assess vagal modulation of heart rate by using spectral analysis. On the other hand, breathing to a metronome has been reported to increase heart rate spectral power in the high- or respiratory frequency region; this finding has led to the suggestion that metronomic respiration enhances vagal tone or alters vagal modulation of heart rate. To investigate whether metronomic breathing complicates the interpretation of heart rate spectra by altering vagal modulation, we recorded the electrocardiogram and respiration from eight volunteers during three breathing trials of 10 min each: 1) spontaneous breathing (mean rate of 14.4 breaths/min); 2) breathing to a metronome at the rate of 15, 18, and 21 breaths/min for 2, 6, and 2 min, respectively; and 3) breathing to a metronome at the rate of 18 breaths/min for 10 min. Data were also collected from eight volunteers who breathed spontaneously for 20 min and breathed metronomically at each subject's mean spontaneous breathing frequency for 20 min. Results from the three 10-min breathing trials showed that heart rate power in the respiratory frequency region was smaller during metronomic breathing than during spontaneous breathing. This decrease could be explained fully by the higher breathing frequencies used during trials 2 and 3 of metronomic breathing. When the subjects breathed metronomically at each subject's mean breathing frequency, the heart rate powers during metronomic breathing were similar to those during spontaneous breathing. Our results suggest that vagal modulation of heart rate is not altered and vagal tone is not enhanced during metronomic breathing.

  2. Human Factors Analysis in Software Engineering

    Institute of Scientific and Technical Information of China (English)

    Xu Ren-zuo; Ma Ruo-feng; Liu Li-na; Xiong Zhong-wei

    2004-01-01

    The general human factors analysis analyzes human functions, effects and influence in a system. But in a narrow sense, it analyzes human influence upon the reliability of a system, it includes traditional human reliability analysis, human error analysis, man-machine interface analysis, human character analysis, and others. A software development project in software engineering is successful or not to be completely determined by human factors. In this paper, we discuss the human factors intensions, declare the importance of human factors analysis for software engineering by listed some instances. At last, we probe preliminarily into the mentality that a practitioner in software engineering should possess.

  3. TH-E-17A-08: Estimation of Image Quality of 4-Dimensional Computed Tomography (4DCT) Via Fourier Analysis of Corresponding 1D Breathing Surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Caraveo, M; McNamara, J; Rimner, A; Yorke, E; Li, G [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Wei, J [City College of New York, New York, NY (United States)

    2014-06-15

    Purpose: Motion artifacts are common in patient 4DCT, leading to an illdefined tumor volume with variation up to 110% or setting up a poor foundation with low imaging fidelity for tumor motion study. We developed a method to estimate 4DCT image quality by establishing a correlation between the severity of motion artifacts in 4DCT images and the periodicity of corresponding 1D respiratory wave-function (1DRW) surrogate used for 4DCT reconstruction. Methods: Fast Fourier Transformation (FFT) was applied to analyze 1DRW periodicity, defined as the sum of the 5 largest Fourier coefficients, ranging in 0–1. Distortional motion artifacts of cine-scan 4DCT at the junctions of adjacent couchposition scans around the diaphragm were identified in 3 categories: incomplete, overlapping and duplicate. To quantify these artifacts, the discontinuity of the diaphragm at the junctions was measured in distance and averaged along 6 directions in 3 orthogonal views. Mean and sum artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase. To make the APJ inter-patient comparable, patientspecific motion was removed from APJ by dividing patient-specific diaphragmatic velocity (displacement divided by the mean period, from FFT analysis of the 1DRW) and the normalized APJ was defined as motion artifact severity (MAS). Twenty-five patients with free-breathing 10-phase 4DCT and corresponding 1DRW surrogate datasets were studied. Results: A mild correlation of 0.56 was found between 1DRW periodicity and 4DCT artifact severity. Higher MAS tends to appear around mid inhalation and mid exhalation and the lowest MAS tends to be around full exhalation. The breathing periodicity of >0.8 possesses minimal motion artifacts. Conclusion: The 1D-4D correlation provides a fast means to estimate 4DCT image quality. Using 1DRW signal, we can retrospectively screen out high-quality 4DCT images for clinical research (periodicity>0.8) and prospectively identify poor

  4. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Alan G Barbour

    Full Text Available Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼10(7 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO was elevated in samples from infected mice, with a mean (95% confidence limits effect size of 4.2 (2.8-5.6, when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in

  5. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    Science.gov (United States)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  6. Minimizing Shortness of Breath

    Science.gov (United States)

    ... is also placed on proper use of the abdominal muscles to better control episodes of shortness of breath, ... Treatment & Programs Health Insights Doctors & Departments Research & Science Education & Training Make a Donation Make an Appointment Contact ...

  7. What Causes Bad Breath?

    Science.gov (United States)

    ... teeth, you shouldn't have bad breath. The truth is that most people only brush their teeth ... The Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart. ...

  8. Take a Deep Breath

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Everyone involved in Beijing’s Olympic Games held their breath last week, not because of the city’s famously polluted air , but in anticipation of the results of an experiment that could help to clean it up.

  9. Breathing difficulty - lying down

    Science.gov (United States)

    ... short of breath. Considerations This is a common complaint in people with some types of heart or ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  10. Shortness of Breath

    Science.gov (United States)

    ... shortness of breath with physical exertion beyond your customary activity such as when climbing stairs. Allergic Reactions ... 75231 Copyright © 2014 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524- ...

  11. ABA-Cloud: support for collaborative breath research

    OpenAIRE

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-01-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step ...

  12. Oral breathing and dental malocclusions.

    Science.gov (United States)

    Zicari, A M; Albani, F; Ntrekou, P; Rugiano, A; Duse, M; Mattei, A; Marzo, G

    2009-06-01

    Aim of the present study was to evaluate existing correlations between oral breathing and dental malocclusions. The study was conducted on a paediatric group of 71 oral breathers selected at the Allergology and Paediatric Immunology Department of Umberto I General Hospital, University of Rome "La Sapienza" (Italy). The children were selected based on inclusion/exclusion criteria. Children aged 6 to 12 years with no history of craniofacial malformations or orthodontic treatment were included. The results were compared with a control group composed of 71 patient aged 6 to 12 years with nasal breathing. After their medical history was recorded, all patients underwent orthodontic/otolaryngological clinical examinations. The following diagnostic procedures were then performed: latero-lateral projection teleradiography, orthopantomogram, dental impressions, anterior rhinomanometry before and after administering a local vasoconstrictor, nocturnal home pulse oximetry (NHPO) recording, spirometry test, skin prick test, study cast evaluation and cephalometric analysis following Tweed's principles. The intraoral examination assessed: dental class type, overbite, overjet, midlines, crossbite, and presence of parafunctional oral habits such as atypical swallowing, labial incompetence, finger sucking and sucking of the inner lip. Evaluation of the study casts involved arch perimeter and transpalatal width assessment, and space analysis. The results showed a strong correlation between oral breathing and malocclusions, which manifests itself with both dentoskeletal and functional alterations, leading to a dysfunctional malocclusive pattern. According to the authors' results, dysfunctional malocclusive pattern makes it clear that the association between oral breathing and dental malocclusions represents a self-perpetuating vicious circle in which it is difficult to establish if the primary alteration is respiratory or maxillofacial. Regardless, the problem needs to be addressed and

  13. Analysis of nonlinear frequency mixing in 1D waveguides with a breathing crack using the spectral finite element method

    Science.gov (United States)

    Joglekar, D. M.; Mitra, M.

    2015-11-01

    A breathing crack, due to its bilinear stiffness characteristics, modifies the frequency spectrum of a propagating dual-frequency elastic wave, and gives rise to sidebands around the probing frequency. This paper presents an analytical-numerical method to investigate such nonlinear frequency mixing resulting from the modulation effects induced by a breathing crack in 1D waveguides, such as axial rods and the Euler-Bernoulli beams. A transverse edge-crack is assumed to be present in both the waveguides, and the local flexibility caused by the crack is modeled using an equivalent spring approach. A simultaneous treatment of both the waveguides, in the framework of the Fourier transform based spectral finite element method, is presented for analyzing their response to a dual frequency excitation applied in the form of a tone-burst signal. The intermittent contact between the crack surfaces is accounted for by introducing bilinear contact forces acting at the nodes of the damage spectral element. Subsequently, an iterative approach is outlined for solving the resulting system of nonlinear simultaneous equations. Applicability of the proposed method is demonstrated by considering several test cases. The existence of sidebands and the higher order harmonics is confirmed in the frequency domain response of both the waveguides under investigation. A qualitative comparison with the previous experimental observations accentuates the utility of the proposed solution method. Additionally, the influence of the two constituent frequencies in the dual frequency excitation is assessed by varying the relative strengths of their amplitudes. A brief parametric study is performed for bringing out the effects of the relative crack depth and crack location on the degree of modulation, which is quantified in terms of the modulation parameter. Results of the present investigation can find their potential use in providing an analytical-numerical support to the studies geared towards the

  14. Comparison of two devices and two breathing patterns for exhaled breath condensate sampling.

    Directory of Open Access Journals (Sweden)

    Eva-Maria Hüttmann

    Full Text Available Analysis of exhaled breath condensate (EBC is a noninvasive method to access the epithelial lining fluid of the lungs. Due to standardization problems the method has not entered clinical practice. The aim of the study was to assess the comparability for two commercially available devices in healthy controls. In addition, we assessed different breathing patterns in healthy controls with protein markers to analyze the source of the EBC.EBC was collected from ten subjects using the RTube and ECoScreen Turbo in a randomized crossover design, twice with every device--once in tidal breathing and once in hyperventilation. EBC conductivity, pH, surfactant protein A, Clara cell secretory protein and total protein were assessed. Bland-Altman plots were constructed to display the influence of different devices or breathing patterns and the intra-class correlation coefficient (ICC was calculated. The volatile organic compound profile was measured using the electronic nose Cyranose 320. For the analysis of these data, the linear discriminant analysis, the Mahalanobis distances and the cross-validation values (CVV were calculated.Neither the device nor the breathing pattern significantly altered EBC pH or conductivity. ICCs ranged from 0.61 to 0.92 demonstrating moderate to very good agreement. Protein measurements were greatly influenced by breathing pattern, the device used, and the way in which the results were reported. The electronic nose could distinguish between different breathing patterns and devices, resulting in Mahalanobis distances greater than 2 and CVVs ranging from 64% to 87%.EBC pH and (to a lesser extent EBC conductivity are stable parameters that are not influenced by either the device or the breathing patterns. Protein measurements remain uncertain due to problems of standardization. We conclude that the influence of the breathing maneuver translates into the necessity to keep the volume of ventilated air constant in further studies.

  15. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  16. 42 CFR 84.203 - Breathing resistance test; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing resistance test; minimum requirements. 84.203 Section 84.203 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Chemical Cartridge Respirators § 84.203 Breathing resistance test; minimum requirements. (a) Resistance...

  17. Development of Techniques for Trace Gas Detection in Breath

    OpenAIRE

    2012-01-01

    This thesis aims to investigate the possibility of developing spectroscopic techniques for trace gas detection, with particular emphasis on their applicability to breath analysis and medical diagnostics. Whilst key breath molecules such as methane and carbon dioxide will feature throughout this work, the focus of the research is on the detection of breath acetone, a molecule strongly linked with the diabetic condition. Preliminary studies into the suitability of cavity enhanced absorption...

  18. Automatic Recognition of Breathing Route During Sleep Using Snoring Sounds

    Science.gov (United States)

    Mikami, Tsuyoshi; Kojima, Yohichiro

    This letter classifies snoring sounds into three breathing routes (oral, nasal, and oronasal) with discriminant analysis of the power spectra and k-nearest neighbor method. It is necessary to recognize breathing route during snoring, because oral snoring is a typical symptom of sleep apnea but we cannot know our own breathing and snoring condition during sleep. As a result, about 98.8% classification rate is obtained by using leave-one-out test for performance evaluation.

  19. Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode

    Science.gov (United States)

    Babanova, Sofia; Artyushkova, Kateryna; Ulyanova, Yevgenia; Singhal, Sameer; Atanassov, Plamen

    2014-01-01

    Two statistical methods, design of experiments (DOE) and principal component analysis (PCA) are employed to investigate and improve performance of air-breathing gas-diffusional enzymatic electrodes. DOE is utilized as a tool for systematic organization and evaluation of various factors affecting the performance of the composite system. Based on the results from the DOE, an improved cathode is constructed. The current density generated utilizing the improved cathode (755 ± 39 μA cm-2 at 0.3 V vs. Ag/AgCl) is 2-5 times higher than the highest current density previously achieved. Three major factors contributing to the cathode performance are identified: the amount of enzyme, the volume of phosphate buffer used to immobilize the enzyme, and the thickness of the gas-diffusion layer (GDL). PCA is applied as an independent confirmation tool to support conclusions made by DOE and to visualize the contribution of factors in individual cathode configurations.

  20. Deep inspiration breath-hold technique for left-sided breast cancer: An analysis of predictors for organ-at-risk sparing

    Energy Technology Data Exchange (ETDEWEB)

    Register, Steven; Takita, Cristiane [Department of Radiation Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL (United States); Reis, Isildinha; Zhao, Wei [Department of Public Health Sciences, University of Miami, Miami, FL (United States); Amestoy, William [Department of Radiation Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL (United States); Wright, Jean, E-mail: jwrigh71@jhmi.edu [Department of Radiation Oncology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL (United States); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD (United States)

    2015-04-01

    To identify anatomic and treatment characteristics that correlate with organ-at-risk (OAR) sparing with deep inspiration breath-hold (DIBH) technique to guide patient selection for this technique. Anatomic and treatment characteristics and radiation doses to OARs were compared between free-breathing and DIBH plans. Linear regression analysis was used to identify factors independently predicting for cardiac sparing. We identified 64 patients: 44 with intact breast and 20 postmastectomy. For changes measured directly on treatment planning scans, DIBH plans decreased heart-chest wall length (6.5 vs 5.0 cm, p < 0.001), and increased lung volume (1074.4 vs 1881.3 cm{sup 3}, p < 0.001), and for changes measured after fields are set, they decreased maximum heart depth (1.1 vs 0.3 cm, p < 0.001) and heart volume in field (HVIF) (9.1 vs 0.9 cm{sup 3}, p < 0.001). DIBH reduced the mean heart dose (3.4 vs 1.8 Gy, p < 0.001) and lung V{sub 20} (19.6% vs 15.3%, p < 0.001). Regression analysis found that only change in HVIF independently predicted for cardiac sparing. We identified patients in the bottom quartile of the dosimetric benefits seen with DIBH and categorized the cause of this “minimal benefit.” Overall, 29% of patients satisfied these criteria for minimal benefit with DIBH and the most common cause was favorable baseline anatomy. Only the reduction in HVIF predicted for reductions in mean heart dose; no specific anatomic surrogate for the dosimetric benefits of DIBH technique could be identified. Most patients have significant dosimetric benefit with DIBH, and this technique should be planned and evaluated for all patients receiving left-sided breast/chest wall radiation.

  1. Adaptive neuro-fuzzy inference system for breath phase detection and breath cycle segmentation.

    Science.gov (United States)

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2017-07-01

    The monitoring of the respiratory rate is vital in several medical conditions, including sleep apnea because patients with sleep apnea exhibit an irregular respiratory rate compared with controls. Therefore, monitoring the respiratory rate by detecting the different breath phases is crucial. This study aimed to segment the breath cycles from pulmonary acoustic signals using the newly developed adaptive neuro-fuzzy inference system (ANFIS) based on breath phase detection and to subsequently evaluate the performance of the system. The normalised averaged power spectral density for each segment was fuzzified, and a set of fuzzy rules was formulated. The ANFIS was developed to detect the breath phases and subsequently perform breath cycle segmentation. To evaluate the performance of the proposed method, the root mean square error (RMSE) and correlation coefficient values were calculated and analysed, and the proposed method was then validated using data collected at KIMS Hospital and the RALE standard dataset. The analysis of the correlation coefficient of the neuro-fuzzy model, which was performed to evaluate its performance, revealed a correlation strength of r = 0.9925, and the RMSE for the neuro-fuzzy model was found to equal 0.0069. The proposed neuro-fuzzy model performs better than the fuzzy inference system (FIS) in detecting the breath phases and segmenting the breath cycles and requires less rules than FIS. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Balzac and human gait analysis.

    Science.gov (United States)

    Collado-Vázquez, S; Carrillo, J M

    2015-05-01

    People have been interested in movement analysis in general, and gait analysis in particular, since ancient times. Aristotle, Hippocrates, Galen, Leonardo da Vinci and Honoré de Balzac all used observation to analyse the gait of human beings. The purpose of this study is to compare Honoré de Balzac's writings with a scientific analysis of human gait. Honoré de Balzac's Theory of walking and other works by that author referring to gait. Honoré de Balzac had an interest in gait analysis, as demonstrated by his descriptions of characters which often include references to their way of walking. He also wrote a treatise entitled Theory of walking (Théorie de la demarche) in which he employed his keen observation skills to define gait using a literary style. He stated that the walking process is divided into phases and listed the factors that influence gait, such as personality, mood, height, weight, profession and social class, and also provided a description of the correct way of walking. Balzac considered gait analysis to be very important and this is reflected in both his character descriptions and Theory of walking, his analytical observation of gait. In our own technology-dominated times, this serves as a reminder of the importance of observation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in adults

    OpenAIRE

    2013-01-01

    Copyright © 2013 The Cochrane Collaboration. Published by JohnWiley & Sons, Ltd. Background: Dysfunctional breathing/hyperventilation syndrome (DB/HVS) is a respiratory disorder, psychologically or physiologically based, involving breathing too deeply and/or too rapidly (hyperventilation) or erratic breathing interspersed with breath-holding or sighing (DB). DB/HVS can result in significant patient morbidity and an array of symptoms including breathlessness, chest tightness, dizziness, tre...

  4. Molecular hydrogen in human breath: a new strategy for selectively diagnosing peptic ulcer disease, non-ulcerous dyspepsia and Helicobacter pylori infection.

    Science.gov (United States)

    Maity, Abhijit; Pal, Mithun; Maithani, Sanchi; Ghosh, Barnali; Chaudhuri, Sujit; Pradhan, Manik

    2016-07-22

    The gastric pathogen Helicobacter pylori utilizes molecular hydrogen (H2) as a respiratory substrate during colonization in the gastric mucosa. However, the link between molecular H2 and the pathogenesis of peptic-ulcer disease (PUD) and non-ulcerous dyspepsia (NUD) by the enzymatic activity of H. pylori still remains mostly unknown. Here we provide evidence that breath H2 excretion profiles are distinctly altered by the enzymatic activity of H. pylori for individuals with NUD and PUD. We subsequently unravelled the potential molecular mechanisms responsible for the alteration of H2 in exhaled breath in association with peptic ulcers, encompassing both gastric and duodenal ulcers, along with NUD. We also established that carbon-isotopic fractionations in the acid-mediated bacterial environment regulated by bacterial urease activity cannot discriminate the actual disease state i.e. whether it is peptic ulcer or NUD. However, our findings illuminate the unusual molecular H2 in breath that can track the precise evolution of PUD and NUD, even after the eradication of H. pylori infection. This deepens our understanding of the pathophysiology of PUD and NUD, reveals non-invasively the actual disease state in real-time and thus offers a novel and robust new-generation strategy for treating peptic-ulcer disease together with non-ulcer related complications even when the existing (13)C-urea breath test ((13)C-UBT) fails to diagnose.

  5. Additional Value of CH4 Measurement in a Combined 13C/H2 Lactose Malabsorption Breath Test: A Retrospective Analysis

    Directory of Open Access Journals (Sweden)

    Els Houben

    2015-09-01

    Full Text Available The lactose hydrogen breath test is a commonly used, non-invasive method for the detection of lactose malabsorption and is based on an abnormal increase in breath hydrogen (H2 excretion after an oral dose of lactose. We use a combined 13C/H2 lactose breath test that measures breath 13CO2 as a measure of lactose digestion in addition to H2 and that has a better sensitivity and specificity than the standard test. The present retrospective study evaluated the results of 1051 13C/H2 lactose breath tests to assess the impact on the diagnostic accuracy of measuring breath CH4 in addition to H2 and 13CO2. Based on the 13C/H2 breath test, 314 patients were diagnosed with lactase deficiency, 138 with lactose malabsorption or small bowel bacterial overgrowth (SIBO, and 599 with normal lactose digestion. Additional measurement of CH4 further improved the accuracy of the test as 16% subjects with normal lactose digestion and no H2-excretion were found to excrete CH4. These subjects should have been classified as subjects with lactose malabsorption or SIBO. In conclusion, measuring CH4-concentrations has an added value to the 13C/H2 breath test to identify methanogenic subjects with lactose malabsorption or SIBO.

  6. Environmental testing of escape breathing apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Stengel, J W

    1982-05-03

    A new generation of 60-minute self-contained breathing apparatus was being introduced into the underground coal mining industry for use as respiratory protection during fires and mine disasters. Little field experience existed from which to predict the survivability of this new life-support equipment. A series of environmental tests was proposed consisting of exposure to heat, cold, shock, and vibration. Treated and untreated apparatus were evaluated and compared by use on human subjects and a mechanical breathing simulator. Results are reported. After field data have been collected, information may be able to be correlated with environmental testing and used as a predictor of survivability.

  7. Molecular cloning, expression analysis and miRNA prediction of vascular endothelial growth factor A (VEGFAa and VEGFAb) in pond loach Misgurnus anguillicaudatus, an air-breathing fish.

    Science.gov (United States)

    Luo, Weiwei; Liang, Xiao; Huang, Songqian; Cao, Xiaojuan

    2016-12-01

    Vascular endothelial growth factor A (VEGFA) is the most studied and the best characterized member of the VEGF family and is a key regulator of angiogenesis via its ability to affect the proliferation, migration, and differentiation of endothelial cells. In this study, the full-length cDNAs encoding VEGFAa and VEGFAb from pond loach, Misgurnus anguillicaudatus, were isolated. The VEGFAa is constituted by an open reading frame (ORF) of 570bp encoding for a peptide of 189 amino acid residues, a 639bp 5'-untranslated region (UTR) and a 2383bp 3' UTR. The VEGFAb is constituted by an ORF of 687bp encoding for a peptide of 228 amino acid residues, a 560bp 5' UTR and a 1268bp 3' UTR. Phylogenetic analysis indicated that the VEGFAa and VEGFAb of pond loach were conserved in vertebrates. Expression levels of VEGFAa and VEGFAb were detected by RT-qPCR at different development stages of pond loach and in different tissues of 6-month-old, 12-month-old and 24-month-old pond loach. Moreover, eight predicted miRNAs (miR-200, miR-29, miR-218, miR-338, miR-103, miR-15, miR-17 and miR-223) targeting VEGFAa and VEGFAb were validated by an intestinal air-breathing inhibition experiment. This study will be of value for further studies into the function of VEGFA and its corresponding miRNAs, which will shed a light on the vascularization and accessory air-breathing process in pond loach.

  8. Reproducibility Evaluation of Deep inspiration breath-hold(DIBH) technique by respiration data and heart position analysis during radiation therapy for Left Breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jae Young; Bae, Sun Myung; Yoon, In Ha; Lee, Ho Yeon; Kang, Tae Young; Baek, Geum Mun; Bae, Jae Beom [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2014-12-15

    The purpose of this study is reproducibility evaluation of deep inspiration breath-hold(DIBH) technique by respiration data and heart position analysis in radiation therapy for Left Breast cancer patients. Free breathing(FB) Computed Tomography(CT) images and DIBH CT images of three left breast cancer patients were used to evaluate the heart volume and dose during treatment planing system( Eclipse version 10.0, Varian, USA ). The signal of RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, Varian, USA) was used to evaluate respiration stability of DIBH during breast radiation therapy. The images for measurement of heart position were acquired by the Electronic portal imaging device(EPID) cine acquisition mode. The distance of heart at the three measuring points(A, B, C) on each image was measured by Offline Review (ARIA 10, Varian, USA). Significant differences were found between the FB and DIBH plans for mean heart dose (6.82 vs. 1.91 Gy), heart V{sub 30} (68.57 vs. 8.26 cm{sup 3}), V{sub 20} (76.43 vs. 11.34 cm{sup 3}). The standard deviation of DIBH signal of each patient was ±0.07 cm, ±0.04cm, 0.13 cm{sup 3}, respectively. The Maximum and Minimum heart distance on EPID images were measured as 0.32 m and 0.00 cm. Consequently, using the DIBH technique with radiation therapy for left breast cancer patients is very useful to establish the treatment plan and to reduce the heart dose. In addition, it is beneficial to using the Cine acquisition mode of EPID for the reproducibility evaluation of DIBH.

  9. The Air We Breathe

    Science.gov (United States)

    Davila, Dina

    2010-01-01

    Topics discussed include NASA mission to pioneer the future in space exploration, scientific discovery and aeronautics research; the role of Earth's atmosphere, atmospheric gases, layers of the Earth's atmosphere, ozone layer, air pollution, effects of air pollution on people, the Greenhouse Effect, and breathing on the International Space Station.

  10. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  11. Breathing Like a Fish

    Science.gov (United States)

    Katsioloudis, Petros J.

    2010-01-01

    Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…

  12. Chapter 12: Human microbiome analysis.

    Directory of Open Access Journals (Sweden)

    Xochitl C Morgan

    Full Text Available Humans are essentially sterile during gestation, but during and after birth, every body surface, including the skin, mouth, and gut, becomes host to an enormous variety of microbes, bacterial, archaeal, fungal, and viral. Under normal circumstances, these microbes help us to digest our food and to maintain our immune systems, but dysfunction of the human microbiota has been linked to conditions ranging from inflammatory bowel disease to antibiotic-resistant infections. Modern high-throughput sequencing and bioinformatic tools provide a powerful means of understanding the contribution of the human microbiome to health and its potential as a target for therapeutic interventions. This chapter will first discuss the historical origins of microbiome studies and methods for determining the ecological diversity of a microbial community. Next, it will introduce shotgun sequencing technologies such as metagenomics and metatranscriptomics, the computational challenges and methods associated with these data, and how they enable microbiome analysis. Finally, it will conclude with examples of the functional genomics of the human microbiome and its influences upon health and disease.

  13. Electrospray ionization of volatiles in breath

    Science.gov (United States)

    Martínez-Lozano, P.; de La Mora, J. Fernández

    2007-08-01

    Recent work by Zenobi and colleagues [H. Chen, A. Wortmann, W. Zhang, R. Zenobi, Angew. Chem. Int. Ed. 46 (2007) 580] reports that human breath charged by contact with an electrospray (ES) cloud yields many mass peaks of species such as urea, glucose, and other ions, some with molecular weights above 1000 Da. All these species are presumed to be involatile, and to originate from breath aerosols by so-called extractive electrospray ionization EESI [H. Chen, A. Venter, R.G. Cooks, Chem. Commun. (2006) 2042]. However, prior work by Fenn and colleagues [C.M. Whitehouse, F. Levin, C.K. Meng, J.B. Fenn, Proceedings of the 34th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, 1986 p. 507; S. Fuerstenau, P. Kiselev, J.B. Fenn, Proceedings of the 47th ASMS Conference on Mass Spectrometry, 1999, Dallas, TX, 1999] and by Hill and colleagues [C. Wu, W.F. Siems, H.H. Hill Jr., Anal. Chem. 72 (2000) 396] have reported the ability of electrospray drops to ionize a variety of low vapor pressure substances directly from the gas phase, without an apparent need for the vapor to be brought into the charging ES in aerosol form. The Ph.D. Thesis of Martínez-Lozano [P. Martínez-Lozano Sinués, Ph.D. Thesis, Department of Thermal and Fluid Engineering, University Carlos III of Madrid; April 5, 2006 (in Spanish); http://hdl.handle.net/10016/655] had also previously argued that the numerous human breath species observed via a similar ES ionization approach were in fact ionized directly from the vapor. Here, we observe that passage of the breath stream through a submicron filter does not eliminate the majority of the breath vapors seen in the absence of the filter. We conclude that direct vapor charging is the leading mechanism in breath ionization by electrospray drops, though aerosol ionization may also play a role.

  14. Personal breathing zone exposures among hot-mix asphalt paving workers; preliminary analysis for trends and analysis of work practices that resulted in the highest exposure concentrations.

    Science.gov (United States)

    Osborn, Linda V; Snawder, John E; Kriech, Anthony J; Cavallari, Jennifer M; McClean, Michael D; Herrick, Robert F; Blackburn, Gary R; Olsen, Larry D

    2013-01-01

    An exposure assessment of hot-mix asphalt (HMA) paving workers was conducted to determine which of four exposure scenarios impacted worker exposure and dose. Goals of this report are to present the personal-breathing zone (PBZ) data, discuss the impact of substituting the releasing/cleaning agent, and discuss work practices that resulted in the highest exposure concentration for each analyte. One-hundred-seven PBZ samples were collected from HMA paving workers on days when diesel oil was used as a releasing/cleaning agent. An additional 36 PBZ samples were collected on days when B-100 (100% biodiesel, containing no petroleum-derived products) was used as a substitute releasing/cleaning agent. Twenty-four PBZ samples were collected from a reference group of concrete workers, who also worked in outdoor construction but had no exposure to asphalt emissions. Background and field blank samples were also collected daily. Total particulates and the benzene soluble fraction were determined gravimetrically. Total organic matter was determined using gas chromatography (GC) with flame ionization detection and provided qualitative information about other exposure sources contributing to worker exposure besides asphalt emissions. Thirty-three individual polycyclic aromatic compounds (PACs) were determined using GC with time-of-flight mass spectrometry; results were presented as either the concentration of an individual PAC or a summation of the individual PACs containing either 2- to 3-rings or 4- to 6-rings. Samples were also screened for PACs containing 4- to 6-rings using fluorescence spectroscopy. Arithmetic means, medians, and box plots of the PBZ data were used to evaluate trends in the data. Box plots illustrating the diesel oil results were more variable than the B-100. Also, the highest diesel oil results were much higher in concentration than the highest B-100 results. An analysis of the highest exposure results and field notes revealed a probable association between

  15. Breathing simulator of workers for respirator performance test.

    Science.gov (United States)

    Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio

    2015-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.

  16. Fluctuation Analysis of Human Electroencephalogram

    CERN Document Server

    Hwa, R C; Hwa, Rudolph C.; Ferree, Thomas C.

    2001-01-01

    The scaling behaviors of the human electroencephalogram (EEG) time series are studied using detrended fluctuation analysis. Two scaling regions are found in nearly every channel for all subjects examined. The scatter plot of the scaling exponents for all channels (up to 129) reveals the complicated structure of a subject's brain activity. Moment analyses are performed to extract the gross features of all the scaling exponents, and another universal scaling behavior is identified. A one-parameter description is found to characterize the fluctuation properties of the nonlinear behaviors of the brain dynamics.

  17. Breathing exercises in upper abdominal surgery: a systematic review and meta-analysis Exercícios respiratórios em cirurgia abdominal alta: revisão sistemática e metanálise

    Directory of Open Access Journals (Sweden)

    Samantha T. Grams

    2012-10-01

    Full Text Available BACKGROUND: There is currently no consensus on the indication and benefits of breathing exercises for the prevention of postoperative pulmonary complications PPCs and for the recovery of pulmonary mechanics. OBJECTIVE: To undertake a systematic review of randomized and quasi-randomized studies that assessed the effects of breathing exercises on the recovery of pulmonary function and prevention of PCCs after upper abdominal surgery UAS. METHOD: Search Strategy: We searched the Physiotherapy Evidence Database PEDro, Scientific Electronic Library Online SciELO, MEDLINE, and Cochrane Central Register of Controlled Trials. Selection Criteria: We included randomized controlled trials and quasi-randomized controlled trials on pre- and postoperative UAS patients, in which the primary intervention was breathing exercises without the use of incentive inspirometers. Data Collection and Analysis: The methodological quality of the studies was rated according to the PEDro scale. Data on maximal respiratory pressures MIP and MEP, spirometry, diaphragm mobility, and postoperative complications were extracted and analyzed. Data were pooled in fixed-effect meta-analysis whenever possible. RESULTS: Six studies were used for analysis. Two meta-analyses including 66 participants each showed that, on the first day post-operative, the breathing exercises were likely to have induced MEP and MIP improvement treatment effects of 11.44 mmH2O (95%CI 0.88 to 22 and 11.78 mmH2O (95%CI 2.47 to 21.09, respectively. CONCLUSION: Breathing exercises are likely to have a beneficial effect on respiratory muscle strength in patients submitted to UAS, however the lack of good quality studies hinders a clear conclusion on the subject.

  18. Lung cancer biomarkers in exhaled breath.

    Science.gov (United States)

    Amann, Anton; Corradi, Massimo; Mazzone, Peter; Mutti, Antonio

    2011-03-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Methods for early detection of lung cancer, such as computerized tomography scanning technology, often discover a large number of small lung nodules, posing a new problem to radiologists and chest physicians. The vast majority of these nodules will be benign, but there is currently no easy way to determine which nodules represent very early lung cancer. Adjuvant testing with PET imaging and nonsurgical biopsies has a low yield for these small indeterminate nodules, carries potential morbidity and is costly. Indeed, purely morphological criteria seem to be insufficient for distinguishing lung cancer from benign nodules at early stages with sufficient confidence, therefore false positives undergoing surgical resection frequently occur. A molecular approach to the diagnosis of lung cancer through the analysis of exhaled breath could greatly improve the specificity of imaging procedures. A biomarker-driven approach to signs or symptoms possibly due to lung cancer would represent a complementary tool aimed at ruling out (with known error probability) rather than diagnosing lung cancer. Volatile and nonvolatile components of the breath are being studied as biomarkers of lung cancer. Breath testing is noninvasive and potentially inexpensive. There is promise that an accurate lung cancer breath biomarker, capable of being applied clinically, will be developed in the near future. In this article, we summarize some of the rationale for breath biomarker development, review the published literature in this field and provide thoughts regarding future directions.

  19. Quantification of the thorax-to-abdomen breathing ratio for breathing motion modeling.

    Science.gov (United States)

    White, Benjamin M; Zhao, Tianyu; Lamb, James; Bradley, Jeffrey D; Low, Daniel A

    2013-06-01

    The purpose of this study was to develop a methodology to quantitatively measure the thorax-to-abdomen breathing ratio from a 4DCT dataset for breathing motion modeling and breathing motion studies. The thorax-to-abdomen breathing ratio was quantified by measuring the rate of cross-sectional volume increase throughout the thorax and abdomen as a function of tidal volume. Twenty-six 16-slice 4DCT patient datasets were acquired during quiet respiration using a protocol that acquired 25 ciné scans at each couch position. Fifteen datasets included data from the neck through the pelvis. Tidal volume, measured using a spirometer and abdominal pneumatic bellows, was used as breathing-cycle surrogates. The cross-sectional volume encompassed by the skin contour when compared for each CT slice against the tidal volume exhibited a nearly linear relationship. A robust iteratively reweighted least squares regression analysis was used to determine η(i), defined as the amount of cross-sectional volume expansion at each slice i per unit tidal volume. The sum Ση(i) throughout all slices was predicted to be the ratio of the geometric expansion of the lung and the tidal volume; 1.11. The Xiphoid process was selected as the boundary between the thorax and abdomen. The Xiphoid process slice was identified in a scan acquired at mid-inhalation. The imaging protocol had not originally been designed for purposes of measuring the thorax-to-abdomen breathing ratio so the scans did not extend to the anatomy with η(i) = 0. Extrapolation of η(i)-η(i) = 0 was used to include the entire breathing volume. The thorax and abdomen regions were individually analyzed to determine the thorax-to-abdomen breathing ratios. There were 11 image datasets that had been scanned only through the thorax. For these cases, the abdomen breathing component was equal to 1.11 - Ση(i) where the sum was taken throughout the thorax. The average Ση(i) for thorax and abdomen image datasets was found to be 1.20

  20. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    2011-11-16

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.  Created: 11/16/2011 by National Center for Chronic Disease Prevention and Health Promotion, Division of Adult and Community Health (NCCDPHP, DACH).   Date Released: 11/16/2011.

  1. Breath Figures Formation

    OpenAIRE

    Guadarrama-Cetina, J.; González-Viñas, W

    2013-01-01

    We present experimental observations of Breath Figures (BF) which are formed by the dew of water when it condenses on a cold surface. The experiments were done in specific conditions and configurations of temperature, surfaces and mixes in controlled concentration of miscibles and immiscibles substances like the salt saturated solution, alcohol and silicon oil (C_6H_18O_2Si). The hydrophobic surfaces used on those observations are thin glasses coated with ITO (Indium Tin Oxide), 3M ECG-1700 w...

  2. Time Breath of Psychological Theories

    DEFF Research Database (Denmark)

    Tateo, Luca; Valsiner, Jaan

    2015-01-01

    Psychology as a self-aspiring, ambitious, developmental science faces the crucial limit of time—both theoretically and practically. The issue of time in constructing psychology’s theories is a major unresolved metatheoretical task. This raises several questions about generalization of knowledge......: which is the time length of breath of psychological theories? Which is the temporal dimension of psychological processes? In this article we discuss the role of different axiomatic assumptions about time in the construction of psychological theories. How could different theories include a concept...... of time—or fail to do that? How can they generalize with respect to time? The different conceptions of time often remain implicit, while shaping the concepts used in understanding psychological processes. Any preconception about time in human development will foster the generalizability of theory, as well...

  3. Metallo-Dielectric Multilayer Structure for Lactose Malabsorption Diagnosis through H2 Breath Test

    CERN Document Server

    Cioffi, N; De Sario, M; D'Orazio, A; Petruzzelli, V; Prudenzano, F; Scalora, M; Trevisi, S; Vincenti, M A

    2007-01-01

    A metallo-dielectric multilayer structure is proposed as a novel approach to the analysis of lactose malabsorption. When lactose intolerance occurs, the bacterial overgrowth in the intestine causes an increased spontaneous emission of H2 in the human breath. By monitoring the changes in the optical properties of a multilayer palladium-polymeric structure, one is able to detect the patient's disease and the level of lactose malabsorption with high sensitivity and rapid response.

  4. The Influence of Age on Interaction between Breath-Holding Test and Single-Breath Carbon Dioxide Test.

    Science.gov (United States)

    Trembach, Nikita; Zabolotskikh, Igor

    2017-01-01

    Introduction. The aim of the study was to compare the breath-holding test and single-breath carbon dioxide test in evaluation of the peripheral chemoreflex sensitivity to carbon dioxide in healthy subjects of different age. Methods. The study involved 47 healthy volunteers between ages of 25 and 85 years. All participants were divided into 4 groups according to age: 25 to 44 years (n = 14), 45 to 60 years (n = 13), 60 to 75 years (n = 12), and older than 75 years (n = 8). Breath-holding test was performed in the morning before breakfast. The single-breath carbon dioxide (SB-CO2) test was performed the following day. Results. No correlation was found between age and duration of breath-holding (r = 0.13) and between age and peripheral chemoreflex sensitivity to CO2 (r = 0.07). In all age groups there were no significant differences in the mean values from the breath-holding test and peripheral chemoreflex sensitivity tests. In all groups there was a strong significant inverse correlation between breath-holding test and SB-CO2 test. Conclusion. A breath-holding test reflects the sensitivity of the peripheral chemoreflex to carbon dioxide in healthy elderly humans. Increasing age alone does not alter the peripheral ventilatory response to hypercapnia.

  5. Carotta: Revealing Hidden Confounder Markers in Metabolic Breath Profiles

    Directory of Open Access Journals (Sweden)

    Anne-Christin Hauschild

    2015-06-01

    Full Text Available Computational breath analysis is a growing research area aiming at identifying volatile organic compounds (VOCs in human breath to assist medical diagnostics of the next generation. While inexpensive and non-invasive bioanalytical technologies for metabolite detection in exhaled air and bacterial/fungal vapor exist and the first studies on the power of supervised machine learning methods for profiling of the resulting data were conducted, we lack methods to extract hidden data features emerging from confounding factors. Here, we present Carotta, a new cluster analysis framework dedicated to uncovering such hidden substructures by sophisticated unsupervised statistical learning methods. We study the power of transitivity clustering and hierarchical clustering to identify groups of VOCs with similar expression behavior over most patient breath samples and/or groups of patients with a similar VOC intensity pattern. This enables the discovery of dependencies between metabolites. On the one hand, this allows us to eliminate the effect of potential confounding factors hindering disease classification, such as smoking. On the other hand, we may also identify VOCs associated with disease subtypes or concomitant diseases. Carotta is an open source software with an intuitive graphical user interface promoting data handling, analysis and visualization. The back-end is designed to be modular, allowing for easy extensions with plugins in the future, such as new clustering methods and statistics. It does not require much prior knowledge or technical skills to operate. We demonstrate its power and applicability by means of one artificial dataset. We also apply Carotta exemplarily to a real-world example dataset on chronic obstructive pulmonary disease (COPD. While the artificial data are utilized as a proof of concept, we will demonstrate how Carotta finds candidate markers in our real dataset associated with confounders rather than the primary disease (COPD

  6. Sensing the effects of mouth breathing by using 3-tesla MRI

    Science.gov (United States)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  7. Hydrogen and methane breath tests for evaluation of resistant carbohydrates

    DEFF Research Database (Denmark)

    Rumessen, J J

    1992-01-01

    This review considers in detail the background, principles, techniques, limitations and advantages of the hydrogen and methane breath tests. Resistant food carbohydrates, defined as dietary carbohydrates partly or totally escaping small intestinal assimilation, are fermented in the human colon...... carbohydrates. Methane breath tests may supplement the information gained from hydrogen measurements, but further evaluations are needed. The hydrogen breath technique is rapid, simple and non-invasive as well as non-radioactive. It may be carried out in a large number of intact individuals under physiological...

  8. Breathing pattern, thoracoabdominal motion and muscular activity during three breathing exercises

    Directory of Open Access Journals (Sweden)

    G.M. Tomich

    2007-10-01

    Full Text Available The objective of the present study was to evaluate breathing pattern, thoracoabdominal motion and muscular activity during three breathing exercises: diaphragmatic breathing (DB, flow-oriented (Triflo II incentive spirometry and volume-oriented (Voldyne incentive spirometry. Seventeen healthy subjects (12 females, 5 males aged 23 ± 5 years (mean ± SD were studied. Calibrated respiratory inductive plethysmography was used to measure the following variables during rest (baseline and breathing exercises: tidal volume (Vt, respiratory frequency (f, rib cage contribution to Vt (RC/Vt, inspiratory duty cycle (Ti/Ttot, and phase angle (PhAng. Sternocleidomastoid muscle activity was assessed by surface electromyography. Statistical analysis was performed by ANOVA and Tukey or Friedman and Wilcoxon tests, with the level of significance set at P < 0.05. Comparisons between baseline and breathing exercise periods showed a significant increase of Vt and PhAng during all exercises, a significant decrease of f during DB and Voldyne, a significant increase of Ti/Ttot during Voldyne, and no significant difference in RC/Vt. Comparisons among exercises revealed higher f and sternocleidomastoid activity during Triflo II (P < 0.05 with respect to DB and Voldyne, without a significant difference in Vt, Ti/Ttot, PhAng, or RC/Vt. Exercises changed the breathing pattern and increased PhAng, a variable of thoracoabdominal asynchrony, compared to baseline. The only difference between DB and Voldyne was a significant increase of Ti/Ttot compared to baseline. Triflo II was associated with higher f values and electromyographic activity of the sternocleidomastoid. In conclusion, DB and Voldyne showed similar results while Triflo II showed disadvantages compared to the other breathing exercises.

  9. A Human Body Analysis System

    Directory of Open Access Journals (Sweden)

    Girondel Vincent

    2006-01-01

    Full Text Available This paper describes a system for human body analysis (segmentation, tracking, face/hands localisation, posture recognition from a single view that is fast and completely automatic. The system first extracts low-level data and uses part of the data for high-level interpretation. It can detect and track several persons even if they merge or are completely occluded by another person from the camera's point of view. For the high-level interpretation step, static posture recognition is performed using a belief theory-based classifier. The belief theory is considered here as a new approach for performing posture recognition and classification using imprecise and/or conflicting data. Four different static postures are considered: standing, sitting, squatting, and lying. The aim of this paper is to give a global view and an evaluation of the performances of the entire system and to describe in detail each of its processing steps, whereas our previous publications focused on a single part of the system. The efficiency and the limits of the system have been highlighted on a database of more than fifty video sequences where a dozen different individuals appear. This system allows real-time processing and aims at monitoring elderly people in video surveillance applications or at the mixing of real and virtual worlds in ambient intelligence systems.

  10. Current breathomics-a review on data pre-processing techniques and machine learning in metabolomics breath analysis

    DEFF Research Database (Denmark)

    Smolinska, A.; Hauschild, A. C.; Fijten, R. R. R.

    2014-01-01

    been extensively developed. Yet, the application of machine learning methods for fingerprinting VOC profiles in the breathomics is still in its infancy. Therefore, in this paper, we describe the current state of the art in data pre-processing and multivariate analysis of breathomics data. We start...... different conditions (e.g. disease stage, treatment). Independently of the utilized analytical method, the most important question, 'which VOCs are discriminatory?', remains the same. Answers can be given by several modern machine learning techniques (multivariate statistics) and, therefore, are the focus...

  11. A joint computational respiratory neural network-biomechanical model for breathing and airway defensive behaviors

    Directory of Open Access Journals (Sweden)

    Russell eO'Connor

    2012-07-01

    Full Text Available Data-driven computational neural network models have been used to study mechanisms for generating the motor patterns for breathing and breathing related behaviors such as coughing. These models have commonly been evaluated in open loop conditions or with feedback of lung volume simply represented as a filtered version of phrenic motor output. Limitations of these approaches preclude assessment of the influence of mechanical properties of the musculoskeletal system and motivated development of a biomechanical model of the respiratory muscles, airway, and lungs using published measures from human subjects. Here we describe the model and some aspects of its behavior when linked to a computational brainstem respiratory network model for breathing and airway defensive behavior composed of discrete integrate and fire populations. The network incorporated multiple circuit paths and operations for tuning inspiratory drive suggested by prior work. Results from neuromechanical system simulations included generation of a eupneic-like breathing pattern and the observation that increased respiratory drive and operating volume result in higher peak flow rates during cough, even when the expiratory drive is unchanged, or when the expiratory abdominal pressure is unchanged. Sequential elimination of the model’s sources of inspiratory drive during cough also suggested a role for disinhibitory regulation via tonic expiratory neurons, a result that was subsequently supported by an analysis of in vivo data. Comparisons with antecedent models, discrepancies with experimental results, and some model limitations are noted.

  12. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Compressed breathing gas and liquefied breathing... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing gas and liquefied breathing gas containers; minimum requirements. (a) Compressed breathing gas...

  13. The Eigenmode Analysis of Human Motion

    CERN Document Server

    Park, Juyong; Gonzalez, Marta C

    2016-01-01

    Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data carry great potential in applications such as urban planning as well as being of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion.

  14. The eigenmode analysis of human motion

    Science.gov (United States)

    Park, Juyong; Lee, Deok-Sun; González, Marta C.

    2010-11-01

    Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of the spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data has great potential in applications such as urban planning in addition to being a subject of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion.

  15. ANALYSIS OF HUMAN RESOURCES MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Anis Cecilia - Nicoleta

    2010-07-01

    Full Text Available Along with other material, financial resources, human resource is an indispensable element of each work process. The concept of human resource derives exactly from the fact that it has a limited nature and it is consumed by usage in the workplace. Any work process cannot be developed without the labour factor. Work is essentially a conscious activity specific to humans through which they release certain labour objects and transforms them according to his needs.

  16. Tongue Scrapers Only Slightly Reduce Bad Breath

    Science.gov (United States)

    ... your desktop! more... Tongue Scrapers Only Slightly Reduce Bad Breath Article Chapters Tongue Scrapers Only Slightly Reduce ... oral cavity. Reviewed: January 2012 Related Articles: Halitosis (Bad Breath) Do You Have Traveler's Breath? Does a ...

  17. Utility of overnight pulse oximetry and heart rate variability analysis to screen for sleep-disordered breathing in chronic heart failure.

    Science.gov (United States)

    Ward, Neil R; Cowie, Martin R; Rosen, Stuart D; Roldao, Vitor; De Villa, Manuel; McDonagh, Theresa A; Simonds, Anita; Morrell, Mary J

    2012-11-01

    Sleep-disordered breathing (SDB) is under diagnosed in chronic heart failure (CHF). Screening with simple monitors may increase detection of SDB in a cardiology setting. This study aimed to evaluate the accuracy of heart rate variability analysis and overnight pulse oximetry for diagnosis of SDB in patients with CHF. 180 patients with CHF underwent simultaneous polysomnography, ambulatory electrocardiography and wrist-worn overnight pulse oximetry. SDB was defined as an apnoea-hypopnoea index ≥15/h. To identify SDB from the screening tests, the per cent very low frequency increment (%VLFI) component of heart rate variability was measured with a pre-specified cutoff ≥2.23%, and the 3% oxygen desaturation index was measured with a pre-specified cutoff >7.5 desaturations/h. 173 patients with CHF had adequate sleep study data; SDB occurred in 77 (45%) patients. Heart rate variability was measurable in 78 (45%) patients with area under the %VLFI receiver operating characteristic curve of 0.50. At the ≥2.23% cutoff, %VLFI sensitivity was 58% and specificity was 48%. The 3% oxygen desaturation index was measurable in 171 (99%) patients with area under the curve of 0.92. At the pre-specified cutoff of >7.5 desaturations/h, the 3% oxygen desaturation index had a sensitivity of 97%, specificity of 32%, negative likelihood ratio of 0.08 and positive likelihood ratio of 1.42. Diagnostic accuracy was increased using a cutoff of 12.5 desaturations/h, with sensitivity of 93% and specificity of 73%. The high sensitivity and low negative likelihood ratio of the 3% oxygen desaturation index indicates that pulse oximetry would be of use as a simple screening test to rule out SDB in patients with CHF in a cardiology setting. The %VLFI component of heart rate variability is not suitable for detection of SDB in CHF.

  18. Intervention program in college instrumental musicians, with kinematics analysis of cello and flute playing: a combined program of yogic breathing and muscle strengthening-flexibility exercises.

    Science.gov (United States)

    Lee, Sang-Hie; Carey, Stephanie; Dubey, Rajiv; Matz, Rachel

    2012-06-01

    College musicians encounter health risks not dissimilar to those of professional musicians. Fifteen collegiate instrumental musicians participated in the intervention program of yogic-breathing and muscle-strengthening and flexibility exercises for 8 weeks. Pre- and post-intervention data from the Health-Pain-Injury Inventory (HPI) and the Physical & Musical-Performance Efficacy Assessment Survey (PME) were analyzed for the effects of the program on the musicians' physical and musical-performance efficacy. HPI results showed that the majority of our sample had healthy lifestyles and minimal pain and injuries but irregular eating and exercise habits. The pre-intervention PME data showed a high level of musical efficacy (i.e., awareness of music technique, tone, and flow) but a low-level of physical efficacy (i.e., awareness of posture, tension, and movement flexibility). Post-intervention data showed that the program improved physical efficacy by increased awareness of posture and tension. In 2 volunteer musicians, kinematics motion analysis was conducted for exploratory purposes. Our cellist played the scale using a larger range of motion (ROM) in right shoulder flexion and abduction and slightly increased rotation while keeping decreased right elbow ROM after the intervention program. The flutist shifted the body weight from one foot to the other more in the second playing post-intervention. These changes can be attributed to the increased physical efficacy that allowed freedom to express musicality. Findings from these case scenarios provide empirically based hypotheses for further study. We share our experience so that others may use our model and instruments to develop studies with larger samples.

  19. BREATHE to Understand©

    Science.gov (United States)

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  20. Electromagnetic respiratory effort harvester: human testing and metabolic cost analysis.

    Science.gov (United States)

    Shahhaidar, E; Padasdao, B; Romine, R; Stickley, C; Lubecke, O Boric

    2015-03-01

    Remote health monitoring is increasingly recognized as a valuable tool in chronic disease management. Continuous respiratory monitoring could be a powerful tool in managing chronic diseases, however it is infrequently performed because of obtrusiveness and inconvenience of the existing methods. The movements of the chest wall and abdominal area during normal breathing can be monitored and harvested to enable self-powered wearable biosensors for continuous remote monitoring. This paper presents human testing results of a light-weight (30 g), wearable respiratory effort energy harvesting sensor. The harvester output voltage, power, and its metabolic burden, are measured on twenty subjects in two resting and exercise conditions each lasting 5 min. The system includes two off-the-shelf miniature electromagnetic generators harvesting and sensing thoracic and abdominal movements. Modules can be placed in series to increase the output voltage for rectification purposes. Electromagnetic respiratory effort harvester/sensor system can produce up to 1.4 V, 6.44 mW, and harvests 30.4 mJ during a 5-min exercise stage. A statistical paired t-test analysis of the calculated EE confirmed there is no significant change ( P > 0.05 ) in the metabolic rate of subjects wearing the electromagnetic harvester and biosensor.

  1. Directed proteomic analysis of the human nucleolus

    DEFF Research Database (Denmark)

    Andersen, Jens S; Lyon, Carol E; Fox, Archa H

    2002-01-01

    of their structure and function remain uncharacterized. RESULTS: We report a proteomic analysis of human nucleoli. Using a combination of mass spectrometry (MS) and sequence database searches, including online analysis of the draft human genome sequence, 271 proteins were identified. Over 30% of the nucleolar...

  2. Human Capital Development: Comparative Analysis of BRICs

    Science.gov (United States)

    Ardichvili, Alexandre; Zavyalova, Elena; Minina, Vera

    2012-01-01

    Purpose: The goal of this article is to conduct macro-level analysis of human capital (HC) development strategies, pursued by four countries commonly referred to as BRICs (Brazil, Russia, India, and China). Design/methodology/approach: This analysis is based on comparisons of macro indices of human capital and innovativeness of the economy and a…

  3. Human Capital Development: Comparative Analysis of BRICs

    Science.gov (United States)

    Ardichvili, Alexandre; Zavyalova, Elena; Minina, Vera

    2012-01-01

    Purpose: The goal of this article is to conduct macro-level analysis of human capital (HC) development strategies, pursued by four countries commonly referred to as BRICs (Brazil, Russia, India, and China). Design/methodology/approach: This analysis is based on comparisons of macro indices of human capital and innovativeness of the economy and a…

  4. Metagenomic Analysis of the Human Gut Microbiome

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha

    Understanding the link between the human gut microbiome and human health is one of the biggest scientific challenges in our decade. Because 90% of our cells are bacteria, and the microbial genome contains 200 times more genes than the human genome, the study of the human microbiome has...... the potential to impact many areas of our health. This PhD thesis is the first study to generate a large amount of experimental data on the DNA and RNA of the human gut microbiome. This was made possible by our development of a human gut microbiome array capable of profiling any human gut microbiome. Analysis...... of our results changes the way we link the gut microbiome with diseases. Our results indicate that inflammatory diseases will affect the ecological system of the human gut microbiome, reducing its diversity. Classification analysis of healthy and unhealthy individuals demonstrates that unhealthy...

  5. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  6. Efficacy of device-guided breathing for hypertension in blinded, randomized, active-controlled trials : a meta-analysis of individual patient data

    NARCIS (Netherlands)

    Landman, Gijs W. D.; van Hateren, Kornelis J. J.; van Dijk, Peter R.; Logtenberg, Susan J. J.; Houweling, Sebastiaan T.; Groenier, Klaas H.; Bilo, Henk J. G.; Kleefstra, Nanne

    2014-01-01

    IMPORTANCE: Device-guided breathing (DGB) is recommended by the American Heart Association for its blood pressure-lowering effects. Most previous studies that showed beneficial effects on blood pressure had low methodological quality and only investigated short-term blood pressure effects. OBJECTIVE

  7. Detection of gaseous compounds by needle trap sampling and direct thermal-desorption photoionization mass spectrometry: concept and demonstrative application to breath gas analysis.

    Science.gov (United States)

    Kleeblatt, Juliane; Schubert, Jochen K; Zimmermann, Ralf

    2015-02-01

    A fast detection method to analyze gaseous organic compounds in complex gas mixtures was developed, using a needle trap device (NTD) in conjunction with thermal-desorption photoionization time-of-flight mass spectrometry (TD-PI-TOFMS). The mass spectrometer was coupled via a deactivated fused silica capillary to an injector of a gas chromatograph. In the hot injector, the analytes collected on the NTD were thermally desorbed and directly transferred to the PI-TOFMS ion source. The molecules are softly ionized either by single photon ionization (SPI, 118 nm) or by resonance enhanced multiphoton ionization (REMPI, 266 nm), and the molecular ion signals are detected in the TOF mass analyzer. Analyte desorption and the subsequent PI-TOFMS detection step only lasts ten seconds. The specific selectivity of REMPI (i.e., aromatic compounds) and universal ionization characteristics render PI-MS as a promising detection system. As a first demonstrative application, the alveolar phase breath gas of healthy, nonsmoking subjects was sampled on NTDs. While smaller organic compounds such as acetone, acetaldehyde, isoprene, or cysteamine can be detected in the breath gas with SPI, REMPI depicts the aromatic substances phenol and indole at 266 nm. In the breath gas of a healthy, smoking male subject, several xenobiotic substances such as benzene, toluene, styrene, and ethylbenzene can be found as well. Furthermore, the NTD-REMPI-TOFMS setup was tested for breath gas taken from a mechanically ventilated pig under continuous intravenous propofol (2,6-diisopropylphenol, narcotic drug) infusion.

  8. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS.

    Science.gov (United States)

    Turner, Claire; Spanel, Patrik; Smith, David

    2006-04-01

    Selected ion flow tube mass spectrometry, SIFT-MS, has been used to monitor the volatile compounds in the exhaled breath of 30 volunteers (19 males, 11 females) over a 6 month period. Volunteers provided breath samples each week between 8:45 am and 1 pm (before lunch), and the concentrations of several trace compounds were obtained. In this paper the focus is on ammonia, acetone and propanol. It was found that the concentration distributions of these compounds in breath were close to log-normal. The median ammonia level estimated as a geometric mean for all samples was 833 parts per billion (ppb) with a multiplicative standard deviation of 1.62, the values ranging from 248 to 2935 ppb. Breath ammonia clearly increased with increasing age in this volunteer cohort. The geometric mean acetone level for all samples was 477 parts per billion (ppb) with a multiplicative standard deviation of 1.58, the values ranging from 148 to 2744 ppb. The median propanol level for all samples was 18 ppb, the values ranging from 0 to 135 ppb. A weak but significant correlation between breath propanol and acetone levels is apparent in the data. The findings indicate the potential value of SIFT-MS as a non-invasive breath analysis technique for investigating volatile compounds in human health and in the diseased state.

  9. Analysis of human emotion in human-robot interaction

    Science.gov (United States)

    Blar, Noraidah; Jafar, Fairul Azni; Abdullah, Nurhidayu; Muhammad, Mohd Nazrin; Kassim, Anuar Muhamed

    2015-05-01

    There is vast application of robots in human's works such as in industry, hospital, etc. Therefore, it is believed that human and robot can have a good collaboration to achieve an optimum result of work. The objectives of this project is to analyze human-robot collaboration and to understand humans feeling (kansei factors) when dealing with robot that robot should adapt to understand the humans' feeling. Researches currently are exploring in the area of human-robot interaction with the intention to reduce problems that subsist in today's civilization. Study had found that to make a good interaction between human and robot, first it is need to understand the abilities of each. Kansei Engineering in robotic was used to undergo the project. The project experiments were held by distributing questionnaire to students and technician. After that, the questionnaire results were analyzed by using SPSS analysis. Results from the analysis shown that there are five feelings which significant to the human in the human-robot interaction; anxious, fatigue, relaxed, peaceful, and impressed.

  10. Breath of hospitality.

    Science.gov (United States)

    Škof, Lenart

    2016-12-01

    In this paper we outline the possibilities of an ethic of care based on our self-affection and subjectivity in the ethical spaces between-two. In this we first refer to three Irigarayan concepts - breath, silence and listening from the third phase of her philosophy, and discuss them within the methodological framework of an ethics of intersubjectivity and interiority. Together with attentiveness, we analyse them as four categories of our ethical becoming. Furthermore, we argue that self-affection is based on our inchoate receptivity for the needs of the other(s) and is thus dialectical in its character. In this we critically confront some epistemological views of our ethical becoming. We wind up this paper with a proposal for an ethics towards two autonomous subjects, based on care and our shared ethical becoming - both as signs of our deepest hospitality towards the other.

  11. Breathing-control lowers blood pressure.

    Science.gov (United States)

    Grossman, E; Grossman, A; Schein, M H; Zimlichman, R; Gavish, B

    2001-04-01

    We hypothesise that routinely applied short sessions of slow and regular breathing can lower blood pressure (BP). Using a new technology BIM (Breathe with Interactive Music), hypertensive patients were guided towards slow and regular breathing. The present study evaluates the efficacy of the BIM in lowering BP. We studied 33 patients (23M/10F), aged 25-75 years, with uncontrolled BP. Patients were randomised into either active treatment with the BIM (n = 18) or a control treatment with a Walkman (n = 15). Treatment at home included either musically-guided breathing exercises with the BIM or listening to quiet music played by a Walkman for 10 min daily for 8 weeks. BP and heart rate were measured both at the clinic and at home with an Omron IC BP monitor. Clinic BP levels were measured at baseline, and after 4 and 8 weeks of treatment. Home BP measurements were taken daily, morning and evening, throughout the study. The two groups were matched by initial BP, age, gender, body mass index and medication status. The BP change at the clinic was -7.5/-4.0 mm Hg in the active treatment group, vs -2.9/-1.5 mm Hg in the control group (P = 0.001 for systolic BP). Analysis of home-measured data showed an average BP change of -5.0/-2.7 mm Hg in the active treatment group and -1.2/+0.9 mm Hg in the control group. Ten out of 18 (56%) were defined as responders in the active treatment group but only two out of 14 (14%) in the control group (P = 0.02). Thus, breathing exercise guided by the BIM device for 10 min daily is an effective non-pharmacological modality to reduce BP.

  12. Breathing abnormalities in a female mouse model of Rett syndrome.

    Science.gov (United States)

    Johnson, Christopher M; Cui, Ningren; Zhong, Weiwei; Oginsky, Max F; Jiang, Chun

    2015-09-01

    Rett syndrome (RTT) is a female neurodevelopmental disease with breathing abnormalities. To understand whether breathing defects occur in the early lives of a group of female Mecp2(+/-) mice, a mouse model of RTT, and what percentage of mice shows RTT-like breathing abnormality, breathing activity was measured by plethysmography in conscious mice. Breathing frequency variation and central apnea in a group of Mecp2(+/-) females displayed a distribution pattern similar to Mecp2(-/Y) males, while the rest resembled the wild-type mice. Similar results were obtained using the k-mean clustering statistics analysis. With two independent methods, about 20% of female Mecp2(+/-) mice showed RTT-like breathing abnormalities that began as early as 3 weeks of age in the Mecp2(+/-) mice, and were suppressed with 3% CO2. The finding that only a small proportion of Mecp2(+/-) mice develops RTT-like breathing abnormalities suggests incomplete allele inactivation in the RTT-model Mecp2(+/-) mice.

  13. Data Mining Techniques Applied to Hydrogen Lactose Breath Test.

    Science.gov (United States)

    Rubio-Escudero, Cristina; Valverde-Fernández, Justo; Nepomuceno-Chamorro, Isabel; Pontes-Balanza, Beatriz; Hernández-Mendoza, Yoedusvany; Rodríguez-Herrera, Alfonso

    2017-01-01

    Analyze a set of data of hydrogen breath tests by use of data mining tools. Identify new patterns of H2 production. Hydrogen breath tests data sets as well as k-means clustering as the data mining technique to a dataset of 2571 patients. Six different patterns have been extracted upon analysis of the hydrogen breath test data. We have also shown the relevance of each of the samples taken throughout the test. Analysis of the hydrogen breath test data sets using data mining techniques has identified new patterns of hydrogen generation upon lactose absorption. We can see the potential of application of data mining techniques to clinical data sets. These results offer promising data for future research on the relations between gut microbiota produced hydrogen and its link to clinical symptoms.

  14. Flute ``breath support'' perception and its acoustical correlates

    Science.gov (United States)

    Cossette, Isabelle A.; Sabourin, Patrick

    2001-05-01

    Music educators and performers commonly refer to ``breath support'' in flute playing, yet the term ``support'' is neither well-defined nor consistently used. Different breathing strategies used by professional flautists who were instructed to play with and without support were previously identified by the authors. In the current study, 14 musical excerpts with and without support were recorded by five professional flautists. Eleven professional flautists listened to the recordings in a random order and ranked (1 to 6) how much of the following sound qualities they judged to be in each example: support, intonation, control and musical expressiveness. Answers to the test showed that musical expressiveness was associated more closely with the supported excerpts than the answers about support itself. The ratings for each sound quality were highly intercorrelated. Acoustical parameters were analyzed (frequency and centroid variation within each note) and compared with the results of the perception test in order to better understand how the acoustical and psychological variables were related. The acoustical analysis of the central part of the notes did not show evident correlation with the answers of the perception test. [Work funded by the Social Sciences and Humanities Research Council of Canada.

  15. Analysis of Human Communication during Assembly Tasks.

    Science.gov (United States)

    1986-06-01

    AD-A7l 43 ANALYSIS OF HUMAN COMMUNICATION DURING ASSEMBLY TASKS in1(U) CRNEGIE-MELLO UNIY PITTSBURGH PA ROBOTICS INST UNCLSSIIEDK S BARBER ET AL...ao I Dur~~~~IngAbcbyTs; 7c .S:in i lSAo .0. Analysis of Human Communication During Assembly Tasks K. Suzanne Barber and Gerald J. Agin CMU-RI-TR-86-1...TYPE or REPORT & PE-Rioo CevCZaz Analysis of Human Communication During Assembly Inlterim Tasks I . PERFORMING 00RG. REPORT NUMBER 1. £UT~oOR~e) IL

  16. Work of Breathing Limits for Heliox Breathing

    Science.gov (United States)

    2010-11-01

    UBA; and Category 5. Semiclosed Circuit, Ejector or Pump-Driven UBA. Table 2. Limits for WOB/VT presented by two European standards. standard...it must be borne in mind that the statistical analysis will verify whether a ―measured average is below a given limit, rather than whether such a...1.76 + 0.2 · 2.776‡ / 5 = 1.76 + 0.25 = 2.01 kPa. With typical statistical analysis , the sample mean must be below a limit. Thus, the maximum sample

  17. Human Reliability Analysis for Digital Human-Machine Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2014-06-01

    This paper addresses the fact that existing human reliability analysis (HRA) methods do not provide guidance on digital human-machine interfaces (HMIs). Digital HMIs are becoming ubiquitous in nuclear power operations, whether through control room modernization or new-build control rooms. Legacy analog technologies like instrumentation and control (I&C) systems are costly to support, and vendors no longer develop or support analog technology, which is considered technologically obsolete. Yet, despite the inevitability of digital HMI, no current HRA method provides guidance on how to treat human reliability considerations for digital technologies.

  18. Experiments on the Microenvironment and Breathing of a Person in Isothermal and Stratified Surroundings

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Litewnicki, Michal;

    2009-01-01

    This study investigates the characteristics of human exhalation. Experiments are performed on a breathing thermal manikin in a test room. The manikin is heated, and an artificial lung is used to generate varying air flows with specific flow rates and temperatures for breathing. Smoke visualisation...... is used to show the formation, movement and disappearance of the exhalation jets from both nose and mouth. The exhalation of breathing without ventilation in the room, and with stratified surroundings (displacement ventilation) is analysed....

  19. Breath alcohol, multisensor arrays, and electronic noses

    Science.gov (United States)

    Paulsson, Nils; Winquist, Fredrik

    1997-01-01

    The concept behind a volatile compound mapper, or electronic nose, is to use the combination of multiple gas sensors and pattern recognition techniques to detect and quantify substances in gas mixtures. There are several different kinds of sensors which have been developed during recent years of which the base techniques are conducting polymers, piezo electrical crystals and solid state devices. In this work we have used a combination of gas sensitive field effect devices and semiconducting metal oxides. The most useful pattern recognition routine was found to be ANNs, which is a mathematical approximation of the human neural network. The aim of this work is to evaluate the possibility of using electronic noses in field instruments to detect drugs, arson residues, explosives etc. As a test application we have chosen breath alcohol measurements. There are several reasons for this. Breath samples are a quite complex mixture contains between 200 and 300 substances at trace levels. The alcohol level is low but still possible to handle. There are needs for replacing large and heavy mobile instruments with smaller devices. Current instrumentation is rather sensitive to interfering substances. The work so far has dealt with sampling, how to introduce ethanol and other substances in the breath, correlation measurements between the electronic nose and headspace GC, and how to evaluate the sensor signals.

  20. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  1. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    Science.gov (United States)

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  2. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    Science.gov (United States)

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  3. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  4. Visualizing Breath using Digital Holography

    Science.gov (United States)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  5. 13C-methacetin breath test parameter S for liver diseases diagnosis

    Institute of Scientific and Technical Information of China (English)

    曾文炳; 张维成; 许士元; 杨志忠; 刘纯; 朱德平; 文启彬; 申岐祥; 王先彬

    1996-01-01

    The mechanism of 13C-methacetin breath test is set forth clearly with the analysis of pharmacokinetics mode, and the measuring method of 13C-methacetin breath test and its clinical applications in the diagnosis of liver diseases are reported in detail. On the basis of comprehensive analysis of the clinical test data, the advanced diagnostic parameter S is of important significance for the application and development of breath test.

  6. Electronic Nose To Detect Patients with COPD From Exhaled Breath

    Science.gov (United States)

    Velásquez, Adriana; Durán, Cristhian M.; Gualdron, Oscar; Rodríguez, Juan C.; Manjarres, Leonardo

    2009-05-01

    To date, there is no effective tool analysis and detection of COPD syndrome, (Chronic Obstructive Pulmonary Disease) which is linked to smoking and, less frequently to toxic substances such as, the wood smoke or other particles produced by noxious gases. According to the World Health Organization (WHO) estimates of this disease show it affects more than 52 million people and kills more than 2.7 million human beings each year. In order to solve the problem, a low-cost Electronic Nose (EN) was developed at the University of Pamplona (N. S) Colombia, for this specific purpose and was applied to a sample group of patients with COPD as well as to others who were healthy. From the exhalation breath samples of these patients, the results were as expected; an appropriate classification of the patients with the disease, as well as from the healthy group was obtained.

  7. An experimental analysis of human straight walking

    Science.gov (United States)

    Li, Tao; Ceccarelli, Marco

    2013-03-01

    In this paper, an experimental analysis of human straight walking has been presented. Experiments on human walking were carried out by using Cassino tracking system which is a passive cable-based measuring system. This system is adopted because it is capable of both pose and wrench measurements with fairly simple monitoring of operation. By using experimental results, trajectories of a human limb extremity and its posture have been analyzed; forces that are exerted against cables by the limb of a person under test have been measured by force sensors as well. Furthermore, by using experimental tests, modeling and characterization of the human straight walking gait have been proposed.

  8. Culture Representation in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  9. Standardization of exhaled breath condensate (EBC) collection using a feedback regulated breathing pattern

    Science.gov (United States)

    Collection of exhaled breath condensate (EBC) fluid by cooling of expired breath is a potentially valuable approach for the detection of biomarkers associated with disease or exposure to xenobiotics. EBC is generally collected using unregulated breathing patterns, perceived to el...

  10. Task Decomposition in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  11. Exhaled Breath Condensate for Proteomic Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Sean W. Harshman

    2014-07-01

    Full Text Available Exhaled breath condensate (EBC has been established as a potential source of respiratory biomarkers. Compared to the numerous small molecules identified, the protein content of EBC has remained relatively unstudied due to the methodological and technical difficulties surrounding EBC analysis. In this review, we discuss the proteins identified in EBC, by mass spectrometry, focusing on the significance of those proteins identified. We will also review the limitations surrounding mass spectral EBC protein analysis emphasizing recommendations to enhance EBC protein identifications by mass spectrometry. Finally, we will provide insight into the future directions of the EBC proteomics field.

  12. Effects of diaphragm breathing exercise and feedback breathing exercise on pulmonary function in healthy adults

    OpenAIRE

    Yong, Min-Sik; Lee, Hae-Yong; Lee, Yun-Seob

    2017-01-01

    [Purpose] The present study investigated effects of diaphragm breathing exercise and feedback breathing exercise on respiratory function. [Subjects and Methods] Thirty-one subjects were randomly assigned to two groups; the feedback breathing exercise group and the maneuver-diaphragm exercise group. The feedback breathing exercise group was asked to breathe with feedback breathing device, and the maneuver-diaphragm exercise group was asked to perform diaphragm respiration. Respiratory function...

  13. A Systematic Approach to Multiple Breath Nitrogen Washout Test Quality

    Science.gov (United States)

    Klingel, Michelle; Pizarro, Maria Ester; Hall, Graham L.; Ramsey, Kathryn; Foong, Rachel; Saunders, Clare; Robinson, Paul D.; Webster, Hailey; Hardaker, Kate; Kane, Mica; Ratjen, Felix

    2016-01-01

    Background Accurate estimates of multiple breath washout (MBW) outcomes require correct operation of the device, appropriate distraction of the subject to ensure they breathe in a manner representative of their relaxed tidal breathing pattern, and appropriate interpretation of the acquired data. Based on available recommendations for an acceptable MBW test, we aimed to develop a protocol to systematically evaluate MBW measurements based on these criteria. Methods 50 MBW test occasions were systematically reviewed for technical elements and whether the breathing pattern was representative of relaxed tidal breathing by an experienced MBW operator. The impact of qualitative and quantitative criteria on inter-observer agreement was assessed across eight MBW operators (n = 20 test occasions, compared using a Kappa statistic). Results Using qualitative criteria, 46/168 trials were rejected: 16.6% were technically unacceptable and 10.7% were excluded due to inappropriate breathing pattern. Reviewer agreement was good using qualitative criteria and further improved with quantitative criteria from (κ = 0.53–0.83%) to (κ 0.73–0.97%), but at the cost of exclusion of further test occasions in this retrospective data analysis. Conclusions The application of the systematic review improved inter-observer agreement but did not affect reported MBW outcomes. PMID:27304432

  14. A Systematic Approach to Multiple Breath Nitrogen Washout Test Quality.

    Directory of Open Access Journals (Sweden)

    Renee Jensen

    Full Text Available Accurate estimates of multiple breath washout (MBW outcomes require correct operation of the device, appropriate distraction of the subject to ensure they breathe in a manner representative of their relaxed tidal breathing pattern, and appropriate interpretation of the acquired data. Based on available recommendations for an acceptable MBW test, we aimed to develop a protocol to systematically evaluate MBW measurements based on these criteria.50 MBW test occasions were systematically reviewed for technical elements and whether the breathing pattern was representative of relaxed tidal breathing by an experienced MBW operator. The impact of qualitative and quantitative criteria on inter-observer agreement was assessed across eight MBW operators (n = 20 test occasions, compared using a Kappa statistic.Using qualitative criteria, 46/168 trials were rejected: 16.6% were technically unacceptable and 10.7% were excluded due to inappropriate breathing pattern. Reviewer agreement was good using qualitative criteria and further improved with quantitative criteria from (κ = 0.53-0.83% to (κ 0.73-0.97%, but at the cost of exclusion of further test occasions in this retrospective data analysis.The application of the systematic review improved inter-observer agreement but did not affect reported MBW outcomes.

  15. Diaphragmatic Breathing Reduces Exercise-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Daniele Martarelli

    2011-01-01

    Full Text Available Diaphragmatic breathing is relaxing and therapeutic, reduces stress, and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices. Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxidant; therefore, in this study, we investigated the effects of diaphragmatic breathing on exercise-induced oxidative stress and the putative role of cortisol and melatonin hormones in this stress pathway. We monitored 16 athletes during an exhaustive training session. After the exercise, athletes were divided in two equivalent groups of eight subjects. Subjects of the studied group spent 1 h relaxing performing diaphragmatic breathing and concentrating on their breath in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. Results demonstrate that relaxation induced by diaphragmatic breathing increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol and the increase in melatonin. The consequence is a lower level of oxidative stress, which suggests that an appropriate diaphragmatic breathing could protect athletes from long-term adverse effects of free radicals.

  16. Oral and oronasal breathing during continuous exercise produce similar responses to ozone inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Adams, W.C.; Schelegle, E.S.; Shaffrath, J.D. (Univ. of California, Davis (USA))

    1989-09-01

    Breathing route has a profound effect on sulfur dioxide-induced pulmonary function response in human subjects. There is comparatively little evidence of the effects of oral, nasal, and oronasal breathing on ozone (O3)-induced responses in humans. In this study, six young adult males were exposed on five occasions to 0.40 parts per million (ppm) O3 while exercising continuously at one of two workloads (minute ventilation, VE, of approximately 30 and 75 l/min). The VE exposure time product was similar for all protocols. Four exposures were delivered randomly with a Hans-Rudolph respiratory valve attached to a silicone facemask, with breathing route effected with and without noseclip. A 2 x 2 analysis of variance revealed no statistically significant differences (p less than .05) across conditions in pulmonary function, exercise ventilatory pattern, or subjective symptoms responses. The fifth exposure, delivered via the same respiratory valve with mouthpiece, but without facemask, revealed significantly greater forced expiratory volume in 1 s (FEV1.0) impairment than that observed for the respiratory valve, facemask with noseclip exposure (-20.4% and -15.9%, respectively). The latter suggests partial O3 reactivity to the facemask and clean shaven facial surface of the subjects, although reduced oral scrubbing by mouthpiece-induced bypassing of the oral vestibule might account, in part, for this difference. Recent O3 uptake evidence from another laboratory, however, supports our conclusion that breathing route during moderate and heavy continuous exercise does not affect acute physiologic responses to 0.40 ppm O3.

  17. [Hardware and software for EMG recording and analysis of respiratory muscles of human].

    Science.gov (United States)

    Solnushkin, S D; Chakhman, V N; Segizbaeva, M O; Pogodin, M A; Aleksandrov, V G

    2014-01-01

    This paper presents a new hardware and software system that allows to not only record the EMG of different groups of the respiratory muscles, but also hold its amplitude-frequency analysis, which allows to determine the change in the contribution to the work of breathing of a respiratory muscles and detect early signs of fatigue of the respiratory muscles. Presented complex can be used for functional diagnostics of breath in patients and healthy people and sportsmen.

  18. 吸气式空天飞行器飞行控制方法探析%General Analysis on Flight Control Method of Air-breathing Aerospace Plane

    Institute of Scientific and Technical Information of China (English)

    姚宗信; 李仁府; 李爱军

    2015-01-01

    It is our objective to research the nonlinear control dififcult problem of the air-breathing aerospace plane with strong coupling between aerodynamics, propulsion, and structure. First, the analysis was done to understand the reason of resulting in those strong coupling and the dififculty of lfight control. Second, it was analyzed how several advanced control theory methods were applied to the air-breathing aerospace plane. Third, the method of designing two controllers based respectively on high-order sliding mode and robust-adaptive was explored for the air-breathing aerospace plane, and the primary idea of two controllers was embodied. Finally, the potential of two controllers was evaluated.%针对“吸气式空天飞行器(气动/动力/结构)强耦合特性引起的不确定非线性控制”问题,首先,分析了引起吸气式空天飞行器强耦合特性的原因及其对飞行控制的不利影响;然后,剖析了可用于吸气式空天飞行器控制的四种典型理论方法;之后,针对吸气式空天飞行器模型的非线性和不确定性,探索了基于高阶滑模和鲁棒自适应两种理论的飞行控制方法,给出了具体的控制器设计思想;最后,评价了两种控制方法应用于吸气式空天飞行器的优势和局限性。

  19. 呼出气冷凝液检测在肺癌中的研究与应用%Investigation and application of exhaled breath condensate analysis in lung cancer

    Institute of Scientific and Technical Information of China (English)

    董良良; 应可净

    2012-01-01

    Early detection and early treatment are effective measures to reduce lung cancer incidence and mortality.The use of chest radiography,sputum cytology or low-dose computed tomography scan is beneficial to lung cancer screening while the effect on lung cancer mortality is still uncertain.Exhaled breath condensate collection is a simple,new,and noninvasive technique,which allows sampling of lower respiratory tract fluid.Some studies have shown that exhaled breath condensate enables the study of a variety of biological markers with high sensitivity and specificity.Analysis of exhaled breath condensate in the future might contribute significantly to early diagnosis of lung cancer and also to evaluation of therapeutic response and prognosis.%早期发现、早期治疗是降低肺癌发病率和病死率的有效措施.传统的胸片、痰细胞学检查、低剂量CT等手段在肺癌筛查和诊断中具有一定的应用价值,但是否有助于降低肺癌病死率还有待进一步观察.呼出气冷凝液收集是一种新型、无创、简易、安全的技术,众多研究表明呼出气冷凝液检测可用来筛选灵敏性和特异性比较可靠的生物标记物,在分子水平辅助肺癌早期诊断,且在病情评估、疗效评价、预后估计等方面也起重要作用.

  20. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  1. Towards the Development of a Mobile Phonopneumogram: Automatic Breath-Phase Classification Using Smartphones.

    Science.gov (United States)

    Reyes, Bersain A; Reljin, Natasa; Kong, Youngsun; Nam, Yunyoung; Ha, Sangho; Chon, Ki H

    2016-09-01

    Correct labeling of breath phases is useful in the automatic analysis of respiratory sounds, where airflow or volume signals are commonly used as temporal reference. However, such signals are not always available. The development of a smartphone-based respiratory sound analysis system has received increased attention. In this study, we propose an optical approach that takes advantage of a smartphone's camera and provides a chest movement signal useful for classification of the breath phases when simultaneously recording tracheal sounds. Spirometer and smartphone-based signals were acquired from N = 13 healthy volunteers breathing at different frequencies, airflow and volume levels. We found that the smartphone-acquired chest movement signal was highly correlated with reference volume (ρ = 0.960 ± 0.025, mean ± SD). A simple linear regression on the chest signal was used to label the breath phases according to the slope between consecutive onsets. 100% accuracy was found for the classification of the analyzed breath phases. We found that the proposed classification scheme can be used to correctly classify breath phases in more challenging breathing patterns, such as those that include non-breath events like swallowing, talking, and coughing, and alternating or irregular breathing. These results show the feasibility of developing a portable and inexpensive phonopneumogram for the analysis of respiratory sounds based on smartphones.

  2. The development of human behavior analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Hee; Park, Geun Ok; Cheon, Se Woo; Suh, Sang Moon; Oh, In Suk; Lee, Hyun Chul; Park, Jae Chang

    1997-07-01

    In this project, which is to study on man-machine interaction in Korean nuclear power plants, we developed SACOM (Simulation Analyzer with a Cognitive Operator Model), a tool for the assessment of task performance in the control rooms using software simulation, and also develop human error analysis and application techniques. SACOM was developed to assess operator`s physical workload, workload in information navigation at VDU workstations, and cognitive workload in procedural tasks. We developed trip analysis system including a procedure based on man-machine interaction analysis system including a procedure based on man-machine interaction analysis and a classification system. We analyzed a total of 277 trips occurred from 1978 to 1994 to produce trip summary information, and for 79 cases induced by human errors time-lined man-machine interactions. The INSTEC, a database system of our analysis results, was developed. The MARSTEC, a multimedia authoring and representation system for trip information, was also developed, and techniques for human error detection in human factors experiments were established. (author). 121 refs., 38 tabs., 52 figs.

  3. Behavioural responses of Anopheles gambiae sensu stricto to components of human breath, sweat and urine depend on mixture composition and concentration

    NARCIS (Netherlands)

    Qiu, Y.T.; Smallegange, R.C.; Loon, van J.J.A.; Takken, W.

    2011-01-01

    Host-seeking behaviour of the anthropophilic malaria vector Anopheles gambiae sensu stricto (Diptera: Culicidae) is mediated predominantly by olfactory cues. Several hundreds of odour components have been identified from human emanations, but only a few have been proven to act as attractants or syne

  4. Taking a deep breath

    Directory of Open Access Journals (Sweden)

    Carlos Renato Zacharias

    2012-12-01

    be paid to language revision and reference citation. Together with its authors and readers, IJHDR contributes to the development of a kind of knowledge close to the borders of science. Therefore, to establish a valid scientific background, the articles must be clearly written, and based on sound assumptions. High-visibility for articles is a fundamental aspect desired by all authors. As an open and free access journal, IJHDR meets that condition, and we are planning to make our influence and visibility even wider. Inclusion in the major databases has paramount importance in the academic milieu, however, it should be considered as a consequence, rather than a goal. In 2013, IJHDR will chair a collaborative project with several research institutions aiming to deliver information everywhere, increasing the visibility of the published articles. Thus, now it is the time to take a deep breath, relax, and prepare you for the forthcoming work! See you in 2013!

  5. 21 CFR 862.3050 - Breath-alcohol test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... diagnosis of alcohol intoxication. (b) Classification. Class I....

  6. Breathing during REM and non-REM sleep: correlated versus uncorrelated behaviour

    Science.gov (United States)

    Kantelhardt, Jan W.; Penzel, Thomas; Rostig, Sven; Becker, Heinrich F.; Havlin, Shlomo; Bunde, Armin

    2003-03-01

    Healthy sleep can be characterized by several stages: deep sleep, light sleep, and REM sleep. Here we show that these sleep stages lead to different autonomic regulation of breathing. Using the detrended fluctuation analysis up to the fourth order we find that breath-to-breath intervals and breath volumes separated by several breaths are long-range correlated during the REM stages and during wake states. In contrast, in the non-REM stages (deep sleep and light sleep), long-range correlations are absent. This behaviour is very similar to the correlation behaviour of the heart rate during the night and may be related to the phase synchronization between heartbeat and breathing found recently. We speculate that the differences are caused by different cortically influenced control of the autonomic nervous system.

  7. Active cycle of breathing technique for cystic fibrosis.

    Science.gov (United States)

    Mckoy, Naomi A; Wilson, Lisa M; Saldanha, Ian J; Odelola, Olaide A; Robinson, Karen A

    2016-07-05

    People with cystic fibrosis experience chronic airway infections as a result of mucus build up within the lungs. Repeated infections often cause lung damage and disease. Airway clearance therapies aim to improve mucus clearance, increase sputum production, and improve airway function. The active cycle of breathing technique (also known as ACBT) is an airway clearance method that uses a cycle of techniques to loosen airway secretions including breathing control, thoracic expansion exercises, and the forced expiration technique. This is an update of a previously published review. To compare the clinical effectiveness of the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 25 April 2016. Randomised or quasi-randomised controlled clinical studies, including cross-over studies, comparing the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. Two review authors independently screened each article, abstracted data and assessed the risk of bias of each study. Our search identified 62 studies, of which 19 (440 participants) met the inclusion criteria. Five randomised controlled studies (192 participants) were included in the meta-analysis; three were of cross-over design. The 14 remaining studies were cross-over studies with inadequate reports for complete assessment. The study size ranged from seven to 65 participants. The age of the participants ranged from six to 63 years (mean age 22.33 years). In 13 studies, follow up lasted a single day. However, there were two long-term randomised controlled studies with follow up of one to three years. Most of the studies did not report on key quality items, and therefore, have an unclear risk of

  8. Exhaled breath condensate analysis in chronic obstructive pulmonary disease%呼出气冷凝液在慢性阻塞性肺疾病中的研究进展

    Institute of Scientific and Technical Information of China (English)

    施晓娟; 阎锡新

    2016-01-01

    Exhaled breath condensate (EBC) analysis,as a new way of studying pulmonary diseases,has the advantages of being noninvasive,easily carrying out,real-time monitoring,repeatability and better patients acceptance.Analyzing biomarkers in EBC which reflect airway inflammation and oxidative stress could assist in the diagnosis of chronic obstructive pulmonary disease(COPD),evaluating response to therapies and defining the prognosis of individual patients.Furthermore,identification of novel inflammatory mediators in EBC may cast new light on the pathogenesis of COPD and identify new therapeutic targets.%呼出气冷凝液(exhaled breath condensate,EBC)检测作为一种新的研究肺部疾病的方法,具有无创、简便易行、实时监测、重复性好、患者易耐受等优点.对COPD患者EBC中反映气道炎症、氧化应激状态的生物标记物进行研究有助于COPD的诊断及对药物治疗反应的评估和患者预后的评价.而且EBC中异常炎症介质的研究可能为COPD发病机制开启新思路并发现新的治疗靶点.

  9. Advancing Usability Evaluation through Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2005-07-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues.

  10. Fractal Analysis on Human Behaviors Dynamics

    CERN Document Server

    Fan, Chao; Zha, Yi-Long

    2010-01-01

    The study of human dynamics has attracted much interest from many fields recently. In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The Hurst exponents and length of non-periodic cycles calculated through Rescaled Range Analysis indicate that the time series of human behaviors is fractal with long-range correlation. Then the time series are converted to complex networks by visibility graph algorithm. The topological properties of the networks, such as scale-free property, small-world effect and hierarchical structure imply that close relationships exist between the amounts of repetitious actions performed by people during certain periods of time, especially for some important days. Finally, the networks obtained are verified to be not fractal and self-similar using box-counting method. Our work implies the intrinsic regularity shown in human collective repetitious behaviors.

  11. Electronic-nose applications in forensic science and for analysis of volatile biomarkers in the human breath

    Science.gov (United States)

    AD Wilson

    2014-01-01

    The application of electronic-nose (E-nose) technologies in forensic science is a recent new development following a long history of progress in the development of diverse applications in the related biomedical and pharmaceutical fields. Data from forensic analyses must satisfy the needs and requirements of both the scientific and legal communities. The type of data...

  12. 拉玛泽呼吸法在产程中的观察分析%A observation and analysis on Lamaze breathing during the process of labor

    Institute of Scientific and Technical Information of China (English)

    罗冰贤; 何华聪; 黎紫玲

    2013-01-01

    目的 观察拉玛泽呼吸法在产程中的应用效果.方法 选择2010年2月至2013年2月我院阴道试产产妇240例为研究对象,对照组采用常规护理,实验组给予拉玛泽呼吸法,观察比较两组疼痛程度、剖宫产率、产后出血和新生儿窒息.结果 实验组疼痛程度(3.63±1.02)降低,产妇剖宫产率(15.00%)降低,其产后出血率(3.33%)降低,新生儿窒息率(7.50%)降低,与对照组患者比较,P< 0.05,差异有统计学意义.结论 使用拉玛泽呼吸法可以减轻产妇的疼痛,减少产后出血和新生儿窒息,降低剖宫产率,具有较高的优势.%Objective To observe the effect of Lamaze breathing during the process of labor.Methods 240 puerperas who gave vaginal delivery in our hospital during the period of February 2010 to February 2013 were enrolled as study subjects.The control group received routine care,while the study group received Lamaze breathing.The pain level,rate of Cesarean section,postpartum hemorrhage,and neonatal asphyxia.Results The pain level (3.63 + 1.02),and rates of Cesarean section (15.00%),postpartum hemorrhage (3.33%),and neonatal asphyxia (7.50%)were reduced in the study group,with significant differences as compared with the control group (P<0.05).Conclusions Lamaze breathing can relieve pain level in puerperas and reduce rates of postpartum hemorrhage,neonatal asphyxia,and Cesarean section.

  13. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M; Feigenberg, S [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  14. A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2011-07-01

    Full Text Available The need for improved lifetime of air-breathing proton exchange membrane (PEM fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a planar ambient air-breathing, proton exchange membrane fuel cell has been developed and used to study the effects of ambient conditions on the temperature distribution, displacement, deformation, and stresses inside the cell. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. A unique feature of the present model is to incorporate the effect of mechanical, hygro and thermal stresses into actual three-dimensional fuel cell model. The results show

  15. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  16. A young male with shortness of breath

    Directory of Open Access Journals (Sweden)

    Khan Fahmi

    2008-01-01

    Full Text Available We report a case of primary mediastinal seminoma, which presented initially with shortness of breath and a swelling in upper part of anterior chest wall. The diagnosis of primary mediastinal seminoma was established on the basis of histologic findings and was confirmed by immunohistochemical analysis. Abdominal, pelvis and cerebral CT scan, testicular ultrasound and TC-99 MDP bone scintigraphy were negative. Chemotherapy was initiated with B.E.P. protocol (Bleomycin, Etoposide, Cisplatinum; the patient received four cycles of chemotherapy. After 8 months, the patient was seen in the clinic; he was well.

  17. Sleep-disordered breathing and mortality: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Naresh M Punjabi

    2009-08-01

    Full Text Available BACKGROUND: Sleep-disordered breathing is a common condition associated with adverse health outcomes including hypertension and cardiovascular disease. The overall objective of this study was to determine whether sleep-disordered breathing and its sequelae of intermittent hypoxemia and recurrent arousals are associated with mortality in a community sample of adults aged 40 years or older. METHODS AND FINDINGS: We prospectively examined whether sleep-disordered breathing was associated with an increased risk of death from any cause in 6,441 men and women participating in the Sleep Heart Health Study. Sleep-disordered breathing was assessed with the apnea-hypopnea index (AHI based on an in-home polysomnogram. Survival analysis and proportional hazards regression models were used to calculate hazard ratios for mortality after adjusting for age, sex, race, smoking status, body mass index, and prevalent medical conditions. The average follow-up period for the cohort was 8.2 y during which 1,047 participants (587 men and 460 women died. Compared to those without sleep-disordered breathing (AHI: or=30.0 events/h sleep-disordered breathing were 0.93 (95% CI: 0.80-1.08, 1.17 (95% CI: 0.97-1.42, and 1.46 (95% CI: 1.14-1.86, respectively. Stratified analyses by sex and age showed that the increased risk of death associated with severe sleep-disordered breathing was statistically significant in men aged 40-70 y (hazard ratio: 2.09; 95% CI: 1.31-3.33. Measures of sleep-related intermittent hypoxemia, but not sleep fragmentation, were independently associated with all-cause mortality. Coronary artery disease-related mortality associated with sleep-disordered breathing showed a pattern of association similar to all-cause mortality. CONCLUSIONS: Sleep-disordered breathing is associated with all-cause mortality and specifically that due to coronary artery disease, particularly in men aged 40-70 y with severe sleep-disordered breathing. Please see later in the

  18. Breathing detection with a portable impedance measurement system: first measurements.

    Science.gov (United States)

    Cordes, Axel; Foussier, Jerome; Leonhardt, Steffen

    2009-01-01

    For monitoring the health status of individuals, detection of breathing and heart activity is important. From an electrical point of view, it is known that breathing and heart activity change the electrical impedance distribution in the human body over the time due to ventilation (high impedance) and blood shifts (low impedance). Thus, it is possible to detect both important vital parameters by measuring the impedance of the thorax or the region around lung and heart. For some measurement scenarios it is also essential to detect these parameters contactless. For instance, monitoring bus drivers health could help to limit accidents, but directly connected systems limit the drivers free moving space. One measurement technology for measuring the impedance changes in the chest without cables is the magnetic impedance tomography (MIT). This article describes a portable measurement system we developed for this scenario that allows to measure breathing contactless. Furthermore, first measurements with five volunteers were performed and analyzed.

  19. Data Mining Techniques Applied to Hydrogen Lactose Breath Test

    Science.gov (United States)

    Nepomuceno-Chamorro, Isabel; Pontes-Balanza, Beatriz; Hernández-Mendoza, Yoedusvany; Rodríguez-Herrera, Alfonso

    2017-01-01

    In this work, we present the results of applying data mining techniques to hydrogen breath test data. Disposal of H2 gas is of utmost relevance to maintain efficient microbial fermentation processes. Objectives Analyze a set of data of hydrogen breath tests by use of data mining tools. Identify new patterns of H2 production. Methods Hydrogen breath tests data sets as well as k-means clustering as the data mining technique to a dataset of 2571 patients. Results Six different patterns have been extracted upon analysis of the hydrogen breath test data. We have also shown the relevance of each of the samples taken throughout the test. Conclusions Analysis of the hydrogen breath test data sets using data mining techniques has identified new patterns of hydrogen generation upon lactose absorption. We can see the potential of application of data mining techniques to clinical data sets. These results offer promising data for future research on the relations between gut microbiota produced hydrogen and its link to clinical symptoms. PMID:28125620

  20. Exhaled breath condensate biomarkers analysis in respiratory diseases%呼出气冷凝液检测在呼吸系统疾病中的应用

    Institute of Scientific and Technical Information of China (English)

    马静; 徐永健; 刘先胜

    2010-01-01

    Exhaled breath condensatc (EBC),a novel measuring method in respiratory disease,may be used to evaluate the airway inflammation and oxidative stress via measuring the biomarker components.It is considered to be a promising method because of its advantages such as noninvasiveness,convenience and easy repeat.There have been many investigations about the role of EBC in the diagnosis,monitor and treatment evaluation of some diseases such as chronic obstructive pulmonary disease,bronchial asthma,lung tumor,interstitial lung disease and so on.This review will focus on the relevant advance in recent years.%呼出气冷凝液(exhaled breath condensate,EBC)分析是一种新兴的呼吸系统疾病检测手段,通过检测冷凝水中的生化标记物以评价气道炎症或氧化应激水平,由于其具有无创、方便、可重复等特点,被认为具有良好的发展前景.目前EBC检测在慢性阻塞性肺疾病、支气管哮喘、肺癌,间质性肺疾病等多种呼吸系统疾病的诊断、监测及疗效评价中均有相关的研究报道,本文拟对近年来的研究进展作一简要综述.

  1. Wash-out of ambient air contaminations for breath measurements.

    Science.gov (United States)

    Maurer, F; Wolf, A; Fink, T; Rittershofer, B; Heim, N; Volk, T; Baumbach, J I; Kreuer, S

    2014-06-01

    In breath analysis, ambient air contaminations are ubiquitous and difficult to eliminate. This study was designed to investigate the reduction of ambient air background by a lung wash-out with synthetic air. The reduction of the initial ambient air volatile organic compound (VOC) intensity was investigated in the breath of 20 volunteers inhaling synthetic air via a sealed full face mask in comparison to inhaling ambient air. Over a period of 30 minutes, breath analysis was conducted using ion mobility spectrometry coupled to a multi-capillary column. A total of 68 VOCs were identified for inhaling ambient air or inhaling synthetic air. By treatment with synthetic air, 39 VOCs decreased in intensity, whereas 29 increased in comparison to inhaling ambient air. In total, seven VOCs were significantly reduced (P-value ambient air contaminations from the airways by a lung wash-out with synthetic air.

  2. A technique for human error analysis (ATHEANA)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, S.E.; Ramey-Smith, A.M.; Wreathall, J.; Parry, G.W. [and others

    1996-05-01

    Probabilistic risk assessment (PRA) has become an important tool in the nuclear power industry, both for the Nuclear Regulatory Commission (NRC) and the operating utilities. Human reliability analysis (HRA) is a critical element of PRA; however, limitations in the analysis of human actions in PRAs have long been recognized as a constraint when using PRA. A multidisciplinary HRA framework has been developed with the objective of providing a structured approach for analyzing operating experience and understanding nuclear plant safety, human error, and the underlying factors that affect them. The concepts of the framework have matured into a rudimentary working HRA method. A trial application of the method has demonstrated that it is possible to identify potentially significant human failure events from actual operating experience which are not generally included in current PRAs, as well as to identify associated performance shaping factors and plant conditions that have an observable impact on the frequency of core damage. A general process was developed, albeit in preliminary form, that addresses the iterative steps of defining human failure events and estimating their probabilities using search schemes. Additionally, a knowledge- base was developed which describes the links between performance shaping factors and resulting unsafe actions.

  3. Bacterial contamination of anesthesia machines’ internal breathing-circuit-systems

    Science.gov (United States)

    Spertini, Verena; Borsoi, Livia; Berger, Jutta; Blacky, Alexander; Dieb-Elschahawi, Magda; Assadian, Ojan

    2011-01-01

    Background: Bacterial contamination of anesthesia breathing machines and their potential hazard for pulmonary infection and cross-infection among anesthetized patients has been an infection control issue since the 1950s. Disposable equipment and bacterial filters have been introduced to minimize this risk. However, the machines’ internal breathing-circuit-system has been considered to be free of micro-organisms without providing adequate data supporting this view. The aim of the study was to investigate if any micro-organisms can be yielded from used internal machines’ breathing-circuit-system. Based on such results objective reprocessing intervals could be defined. Methods: The internal parts of 40 anesthesia machines’ breathing-circuit-system were investigated. Chi-square test and logistic regression analysis were performed. An on-site process observation of the re-processing sequence was conducted. Results: Bacterial growth was found in 17 of 40 machines (43%). No significant difference was ascertained between the contamination and the processing intervals. The most common contaminants retrieved were coagulase negative Staphylococci, aerobe spore forming bacteria and Micrococcus species. In one breathing-circuit-system, Escherichia coli, and in one further Staphylococcus aureus were yielded. Conclusion: Considering the availability of bacterial filters installed on the outlet of the breathing-circuit-systems, the type of bacteria retrieved and the on-site process observation, we conclude that the contamination found is best explained by a lack of adherence to hygienic measures during and after re-processing of the internal breathing-circuit-system. These results support an extension of the re-processing interval of the anesthesia apparatus longer than the manufacturer’s recommendation of one week. However, the importance of adherence to standard hygienic measures during re-processing needs to be emphasized. PMID:22242095

  4. Respiratory pattern of diaphragmatic breathing and pilates breathing in COPD subjects

    Directory of Open Access Journals (Sweden)

    Karina M. Cancelliero-Gaiad

    2014-08-01

    Full Text Available BACKGROUND: Diaphragmatic breathing (DB is widely used in pulmonary rehabilitation (PR of patients with chronic obstructive pulmonary disease (COPD, however it has been little studied in the scientific literature. The Pilates breathing (PB method has also been used in the rehabilitation area and has been little studied in the scientific literature and in COPD. OBJECTIVES: To compare ventilatory parameters during DB and PB in COPD patients and healthy adults. METHOD: Fifteen COPD patients (COPD group and fifteen healthy patients (healthy group performed three types of respiration: natural breathing (NB, DB, and PB, with the respiratory pattern being analyzed by respiratory inductive plethysmography. The parameters of time, volume, and thoracoabdominal coordination were evaluated. After the Shapiro-Wilk normality test, ANOVA was applied followed by Tukey's test (intragroup analysis and Student's t-test (intergroup analysis; p<0.05. RESULTS: DB promoted increase in respiratory volumes, times, and SpO2 as well as decrease in respiratory rate in both groups. PB increased respiratory volumes in healthy group, with no additional benefits of respiratory pattern in the COPD group. With respect to thoracoabdominal coordination, both groups presented higher asynchrony during DB, with a greater increase in the healthy group. CONCLUSIONS: DB showed positive effects such as increase in lung volumes, respiratory motion, and SpO2 and reduction in respiratory rate. Although there were no changes in volume and time measurements during PB in COPD, this breathing pattern increased volumes in the healthy subjects and increased oxygenation in both groups. In this context, the acute benefits of DB are emphasized as a supporting treatment in respiratory rehabilitation programs.

  5. Respiratory pattern of diaphragmatic breathing and pilates breathing in COPD subjects

    Science.gov (United States)

    Cancelliero-Gaiad, Karina M.; Ike, Daniela; Pantoni, Camila B. F.; Borghi-Silva, Audrey; Costa, Dirceu

    2014-01-01

    BACKGROUND: Diaphragmatic breathing (DB) is widely used in pulmonary rehabilitation (PR) of patients with chronic obstructive pulmonary disease (COPD), however it has been little studied in the scientific literature. The Pilates breathing (PB) method has also been used in the rehabilitation area and has been little studied in the scientific literature and in COPD. OBJECTIVES: To compare ventilatory parameters during DB and PB in COPD patients and healthy adults. METHOD: Fifteen COPD patients (COPD group) and fifteen healthy patients (healthy group) performed three types of respiration: natural breathing (NB), DB, and PB, with the respiratory pattern being analyzed by respiratory inductive plethysmography. The parameters of time, volume, and thoracoabdominal coordination were evaluated. After the Shapiro-Wilk normality test, ANOVA was applied followed by Tukey's test (intragroup analysis) and Student's t-test (intergroup analysis; p<0.05). RESULTS: DB promoted increase in respiratory volumes, times, and SpO2 as well as decrease in respiratory rate in both groups. PB increased respiratory volumes in healthy group, with no additional benefits of respiratory pattern in the COPD group. With respect to thoracoabdominal coordination, both groups presented higher asynchrony during DB, with a greater increase in the healthy group. CONCLUSIONS: DB showed positive effects such as increase in lung volumes, respiratory motion, and SpO2 and reduction in respiratory rate. Although there were no changes in volume and time measurements during PB in COPD, this breathing pattern increased volumes in the healthy subjects and increased oxygenation in both groups. In this context, the acute benefits of DB are emphasized as a supporting treatment in respiratory rehabilitation programs. PMID:25075999

  6. Research on automatic human chromosome image analysis

    Science.gov (United States)

    Ming, Delie; Tian, Jinwen; Liu, Jian

    2007-11-01

    Human chromosome karyotyping is one of the essential tasks in cytogenetics, especially in genetic syndrome diagnoses. In this thesis, an automatic procedure is introduced for human chromosome image analysis. According to different status of touching and overlapping chromosomes, several segmentation methods are proposed to achieve the best results. Medial axis is extracted by the middle point algorithm. Chromosome band is enhanced by the algorithm based on multiscale B-spline wavelets, extracted by average gray profile, gradient profile and shape profile, and calculated by the WDD (Weighted Density Distribution) descriptors. The multilayer classifier is used in classification. Experiment results demonstrate that the algorithms perform well.

  7. [The human being from the point of view of animals or, "Who knows whether the breath of men goes upwards?" (Ecclesiastes 3:21)].

    Science.gov (United States)

    Arendt, D

    1999-05-01

    The question of whether animals have souls has been asked since as early as the Old Testament. Where this is believed to be true, fiction has provided interesting models in literature: The human being as seen by animals has been a popular subject since Apuleius' 'Asinus aureus' and how man appears from the perspective of a donkey or a beetle, that is to say the perspective from below, becomes controversial. Examples may be found in all languages and centuries in Jonathan Swift, Miguel Cervantes, E. T. A. Hoffmann, Ludwig Tieck, Heinrich Heine, Viktor von Scheffel, Franz Kafka and others. Résumé at the end: How does man answer this question or his own self-questioning?

  8. LOW DOSE CAPSULE BASED 13C-UREA BREATH TEST COMPARED WITH THE CONVENTIONAL 13C-UREA BREATH TEST AND INVASIVE TESTS

    Directory of Open Access Journals (Sweden)

    Rejane MATTAR

    2014-04-01

    Full Text Available Context One of the limitations of 13C-urea breath test for Helicobacter pylori infection diagnosis in Brazil is the substrate acquisition in capsule presentation. Objectives The purpose of this study was to evaluate a capsule-based 13C-urea, manipulated by the Pharmacy Division, for the clinical practice. Methods Fifty patients underwent the conventional and the capsule breath test. Samples were collected at the baseline and after 10, 20 and 30 minutes of 13C-urea ingestion. Urease and histology were used as gold standard in 83 patients. Results In a total of 50 patients, 17 were positive with the conventional 13C-urea (75 mg breath test at 10, 20 and 30 minutes. When these patients repeated breath test with capsule (50 mg, 17 were positive at 20 minutes and 15 at 10 and 30 minutes. The relative sensitivity of 13C-urea with capsule was 100% at 20 minutes and 88.24% at 10 and at 30 minutes. The relative specificity was 100% at all time intervals. Among 83 patients that underwent capsule breath test and endoscopy the capsule breath test presented 100% of sensitivity and specificity. Conclusions Capsule based breath test with 50 mg 13C-urea at twenty minutes was found highly sensitive and specific for the clinical setting. HEADINGS- Helicobacter pylori. Breath Test. Urea, analysis.

  9. Oral versus Nasal Breathing during Moderate to High Intensity Submaximal Aerobic Exercise

    Directory of Open Access Journals (Sweden)

    Chase O. LaComb

    2017-01-01

    Full Text Available Introduction: When comparing oral breathing versus nasal breathing, a greater volume of air can be transported through the oral passageway but nasal breathing may also have benefits at submaximal exercise intensities. Purpose: The purpose of this study was to determine breathing efficiency during increasing levels of submaximal aerobic exercise. Methods: Nineteen individuals (males N=9, females N=10 completed a test for maximal oxygen consumption (VO2max and on separate days 4-min treadmill runs at increasing submaximal intensities (50%, 65%, and 80% of VO2max under conditions of oral breathing or nasal breathing. Respiratory (respiration rate [RR], pulmonary ventilation [VE], metabolic (oxygen consumption [VO2], carbon dioxide production [VCO2] and efficiency measures (ventilatory equivalents for oxygen [Veq×O2-1] and carbon dioxide [Veq×CO2-1] were obtained. Data were analyzed utilizing a 2 (sex x 2 (condition x3 (intensity repeated measures ANOVA with significance accepted at p≤0.05. Results: Significant interactions existed between breathing mode and intensity such that oral breathing resulted in greater RR, VE, VO2, and VCO2 at all three submaximal intensities (p<.05.  Veq×O2-1 and Veq×CO2-1 presented findings that nasal breathing was more efficient than oral breathing during the 65% and 80% VO2max intensities (p<0.05. Conclusion: Based on this analysis, oral breathing provides greater respiratory and metabolic volumes during moderate and moderate-to-high submaximal exercise intensities, but may not translate to greater respiratory efficiency. However when all variables are considered together, it is likely that oral breathing represents the more efficient mode, particularly at higher exercise intensities.

  10. The cyanide gasp and spontaneous deep breaths.

    Science.gov (United States)

    Glogowska, M; Richardson, P S

    1973-01-01

    Stimulation of the carotid body chemoreceptors with cyanide in anaesthetized rabbits usually causes a deep breath or gasp, but only if the vagus nerves are intact. This gasp has several similarities with spontaneous deep breaths in eupnoea. In paralysed rabbits, artificially ventilated, chemoreceptor stimulation induces an augmented discharge in the phrenic nerve equivalent to a gasp. In spontaneously breathing rabbits spontaneous deep breaths are more frequent with hypoxia than with normoxia. The results are interpreted in relation to (i) positive feedback from the lungs and (ii) summation of chemoreceptor and tonic vagal drive causing augmented deep breaths.

  11. Exhaled Breath Condensate: Technical and Diagnostic Aspects

    Directory of Open Access Journals (Sweden)

    Efstathia M. Konstantinidi

    2015-01-01

    Full Text Available Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC, biomarkers, pH, asthma, gastroesophageal reflux (GERD, smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH, idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA, and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.

  12. Bridging Resilience Engineering and Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2010-06-01

    There has been strong interest in the new and emerging field called resilience engineering. This field has been quick to align itself with many existing safety disciplines, but it has also distanced itself from the field of human reliability analysis. To date, the discussion has been somewhat one-sided, with much discussion about the new insights afforded by resilience engineering. This paper presents an attempt to address resilience engineering from the perspective of human reliability analysis (HRA). It is argued that HRA shares much in common with resilience engineering and that, in fact, it can help strengthen nascent ideas in resilience engineering. This paper seeks to clarify and ultimately refute the arguments that have served to divide HRA and resilience engineering.

  13. Quantum spin liquid in a breathing kagome lattice

    Science.gov (United States)

    Schaffer, Robert; Huh, Yejin; Hwang, Kyusung; Kim, Yong Baek

    2017-02-01

    Motivated by recent experiments on the vanadium oxyfluoride material DQVOF, we examine possible spin liquid phases on a breathing kagome lattice of S =1 /2 spins. By performing a projective symmetry group analysis, we determine the possible phases for both fermionic and bosonic Z2 spin liquids on this lattice, and establish the correspondence between the two. The nature of the ground state of the Heisenberg model on the isotropic kagome lattice is a hotly debated topic, with both Z2 and U(1) spin liquids argued to be plausible ground states. Using variational Monte Carlo techniques, we show that a gapped Z2 spin liquid emerges as the clear ground state in the presence of this breathing anisotropy. Our results suggest that the breathing anisotropy helps to stabilize this spin liquid ground state, which may aid us in understanding the results of experiments and help to direct future numerical studies on these systems.

  14. [Stahl, Leibniz, Hoffmann and breathing].

    Science.gov (United States)

    Carvallo, Sarah

    2006-01-01

    At the beginning of the XVIII th century, Wilhelm Gottfried Leibniz and Friedrich Hoffmann criticize Georg Ernst Stahl's medical theory. They differenciate between unsound and true reasonings. Namely, they validate Stahl's definition of breath but extracting it from its animist basis and placing it in an epistemology obeying to the principle of sufficient reason and to the mechanical model. The stahlian discovery consists in understanding breath as a calorific ventilation against the ancient conception; the iatromechanists recognize its accuracy, but they try then to transpose it to a mechanical model of ventilation. Using it in a different epistemological context implies that they analyze the idea of discovery "true" in its contents, but "wrong" in its hypothesis. It impels to examine the epistemology of medical knowledge, as science and therapeutics, and in its links with the other scientific theories. Thus, if Leibniz as philosopher and Hoffmann as doctor consider Stahl's animism so important, it is because its discoveries question the fundamental principles of medicine.

  15. Cost effectiveness analysis of population-based serology screening and 13C-Urea breath test for Helicobacter pylori to prevent gastric cancer: A markov model

    Institute of Scientific and Technical Information of China (English)

    Feng Xie; Nan Luo; Hin-Peng Lee

    2008-01-01

    AIM: To compare the costs and effectiveness of no screening and no eradication therapy, the populationbased Hdlicobacter pylori (H pylori) serology screening with eradication therapy and 13C-Urea breath test (UBT)with eradication therapy.METHODS: A tarkov model simulation was carried out in all 237900 Chinese males with age between 35 and 44 from the perspective of the public healthcare provider in Singapore. The main outcome measures were the costs, number of gastric cancer cases prevented, life years saved, and quality-adjusted life years (QALYs)gained from screening age to death. The uncertainty surrounding the cost-effectiveness ratio was addressed by one-way sensitivity analyses.RESULTS: Compared to no screening, the incremental cost-effectiveness ratio (ICER) was $16166 per life year saved or $13571 per QALY gained for the serology screening, and $38792 per life year saved and $32525 per QALY gained for the UBT. The ICER was $477079 per life year saved or $390337 per QALY gained for the UBT compared to the serology screening. The costeffectiveness of serology screening over the UBT was robust to most parameters in the model.CONCLUSION: The population-based serology screening for H pylori was more cost-effective than the UBT in prevention of gastric cancer in Singapore Chinese males.

  16. Breathing Modes in Dusty Plasma

    Institute of Scientific and Technical Information of China (English)

    王晓钢; 王爽; 潘秋惠; 刘悦; 贺明峰

    2003-01-01

    Acoustic breathing modes of dusty plasmas have been investigated in a cylindricalsystem with an axial symmetry. The linear wave solution and a "dispersion" relation were derived.It was found that in an infinite area, the mode is reduced to a "classical" dust acoustic wave inthe region away from the center. If the dusty plasma is confined in a finite region, however, thebreathing (or heart-beating) behavior would be found as observed in many experiments.

  17. Effects of diaphragm breathing exercise and feedback breathing exercise on pulmonary function in healthy adults.

    Science.gov (United States)

    Yong, Min-Sik; Lee, Hae-Yong; Lee, Yun-Seob

    2017-01-01

    [Purpose] The present study investigated effects of diaphragm breathing exercise and feedback breathing exercise on respiratory function. [Subjects and Methods] Thirty-one subjects were randomly assigned to two groups; the feedback breathing exercise group and the maneuver-diaphragm exercise group. The feedback breathing exercise group was asked to breathe with feedback breathing device, and the maneuver-diaphragm exercise group was asked to perform diaphragm respiration. Respiratory function was evaluated when a subject sat on a chair comfortably. [Results] There was a significant difference in the functional vital capacity and slow vital capacity before and after all breathing exercises. There was a significant between-group difference in functional vital capacity. However, no between-group difference was found in slow vital capacity. [Conclusion] Diaphragm breathing exercise and feedback breathing exercise can affect respiratory function.

  18. Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry.

    Science.gov (United States)

    Dryahina, Kseniya; Španěl, Patrik; Pospíšilová, Veronika; Sovová, Kristýna; Hrdlička, Luděk; Machková, Naděžda; Lukáš, Milan; Smith, David

    2013-09-15

    Inflammatory bowel disease has a relatively large incidence in modern populations and the current diagnostic methods are either invasive or have limited sensitivity or specificity. Thus, there is a need for new non-invasive methods for its diagnosis and therapeutic monitoring, and breath analysis represents a promising direction in this area of research. Specifically, a method is needed for the absolute quantification of pentane in human breath. Selected ion flow tube mass spectrometry (SIFT-MS) has been used to study the kinetics of the O2(+) reaction with pentane. Product ions at m/z 42 and 72 were chosen as characteristic ions useful for the quantification of pentane and the reactivity of these ions with water vapour was characterized. A pilot study has been carried out of pentane in the exhaled breath of patients with Crohn's disease (CD) and ulcerative colitis (UC) and of healthy volunteers. Accurate data on the kinetics of the gas phase reaction of the O2(+•) ions with pentane have been obtained: rate coefficient 8 × 10(-10) cm(3) s(-1) (±5%) and branching ratios into the following product ions C5H12(+•) (m/z 72, 31%); C4H9(+) (m/z 57, 8%); C3H7(+) (m/z 43, 40%), C3H6(+•) (m/z 42, 21%). A method of calculation of absolute pentane concentration in exhaled breath was formulated using the count rates of the ions at m/z 32, 42, 55 and 72. Pentane was found to be significantly elevated in the breath of both the CD (mean 114 ppbv) and the UC patients (mean 84 ppbv) relative to the healthy controls (mean 40 ppbv). SIFT-MS can be used to quantify pentane in human breath in real time avoiding sample storage. This method of analysis can ultimately form the basis of non-invasive screening of inflammatory processes, including inflammatory bowel disease. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Adsorption Properties of Typical Lung Cancer Breath Gases on Ni-SWCNTs through Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Qianqian Wan

    2017-01-01

    Full Text Available A lot of useful information is contained in the human breath gases, which makes it an effective way to diagnose diseases by detecting the typical breath gases. This work investigated the adsorption of typical lung cancer breath gases: benzene, styrene, isoprene, and 1-hexene onto the surface of intrinsic and Ni-doped single wall carbon nanotubes through density functional theory. Calculation results show that the typical lung cancer breath gases adsorb on intrinsic single wall carbon nanotubes surface by weak physisorption. Besides, the density of states changes little before and after typical lung cancer breath gases adsorption. Compared with single wall carbon nanotubes adsorption, single Ni atom doping significantly improves its adsorption properties to typical lung cancer breath gases by decreasing adsorption distance and increasing adsorption energy and charge transfer. The density of states presents different degrees of variation during the typical lung cancer breath gases adsorption, resulting in the specific change of conductivity of gas sensing material. Based on the different adsorption properties of Ni-SWCNTs to typical lung cancer breath gases, it provides an effective way to build a portable noninvasive portable device used to evaluate and diagnose lung cancer at early stage in time.

  20. Patient-specific simulation of tidal breathing

    Science.gov (United States)

    Walters, M.; Wells, A. K.; Jones, I. P.; Hamill, I. S.; Veeckmans, B.; Vos, W.; Lefevre, C.; Fetitia, C.

    2016-03-01

    Patient-specific simulation of air flows in lungs is now straightforward using segmented airways trees from CT scans as the basis for Computational Fluid Dynamics (CFD) simulations. These models generally use static geometries, which do not account for the motion of the lungs and its influence on important clinical indicators, such as airway resistance. This paper is concerned with the simulation of tidal breathing, including the dynamic motion of the lungs, and the required analysis workflow. Geometries are based on CT scans obtained at the extremes of the breathing cycle, Total Lung Capacity (TLC) and Functional Residual Capacity (FRC). It describes how topologically consistent geometries are obtained at TLC and FRC, using a `skeleton' of the network of airway branches. From this a 3D computational mesh which morphs between TLC and FRC is generated. CFD results for a number of patient-specific cases, healthy and asthmatic, are presented. Finally their potential use in evaluation of the progress of the disease is discussed, focusing on an important clinical indicator, the airway resistance.

  1. Gait Correlation Analysis Based Human Identification

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x, vertical axis (y, and temporal axis (t. By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features’ dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance.

  2. Analyses of mouse breath with ion mobility spectrometry: a feasibility study.

    Science.gov (United States)

    Vautz, Wolfgang; Nolte, Jürgen; Bufe, Albrecht; Baumbach, Jörg I; Peters, Marcus

    2010-03-01

    Exhaled breath can provide comprehensive information about the metabolic state of the subject. Breath analysis carried out during animal experiments promises to increase the information obtained from a particular experiment significantly. This feasibility study should demonstrate the potential of ion mobility spectrometry for animal breath analysis, even for mice. In the framework of the feasibility study, an ion mobility spectrometer coupled with a multicapillary column for rapid preseparation was used to analyze the breath of orotracheally intubated spontaneously breathing mice during anesthesia for the very first time. The sampling procedure was validated successfully. Furthermore, the breath of four mice (2 healthy control mice, 2 with allergic airway inflammation) was analyzed. Twelve peaks were identified directly by comparison with a database. Additional mass spectrometric analyses were carried out for validation and for identification of unknown signals. Significantly different patterns of metabolites were detected in healthy mice compared with asthmatic mice, thus demonstrating the feasibility of analyzing mouse breath with ion mobility spectrometry. However, further investigations including a higher animal number for validation and identification of unknown signals are needed. Nevertheless, the results of the study demonstrate that the method is capable of rapid analyses of the breath of mice, thus significantly increasing the information obtained from each particular animal experiment.

  3. Human Reliability Analysis for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  4. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, Donna M; Scherer, Steven E; Kaul, Rajinder

    2006-01-01

    After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chr...

  5. 荒诞视角下的《息·望·忆》解读%The Analysis of Breath, Eyes, Memory the Perspective of the Aburdity

    Institute of Scientific and Technical Information of China (English)

    董菊霞

    2012-01-01

    艾薇菊·丹提卡在《息·望·忆》中成功塑造了两个海地黑人女性形象,母亲马汀及女儿索菲。马汀遭人强暴,远走他乡,但仍然无法逾越父权文化管制下的道德樊篱,最终精神分裂。索菲游离于现实与梦境的边缘,母亲的经历和“验身”行为使她趋于崩溃。马汀和索菲在异己的世界里生存,无法取得社会认同,难以倾诉,强烈的荒诞感使她们窒息。面对荒诞,马汀选择逃避,在绝望中自杀。索菲则立足现实,直面荒诞,在反抗中寻求精神解脱。%Edwidge Danticat created two black female characters successfully in Breath, Eyes, Memory, the mother Martine and her daughter Sophie. Martine was raped, and had to leave hometown. She couldn' t break down the moral barriers under the Haiti patriarchal social system. At last, she was distraught. Sophie stayed between the reality and dreams, and her mother' s experience and testing almost caused her nervous breakdown. Martine and Sophie were abandoned in an alien world, and couldn't pour out, and feh breathless with the intense feeling of the absurdity. Towards the absurdity, Martine committed suicide in despair, but Sophie was realistic, bravely faced the absurdity, and sought mental release during revolt.

  6. Tumor, Lymph node and Lymph Node-to-Tumor Displacements over a Radiotherapy Series: Analysis of Inter- and Intrafraction Variations using Active Breathing Control (ABC) in Lung Cancer

    Science.gov (United States)

    Weiss, Elisabeth; Robertson, Scott P.; Mukhopadhyay, Nitai; Hugo, Geoffrey D.

    2011-01-01

    Purpose To estimate errors in soft tissue-based image guidance due to relative changes between primary tumor (PT) and affected lymph node (LN) position and volume, and to compare the results to bony anatomy-based displacements of PTs and LNs during radiotherapy of lung cancer. Materials and Methods Weekly repeated breath hold CT scans were acquired in 17 lung cancer patients undergoing radiotherapy. PTs and affected LNs were manually contoured on all scans after rigid registration. Inter- and intrafraction displacements in the centers of mass of PTs and LNs relative to bone, and LNs relative to PTs (LN-PT) were calculated. Results The mean volume after 5 weeks was 65% for PTs and 63% for LNs. Systematic/random interfraction displacements were 2.6 – 4.6 mm/2.7 – 2.9 mm for PTs, 2.4 – 3.8 mm/1.4 – 2.7 mm for LNs, and 2.3 – 3.9 mm/1.9 – 2.8 mm for LN-PT. Systematic/random intrafraction displacements were 3 mm were observed in 67% of fractions and require a safety margin of 12 mm in lateral, 11 mm in anteroposterior and 9 mm in superior-inferior direction. LN-PT displacements displayed significant time trends (p<0.0001) and depended on the presence of pathoanatomical conditions of the ipsilateral lung, such as atelectasis. Conclusion Interfraction LN-PT displacements were mostly systematic and comparable to bony anatomy-based displacements of PTs or LNs alone. Time trends, large volume changes and the influence of pathoanatomical conditions underline the importance of soft tissue-based image guidance and the potential of plan adaptation. PMID:22197237

  7. Radium-226 whole-body gamma counting and 222Rn breath analysis: report on a subject exposed to uranium mill tailings.

    Science.gov (United States)

    Lucas, H F

    1991-02-01

    One of two boys born in September 1949 who played on U mill tailings between age 8 and 12 was diagnosed as having leukemia at age 15.5. The exposed and control subjects were well matched; they were approximately the same age and both were 1.85 m (6' 1") in height and weighed 75.2 kg (165 pounds). The result obtained by gamma spectrometric method for the exposed subject was 0 +/- 17 Bq (0 +/- 470 pCi), while that for the control subject was 4 +/- 15 Bq (100 +/- 400 pCi). The result obtained by the Rn breath method for the exposed subject was 4.4 +/- 0.7 Bq (120 +/- 20 pCi), while that for the control was 5.4 +/- 1.4 Bq (150 +/- 38 pCi). These results suggest that the 226Ra body burden of the exposed subject is within the range of those observed in subjects exposed only through normal food sources, which have a mean 226Ra content of 1.5 Bq (range: 0.4-4.4 Bq) so that no significant mill-tailing intake is indicated. The best estimate of alpha particle dose to the red marrow from 226Ra and its decay products was 0.05 mGy at age 14 and 0.10 mGy at age 38. This dose, when compared to that observed in the dial painters, suggests that the leukemia was not caused by uptake of Ra from the mill tailings.

  8. Analysis of the elderly sleep-disordered breathing and sleep disorders%老年人睡眠呼吸障碍和睡眠障碍调查分析

    Institute of Scientific and Technical Information of China (English)

    徐杰; 郭浩年; 吴晓华; 方贤成; 黄智平; 徐状

    2015-01-01

    目的 调查分析1 768例军队老年人睡眠呼吸障碍和睡眠障碍情况. 方法 采用匹兹堡睡眠质量指数( PSQI) 量表. 调查对象为军队老年人及其配偶, 共1 768例, 平均年龄 ( 82.36 ±13.21 ) 岁. 男性923例、 女性845例. 结果 睡眠呼吸障碍发生率为991/1 768 (56.1%) 例, 睡眠障碍发生率为877/1 768 (49.6%) 例, 睡眠呼吸障碍和睡眠障碍同时并存的有240/1 768 (13.6%) 例. 人群睡眠质量 (2.51 ±0.58) 分、 入睡时间 (2.22 ±0.43) 分、 睡眠时间 (1.85 ±0.84) 分、 睡眠效率 (2.31 ±0.53) 分、 睡眠障碍 (2.73 ±0.51) 分、 催眠药物 (1.86 ±0.52) 分、 日间功能 (2.21 ±0.29) 分. 结论 老年人睡眠呼吸障碍和睡眠障碍发生率高, 且易并发心脑血管疾病.%Objective Analysis of 1 768 cases among military elderly sleep-disordered breathing and sleep disorders. Methods Pittsburgh Sleep Quality Index( PSQI) scale.Survey was conducted among military elderly and their spouses,a total of 1 768 people,with an average age of 82.36 ±13.21 years.Male 923,female 845 people.Results Sleep disordered breathing was 991/1 768(56.1%)cases,sleep disorders was 877/1 768(49.6%)cases,sleep-disordered breathing and sleep disorders coex-ist are 240/1 768(13.6%)cases.People sleep quality 2.51 ±0.58 points,2.22 ±0.43 minutes to fall asleep,sleep 1.85 ±0.84 points,2.31 ±0.53 points sleep efficiency,sleep disturbances 2.73 ±0.51 points,1.86 ±0.52 points hypnotic drugs,daytime func-tion 2.21 ±0.29 points.Conclusion The elderly sleep-disordered breathing and sleep disorders incidence and complicated cardi-ovascular disease.

  9. Human action analysis with randomized trees

    CERN Document Server

    Yu, Gang; Liu, Zicheng

    2014-01-01

    This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction.

  10. TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

    Science.gov (United States)

    Chen, Chen; Han, Yi; Chen, Yan; Lai, Hung-Quoc; Zhang, Feng; Wang, Beibei; Liu, K J Ray

    2017-04-28

    In this paper, we introduce TR-BREATH, a timereversal (TR) based contact-free breathing monitoring system. It is capable of breathing detection and multi-person breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TRBREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 seconds of measurement, a mean accuracy of 99% can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of 98:65% in breathing rate estimation for a dozen people under the line-of-sight (LOS) scenario and a mean accuracy of 98:07% in breathing rate estimation of 9 people under the NLOS scenario, both with 63 seconds of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

  11. Employing components-of-variance to evaluate forensic breath test instruments.

    Science.gov (United States)

    Gullberg, Rod G

    2008-03-01

    The evaluation of breath alcohol instruments for forensic suitability generally includes the assessment of accuracy, precision, linearity, blood/breath comparisons, etc. Although relevant and important, these methods fail to evaluate other important analytical and biological components related to measurement variability. An experimental design comparing different instruments measuring replicate breath samples from several subjects is presented here. Three volunteers provided n = 10 breath samples into each of six different instruments within an 18 minute time period. Two-way analysis of variance was employed which quantified the between-instrument effect and the subject/instrument interaction. Variance contributions were also determined for the analytical and biological components. Significant between-instrument and subject/instrument interaction were observed. The biological component of total variance ranged from 56% to 98% among all subject instrument combinations. Such a design can help quantify the influence of and optimize breath sampling parameters that will reduce total measurement variability and enhance overall forensic confidence.

  12. A sigh of relief or a sigh to relieve: The psychological and physiological relief effect of deep breaths.

    Science.gov (United States)

    Vlemincx, Elke; Van Diest, Ilse; Van den Bergh, Omer

    2016-10-15

    Both animal and human research have revealed important associations between sighs and relief. Previously we argued to conceive of sighs as resetters which temporarily induce relief. The present study aimed to investigate the psychological and physiological relief effect of sighs by instructed deep breaths and spontaneous sighs compared to a control breathing maneuver. Participants completed three blocks of 40 trials during which uncertainty cues were followed by either safety cues followed by a positive picture, or danger cues followed by a negative picture. One block was presented without breathing instructions, two subsequent blocks with breathing instructions. During the presentation of the safety and danger cues, an instruction was given to either 'take a deep breath' or 'postpone the next inhalation for 2 s (breath hold). Continuously, participants rated relief and Frontalis electromyography was recorded. Trait anxiety sensitivity was assessed by the Anxiety Sensitivity Index. Self-reported relief and physiological tension were compared 5s before and after instructed deep breaths and breath holds, and before and after spontaneous deep breaths and breath holds in the respective blocks. Results show that self-reported relief following an instructed deep breath was higher than before. Physiological tension decreased following a spontaneous sigh in high anxiety sensitive persons and following a spontaneous breath hold in low anxiety sensitive persons. These results are the first to show that a deep breath relieves and, in anxiety sensitive persons, reduces physiological tension. These findings support the hypothesis that sighs are psychological and physiological resetters. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Exergetic analysis of human & natural processes

    CERN Document Server

    Banhatti, Dilip G

    2011-01-01

    Using the concept of available work or exergy, each human and natural process can be characterized by its contextual efficiency, that is, efficiency with the environment as a reference. Such an efficiency is termed exergy efficiency. Parts of the process which need to be made more efficient & less wasteful stand out in such an analysis, in contrast to an energy analysis. Any new idea for a process can be similarly characterized. This exercise naturally generates paths to newer ideas in given contexts to maximize exergy efficiency. The contextual efficiency is not just output/input, it also naturally includes environmental impact (to be minimized) and any other relevant parameter(s) to be optimized. Natural life processes in different terrestrial environments are already optimized for their environments, and act as guides, for example, in seeking to evolve sustainable energy practices in different contexts. Energy use at lowest possible temperature for each situation is a natural result. Variety of renewab...

  14. Individual Differences in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring

    2014-06-01

    While human reliability analysis (HRA) methods include uncertainty in quantification, the nominal model of human error in HRA typically assumes that operator performance does not vary significantly when they are given the same initiating event, indicators, procedures, and training, and that any differences in operator performance are simply aleatory (i.e., random). While this assumption generally holds true when performing routine actions, variability in operator response has been observed in multiple studies, especially in complex situations that go beyond training and procedures. As such, complexity can lead to differences in operator performance (e.g., operator understanding and decision-making). Furthermore, psychological research has shown that there are a number of known antecedents (i.e., attributable causes) that consistently contribute to observable and systematically measurable (i.e., not random) differences in behavior. This paper reviews examples of individual differences taken from operational experience and the psychological literature. The impact of these differences in human behavior and their implications for HRA are then discussed. We propose that individual differences should not be treated as aleatory, but rather as epistemic. Ultimately, by understanding the sources of individual differences, it is possible to remove some epistemic uncertainty from analyses.

  15. Empirical analysis of online human dynamics

    Science.gov (United States)

    Zhao, Zhi-Dan; Zhou, Tao

    2012-06-01

    Patterns of human activities have attracted increasing academic interests, since the quantitative understanding of human behavior is helpful to uncover the origins of many socioeconomic phenomena. This paper focuses on behaviors of Internet users. Six large-scale systems are studied in our experiments, including the movie-watching in Netflix and MovieLens, the transaction in Ebay, the bookmark-collecting in Delicious, and the posting in FreindFeed and Twitter. Empirical analysis reveals some common statistical features of online human behavior: (1) The total number of user's actions, the user's activity, and the interevent time all follow heavy-tailed distributions. (2) There exists a strongly positive correlation between user's activity and the total number of user's actions, and a significantly negative correlation between the user's activity and the width of the interevent time distribution. We further study the rescaling method and show that this method could to some extent eliminate the different statistics among users caused by the different activities, yet the effectiveness depends on the data sets.

  16. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity.

    Science.gov (United States)

    Sasaki, Konosuke; Maruyama, Ryoko

    2014-01-01

    Heart rate variability (HRV), the beat-to-beat alterations in heart rate, comprises sympathetic and parasympathetic nerve activities of the heart. HRV analysis is used to quantify cardiac autonomic regulation. Since respiration could be a confounding factor in HRV evaluation, some studies recommend consciously controlled breathing to standardize the method. However, it remains unclear whether controlled breathing affects HRV measurement. We compared the effects of controlled breathing on HRV with those of spontaneous breathing. In 20 healthy volunteers, we measured respiratory frequency (f), tidal volume, and blood pressure (BP) and recorded electrocardiograms during spontaneous breathing (14.8 ± 0.7 breaths/min) and controlled breathing at 15 (0.25 Hz) and 6 (0.10 Hz) breaths/min. Compared to spontaneous breathing, controlled breathing at 0.25 Hz showed a higher heart rate and a lower high-frequency (HF) component, an index of parasympathetic nerve activity, although the f was the same. During controlled breathing at 0.10 Hz, the ratio of the low frequency (LF) to HF components (LF/HF), an index of sympathetic nerve activity, increased greatly and HF decreased, while heart rate and BP remained almost unchanged. Thus, controlled breathing at 0.25 Hz, which requires mental concentration, might inhibit parasympathetic nerve activity. During controlled breathing at 0.10 Hz, LF/HF increases because some HF subcomponents are synchronized with f and probably move into the LF band. This increment leads to misinterpretation of the true autonomic nervous regulation. We recommend that the respiratory pattern of participants should be evaluated before spectral HRV analysis to correctly understand changes in autonomic nervous regulation.

  17. Computerized method to compensate for breathing body motion in dynamic chest radiographs

    Science.gov (United States)

    Matsuda, H.; Tanaka, R.; Sanada, S.

    2017-03-01

    Dynamic chest radiography combined with computer analysis allows quantitative analyses on pulmonary function and rib motion. The accuracy of kinematic analysis is directly linked to diagnostic accuracy, and thus body motion compensation is a major concern. Our purpose in this study was to develop a computerized method to reduce a breathing body motion in dynamic chest radiographs. Dynamic chest radiographs of 56 patients were obtained using a dynamic flat-panel detector. The images were divided into a 1 cm-square and the squares on body counter were used to detect the body motion. Velocity vector was measured using cross-correlation method on the body counter and the body motion was then determined on the basis of the summation of motion vector. The body motion was then compensated by shifting the images based on the measured vector. By using our method, the body motion was accurately detected by the order of a few pixels in clinical cases, mean 82.5% in right and left directions. In addition, our method detected slight body motion which was not able to be identified by human observations. We confirmed our method effectively worked in kinetic analysis of rib motion. The present method would be useful for the reduction of a breathing body motion in dynamic chest radiography.

  18. Phylogeographic analysis of human papillomavirus 58

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Human papillomavirus 58 (HPV58) is one type of HPV with high risk of causing cervical cancer. Unusually high prevalence of HPV58 has been reported in Asia, Africa and some other areas. However, due to the scattered distribution of global data, in addition to the lack of data of some HPV58 high-incidence nations and regions, like Mainland China, a comprehensive analysis of the global geographical distribution of HPV58 remains blank so far. In this study, HPV58 from the human cervical cancer tissue was detected in Mainland China, and 14 new HPV58-E6/L1 gene sequences were obtained. Moreover, phylogeographic analysis has been conducted combining the HPV58 sequences that have been deposited in GenBank since 1985. The study result shows that the sequences detected from the Shanghai, Jiangsu and Sichuan areas are homologous with those found in the past from Hong Kong and Xi’an, China, as well as Japan and other Southeast Asian areas. Furthermore, Western Africa is considered to be the "root" source of the HPV58 variant, while Mainland China and Southeast Asia are "transit points" and the new sources of HPV58 after receiving the isolates from the "root" source; like HPV16 and HPV18, the HPV58 might also be one of the major HPV types associated with the development and spread of cervical cancer.

  19. Computational Analysis of Human Blood Flow

    Science.gov (United States)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  20. A Higher Proportion of Metabolic Syndrome in Chinese Subjects with Sleep-Disordered Breathing: A Case-Control Study Based on Electrocardiogram-Derived Sleep Analysis

    Science.gov (United States)

    Tseng, Ping-Huei; Lee, Pei-Lin; Hsu, Wei-Chung; Ma, Yan; Lee, Yi-Chia; Chiu, Han-Mo; Ho, Yi-Lwun; Chen, Ming-Fong; Wu, Ming-Shiang; Peng, Chung-Kang

    2017-01-01

    Objective The prevalence of metabolic syndrome (MS) has increased rapidly in Taiwan and worldwide. We aim to determine the association between sleep-disordered breathing (SDB) and MS in a Chinese general population. Methods This case-control study recruited subjects who have undergone a prospective electrocardiogram-based cardiopulmonary coupling (CPC) sleep spectrogram as part of the periodic health check-ups at the National Taiwan University Hospital. Comprehensive anthropometrics, blood biochemistry, prevalence of MS and its individual components were compared with Bonferroni correction between 40 subjects with SDB, defined as the CPC-derived apnea–hypopnea index (CPC-AHI) >5 event/hour and 80 age- and sex-matched controls, defined as CPC-AHI <1 event/hour. MS was diagnosed based on the Adult Treatment Panel III, with a modification of waist circumference for Asians. Results Subjects with SDB were more obese with larger waist circumferences (95.1±12.9 vs. 87.3±6.9, P < .001) and borderline higher BMI (27.0±4.9 vs. 24.3±2.5, P = .002). Waist circumference was independently associated with the presence of SDB after adjustment for BMI, systolic blood pressure and fasting blood glucose in multiple regression analyses. Subjects with SDB had a higher prevalence of central obesity (72.5% vs. 42.5%, P = .002), hyperglycemia (45.0% vs. 26.3%, P = .04), MS (45.0% vs. 22.5%, P = .01) and number of MS components (2.4 ± 1.6 vs. 1.7 ± 1.4, P = .01) than the control group. Waist circumference was significantly correlated with both CPC-AHI (r = .492, P = .0013) and PSG-AHI (r = .699, P < .0001) in the SDB group. Conclusions SDB was associated with a higher prevalence of MS and its individual components, notably central obesity, in a Chinese general population. Large-scale screening of high risk population with MS to identify subjects with SDB for appropriate management is warranted. PMID:28081171

  1. Comparison of respiratory function during TIVA (romifidine, ketamine, midazolam) and isoflurane anaesthesia in spontaneously breathing ponies Part I: blood gas analysis and cardiorespiratory variables.

    Science.gov (United States)

    Steblaj, Barbara; Schauvliege, Stijn; Pavlidou, Kiriaki; Gasthuys, Frank; Savvas, Ioannis; Duchateau, Luc; Kowalczyk, Lidia; Kowalczk, Lidia; Moens, Yves

    2014-11-01

    To compare pulmonary function and gas exchange in ponies during maintenance of anaesthesia with isoflurane or by a total intravenous anaesthesia (TIVA) technique. Experimental, cross-over study. Six healthy ponies weighing mean 286 (range 233-388) ± SD 61 kg, age 13 (9-16) ± 3 years. The ponies were anaesthetized twice, a minimum of two weeks apart. Following sedation with romifidine [80 μg kg(-1) intravenously (IV)], anaesthesia was induced IV with midazolam (0.06 mg kg(-1)) and ketamine (2.5 mg kg(-1), then maintained either with inhaled isoflurane (Fe'Iso = 1.1 vol%) (T-ISO) or an IV infusion of romifidine (120 μg kg(-1) hour(-1)), midazolam (0.09 mg kg(-1) hour(-1) IV) and ketamine (3.3 mg kg(-1) hour(-1)) (T-TIVA). Ponies were placed in lateral recumbency. Breathing was spontaneous and Fi'O(2) 60%. After an instrumentation/stabilisation period of 30 minutes, arterial and mixed venous blood samples were taken simultaneously every 10 minutes for 60 minutes and analysed immediately. Oxygen extraction ratio (O(2)ER) and venous admixture were calculated. Tidal volume (TV), minute volume (MV), respiratory rate (f(R)), packed cell volume (PCV), arterial blood pressure and heart rate (HR) were measured and recorded. Data were analysed with mixed model anova (α = 0.05). Treatments were compared overall and at two selected time points (T30 and T60) using Bonferroni correction. Arterial and mixed venous partial pressures of O(2) and CO(2), and TV were significantly lower and MV and f(R) were higher in T-TIVA compared to T-ISO. Venous admixture did not differ between treatments. O(2) R was significantly higher in T-TIVA. Mean arterial pressure was higher and HR was lower in T-TIVA compared to T-ISO. Whilst arterial CO(2) was within an acceptable range during both protocols, the impairment of oxygenation was more pronounced with the T-TIVA evidenced by lower arterial and venous oxygen partial pressures. © 2014 Association of Veterinary Anaesthetists and the American

  2. Quantitative analysis of the breath-holding half-Fourier acquisition single-shot turbo spin-echo technique in abdominal MRI

    Science.gov (United States)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-01-01

    A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p < 0.05). In addition, the presence of artifacts, the image clarity and the overall image quality were excellent at TE = 128 msec (p < 0.05). In abdominal MRI, the breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.

  3. Sleep disordered breathing in pregnancy

    Directory of Open Access Journals (Sweden)

    Bilgay Izci Balserak

    2015-12-01

    Sleep disordered breathing (SDB is very common during pregnancy, and is most likely explained by hormonal, physiological and physical changes. Maternal obesity, one of the major risk factors for SDB, together with physiological changes in pregnancy may predispose women to develop SDB. SDB has been associated with poor maternal and fetal outcomes. Thus, early identification, diagnosis and treatment of SDB are important in pregnancy. This article reviews the pregnancy-related changes affecting the severity of SDB, the epidemiology and the risk factors of SDB in pregnancy, the association of SDB with adverse pregnancy outcomes, and screening and management options specific for this population.

  4. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  5. 42 CFR 84.72 - Breathing tubes; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.72...-Contained Breathing Apparatus § 84.72 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with breathing apparatus shall be designed and constructed to prevent: (a)...

  6. 42 CFR 84.85 - Breathing bags; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bags; minimum requirements. 84.85 Section...-Contained Breathing Apparatus § 84.85 Breathing bags; minimum requirements. (a) Breathing bags shall have.... (b) Breathing bags shall be constructed of materials which are flexible and resistant to...

  7. Laryngeal two-phase flow in realistic breathing conditions

    OpenAIRE

    Scheinherr, Adam; Bailly, Lucie; Boiron, Olivier; Legou, Thierry; Lagier, Aude; Caillibotte, Georges; Pichelin, Marine

    2013-01-01

    International audience; Liquid aerosols are efficient vectors for drug delivery in upper and lower respiratory tract. Characteristics of inhaled particles, flow properties, and airway morphology represent the main influential factors of the transport mechanisms. Numerous works have been carried out to characterize the airflow behaviour during human breathing [Baier, 1977; Brancatisano, 1983], and to determine the trajectories of inhaled particles through the extrathoracic region. Recent studi...

  8. POTENTIALS OF RAMAN BASED SENSOR SYSTEM FOR AN ONLINE ANALYSIS OF HUMAN INHALE AND EXHALE

    Directory of Open Access Journals (Sweden)

    T. Seeger

    2015-11-01

    Full Text Available A gas sensor based on spontaneous Raman scattering is proposed for the compositional analysis of single breath events. A description of the sensor as well as of the calibration procedure, which also allows the quantification of condensable gases, is presented. Moreover, a comprehensive characterization of the system is carried out in order to determine the measurement uncertainty. Finally, the sensor is applied to consecutive breath events and allowed measurements with 250 ms time resolution. The Raman sensor is able to detect all the major gas components, i.e. N2, O2, CO2, and H2O at ambient pressure with a high temporal resolution. Concentration fluctuations within a single breath event could be resolved.

  9. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  10. Protective supplied breathing air garment

    Science.gov (United States)

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  11. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    Science.gov (United States)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  12. Breath markers of oxidative stress in patients with unstable angina.

    Science.gov (United States)

    Phillips, Michael; Cataneo, Renee N; Greenberg, Joel; Grodman, Richard; Salazar, Manuel

    2003-01-01

    Cardiac chest pain is accompanied by oxidative stress, which generates alkanes and other volatile organic compounds (VOCs). These VOCs are excreted in the breath and could potentially provide a rational diagnostic marker of disease. The breath methylated alkane contour (BMAC), a 3-dimensional surface plot of C4-C20 alkanes and monomethylated alkanes, provides a comprehensive set of markers of oxidative stress. In this pilot study, we compared BMACs in patients with unstable angina pectoris and in healthy volunteers. Breath VOCs were analyzed in 30 patients with unstable angina confirmed by coronary angiography and in 38 age-matched healthy volunteers with no known history of heart disease (mean age +/- SD, 62.7 +/- 12.3 years and 62.5 +/- 10.0, not significant). BMACs in both groups were compared to identify the combination of VOCs that provided the best discrimination between the 2 groups. Forward stepwise entry discriminant analysis selected 8 VOCs to construct a predictive model that correctly classified unstable angina patients with sensitivity of 90% (27 of 30) and specificity of 73.7% (28 of 38). On cross-validation, sensitivity was 83.3% (25 of 30) and specificity was 71.1% (27 of 38). We conclude that the breath test distinguished between patients with unstable angina and healthy control subjects.

  13. Postural disorders in mouth breathing children: a systematic review.

    Science.gov (United States)

    Neiva, Patricia Dayrell; Kirkwood, Renata Noce; Mendes, Polyana Leite; Zabjek, Karl; Becker, Helena Gonçalves; Mathur, Sunita

    2017-07-05

    Mouth breathing syndrome can cause sleep disturbances that compromise the performance of children in school. It might also cause postural abnormalities involving the head and cervical spine; however, the association between postural abnormalities and mouth breathing in children is unclear. To assess the methodological quality of studies and determine if there is an association between mouth breathing and postural disorders in children. Databases comprised MEDLINE, CINAHL, PEDro, LILACS, EMBASE and Cochrane Central Registrar of Controlled Trials. Searches were until March 2016 and included studies that evaluated postural disorders in children diagnosed with mouth breathing. The Downs and Black checklist was used to evaluate the quality of the evidences. Ten studies were included totaling 417 children from 5 to 14 years. Two studies used the New York State Postural Rating Scale, seven used photography and one used motion capture to measure posture. The methods used to analyze the data included the Postural Analysis Software (SAPO), Fisiometer, ALCimagem and routines in MATLAB program. Quality assessment resulted in low scores (Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Political Regime and Human Capital: A Cross-Country Analysis

    Science.gov (United States)

    Klomp, Jeroen; de Haan, Jakob

    2013-01-01

    We examine the relationship between different dimensions of the political regime in place and human capital using a two-step structural equation model. In the first step, we employ factor analysis on 16 human capital indicators to construct two new human capital measures (basic and advanced human capital). In the second step, we estimate the…

  15. Political Regime and Human Capital: A Cross-Country Analysis

    Science.gov (United States)

    Klomp, Jeroen; de Haan, Jakob

    2013-01-01

    We examine the relationship between different dimensions of the political regime in place and human capital using a two-step structural equation model. In the first step, we employ factor analysis on 16 human capital indicators to construct two new human capital measures (basic and advanced human capital). In the second step, we estimate the…

  16. Political regime and human capital : A cross-country analysis

    NARCIS (Netherlands)

    Klomp, J.G.; de Haan, J.

    2013-01-01

    We examine the relationship between different dimensions of the political regime in place and human capital using a two-step structural equation model. In the first step, we employ factor analysis on 16 human capital indicators to construct two new human capital measures (basic and advanced human ca

  17. Political regime and human capital: A cross-country analysis

    NARCIS (Netherlands)

    Klomp, J.G.; Haan, de J.

    2013-01-01

    We examine the relationship between different dimensions of the political regime in place and human capital using a two-step structural equation model. In the first step, we employ factor analysis on 16 human capital indicators to construct two new human capital measures (basic and advanced human ca

  18. Political regime and human capital : A cross-country analysis

    NARCIS (Netherlands)

    Klomp, J.G.; de Haan, J.

    2013-01-01

    We examine the relationship between different dimensions of the political regime in place and human capital using a two-step structural equation model. In the first step, we employ factor analysis on 16 human capital indicators to construct two new human capital measures (basic and advanced human ca

  19. Political regime and human capital: A cross-country analysis

    NARCIS (Netherlands)

    Klomp, J.G.; Haan, de J.

    2013-01-01

    We examine the relationship between different dimensions of the political regime in place and human capital using a two-step structural equation model. In the first step, we employ factor analysis on 16 human capital indicators to construct two new human capital measures (basic and advanced human ca

  20. SU-E-J-185: A Systematic Review of Breathing Guidance in Radiation Oncology and Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, S; Keall, P [University of Sydney, Sydney (Australia); Keall, R [Hammond Care Palliative and Supportive Care Service, Sydney, NSW (Australia)

    2015-06-15

    Purpose: The advent of image-guided radiation therapy (IGRT) has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion is the use of breathing guidance systems during imaging and treatment. A review of such research had not yet been performed, it was therefore our aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: Results of online database searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with the PRISMAStatement reporting standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses) utilizing the PICOS approach (Participants, Intervention, Comparison, Outcome, Study design). Participants: Cancer patients, healthy volunteers. Intervention: Biofeedback breathing guidance systems. Comparison: No breathing guidance of the same breathing type. Outcome: Regularity of breathing signal and anatomic/tumor motion, medical image quality, radiation treatment margins and coverage, medical imaging and radiation treatment times. Study design: Quantitative and controlled prospective or retrospective trials. Results: The systematic search yielded a total of 479 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. The vast majority of investigated outcomes were significantly positively impacted by the use of breathing guidance; however, this was dependent upon the nature of the breathing guidance system and study design. In 25/27 studies significant improvements from the use of breathing guidance were observed. Conclusion: The results found here indicate that further clinical studies are warranted which quantify more comprehensively the

  1. HUMAN RELIABILITY ANALYSIS FOR COMPUTERIZED PROCEDURES

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman; Katya Le Blanc

    2011-09-01

    This paper provides a characterization of human reliability analysis (HRA) issues for computerized procedures in nuclear power plant control rooms. It is beyond the scope of this paper to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper provides a review of HRA as applied to traditional paper-based procedures, followed by a discussion of what specific factors should additionally be considered in HRAs for computerized procedures. Performance shaping factors and failure modes unique to computerized procedures are highlighted. Since there is no definitive guide to HRA for paper-based procedures, this paper also serves to clarify the existing guidance on paper-based procedures before delving into the unique aspects of computerized procedures.

  2. Numerical analysis of human dental occlusal contact

    Science.gov (United States)

    Bastos, F. S.; Las Casas, E. B.; Godoy, G. C. D.; Meireles, A. B.

    2010-06-01

    The purpose of this study was to obtain real contact areas, forces, and pressures acting on human dental enamel as a function of the nominal pressure during dental occlusal contact. The described development consisted of three steps: characterization of the surface roughness by 3D contact profilometry test, finite element analysis of micro responses for each pair of main asperities in contact, and homogenization of macro responses using an assumed probability density function. The inelastic deformation of enamel was considered, adjusting the stress-strain relationship of sound enamel to that obtained from instrumented indentation tests conducted with spherical tip. A mechanical part of the static friction coefficient was estimated as the ratio between tangential and normal components of the overall resistive force, resulting in μd = 0.057. Less than 1% of contact pairs reached the yield stress of enamel, indicating that the occlusal contact is essentially elastic. The micro-models indicated an average hardness of 6.25GPa, and the homogenized result for macroscopic interface was around 9GPa. Further refinements of the methodology and verification using experimental data can provide a better understanding of processes related to contact, friction and wear of human tooth enamel.

  3. Air-breathing fishes in aquaculture. What can we learn from physiology?

    Science.gov (United States)

    Lefevre, S; Wang, T; Jensen, A; Cong, N V; Huong, D T T; Phuong, N T; Bayley, M

    2014-03-01

    During the past decade, the culture of air-breathing fish species has increased dramatically and is now a significant global source of protein for human consumption. This development has generated a need for specific information on how to maximize growth and minimize the environmental effect of culture systems. Here, the existing data on metabolism in air-breathing fishes are reviewed, with the aim of shedding new light on the oxygen requirements of air-breathing fishes in aquaculture, reaching the conclusion that aquatic oxygenation is much more important than previously assumed. In addition, the possible effects on growth of the recurrent exposure to deep hypoxia and associated elevated concentrations of carbon dioxide, ammonia and nitrite, that occurs in the culture ponds used for air-breathing fishes, are discussed. Where data on air-breathing fishes are simply lacking, data for a few water-breathing species will be reviewed, to put the physiological effects into a growth perspective. It is argued that an understanding of air-breathing fishes' respiratory physiology, including metabolic rate, partitioning of oxygen uptake from air and water in facultative air breathers, the critical oxygen tension, can provide important input for the optimization of culture practices. Given the growing importance of air breathers in aquaculture production, there is an urgent need for further data on these issues.

  4. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  5. 浅析单簧管呼吸技巧在演奏艺术中的表现%Analysis of the clarinet breathing techniques performance in performing arts

    Institute of Scientific and Technical Information of China (English)

    韩环宇

    2013-01-01

      呼吸是单簧管演奏中及其重要的基础,如何控制好气息以及气息的运用是单簧管演奏中的一个重要环节,因此只有掌握了的单簧管的呼吸技巧,才能在单簧管演奏中使音乐更有层次感,表现力更加丰富,音色更加动听。本文从单簧管演奏的呼吸入手,论述了单簧管呼吸技巧在演奏艺术中表现的重要性。%  The breath is the clarinet playing its important foundation, use of how to control the breath and the used breath, is an important link in the clarinet, so only the master of the clarinet breathing techniques, in order to make the music more hierarchical in the sense of the clarinet, the force is more rich, more beautiful timbre. This paper starts with the clarinet and breathing, and discusses the importance of the clarinet breathing techniques in performance art.

  6. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M;

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...

  7. Controlled Frequency Breathing Reduces Inspiratory Muscle Fatigue.

    Science.gov (United States)

    Burtch, Alex R; Ogle, Ben T; Sims, Patrick A; Harms, Craig A; Symons, Thorburn B; Folz, Rodney J; Zavorsky, Gerald S

    2016-08-16

    Controlled frequency breathing (CFB) is a common swim training modality involving holding one's breath for about 7 to 10 strokes before taking another breath. We sought to examine the effects of CFB training on reducing respiratory muscle fatigue. Competitive college swimmers were randomly divided into either the CFB group that breathed every 7 to 10 strokes, or a control group that breathed every 3-4 strokes. Twenty swimmers completed the study. The training intervention included 5-6 weeks (16 sessions) of 12x50-m repetitions with breathing 8-10 breaths per 50m (control group), or 2-3 breaths per 50-m (CFB group). Inspiratory muscle fatigue was defined as the decrease in maximal inspiratory mouth-pressure (MIP) between rest and 46s after a 200 yard free-style swimming race [115s (SD 7)]. Aerobic capacity, pulmonary diffusing capacity, and running economy were also measured pre and post-training. Pooled results demonstrated a 12% decrease in MIP at 46s post-race [-15 (SD 14) cm H2O, Effect size = -0.48, p training, only the CFB group prevented a decline in MIP values pre to 46 s post-race [-2 (13) cm H2O, p > 0.05]. However, swimming performance, aerobic capacity, pulmonary diffusing capacity, and running economy did not improve (p > 0.05) post-training in either group. In conclusion, CFB training appears to prevent inspiratory muscle fatigue yet no difference was found in performance outcomes.

  8. How Does a Hopping Kangaroo Breathe?

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  9. Design of Wearable Breathing Sound Monitoring System for Real-Time Wheeze Detection

    Science.gov (United States)

    Li, Shih-Hong; Lin, Bor-Shing; Tsai, Chen-Han; Yang, Cheng-Ta; Lin, Bor-Shyh

    2017-01-01

    In the clinic, the wheezing sound is usually considered as an indicator symptom to reflect the degree of airway obstruction. The auscultation approach is the most common way to diagnose wheezing sounds, but it subjectively depends on the experience of the physician. Several previous studies attempted to extract the features of breathing sounds to detect wheezing sounds automatically. However, there is still a lack of suitable monitoring systems for real-time wheeze detection in daily life. In this study, a wearable and wireless breathing sound monitoring system for real-time wheeze detection was proposed. Moreover, a breathing sounds analysis algorithm was designed to continuously extract and analyze the features of breathing sounds to provide the objectively quantitative information of breathing sounds to professional physicians. Here, normalized spectral integration (NSI) was also designed and applied in wheeze detection. The proposed algorithm required only short-term data of breathing sounds and lower computational complexity to perform real-time wheeze detection, and is suitable to be implemented in a commercial portable device, which contains relatively low computing power and memory. From the experimental results, the proposed system could provide good performance on wheeze detection exactly and might be a useful assisting tool for analysis of breathing sounds in clinical diagnosis. PMID:28106747

  10. Piezoresistive Membrane Surface Stress Sensors for Characterization of Breath Samples of Head and Neck Cancer Patients

    Directory of Open Access Journals (Sweden)

    Hans Peter Lang

    2016-07-01

    Full Text Available For many diseases, where a particular organ is affected, chemical by-products can be found in the patient’s exhaled breath. Breath analysis is often done using gas chromatography and mass spectrometry, but interpretation of results is difficult and time-consuming. We performed characterization of patients’ exhaled breath samples by an electronic nose technique based on an array of nanomechanical membrane sensors. Each membrane is coated with a different thin polymer layer. By pumping the exhaled breath into a measurement chamber, volatile organic compounds present in patients’ breath diffuse into the polymer layers and deform the membranes by changes in surface stress. The bending of the membranes is measured piezoresistively and the signals are converted into voltages. The sensor deflection pattern allows one to characterize the condition of the patient. In a clinical pilot study, we investigated breath samples from head and neck cancer patients and healthy control persons. Evaluation using principal component analysis (PCA allowed a clear distinction between the two groups. As head and neck cancer can be completely removed by surgery, the breath of cured patients was investigated after surgery again and the results were similar to those of the healthy control group, indicating that surgery was successful.

  11. Piezoresistive Membrane Surface Stress Sensors for Characterization of Breath Samples of Head and Neck Cancer Patients.

    Science.gov (United States)

    Lang, Hans Peter; Loizeau, Frédéric; Hiou-Feige, Agnès; Rivals, Jean-Paul; Romero, Pedro; Akiyama, Terunobu; Gerber, Christoph; Meyer, Ernst

    2016-07-22

    For many diseases, where a particular organ is affected, chemical by-products can be found in the patient's exhaled breath. Breath analysis is often done using gas chromatography and mass spectrometry, but interpretation of results is difficult and time-consuming. We performed characterization of patients' exhaled breath samples by an electronic nose technique based on an array of nanomechanical membrane sensors. Each membrane is coated with a different thin polymer layer. By pumping the exhaled breath into a measurement chamber, volatile organic compounds present in patients' breath diffuse into the polymer layers and deform the membranes by changes in surface stress. The bending of the membranes is measured piezoresistively and the signals are converted into voltages. The sensor deflection pattern allows one to characterize the condition of the patient. In a clinical pilot study, we investigated breath samples from head and neck cancer patients and healthy control persons. Evaluation using principal component analysis (PCA) allowed a clear distinction between the two groups. As head and neck cancer can be completely removed by surgery, the breath of cured patients was investigated after surgery again and the results were similar to those of the healthy control group, indicating that surgery was successful.

  12. Pulse pressure variation to predict fluid responsiveness in spontaneously breathing patients: tidal vs. forced inspiratory breathing.

    Science.gov (United States)

    Hong, D M; Lee, J M; Seo, J H; Min, J J; Jeon, Y; Bahk, J H

    2014-07-01

    We evaluated whether pulse pressure variation can predict fluid responsiveness in spontaneously breathing patients. Fifty-nine elective thoracic surgical patients were studied before induction of general anaesthesia. After volume expansion with hydroxyethyl starch 6 ml.kg(-1) , patients were defined as responders by a ≥ 15% increase in the cardiac index. Haemodynamic variables were measured before and after volume expansion and pulse pressure variations were calculated during tidal breathing and during forced inspiratory breathing. Median (IQR [range]) pulse pressure variation during forced inspiratory breathing was significantly higher in responders (n = 29) than in non-responders (n = 30) before volume expansion (18.2 (IQR 14.7-18.2 [9.3-31.3])% vs. 10.1 (IQR 8.3-12.6 [4.8-21.1])%, respectively, p breathing could predict fluid responsiveness (area under the curve 0.910, p breathing can be used to guide fluid management in spontaneously breathing patients.

  13. BREATH OF USE AND VOCAL TRAINING

    Directory of Open Access Journals (Sweden)

    Nuran ACAR

    2016-10-01

    Full Text Available Breathable, who escorted us in every aspect of our lives and our survival is our primary activity, allowing for quality of life in a healthy way. quality of breaths taken the right technique, you need both health professional sense should perhaps take advantage of individuals who want to achieve success in life is the primary rule. When the diaphragm is born with assisted breathing lungs of every person's life starts to grow to keep up with the flurry lose this special and important skills. First and foremost, which is important for our body health, including every aspect of proper breathing, especially correct use of the voice carries particular importance. In this article, breathing subject discussed, correct breathing and our lives have tried to give us information about the benefits of both vocal training.

  14. Human Energy Field: A Concept Analysis.

    Science.gov (United States)

    Shields, Deborah; Fuller, Ann; Resnicoff, Marci; Butcher, Howard K; Frisch, Noreen

    2016-11-23

    The human energy field (HEF) as a phenomenon of interest across disciplines has gained increased attention over the 20th and 21st centuries. However, a concern has arisen that there is a lack of evidence to support the concept of the HEF as a phenomenon of interest to professional nurses and nursing practice. Using Chinn and Kramer's method of creating conceptual meaning, a concept analysis was conducted for the purpose of developing a conceptual definition of HEF. A systematic review of the literature using the CINAHL database yielded a total of 81 articles and text sources that were determined to be relevant to the concept analysis. The HEF is defined as a luminous field of energy that comprises a person, extends beyond the physical body, and is in a continuous mutual process with the environmental energy field. It is a vital energy that is a continuous whole and is recognized by its unique pattern; it is dynamic, creative, nonlinear, unpredictable, and flows in lower and higher frequencies. The balanced HEF is characterized by flow, rhythm, symmetry, and gentle vibration.

  15. 肌萎缩侧索硬化患者睡眠呼吸障碍多导睡眠图分析%Polysomnographic analysis of Sleep-disordered breathing in amyotrophic lateral sclerosis patients

    Institute of Scientific and Technical Information of China (English)

    周华勇; 周俊英; 徐严明; 唐向东; 林贞仿

    2013-01-01

    Objective To investigate sleep structure and sleep disorders characterized of patients with amyotrophic lateral sclerosis.Methods PSG were used to analysis sleep structure and characteristics in 44 patients of amyotrophic lateral sclerosis and 36 healthy controls.Results Compared to the control group,in the case group sleep indicators,total sleep time (TST) shorten,sleep latency (SL) extend,sleep efficiency (SE) decrease.About sleep structure indicators,stage Ⅱ sleep,stage Ⅲ sleep and REM sleep duration decrease; micro-arousals,and awakening over 15 seconds increase; About sleep breathing events,AHI,times of obstructive apnea and hyperpnoea were more than the controls; the mean oxygen saturation and the minimum oxygen saturation are lower.Conclusion Sleep starting and maintain disorders are the main sleep disorder in ALS patients.OSAH and hypopnea are the main problems in sleep breathing events.PSG has important significaree for understanding the structure of sleep and sleep disorders in ALS patients.%目的 探讨肌萎缩侧索硬化(ALS)患者睡眠结构及睡眠障碍的特征.方法 对44例ALS患者和36名健康对照者睡眠应用多导睡眠图(PSG)进行评估,分析患者组与对照组睡眠结构及特点.结果 患者组睡眠指标中总睡眠时间(TST)缩短,睡眠潜伏期(SL)延长,睡眠效率(SE)下降,睡眠结构指标中2期睡眠时间、3期睡眠时间、REM期睡眠时间均明显缩短,微觉醒次数、>15秒觉醒次数增多,睡眠中呼吸事件指标中呼吸暂停低通气指数(AHI)增高,阻塞性呼吸暂停次数、低通气次数明显增多,平均血氧饱和度、最低血氧饱和度下降.结论 ALS患者存在睡眠障碍,主要是睡眠起始、睡眠维持障碍,睡眠呼吸事件存在阻塞性睡眠暂停.提示PSG对了解ALS患者睡眠结构和睡眠障碍有着重要意义.

  16. Radiological evaluation of facial types in mouth breathing children: a retrospective study.

    Science.gov (United States)

    Izuka, E N; Costa, J R; Pereira, S R A; Weckx, L L M; Pignatari, S N; Uema, S F H

    2008-01-01

    Mouth breathing is a condition often associated with a long face, half-open mouth and increased anterior facial height. We performed conventional lateral and frontal cephalograms of eighty-nine children with nasal and mouth breathing and independently measured Total Facial Height using the analysis technique of Ricketts, and the Morphologic Facial Index employing the technique of Avila. It was concluded that dolicofacial following mesofacial were the most frequent patterns found in mouth-breathing children and this suggests that both analyses can be used independently.

  17. [Nasal breath recovery and rhinoplasty in cleft lip and palate patient with unilateral choanal atresia].

    Science.gov (United States)

    Chkadua, T Z; Ivanova, M D; Daminov, R O; Brusova, L A; Savvateeva, D M

    2016-01-01

    The paper presents the analysis of clinical case of endoscopic nasal breath restoration and elimination of the secondary cleft lip nasal deformity in 27 years old patient with unilateral choanal atresia and secondary nasal deformity after rhinocheiloplasty. Preoperative examination revealed the absence of nasal breathing on collateral side due to complete bone choanal atresia. Surgical treatment included endoscopic choanal repair, elimination of the secondary nasal deformity, septoplasty, conchotomy and lateroposition of the inferior conchae. The treatment resulted in nasal breath restoration and elimination of nasal deformity. Long-term follow-up at 1 and 12 months post-operatively proved stable positive aesthetic and functional results.

  18. Differential network analysis in human cancer research.

    Science.gov (United States)

    Gill, Ryan; Datta, Somnath; Datta, Susmita

    2014-01-01

    A complex disease like cancer is hardly caused by one gene or one protein singly. It is usually caused by the perturbation of the network formed by several genes or proteins. In the last decade several research teams have attempted to construct interaction maps of genes and proteins either experimentally or reverse engineer interaction maps using computational techniques. These networks were usually created under a certain condition such as an environmental condition, a particular disease, or a specific tissue type. Lately, however, there has been greater emphasis on finding the differential structure of the existing network topology under a novel condition or disease status to elucidate the perturbation in a biological system. In this review/tutorial article we briefly mention some of the research done in this area; we mainly illustrate the computational/statistical methods developed by our team in recent years for differential network analysis using publicly available gene expression data collected from a well known cancer study. This data includes a group of patients with acute lymphoblastic leukemia and a group with acute myeloid leukemia. In particular, we describe the statistical tests to detect the change in the network topology based on connectivity scores which measure the association or interaction between pairs of genes. The tests under various scores are applied to this data set to perform a differential network analysis on gene expression for human leukemia. We believe that, in the future, differential network analysis will be a standard way to view the changes in gene expression and protein expression data globally and these types of tests could be useful in analyzing the complex differential signatures.

  19. Headspace screening of fluid obtained from the gut during colonoscopy and breath analysis by proton transfer reaction-mass spectrometry: A novel approach in the diagnosis of gastro-intestinal diseases

    Science.gov (United States)

    Lechner, M.; Colvin, H. P.; Ginzel, C.; Lirk, P.; Rieder, J.; Tilg, H.

    2005-05-01

    Background: The diagnosis of many gastro-intestinal diseases is difficult and can often be confirmed only by using invasive diagnostic means. In contrast, the headspace screening of fluid obtained from the gut during colonoscopy and the analysis of exhaled air may be a novel approach for the diagnosis of these diseases.Materials and methods: The screening was performed by using proton transfer reaction-mass spectrometry (PTR-MS) which allows rapid and sensitive measurement. Fluid samples obtained from the gut during colonoscopy were collected from 76 and breath samples from 70 subjects. Mass spectra of healthy controls were created. Afterwards these spectra were compared with those of patients suffering from inflammatory bowel diseases (IBD; Crohn's disease and ulcerative colitis; n = 10) and irritable bowel syndrome (IBS; n = 7).Results: Significant differences in the mass spectra could be observed both in the headspace of the fluid and in the exhaled air comparing patients with healthy controls.Conclusions: This study is the first describing headspace screening of fluid obtained from the gut during colonoscopy, possibly presenting a novel diagnostic tool in the differential diagnosis of gastro-intestinal diseases.

  20. Human Error Assessmentin Minefield Cleaning Operation Using Human Event Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Hajiakbari

    2015-12-01

    Full Text Available Background & objective: Human error is one of the main causes of accidents. Due to the unreliability of the human element and the high-risk nature of demining operations, this study aimed to assess and manage human errors likely to occur in such operations. Methods: This study was performed at a demining site in war zones located in the West of Iran. After acquiring an initial familiarity with the operations, methods, and tools of clearing minefields, job task related to clearing landmines were specified. Next, these tasks were studied using HTA and related possible errors were assessed using ATHEANA. Results: de-mining task was composed of four main operations, including primary detection, technical identification, investigation, and neutralization. There were found four main reasons for accidents occurring in such operations; walking on the mines, leaving mines with no action, error in neutralizing operation and environmental explosion. The possibility of human error in mine clearance operations was calculated as 0.010. Conclusion: The main causes of human error in de-mining operations can be attributed to various factors such as poor weather and operating conditions like outdoor work, inappropriate personal protective equipment, personality characteristics, insufficient accuracy in the work, and insufficient time available. To reduce the probability of human error in de-mining operations, the aforementioned factors should be managed properly.

  1. Slow breathing and hypoxic challenge: cardiorespiratory consequences and their central neural substrates.

    Science.gov (United States)

    Critchley, Hugo D; Nicotra, Alessia; Chiesa, Patrizia A; Nagai, Yoko; Gray, Marcus A; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge.

  2. Breath sound changes associated with malpositioned endotracheal tubes.

    Science.gov (United States)

    Mansy, H A; O'Connor, C J; Balk, R A; Sandler, R H

    2005-03-01

    Endotracheal tubes (ETTs) are used to establish airway access in patients with ventilatory failure and during general anaesthesia. Tube malpositioning can compromise respiratory function and can be associated with increased morbidity and mortality. Clinical assessment of ETT position normally involves chest auscultation, which is highly skill-dependent and can be misleading. The objective of this pilot study was to investigate breath sound changes associated with ETT malpositioning. Breath sounds were acquired in six human subjects over each hemithorax and over the epigastrium for tracheal, bronchial and oesophageal intubations. When the ETT was in the oesophagus, the acoustic energy ratio between epigastrium and chest surface increased in all subjects (p sounds may be useful for assessment of ETT positioning. More studies are needed to test the feasibility of this approach further.

  3. Passive breath gating equipment for cone beam CT-guided RapidArc gastric cancer treatments.

    Science.gov (United States)

    Hu, Weigang; Li, Guichao; Ye, Jinsong; Wang, Jiazhou; Peng, Jiayuan; Gong, Min; Yu, Xiaoli; Studentski, Matthew T; Xiao, Ying; Zhang, Zhen

    2015-01-01

    To report preliminary results of passive breath gating (PBG) equipment for cone-beam CT image-guided gated RapidArc gastric cancer treatments. Home-developed PBG equipment integrated with the real-time position management system (RPM) for passive patient breath hold was used in CT simulation, online partial breath hold (PBH) CBCT acquisition, and breath-hold gating (BHG) RapidArc delivery. The treatment was discontinuously delivered with beam on during BH and beam off for free breathing (FB). Pretreatment verification PBH CBCT was obtained with the PBG-RPM system. Additionally, the reproducibility of the gating accuracy was evaluated. A total of 375 fractions of breath-hold gating RapidArc treatments were successfully delivered and 233 PBH CBCTs were available for analysis. The PBH CBCT images were acquired with 2-3 breath holds and 1-2 FB breaks. The imaging time was the same for PBH CBCT and conventional FB CBCT (60s). Compared to FB CBCT, the motion artifacts seen in PBH CBCT images were remarkably reduced. The average BHG RapidArc delivery time was 103 s for one 270-degree arc and 269 s for two full arcs. The PBG-RPM based PBH CBCT verification and BHG RapidArc delivery was successfully implemented clinically. The BHG RapidArc treatment was accomplished using a conventional RapidArc machine with high delivery efficiency. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Heart rate variability changes during high frequency yoga breathingand breath awareness

    Directory of Open Access Journals (Sweden)

    Singh Nilkamal

    2011-04-01

    Full Text Available Abstract Background Pre and post comparison after one minute of high frequency yoga breathing (HFYB suggested that the HFYB modifies the autonomic status by increasing sympathetic modulation, but its effect during the practice was not assessed. Methods Thirty-eight male volunteers with group average age ± S.D., 23.3 ± 4.4 years were each assessed on two separate days in two sessions, (i HFYB and (ii breath awareness. Each session was for 35 minutes, with 3 periods, i.e., pre (5 minutes, during HFYB or breath awareness (15 minutes and post (5 minutes. Results There was a significant decrease in NN50, pNN50 and the mean RR interval during and after HFYB and after breath awareness, compared to the respective 'pre' values (p post-hoc analysis. The LF power increased and HF power decreased during and after breath awareness and LF/HF ratio increased after breath awareness (p Conclusion The results suggest that there was reduced parasympathetic modulation during and after HFYB and increased sympathetic modulation with reduced parasympathetic modulation during and after breath awareness.

  5. Association between breastfeeding and breathing pattern in children: a sectional study

    Directory of Open Access Journals (Sweden)

    Teresinha S.P. Lopes

    2014-07-01

    Full Text Available OBJECTIVE: to determine the prevalence of mouth breathing and to associate the history of breastfeeding with breathing patterns in children. METHODS: this was an observational study with 252 children of both genders, aged 30 to 48 months, who participated in a dental care program for mothers and newborns. As an instrument of data collection, a semi-structured questionnaire was administered to the children's mothers assessing the form and duration of breastfeeding and the oral habits of non-nutritive sucking. To determine the breathing patterns that the children had developed, medical history and clinical examination were used. Statistical analysis was conducted to examine the effects of exposure on the primary outcome (mouth breathing, and the prevalence ratio was calculated with a 95% confidence interval. RESULTS: of the total sample, 43.1% of the children were mouth breathers, 48.4% had been breastfed exclusively until six months of age or more, and 27.4% had non-nutritive sucking habits. Statistically significant associations were found for bottle-feeding (p < 0.001 and oral habits of non-nutritive sucking (p = 0.009, with an increased likelihood of children exhibiting a predominantly oral breathing pattern. A statistically significant association was also observed between a longer duration of exclusive breastfeeding and a nasal breathing pattern presented by children. CONCLUSION: an increased duration of exclusive breastfeeding lowers the chances of children exhibiting a predominantly oral breathing pattern.

  6. Online trapping and enrichment ultra performance liquid chromatography-tandem mass spectrometry method for sensitive measurement of 'arginine-asymmetric dimethylarginine cycle' biomarkers in human exhaled breath condensate

    Energy Technology Data Exchange (ETDEWEB)

    Di Gangi, Iole Maria, E-mail: giordano@pediatria.unipd.it [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Pirillo, Paola [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Carraro, Silvia [Unit of Allergy and Respiratory Diseases, Department of Women' s and Children' s Health, University of Padova (Italy); Gucciardi, Antonina; Naturale, Mauro [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy); Baraldi, Eugenio [Unit of Allergy and Respiratory Diseases, Department of Women' s and Children' s Health, University of Padova (Italy); Giordano, Giuseppe [Chromatography and Mass Spectrometry Laboratory, Department of Women' s and Children' s Health, University of Padova (Italy)

    2012-11-19

    Highlights: Black-Right-Pointing-Pointer Simultaneous quantification of 'arginine-ADMA cycle' metabolites developed in EBC. Black-Right-Pointing-Pointer EBC is a non-invasive matrix highly useful in patients with respiratory diseases. Black-Right-Pointing-Pointer Method, fast, precise and accurate, is suitable in the pediatric clinical studies. Black-Right-Pointing-Pointer Sensitivity is increased using on-line trapping and enrichment-UPLC-MS/MS method. Black-Right-Pointing-Pointer EBC measurements in asthmatic adolescents confirm that ADMA is increased in asthma. - Abstract: Background: Exhaled breath condensate (EBC) is a biofluid collected non invasively that, enabling the measurement of several biomarkers, has proven useful in the study of airway inflammatory diseases, including asthma, COPD and cystic fibrosis. To the best of our knowledge, there is no previous report of any analytical method to detect ADMA in EBC. Objectives: Aim of this work was to develop an online sample trapping and enrichment system, coupled with an UPLC-MS/MS method, for simultaneous quantification of seven metabolites related to 'Arginine-ADMA cycle', using the isotopic dilution. Methods: Butylated EBC samples were trapped in an online cartridge, washed before and after each injection with cleanup solution to remove matrix components and switched inline into the high pressure analytical column. Multiple reaction monitoring in positive mode was used for analyte quantification by tandem mass spectrometry. Results: Validation studies were performed in EBC to examine accuracy, precision and robustness of the method. For each compound, the calibration curves showed a coefficient of correlation (r{sup 2}) greater than 0.992. Accuracy (%Bias) was <3% except for NMMA and H-Arg (<20%), intra- and inter-assay precision (expressed as CV%) were within {+-}20% and recovery ranged from 97.1 to 102.8% for all analytes. Inter-day variability analysis on 20 EBC of adult subjects did

  7. Application of LaserBreath-001 for breath acetone measurement in subjects with diabetes mellitus

    Science.gov (United States)

    Wang, Zhennan; Sun, Meixiu; Chen, Zhuying; Zhao, Xiaomeng; Li, Yingxin; Wang, Chuji

    2016-11-01

    Breath acetone is a promising biomarker of diabetes mellitus. With an integrated standalone, on-site cavity ringdown breath acetone analyzer, LaserBreath-001, we tested breath samples from 23 type 1 diabetic (T1D) patients, 312 type 2 diabetic (T2D) patients, 52 healthy subjects. In the cross-sectional studies, the obtained breath acetone concentrations were higher in the diabetic subjects compared with those in the control group. No correlation between breath acetone and simultaneous BG was observed in the T1D, T2D, and healthy subjects. A moderate positive correlation between the mean individual breath acetone concentrations and the mean individual BG levels was observed in the 20 T1D patients without ketoacidosis. In a longitudinal study, the breath acetone concentrations in a T1D patient with ketoacidosis decreased significantly and remained stable during the 5-day hospitalization. The results from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone concentrations, fast (management under a specifically controlled condition.

  8. Human Sperm Competition: A Comparative Evolutionary Analysis

    Directory of Open Access Journals (Sweden)

    Michael N. Pham

    2014-08-01

    Full Text Available Sperm competition occurs when a female copulates with two or more males within a sufficiently brief time period, resulting in sperm of the different males competing to fertilize ova. Sperm competition has been documented or inferred to occur across several species. We address the evidence for sperm competition in humans by reviewing literature indicating apparently convergent adaptations to sperm competition in humans and non-humans. We discuss future research directions, and conclude that the evidence for anatomical, biological, physiological, and behavioral adaptations to human sperm competition provides compelling evidence that sperm competition has been a recurrent feature of human evolutionary history.

  9. Wavelet transform analysis to assess oscillations in pial artery pulsation at the human cardiac frequency.

    Science.gov (United States)

    Winklewski, P J; Gruszecki, M; Wolf, J; Swierblewska, E; Kunicka, K; Wszedybyl-Winklewska, M; Guminski, W; Zabulewicz, J; Frydrychowski, A F; Bieniaszewski, L; Narkiewicz, K

    2015-05-01

    Pial artery adjustments to changes in blood pressure (BP) may last only seconds in humans. Using a novel method called near-infrared transillumination backscattering sounding (NIR-T/BSS) that allows for the non-invasive measurement of pial artery pulsation (cc-TQ) in humans, we aimed to assess the relationship between spontaneous oscillations in BP and cc-TQ at frequencies between 0.5 Hz and 5 Hz. We hypothesized that analysis of very short data segments would enable the estimation of changes in the cardiac contribution to the BP vs. cc-TQ relationship during very rapid pial artery adjustments to external stimuli. BP and pial artery oscillations during baseline (70s and 10s signals) and the response to maximal breath-hold apnea were studied in eighteen healthy subjects. The cc-TQ was measured using NIR-T/BSS; cerebral blood flow velocity, the pulsatility index and the resistive index were measured using Doppler ultrasound of the left internal carotid artery; heart rate and beat-to-beat systolic and diastolic blood pressure were recorded using a Finometer; end-tidal CO2 was measured using a medical gas analyzer. Wavelet transform analysis was used to assess the relationship between BP and cc-TQ oscillations. The recordings lasting 10s and representing 10 cycles with a frequency of ~1 Hz provided sufficient accuracy with respect to wavelet coherence and wavelet phase coherence values and yielded similar results to those obtained from approximately 70cycles (70s). A slight but significant decrease in wavelet coherence between augmented BP and cc-TQ oscillations was observed by the end of apnea. Wavelet transform analysis can be used to assess the relationship between BP and cc-TQ oscillations at cardiac frequency using signals intervals as short as 10s. Apnea slightly decreases the contribution of cardiac activity to BP and cc-TQ oscillations.

  10. A dynamic human motion: coordination analysis.

    Science.gov (United States)

    Pchelkin, Stepan; Shiriaev, Anton S; Freidovich, Leonid B; Mettin, Uwe; Gusev, Sergei V; Kwon, Woong; Paramonov, Leonid

    2015-02-01

    This article is concerned with the generic structure of the motion coordination system resulting from the application of the method of virtual holonomic constraints (VHCs) to the problem of the generation and robust execution of a dynamic humanlike motion by a humanoid robot. The motion coordination developed using VHCs is based on a motion generator equation, which is a scalar nonlinear differential equation of second order. It can be considered equivalent in function to a central pattern generator in living organisms. The relative time evolution of the degrees of freedom of a humanoid robot during a typical motion are specified by a set of coordination functions that uniquely define the overall pattern of the motion. This is comparable to a hypothesis on the existence of motion patterns in biomechanics. A robust control is derived based on a transverse linearization along the configuration manifold defined by the coordination functions. It is shown that the derived coordination and control architecture possesses excellent robustness properties. The analysis is performed on an example of a real human motion recorded in test experiments.

  11. Initial sequencing and analysis of the human genome.

    Science.gov (United States)

    Lander, E S; Linton, L M; Birren, B; Nusbaum, C; Zody, M C; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, J P; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, Y; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, J C; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, R H; Wilson, R K; Hillier, L W; McPherson, J D; Marra, M A; Mardis, E R; Fulton, L A; Chinwalla, A T; Pepin, K H; Gish, W R; Chissoe, S L; Wendl, M C; Delehaunty, K D; Miner, T L; Delehaunty, A; Kramer, J B; Cook, L L; Fulton, R S; Johnson, D L; Minx, P J; Clifton, S W; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, J F; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, R A; Muzny, D M; Scherer, S E; Bouck, J B; Sodergren, E J; Worley, K C; Rives, C M; Gorrell, J H; Metzker, M L; Naylor, S L; Kucherlapati, R S; Nelson, D L; Weinstock, G M; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, D R; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, H M; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, R W; Federspiel, N A; Abola, A P; Proctor, M J; Myers, R M; Schmutz, J; Dickson, M; Grimwood, J; Cox, D R; Olson, M V; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, G A; Athanasiou, M; Schultz, R; Roe, B A; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, W R; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, J A; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, D G; Burge, C B; Cerutti, L; Chen, H C; Church, D; Clamp, M; Copley, R R; Doerks, T; Eddy, S R; Eichler, E E; Furey, T S; Galagan, J; Gilbert, J G; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, L S; Jones, T A; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, W J; Kitts, P; Koonin, E V; Korf, I; Kulp, D; Lancet, D; Lowe, T M; McLysaght, A; Mikkelsen, T; Moran, J V; Mulder, N; Pollara, V J; Ponting, C P; Schuler, G; Schultz, J; Slater, G; Smit, A F; Stupka, E; Szustakowki, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, Y I; Wolfe, K H; Yang, S P; Yeh, R F; Collins, F; Guyer, M S; Peterson, J; Felsenfeld, A; Wetterstrand, K A; Patrinos, A; Morgan, M J; de Jong, P; Catanese, J J; Osoegawa, K; Shizuya, H; Choi, S; Chen, Y J; Szustakowki, J

    2001-02-15

    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

  12. How does breathing frequency affect the performance of an N95 filtering facepiece respirator and a surgical mask against surrogates of viral particles?

    Science.gov (United States)

    He, Xinjian; Reponen, Tiina; McKay, Roy; Grinshpun, Sergey A

    2014-01-01

    Breathing frequency (breaths/min) differs among individuals and levels of physical activity. Particles enter respirators through two principle penetration pathways: faceseal leakage and filter penetration. However, it is unknown how breathing frequency affects the overall performance of N95 filtering facepiece respirators (FFRs) and surgical masks (SMs) against viral particles, as well as other health-relevant submicrometer particles. A FFR and SM were tested on a breathing manikin at four mean inspiratory flows (MIFs) (15, 30, 55, and 85 L/min) and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). Filter penetration (Pfilter) and total inward leakage (TIL) were determined for the tested respiratory protection devices against sodium chloride (NaCl) aerosol particles in the size range of 20 to 500 nm. "Faceseal leakage-to-filter" (FLTF) penetration ratios were calculated. Both MIF and breathing frequency showed significant effects (p breathing frequency increased TIL for the N95 FFR whereas no clear trends were observed for the SM. Increasing MIF increased Pfilter and decreased TIL resulting in decreasing FLTF ratio. Most of FLTF ratios were >1, suggesting that the faceseal leakage was the primary particle penetration pathway at various breathing frequencies. Breathing frequency is another factor (besides MIF) that can significantly affect the performance of N95 FFRs, with higher breathing frequencies increasing TIL. No consistent trend of increase or decrease of TIL with either MIF or breathing frequency was observed for the tested SM. To potentially extend these findings beyond the manikin/breathing system used, future studies are needed to fully understand the mechanism causing the breathing frequency effect on the performance of respiratory protection devices on human subjects.

  13. Fast-starting for a breath: Air breathing in Hoplosternum littorale

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    to be food-related. Little is known about C-starts being used outside the context of escaping or feeding. Here, we test the hypothesis that air-breathing fish may use C-starts when gulping air at the surface. Air breathing is a common behaviour in many fish species when exposed to hypoxia, although certain...... species perform air-breathing in normoxia to fill their swim bladders for buoyancy control and/or sound transduction. Hoplos/emum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of a fast air...... overlap considerably in their kinematics (turning rates and distance covered), suggesting that air breathing in this species is performed using escapelike C-start motions. This demonstrates that C-starts in fish do not need external stimulation and can be spontaneous behaviours used outside the context...

  14. Effects of self breathing exercise on heart rate and systolic blood pressure in adults:a Meta-analysis%自主呼吸锻炼对成人心率、收缩压影响的 Meta 分析

    Institute of Scientific and Technical Information of China (English)

    黄慧; 张艳云; 陈燕; 汪小华; 李月琴

    2016-01-01

    Objective To review the effects of self breathing exercise (SBE)on heart rate and systolic blood pressure in adults.Methods We electronically searched databases including CENTRAL (Cochrane Central Register of Controlled Trials),MEDLINE,EMbase,PEDro,OVID,CNKI,VIP,WanFang Data and CBMfrom the establishment of database to November 2014 to identify randomized controlled trials (RCTs)of VBE and references.Two researchers assessed data according to PEDro,and the effective data was used by Meta analysis which met the including criteria.The statistical analysis used RevMan 5.0 software.Results A total of 5 RCTs were included.The results of meta-analysis showed that the effects of VBE on heart rate and systolic blood pressure in adults was statistically significant compared with control group (P <0.05).Conclusions The self breathing excise can decline adult heart rate and systolic blood pressure with low adverse effects,and it is easy to operate and is a favorable physical therapy method,which can be recommended to self health care and disease rehabilitation nursing.%目的:评价自主呼吸锻炼对成年人心率、收缩压的影响。方法计算机检索 CENTRAL (Cochrane Central Register of Controlled Trials)、MEDLINE、EMbase、PEDro、OVID、中国知网(CNKI)、维普数据库(VlP)、万方数据库(Wanfang Data)和中国生物医学文献数据库(CBM)。所有关于自主呼吸锻炼的随机对照试验,检索时限均为从建库至2014年11月,同时追索纳入文献的参考文献。由2名研究者根据 PEDro 量表进行评价,对符合纳入标准的 RCT 提取有效数据进行 Meta 分析。统计学分析采用RevMan 5.0软件。结果共纳入5项随机对照试验(RCT)。Meta 分析结果显示与对照组相比,自主呼吸锻炼对成年人心率、收缩压影响的差异均有统计学意义(P <0.05)。结论自主呼吸锻炼能够降低成年人的心率、收缩压,且不良反应甚小,操

  15. Lactose Malabsorption Testing in Daily Clinical Practice: A Critical Retrospective Analysis and Comparison of the Hydrogen/Methane Breath Test and Genetic Test (C/T-13910 Polymorphism Results

    Directory of Open Access Journals (Sweden)

    Dietmar Enko

    2014-01-01

    Full Text Available The aim of this study was to establish a retrospective evaluation and comparison of the hydrogen/methane (H2/CH4 breath test and genetic test (C/T−13910 polymorphism results in lactose malabsorption testing. In total 263 consecutive patients with suspected lactose malabsorption were included in this study. They underwent the H2/CH4 breath test following the ingestion of 50 g lactose and were tested for the C/T−13910 polymorphism. In total 51 patients (19.4% had a C/C−13910 genotype, indicating primary lactose malabsorption. Only 19 patients (7.2% also had a positive H2/CH4 breath test. All in all 136 patients (51.69% had a C/T−13910 and 76 patients (28.91% a T/T−13910 genotype, indicating lactase persistence. Four patients (1.5% with the C/T−13910 genotype and one patient (0.4% with the T/T−13910 genotype had a positive H2/CH4 breath test result, indicating secondary lactose malabsorption. Cohen's Kappa measuring agreement between the two methods was 0.44. Twenty patients (7.6% with a positive H2/CH4 peak within 60 minutes after lactose ingestion were classified as patients with lactose-dependent small intestinal bacterial overgrowth (SIBO. In conclusion, only moderate agreement between the breath test and the genetic test was shown. Secondary lactose malabsorption as well as preanalytical limitations of the combined H2/CH4 breath test procedure can cause discrepant results. This trial is registered with K-42-13.

  16. 46 CFR 197.456 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being...

  17. 42 CFR 84.91 - Breathing resistance test; exhalation.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing resistance test; exhalation. 84.91...-Contained Breathing Apparatus § 84.91 Breathing resistance test; exhalation. (a) Resistance to exhalation...-circuit apparatus with a breathing machine as described in § 84.88, and the exhalation resistance...

  18. 42 CFR 84.88 - Breathing bag test.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  19. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns

    Directory of Open Access Journals (Sweden)

    Toshio Itoh

    2016-11-01

    Full Text Available Various volatile organic compounds (VOCs in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls, and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls. The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.

  20. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns.

    Science.gov (United States)

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-11-10

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.

  1. Spatial Analysis Of Human Capital Structures

    Directory of Open Access Journals (Sweden)

    Gajdos Artur

    2014-12-01

    Full Text Available The main purpose of this paper is to analyse the interdependence between labour productivity and the occupational structure of human capital in a spatial cross-section. Research indicates (see Fischer 2009 the possibility to assess the impact of the quality of human capital (measured by means of the level of education on labour productivity in a spatial cross-section.

  2. Quantum breathing mode of interacting particles in harmonic traps

    Science.gov (United States)

    Bauch, Sebastian; Hochstuhl, David; Balzer, Karsten; Bonitz, Michael

    2010-04-01

    The breathing mode - the uniform radial expansion and contraction of a system of interacting particles - is analyzed. Extending our previous work [Bauch et al 2009 Phys. Rev. B. 80 054515] we present a systematic analysis of the breathing mode for fermions with an inverse power law interaction potential w(r) ~ r-dwith d = 1,2,3 in the whole range of coupling parameters. The results thus cover the range from the ideal "gas" to the Wigner crystal-like state. In addition to exact results for two particles obtained from a solution of the time-dependent Schrödinger equation we present results for N = 4,6 from multiconfiguration time-dependent Hartree-Fock simulations.

  3. Coordination of mastication, swallowing and breathing

    Directory of Open Access Journals (Sweden)

    Koichiro Matsuo

    2009-05-01

    Full Text Available The pathways for air and food cross in the pharynx. In breathing, air may flow through either the nose or the mouth; it always flows through the pharynx. During swallowing, the pharynx changes from an airway to a food channel. The pharynx is isolated from the nasal cavity and lower airway by velopharyngeal and laryngeal closure during the pharyngeal swallow. During mastication, the food bolus accumulates in the pharynx prior to swallow initiation. The structures in the oral cavity, pharynx and larynx serve multiple functions in breathing, speaking, mastication and swallowing. Thus, the fine temporal coordination of feeding among breathing, mastication and swallowing is essential to provide proper food nutrition and to prevent pulmonary aspiration. This review paper will review the temporo-spatial coordination of the movements of oral, pharyngeal, and laryngeal structures during mastication and swallowing, and temporal coordination between breathing, mastication, and swallowing.

  4. Coordination of Mastication, Swallowing and Breathing.

    Science.gov (United States)

    Matsuo, Koichiro; Palmer, Jeffrey B

    2009-05-01

    The pathways for air and food cross in the pharynx. In breathing, air may flow through either the nose or the mouth, it always flows through the pharynx. During swallowing, the pharynx changes from an airway to a food channel. The pharynx is isolated from the nasal cavity and lower airway by velopharyngeal and laryngeal closure during the pharyngeal swallow. During mastication, the food bolus accumulates in the pharynx prior to swallow initiation. The structures in the oral cavity, pharynx and larynx serve multiple functions in breathing, speaking, mastication and swallowing. Thus, the fine temporal coordination of feeding among breathing, mastication and swallowing is essential to provide proper food nutrition and to prevent pulmonary aspiration. This review paper will review the temporo-spatial coordination of the movements of oral, pharyngeal, and laryngeal structures during mastication and swallowing, and temporal coordination between breathing, mastication, and swallowing.

  5. Breathing exercises for adults with asthma.

    Science.gov (United States)

    2015-11-01

    Asthma is a common long-term condition that remains poorly controlled in many people despite the availability of pharmacological interventions, evidence-based treatment guidelines and care pathways.(1) There is considerable public interest in the use of non-pharmacological approaches for the treatment of asthma.(2) A survey of people with asthma reported that many have used complementary and alternative medicine, often without the knowledge of their clinical team.(3) Such interventions include breathing techniques, herbal products, homeopathy and acupuncture. The role of breathing exercises within the management of asthma has been controversial, partly because early claims of effectiveness were exaggerated.(4) UK national guidance and international guidelines on the management of asthma have included the option of breathing exercise programmes as an adjuvant to pharmacological treatment.(5,6) Here we discuss the types of breathing exercises used and review the evidence for their effectiveness.

  6. Can Breath Test Detect Stomach Cancers Earlier?

    Science.gov (United States)

    ... news/fullstory_163342.html Can Breath Test Detect Stomach Cancers Earlier? New technology may also spot esophageal cancers ... the only way to diagnose esophageal cancer or stomach cancer is with endoscopy. This method is expensive, invasive ...

  7. An introduction to the psychophysiology of breathing.

    Science.gov (United States)

    Ley, R

    1994-06-01

    Breathing can be viewed as an independent variable which affects emotion, cognition, and behavior as well as a dependent variable which reflects changes in emotion, cognition, and behavior. This bidirectional interaction is basic to an appreciation of the significance of breathing in terms of its relevance in research and application. The underlying premise of the present article is that since breathing is a behavior that is under voluntary as well as reflexive control, it can be modified according to the principles of both instrumental training (operant conditioning) and Pavlovian (classical) conditioning. The implications of this premise are relevant to theory, diagnosis, and treatment of stress and anxiety-related disorders (e.g., panic disorder, phobias, test anxiety, occupational strain, and related psychosomatic disorders), and to basic and applied research in the psychophysiology of breathing.

  8. MIN {sup 14}C UBT: A combination of gastric basal transit and {sup 14}C-urea breath test for the detection of helicobacter pylori infection in human beings

    Energy Technology Data Exchange (ETDEWEB)

    Zubillaga, M.; Oliveri, P.; Calcagno, M.L.; Goldman, C.; Caro, R.; Mitta, A.; Degrossi, O.; Boccio, J

    1997-08-01

    The purpose of this work is to demonstrate that the {sup 14}C-urea breath test (UBT) performed at different times combined with the study of the gastric basal transit, which evaluates the intragastric displacement of a labeled solution under fasting conditions, has the advantage of being representative of the whole stomach surface and constitutes a non-aggressive test for the detection of H. pylori. This test, which has been called MIN {sup 14}C UBT, is a modification of the conventional {sup 14}C UBT in which low volumes of a solution of {sup 14}C-urea together with {sup 99m}Tc-sulfur colloid are administered. The {sup 99m}Tc-sulfur colloid is not absorbed in the gastrointestinal tract and has the great advantage of allowing the 'visualization' of the transit of the {sup 14}C-urea within the gastrointestinal tract. This modification allows the simultaneous determination of the production of the {sup 14}CO{sub 2} and the place where this process occurs. The results show that there is a good correlation between the images obtained and the breath samples collected. We found that this test has a sensitivity of 98% and a specificity of 96% for H. pylori detection.

  9. Analysis of meiosis regulators in human gonads

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Jensen, Martin Blomberg

    2012-01-01

    The mitosis-meiosis switch is a key event in the differentiation of germ cells. In humans, meiosis is initiated in fetal ovaries, whereas in testes meiotic entry is inhibited until puberty. The purpose of this study was to examine the expression pattern of meiosis regulators in human gonads...... with their role in initiation and progression of meiosis. The putative meiosis inhibitors, CYP26B1 and NANOS2, were primarily expressed in Leydig cells and spermatocytes, respectively. In conclusion, the expression pattern of the investigated meiotic regulators is largely conserved in the human gonads compared...... with rodents, but with some minor differences, such as a stable expression of CYP26B1 in human fetal ovaries. The sexually dimorphic expression pattern of DMRT1 indicates a similar role in the mitosis-meiosis switch in human gonads as previously demonstrated in mice. The biological importance of the changes...

  10. Evaluation of changes in sleep breathing patterns after primary palatoplasty in cleft children

    Directory of Open Access Journals (Sweden)

    David M. Wynne

    2014-08-01

    improvement but by no means complete resolution of their sleep disordered breathing patterns. Conclusions: We conclude that sleep breathing disturbance is not confined to Pierre Robin patients alone and all cleft palate patients should undergo pre-operative and post-operative sleep breathing analysis.

  11. Effect of dietary fiber on carbohydrate absorption in humans with 13C-breath test%13C呼气试验评价膳食纤维对人体碳水化合物吸收的影响

    Institute of Scientific and Technical Information of China (English)

    江旻; 王洪允; 李宁; 胡蓓; 江骥

    2012-01-01

    目的 采用13C呼气试验和血糖测定的方法评价非水溶性膳食纤维对健康成年人碳水化合物吸收的影响,比较其敏感度.方法 入选10例中国健康成年受试者,随机分成2组.采用开放、双周期、交叉试验设计,在每个试验周期,受试者分别服用无膳食纤维或高膳食纤维试验餐,采集空腹和餐后系列时间点血样和呼气样本,测定血糖和13CO2丰度.两个周期间隔1d的清洗期.结果 高膳食纤维组的餐后血糖峰值低于无膳食纤维组,达峰时间延迟,但差异无统计学意义(P>0.05);餐后0~3 h血糖曲线下面积在两组间差异无统计学意义(P>0.05);13C呼气试验结果与血糖代谢动态变化趋势一致,但13C丰度变化曲线清晰显示膳食纤维对人体对碳水化合物吸收的作用(高纤维膳食组650.35 delta.min,无纤维膳食组723.31 delta.min).结论 与血糖测定相比,13C呼气试验能够更加灵敏地反映膳食纤维对人体碳水化合物吸收的影响.%Objective To investigate the effect of non-soluble dietary fiber on the absorption of carbohydrate with 13C-breath test and serum glucose, and compare the sensitivity of the two methods. Methods In this open-label, two-period and crossover study, 10 healthy Chinese adult volunteers were enrolled and randomized into 2 groups. On each study period, the subjects received fiber-free or high-fiber test meals. Serial blood and breath samples were collected pre- and post-meal. Serum glucose and 13C abundances were measured. Results Compared with the dietary fiber free group, the peak values of postprandial serum glucose was slightly lower in the high dietary fiber group and the peak time was delayed, but there was no statistical significance (P > 0.05); area under curve 0~3 h in the two groups was not statistically different (P > 0.05). Metabolic kinetics observed in the 13C-breath test was similar to that of the serum glucose, but the effect of dietary fiber on

  12. Fast and Accurate Exhaled Breath Ammonia Measurement

    OpenAIRE

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Toge...

  13. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.

  14. Bacteria hold their breath upon surface contact as shown in a strain of Escherichia coli, using dispersed surfaces and flow cytometry analysis.

    Directory of Open Access Journals (Sweden)

    Jing Geng

    Full Text Available Bacteria are ubiquitously distributed throughout our planet, mainly in the form of adherent communities in which cells exhibit specific traits. The mechanisms underpinning the physiological shift in surface-attached bacteria are complex, multifactorial and still partially unclear. Here we address the question of the existence of early surface sensing through implementation of a functional response to initial surface contact. For this purpose, we developed a new experimental approach enabling simultaneous monitoring of free-floating, aggregated and adherent cells via the use of dispersed surfaces as adhesive substrates and flow cytometry analysis. With this system, we analyzed, in parallel, the constitutively expressed GFP content of the cells and production of a respiration probe--a fluorescent reduced tetrazolium ion. In an Escherichia coli strain constitutively expressing curli, a major E. coli adhesin, we found that single cell surface contact induced a decrease in the cell respiration level compared to free-floating single cells present in the same sample. Moreover, we show here that cell surface contact with an artificial surface and with another cell caused reduction in respiration. We confirm the existence of a bacterial cell "sense of touch" ensuring early signalling of surface contact formation through respiration down modulation.

  15. Clinical Applications of CO2 and H2 Breath Test

    OpenAIRE

    ZHAO Si-qian; Chen, Bao-Jun; LUO Zhi-fu

    2016-01-01

    Breath test is non-invasive, high sensitivity and high specificity. In this article, CO2 breath test, H2 breath test and their clinical applications were elaborated. The main applications of CO2 breath test include helicobacter pylori test, liver function detection, gastric emptying test, insulin resistance test, pancreatic exocrine secretion test, etc. H2 breath test can be applied in the diagnosis of lactose malabsorption and detecting small intestinal bacterial overgrowth. With further res...

  16. An integrative clinical database and diagnostics platform for biomarker identification and analysis in ion mobility spectra of human exhaled air

    DEFF Research Database (Denmark)

    Schneider, Till; Hauschild, Anne-Christin; Baumbach, Jörg Ingo;

    2013-01-01

    Over the last decade the evaluation of odors and vapors in human breath has gained more and more attention, particularly in the diagnostics of pulmonary diseases. Ion mobility spectrometry coupled with multi-capillary columns (MCC/IMS), is a well known technology for detecting volatile organic...

  17. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    Science.gov (United States)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  18. Analysis of the human operator subsystems

    Science.gov (United States)

    Jones, Lynette A.; Hunter, Ian W.

    1991-01-01

    Except in low-bandwidth systems, knowledge of the human operator transfer function is essential for high-performance telerobotic systems. This information has usually been derived from detailed analyses of tracking performance, in which the human operator is considered as a complete system rather than as a summation of a number of subsystems, each of which influences the operator's output. Studies of one of these subsystems, the limb mechanics system, demonstrate that large parameter variations can occur that can have a profound effect on the stability of force-reflecting telerobot systems. An objective of this research was to decompose the performance of the human operator system in order to establish how the dynamics of each of the elements influence the operator's responses.

  19. Experiments in human multi-issue negotiation: analysis and support

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Schut, M.C.; Treur, J.

    2008-01-01

    The purpose of this paper is to report on experiments in (human) multi-issue negotiation and their analysis, and to present a generic software environment supporting such an analysis. First, the paper presents a System for Analysis of Multi-Issue Negotiation (SAMIN). SAMIN is designed to analyse neg

  20. Disability and Humans Rights: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    PATRICIA CUENCA GÓMEZ

    2015-06-01

    Full Text Available Since Enlightenment, theories of justice and, in particular, theories of human rights have been based on principles which are excludable for people with disabilities. The exclusion has not been resolved by contemporary theories of justice. A profound review of some basic assumptions is required to get a full and sound theory of human rights including people with disabilities in equal terms. The inclusion of people with disabilities is an urgent theoretical challenge which must be face in order to perform a sound reform of rules in legal practice.

  1. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Sean, E-mail: sean.pollock@sydney.edu.au; Keall, Paul [Radiation Physics Laboratory, University of Sydney, Sydney 2050 (Australia); Keall, Robyn [Central School of Medicine, University of Sydney, Sydney 2050, Australia and Hammond Care, Palliative Care and Supportive Care Service, Greenwich 2065 (Australia)

    2015-09-15

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  2. Fast-starting for a breath: Air breathing in Hoplosternum littorale

    DEFF Research Database (Denmark)

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.

    by the fall of a prey item on the water surface, and in tapping motions of goldfish, a behaviour that was interpreted to be food-related. Little is known about C-starts being used outside the context of escaping or feeding. Here, we test the hypothesis that air-breathing fish may use C-starts when gulping air...... at the surface. Air breathing is a common behaviour in many fish species when exposed to hypoxia, although certain species perform air-breathing in normoxia to fill their swim bladders for buoyancy control and/or sound transduction. Hoplosternum littorale is an air-breathing freshwater catfish found in South...... America. Field video observations reveal that their air-breathing behaviour consists of a fast air-gulping motion at the surface, followed by swimming towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of spontaneous air-gulping performed by H. littorale in normoxia...

  3. A proteomic analysis of human bile

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zakarias; Bunkenborg, Jakob; Gronborg, Mads

    2004-01-01

    We have carried out a comprehensive characterization of human bile to define the bile proteome. Our approach involved fractionation of bile by one-dimensional gel electrophoresis and lectin affinity chromatography followed by liquid chromatography tandem mass spectrometry. Overall, we identified ...

  4. Future of human models for crash analysis

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Happee, R.; Hoof, J.F.A.M. van; Lange, R. de

    2001-01-01

    In the crash safety field mathematical models can be applied in practically all area's of research and development including: reconstruction of actual accidents, design (CAD) of the crash response of vehicles, safety devices and roadside facilities and in support of human impact biomechanical

  5. Future of human models for crash analysis

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Happee, R.; Hoof, J.F.A.M. van; Lange, R. de

    2001-01-01

    In the crash safety field mathematical models can be applied in practically all area's of research and development including: reconstruction of actual accidents, design (CAD) of the crash response of vehicles, safety devices and roadside facilities and in support of human impact biomechanical studie

  6. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children.

    Science.gov (United States)

    Olivieri, Laura; Cross, Russell; O'Brien, Kendall J; Xue, Hui; Kellman, Peter; Hansen, Michael S

    2016-06-01

    The value of late-gadolinium-enhancement (LGE) imaging in the diagnosis and management of pediatric and congenital heart disease is clear; however current acquisition techniques are susceptible to error and artifacts when performed in children because of children's higher heart rates, higher prevalence of sinus arrhythmia, and inability to breath-hold. Commonly used techniques in pediatric LGE imaging include breath-held segmented FLASH (segFLASH) and steady-state free precession-based (segSSFP) imaging. More recently, single-shot SSFP techniques with respiratory motion-corrected averaging have emerged. This study tested and compared single-shot free-breathing LGE techniques with standard segmented breath-held techniques in children undergoing LGE imaging. Thirty-two consecutive children underwent clinically indicated late-enhancement imaging using intravenous gadobutrol 0.15 mmol/kg. Breath-held segSSFP, breath-held segFLASH, and free-breathing single-shot SSFP LGE sequences were performed in consecutive series in each child. Two blinded reviewers evaluated the quality of the images and rated them on a scale of 1-5 (1 = poor, 5 = superior) based on blood pool-myocardial definition, presence of cardiac motion, presence of respiratory motion artifacts, and image acquisition artifact. We used analysis of variance (ANOVA) to compare groups. Patients ranged in age from 9 months to 18 years, with a mean +/- standard deviation (SD) of 13.3 +/- 4.8 years. R-R interval at the time of acquisition ranged 366-1,265 milliseconds (ms) (47-164 beats per minute [bpm]), mean +/- SD of 843+/-231 ms (72+/-21 bpm). Mean +/- SD quality ratings for long-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.1+/-0.9, 3.4+/-0.9 and 4.0+/-0.9, respectively (P quality ratings for short-axis imaging for segFLASH, segSSFP and single-shot SSFP were 3.4+/-1, 3.8+/-0.9 and 4.3+/-0.7, respectively (P quality ratings than standard breath-held techniques. Use of free-breathing

  7. Detection of Torque Teno Virus DNA in Exhaled Breath by Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Kawanishi,Satoshi

    2012-10-01

    Full Text Available To determine whether exhaled breath contains Torque teno virus (TTV or not, we tested exhaled breath condensate (EBC samples by semi-nested PCR assay. We detected TTV DNA in 35% (7/20 of EBC samples collected from the mouth of one of the authors, demonstrating that TTV DNA is excreted in exhaled breath with moderate frequency. TTV DNA was detected also in oral EBC samples from 4 of 6 other authors, indicating that TTV DNA excretion in exhaled breath is not an exception but rather a common phenomenon. Furthermore, the same assay could amplify TTV DNA from room air condensate (RAC samples collected at distances of 20 and 40cm from a human face with 40 (8/20 and 35% (7/20 positive rates, respectively. TTV transmission has been reported to occur during infancy. These distances seem equivalent to that between an infant and its household members while caring for the infant. Taken together, it seems that exhaled breath is one of the possible transmission routes of TTV. We also detected TTV DNA in 25% (10/40 of RAC samples collected at a distance of more than 180cm from any human face, suggesting the risk of airborne infection with TTV in a room.

  8. Sudarshan kriya yoga: Breathing for health

    Directory of Open Access Journals (Sweden)

    Sameer A Zope

    2013-01-01

    Full Text Available Breathing techniques are regularly recommended for relaxation, stress management, control of psychophysiological states, and to improve organ function. Yogic breathing, defined as a manipulation of breath movement, has been shown to positively affect immune function, autonomic nervous system imbalances, and psychological or stress-related disorders. The aim of this study was to assess and provide a comprehensive review of the physiological mechanisms, the mind-body connection, and the benefits of Sudarshan Kriya Yoga (SKY in a wide range of clinical conditions. Various online databases searched were Medline, Psychinfo, EMBASE, and Google Scholar. All the results were carefully screened and articles on SKY were selected. The references from these articles were checked to find any other potentially relevant articles. SKY, a unique yogic breathing practice, involves several types of cyclical breathing patterns, ranging from slow and calming to rapid and stimulating. There is mounting evidence to suggest that SKY can be a beneficial, low-risk, low-cost adjunct to the treatment of stress, anxiety, post-traumatic stress disorder, depression, stress-related medical illnesses, substance abuse, and rehabilitation of criminal offenders.

  9. Sleep disordered breathing in community psychiatric patients

    Directory of Open Access Journals (Sweden)

    Kirstie N. Anderson

    2012-06-01

    Full Text Available Background and Objectives: Sleep disturbance is prominent in many neuropsychiatric disorders and may precipitate or exacerbate a range of psychiatric conditions. Few studies have investigated sleep disordered breathing and in particular obstructive sleep apnoea in community psychiatric patients and the commonly used screening instruments have not been evaluated in patients with psychiatric disorders. The objective is to evaluate the prevalence of sleep disordered breathing in a community cohort with chronic mental illness on long term psychotropic medication, and to assess the effectiveness of commonly used screening instruments to detect abnormal sleep. Methods: 52 patients completed sleep questionnaires and 50 undertook overnight oximetry. Results: 52% (n = 26 had sleep-disordered breathing; 20% (n = 10 had moderate/severe sleep apnoea. The Epworth Sleepiness Score and the Pittsburgh Sleep Quality Inventory did not predict sleep disordered breathing. Conclusions: Patients with psychiatric disorders in the community have a high rate of undiagnosed sleep disordered breathing, which is not reliably detected by established sleep disorder screening questionnaires.

  10. Automated regional behavioral analysis for human brain images

    National Research Council Canada - National Science Library

    Lancaster, Jack L; Laird, Angela R; Eickhoff, Simon B; Martinez, Michael J; Fox, P Mickle; Fox, Peter T

    2012-01-01

    Behavioral categories of functional imaging experiments along with standardized brain coordinates of associated activations were used to develop a method to automate regional behavioral analysis of human brain images...

  11. MOLECULAR ANALYSIS OF HUMAN SPERMATOZOA: POTENTIAL FOR INFERTILITY RESEARCH

    Science.gov (United States)

    Gordon Research Conference: Mammalian Gametogenesis and Embryogenesis New London, CT, July 1-6, 2000Molecular Analysis of Human Spermatozoa: Potential for Infertility ResearchDavid Miller 1, David Dix2, Robert Reid 3, Stephen A Krawetz 3 1Reproductive ...

  12. MOLECULAR ANALYSIS OF HUMAN SPERMATOZOA: POTENTIAL FOR INFERTILITY RESEARCH

    Science.gov (United States)

    Gordon Research Conference: Mammalian Gametogenesis and Embryogenesis New London, CT, July 1-6, 2000Molecular Analysis of Human Spermatozoa: Potential for Infertility ResearchDavid Miller 1, David Dix2, Robert Reid 3, Stephen A Krawetz 3 1Reproductive ...

  13. Bioinformatics and phylogenetic analysis of human Tp73 gene

    African Journals Online (AJOL)

    Imtiaz

    2013-06-26

    Jun 26, 2013 ... Key words: Tp73, Bioinformatics, phylogenetics analysis, cancer, Tp53. INTRODUCTION ... splicing at C-terminal end of that protein and give rise to six different p73 terminal variants ..... 33 in human lung cancers. Cancer Res.

  14. Interpretation of non-invasive breath tests using 13C-labeled substrates - a preliminary report with 13C-methacetin

    Directory of Open Access Journals (Sweden)

    Lock JF

    2009-12-01

    Full Text Available Abstract Non-invasive breath tests can serve as valuable diagnostic tools in medicine as they can determine particular enzymatic and metabolic functions in vivo. However, methodological pitfalls have limited the actual clinical application of those tests till today. A major challenge of non-invasive breath tests has remained the provision of individually reliable test results. To overcome these limitations, a better understanding of breath kinetics during non-invasive breaths tests is essential. This analysis compares the breath recovery of a 13C-methacetin breath test with the actual serum kinetics of the substrate. It is shown, that breath and serum kinetics of the same test are significantly different over a period of 60 minutes. The recovery of the tracer 13CO2 in breath seems to be significantly delayed due to intermediate storage in the bicarbonate pool. This has to be taken into account for the application of non-invasive breath test protocols. Otherwise, breath tests might display bicarbonate kinetics despite the metabolic capacity of the particular target enzyme.

  15. Human Motion Video Analysis in Clinical Practice (Review)

    OpenAIRE

    V.V. Borzikov; N.N. Rukina; O.V. Vorobyova; A.N. Kuznetsov; A. N. Belova

    2015-01-01

    The development of new rehabilitation approaches to neurological and traumatological patients requires understanding of normal and pathological movement patterns. Biomechanical analysis of video images is the most accurate method of investigation and quantitative assessment of human normal and pathological locomotion. The review of currently available methods and systems of optical human motion analysis used in clinical practice is presented here. Short historical background is provi...

  16. Discrimination and numerical analysis of human pathogenic ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... Numerical analysis of whole-cell protein profiles of all strains revealed 2 .... average linkage method and correlation coefficient distance. ... distance yielded a dendrogam, consisting of two basic .... Candida glabrata: review of.

  17. Design and Validation of a Breathing Detection System for Scuba Divers

    Directory of Open Access Journals (Sweden)

    Corentin Altepe

    2017-06-01

    Full Text Available Drowning is the major cause of death in self-contained underwater breathing apparatus (SCUBA diving. This study proposes an embedded system with a live and light-weight algorithm which detects the breathing of divers through the analysis of the intermediate pressure (IP signal of the SCUBA regulator. A system composed mainly of two pressure sensors and a low-power microcontroller was designed and programmed to record the pressure sensors signals and provide alarms in absence of breathing. An algorithm was developed to analyze the signals and identify inhalation events of the diver. A waterproof case was built to accommodate the system and was tested up to a depth of 25 m in a pressure chamber. To validate the system in the real environment, a series of dives with two different types of workload requiring different ranges of breathing frequencies were planned. Eight professional SCUBA divers volunteered to dive with the system to collect their IP data in order to participate to validation trials. The subjects underwent two dives, each of 52 min on average and a maximum depth of 7 m. The algorithm was optimized for the collected dataset and proved a sensitivity of inhalation detection of 97.5% and a total number of 275 false positives (FP over a total recording time of 13.9 h. The detection algorithm presents a maximum delay of 5.2 s and requires only 800 bytes of random-access memory (RAM. The results were compared against the analysis of video records of the dives by two blinded observers and proved a sensitivity of 97.6% on the data set. The design includes a buzzer to provide audible alarms to accompanying dive buddies which will be triggered in case of degraded health conditions such as near drowning (absence of breathing, hyperventilation (breathing frequency too high and skip-breathing (breathing frequency too low measured by the improper breathing frequency. The system also measures the IP at rest before the dive and indicates with

  18. Decompression sickness following breath-hold diving.

    Science.gov (United States)

    Schipke, J D; Gams, E; Kallweit, Oliver

    2006-01-01

    Despite convincing evidence of a relationship between breath-hold diving and decompression sickness (DCS), the causal connection is only slowly being accepted. Only the more recent textbooks have acknowledged the risks of repetitive breath-hold diving. We compare four groups of breath-hold divers: (1) Japanese and Korean amas and other divers from the Pacific area, (2) instructors at naval training facilities, (3) spear fishers, and (4) free-dive athletes. While the number of amas is likely decreasing, and Scandinavian Navy training facilities recorded only a few accidents, the number of spear fishers suffering accidents is on the rise, in particular during championships or using scooters. Finally, national and international associations (e.g., International Association of Free Drives [IAFD] or Association Internationale pour Le Developpment De L'Apnee [AIDA]) promote free-diving championships including deep diving categories such as constant weight, variable weight, and no limit. A number of free-diving athletes, training for or participating in competitions, are increasingly accident prone as the world record is presently set at a depth of 171 m. This review presents data found after searching Medline and ISI Web of Science and using appropriate Internet search engines (e.g., Google). We report some 90 cases in which DCS occurred after repetitive breath-hold dives. Even today, the risk of suffering from DCS after repetitive breath-hold diving is often not acknowledged. We strongly suggest that breath-hold divers and their advisors and physicians be made aware of the possibility of DCS and of the appropriate therapeutic measures to be taken when DCS is suspected. Because the risk of suffering from DCS increases depending on depth, bottom time, rate of ascent, and duration of surface intervals, some approaches to assess the risks are presented. Regrettably, none of these approaches is widely accepted. We propose therefore the development of easily manageable

  19. MODELING HUMAN RELIABILITY ANALYSIS USING MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P. Hallbert; Brian F. Gore

    2006-05-01

    This paper summarizes an emerging collaboration between Idaho National Laboratory and NASA Ames Research Center regarding the utilization of high-fidelity MIDAS simulations for modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error with novel control room equipment and configurations, (ii) the investigative determination of risk significance in recreating past event scenarios involving control room operating crews, and (iii) the certification of novel staffing levels in control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of risk in next generation control rooms.

  20. Breath testing and personal exposure--SIFT-MS detection of breath acetonitrile for exposure monitoring.

    Science.gov (United States)

    Storer, Malina; Curry, Kirsty; Squire, Marie; Kingham, Simon; Epton, Michael

    2015-05-26

    Breath testing has potential for the rapid assessment of the source and impact of exposure to air pollutants. During the development of a breath test for acetonitrile using selected ion flow tube mass spectrometry (SIFT-MS) raised acetonitrile concentrations in the breath of volunteers were observed that could not be explained by known sources of exposure. Workplace/laboratory exposure to acetonitrile was proposed since this was common to the volunteers with increased breath concentrations. SIFT-MS measurements of acetonitrile in breath and air were used to confirm that an academic chemistry laboratory was the source of exposure to acetonitrile, and quantify the changes that occurred to exhaled acetonitrile after exposure. High concentrations of acetonitrile were detected in the air of the chemistry laboratory. However, concentrations in the offices were not significantly different across the campus. There was a significant difference in the exhaled acetonitrile concentrations of people who worked in the chemistry laboratories (exposed) and those who did not (non-exposed). SIFT-MS testing of air and breath made it possible to determine that occupational exposure to acetonitrile in the chemistry laboratory was the cause of increased exhaled acetonitrile. Additionally, the sensitivity was adequate to measure the changes to exhaled amounts and found that breath concentrations increased quickly with short exposure and remained increased even after periods of non-exposure. There is potential to add acetonitrile to a suite of VOCs to investigate source and impact of poor air quality.