WorldWideScience

Sample records for human breast fibroblasts

  1. Imatinib mesylate inhibits proliferation and exerts an antifibrotic effect in human breast stroma fibroblasts.

    Science.gov (United States)

    Gioni, Vassiliki; Karampinas, Theodoros; Voutsinas, Gerassimos; Roussidis, Andreas E; Papadopoulos, Savvas; Karamanos, Nikos K; Kletsas, Dimitris

    2008-05-01

    Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.

  2. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles

    Directory of Open Access Journals (Sweden)

    Tchou Julia

    2012-09-01

    Full Text Available Abstract Background Breast cancer is a heterogeneous disease for which prognosis and treatment strategies are largely governed by the receptor status (estrogen, progesterone and Her2 of the tumor cells. Gene expression profiling of whole breast tumors further stratifies breast cancer into several molecular subtypes which also co-segregate with the receptor status of the tumor cells. We postulated that cancer associated fibroblasts (CAFs within the tumor stroma may exhibit subtype specific gene expression profiles and thus contribute to the biology of the disease in a subtype specific manner. Several studies have reported gene expression profile differences between CAFs and normal breast fibroblasts but in none of these studies were the results stratified based on tumor subtypes. Methods To address whether gene expression in breast cancer associated fibroblasts varies between breast cancer subtypes, we compared the gene expression profiles of early passage primary CAFs isolated from twenty human breast cancer samples representing three main subtypes; seven ER+, seven triple negative (TNBC and six Her2+. Results We observed significant expression differences between CAFs derived from Her2+ breast cancer and CAFs from TNBC and ER + cancers, particularly in pathways associated with cytoskeleton and integrin signaling. In the case of Her2+ breast cancer, the signaling pathways found to be selectively up regulated in CAFs likely contribute to the enhanced migration of breast cancer cells in transwell assays and may contribute to the unfavorable prognosis of Her2+ breast cancer. Conclusions These data demonstrate that in addition to the distinct molecular profiles that characterize the neoplastic cells, CAF gene expression is also differentially regulated in distinct subtypes of breast cancer.

  3. Characteristic Gene Expression Profiles of Human Fibroblasts and Breast Cancer Cells in a Newly Developed Bilateral Coculture System

    Directory of Open Access Journals (Sweden)

    Takayuki Ueno

    2015-01-01

    Full Text Available The microenvironment of cancer cells has been implicated in cancer development and progression. Cancer-associated fibroblast constitutes a major stromal component of the microenvironment. To analyze interaction between cancer cells and fibroblasts, we have developed a new bilateral coculture system using a two-sided microporous collagen membrane. Human normal skin fibroblasts were cocultured with three different human breast cancer cell lines: MCF-7, SK-BR-3, and HCC1937. After coculture, mRNA was extracted separately from cancer cells and fibroblasts and applied to transcriptomic analysis with microarray. Top 500 commonly up- or downregulated genes were characterized by enrichment functional analysis using MetaCore Functional Analysis. Most of the genes upregulated in cancer cells were downregulated in fibroblasts while most of the genes downregulated in cancer cells were upregulated in fibroblasts, indicating that changing patterns of mRNA expression were reciprocal between cancer cells and fibroblasts. In coculture, breast cancer cells commonly increased genes related to mitotic response and TCA pathway while fibroblasts increased genes related to carbohydrate metabolism including glycolysis, glycogenesis, and glucose transport, indicating that fibroblasts support cancer cell proliferation by supplying energy sources. We propose that the bilateral coculture system using collagen membrane is useful to study interactions between cancer cells and stromal cells by mimicking in vivo tumor microenvironment.

  4. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny

    2005-03-01

    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  5. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  6. A function for filamentous alpha-smooth muscle actin: Retardation of motility in human breast fibroblasts

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    Actins are known to comprise six mammalian isoforms of which beta- and gamma-nonmuscle actins are present in all cells, whereas alpha-smooth muscle (alpha-sm) actin is normally restricted to cells of the smooth muscle lineages. alpha-Sm actin has been found also to be expressed transiently...... reactions. Here, we show that the presence of alpha-sm actin is a signal for retardation of migratory behavior in fibroblasts. Comparison in a migration assay of fibroblast cell strains with and without alpha-sm actin revealed migratory restraint in alpha-sm actin-positive fibroblasts. Electroporation...... in certain nonmuscle cells, in particular fibroblasts, which are referred to as myofibroblasts. The functional significance of alpha-sm actin in fibroblasts is unknown. However, myofibroblasts appear to play a prominent role in stromal reaction in breast cancer, at the site of wound repair, and in fibrotic...

  7. Enhanced invasion and tumor growth of fibroblast growth factor 8b-overexpressing MCF-7 human breast cancer cells.

    Science.gov (United States)

    Ruohola, J K; Viitanen, T P; Valve, E M; Seppänen, J A; Loponen, N T; Keskitalo, J J; Lakkakorpi, P T; Härkönen, P L

    2001-05-15

    Fibroblast growth factor 8 (FGF-8) is a secreted heparin-binding protein, which has mitogenic and transforming activity. Increased expression of FGF-8 has been found in human breast cancer, and it has a potential autocrine role in its progression. Human FGF-8 is alternatively spliced to generate four protein isoforms (a, b, e, and f). Isoform b has been shown to be the most transforming. In this work, we studied the role of FGF-8b in the growth (in vitro and in vivo) of MCF-7 human breast cancer cells, which proliferate in an estrogen-dependent manner. Constitutive overexpression of FGF-8b in MCF-7 cells down-regulated FGF-8b-binding receptors FGF receptor (FGFR) 1IIIc, FGFR2IIIc, and FGFR4 found to be expressed in these cells. FGF-8b overexpression led to an increase in the anchorage-independent proliferation rate in suspension culture and colony formation in soft agar, when MCF-7 cells were cultured with or without estradiol. FGF-8b also provided an additional growth advantage for cells stimulated with estradiol. In addition, FGF-8b-transfected cells invaded more actively through Matrigel than did control cells. This was possibly due to the increased secretion of matrix metalloproteinase 9. In vivo, FGF-8b-transfected MCF-7 cells formed faster growing tumors than vector-only-transfected cells when xenografted into nude mice. The tumors formed by FGF-8b-transfected cells were more vascular than the tumors formed by vector-only-transfected cells. In conclusion, FGF-8b expression confers a growth advantage to MCF-7 breast carcinoma cells, both in vitro and in vivo. In addition to stimulation of proliferation, this growth advantage probably arises from increased invasion and tumor vascularization induced by FGF-8b. The results suggest that FGF-8b signaling may be an important factor in the regulation of tumorigenesis and progression of human breast cancer.

  8. Stimulation of MMP-11 (stromelysin-3 expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Matthaei Klaus I

    2004-07-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are central to degradation of the extracellular matrix and basement membrane during both normal and carcinogenic tissue remodeling. MT1-MMP (MMP-14 and stromelysin-3 (MMP-11 are two members of the MMP family of proteolytic enzymes that have been specifically implicated in breast cancer progression. Expressed in stromal fibroblasts adjacent to epithelial tumour cells, the mechanism of MT1-MMP and MMP-11 induction remains unknown. Methods To investigate possible mechanisms of induction, we examined the effects of a number of plausible regulatory agents and treatments that may physiologically influence MMP expression during tumour progression. Thus NIH3T3 and primary mouse embryonic fibroblasts (MEFs were: a treated with the cytokines IL-1β, IL-2, IL-6, IL-8 and TGF-β for 3, 6, 12, 24, and 48 hours; b grown on collagens I, IV and V; c treated with fibronectin, con-A and matrigel; and d co-cultured with a range of HBC (human breast cancer cell lines of varied invasive and metastatic potential. Results Competitive quantitative RT-PCR indicated that MMP-11 expression was stimulated to a level greater than 100%, by 48 hour treatments of IL-1β, IL-2, TGF-β, fibronectin and collagen V. No other substantial changes in expression of MMP-11 or MT1-MMP in either tested fibroblast culture, under any treatment conditions, were observed. Conclusion We have demonstrated significant MMP-11 stimulation in mouse fibroblasts using cytokines, matrix constituents and HBC cell lines, and also some inhibition of MT1-MMP. Our data suggest that the regulation of these genes in the complex stromal-epithelial interactions that occur in human breast carcinoma, is influenced by several mechanisms.

  9. Functional screen of paracrine signals in breast carcinoma fibroblasts.

    Directory of Open Access Journals (Sweden)

    Gui Su

    Full Text Available Stromal fibroblasts actively participate in normal mammary gland homeostasis and in breast carcinoma growth and progression by secreting paracrine factors; however, little is known about the identity of paracrine mediators in individual patients. The purpose of this study was to characterize paracrine signaling pathways between breast carcinoma cells and breast carcinoma-associated fibroblasts (CAF or normal mammary fibroblasts (NF, respectively. CAF and NF were isolated from breast carcinoma tissue samples and adjacent normal mammary gland tissue of 28 patients. The fibroblasts were grown in 3D collagen gel co-culture with T47D human breast carcinoma cells and T47D cell growth was measured. CAF stimulated T47D cell growth to a significantly greater degree than NF. We detected a considerable inter-individual heterogeneity of paracrine interactions but identified FGF2, HB-EGF, heparanase-1 and SDF1 as factors that were consistently responsible for the activity of carcinoma-associated fibroblasts. CAF from low-grade but not high-grade carcinomas required insulin-like growth factor 1 and transforming growth factor beta 1 to stimulate carcinoma growth. Paradoxically, blocking of membrane-type 1 matrix metalloprotease stimulated T47D cell growth in co-culture with NF. The results were largely mirrored by treating the fibroblasts with siRNA oligonucleotides prior to co-culture, implicating the fibroblasts as principal production site for the secreted mediators. In summary, we identify a paracrine signaling network with inter-individual commonalities and differences. These findings have significant implications for the design of stroma-targeted therapies.

  10. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas.

    Science.gov (United States)

    Qiu, Wen; Hu, Min; Sridhar, Anita; Opeskin, Ken; Fox, Stephen; Shipitsin, Michail; Trivett, Melanie; Thompson, Ella R; Ramakrishna, Manasa; Gorringe, Kylie L; Polyak, Kornelia; Haviv, Izhak; Campbell, Ian G

    2008-05-01

    There is increasing evidence showing that the stromal cells surrounding cancer epithelial cells, rather than being passive bystanders, might have a role in modifying tumor outgrowth. The molecular basis of this aspect of carcinoma etiology is controversial. Some studies have reported a high frequency of genetic aberrations in carcinoma-associated fibroblasts (CAFs), whereas other studies have reported very low or zero mutation rates. Resolution of this contentious area is of critical importance in terms of understanding both the basic biology of cancer as well as the potential clinical implications of CAF somatic alterations. We undertook genome-wide copy number and loss of heterozygosity (LOH) analysis of CAFs derived from breast and ovarian carcinomas using a 500K SNP array platform. Our data show conclusively that LOH and copy number alterations are extremely rare in CAFs and cannot be the basis of the carcinoma-promoting phenotypes of breast and ovarian CAFs.

  11. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    Full Text Available Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.

  12. Human mammary fibroblasts stimulate invasion of breast cancer cells in a three-dimensional culture and increase stroma development in mouse xenografts

    Directory of Open Access Journals (Sweden)

    Olsen Charlotta J

    2010-08-01

    Full Text Available Abstract Introduction Tumour phenotype is regulated in a complex fashion as a result of interactions between malignant cells and the tumour stroma. Fibroblasts are the most abundant and perhaps most active part of the tumour stroma. A better understanding of the changes that occur in fibroblasts in response to the presence of malignant cells may lead to the development of new strategies for cancer treatment. We explored the effects of fibroblasts on the growth and invasion of mammary carcinoma tumour cells in vitro and in vivo. Methods In order to analyse secreted factors that affect invasive abilities of breast cancer cells we co-cultured human mammary fibroblasts (HMF3s and cancer cells (MCF7S1 in three-dimensional (3D growth conditions devoid of heterogeneous cell-cell contact. To study the possible influence of fibroblasts on MCF7S1 cancer cell growth in vivo we co-injected HMF3s and MCF7S1 cells in Balb/c nu/nu mice. Results In 3D co-culture both HMF3s and MCF7S1 cells demonstrated enhanced invasion into a Matrigel matrix. This was correlated with enhanced expression of the metastasis promoting S100A4 protein in fibroblasts, stimulation of the matrix metalloproteinase (MMP-2 activity, and enhanced secretion of a range of different cytokines. Orthotopic injection of oestrogen-dependent MCF7S1 cancer cells together with fibroblasts showed stimulation of tumour growth in mice without an external oestrogen supply. The resulting tumours were characterized by increased development of extracellular matrix, as well as an increase of murine S100A4 concentration and activity of MMP-2 in the tumour interstitial fluid. Conclusion Stimulation of the invasive phenotype of tumour cells in 3D co-cultures with fibroblasts could be correlated with increased production of S100A4 and MMP-2. We propose that enhanced development of mouse host-derived tumour stroma in a MCF7S1 co-injection xenograft model leads to oestrogen independency and is triggered by the

  13. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma

    DEFF Research Database (Denmark)

    Morsing, Mikkel; Klitgaard, Marie Christine; Jafari Kermani, Abbas

    2016-01-01

    Background The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human...... remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. Conclusions Two distinct functionally specialized...... fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial...

  14. Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Shiaw-Wei Tyan

    Full Text Available It has been well documented that microenvironment consisting of stroma affects breast cancer progression. However, the mechanisms by which cancer cells and fibroblasts, the major cell type in stroma, interact with each other during tumor development remains to be elucidated. Here, we show that the human cancer-associated fibroblasts (CAFs had higher activity in enhancing breast tumorigenecity compared to the normal tissue-associated fibroblasts (NAFs isolated from the same patients. The expression level of hepatocyte growth factor (HGF in these fibroblasts was positively correlated with their ability to enhance breast tumorigenesis in mice. Deprivation of HGF using a neutralizing antibody reduced CAF-mediated colony formation of human breast cancer cells, indicating that CAFs enhanced cancer cell colony formation mainly through HGF secretion. Co-culture with human breast cancer MDA-MB-468 cells in a transwell system enhanced NAFs to secret HGF as well as promote tumorigenecity. The newly gained ability of these "educated" NAFs became irreversible after continuing this process till fourth passage. These results suggested that breast cancer cells could alter the nature of its surrounding fibroblasts to secrete HGF to support its own progression through paracrine signaling.

  15. Manganese superoxide dismutase: effect of the ala16val polymorphism on protein, activity, and mRNA levels in human breast cancer cell lines and stably transfected mouse embryonic fibroblasts.

    Science.gov (United States)

    McAtee, Britt L; Yager, James D

    2010-02-01

    The manganese superoxide dismutase (MnSOD) ala16val polymorphism has been associated with various diseases including breast cancer. In the present study, we investigated levels of MnSOD protein, enzymatic activity, and mRNA with respect to MnSOD genotype in several human breast carcinoma cell lines and in mouse embryonic fibroblasts (MEF), developed from the MnSOD knockout mouse, stably expressing human MnSOD-ala and MnSOD-val. In human breast cell lines, the MnSOD-ala allele was associated with increased levels of MnSOD protein and MnSOD protein per unit mRNA. In the MEF transformants, MnSOD activity correlated fairly well with MnSOD protein levels. MnSOD mRNA expression was significantly lower in MnSOD-ala versus MnSOD-val lines. MnSOD protein and activity levels were not related to MnSOD genotype in the transformed MEF, although, as observed in the human breast cell lines, the MEF human MnSOD-ala lines produced significantly more human MnSOD protein per unit mRNA than the human MnSOD-val lines. This suggests that there is more efficient production of MnSOD-ala protein compared to MnSOD-val protein. Examination of several indicators of reactive oxygen species levels, including superoxide and hydrogen peroxide, in wild-type MEF and in MEF expressing similar elevated amounts of MnSOD-ala or val activity did not show differences related to the levels of MnSOD protein expression. In conclusion, in both human breast carcinoma cell lines and MEF cell lines stably transfected with human MnSOD, the MnSOD-ala allele was associated with increased production of MnSOD protein per unit mRNA indicating a possible imbalance in MnSOD protein production from the MnSOD-val mRNA.

  16. c-Ski activates cancer-associated fibroblasts to regulate breast cancer cell invasion.

    Science.gov (United States)

    Wang, Liyang; Hou, Yixuan; Sun, Yan; Zhao, Liuyang; Tang, Xi; Hu, Ping; Yang, Jiajia; Zeng, Zongyue; Yang, Guanglun; Cui, Xiaojiang; Liu, Manran

    2013-12-01

    Aberrant expression of c-Ski oncoprotein in some tumor cells has been shown to be associated with cancer development. However, the role of c-Ski in cancer-associated fibroblasts (CAFs) of tumor microenvironment has not been characterized. In the current study, we found that c-Ski is highly expressed in CAFs derived from breast carcinoma microenvironment and this CAF-associated c-Ski expression is associated with invasion and metastasis of human breast tumors. We showed that c-Ski overexpression in immortalized breast normal fibroblasts (NFs) induces conversion to breast CAFs by repressing p53 and thereby upregulating SDF-1 in NFs. SDF-1 treatment or p53 knockdown in NFs had similar effects on the activation of NFs as c-Ski overexpression. The c-Ski-activated CAFs show increased proliferation, migration, invasion and contraction compared with NFs. Furthermore, c-Ski-activated CAFs facilitated the migration and invasion of MDA-MB-231 breast cancer cells. Our data suggest that c-Ski is an important regulator in the activation of CAFs and may serve as a potential therapeutic target to block breast cancer progression.

  17. Proteome profiling of breast cancer biopsies reveals a wound healing signature of cancer-associated fibroblasts.

    Science.gov (United States)

    Groessl, Michael; Slany, Astrid; Bileck, Andrea; Gloessmann, Kerstin; Kreutz, Dominique; Jaeger, Walter; Pfeiler, Georg; Gerner, Christopher

    2014-11-07

    Breast cancer is still the most common type of cancer in women; an important role in carcinogenesis is actually attributed to cancer-associated fibroblasts. In this study, we investigated whether it is possible to assess the functional state of cancer-associated fibroblasts through tumor tissue proteome profiling. Tissue proteomics was performed on tumor-central, tumor-near, and tumor-distant biopsy sections from breast adenocarcinoma patients, which allowed us to identify 2074 proteins. Data were interpreted referring to reference proteome profiles generated from primary human mammary fibroblasts comprising 4095 proteins. These cells were analyzed in quiescent cell state as well as after in vitro treatment with TGFβ or IL-1β, stimulating wound healing or inflammatory processes, respectively. Representative for cancer cells, we investigated the mammary carcinoma cell line ZR-75-1, identifying 5212 proteins. All mass analysis data have been made fully accessible via ProteomeXchange, DOI PXD001311 and PXD001323-8. Comparison of tissue proteomics data with all of those reference profiles revealed predominance of cancer cell-derived proteins within the tumor and fibroblast-derived proteins in the tumor-distant tissue sections. Remarkably, proteins characteristic for acute inflammation were hardly identified in the tissue samples. In contrast, several proteins found by us to be induced by TGFβ in mammary fibroblasts, including fibulin-5, SLC2A1, and MUC18, were positively identified in all tissue samples, with relatively higher abundance in tumor neighboring tissue sections. These findings indicate a predominance of cancer-associated fibroblasts with wound healing activities localized around tumors.

  18. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Youichi Higuchi

    Full Text Available Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body.Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs and the subperitoneal layer (subperitoneal fibroblasts: SPFs. Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup.In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling.GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract.

  19. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Saroj Kumar

    Full Text Available It is well known that the microenvironment plays a major role in breast cancer progression. Yet, the mechanism explaining the transition from normal fibroblasts to cancer-stimulated fibroblasts remains to be elucidated. Here we report a FTIR imaging study of the effects of three different breast cancer cell lines on normal fibroblasts in culture. Fibroblast activation process was monitored by FTIR imaging and spectra compared by multivariate statistical analyses. Principal component analysis evidenced that the fibroblasts stimulated by these cancer cell lines grouped together and remained distinctly separated from normal fibroblasts indicating a modified different chemical composition in the cancer-stimulated fibroblasts. Similar changes in fibroblasts were induced by the various breast cancer cell lines belonging to different sub-types. Most significant changes were observed in the region of 2950 and 1230 cm(-1, possibly related to changes in lipids and in the 1230 cm(-1 area assigned to phosphate vibrations (nucleotides. Interestingly, the cancer-cell induced changes in the fibroblasts also occurred when there was no possible direct contact between the two cell lines in the co-culture. When contact was possible, the spectral changes were similar, suggesting that soluble factors but not direct cell-cell interactions were responsible for fibroblast activation. Overall, the results indicate that IR imaging could be used in the future for analyzing the microenvironment of breast tumors.

  20. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  1. Altered chromosome 6 in immortal human fibroblasts.

    Science.gov (United States)

    Hubbard-Smith, K; Patsalis, P; Pardinas, J R; Jha, K K; Henderson, A S; Ozer, H L

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal to 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene.

  2. Altered chromosome 6 in immortal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard-Smith, K.; Pardinas, J.R.; Jha, K.K.; Ozer, H.L. (New Jersey Medical School, Newark, NJ (United States)); Patsalis, P.; Henderson, A.S. (City Univ. of New York, NY (United States))

    1992-05-01

    Human diploid fibroblasts have a limited life span in vitro, and spontaneous immortalization is an extremely rare event. We have used transformation of human diploid fibroblasts by an origin-defective simian virus 40 genome to develop series of genetically matched immortal cell lines to analyze immortalization. Comparison of a preimmortal transformant (SVtsA/HF-A) with its uncloned and cloned immortalized derivatives (AR5 and HAL) has failed to reveal any major alteration involving the simian virus 40 genome. Karyotypic analysis, however, demonstrated that all of the immortal cell lines in this series have alterations of chromosome 6 involving loss of the portion distal to 6q21. The karyotypic analysis was corroborated by DNA analyses. Southern analysis demonstrated that only one copy of three proto-oncogene loci (ros1, c-myb, and mas1) on 6q was retained in immortal cells. Polymerase chain reaction analysis of the microsatellite polymorphism at 6q22 (D6S87) showed loss of heterozygosity. In addition, elevated expression of c-myb (6q22-23) was observed. We hypothesize that the region at and/or distal to 6q21 plays a role in immortalization, consistent with the presence of a growth suppressor gene. 66 refs., 6 figs., 2 tabs.

  3. Beryllium induces premature senescence in human fibroblasts.

    Science.gov (United States)

    Coates, Shannon S A; Lehnert, Bruce E; Sharma, Sunil; Kindell, Susan M; Gary, Ronald K

    2007-07-01

    After cells have completed a sufficient number of cell divisions, they exit the cell cycle and enter replicative senescence. Here, we report that beryllium causes proliferation arrest with premature expression of the principal markers of senescence. After young presenescent human fibroblasts were treated with 3 microM BeSO(4) for 24 h, p21 cyclin-dependent kinase inhibitor mRNA increased by >200%. Longer periods of exposure caused mRNA and protein levels to increase for both p21 and p16(Ink4a), a senescence regulator that prevents pRb-mediated cell cycle progression. BeSO(4) also caused dose-dependent induction of senescence-associated beta-galactosidase activity (SA-beta-gal). Untreated cells had 48 relative fluorescence units (RFU)/microg/h of SA-beta-gal, whereas 3 microM BeSO(4) caused activity to increase to 84 RFU/microg/h. In chromatin immunoprecipitation experiments, BeSO(4) caused p53 protein to associate with its DNA binding site in the promoter region of the p21 gene, indicating that p53 transcriptional activity is responsible for the large increase in p21 mRNA elicited by beryllium. Forced expression of human telomerase reverse transcriptase (hTERT) rendered HFL-1 cells incapable of normal replicative senescence. However, there was no difference in the responsiveness of normal HFL-1 fibroblasts (IC(50) = 1.9 microM) and hTERT-immortalized cells (IC(50) = 1.7 microM) to BeSO(4) in a 9-day proliferation assay. The effects of beryllium resemble those of histone deacetylase-inhibiting drugs, which also cause large increases in p21. However, beryllium produced no changes in histone acetylation, suggesting that Be(2+) acts as a novel and potent pharmacological inducer of premature senescence.

  4. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Altran, Silvana C.; Isaac, Cesar [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Lab. de Microcirurgia Plastica; Esteves-Pedro, Natalia M. [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Ciencias Farmaceuticas. Lab. de Controle Biologico; Herson, Marisa R. [DonorTissue Bank of Victoria (Australia)

    2011-07-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  5. Dissecting the Functions of Autophagy in Breast Cancer Associated Fibroblasts

    Science.gov (United States)

    2014-10-01

    unclear. This proposal seeks to understand how stromal fibroblast specific ATG deletion effects mammary tumor progression, and seeks to determine the...the formation of a double membrane organelle, the autophagosome, which sequesters cytoplasmic contents and fuses with the lysosome for degradation...fibroblasts affects mammary tumor development, progression, and metastasis. Task 1: To determine the effects of stromal fibroblast specific atg deletion on

  6. Respiratory activity and growth of human skin derma fibroblasts.

    Science.gov (United States)

    Papa, F; Scacco, S; Vergari, R; Bucaria, V; Dioguardi, D; Papa, S

    1998-09-01

    A study has been made on the speed of growth and respiratory activity of fibroblast cultures from control derma, cheloid (hypertrophic) scar and stabilized scar taken from human skin. The speed of growth and the efficiency of plaque formation of fibroblasts from cheloid scar were greater in comparison with those of fibroblasts from stabilized scar and were stimulated by the addition to the culture medium of the exudate from post-traumatic ulcer. Measurement of the contents of cytochromes showed a decrease in the content of cytochromes b562 and c + c1 in the fibroblast culture from both cheloid and stabilized scar as compared to the fibroblast culture from control derma. Cytochrome aa3 content did not show significant difference among the three types of fibroblast cultures. The respiratory activities supported by pyruvate plus malate, succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine did not show, however, significant difference among the three fibroblast cultures. These observations show that the speed of growth of skin fibroblasts does not depend on the overall respiratory capacity. The exudate stimulated the activity of cytochrome c oxidase in fibroblasts from control derma, and cheloid scar. This effect and the accompanying stimulation of fibroblast growth might be correlated with the balance of oxygen free radicals.

  7. Dextran sulphate crowding and sodium deoxycholate lysis of primary breast fibroblast cells achieve extracellular matrix deposition and decellularization for breast cancer stem cell culture

    Directory of Open Access Journals (Sweden)

    Aroem Naruni

    2016-01-01

    .Extracellular matrix provides tissue integrity, acts as a native scaffold for cell attachment and interaction and alsoserves as reservoir for growth factors. The aim of this experiment w asto achieve the deposition and decellularizationof ECM.Methods: Cells crowder have been developed to increase ECM deposit in the primary breast fibroblast cells layerobtained from isolation of single cell from breast mammoplasty specimen. Five hundred kDa dextran was addedinto DMEM medium containing 0.5% fetal bovine serum (FBS and 100 μm of L-ascorbic acid 2-phosphate. Afterseven days, cells were lysed by sodium deoxycholate (DOC. Results were observed in a fluorescence microscope.Results: Extracellular matrix deposition and decellularization of primary breast fibroblast cells were detected byusing extracellular matrix protein, fibronectin via rabbit anti human fibronectin and anti-rabbit IgG conjugated withAlexa Fluor 488.Conclusion: Dextran sulphate increased extracellular matrix deposit in primary breast fibroblast cell layer and thetreatment with sodium deoxycolate lysed cells resulted in extracellular matrix decellularization. (Health ScienceJournal of Indonesia 2015;6:43-7Keywords: extracellular matrix, breast cancer stem cell, breast fibroblast cell

  8. Aluminium and the human breast.

    Science.gov (United States)

    Darbre, P D

    2016-06-01

    The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current usage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. SPIN90 Depletion and Microtubule Acetylation Mediate Stromal Fibroblast Activation in Breast Cancer Progression.

    Science.gov (United States)

    You, Eunae; Huh, Yun Hyun; Kwon, Ahreum; Kim, So Hee; Chae, In Hee; Lee, Ok-Jun; Ryu, Je-Hwang; Park, Min Ho; Kim, Ga-Eon; Lee, Ji Shin; Lee, Kun Ho; Lee, Yong-Seok; Kim, Jung-Woong; Rhee, Sangmyung; Song, Woo Keun

    2017-09-01

    Biomechanical remodeling of stroma by cancer-associated fibroblasts (CAF) in early stages of cancer is critical for cancer progression, and mechanical cues such as extracellular matrix stiffness control cell differentiation and malignant progression. However, the mechanism by which CAF activation occurs in low stiffness stroma in early stages of cancer is unclear. Here, we investigated the molecular mechanism underlying CAF regulation by SPIN90 and microtubule acetylation under conditions of mechanically soft matrices corresponding to normal stromal rigidity. SPIN90 was downregulated in breast cancer stroma but not tumor, and this low stromal expression correlated with decreased survival in breast cancer patients. Spin90 deficiency facilitated recruitment of mDia2 and APC complex to microtubules, resulting in increased microtubule acetylation. This increased acetylation promoted nuclear localization of YAP, which upregulated expression of myofibroblast marker genes on soft matrices. Spin90 depletion enhanced tumor progression, and blockade of microtubule acetylation in CAF significantly inhibited tumor growth in mice. Together, our data demonstrate that loss of SPIN90-mediated microtubule acetylation is a key step in CAF activation in low stiffness stroma. Moreover, correlation among these factors in human breast cancer tissue supports the clinical relevance of SPIN90 and microtubule acetylation in tumor development. Cancer Res; 77(17); 4710-22. ©2017 AACR. ©2017 American Association for Cancer Research.

  10. IGF-I induced genes in stromal fibroblasts predict the clinical outcome of breast and lung cancer patients

    Directory of Open Access Journals (Sweden)

    Herrmann Richard

    2010-01-01

    Full Text Available Abstract Background Insulin-like growth factor-1 (IGF-I signalling is important for cancer initiation and progression. Given the emerging evidence for the role of the stroma in these processes, we aimed to characterize the effects of IGF-I on cancer cells and stromal cells separately. Methods We used an ex vivo culture model and measured gene expression changes after IGF-I stimulation with cDNA microarrays. In vitro data were correlated with in vivo findings by comparing the results with published expression datasets on human cancer biopsies. Results Upon stimulation with IGF-I, breast cancer cells and stromal fibroblasts show some common and other distinct response patterns. Among the up-regulated genes in the stromal fibroblasts we observed a significant enrichment in proliferation associated genes. The expression of the IGF-I induced genes was coherent and it provided a basis for the segregation of the patients into two groups. Patients with tumours with highly expressed IGF-I induced genes had a significantly lower survival rate than patients whose tumours showed lower levels of IGF-I induced gene expression (P = 0.029 - Norway/Stanford and P = 7.96e-09 - NKI dataset. Furthermore, based on an IGF-I induced gene expression signature derived from primary lung fibroblasts, a separation of prognostically different lung cancers was possible (P = 0.007 - Bhattacharjee and P = 0.008 - Garber dataset. Conclusion Expression patterns of genes induced by IGF-I in primary breast and lung fibroblasts accurately predict outcomes in breast and lung cancer patients. Furthermore, these IGF-I induced gene signatures derived from stromal fibroblasts might be promising predictors for the response to IGF-I targeted therapies. See the related commentary by Werner and Bruchim: http://www.biomedcentral.com/1741-7015/8/2

  11. Super-telomeres in transformed human fibroblasts.

    Science.gov (United States)

    Chiodi, Ilaria; Belgiovine, Cristina; Zongaro, Samantha; Ricotti, Roberta; Horard, Beatrice; Lossani, Andrea; Focher, Federico; Gilson, Eric; Giulotto, Elena; Mondello, Chiara

    2013-08-01

    Telomere length maintenance is critical for organisms' long-term survival and cancer cell proliferation. Telomeres are kept within species-specific length ranges by the interplay between telomerase activity and telomeric chromatin organization. In this paper, we exploited telomerase immortalized human fibroblasts (cen3tel) that gradually underwent neoplastic transformation during culture propagation to study telomere composition and length regulation during the transformation process. Just after telomerase catalytic subunit (hTERT) expression, cen3tel telomeres shortened despite the presence of telomerase activity. At a later stage and concomitantly with transformation, cells started elongating telomeres, which reached a mean length greater than 100kb in about 900 population doublings. Super-telomeres were stable and compatible with cell growth and tumorigenesis. Telomere extension was associated with increasing levels of telomerase activity that were linked to the deregulation of endogenous telomerase RNA (hTERC) and exogenous telomerase reverse transcriptase (hTERT) expression. Notably, the increase in hTERC levels paralleled the increase in telomerase activity, suggesting that this subunit plays a role in regulating enzyme activity. Telomeres ranging in length between 10 and more than 100kb were maintained in an extendible state although TRF1 and TRF2 binding increased with telomere length. Super-telomeres neither influenced subtelomeric region global methylation nor the expression of the subtelomeric gene FRG1, attesting the lack of a clear-cut relationship between telomere length, subtelomeric DNA methylation and expression in human cells. The cellular levels of the telomeric proteins hTERT, TRF1, TRF2 and Hsp90 rose with transformation and were independent of telomere length, pointing to a role of these proteins in tumorigenesis.

  12. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.

    Directory of Open Access Journals (Sweden)

    Howard Y Chang

    2004-02-01

    Full Text Available Cancer invasion and metastasis have been likened to wound healing gone awry. Despite parallels in cellular behavior between cancer progression and wound healing, the molecular relationships between these two processes and their prognostic implications are unclear. In this study, based on gene expression profiles of fibroblasts from ten anatomic sites, we identify a stereotyped gene expression program in response to serum exposure that appears to reflect the multifaceted role of fibroblasts in wound healing. The genes comprising this fibroblast common serum response are coordinately regulated in many human tumors, allowing us to identify tumors with gene expression signatures suggestive of active wounds. Genes induced in the fibroblast serum-response program are expressed in tumors by the tumor cells themselves, by tumor-associated fibroblasts, or both. The molecular features that define this wound-like phenotype are evident at an early clinical stage, persist during treatment, and predict increased risk of metastasis and death in breast, lung, and gastric carcinomas. Thus, the transcriptional signature of the response of fibroblasts to serum provides a possible link between cancer progression and wound healing, as well as a powerful predictor of the clinical course in several common carcinomas.

  13. Hyaluronic acid production by irradiated human synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yaron, M.; Yaron, I.; Levita, M.; Herzberg, M.

    1977-03-01

    Radioactive particles as well as x irradiation from an external source has been used in the treatment of rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis. In order to clarify effects of ionizing irradiation on synovial cells, radioactive gold (/sup 198/Au) and yttrium (/sup 90/Y) were added to fibroblast cultures derived from human synovial membranes. Other cultures were irradiated by a Picker x-ray machine. Fibroblast growth and hyaluronic acid production were measured. Radioactive gold and yttrium particles induced a significant increase of hyaluronic acid synthesis rate (pg/cell/day) and inhibited fibroblast growth. Fibroblasts continued to overproduce hyaluronic acid and to show growth inhibition 3 weeks after irradiation with radioactive gold. Hydrocortisone inhibited hyaluronic acid overproduction induced by radioactive gold. Overproduction of hyaluronic acid induced by the x-ray machine was inhibited by hydrocortisone, actinomycin-D, and cycloheximide. Fibroblasts derived from normal and rheumatoid patients responded similarly to ionizing irradiation.

  14. Differential effects of planktonic and biofilm MRSA on human fibroblasts.

    Science.gov (United States)

    Kirker, Kelly R; James, Garth A; Fleckman, Philip; Olerud, John E; Stewart, Philip S

    2012-01-01

    Bacteria colonizing chronic wounds often exist as biofilms, yet their role in chronic wound pathogenesis remains unclear. Staphylococcus aureus biofilms induce apoptosis in dermal keratinocytes, and given that chronic wound biofilms also colonize dermal tissue, it is important to investigate the effects of bacterial biofilms on dermal fibroblasts. The effects of a predominant wound pathogen, methicillin-resistant S. aureus, on normal, human, dermal fibroblasts were examined in vitro. Cell-culture medium was conditioned with equivalent numbers of either planktonic or biofilm methicillin-resistant S. aureus and then fed to fibroblast cultures. Fibroblast response was evaluated using scratch, viability, and apoptosis assays. The results suggested that fibroblasts experience the same fate when exposed to the soluble products of either planktonic or biofilm methicillin-resistant S. aureus, namely limited migration followed by death. Enzyme-linked immunosorbent assays demonstrated that fibroblast production of cytokines, growth factors, and proteases were differentially affected by planktonic and biofilm-conditioned medium. Planktonic-conditioned medium induced more interleukin-6, interleukin-8, vascular endothelial growth factor, transforming growth factor-β1, heparin-bound epidermal growth factor, matrix metalloproteinase-1, and metalloproteinase-3 production in fibroblasts than the biofilm-conditioned medium. Biofilm-conditioned medium induced more tumor necrosis factor-α production in fibroblasts compared with planktonic-conditioned medium, and suppressed metalloproteinase-3 production compared with controls.

  15. Amplification of fibroblast growth factor receptor-1 in breast cancer and the effects of brivanib alaninate.

    Science.gov (United States)

    Shiang, Christine Y; Qi, Yuan; Wang, Bailiang; Lazar, Vladimir; Wang, Jing; Fraser Symmans, W; Hortobagyi, Gabriel N; Andre, Fabrice; Pusztai, Lajos

    2010-10-01

    Fibroblast growth factor receptor-1 (FGFR-1) is amplified in 10% of human breast cancers. The goal of this study was to test the correlation between FGFR-1 amplification and expression and sensitivity to brivanib, an FGFR-1 small molecule inhibitor, in breast cancer cell lines in vitro. Using CGH array and gene expression profiling, FGFR-1 DNA copy number, mRNA, and protein expression were measured in 21 cell lines and correlated with growth inhibition by brivanib. We examined FGFR-1 autophosphorylation and kinase activity, as well as phosphorylation of downstream signaling molecules in response to bFGF and brivanib exposure. CAMA, MDA-MB-361, and HCC38 cells had FGFR-1 amplification and protein overexpression. Brivanib GI(50) values were significantly lower in the gene amplified (15.17 μM, n = 3) compared to normal copy number (69.09 μM, n = 11) or FGFR-1 deleted (76.14 μM, n = 7) cells (P = 0.0107). Among nonamplified cells, there was no correlation between FGFR-1 mRNA or protein expression levels and brivanib sensitivity. Two of three FGFR-1 amplified cells were sensitive to bFGF-induced growth stimulation, which was blocked by brivanib. In cells with amplified FGFR-1, brivanib decreased receptor autophosphorylation, inhibited bFGF-induced tyrosine kinase activity, and reduced phosphorylation of ERK and AKT. Breast cancer cell lines with FGFR-1 gene amplification and protein overexpression are more sensitive to growth inhibition by brivanib than nonamplified cells. These findings suggest that FGFR-1 amplification or protein overexpression in breast cancers may be an indicator for brivanib treatment, where it may have direct anti-proliferative effects in addition to its' anti-angiogenic effects.

  16. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    Science.gov (United States)

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.

  17. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Keiko Miyoshi

    2015-01-01

    Full Text Available Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs, human dermal fibroblasts (hDFs, and hOF-derived induced pluripotent stem cells (hOF-iPSCs, linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  18. SV40-mediated immortalization of human fibroblasts.

    Science.gov (United States)

    Ozer, H L; Banga, S S; Dasgupta, T; Houghton, J; Hubbard, K; Jha, K K; Kim, S H; Lenahan, M; Pang, Z; Pardinas, J R; Patsalis, P C

    1996-01-01

    We have identified a multistep mechanism by which the DNA virus SV40 overcomes cellular senescence. Expression of SV40 T antigen is required for both transient extension of life span and unlimited life span or immortalization. These effects are mediated through inactivation of function of growth suppressors pRB and p53 via complex formation with T antigen. However, immortalization additionally requires inactivation of a novel growth suppressor gene, which has recently been identified to be on the distal portion of the long arm of chromosome 6, designated SEN6. We propose that SEN6 is responsible for cellular senescence in fibroblasts and other cells.

  19. Aluminium and human breast diseases.

    Science.gov (United States)

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate.

  20. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    Science.gov (United States)

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes.

  1. Human epidermal growth factor and the proliferation of human fibroblasts.

    Science.gov (United States)

    Carpenter, G; Cohen, S

    1976-06-01

    The effect of human epidermal growth factor (hEGF), a 5,400 molecular weight polypeptide isolated from human urine, on the growth of human foreskin fibroblasts (HF cells) was studied by measuring cell numbers and the incorporation of labeled thymidine. The addition of hEGF to HF cells growing in a medium containing 10% calf serum resulted in a 4-fold increase in the final density. The presence of hEGF also promoted the growth of HF cells in media containing either 1% calf serum or 10% gamma globulin-free serum. The addition of hEGF to quiescent confluent monolayers of HF cells, maintained in a medium with 1% calf serum for 48 hours, resulted in a 10- to 20-fold increase in the amount of 3H-thymidine incorporation after 20-24 hours. The stimulation of thymidine incorporation was maximal at an hEGF concentration of 2 ng/ml, was dependent on the presence of serum, and was enhanced by the addition of ascorbic acid. In confluent cultures of HF cells, subject to density dependent inhibition of growth, hEGF was able to stimulate DNA synthesis more effectively than fresh calf serum. Human EGF stimulated DNA synthesis in quiescent cultures, however, regardless of cell density. The addition of rabbit anti-hEGF inhibited all effects of this growth factor on HF cells.

  2. Fibroblast TGF-Beta Signaling in Breast Development and Cancer

    Science.gov (United States)

    2012-09-01

    breast cancer [46]. In this study, Gli1 expression was primarily noted in cancer cells and correlated with another Hedgehog ligand, Sonic Hedge- hog. This...44]. The Hedgehog pathway, which is essential for normal mammary gland development, is also essential for mainte- nance of the CD44+/CD24low...and those active in cancer. Future studies should focus on the pathways, such as TGF-, Hedgehog and chemokines, in breast cancer development and

  3. Effects of trichostatin A on human Tenon capsule fibroblast

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Li

    2014-11-01

    Full Text Available AIM:To investigate the effect of trichostatin A(TSAon cell proliferation and the expressions of histone deacetylase 1(HDAC1and HDAC2 in cultured human Tenon capsule fibroblast(HTF.METHODS: Human Tenon capsule fibroblasts were cultured in vitro after glaucoma filtration surgery. The third to sixth passage of cell were treated by 600nmol/L TSA or none. Cell viability measured by MTT assay after 1, 2 and 3d respectively. The expressions of HDAC1 and HDAC2 were analyzed by Western blot 2d after TSA treatment.RESULTS: Compared to the control, cell viability decreased significantly after treatment with TSA at 1d(PCONCLUSION: TSA inhibits the proliferation of Tenon capsule fibroblast by inhibiting the expression of HDAC1 and HDAC2, and reduces subconjunctival scar formation.

  4. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  5. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4 in a 35-mm dish (9.6 cm(2 grew to confluence (about 1.87-2.41 × 10(6 cells in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.

  6. DETACHMENT OF HUMAN FIBROBLASTS FROM FEP-TEFLON SURFACES

    NARCIS (Netherlands)

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1991-01-01

    In this study a comparison is made between the detachment behavior of human fibroblasts adhered to hydrophobic FEP-Teflon (water contact angle 109 degrees) and to hydrophilic glass (water contact angle smaller than 15 degrees) during exposure to a laminar, incrementally loaded flow. Detachment from

  7. Basic Fibroblast Growth Factor and Fibroblast Growth Factor Receptor-1in Human Meningiomas

    Institute of Scientific and Technical Information of China (English)

    YI Wei; CHEN Jian; Filimon H. Golwa; XUE Delin

    2005-01-01

    The expression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1) in human meningiomas and the relationships between their expression and the tumors' histological features and angiogenesis were investigated by means of immunohistochemical technique. The expression of bFGF and FGFR-1 was detected by antibody of bFGF or FGFR-1.The tumors' angiogenesis was evaluated by microvascular density (MVD) and, which was observed by use of CD34-antibody immunohistochemically. The results showed that there were varied degrees of the expression of bFGF and FGFR-1 proteins in meningiomas. The expression was correlated with the tumors' histological characters and angiogenesis. It was concluded that bFGF and FGFR-1 might play important roles in meningiomas' angiogenesis and proliferation. The expression positive rate of bFGF and FGFR-1 may provide an indication of evaluating the histological and malignant degree of the tumor.

  8. Preliminary study on human fibroblasts as feeder layer for human embryonic stem cells culture in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblastswith human fibroblasts as the feeder layer to maintain human embryonic stem cells growth in the undifferentiated state. We successfully use human fibroblasts derived from aborted fetus and adult prepuce as feeder layer to maintain human embryonic stem cells growth. During the passage and growth on this feeder layer, the human embryonic stem cells can keep their undifferentiated state.

  9. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  10. Polyamines in Human Breast Milk

    OpenAIRE

    Nihal Büyükuslu

    2015-01-01

    Human milk is the ideal food for all newborns and infants. It involves macro nutrients and functional compounds for growth and development. The composition of breast milk differs between preterm and term milk. Polyamines are essential for cell proliferation and differentiation. In addition to their de novo polyamine synthesis, cells can take up polyamines from extracellular sources, such as food, and intestinal microbiota. Breast milk is the first source of exogenous polyamines...

  11. Involvement of the mitochondrial compartment in human NCL fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pezzini, Francesco; Gismondi, Floriana [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Tessa, Alessandra [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Tonin, Paola [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Carrozzo, Rosalba [IRCCS Bambino Gesu Hospital-Molecular Medicine Unit, Roma (Italy); Mole, Sara E. [MRC Laboratory for Molecular Cell Biology, Molecular Medicines Unit, UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London (United Kingdom); Santorelli, Filippo M. [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Simonati, Alessandro, E-mail: alessandro.simonati@univr.it [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. Black-Right-Pointing-Pointer Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. Black-Right-Pointing-Pointer Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  12. Down-Regulation of miR-92 in Breast Epithelial Cells and in Normal but Not Tumour Fibroblasts Contributes to Breast Carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Laura Smith

    Full Text Available MicroRNA (miR expression is commonly dysregulated in many cancers, including breast. MiR-92 is one of six miRs encoded by the miR-17-92 cluster, one of the best-characterised oncogenic miR clusters. We examined expression of miR-92 in the breast epithelium and stroma during breast cancer progression. We also investigated the role of miR-92 in fibroblasts in vitro and showed that down-regulation in normal fibroblasts enhances the invasion of breast cancer epithelial cells.We used laser microdissection (LMD to isolate epithelial cells from matched normal, DCIS and invasive tissue from 9 breast cancer patients and analysed miR-92 expression by qRT-PCR. Expression of ERβ1, a direct miR-92 target, was concurrently analysed for each case by immunohistochemistry. LMD was also used to isolate matched normal (NFs and cancer-associated fibroblasts (CAFs from 14 further cases. Effects of miR-92 inhibition in fibroblasts on epithelial cell invasion in vitro was examined using a Matrigel™ assay. miR-92 levels decreased in microdissected epithelial cells during breast cancer progression with highest levels in normal breast epithelium, decreasing in DCIS (p<0.01 and being lowest in invasive breast tissue (p<0.01. This was accompanied by a shift in cell localisation of ERβ1 from nuclear expression in normal breast epithelium to increased cytoplasmic expression during progression to DCIS (p = 0.0078 and invasive breast cancer (p = 0.031. ERβ1 immunoreactivity was also seen in stromal fibroblasts in tissues. Where miR-92 expression was low in microdissected NFs this increased in matched CAFs; a trend also seen in cultured primary fibroblasts. Down-regulation of miR-92 levels in NFs but not CAFs enhanced invasion of both MCF-7 and MDA-MB-231 breast cancer epithelial cells.miR-92 is gradually lost in breast epithelial cells during cancer progression correlating with a shift in ERβ1 immunoreactivity from nuclei to the cytoplasm. Our data support a functional

  13. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts.

    Science.gov (United States)

    Lee, Seung-Min; Dho, So Hee; Ju, Sung-Kyu; Maeng, Jin-Soo; Kim, Jeong-Yoon; Kwon, Ki-Sun

    2012-10-01

    Carbohydrate metabolism changes during cellular senescence. Cytosolic malate dehydrogenase (MDH1) catalyzes the reversible reduction of oxaloacetate to malate at the expense of reduced nicotinamide adenine dinucleotide (NADH). Here, we show that MDH1 plays a critical role in the cellular senescence of human fibroblasts. We observed that the activity of MDH1 was reduced in old human dermal fibroblasts (HDFs) [population doublings (PD) 56], suggesting a link between decreased MDH1 protein levels and aging. Knockdown of MDH1 in young HDFs (PD 20) and the IMR90 human fibroblast cell line resulted in the appearance of significant cellular senescence features, including senescence-associated β-galactosidase staining, flattened and enlarged morphology, increased population doubling time, and elevated p16(INK4A) and p21(CIP1) protein levels. Cytosolic NAD/NADH ratios were decreased in old HDFs to the same extent as in MDH1 knockdown HDFs, suggesting that cytosolic NAD depletion is related to cellular senescence. We found that AMP-activated protein kinase, a sensor of cellular energy, was activated in MDH1 knockdown cells. We also found that sirtuin 1 (SIRT1) deacetylase, a controller of cellular senescence, was decreased in MDH1 knockdown cells. These results indicate that the decrease in MDH1 and subsequent reduction in NAD/NADH ratio, which causes SIRT1 inhibition, is a likely carbohydrate metabolism-controlled cellular senescence mechanism.

  14. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Eber, R.M.; Shuler, C.F.; Buchanan, W.; Beck, F.M.; Horton, J.E. (Ohio State Univ. College of Dentistry, Columbus (USA))

    1989-08-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings.

  15. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model.

    Science.gov (United States)

    Meng, Mingyao; Wang, Wenju; Yan, Jun; Tan, Jing; Liao, Liwei; Shi, Jianlin; Wei, Chuanyu; Xie, Yanhua; Jin, Xingfang; Yang, Li; Jin, Qing; Zhu, Huirong; Tan, Weiwei; Yang, Fang; Hou, Zongliu

    2016-08-01

    Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP(+) stromal cells which mimicked the FAP(+) CAF in vivo. We immunized a breast cancer mouse model with FAP(+) stromal cells to perform immunotherapy against FAP(+) cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP(+) stromal cells whose phenotype was CD11b(+)/CD34(+)/Sca-1(+)/FSP-1(+)/MHC class I(+). Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP(+) stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4(+) and CD8(+) T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP(+) CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP(+) stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.

  16. Inhibition of normal human lung fibroblast growth by beryllium.

    Science.gov (United States)

    Lehnert, N M; Gary, R K; Marrone, B L; Lehnert, B E

    2001-03-07

    Inhalation of particulate beryllium (Be) and its compounds causes chronic Be disease (CBD) in a relatively small subset ( approximately 1-6%) of exposed individuals. Hallmarks of this pulmonary disease include increases in several cell types, including lung fibroblasts, that contribute to the fibrotic component of the disorder. In this regard, enhancements in cell proliferation appear to play a fundamental role in CBD development and progression. Paradoxically, however, some existing evidence suggests that Be actually has antiproliferative effects. In order to gain further information about the effects of Be on cell growth, we: (1) assessed cell proliferation and cell cycle effects of low concentrations of Be in normal human diploid fibroblasts, and (2) investigated the molecular pathway(s) by which the cell cycle disturbing effects of Be may be mediated. Treatment of human lung and skin fibroblasts with Be added in the soluble form of BeSO(4) (0.1-100 microM) caused inhibitions of their growth in culture in a concentration-dependent manner. Such growth inhibition was found to persist, even after cells were further cultured in Be(2+)-free medium. Flow cytometric analyses of cellular DNA labeled with the DNA-binding fluorochrome DAPI revealed that Be causes a G(0)-G(1)/pre-S phase arrest. Western blot analyses indicated that the Be-induced G(0)-G(1)/pre-S phase arrest involves elevations in TP53 (p53) and the cyclin-dependent kinase inhibitor CDKN1A (p21(Waf-1,Cip1)). That Be at low concentrations inhibits the growth of normal human fibroblasts suggests the possibility of the existence of abnormal cell cycle inhibitory responses to Be in individuals who are sensitive to the metal and ultimately develop CBD.

  17. Radiation-Induced Differentiation in Human Lung Fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-10-15

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of {alpha}-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-{beta}), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-{beta} with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-{beta} but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90.

  18. Inhibition of aromatase activity by methyl sulfonyl PCB metabolites in primary culture of human mammary fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. van den; Heneweer, M.; Geest, M. de; Sanderson, T. [Inst. for Risk Assessment Sciences and Utrecht Univ. (Netherlands); Jong, P. de [St. Antonius Hospital, Nieuwegein (Netherlands); Bergman, A. [Stockholm Univ., Stockholm (Sweden)

    2004-09-15

    Methyl sulfonyl PCB metabolites (MeSO2-PCBs) are persistent contaminants and are ubiquitously present in humans and the environment. Lipophilicity of MeSO2- PCB metabolites is similar to the parent compounds and they have been detected in human milk, adipose, liver and lung tissue. 4- MeSO2-PCB-149 is the most abundant PCB metabolite in human adipose tissue and milk at a level of 1.5 ng/g lipids. Human blood concentration of 4-MeSO2-PCB-149 is approximately 0.03 nM. 3- MeSO2-PCB-101 is the predominant PCB metabolite in muscle and blubber in wildlife, such as otter, mink and grey seal. In the environment, they have been linked to chronic and reproductive toxicity in exposed mink. Additionaly, some MeSO{sub 2}-PCBs have been shown to be glucocorticoid receptor (GR) antagonists. Since approximately 60% of all breast tumors are estrogen responsive, exposure to compounds that are able to alter estrogen synthesis through interference with the aromatase enzyme, can lead to changes in estrogen levels and possibly to accelerated or inhibit breast tumor growth. Therefore, it is important to identify exogenous compounds that can alter aromatase activity in addition to those compounds which have direct interaction with the estrogen receptor (ER). Aromatase (CYP19) comprises the ubiquitous flavoprotein, NADPH-cytochrome P450 reductase, and a unique cytochrome P450 that is exclusively expressed in estrogen producing cells. Previous studies have revealed that expression of the aromatase gene is regulated in a species- and tissue specific manner. In healthy breast tissue, the predominantly active aromatase promoter region I.4 is regulated by glucocorticoids and class I cytokines. Therefore, it is important to investigate possible aromatase inhibiting properties of MeSO{sub 2}-PCBs (as anti glucocorticoids?) in relevant human tissues. We used primary human mammary fibroblasts because of their role in breast cancer development. We compared the results in primary fibroblasts with

  19. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    Science.gov (United States)

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR.

  20. Evidence that neomycin inhibits human cytomegalovirus infection of fibroblasts.

    Science.gov (United States)

    Lobert, P E; Hober, D; Delannoy, A S; Wattré, P

    1996-01-01

    The effect of phosphoinositide-binding aminoglycosides, such as neomycin, gentamicin and streptomycin, on human cytomegalovirus (HCMV) infection of human fibroblasts MRC-5 was studied. The inhibition of HCMV infection was obtained with all of these molecules but neomycin was more effective than the others. We showed that the inoculation of the cells with cell-free viral suspension in presence of neomycin concentrations above 5 mM at 37 degrees C, inhibited more than 98% the HCMV infection. However, the preincubation of the fibroblasts with neomycin at 4 degrees C, before the removal of the drug and the inoculation of the cells, induced only a 30% decrease in the number of infected cells. Addition of neomycin after the HCMV-binding at 4 degrees C or the infection of the cells was less efficient to inhibit HCMV infection than the standard incubation of neomycin during inoculation of the fibroblasts. Indeed, 1 hour after the inoculation of the cells at 37 degrees C, neomycin still inhibited HCMV infection, but 4 hours after the inoculation, this drug had no effect on HCMV infection. Our findings demonstrated that neomycin must be present at the time of infection in order to exert a full inhibiting effect. The effect of neomycin on the HCMV infection was almost immediate upon the addition of the drug (binding and/or internalization) and after the virus internalization (inhibition of immediate-early events). We suggest that neomycin and other aminoglycoside antibiotics may interact with HCMV glycoproteins for binding to similar structural features of cell surface heparan sulfate proteoglycans and may inhibit HCMV infection in fibroblasts by disrupting phosphoinositide-mediated events in the cells.

  1. Aggregatibacter actinomycetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization.

    Science.gov (United States)

    Gutiérrez-Venegas, Gloria; Contreras-Marmolejo, Luis Arturo; Román-Alvárez, Patricia; Barajas-Torres, Carolina

    2008-04-01

    The cytoskeleton is a dynamic structure that plays a key role in maintaining cell morphology and function. This study investigates the effect of bacterial wall lipopolysaccharide (LPS), a strong inflammatory agent, on the dynamics and organization of actin, tubulin, vimentin, and vinculin proteins in human gingival fibroblasts (HGF). A time-dependent study showed a noticeable change in actin architecture after 1.5 h of incubation with LPS (1 microg/ml) with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 24 h. When 0.01-10 microg/ml of LPS was added to human gingival fibroblast cultures, cells acquired a round, flat shape and gradually developed cytoplasmic ruffling. Lipopolysaccharides extracted from Aggregatibacter actinomycetemcomitans periodontopathogenic bacteria promoted alterations in F-actin stress fibres of human gingival cells. Normally, human gingival cells have F-actin fibres that are organized in linear distribution throughout the cells, extending along the cell's length. LPS-treated cells exhibited changes in cytoskeletal protein organization, and F-actin was reorganized by the formation of bundles underneath and parallel to the cell membrane. We also found the reorganization of the vimentin network into vimentin bundling after 1.5 h of treatment. HGF cells exhibited diffuse and granular gamma-tubulin stain. There was no change in LPS-treated HGF. However, vinculin plaques distributed in the cell body diminished after LPS treatment. We conclude that the dynamic and structured organization of cytoskeletal filaments and actin assembly in human gingival fibroblasts is altered by LPS treatment and is accompanied by a decrease in F-actin pools.

  2. The oncogenic potential of human cytomegalovirus and breast cancer.

    Directory of Open Access Journals (Sweden)

    Georges eHerbein

    2014-08-01

    Full Text Available Breast cancer is among the leading causes of cancer-related death among women. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. Numerous articles indicate that breast tumors exhibit diverse phenotypes depending on their distinct physiopathological signatures, clinical courses and therapeutic possibilities. The human cytomegalovirus (HCMV is a multifaceted highly host specific betaherpesvirus that is regarded as asymptomatic or mildly pathogenic virus in immunocompetent host. HCMV may cause serious in utero infections as well as acute and chronic complications in immunocompromised individual. The involvement of HCMV in late inflammatory complications underscores its possible role in inflammatory diseases and cancer. HCMV targets a variety of cell types in vivo, including macrophages, epithelial cells, endothelial cells, fibroblasts, stromal cells, neuronal cells, smooth muscle cells, and hepatocytes. HCMV can be detected in the milk after delivery and thereby HCMV could spread to adjacent mammary epithelial cells. HCMV also infects macrophages and induces an atypical M1/M2 phenotype, close to the tumor associated macrophage phenotype, which is associated with the release of cytokines involved in cancer initiation or promotion and breast cancer of poor prognosis. HCMV antigens and DNA have been detected in tissue biopsies of breast cancers and elevation in serum HCMV IgG antibody levels has been reported to precede the development of breast cancer in some women. In this review, we will discuss the potential role of HCMV in the initiation and progression of breast cancer.

  3. Stromal Fibroblasts from the Interface Zone of Triple Negative Breast Carcinomas Induced Epithelial-Mesenchymal Transition and its Inhibition by Emodin

    Science.gov (United States)

    Wang, Hao-Yu; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Way, Tzong-Der

    2017-01-01

    “Triple negative breast cancer” (TNBC) is associated with a higher rate and earlier time of recurrence and worse prognosis after recurrence. In this study, we aimed to examine the crosstalk between fibroblasts and TNBC cells. The fibroblasts were isolated from TNBC patients’ tissue in tumor burden zones, distal normal zones and interface zones. The fibroblasts were indicated as cancer-associated fibroblasts (CAFs), normal zone fibroblasts (NFs) and interface zone fibroblasts (INFs). Our study found that INFs grew significantly faster than NFs and CAFs in vitro. The epithelial BT20 cells cultured with the conditioned medium of INFs (INFs-CM) and CAFs (CAFs-CM) showed more spindle-like shape and cell scattering than cultured with the conditioned medium of NFs (NFs-CM). These results indicated that factors secreted by INFs-CM or CAFs-CM could induce the epithelial-mesenchymal transition (EMT) phenotype in BT20 cells. Using an in vitro co-culture model, INFs or CAFs induced EMT and promoted cancer cell migration in BT20 cells. Interestingly, we found that emodin inhibited INFs-CM or CAFs-CM-induced EMT programming and phenotype in BT20 cells. Previous studies reported that CAFs and INFs-secreted TGF-β promoted human breast cancer cell proliferation, here; our results indicated that TGF-β initiated EMT in BT20 cells. Pretreatment with emodin significantly suppressed the TGF-β-induced EMT and cell migration in BT20 cells. These results suggest that emodin may be used as a novel agent for the treatment of TNBC. PMID:28060811

  4. Genomic instability of gold nanoparticle treated human lung fibroblast cells.

    Science.gov (United States)

    Li, Jasmine J; Lo, Soo-Ling; Ng, Cheng-Teng; Gurung, Resham Lal; Hartono, Deny; Hande, Manoor Prakash; Ong, Choon-Nam; Bay, Boon-Huat; Yung, Lin-Yue Lanry

    2011-08-01

    Gold nanoparticles (AuNPs) are one of the most versatile and widely researched materials for novel biomedical applications. However, the current knowledge in their toxicological profile is still incomplete and many on-going investigations aim to understand the potential adverse effects in human body. Here, we employed two dimensional gel electrophoresis to perform a comparative proteomic analysis of AuNP treated MRC-5 lung fibroblast cells. In our findings, we identified 16 proteins that were differentially expressed in MRC-5 lung fibroblasts following exposure to AuNPs. Their expression levels were also verified by western blotting and real time RT-PCR analysis. Of interest was the difference in the oxidative stress related proteins (NADH ubiquinone oxidoreductase (NDUFS1), protein disulfide isomerase associate 3 (PDIA3), heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and thioredoxin-like protein 1 (TXNL1)) as well as proteins associated with cell cycle regulation, cytoskeleton and DNA repair (heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and Secernin-1 (SCN1)). This finding is consistent with the genotoxicity observed in the AuNP treated lung fibroblasts. These results suggest that AuNP treatment can induce oxidative stress-mediated genomic instability.

  5. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts.

    Science.gov (United States)

    Weissmann, Robert; Kacprowski, Tim; Peper, Michel; Esche, Jennifer; Jensen, Lars R; van Diepen, Laura; Port, Matthias; Kuss, Andreas W; Scherthan, Harry

    2016-08-01

    Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures. Here, the authors analyzed the transcriptomic response of primary human gingival fibroblasts exposed to increasing doses of acute high dose-rate x rays. In the dataset obtained after 0.5 and 5 Gy x-ray exposures and two different repair intervals (0.5 h and 16 h), the authors discovered several radiation-induced fusion transcripts in conjunction with dose-dependent gene expression changes involving a total of 3,383 genes. Principal component analysis of repeated experiments revealed that the duration of the post-exposure repair intervals had a stronger impact than irradiation dose. Subsequent overrepresentation analyses showed a number of KEGG gene sets and WikiPathways, including pathways known to relate to radioresistance in fibroblasts (Wnt, integrin signaling). Moreover, a significant radiation-induced modulation of microRNA targets was detected. The data sets on IR-induced transcriptomic alterations in primary gingival fibroblasts will facilitate genomic comparisons in various genotoxic exposure scenarios.

  6. Comparative analysis of the expression of surface markers on fibroblasts and fibroblast-like cells isolated from different human tissues.

    Science.gov (United States)

    Lupatov, A Yu; Vdovin, A S; Vakhrushev, I V; Poltavtseva, R A; Yarygin, K N

    2015-02-01

    Expression of 20 surface markers was analyzed in cultures of mesenchymal stromal cells of the umbilical cord, fibroblasts from adult and fetal human skin, and fibroblast-like cells of fetal liver was analyzed by fl ow cytometry. The studied cultures did not express hemopoietic cells markers, but were positive for CD73, CD90, and CD105 markers recommended by the International Society of Cell Therapy for the identification of the multipotent mesenchymal stromal cells. Fetal liver fibroblast-like cells were positive for CD54; this marker was absent in skin fibroblast cultures, but was expressed by umbilical cord mesenchymal stromal cells. Further study of these cells revealed a minor subpopulation of cells co-expressing CD24 and CD90 or CD24 and CD54. We hypothesized that these cells probably participate in epithelial mesenchymal transition.

  7. A fibroblast-associated antigen: Characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Celis, Julio E.; van Deurs, Bo

    1992-01-01

    Fibroblasts with smooth muscle differentiation are frequently derived from human breast tissue. Immunofluorescence cytochemistry of a fibroblast-associated antigen recognized by a monoclonal antibody (MAb), 1B10, was analyzed with a view to discriminating smooth muscle differentiated fibroblasts...... from vascular smooth muscle cells. The antigen was detected on the cell surface and in cathepsin D-positive and acridine orange-accumulating vesicular compartments of fibroblasts. Ultrastructurally, the antigen was revealed in coated pits and in endosomal and lysosomal structures. 1B10 recognized three...... immunoreactivity was specific to fibroblasts and smooth muscle differentiated fibroblasts within the context of vascular smooth muscle cells....

  8. Effect of microemulsions on cell viability of human dermal fibroblasts

    Science.gov (United States)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  9. Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts

    DEFF Research Database (Denmark)

    Lepekhin, Eugene; Grøn, Birgitte; Berezin, Vladimir

    2002-01-01

    at these sites can be explained by differences in the motile behavior of their respective fibroblast populations. The migratory characteristics were studied in a two-dimensional culture system. The migration of single cells was time-lapse video recorded at intervals of 15 min for a period of 6 h using a computer...... displacement of periodontal and skin fibroblasts. The decreased cellular displacement of the buccal fibroblasts was found to be due to both lower cellular speed and less persistence in direction. The buccal fibroblasts also displayed smaller areas and longer processes. The differences in cellular morphology...

  10. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models.

    Directory of Open Access Journals (Sweden)

    Kyung Eun Sung

    Full Text Available The utilization of 3D, physiologically relevant in vitro cancer models to investigate complex interactions between tumor and stroma has been increasing. Prior work has generally focused on the cancer cells and, the role of fibroblast culture conditions on tumor-stromal cell interactions is still largely unknown. Here, we focus on the stroma by comparing functional behaviors of human mammary fibroblasts (HMFs cultured in 2D and 3D and their effects on the invasive progression of breast cancer cells (MCF10DCIS.com. We identified increased levels of several paracrine factors from HMFs cultured in 3D conditions that drive the invasive transition. Using a microscale co-culture model with improved compartmentalization and sensitivity, we demonstrated that HMFs cultured in 3D intensify the promotion of the invasive progression through the HGF/c-Met interaction. This study highlights the importance of the 3D stromal microenvironment in the development of multiple cell type in vitro cancer models.

  11. The Action of Discoidin Domain Receptor 2 in Basal Tumor Cells and Stromal Cancer-Associated Fibroblasts Is Critical for Breast Cancer Metastasis.

    Science.gov (United States)

    Corsa, Callie A S; Brenot, Audrey; Grither, Whitney R; Van Hove, Samantha; Loza, Andrew J; Zhang, Kun; Ponik, Suzanne M; Liu, Yuming; DeNardo, David G; Eliceiri, Kevin W; Keely, Patricia J; Longmore, Gregory D

    2016-06-14

    High levels of collagen deposition in human and mouse breast tumors are associated with poor outcome due to increased local invasion and distant metastases. Using a genetic approach, we show that, in mice, the action of the fibrillar collagen receptor discoidin domain receptor 2 (DDR2) in both tumor and tumor-stromal cells is critical for breast cancer metastasis yet does not affect primary tumor growth. In tumor cells, DDR2 in basal epithelial cells regulates the collective invasion of tumor organoids. In stromal cancer-associated fibroblasts (CAFs), DDR2 is critical for extracellular matrix production and the organization of collagen fibers. The action of DDR2 in CAFs also enhances tumor cell collective invasion through a pathway distinct from the tumor-cell-intrinsic function of DDR2. This work identifies DDR2 as a potential therapeutic target that controls breast cancer metastases through its action in both tumor cells and tumor-stromal cells at the primary tumor site.

  12. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  13. Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma

    Directory of Open Access Journals (Sweden)

    Hua Xing

    2011-11-01

    Full Text Available Abstract Background Diagnosis of ductal carcinoma in situ (DCIS in breast cancer cases is challenging for pathologist due to a variety of in situ patterns and artefacts, which could be misinterpreted as stromal invasion. Microinvasion is detected by the presence of cytologically malignant cells outside the confines of the basement membrane and myoepithelium. When malignant cells invade the stroma, there is tissue remodeling induced by perturbed stromal-epithelial interactions. Carcinoma-associated fibroblasts (CAFs are main cells in the microenvironment of the remodeled tumor-host interface. They are characterized by the expression of the specific fibroblast activation protein-alpha (FAP-α, and differ from that of normal fibroblasts exhibiting an immunophenotype of CD34. We hypothesized that staining for FAP-α may be helpful in determining whether DCIS has microinvasion. Methods 349 excised breast specimens were immunostained for smooth muscle actin SMA, CD34, FAP-α, and Calponin. Study material was divided into 5 groups: group 1: normal mammary tissues of healthy women after plastic surgery; group 2: usual ductal hyperplasia (UDH; group 3: DCIS without microinvasion on H & E stain; group 4: DCIS with microinvasion on H & E stain (DCIS-MI, and group 5: invasive ductal carcinoma (IDC. A comparative evaluation of the four immunostains was conducted. Results Our results demonstrated that using FAP-α and Calponin adjunctively improved the sensitivity of pathological diagnosis of DCIS-MI by 11.29%, whereas the adjunctive use of FAP-α and Calponin improved the sensitivity of pathological diagnosis of DCIS by 13.6%. Conclusions This study provides the first evidence that immunostaining with FAP-α and Calponin can serve as a novel marker for pathologically diagnosing whether DCIS has microinvasion.

  14. Proliferative Effects of Histamine on Primary Human Pterygium Fibroblasts

    Directory of Open Access Journals (Sweden)

    Zhenwei Qin

    2016-01-01

    Full Text Available Purpose. It has been confirmed that inflammatory cytokines are involved in the progression of pterygium. Histamine can enhance proliferation and migration of many cells. Therefore, we intend to investigate the proliferative and migratory effects of histamine on primary culture of human pterygium fibroblasts (HPFs. Methods. Pterygium and conjunctiva samples were obtained from surgery, and toluidine blue staining was used to identify mast cells. 3-[4, 5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT was performed to evaluate the proliferative rate of HPFs and human conjunctival fibroblasts (HCFs; ki67 expression was also measured by immunofluorescence analysis. Histamine receptor-1 (H1R antagonist (Diphenhydramine Hydrochloride and histamine receptor-2 (H2R antagonist (Nizatidine were added to figure out which receptor was involved. Wound healing model was used to evaluate the migratory ability of HPFs. Results. The numbers of total mast cells and degranulated mast cells were both higher in pterygium than in conjunctiva. Histamine had a proliferative effect on both HPFs and HCFs, the effective concentration (10 μmol/L on HPFs was lower than on HCFs (100 μmol/L, and the effect could be blocked by H1R antagonist. Histamine showed no migratory effect on HPFs. Conclusion. Histamine may play an important role in the proliferation of HPFs and act through H1R.

  15. Cytotoxic effects of nickel nanowires in human fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2016-03-09

    The increasing interest in the use of magnetic nanostructures for biomedical applications necessitates rigorous studies to be carried out in order to determine their potential toxicity. This work attempts to elucidate the cytotoxic effects of nickel nanowires (NWs) in human fibroblasts WI-38 by a colorimetric assay (MTT) under two different parameters: NW concentration and exposure time. This was complemented with TEM and confocal images to assess the NWs internalization and to identify any changes in the cell morphology. Ni NWs were fabricated by electrodeposition using porous alumina templates. Energy dispersive X-Ray analysis, scanning electron microscopy and transmission electron microscopy imaging were used for NW characterization. The results showed decreased cell metabolic activity for incubation times longer than 24 hours and no negative effects for exposure times shorter than that. The cytotoxicity effects for human fibroblasts were then compared with those reported for HCT 116 cells, and the findings point out that it is relevant to consider the cellular size. In addition, the present study compares the toxic effects of equivalent amounts of nickel in the form of its salt to those of NWs and shows that the NWs are more toxic than the salts. Internalized NWs were found in vesicles inside of the cells where their presence induced inflammation of the endoplasmic reticulum.

  16. Breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction

    Directory of Open Access Journals (Sweden)

    Zhang Huanle

    2010-06-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs have been recently identified in breast carcinoma as CD44+CD24- cells, which exclusively retain tumorigenic activity and display stem cell-like properties. Using a mammosphere culture technique, MCF7 mammosphere cells are found to enrich breast cancer stem-like cells expressing CD44+CD24-. The stromal cells are mainly constituted by fibroblasts within a breast carcinoma, yet little is known of the contributions of the stromal cells to BCSCs. Methods Carcinoma-associated fibroblasts (CAFs and normal fibroblasts (NFs were isolated and identified by immunohistochemistry. MCF7 mammosphere cells were co-cultured with different stromal fibroblasts by a transwell cocultured system. Flow cytometry was used to measure CD44 and CD24 expression status on MCF7. ELISA (enzyme-linked immunosorbent assay was performed to investigate the production of stromal cell-derived factor 1 (SDF-1 in mammosphere cultures subject to various treatments. Mammosphere cells were injected with CAFs and NFs to examine the efficiency of tumorigenity in NOD/SCID mice. Results CAFs derived from breast cancer patients were found to be positive for α-smooth muscle actin (α-SMA, exhibiting the traits of myofibroblasts. In addition, CAFs played a central role in promoting the proliferation of CD44+CD24- cells through their ability to secrete SDF-1, which may be mediated to SDF-1/CXCR4 signaling. Moreover, the tumorigenicity of mammosphere cells with CAFs significantly increased as compared to that of mammosphere cells alone or with NFs. Conclusion We for the first time investigated the effects of stromal fibroblasts on CD44+CD24- cells and our findings indicated that breast CAFs contribute to CD44+CD24- cell proliferation through the secretion of SDF-1, and which may be important target for therapeutic approaches.

  17. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  18. Metallic nanoparticles reduce the migration of human fibroblasts in vitro

    Science.gov (United States)

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma dos Santos

    2017-03-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α2β1 integrin (VLA-2) and the laminin receptor very late antigen 6, α6β1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  19. Vitronectin in human breast carcinomas

    DEFF Research Database (Denmark)

    Aaboe, Mads; Offersen, Birgitte Vrou; Christensen, Anni;

    2003-01-01

    We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters and in the subendothe......We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters...... and in the subendothelial area of some blood vessels. In normal tissue, vitronectin had a homogeneous periductal occurrence, with local accumulation much lower than that in the carcinomas. Using a new solid phase radioligand assay, the vitronectin concentrations of extracts of carcinomas and normal breast tissue were...... determined and found to be indistinguishable. Comparison of the vitronectin and the hemoglobin concentrations of the extracts showed that their vitronectin content was not derived from blood contamination. Vitronectin mRNA was undetectable in both carcinomas and normal tissue. We conclude that vitronectin...

  20. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    fibroblasts. This SAM-mediated activation of LOS can be stably maintained for over 20 days in fibroblasts cultured in either fibroblasts or stem cell medium. However, when attempting to use the SAM-LOS activation as an approach for induced pluripotent stem cells-reprogramming, no embryonic stem-like colonies...

  1. Differentiation of Human Embryonic Stem Cells on Periodontal Ligament Fibroblasts.

    Science.gov (United States)

    Elçin, Y Murat; İnanç, Bülend; Elçin, A Eser

    2016-01-01

    Human embryonic stem cells' (hESCs) unlimited proliferative potential and differentiation capability to all somatic cell types makes them one of the potential cell sources in cell-based tissue engineering strategies as well as various experimental applications in fields such as developmental biology, pharmacokinetics, toxicology, and genetics. Periodontal tissue engineering is an approach to reconstitute the ectomesenchymally derived alveolar bone, periodontal ligament apparatus, and cementum tissues lost as a result of periodontal diseases. Cell-based therapies may offer potential advantage in overcoming the inherent limitations associated with contemporary regenerative procedures, such as dependency on defect type and size and the pool and capacity of progenitor cells resident in the wound area. Further elucidation of developmental mechanisms associated with tooth formation may also contribute to valuable knowledge based upon which the future therapies can be designed. Protocols for the differentiation of pluripotent hESCs into periodontal ligament fibroblastic cells (PDLF) as common progenitors for ligament, cementum, and alveolar bone tissue represent an initial step in developing hESC-based experimental and tissue engineering strategies. The present protocol describes methods associated with the guided differentiation of hESCs by the use of coculture with adult PDLFs and the resulting change of morphotype and phenotype of the pluripotent embryonic stem cells toward fibroblastic and osteoblastic lineages.

  2. Storage of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Gamze Can

    2007-10-01

    Full Text Available Storage of human breast milk by freezing or refrigeration of milk has been recommended especially at some social circumstances of most mothers who are regularly separated from their infants because of work. The greatest fear that has hindered the prospects of in - vitro storage of breast milk for any considerable period of time is the possibility of bacterial contamination and growth of infectious pathogens in the stored milk, there by rendering them unsafe for human consumption. The storage container can influence the cell content of milk, as the cells adhere to the walls of a glass container but not to polyethylene or polypropylene containers. Bacteriological examination of refrigerated milks has proven their safety for human consumption for even up to 72 h. For a storage over longer periods up to 1 month, freezing at - 20 0C could be recommended, but the most preferred method, especially for longer storage would be fresh freezing at - 70 0C, if affordable or available. The nutrient value of human milk is essentially unchanged, but the immunological properties are reduced by various storage techniques. Boiling and microwave radiation have not been recommended. [TAF Prev Med Bull 2007; 6(5.000: 375-379

  3. Generation of human induced pluripotent stem cells from dermal fibroblasts.

    Science.gov (United States)

    Lowry, W E; Richter, L; Yachechko, R; Pyle, A D; Tchieu, J; Sridharan, R; Clark, A T; Plath, K

    2008-02-26

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.

  4. Spatial Proximity to Fibroblasts Impacts Molecular Features and Therapeutic Sensitivity of Breast Cancer Cells Influencing Clinical Outcomes.

    Science.gov (United States)

    Marusyk, Andriy; Tabassum, Doris P; Janiszewska, Michalina; Place, Andrew E; Trinh, Anne; Rozhok, Andrii I; Pyne, Saumyadipta; Guerriero, Jennifer L; Shu, Shaokun; Ekram, Muhammad; Ishkin, Alexander; Cahill, Daniel P; Nikolsky, Yuri; Chan, Timothy A; Rimawi, Mothaffar F; Hilsenbeck, Susan; Schiff, Rachel; Osborne, Kent C; Letai, Antony; Polyak, Kornelia

    2016-11-15

    Using a three-dimensional coculture model, we identified significant subtype-specific changes in gene expression, metabolic, and therapeutic sensitivity profiles of breast cancer cells in contact with cancer-associated fibroblasts (CAF). CAF-induced gene expression signatures predicted clinical outcome and immune-related differences in the microenvironment. We found that fibroblasts strongly protect carcinoma cells from lapatinib, attributable to its reduced accumulation in carcinoma cells and an elevated apoptotic threshold. Fibroblasts from normal breast tissues and stromal cultures of brain metastases of breast cancer had similar effects as CAFs. Using synthetic lethality approaches, we identified molecular pathways whose inhibition sensitizes HER2(+) breast cancer cells to lapatinib both in vitro and in vivo, including JAK2/STAT3 and hyaluronic acid. Neoadjuvant lapatinib therapy in HER2(+) breast tumors lead to a significant increase of phospho-STAT3(+) cancer cells and a decrease in the spatial proximity of proliferating (Ki67(+)) cells to CAFs impacting therapeutic responses. Our studies identify CAF-induced physiologically and clinically relevant changes in cancer cells and offer novel approaches for overcoming microenvironment-mediated therapeutic resistance. Cancer Res; 76(22); 6495-506. ©2016 AACR.

  5. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Anne Grünewald

    Full Text Available BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD. The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7, as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and

  6. Nerve regeneration by human corneal stromal keratocytes and stromal fibroblasts

    Science.gov (United States)

    Yam, Gary Hin-Fai; Williams, Geraint P.; Setiawan, Melina; Yusoff, Nur Zahirah Binte M.; Lee, Xiao-wen; Htoon, Hla Myint; Zhou, Lei; Fuest, Matthias; Mehta, Jodhbir S.

    2017-01-01

    Laser refractive surgeries reshape corneal stroma to correct refractive errors, but unavoidably affect corneal nerves. Slow nerve regeneration and atypical neurite morphology cause desensitization and neuro-epitheliopathy. Following injury, surviving corneal stromal keratocytes (CSKs) are activated to stromal fibroblasts (SFs). How these two different cell types influence nerve regeneration is elusive. Our study evaluated the neuro-regulatory effects of human SFs versus CSKs derived from the same corneal stroma using an in vitro chick dorsal root ganglion model. The neurite growth was assessed by a validated concentric circle intersection count method. Serum-free conditioned media (CM) from SFs promoted neurite growth dose-dependently, compared to that from CSKs. We detected neurotrophic and pro-inflammatory factors (interleukin-8, interleukin-15, monocyte chemoattractant protein-1, eotaxin, RANTES) in SFCM by Bio-Plex Human Cytokine assay. More than 130 proteins in SFCM and 49 in CSKCM were identified by nanoLC-MS/MS. Proteins uniquely present in SFCM had reported neuro-regulatory activities and were predicted to regulate neurogenesis, focal adhesion and wound healing. Conclusively, this was the first study showing a physiological relationship between nerve growth and the metabolically active SFs versus quiescent CSKs from the same cornea source. The dose-dependent effect on neurite growth indicated that nerve regeneration could be influenced by SF density. PMID:28349952

  7. Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2014-04-01

    There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­‐aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­‐Ray analysis (EDAX) and X-­‐Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at

  8. Human Dermal Stem/Progenitor Cell-Derived Conditioned Medium Improves Senescent Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ji-Yong Jung

    2015-08-01

    Full Text Available Adult skin stem cells are recognized as potential therapeutics to rejuvenate aged skin. We previously demonstrated that human dermal stem/progenitor cells (hDSPCs with multipotent capacity could be enriched from human dermal fibroblasts using collagen type IV. However, the effects of hDSPCs on cellular senescence remain to be elucidated. In the present study, we investigated whether conditioned medium (CM collected from hDSPC cultures (hDSPC-CM exhibits beneficial effects on senescent fibroblasts. We found that hDSPC-CM promoted proliferation and decreased the expression level of senescence-associated β-galactosidase in senescent fibroblasts. In addition, p53 phosphorylation and p21 expression were significantly reduced in senescent fibroblasts treated with hDSPC-CM. hDSPC-CM restored the expression levels of collagen type I, collagen type III, and tissue inhibitor of metalloproteinase, and antagonized the increase of matrix metalloproteinase 1 expression. Finally, we demonstrated that hDSPC-CM significantly reduced reactive oxygen species levels by specifically up-regulating the expression level of superoxide dismutase 2. Taken together, these data suggest that hDSPC-CM can be applied as a potential therapeutic agent for improving human aged skin.

  9. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  10. Aluminium in human breast tissue.

    Science.gov (United States)

    Exley, Christopher; Charles, Lisa M; Barr, Lester; Martin, Claire; Polwart, Anthony; Darbre, Philippa D

    2007-09-01

    Aluminium is omnipresent in everyday life and increased exposure is resulting in a burgeoning body burden of this non-essential metal. Personal care products are potential contributors to the body burden of aluminium and recent evidence has linked breast cancer with aluminium-based antiperspirants. We have used graphite furnace atomic absorption spectrometry (GFAAS) to measure the aluminium content in breast biopsies obtained following mastectomies. The aluminium content of breast tissue and breast tissue fat were in the range 4-437 nmol/g dry wt. and 3-192 nmol/g oil, respectively. The aluminium content of breast tissue in the outer regions (axilla and lateral) was significantly higher (P=0.033) than the inner regions (middle and medial) of the breast. Whether differences in the regional distribution of aluminium in the breast are related to the known higher incidence of tumours in the outer upper quadrant of the breast remains to be ascertained.

  11. Human papilloma viruses (HPV and breast cancer.

    Directory of Open Access Journals (Sweden)

    James Sutherland Lawson

    2015-12-01

    Full Text Available Purpose: Human papillomaviruses (HPV may have a role in some breast cancers. The purpose of this study is to fill important gaps in the evidence. These gaps are: (i confirmation of the presence of high risk for cancer HPVs in breast cancers, (ii evidence of HPV infections in benign breast tissues prior to the development of HPV positive breast cancer in the same patients, (iii evidence that HPVs are biologically active and not harmless passengers in breast cancer.Methods: RNA-seq data from The Cancer Genome Atlas (TCGA was used to identify HPV RNA sequences in breast cancers. We also conducted a retrospective cohort study based on polymerase chain reaction (PCR analyses to identify HPVs in archival specimens from Australian women with benign breast biopsies who later developed breast cancer. To assess whether HPVs in breast cancer were biologically active, the expression of the oncogenic protein HPV E7 was assessed by immunohistochemistry (IHC.Results: Thirty (3.5% low risk and 20 (2.3% high risk HPV types were identified in 855 breast cancers from the TCGA data base. The high risk types were HPV 18 (48%, HPV 113 (24%, HPV 16 (10%, HPV 52 (10%. Data from the PCR cohort study, indicated that HPV type 18 was the most common type identified in breast cancer specimens (55% of 40 breast cancer specimens followed by HPV 16 (13%. The same HPV type was identified in both the benign and subsequent breast cancer in 15 patients. HPV E7 proteins were identified in 72% of benign breast specimens and 59% of invasive breast cancer specimens.Conclusions: There were 4 observations of particular interest: (i confirmation by both NGS and PCR of the presence of high risk HPV gene sequences in breast cancers, (ii a correlation between high risk HPV in benign breast specimens and subsequent HPV positive breast cancer in the same patient, (iii HPVs in breast cancer are likely to be biologically active (as shown by transcription of HPV DNA to RNA plus the expression of

  12. Low ERK phosphorylation in cancer-associated fibroblasts is associated with tamoxifen resistance in pre-menopausal breast cancer.

    Directory of Open Access Journals (Sweden)

    Susann Busch

    Full Text Available PURPOSE: The aim of this study was to evaluate ERK phosphorylation as a stromal biomarker for breast cancer prognosis and tamoxifen treatment prediction within a randomized tamoxifen trial. PATIENTS AND METHODS: Tissue microarrays of two breast cancer cohorts including in total 743 invasive breast cancer samples were analyzed for ERK phosphorylation (pERK and smooth muscle actin-alpha expression (SMAα in cancer-associated fibroblasts (CAFs and links to clinico-pathological data and treatment-predictive values were delineated. RESULTS: By analyzing a unique randomized tamoxifen trial including breast cancer patients receiving no adjuvant treatment we show for the first time that patients low in ERK phosphorylation in CAFs did not respond to tamoxifen treatment despite having estrogen-receptor alpha (ERα-positive tumors compared to patients with high pERK levels in CAFs (P = 0.015, multivariate Cox regression interaction analysis. In both clinical materials we further show a significant association between pERK and SMAα, a characteristic marker for activated fibroblasts. SMAα expression however was not linked to treatment-predictive information but instead had prognostic qualities. CONCLUSION: The data suggests that the presence of a subpopulation of CAFs, defined by minimal activated ERK signaling, is linked to an impaired tamoxifen response. Thus, this report illustrates the importance of the stroma for monitoring treatment effects in pre-menopausal breast cancer.

  13. Microarray analysis of the transcriptional response to single or multiple doses of ionizing radiation in human subcutaneous fibroblasts

    DEFF Research Database (Denmark)

    Rødningen, Olaug Kristin; Overgaard, Jens; Alsner, Jan;

    2005-01-01

    BACKGROUND AND PURPOSE: Transcriptional profiling of fibroblasts derived from breast cancer patients might improve our understanding of subcutaneous radiation-induced fibrosis. The aim of this study was to get a comprehensive overview of the changes in gene expression in subcutaneous fibroblast c...

  14. Identification of fibroblast growth factor-8b target genes associated with early and late cell cycle events in breast cancer cells.

    Science.gov (United States)

    Nilsson, E M; Brokken, L J S; Narvi, E; Kallio, M J; Härkönen, P L

    2012-07-01

    Fibroblast growth factor-8 (FGF-8) is implicated in the development and progression of breast cancer and its levels are frequently elevated in breast tumors. The mechanisms driving FGF-8-mediated tumorigenesis are not well understood. Herein we aimed to identify target genes associated with FGF-8b-mediated breast cancer cell proliferation by carrying out a cDNA microarray analysis of genes expressed in estrogen receptor negative S115 breast cancer cells treated with FGF-8b for various time periods in comparison with those expressed in non-treated cells. Gene and protein expression was validated for selected genes by qPCR and western blotting respectively. Furthermore, using TRANSBIG data, the expression of human orthologs of FGF-8-regulated genes was correlated to the Nottingham prognostic index and estrogen receptor status. The analysis revealed a number of significantly up- and down-regulated genes in response to FGF-8b at all treatment times. The most differentially expressed genes were genes related to cell cycle regulation, mitosis, cancer, and cell death. Several key regulators of early cell cycle progression such as Btg2 and cyclin D1, as well as regulators of mitosis, including cyclin B, Plk1, survivin, and aurora kinase A, were identified as novel targets for FGF-8b, some of which were additionally shown to correlate with prognosis and ER status in human breast cancer. The results suggest that in stimulation of proliferation FGF-8b not only promotes cell cycle progression through the G1 restriction point but also regulates key proteins involved in chromosomal segregation during mitosis and cytokinesis of breast cancer cells.

  15. Letrozole-induced functional changes in carcinoma-associated fibroblasts and their influence on breast cancer cell biology.

    Science.gov (United States)

    Li, Kaifu; Kang, Hua; Wang, Yajun; Hai, Tao; Rong, Guohua; Sun, Haichen

    2016-07-01

    Accumulating evidence suggests that carcinoma-associated fibroblasts (CAFs) influence the efficacy of endocrine therapy. Aromatase inhibitors inhibit the growth of breast tumors by inhibiting the synthesis of estrogen. However, it remains unknown whether the aromatase inhibitor letrozole has an additional impact on CAFs, which further influence the efficacy of endocrine therapy. Primary CAFs were isolated from primary estrogen receptor-positive human breast tumors. Estrogen-deprived culture medium was used to exclude the influence of steroids. In co-culture, primary cultured CAFs increased MCF7 cell adhesion, invasion, migration and proliferation, and letrozole treatment inhibited these increases, except for the increase in proliferation. In total, 258 up-regulated genes and 47 down-regulated genes with an absolute fold change >2 were identified in CAFs co-cultured with MCF7 cell after letrozole treatment. One up-regulated genes (POSTN) and seven down-regulated genes (CCL2, CCL5, CXCL1, IL-8, CXCL5, LEP and NGF) were further validated by real-time PCR. The changes in CCL2 and CXCL1 expression were further confirmed using an automated microscopic imaging-based, high content analysis platform. Although the results need further functional validation, this study is the first to describe the differential tumor-promoting phenotype of CAFs induced by letrozole and the associated gene expression alterations. Most importantly, our data revealed that down-regulation of several secreted factors (CCL2, CCL5, CXCL1 etc.) in CAFs might be partially responsible for the efficacy of letrozole.

  16. Effects of Calendula officinalis on human gingival fibroblasts.

    Science.gov (United States)

    Saini, Pragtipal; Al-Shibani, Nouf; Sun, Jun; Zhang, Weiping; Song, Fengyu; Gregson, Karen S; Windsor, L Jack

    2012-04-01

    Calendula officinalis is commonly called the marigold. It is a staple topical remedy in homeopathic medicine. It is rich in quercetin, carotenoids, lutein, lycopene, rutin, ubiquinone, xanthophylls, and other anti-oxidants. It has anti-inflammatory properties. Quercetin, one of the active components in Calendula, has been shown to inhibit recombinant human matrix metalloproteinase (MMP) activity and decrease the expression of tumor necrosis factor-α, interleukin-1β (IL), IL-6 and IL-8 in phorbol 12-myristate 13-acetate and calcium ionophore-stimulated human mast cells. To examine the effects of Calendula on human gingival fibroblast (HGF) mediated collagen degradation and MMP activity. Lactate dehydrogenate assays were performed to determine the non-toxic concentrations of Calendula, doxycycline and quercetin. Cell-mediated collagen degradation assays were performed to examine the inhibitory effect on cell-mediated collagen degradation. Gelatin zymography was performed to examine their effects on MMP-2 activity. The experiments were repeated three times and ANOVA used for statistical analyses. Calendula at 2-3% completely inhibited the MMP-2 activity in the zymograms. Doxycycline inhibited HGF-mediated collagen degradation at 0.005, 0.01, 0.02 and 0.05%, and MMP-2 activity completely at 0.05%. Quercetin inhibited HGF-mediated collagen degradation at 0.005, 0.01 and 0.02%, and MMP-2 activity in a dose-dependent manner. Calendula inhibited HGF-mediated collagen degradation and MMP-2 activity more than the same correlated concentration of pure quercetin. Calendula inhibits HGF-mediated collagen degradation and MMP-2 activity more than the corresponding concentration of quercetin. This may be attributed to additional components in Calendula other than quercetin. Published by Elsevier Ltd.

  17. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients

    OpenAIRE

    2014-01-01

    Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done ...

  18. Transcriptional Analysis of Normal Human Fibroblast Responses to Microgravity Stress

    Institute of Scientific and Technical Information of China (English)

    Yongqing Liu; Eugenia Wang

    2008-01-01

    To understand the molecular mechanism (s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the space flown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several G1-phase cell cycle traverse genes. Other genes showing up regulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.

  19. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    Science.gov (United States)

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  20. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2015-12-01

    Full Text Available BACKGROUND Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. METHODS In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. RESULTS Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1- fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity CONCLUSIONS Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  1. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2014-08-01

    Full Text Available Background Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. Methods In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. Results Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1-fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity Conclusions Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  2. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  3. [Effects of culture supernatant of human amnion mesenchymal stem cells on biological characteristics of human fibroblasts].

    Science.gov (United States)

    Wu, Qi'er; Lyu, Lu; Xin, Haiming; Luo, Liang; Tong, Yalin; Mo, Yongliang; Yue, Yigang

    2016-06-01

    To investigate the effects of culture supernatant of human amnion mesenchymal stem cells (hAMSCs-CS) on biological characteristics of human fibroblasts. (1) hAMSCs were isolated from deprecated human fresh amnion tissue of placenta and then sub-cultured. The morphology of hAMSCs on culture day 3 and hAMSCs of the third passage were observed with inverted phase contrast microscope. (2) Two batches of hAMSCs of the third passage were obtained, then the expression of vimentin of cells was observed with immunofluorescence method, and the expression of cell surface marker CD90, CD73, CD105, and CD45 was detected by flow cytometer. (3) hAMSCs-CS of the third passage at culture hour 72 were collected, and the content of insulin-like growth factor Ⅰ (IGF-Ⅰ), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) were detected by enzyme-linked immunosorbent assay. (4) Human fibroblasts were isolated from deprecated human fresh prepuce tissue of circumcision and then sub-cultured. Human fibroblasts of the third passage were used in the following experiments. Cells were divided into blank control group and 10%, 30%, 50%, and 70% hAMSCs-CS groups according to the random number table (the same grouping method below), with 48 wells in each group. Cells in blank control group were cultured with DMEM/F12 medium containing 2% fetal bovine serum (FBS), while cells in the latter 4 groups were cultured with DMEM/F12 medium containing corresponding volume fraction of hAMSCs-CS and 2% FBS. The proliferation activity of cells was detected by cell counting kit 8 and microplate reader at culture hour 12, 24, 48, and 72, respectively, and corresponding volume fraction of hAMSCs-CS which causing the best proliferation activity of human fibroblasts was used in the following experiments. (5) Human fibroblasts were divided into blank control group and 50% hAMSCs-CS group and treated as in (4), with 4 wells in each group, at post

  4. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer

    Science.gov (United States)

    Takai, Ken; Le, Annie; Weaver, Valerie M.; Werb, Zena

    2016-01-01

    Increased collagen expression in tumors is associated with increased risk of metastasis, and triple-negative breast cancer (TNBC) has the highest propensity to develop distant metastases when there is evidence of central fibrosis. Transforming growth factor-β (TGF-β) ligands regulated by cancer-associated fibroblasts (CAFs) promote accumulation of fibrosis and cancer progression. In the present study, we have evaluated TNBC tumors with enhanced collagen to determine whether we can reduce metastasis by targeting the CAFs with Pirfenidone (PFD), an anti-fibrotic agent as well as a TGF-β antagonist. In patient-derived xenograft models, TNBC tumors exhibited accumulated collagen and activated TGF-β signaling, and developed lung metastasis. Next, primary CAFs were established from 4T1 TNBC homograft tumors, TNBC xenograft tumors and tumor specimens of breast cancer patients. CAFs promoted primary tumor growth with more fibrosis and TGF-β activation and lung metastasis in 4T1 mouse model. We then examined the effects of PFD in vitro and in vivo. We found that PFD had inhibitory effects on cell viability and collagen production of CAFs in 2D culture. Furthermore, CAFs enhanced tumor growth and PFD inhibited the tumor growth induced by CAFs by causing apoptosis in the 3D co-culture assay of 4T1 tumor cells and CAFs. In vivo, PFD alone inhibited tumor fibrosis and TGF-β signaling but did not inhibit tumor growth and lung metastasis. However, PFD inhibited tumor growth and lung metastasis synergistically in combination with doxorubicin. Thus, PFD has great potential for a novel clinically applicable TNBC therapy that targets tumor-stromal interaction. PMID:27756881

  5. Gene expression profile of normal and cancer-associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue.

    Science.gov (United States)

    González, Lucía; Eiro, Noemi; Fernandez-Garcia, Belen; González, Luis O; Dominguez, Francisco; Vizoso, Francisco J

    2016-11-01

    The biological heterogeneity of breast cancer leads to the need for finding new approaches to understand the mechanisms implicated in breast cancer progression. The tumor stroma appears as a key in the progression of solid tumors towards a malignant phenotype. Cancer associated fibroblasts (CAFs) may orchestrate a functional "corrupted" stroma which in turn helps metastatic spread. In this study, we investigated by real-time PCR, the expression of 19 factors by normal breast-associated fibroblasts (NAFs) and CAFs, which were implicated in several actions promoting tumor growth, such as extracellular matrix remodeling, inflammation and invasion. Also, we explored the influence of inflammatory cells phenotypes (MMP11 status) and breast cancer cell lines (MCF-7 and MDA-MB-231) on the molecular profile of CAFs. If we consider that one of the major sources of CAFs are resident NAFs, the transition of NAFs into CAFs is associated with molecular changes involving the overexpression of some molecular factors of biological importance in tumor progression. In addition, the characterization of the tumor stroma regarding to the MMP11 status by MICs reflects a type of fibroblasts which contribute even more to tumor progression. Moreover, different patterns in the induction of the expression of factors by CAFs were observed, depending on the tumor cell line which they were co-cultured with. Furthermore, CAFs influence TGFβ expression in both cancer cell lines. Therefore, this study can help to a better characterization of tumor stroma in order to improve the prognostic evaluation, as well as to define the different populations of CAFs as potential therapeutic targets in breast cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Regeneration and control of human fibroblast cell density by intermittently delivered pulsed electric fields.

    Science.gov (United States)

    Golberg, Alexander; Bei, Marianna; Sheridan, Robert L; Yarmush, Martin L

    2013-06-01

    Proliferative scarring is a human disease with neither available effective treatment nor relevant animal model. One of the hypotheses for scar formation involves deregulation of fibroblast signaling and delayed apoptosis. Here, we introduce a new chemical-free method for fibroblast density control in culture by intermittently delivered pulsed electric fields (IDPEF), which cause irreversible damage to cell membranes. Using 5-100 pulses with electric field strength of 150 V/mm, pulse duration 70 µs, and frequency of 1 Hz, we investigated the effects of PEF application on growth, death, and regeneration of normal human dermal fibroblasts in culture. We found that the fraction of fibroblasts that survive depends on the number of pulses applied and follows a Weibull distribution. We have successfully developed an IDPEF protocol that controls fibroblasts density in culture. Specifically, through application of IDPEF every 72 h for 12 days, we maintain a normal human dermal fibroblast density in the 3.1 ± 0.2 × 10(5) -1.4 ± 0.2 × 10(5)  cell/mL range. Our results suggest that IDPEFs may prove useful as a non-chemical method for fibroblast density control in human wound healing.

  7. Interleukin-19 Downregulates Interleukin-4-Induced Eotaxin Production in Human Nasal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Masaaki Higashino

    2011-01-01

    Conclusions: These results suggest that IL-19 down-regulates IL-4-induced eotaxin production via SOCS-1 in human nasal fibroblasts. In non-hematopoietic cells in AR, IL-19 might be an immunosuppressive factor.

  8. The Preliminary Study of Interferon-γGene Transfection to Human Tenon's Capsule Fibroblasts in Vitro#

    Institute of Scientific and Technical Information of China (English)

    Yuqing Lan; Jian Ge; Mingkai Lin; Jianliang Zheng; Huiyi Chen; Haiquan Liu; Jing Wei; Yanyan Li

    2000-01-01

    Purpose: To investigate the results of the interferon-gamma(IFN-y) gene transfer and transient expression in human Tenon's capsule fibroblast in vitro in order to find a way to gene therapy in vivo. Method: Using LipofectAMINE, IFN-γ gene was transferred in human Tenon's capsule fibroblasts with plasmid pcDNA3 IFN-y. Its mRNA transcription and protein expression were determined by RT-PCR and flow cytometry assay respectively.Result: The human Tenon's capsule fibroblasts transferred the IFN-γgene can express the IFN-γin transcription and protein level transiently.Conclusion: IFN-γ gene can be transferred successfully and expressed efficiently in human tenon's capsule fibroblast in vitro.

  9. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3).

    Science.gov (United States)

    Bisht, Gunjan; Rayamajhi, Sagar; Kc, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles. Schematic representation of the conjugation, characterization and cytotoxicity analysis of Fe3O4-ZnO magnetic composite particles (MCPs).

  10. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3)

    Science.gov (United States)

    Bisht, Gunjan; Rayamajhi, Sagar; KC, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G.

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles.

  11. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    OpenAIRE

    2011-01-01

    International audience; This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarifi...

  12. Binding, uptake, and release of nicotine by human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, P.J.; Schuster, G.S.; Lubas, S. (Medical College of Georgia, Augusta (USA))

    1991-02-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4{degree}C using a mixture of {sup 3}H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between {sup 3}H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37{degree}C after treating cells with {sup 3}H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours.

  13. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...... collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon.......Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts...... to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned...

  14. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  15. Hepatocyte differentiation of human fibroblasts from cirrhotic liver in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Yu-Ling Sun; Sheng-Yong Yin; Lin Zhou; Hai-Yang Xie; Feng Zhang; Li-Ming Wu; Shu-Sen Zheng

    2011-01-01

    BACKGROUND: Mesenchymal stem cells (MSCs) and fibro-blasts have intimate relationships, and the phenotypic homology between fibroblasts and MSCs has been recently described. The aim of this study was to investigate the hepatic differentiating potentialofhumanfibroblastsincirrhoticliver. METHODS: The phenotypes of fibroblasts in cirrhotic liver were labeled by biological methods. After that, the differentiation potential of these fibroblasts in vitro was characterized in terms of liver-specific gene and protein expression. Finally, an animal model of hepatocyte regeneration in severe combined immunodeficient (SCID) mice was created by retrorsine injection and partial hepatectomy, and the expression of human hepatocyte proteins in SCID mouse livers was checked by immunohistochemicalanalysisafterfibroblastadministration. RESULTS: Surface immunophenotyping revealed that a minority of fibroblasts expressed markers of MSCs and hepatic epithelial cytokeratins as well as alpha-smooth muscle actin, but homogeneously expressed vimentin, desmin, prolyl 4-hydroxylase and fibronectin. These fibroblasts presented the characteristics of hepatocytes in vitro and differentiated directly into functional hepatocytes in the liver of hepatecto-mized SCID mice. CONCLUSIONS: This study demonstrated that fibroblasts in cirrhotic liver have the potential to differentiate into hepatocyte-like cells in vitro and in vivo. Our findings infer that hepatic differentiation of fibroblasts may serve as a new target for reversion of liver fibrosis and a cell source for tissue engineering.

  16. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rachel C Williams

    Full Text Available Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts.We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts.We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival

  17. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Rødningen, Olaug Kristin; Børresen-Dale, Anne-Lise; Alsner, Jan

    2008-01-01

    with variable risk of RIF (grouped into five classes from low to high risk) were irradiated with two different schemes: 1x3.5Gy with RNA isolated 2 and 24h after irradiation, and a fractionated scheme with 3x3.5Gy in intervals of 24h with RNA isolated 2h after the last dose. RNA was also isolated from non......BACKGROUND AND PURPOSE: Breast cancer patients show a large variation in normal tissue reactions after ionizing radiation (IR) therapy. One of the most common long-term adverse effects of ionizing radiotherapy is radiation-induced fibrosis (RIF), and several attempts have been made over the last...... years to develop predictive assays for RIF. Our aim was to identify basal and radiation-induced transcriptional profiles in fibroblasts from breast cancer patients that might be related to the individual risk of RIF in these patients. MATERIALS AND METHODS: Fibroblast cell lines from 31 individuals...

  18. Normal human fibroblasts produce membrane-bound and soluble isoforms of FGFR-1.

    Science.gov (United States)

    Root, L L; Shipley, G D

    2000-02-01

    Fibroblast growth factors (FGFs) are polypeptide mitogens for a wide variety of cell types and are involved in other processes such as angiogenesis and cell differentiation. FGFs mediate their biological responses by activating high-affinity tyrosine kinase receptors. Currently, there are four human fibroblast growth factor receptor (FGFR) genes. To investigate the mechanisms by which alpha FGF and beta FGF may mediate mitogenic signal transduction in human skin-derived fibroblasts, we analyzed these cells for the presence of high-affinity FGFRs. We show that normal human dermal fibroblasts express a single high-affinity FGFR gene, FGFR-1. Cloning and sequencing of two distinct FGFR-1 cDNAs suggested that normal human dermal fibroblasts express a membrane-bound and a putatively secreted form of FGFR-1. We show that normal human dermal fibroblasts produce two FGFR-1 proteins, one of which exists in conditioned media. The mRNA for the putatively secreted form of FGFR-1 appears to be down-regulated by serum treatment of the cells.

  19. Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    S Montagnani

    2009-12-01

    Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

  20. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  1. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes

    NARCIS (Netherlands)

    El Ghalbzouri, A; Jonkman, MF; Dijkman, R; Ponec, M

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence

  2. Regulation of NAMPT in Human Gingival Fibroblasts and Biopsies

    Directory of Open Access Journals (Sweden)

    Anna Damanaki

    2014-01-01

    Full Text Available Adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT, are molecules, which are produced in adipose tissue. Recent studies suggest that NAMPT might also be produced in the tooth-supporting tissues, that is, periodontium, which also includes the gingiva. The aim of this study was to examine if and under what conditions NAMPT is produced in gingival fibroblasts and biopsies from healthy and inflamed gingiva. Gingival fibroblasts produced constitutively NAMPT, and this synthesis was significantly increased by interleukin-1β and the oral bacteria P. gingivalis and F. nucleatum. Inhibition of the MEK1/2 and NFκB pathways abrogated the stimulatory effects of F. nucleatum on NAMPT. Furthermore, the expression and protein levels of NAMPT were significantly enhanced in gingival biopsies from patients with periodontitis, a chronic inflammatory infectious disease of the periodontium, as compared to gingiva from periodontally healthy individuals. In summary, the present study provides original evidence that gingival fibroblasts produce NAMPT and that this synthesis is increased under inflammatory and infectious conditions. Local synthesis of NAMPT in the inflamed gingiva may contribute to the enhanced gingival and serum levels of NAMPT, as observed in periodontitis patients. Moreover, local production of NAMPT by gingival fibroblasts may represent a possible mechanism whereby periodontitis may impact on systemic diseases.

  3. Activation of the innate immune response against DENV in normal non-transformed human fibroblasts.

    Directory of Open Access Journals (Sweden)

    José Bustos-Arriaga

    2011-12-01

    Full Text Available BACKGROUND: When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times ("probing" before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells. METHODOLOGY/PRINCIPAL FINDINGS: Fibroblasts freshly released from healthy skin and infected 12 hours after their isolation show a positive signal for DENV. In addition, when primary skin fibroblast cultures were established and subsequently infected, we showed DENV-2 antigen-positive intracellular signal at 24 hours and 48 hours post-infection. Moreover, the fibroblasts showed productive infection in a conventional plaque assay. The skin fibroblasts infected with DENV-2 underwent potent signaling through both TLR3 and RIG- 1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5 and β defensin 2 (HβD2. In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN regulatory factor 3 (IRF3, but not interferon regulatory factor 7 (IRF7, when compared with mock-infected fibroblasts. CONCLUSIONS/SIGNIFICANCE: In this work, we demonstrated the high susceptibility to DENV infection by primary fibroblasts from normal human skin, both in situ and in vitro. Our results suggest that these cells may contribute to the pro-inflammatory and anti-viral microenvironment in the early stages of interaction with DENV-2. Furthermore, the data suggest that fibroblast may also be used as a primary site of DENV replication and

  4. Aminoguanidine delays the replicative senescence of human diploid fibroblasts

    Institute of Scientific and Technical Information of China (English)

    WANG Pei-chang; ZHANG Jian; ZHANG Zong-yu; TONG Tan-jun

    2007-01-01

    advanced glycation end products; comet assayBackground The accumulation of free radicals and advanced glycation end products (AGEs) in cell plays a very important role in replicative senescence. Aminoguanidine (AG) has potential antioxidant effects and decreases AGE levels. This study aimed to investigate its effect on replicative senescence in vitro.Methods The effects of aminoguanidine on morphology, replicative lifespan, cell growth and proliferation, AGEs, DNA damage, DNA repair ability and telomere length were observed in human fetal lung diploid fibroblasts (2BS).Results Aminoguanidine maintained the non-senescent phenotype of 2BS cells even at late population doubling (PD) and increased cumulative population doublings by at least 17-21 PDs. Aminoguanidine also improved the potentials of growth and proliferation of 2BS cells as detected by the MTT assay. The AGE levels of late PD cells grown from early PD in DMEM containing aminiguanidine decreased significantly compared with those of late PD control cells and were similar to those of young control cells. In addition, the cells pretreated with aminoguanidine had a significant reduction in DNA strand breaks when they were exposed to 200 μmol/L H2O2 for 5 minutes which indicated that the compound had a strong potential to protect genomic DNA against oxidative stress. And most of the cells exposed to 100 μmol/L H2O2 had much shorter comet tails and smaller tail areas after incubation with aminoguanidine-supplemented DMEM, which indicated that the compound strongly improved the DNA repair abilities of 2BS cells. Moreover, PD55 cells grown from PD28 in 2 mmol/L or 4 mmol/L aminoguanidine retain telomere lengths of 7.94 kb or 8.12 kb, which was 0.83 kb or 1.11kb longer than that of the control cells.Conclusion Aminoguanidine delays replicative senescence of 2BS cells and the senescence-delaying effect of aminoguanidine appear to be due to its many biological properties including its potential for proliferation

  5. Preferential gene expression in quiescent human lung fibroblasts.

    Science.gov (United States)

    Coppock, D L; Kopman, C; Scandalis, S; Gilleran, S

    1993-06-01

    The exit from the proliferative cell cycle into a reversible quiescence (G0) is an active process that is not yet well understood at the molecular level. Investigation of G0-specific gene expression is an important step in studying the mechanism regulating the entrance to quiescence. Using the human embryo lung fibroblast (WI38) as a model system, we have isolated complementary DNA clones that are expressed at a higher level in quiescent cells than in logarithmically growing cells. We have identified complementary DNAs from eight genes including collagen alpha 1(VI), collagen alpha 1(III), decorin, complement C1r, collagen alpha 1(I), collagen alpha 2(I), and two novel genes, Q6 and Q10. We have named this class of quiescence-inducible genes quiescins. Expression of these genes was induced just as proliferation slowed, as indicated by the level of histone H2B mRNA, [3H]-thymidine incorporation, and cell number. The level of expression of the novel genes, Q6 and Q10, increased at the same time as the other genes. Q6 has two mRNAs of 3 and 4 kb, whereas Q10 mRNA is about 1.0 kb. The expression of the quiescins was not induced by blocking the cell cycle in S phase with aphidicolin or in G1 with lovastatin. However, the genes were highly induced by trypsinization or scraping of the cells during logarithmic growth. This induction was not blocked by inhibitors of RNA synthesis. The expression of decorin and Q6 was very low in SV40-transformed cells (VA13) either in logarithmic growth or at high density, whereas the gene Q10 was expressed more highly in VA13 than in WI38 cells. The finding that expression of some components of the extracellular matrix is induced as cells enter G0 suggests that they may have a role in both the induction and the maintenance of the quiescent state. The quiescins will serve as molecular markers for the investigation of mechanisms that regulate the onset of quiescence.

  6. The Apoptotic Effects of the P300 Activator on Breast Cancer and Lung Fibroblast Cell Lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salahshoor

    2013-10-01

    Full Text Available Background: P300 is an enzyme that acetylates histones during stress. It alsoacetylates several non-histone proteins, including P53 which is the most important tumorsuppressor gene. P53 plays an important role in the apoptosis of tumor cells. Hereby,this study describes the potency of cholera toxin B subunit as a P300 activator to induceapoptosis in a breast cancer cell line (MCF-7 and a lung fibroblast cell line (MRC-5as a non-tumorigenic control sample. Methods: MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with orwithout cholera toxin B subunit at the concentration of 85.43 μmol/L, based on the half-maximal inhibitory concentration index at different times (24, 48 and 72 h. Thepercentage of apoptotic cells was measured by flow cytometry. Real-time quantitativeRT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with cholera toxin B subunit at different times. We used the ELISA and Bradford proteintechniques to detect levels of total and acetylated P53 protein generated in MCF-7 andMRC-5. Results: Our findings indicated that the cholera toxin B subunit effectively andsignificantly induced more apoptosis in MCF-7 compared to MRC-5. We showed thatexpression of P300 up-regulated by increasing the time of the cholera toxin B subunittreatment in MCF-7 but not in MRC-5. In addition, the acetylated and total P53protein levels increased more in MCF-7 cells than in MRC-5 cells.Conclusion: Cholera toxin B subunit induced significant cell death in MCF-7, butit could be well tolerated in MRC-5. Therefore, cholera toxin B subunit can besuggested as an anti-cancer agent.

  7. The Action of Discoidin Domain Receptor 2 in Basal Tumor Cells and Stromal Cancer-Associated Fibroblasts Is Critical for Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Callie A.S. Corsa

    2016-06-01

    Full Text Available High levels of collagen deposition in human and mouse breast tumors are associated with poor outcome due to increased local invasion and distant metastases. Using a genetic approach, we show that, in mice, the action of the fibrillar collagen receptor discoidin domain receptor 2 (DDR2 in both tumor and tumor-stromal cells is critical for breast cancer metastasis yet does not affect primary tumor growth. In tumor cells, DDR2 in basal epithelial cells regulates the collective invasion of tumor organoids. In stromal cancer-associated fibroblasts (CAFs, DDR2 is critical for extracellular matrix production and the organization of collagen fibers. The action of DDR2 in CAFs also enhances tumor cell collective invasion through a pathway distinct from the tumor-cell-intrinsic function of DDR2. This work identifies DDR2 as a potential therapeutic target that controls breast cancer metastases through its action in both tumor cells and tumor-stromal cells at the primary tumor site.

  8. Epigenetic Effects of Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2014-04-01

    Full Text Available A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant’s health and his later life.

  9. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  10. STUDY ON NUCLEAR MATRIX PROTEINS FROM HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    HE Qian; ZHANG Shu-qun; CHU Yong-lie; JIA Xiao-li; JIANG Jian-tao

    2009-01-01

    Objective To investigate the marker protein of human breast carcinoma from nuclear matrix proteins (NMPs).Methods NMPs were injected subcutaneously into rabbit to get antiserum, which was used to detect the NMPs specificity for breast carcinoma.Results There was an apparent positive band (100kD) in the NMPs of breast carcinoma, which did not exist in normal breast and other tumors that were detected.Conclusion One or one group of 100kD NMPs were found to be related to human breast carcinoma, which may be involved in the carcinogenesis and development of human breast carcinoma and valuable for breast carcinoma diagnosis.

  11. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Outani

    Full Text Available The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4 and one chondrogenic factor (SOX9 can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon cells from human dermal fibroblast (HDF culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells.

  12. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Mona Alibolandi

    2011-01-01

    Full Text Available This work describes the integration of expanded bed adsorption (EBA and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution.

  13. Centrifugal force induces human ligamentum flavum fibroblasts inflammation through activation of JNK and p38 pathways.

    Science.gov (United States)

    Chao, Yuan-Hung; Tsuang, Yang-Hwei; Sun, Jui-Sheng; Sun, Man-Ger; Chen, Ming-Hong

    2012-01-01

    Inflammation has been proposed to be an important causative factor in ligamentum flavum hypertrophy. However, the mechanisms of mechanical load on inflammation of ligamentum flavum remain unclear. In this study, we used an in vitro model of human ligamentum flavum fibroblasts subjected to centrifugal force to elucidate the effects of mechanical load on cultured human ligamentum flavum fibroblasts; we further studied its molecular and biochemical mechanisms. Human ligamentum flavum fibroblasts were obtained from six patients undergoing lumbar spine surgery. Monolayer cultures of human ligamentum flavum fibroblasts were subjected to different magnitudes of centrifugal forces. Cell viability, cell death, biochemical response, and molecular response to centrifugal forces were analyzed. It was found that centrifugal stress significantly suppressed cell viability without inducing cell death. Centrifugal force at 67.1 g/cm(2) for 60 min significantly increases the production of prostaglandin E2 and nitric oxide as well as gene expression of proinflammatory cytokines, including interleukin (IL)-1α, IL-1β and IL-6, showed that centrifugal force-dependent induction of cyclooxygense-2 and inducible NO synthase required JNK and p38 mitogen-activated protein kinase, but not ERK 1/2 activities. This study suggested that centrifugal force does induce inflammatory responses in human ligamentum flavum fibroblasts. The activation of both JNK and p38 mitogen-activated protein kinase mechanotransduction cascades is a crucial intracellular mechanism that mediates cyclooxygense-2/prostaglandin E2 and inducible NO synthase/nitric oxide production.

  14. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  15. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    Science.gov (United States)

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  16. Preferential attachment of human gingival fibroblasts to the resin ionomer Geristore.

    Science.gov (United States)

    Al-Sabek, Fuwad; Shostad, Sandra; Kirkwood, Keith L

    2005-03-01

    The resin ionomer Geristore has been used extensively for root perforation repairs. The purpose of this study was to evaluate oral in vitro biocompatibility of the resin ionomer Geristore compared to two other dental perforation repair materials, Ketac-Fil and Immediate Restorative Material (IRM). Growth and morphology of human gingival fibroblasts (HGFs) was determined using scanning electron microscopy (SEM) of HGFs cells grown on test materials as well as cytotoxicity assays using eluates from test materials. SEM analysis showed that HGFs attached and spread well over Geristore with relatively normal morphology. SEM showed that fibroblasts did not attach and spread well over Ketac-Fil or IRM as cells appeared much fewer with rounded and different morphology than fibroblasts grown on Geristore. Cytotoxicity assays indicated that HGFs proliferated in the presence of Geristore eluates and not in the presence of Ketac-Fil or IRM eluates. In vitro interpretation indicates that Geristore is less cytotoxic to gingival fibroblasts.

  17. Haemophilus ducreyi hemolysin acts as a contact cytotoxin and damages human foreskin fibroblasts in cell culture.

    OpenAIRE

    Alfa, M J; DeGagne, P; Totten, P A

    1996-01-01

    Haemophilus ducreyi, which causes the sexually transmitted disease chancroid, produces several factors that damage human cells. We used isogenic mutants of H. ducreyi 35000 to demonstrate that the hemolytic activity and the cytotoxic effect of H. ducreyi on human foreskin fibroblasts are due to the same toxin.

  18. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Maucksch C

    2012-01-01

    Full Text Available Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP-expressing astrocytes. This study represents a novel virus-free approach for direct reprogramming of human fibroblasts to a neural precursor fate.

  19. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    Full Text Available BACKGROUND: Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  20. Maintenance of telomeres in SV40-transformed pre-immortal and immortal human fibroblasts.

    Science.gov (United States)

    Small, M B; Hubbard, K; Pardinas, J R; Marcus, A M; Dhanaraj, S N; Sethi, K A

    1996-09-01

    Shortening of telomeres has been hypothesized to contribute to cellular senescence and may play a role in carcinogenesis of human cells. Furthermore, activation of telomerase has frequently been demonstrated in tumor-derived and in vitro immortalized cells. In this study, we have assessed these phenomena during the life span of simian virus 40 (SV40)-transformed preimmortal and immortal human fibroblasts. We observed progressive reduction in telomere length in preimmortal transformed cells with extended proliferative capacity, with the most dramatic shortening at late passage. Telomere lengths became stabilized (or increased) in immortal fibroblasts accompanied, in one case, by the activation of telomerase. However, an independent immortal cell line that displayed stable telomeres did not have detectable telomerase activity. Furthermore, we found significant telomerase activity in two preimmortal derivatives. Our results provide further evidence for maintenance of telomeres in immortalized human fibroblasts, but they suggest a lack of causal relationship between telomerase activation and immortalization.

  1. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    Science.gov (United States)

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  2. BRCA2 Heterozygosity Delays Cytokinesis in Primary Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Asta Björk Jonsdottir

    2009-01-01

    Full Text Available Background: Inherited mutations in the tumour suppressor gene BRCA2 greatly increase the risk of developing breast, ovarian and other types of cancers. So far, most studies have focused on the role of BRCA-pathways in the maintenance of genomic stability.

  3. Protective effect of oat bran extracts on human dermal fibroblast injury induced by hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    Bing FENG; Lai-ji MA; Jin-jing YAO; Yun FANG; Yan-ai MEI; Shao-min WEI

    2013-01-01

    Oat contains different components that possess antioxidant properties;no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level.Therefore,the present study focuses on the investigation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide(H2O2).Kjeldahl determination,phenol-sulfuric acid method,and high-performance liquid chromatography(HPLC)analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%,of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da.Assays for 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical scavenging activity indicate that oat peptide-rich extract has a direct and concentration-dependent antioxidant activity.3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling(TUNEL)assay for apoptosis showed that administration of H2O2 in human dermal fibroblasts caused cell damage and apoptosis.Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H2O2,but application oat peptides with H2O2 at same time did not.Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H2O2-induced decrease of superoxide dismutase(SOD)and the inhibition of malondialdehyde(MDA).The results demonstrate that oat peptides possess antioxidant activity and are effective against H2O2-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level.Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.

  4. Secretome Analysis of Human Primary Fibroblasts Undergoing Senescence

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Micutkova, Lucia; Diener, Thomas

    complementary approaches: 1)  Two-dimensional gel electro-phoresis (2DGE) was used to separate proteins and quantitate their expression; selected proteins were identified using mass spectrometry; 2)  Proteins were digested into peptides and analysed using high performance liquid chromatography (HPLC) and mass...... forms of the same protein. Using the gel free approach we were able to identify over 400 proteins and 29 of them showed significant differences in secretion between young and old fibroblasts. Among them MMP-1 was found up regulated and several ECM proteins were found down regulated: lamin A, collagen...

  5. Secretome Analysis of Human Primary Fibroblasts Undergoing Senescence

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Micutkova, Lucia; Diener, Thomas

    metalloproteinases (MMP1, 2 and 3), secreted protein acidic and rich in cysteine (SPARC) and two isoforms of metalloproteinase inhibitors (TIMP1 and 2). Major proteins decreased in senescent secretome were follistatin-like 1 and nucleobindin-1. Over 800 spots were separated by 2DGE of which many represent modified...... alpha-1(XII) chain and fibulin 3. Results obtained until now are in agreement with the suggested shift from matix - synthesizing to matrix - degrading phenotype in senescent fibroblasts except the increased secretion of metalloproteinase inhibitors. Work is going on to identify the remaining...

  6. LR8 Expression in fibroblasts of healthy and fibrotic human tissues.

    Science.gov (United States)

    Etikala, Anusha; Bruce, Greg; Hudkins, Kelly; Narayanan, A S

    2017-07-01

    LR8 gene was first reported in a subpopulation of cultured human lung fibroblasts expressing the receptor for C1q-globular domain, and it was not detectable in cultured endothelial cells and smooth muscle cells. LR8 mRNA levels were higher in fibrotic lungs. In this study we assessed LR8 production in human tissues and determined if the distribution of fibroblasts producing LR8 is affected in fibrosis. Normal and fibrotic tissue sections from human liver, lung and kidneys were immunostained with antibodies to LR8 and examined for the presence of fibroblasts staining positively and negatively. The cells were also examined for co-expression of α-smooth muscle actin (SMA), a marker for myofibroblasts. The results showed that LR8 was expressed by fibroblasts, smooth muscle cells, endothelial cells, bile duct cells, pulmonary alveolar cells and distal and proximal kidney tubule cells. Connective tissues of normal and fibrotic tissues contained fibroblasts staining positively and negatively with anti- LR8 antibody. The number of LR8-positive cells was higher in fibrotic tissues, but differences were not statistically significant. Fibroblasts producing both LR8 and SMA were present in higher numbers in fibrotic tissues as compared to normal tissues and the differences were statistically significant (phuman tissues, and that in fibrotic tissues cells co-expressing LR8 and SMA are present. Our results indicate that LR8 expressing cells may participate in the early stages of fibrotic diseases and that fibroblasts expressing LR8, not LR8 negative cells, have potential to become myofibroblasts in fibrotic tissues.

  7. Proteomic analysis of the soluble fraction from human corneal fibroblasts with reference to ocular transparency.

    Science.gov (United States)

    Karring, Henrik; Thøgersen, Ida B; Klintworth, Gordon K; Enghild, Jan J; Møller-Pedersen, Torben

    2004-07-01

    The transparent corneal stroma contains a population of corneal fibroblasts termed keratocytes, which are interspersed between the collagen lamellae. Under normal conditions, the keratocytes are quiescent and transparent. However, after corneal injury the keratocytes become activated and transform into backscattering wound-healing fibroblasts resulting in corneal opacification. At present, the most popular hypothesis suggests that particular abundant water-soluble proteins called enzyme-crystallins are involved in maintaining corneal cellular transparency. Specifically, corneal haze development is thought to be related to low levels of cytoplasmic enzyme-crystallins in reflective corneal fibroblasts. To further investigate this hypothesis, we have used a proteomic approach to identify the most abundant water-soluble proteins in serum-cultured human corneal fibroblasts that represent an in vitro model of the reflective wound-healing keratocyte phenotype. Densitometry of one-dimensional gels revealed that no single protein isoform exceeded 5% of the total water-soluble protein fraction, which is the qualifying property of a corneal enzyme-crystallin according to the current definition. This result indicates that wound-healing corneal fibroblasts do not contain enzyme-crystallins. A total of 254 protein identifications from two-dimensional gels were performed representing 118 distinct proteins. Proteins protecting against oxidative stress and protein misfolding were prominent, suggesting that these processes may participate in the generation of cytoplasmic light-scattering from corneal fibroblasts.

  8. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro.

    Science.gov (United States)

    Wyganowska-Swiatkowska, Marzena; Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology.

  9. Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites.

    Science.gov (United States)

    Kuang, Ruixia; Wang, Zhiguo; Xu, Quanchen; Liu, Su; Zhang, Weidong

    2015-01-01

    Mechanical stimulation is highly associated with pathogenesis of human hypertrophic scar. Although much work has focused on the influence of mechanical stress on fibroblast populations from various tissues and organs in the human body, their effects on cultured dermal fibroblasts by the area of the body have not been as well studied. In this study, cultures of skin fibroblasts from two different body sites were subjected to cyclic mechanical stimulation with a 10% stretching amplitude at a frequency of 0.1 Hz for 24, 36 and 48 hours, respectively, and thereafter harvested for experimental assays. Fibroblasts from scapular upper back skin, subjected to mechanical loads for 36 and 48 hours, respectively, were observed to proliferate at a higher rate and reach confluent more rapidly during in vitro culturing, had higher expression levels of mRNA and protein production of integrin β1, p130Cas and TGF β1 versus those from medial side of upper arm. These data indicate that skin fibroblasts, with regard to originated body sites studied in the experiments, display a diversity of mechanotransduction properties and biochemical reactions in response to applied mechanical stress, which contributes to the increased susceptibility to hypertrophic scars formation at certain areas of human body characterized by higher skin and muscle tension.

  10. Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Junmei Zhou; Zhenfu Fang; Manxi Jiang; Xuejin Chen

    2013-01-01

    The difference between Noggin and basic fibroblast growth factor for the neural precursor differen-tiation from human embryonic stem cel s has not been studied. In this study, 100 µg/L Noggin or 20 µg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen-tiate human embryonic stem cel s H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro-scope. Immunofluorescence staining revealed expression levels of Nestin,β-III Tubulin and Sox-1 were higher in the induced cel s and reverse-transcription PCR showed induced cel s expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cel differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in-creases the differentiation of neural precursors.

  11. Effect of glutathione on arecanut treated normal human buccal fibroblast culture.

    Directory of Open Access Journals (Sweden)

    Saraswathi T

    2006-01-01

    Full Text Available BACKGROUND: Experimental studies have shown arecanut to be a cytotoxic substance with mutagenic and carcinogenic potential. OBJECTIVE: The present study was undertaken to evaluate the effect of glutathione on arecanut treated human buccal fibroblast culture and its potential as a chemopreventive agent. MATERIALS AND METHODS: Fibroblast culture was done in Dulbecco′s Modified Eagle′s Medium MEM supplemented with 10% Fetal Calf Serum (FCS and antibiotic at 370C degrees in an atmosphere of 5% carbon di-oxide and 95% air. The fibroblast cells were subjected to different concentrations of aqueous extracts of raw and boiled arecanut. Fibroblasts were plated in two 24-well culture plates and in each plate, cells were dividt,ednto 2 groups; 600gg microml of reduced glutathione was added to the first group of cells; subsequently, aqueous extracts of raw and boiled arecanut at least and highest concentrations i.e., 20j. microml and 100lg microml were added to the first group of cells in the respective plates whereas the second group served as a control. The morphological alterations and cell survival were assayed at 24, 48, 72, and 96 hours. Results Morphologically, the initial (10 hours attached fibroblast cells were converted from spheroidal shape towards hexagonal and finally to a fully extended spindle shaped configuration. The three morphological types of fibroblasts at 48 hours were F-I, F-II and F-III. Aqueous extract of raw arecanut exhibited significant cytotoxicity (p < .0 001 at all time periods studied, when compared against the control values of untreated fibroblasts. Addition of reduced glutathione to cultures showed a significant (p < 0. 001 reduction in cytotoxicity, as indicated by higher optical density values and morphological reversion to the spindle-shaped configuration. CoCONCLUSION:Addition of glutathione reduced the cytotoxic and morphological alterations of the fibroblasts treated with aqueous extracts of both raw and boiled

  12. Human cytomegalovirus induces alteration of (-actin mRNA and microfilaments in human embryo fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    林茂芳; 魏国庆; 黄河; 蔡真

    2004-01-01

    Objective: To investigate the infection of human embryo fibroblast cell line HF cells by CMV as well as the effects of CMV on β-actin mRNA and microfilaments. Methods: HF cells shape was observed after the infection of CMV. RT-PCR assay was used to detect the mRNA expression of CMV immediate early (IE) gene, β-actin and GAPDH genes of HF cells infected by CMV. CMV particles and cell microfilaments were detected with electron microscope. Results: Shape of HF cell changed after the infection by CMV. HF cells infected by CMV could express IE mRNA and the expression of β-actin mRNA decreased in a time- and titer-dependent manner compared with the uninfected HF cells whose expression of GAPDH mRNA did not change much. CMV particles were found with electron microscope in the cells. Microfilaments were ruptured and shortened after the infection of CMV. Conclusion: CMV can not only infect human embryo fibroblast cells line HF cells and replicate in the cells, but can also affect the expression of β-actin mRNA and the microfilaments.

  13. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...

  14. Human milk oligosaccharides: only the breast.

    Science.gov (United States)

    McVeagh, P; Miller, J B

    1997-08-01

    Over 100 years ago it was first deduced that a major component of human milk must be an unidentified carbohydrate that was not found in cows milk. At first this was thought to be a form of lactose and was called gynolactose. We now know that this was not a single carbohydrate but a complex mixture of approximately 130 different oligosaccharides. Although small amounts of a few oligosaccharides have been found in the milk of other mammals, this rich diversity of sugars is unique to human milk. The oligosaccharide content of human milk varies with the infant's gestation, the duration of lactation, diurnally and with the genetic makeup of the mother. Milk oligosaccharides have a number of functions that may protect the health of the breast fed infant. As they are not digested in the small intestine, they form the 'soluble' fibre of breast milk and their intact structure is available to act as competitive ligands protecting the breast-fed infant from pathogens. There is a growing list of pathogens for which a specific oligosaccharide ligand has been described in human milk. They are likely to form the model for future therapeutic and prophylactic anti-microbials. They provide substrates for bacteria in the infant colon and thereby contribute to the difference in faecal pH and faecal flora between breast and formula-fed infants. They may also be important as a source of sialic acid, essential for brain development.

  15. Curcumin Triggers p16-Dependent Senescence in Active Breast Cancer-Associated Fibroblasts and Suppresses Their Paracrine Procarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Siti-Fauziah Hendrayani

    2013-06-01

    Full Text Available Activated cancer-associated fibroblasts (CAFs or myofibroblasts not only facilitate tumor growth and spread but also affect tumor response to therapeutic agents. Therefore, it became clear that efficient therapeutic regimens should also take into account the presence of these supportive cells and inhibit their paracrine effects. To this end, we tested the effect of low concentrations of curcumin, a pharmacologically safe natural product, on patient-derived primary breast CAF cells. We have shown that curcumin treatment upregulates p16INK4A and other tumor suppressor proteins while inactivates the JAK2/STAT3 pathway. This reduced the level of alpha-smooth muscle actin (α-SMA and the migration/invasion abilities of these cells. Furthermore, curcumin suppressed the expression/secretion of stromal cell-derived factor-1 (SDF-1, interleukin-6 (IL-6, matrix metalloproteinase-2 (MMP-2, MMP-9, and transforming growth factor-β, which impeded their paracrine procarcinogenic potential. Intriguingly, these effects were sustained even after curcumin withdrawal and cell splitting. Therefore, using different markers of senescence [senescence-associated β-galactosidase (SA-β-gal activity, Ki-67 and Lamin B1 levels, and bromodeoxyuridine incorporation], we have shown that curcumin markedly suppresses Lamin B1 and triggers DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts. Importantly, this curcumin-related senescence was p16INK4A-dependent and occurred with no associated inflammatory secretory phenotype. These results indicate the possible inactivation of cancer-associated myofibroblasts and present the first indication that curcumin can trigger DNA damage-independent and safe senescence in stromal fibroblasts.

  16. Discoidin domain receptors regulate the migration of primary human lung fibroblasts through collagen matrices

    Directory of Open Access Journals (Sweden)

    Ruiz Pedro A

    2012-02-01

    Full Text Available Abstract Background The two discoidin domain receptors (DDRs, DDR1 and DDR2 are receptor tyrosine kinases (RTKs with the unique ability among RTKs to respond to collagen. We have previously shown that collagen I induces DDR1 and matrix metalloproteinase (MMP-10 expression through DDR2 activation and a Janus kinase (JAK2 and extracellular signal-regulated kinase (ERK1/2-mediated mechanism in primary human lung fibroblasts suggesting that these signaling pathways play a role in fibroblast function. Fibroblasts can traverse basement membrane barriers during development, wound healing and pathological conditions such as cancer and fibrosis by activating tissue-invasive programs, the identity of which remain largely undefined. In the present work, we investigated the role of DDRs and DDR-associated signal transduction in these processes. Results Transwell migration experiments showed that normal human lung fibroblast (NHLF transmigration through collagen I-coated inserts is mediated by DDR2 and the DDR2-associated signaling kinases JAK2 and ERK1/2, but not DDR1. Additionally, experiments with specific small interfering (siRNAs revealed that collagen I-induced expression of MMP-10 and MMP-2 is DDR2 but not DDR1 dependent in NHLFs. Our data showed that collagen I increases NHLF migration through collagen IV, the main component of basement membranes. Furthermore, basal and collagen I-induced NHLF migration through collagen IV-coated inserts was both DDR2 and DDR1 dependent. Finally, DDR2, but not DDR1 was shown to be involved in fibroblast proliferation. Conclusions Our results suggest a mechanism by which the presence of collagen I in situations of excessive matrix deposition could induce fibroblast migration through basement membranes through DDR2 activation and subsequent DDR1 and MMP-2 gene expression. This work provides new insights into the role of DDRs in fibroblast function.

  17. Quantitative model of cell cycle arrest and cellular senescence in primary human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sascha Schäuble

    Full Text Available Primary human fibroblasts in tissue culture undergo a limited number of cell divisions before entering a non-replicative "senescent" state. At early population doublings (PD, fibroblasts are proliferation-competent displaying exponential growth. During further cell passaging, an increasing number of cells become cell cycle arrested and finally senescent. This transition from proliferating to senescent cells is driven by a number of endogenous and exogenous stress factors. Here, we have developed a new quantitative model for the stepwise transition from proliferating human fibroblasts (P via reversibly cell cycle arrested (C to irreversibly arrested senescent cells (S. In this model, the transition from P to C and to S is driven by a stress function γ and a cellular stress response function F which describes the time-delayed cellular response to experimentally induced irradiation stress. The application of this model based on senescence marker quantification at the single-cell level allowed to discriminate between the cellular states P, C, and S and delivers the transition rates between the P, C and S states for different human fibroblast cell types. Model-derived quantification unexpectedly revealed significant differences in the stress response of different fibroblast cell lines. Evaluating marker specificity, we found that SA-β-Gal is a good quantitative marker for cellular senescence in WI-38 and BJ cells, however much less so in MRC-5 cells. Furthermore we found that WI-38 cells are more sensitive to stress than BJ and MRC-5 cells. Thus, the explicit separation of stress induction from the cellular stress response, and the differentiation between three cellular states P, C and S allows for the first time to quantitatively assess the response of primary human fibroblasts towards endogenous and exogenous stress during cellular ageing.

  18. Bifunctional Effect of Human IFN-γ on Cultured Human Fibroblasts from Tenon‘s Capsule

    Institute of Scientific and Technical Information of China (English)

    YanGuo; JianGe; 等

    2002-01-01

    Purpose:To study the effect of human IFN-γ on in ivtro cultured human fibroblasts from Tenon's capsule.Materials and methods:The effect of different concentrations of human IFN-γand mitomycin-C (MMC),5-fluorouracil(5-Fu) on cultured human Tenon's capsule fibroblasts(HTCF) was measured using a MTT[3-(4,5-dimethylthiazo-2-yI)]-2,5-diphenylterazolium bromide;Thiazolyl blue) colorimetric assay.The results were analyzed using ANOVA of the statistical package for social sciences (SPSS) 9.0 version.The difference was considered to be significant if P<0.05.Results:The effects of MMC and 5-Fu on the growth of HTCF were negative,while the effects of IFN-γon the growth of HTCF were both negative(102-104 units/ml in two experiments)and positive(106,105,10 units /ml in two experiments).The inhibition rate of MMC ranged from 5.73% to 46.9% ,which was similar to the inhibition rate of 5-Fu ranged from 12.49% to 38.92%(P=0.351).The inhibition rate of IFN-γ in two experiments was smaller than MMC and 5-Fu (P<0.05).Conclusion: IFN-γ has bifunctional effect (both enhancement and inhibition)on proliferation of cultured HTCF.The antiproliferative effect of IFN-γ was weaker than MMC and 5-Fu.Further study has to be carried out to document theinhibition of scar formation of filtration bleb by IFN-γ and the molecular mechanisms of its bifunctional effect on HTCF proliferation.Eye Science 2000;16:43-47.

  19. Bifunctional Effect of Human IFN-γon Cultured Human Fibroblasts from Tenon's Capsule

    Institute of Scientific and Technical Information of China (English)

    Yan Guo; Jian Ge; Haiquan Liu; Yanyan Li; Jianliang Zheng; Xiangkun Huang; Yuqing Lan

    2000-01-01

    Purpose: To study the effect of human IFN-γ on in vitro cultured human fibroblasts from Tenon's capsuleMaterials and methods: The effect of different concentrations of human IFN-γ and mitomycin-C (MMC), 5-fluorouracil (5-Fu) on cultured human Tenon's capsule fibroblasts (HTCF) was measured using a MIT [3-(4, 5-dimethylthiazo-2-yl)] -2,5-diphenyltetrazolium bromide; Thiazolyl blue) colorimetric assay. The results were analyzed using ANOVA of the statistical package for social sciences (SPSS) 9.0version. The difference was considered to be significant if P < 0. 05.Results: The effects of MMC and 5-Fu on the growth of HTCF were negative, while the effects of IFN-γ on the growth of HTCF were both negative (102 ~ l04 units/ml in two experiments) and positive (106, 105, 10 units/ml in two experiments) . The inhibition rate of MMC ranged from 5.73% to 46. 9%, which was similar to the inhibition rate of 5-Fu ranged from 12.49% to 38.92% ( P= 0. 351) . The inhibition rate of IFN-γ in two experiments was smaller than MMC and 5-Fu ( P < 0.05).Conclusion: IFN-γ has bifunctional effect (both enhancement and inhibition) on proliferation of cultured HTCF. The antiproliferative effect of IFN-γ was weaker than MMC and 5-Fu. Further study has to be carried out to document the inhibition of scar formation of filtration bleb by IFN-γ and the molecular mechanisms of its bifunctional effect on HTCF proliferation. Eye Science 2000; 16: 43~ 47.

  20. Prostaglandin E₂ inhibits human lung fibroblast chemotaxis through disparate actions on different E-prostanoid receptors.

    Science.gov (United States)

    Li, Ying-Ji; Wang, Xing-Qi; Sato, Tadashi; Kanaji, Nobuhiro; Nakanishi, Masanori; Kim, Miok; Michalski, Joel; Nelson, Amy J; Sun, Jian-Hong; Farid, Maha; Basma, Hesham; Patil, Amol; Toews, Myron L; Liu, Xiangde; Rennard, Stephen I

    2011-01-01

    The migration of fibroblasts is believed to play a key role in both normal wound repair and abnormal tissue remodeling. Prostaglandin E (PGE)(2), a mediator that can inhibit many fibroblast functions including chemotaxis, was reported to be mediated by the E-prostanoid (EP) receptor EP2. PGE(2), however, can act on four receptors. This study was designed to determine if EP receptors, in addition to EP2, can modulate fibroblast chemotaxis. Using human fetal lung fibroblasts, the expression of all four EP receptors was demonstrated by Western blotting. EP2-selective and EP4-selective agonists inhibited both chemotaxis toward fibronectin in the blindwell assay and migration in a wound-closure assay. In contrast, EP1-selective and EP3-selective agonists stimulated cell migration in both assay systems. These results were confirmed using EP-selective antagonists. The role of both EP2 and EP4 receptors in mediating the PGE(2) inhibition of chemotaxis was also confirmed by small interfering RNA suppression. Furthermore, the role of EP receptors was confirmed by blocking the expected signaling pathways. Taken together, these results demonstrate that PGE(2) can act on multiple EP receptors in human lung fibroblasts, to exert disparate effects. Alterations in EP receptor expression may have the potential to alter PGE(2) action. Targeting specific EP receptors may offer therapeutic opportunities in conditions characterized by abnormal tissue repair and remodeling.

  1. Assessment of human gingival fibroblast interaction with dental implant abutment materials.

    Science.gov (United States)

    Rutkunas, Vygandas; Bukelskiene, Virginija; Sabaliauskas, Vaidotas; Balciunas, Evaldas; Malinauskas, Mangirdas; Baltriukiene, Daiva

    2015-04-01

    The biocompatibility of dental implant abutment materials depends on numerous factors including the nature of the material, its chemical composition, roughness, texture, hydrophilicity and surface charge. The aim of the present study was to compare the viability and adhesion strength of human gingival fibroblasts (HGFs) grown on several dental materials used in implant prosthodontics. Surfaces of the tested materials were assessed using an optical imaging profiler. For material toxicity and cellular adhesion evaluation, primary human gingival fibroblast cells were used. To evaluate the strength of cellular adhesion, gingival fibroblasts were cultured on the tested materials and subjected to lateral shear forces by applying 300 and 500 rpm shaking intensities. Focal adhesion kinase (FAK) expression and phosphorylation in cells grown on the specimens were registered by cell-based ELISA. There was a tendency of fibroblast adhesion strength to decrease in the following order: sandblasted titanium, polished titanium, sandblasted zirconium oxide, polished zirconium oxide, gold-alloy, chrome-cobalt alloy. Higher levels of total as well as phospho-FAK protein were registered in HGFs grown on roughened titanium. Material type and surface processing technique have an impact on gingival fibroblast interaction with dental implant abutment materials.

  2. Cisplatin-induced premature senescence with concomitant reduction of gap junctions in human fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Wei ZHAO; Zhong Xiang LIN; Zhi Qian ZHANG

    2004-01-01

    To examine the role of gap junctions in cell senescence,the changes of gap junctions in cisplatin-induced premature senescence of primary cultured fibroblasts were studied and compared with the replicative senescent human fibroblasts.Dye transfer assay for gap junction function and immunofluorescent staining for connexin 43 protein distribution were done respectively. Furthermore,cytofluorimetry and DAPI fluorescence staining were performed for cell cycle and apoptosis analysis. p53 gene expression level was detected with indirect immunofluorescence. We found that cisplatin (10 mM) treatment could block cell growth cycle at G1 and induced premature senescence. The premature senescence changes included high frequency of apoptosis,elevation of p53 expression,loss of membranous gap junctions and reduction of dye-transfer capacity. These changes were comparable to the changes of replicative senescence of human fibroblasts. It was also concluded that cisplatin could induce premature senescence concomitant with inhibition of gap junctions in the fibroblasts. Loss of functional gap junctions from the cell membrane may account for the reduced intercellular communication in the premature senescent fibroblasts. The cell system we used may provide a model useful for the study of the gap junction thus promoting agents against premature senescence.

  3. Development of human skin equivalents mimicking skin aging : contrast between papillary and reticular fibroblasts as a lead

    NARCIS (Netherlands)

    Janson, D.

    2017-01-01

    This thesis describes the development of human skin equivalents that show characteristics of skin aging. The type of skin equivalent used was a fibroblast derived matrix equivalent, in which the dermal compartment is generated by fibroblasts and thus is fully of human origin. Two strategies are

  4. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  5. Discoidin Domain Receptor 2 Mediates Collagen-Induced Activation of Membrane-Type 1 Matrix Metalloproteinase in Human Fibroblasts.

    Science.gov (United States)

    Majkowska, Iwona; Shitomi, Yasuyuki; Ito, Noriko; Gray, Nathanael S; Itoh, Yoshifumi

    2017-03-07

    Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) is a membrane-bound MMP that is highly expressed in cells with invading capacity including fibroblasts and invasive cancer cell. A potential physiological stimulus for MT1-MMP expression is fibrillar collagen, and it has been shown that it upregulates both MT1-MMP gene and functions in various cell types. However, the mechanisms of collagen-mediated MT1-MMP activation is not clearly understood. In this study we identified discoidin domain receptor 2 (DDR2) as a crucial receptor that mediates this process in human fibroblasts. Knocking down DDR2, but not β1 integrin subunit, a common subunit for all collagen-binding integrins, inhibited collagen-induced activation of proMMP-2 and upregulation of MT1-MMP at the gene and protein level. Interestingly DDR2 knockdown or pharmacological inhibition of DDR2 also inhibited MT1-MMP-dependent cellular degradation of collagen film, suggesting that cell surface collagen degradation by MT1-MMP involves DDR2-mediated collagen signalling. This DDR2-mediated mechanism is only present in non-transformed mesenchymal cells, as collagen-induced MT1-MMP activation in HT1080 fibrosarcoma cells and MT1-MMP function in MDA-MB231 breast cancer cells were not affected by DDR kinase inhibition. DDR2 activation was found to be noticeably more effective when cells were stimulated by collagen without non-helical telopeptides region compared to intact collagen fibrils. Those data suggest that DDR2 is a microenvironmental sensor that regulates fibroblasts migration in collagen-rich environment.

  6. Human breast biomonitoring and environmental chemicals: use of breast tissues and fluids in breast cancer etiologic research.

    Science.gov (United States)

    LaKind, Judy S; Wilkins, Amy A; Bates, Michael N

    2007-09-01

    Extensive research indicates that the etiology of breast cancer is complex and multifactorial and may include environmental risk factors. Breast cancer etiology and exposure to xenobiotic compounds, diet, electromagnetic fields, and lifestyle have been the subject of numerous scientific inquiries, but research has yielded inconsistent results. Biomonitoring has been used to explore associations between breast cancer and levels of environmental chemicals in the breast. Research using breast tissues and fluids to cast light on the etiology of breast cancer is, for the most part, predicated on the assumption that the tissue or fluid samples either contain measurable traces of the environmental agent(s) associated with the cancer or that they retain biological changes that are biomarkers of such exposure or precursors of carcinogenic effect. In this paper, we review breast cancer etiology research utilizing breast biomonitoring. We first provide a brief synopsis of the current state of understanding of associations between exposure to environmental chemicals and breast cancer etiology. We then describe the published breast cancer research on tissues and fluids, which have been used for biomonitoring, specifically human milk and its components, malignant and benign breast tissue, nipple aspirate fluid (NAF) and breast cyst fluid. We conclude with a discussion on recommendations for biomonitoring of breast tissues and fluids in future breast cancer etiology research. Both human milk and NAF fluids, and the cells contained therein, hold promise for future biomonitoring research into breast cancer etiology, but must be conducted with carefully delineated hypotheses and a scientifically supportable epidemiological approach.

  7. Posttranscriptional control of human gamma interferon gene expression in transfected mouse fibroblasts.

    OpenAIRE

    1986-01-01

    Human gamma interferon genomic DNA was introduced into NIH 3T3 fibroblasts by calcium phosphate precipitation and was not expressed in these cells at the cytoplasmic mRNA or protein level. Treatment of the transfected cells with cycloheximide (1 microgram/ml) induced the accumulation of cytoplasmic gamma interferon mRNA and biologically active human gamma interferon. Analysis of the nuclear enriched RNA from untreated cells indicated that human gamma interferon mRNA was present, suggesting th...

  8. In vitro spontaneous differentiation of human breast cancer stem cells and methods to control this process

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2015-06-01

    Full Text Available Breast cancer stem cells were considered as origins of breast cancer. Previously published studies showed that breast cancer stem cells exhibited high multi-drug resistance. This study aimed to evaluate the spontaneous differentiation of human breast cancer stem cells and investigate some in vitro conditions to control this process. Human breast cancer stem cells (BCSCs were sorted from primary culture of breast malignant tumors based on expression of CD44 and CD24. The in vitro spontaneous differentiation of BCSCs was evaluated in the popular culture medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS, 1% antibiotic-antimycotic. There were some different methods to control the spontaneous differentiation of BCSCs included free serum culture, mammosphere culture, basic fibroblast growth factor and epidermal growth factor supplement to serum medium, and hypoxia culture. The results showed that BCSCs always were spontaneously differentiated in vitro in the popular culture medium DMEM/F12 plus 10% FBS. The percentage of BCSCs gradually decreased according to sub-culture times and became stable after 20 sub-culture times. All investigated methods could not completely inhibit the spontaneous differentiation of BCSCs. Serum-free culture combined with hypoxia condition had strongest inhibition of this process. These results demonstrated that the spontaneous differentiation is nature process of BCSCs; therefore this process should be determined and suitably controlled depending on different experiments. [Biomed Res Ther 2015; 2(6.000: 290-296

  9. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...

  10. Endocrine therapy of human breast cancer grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Osborne, C K; Spang-Thomsen, M

    1987-01-01

    mice bearing transplanted human breast tumors have been proposed as such a model. This review therefore discusses the use of the athymic nude mouse model of the study of human breast cancer biology, and focuses on four subjects: 1. biological characteristics of heterotransplanted breast tumors; 2...

  11. ADHESION AND SPREADING OF HUMAN FIBROBLASTS ON SUPERHYDROPHOBIC FEP-TEFLON

    NARCIS (Netherlands)

    BUSSCHER, HJ; STOKROOS, [No Value; GOLVERDINGEN, JG; SCHAKENRAAD, JM

    1991-01-01

    Adhesion and spreading of human fibroblasts was studied on hydrophobized and hydrophilized FEP-Teflon, and compared with adhesion and spreading on untreated FEP-Teflon and Tissue culture polystyrene (TCPS). Superhydrophobic FEP-Teflon was prepared by ion etching followed by oxygen glow-discharge. Hy

  12. Development of a full-thickness human gingiva equivalent constructed from immortalized keratinocytes and fibroblasts

    NARCIS (Netherlands)

    J.K. Buskermolen; C.M.A. Reijnders; S.W. Spiekstra; T. Steinberg; C.J. Kleverlaan; A.J. Feilzer; A.D. Bakker; S. Gibbs

    2016-01-01

    Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines

  13. Assembly of fibronectin into the extracellular matrix of early and late passage human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mann, D.M.

    1987-01-01

    The specific binding of soluble /sup 125/I-human plasma fibronectin (/sup 125/I-HFN-P) to confluent cultures of early and late passage human skin fibroblasts was investigated. Previous studies HFN-P bound to fibroblast cell layers indicated that HNF-P was present in the cultures in two separate pools, distinguishable on the basis of their solubility in 1% deoxycholate. Examination of the kinetics of /sup 125/I-HFN-P binding to Pool I of early and late passage cultures revealed that both cultures required 2-4 h to approach steady-state conditions. Other kinetic studies showed that the rates of low of /sup 125/I-HFN-P from either Pool I or Pool II were similar for both cultures. Further, Scatchard analysis revealed a single class of Pool I binding sites with apparent dissociation constants (K/sub d/) of 5.3 x 10/sup -8/M (early passage) and 4.2 x 10/sup -8/M (late passage). These results indicate that early and late passage cultures of human fibroblasts exhibit differences in the number of cell surface biding sites for soluble fibronectin, and in the extent to which they incorporate soluble fibronectin into the extracellular matrix. Parameters which affect the fibronectin matrix assembly system of human skin fibroblasts were also examined. In addition, several monoclonal anti-fibronectin antibodies were characterized and developed as experimental probes for fibronectin structure and function.

  14. ADHESION AND SPREADING OF HUMAN SKIN FIBROBLASTS ON PHYSICOCHEMICALLY CHARACTERIZED GRADIENT SURFACES

    NARCIS (Netherlands)

    RUARDY, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1995-01-01

    In this study, adhesion and spreading of human skin fibroblasts on gradient surfaces of dichlorodimethylsilane (DDS) coupled to glass was investigated. Gradient surfaces were prepared by the diffusion technique and characterized by the Wilhelmy plate technique for their wettability and by scanning x

  15. SNL fibroblast feeder layers support derivation and maintenance of human induced pluripotent stem cells.

    Science.gov (United States)

    Pan, Chuanying; Hicks, Amy; Guan, Xuan; Chen, Hong; Bishop, Colin E

    2010-04-01

    Induced pluripotent stem (iPS) cells can be derived from human somatic cells by cellular reprogramming. This technology provides a potential source of non-controversial therapeutic cells for tissue repair, drug discovery, and opportunities for studying the molecular basis of human disease. Normally, mouse embryonic fibroblasts (MEFs) are used as feeder layers in the initial derivation of iPS lines. The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentiviral expressed reprogramming factors. In our study, iPS cells expressed common pluripotency markers, displayed human embryonic stem cells (hESCs) morphology and unmethylated promoters of NANOG and OCT4. These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.

  16. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    Directory of Open Access Journals (Sweden)

    Lucie Germain

    2013-02-01

    Full Text Available A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3 can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes.

  17. Transplantation of genetically engineered cardiac fibroblasts producing recombinant human erythropoietin to repair the infarcted myocardium

    Directory of Open Access Journals (Sweden)

    Ruvinov Emil

    2008-11-01

    Full Text Available Abstract Background Erythropoietin possesses cellular protection properties. The aim of the present study was to test the hypothesis that in situ expression of recombinant human erythropoietin (rhEPO would improve tissue repair in rat after myocardial infarction (MI. Methods and results RhEPO-producing cardiac fibroblasts were generated ex vivo by transduction with retroviral vector. The anti-apoptotic effect of rhEPO-producing fibroblasts was evaluated by co-culture with rat neonatal cardiomyocytes exposed to H2O2-induced oxidative stress. Annexin V/PI assay and DAPI staining showed that compared with control, rhEPO forced expression markedly attenuated apoptosis and improved survival of cultured cardiomyocytes. To test the effect of rhEPO on the infarcted myocardium, Sprague-Dawley rats were subjected to permanent coronary artery occlusion, and rhEPO-producing fibroblasts, non-transduced fibroblasts, or saline, were injected into the scar tissue seven days after infarction. One month later, immunostaining identified rhEPO expression in the implanted engineered cells but not in controls. Compared with non-transduced fibroblasts or saline injection, implanted rhEPO-producing fibroblasts promoted vascularization in the scar, and prevented cell apoptosis. By two-dimensional echocardiography and postmortem morphometry, transplanted EPO-engineered fibroblasts did not prevent left ventricular (LV dysfunction and adverse LV remodeling 5 and 9 weeks after MI. Conclusion In situ expression of rhEPO enhances vascularization and reduces cell apoptosis in the infarcted myocardium. However, local EPO therapy is insufficient for functional improvement after MI in rat.

  18. Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3K/Akt/β-catenin pathway.

    Science.gov (United States)

    Chang, Po-Hao; Hwang-Verslues, Wendy W; Chang, Yi-Cheng; Chen, Chun-Chin; Hsiao, Michael; Jeng, Yung-Ming; Chang, King-Jen; Lee, Eva Y-H P; Shew, Jin-Yuh; Lee, Wen-Hwa

    2012-09-15

    Tumor microenvironment plays a critical role in regulating tumor progression by secreting factors that mediate cancer cell growth. Stromal fibroblasts can promote tumor growth through paracrine factors; however, restraint of malignant carcinoma progression by the microenvironment also has been observed. The mechanisms that underlie this paradox remain unknown. Here, we report that the tumorigenic potential of breast cancer cells is determined by an interaction between the Robo1 receptor and its ligand Slit2, which is secreted by stromal fibroblasts. The presence of an active Slit2/Robo1 signal blocks the translocation of β-catenin into nucleus, leading to downregulation of c-myc and cyclin D1 via the phosphoinositide 3-kinase (PI3K)/Akt pathway. Clinically, high Robo1 expression in the breast cancer cells correlates with increased survival in patients with breast cancer, and low Slit2 expression in the stromal fibroblasts is associated with lymph node metastasis. Together, our findings explain how a specific tumor microenvironment can restrain a given type of cancer cell from progression and show that both stromal fibroblasts and tumor cell heterogeneity affect breast cancer outcomes.

  19. RNA and protein synthesis in cultured human fibroblasts derived from donors of various ages.

    Science.gov (United States)

    Chen, J J; Brot, N; Weissbach, H

    1980-07-01

    RNA synthesis in human fibroblasts from donors of various ages was studied in fibroblasts made permeable to nucleoside triphosphates with the nonionic detergent Nonidet P40. Cells from donors of 11 years and older showed a 30-40% decline in total RNA synthesis. The decrease in RNA synthesis was primarily due to a lowering of RNA polymerase II activity (alpha-amanitin sensitive). Studies on the incorporation of leucine into protein also showed a 30-40% decrease in cells from older donors.

  20. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jun [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Xiang, Jun-Jian, E-mail: txjj@jnu.edu.cn [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China); Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Li, Dan [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Deng, Ning; Wang, Hong; Gong, Yi-Ping [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China)

    2010-04-09

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10{sup -9} M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  1. Effect of low-power red light laser irradiation on the viability of human skin fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, K.; Rozga, B.; Leyko, W.; Bryszewska, M. [Institute of Biophysics, University of Lodz (Poland); Kolodziejczyk, K.; Szosland, D. [Diabetological Clinic, Medical Academy of Lodz (Poland)

    1998-10-01

    Human skin fibroblast monolayers (S-126 cell line) were exposed to laser radiation (wavelength 670 nm, power density 40 mW/cm{sup 2}). The energy densities were 2 J/cm{sup 2} and 12 J/cm{sup 2}, respectively, and the irradiation was carried out at a temperature of 22 C. For fibroblast viability evaluation, the colorimetric assay (conversion of thiazolyl blue to formazan) was used. The experiments were carried out at 37 C, in the presence of 5% CO{sub 2}, and at different time periods of incubation after irradiation (2, 4, 8 h and 1, 2, 3, 4, 5 days). The results indicated that there was a certain stimulating effect on the long-term proliferation of skin fibroblasts and that the stimulation proceeded in two stages, the first one 2 h and the second one 3 days post-irradiation. (orig.) With 4 figs., 2 tabs., 13 refs.

  2. Chemical Biomarkers of Human Breast Milk Pollution

    Directory of Open Access Journals (Sweden)

    Benedetta Marchi

    2008-01-01

    Full Text Available Human milk is, without question, the best source of nutrition for infants containing the optimal balance of fats, carbohydrates and proteins for developing babies. Breastfeeding provides a range of benefits for growth, immunity and development building a powerful bond between mother and her child. Recognition of the manifold benefits of breast milk has led to the adoption of breast-feeding policies by numerous health and professional organizations such as the World Health Organization and American Academy of Pediatrics.In industrially developed as well as in developing nations, human milk contamination by toxic chemicals such as heavy metals, dioxins and organohalogen compounds, however, is widespread and is the consequence of decades of inadequately controlled pollution. Through breastfeeding, the mother may transfer to the suckling infant potentially toxic chemicals to which the mother has previously been exposed.In the present review, environmental exposure, acquisition and current levels of old and emerging classes of breast milk pollutants are systematically presented. Although scientific evidences indicated that the advantages of breast-feeding outweigh any risks from contaminants, it is important to identify contaminant trends, to locate disproportionately exposed populations, and to take public health measures to improve chemical BM pollution as possible.

  3. Excretion of drugs in human breast milk

    Energy Technology Data Exchange (ETDEWEB)

    Welch, R.M.; Findlay, J.W.

    1981-01-01

    The present report briefly discusses some of the morphological, physiological, and compositional aspects of animal and human breast milk and how these characteristics might be important for the accumulation of drugs and foreign compounds. In addition, a study is described confirming the presence of caffeine, codeine, morphine, phenacetin, acetaminophen, and salicylic acid in the breast milk of a lactating mother following oral administration of a combination analgesic containing aspirin, phenacetin, caffeine, and codeine. Although the study is limited to one subject, it has provided critically needed data on the rates of appearance in, and elimination of these drugs from, breast milk. A similar amount of information is presented on phenacetin, also a component of the analgesic mixture, which has not been previously reported to enter human milk. The distribution of these drugs between the slightly more acidic breast milk and the relatively neutral plasma is consistent with their weakly basic, acidic, or relatively neutral properties. In general, the study shows that codeine and morphine milk concentrations are higher than, salicylic acid milk levels are much lower than, and phenacetin, caffeine, and acetaminophen milk concentrations are relatively similar to their respective plasma levels. It is projected, from estimated steady-state milk concentrations of the drugs and their metabolites studied, that very low percentages of the therapeutic dosages (less than 0.7%) would be excreted in mother's milk, too low an amount to be clinically significant to the infant.

  4. Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts

    Directory of Open Access Journals (Sweden)

    Voruganti Samyuktha

    2014-01-01

    Full Text Available Aim: To evaluate the cytotoxicity of three root repair materials, mineral trioxide aggregate (MTA, Endosequence Root Repair Material and Biodentine in human periodontal ligament fibroblasts. Materials and Methods: Periodontal ligament fibroblasts were cultured from healthy premolar extracted for orthodontic purpose. Cells in the third passage were used in the study. The cultured fibroblast cells were placed in contact with root repair materials: (a Biodentine, (b MTA, (c Endosequence, (d control. The effects of these three materials on the viability of Periodontal ligament (PDL fibroblasts were determined by trypan blue dye assay after 24 hours and 48-hour time period. Cell viability was determined using inverted phase contrast microscope. Statistical Analysis: Cell viability was compared for all the experimental groups with Wilcoxons matched pair test. Results: At the 24-hour examination period, all the materials showed increased cell viability. At 48-hour time period, there is slight decrease in cell viability. Mineral trioxide aggregate showed statistically significant increase in the cell viability when compared to other root repair materials. Conclusion: Mineral trioxide aggregate was shown to be less toxic to periodontal ligament fibroblasts than Endosequence Root Repair Material and Biodentine.

  5. Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts

    Science.gov (United States)

    Samyuktha, Voruganti; Ravikumar, Pabbati; Nagesh, Bolla; Ranganathan, K.; Jayaprakash, Thumu; Sayesh, Vemuri

    2014-01-01

    Aim: To evaluate the cytotoxicity of three root repair materials, mineral trioxide aggregate (MTA), Endosequence Root Repair Material and Biodentine in human periodontal ligament fibroblasts. Materials and Methods: Periodontal ligament fibroblasts were cultured from healthy premolar extracted for orthodontic purpose. Cells in the third passage were used in the study. The cultured fibroblast cells were placed in contact with root repair materials: (a) Biodentine, (b) MTA, (c) Endosequence, (d) control. The effects of these three materials on the viability of Periodontal ligament (PDL) fibroblasts were determined by trypan blue dye assay after 24 hours and 48-hour time period. Cell viability was determined using inverted phase contrast microscope. Statistical Analysis: Cell viability was compared for all the experimental groups with Wilcoxons matched pair test. Results: At the 24-hour examination period, all the materials showed increased cell viability. At 48-hour time period, there is slight decrease in cell viability. Mineral trioxide aggregate showed statistically significant increase in the cell viability when compared to other root repair materials. Conclusion: Mineral trioxide aggregate was shown to be less toxic to periodontal ligament fibroblasts than Endosequence Root Repair Material and Biodentine. PMID:25298650

  6. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis

  7. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  8. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  9. MAOA and GYG2 are submitted to X chromosome inactivation in human fibroblasts.

    Science.gov (United States)

    Stabellini, Raquel; Vasques, Luciana R; de Mello, Joana Carvalho Moreira; Hernandes, Lys Molina; Pereira, Lygia V

    2009-08-16

    X chromosome inactivation (XCI) is a comprehensively studied phenomenon that helped to highlight the heritable nature of epigenetic modifications. Although it consists of the transcriptional inactivation of a whole X chromosome in females, some genes escape this process and present bi-allelic expression. Using human fibroblasts with skewed inactivation, we determined allele-specific expression of two X-linked genes previously described to escape XCI in rodent/human somatic cell hybrids, MAOA and GYG2, and the pattern of DNA methylation of their 5' end. Results from these complementary methodologies let us to conclude that both genes are subjected to X inactivation in normal human fibroblasts, indicating that hybrid cells are not an adequate system for studying epigenotypes. We emphasize the need of an analysis of XCI in normal human cell lines, helping us to determine more precisely which X-linked genes contribute to differences among genders and to the phenotypes associated with sex chromosomes aneuploidies.

  10. Ukrain, an alkaloid thiophosphoric acid derivative of Chelidonium majus L. protects human fibroblasts but not human tumour cells in vitro against ionizing radiation.

    Science.gov (United States)

    Cordes, N; Plasswilm, L; Bamberg, M; Rodemann, H P

    2002-01-01

    Ukrain, an alkaloid thiophosphoric acid derivative of Chelidonium majus L., has demonstrated a promising impact on chemotherapy in a variety of malignancies. The effects of the drug on cell survival, alteration of the cell cycle and induction of apoptosis were examined without and in combination with ionizing radiation (IR). The TP53 status of the cell lines used was also investigated. Exponentially growing human tumour cell lines MDA-MB-231 (breast), PA-TU-8902 (pancreas), CCL-221 (colorectal), U-138MG (glioblastoma), and human skin and lung fibroblastic cells, HSF1, HSF2 and CCD32-LU were studied by colony assay, flow cytometry (cell-cycle, annexin-V staining for apoptosis) and Western blotting. Ukrain was used in concentrations from 0.1 to 50 microg ml(-1) for 1, 3 and 24 h and radiation as single doses of 1-10Gy. Combined drug-radiation exposure employed 1 microg ml(-1) Ukrain for 24h plus 2-8 Gy. Ukrain cytotoxicity was time- and dose-dependent. The combination of Ukrain plus IR gave enhanced toxicity in CCL-221 and U-138MG cells, but not in MDA-MB-231 and PA-TU-8902 cells. Most strikingly, a radioprotective effect was found in normal human skin and lung fibroblasts. Flow-cytometry analyses supported the differential and cell line-specific cytotoxicity of Ukrain. CCL-221 and U-138MG cells accumulated in G2 after 24-h Ukrain treatment, whereas no alterations were detected in the other tumour cells and normal fibroblasts tested. Western blotting of TP53 demonstrated non-functional overexpression in all tumour cell lines without affecting p21. HSF1 presented wild-type TP53 and a p21 response after IR. Flowcytometric analyses of annexin-V staining showed no induction of apoptosis after Ukrain treatment in comparison with untreated controls. Differential effects of Ukrain in modulating radiation toxicity of human cancer cell lines and its protective effect in normal human fibroblasts suggest that this alkaloid may have potential properties for clinical

  11. Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts.

    Science.gov (United States)

    Zhang, YouEn; Wang, JiaNing; Li, Hua; Yuan, LiangJun; Wang, Lei; Wu, Bing; Ge, JunBo

    2015-11-01

    In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.

  12. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    OpenAIRE

    Shan-Shan Liu; Hao-Yan Wang; Jun-Ming Tang; Xiu-Mei Zhou

    2013-01-01

    The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II) on collagen synthesis in hypoxic human lung fibroblast (HLF) cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) expression levels in human ...

  13. Autocrine growth regulation of human glomerular mesangial cells is primarily mediated by basic fibroblast growth factor.

    OpenAIRE

    Francki, A.; Uciechowski, P.; Floege, J; von der Ohe, J.; Resch, K.; Radeke, H. H.

    1995-01-01

    For various forms of human glomerulonephritis a close relationship between inflammatory injury and a local mesangial proliferative response has been described. Herein, we used primary cultures of human glomerular mesangial cells (HMCs) from five different donors to determine the autocrine growth-inducing capacity of their supernatants after stimulation with different cytokines and lipopolysaccharide (LPS) to determine whether this effect is due to basic fibroblast growth factor (bFGF). The ba...

  14. High fibroblast growth factor 19 (FGF19) expression predicts worse prognosis in invasive ductal carcinoma of breast.

    Science.gov (United States)

    Buhmeida, Abdelbaset; Dallol, Ashraf; Merdad, Adnan; Al-Maghrabi, Jaudah; Gari, Mamdooh A; Abu-Elmagd, Muhammad M; Chaudhary, Adeel G; Abuzenadah, Adel M; Nedjadi, Taoufik; Ermiah, Eramah; Al-Thubaity, Fatima; Al-Qahtani, Mohammed H

    2014-03-01

    Metabolic diseases like diabetes and obesity are major risk factors for breast cancer. Aberrant expression of metabolic effectors such as fibroblast growth factor 19 (FGF19) could be therefore associated with the disease. The expression of FGF19 was examined in 193 archival breast tumor samples by immunohistochemistry and evaluated semi-quantitatively by determining the staining index and correlating it with clinicopathological parameters using Fisher's exact test. The correlation between FGF19 expression and 5-year disease-specific survival rate was determined using the univariate Kaplan-Meier analysis. The prognostic value of FGF19 expression was evaluated using the multivariate Cox regression analysis. Of the 193 tumors analyzed, 40% were classified with low FGF19 expression, whereas 60% were categorized as tumors with high FGF19 expression. There was a highly significant correlation between high FGF19 expression and patients' age (p = 0.008) as well as 5-year disease-specific survival (p = 0.001). However, FGF19 expression did not show any significant correlations with other clinicopathological parameters, including hormonal status, tumor grade, tumor size, or lymph node status. Univariate Kaplan-Meier log rank analysis showed that patients with high FGF19 expression exhibited a significantly shorter disease-specific 5-year survival (p = 0.007). This effect was exacerbated by lymph node metastasis (p = 0.001), negative estrogen receptor (ER) status (p = 0.002), or old age (p = 0.013). Multivariate analysis showed that high FGF19 expression could be an independent prognostic marker of disease-specific survival in breast cancer patients (p = 0.030). Quantification of FGF19 expression appears to provide valuable prognostic information in breast cancer, particularly in older patients with lymph node metastasis and negative ER status.

  15. Ethanol extract of Brazilian red propolis induces apoptosis in human breast cancer MCF-7 cells through endoplasmic reticulum stress.

    Science.gov (United States)

    Kamiya, Tetsuro; Nishihara, Hiroko; Hara, Hirokazu; Adachi, Tetsuo

    2012-11-07

    Propolis, a natural product collected from plants by honey bees, is commonly used in folk medicines. Endoplasmic reticulum (ER) stress is known to induce apoptosis through the induction of CCAAT/enhancer-binding protein homologous protein (CHOP). Here, we investigated whether ethanol extracts of propolis and caffeic acid phenethyl ester (CAPE) induce apoptosis, mitochondrial dysfunction, and ER stress in human breast cancer MCF-7 cells and human fibroblasts. Among several ethanol extracts of propolis and CAPE, Brazilian red propolis (BRP) significantly reduced MCF-7 cell viability through the induction of mitochondrial dysfunction, caspase-3 activity, and DNA fragmentation but did not affect those of fibroblasts. Moreover, treatment with BRP significantly induced CHOP expression in MCF-7 cells compared to fibroblasts. Further, pretreatment with a chemical chaperone, 4-phenylbutyric acid, suppressed BRP-triggered MCF-7 cell death. Overall, we revealed that an ethanol extract of BRP induces MCF-7 cell apoptosis through, at least in part, ER stress-related signaling.

  16. Defining the cellular precursors to human breast cancer

    Science.gov (United States)

    Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte

    2012-01-01

    Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501

  17. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    Science.gov (United States)

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  18. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  19. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Science.gov (United States)

    Alanazi, Humidah; Semlali, Abdelhabib; Perraud, Laura; Chmielewski, Witold; Zakrzewski, Andrew

    2014-01-01

    The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC) on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P < 0.01) sensitive to oxidation but significantly (P < 0.01) resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P < 0.01) slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers. PMID:25302312

  20. The effectiveness of potent dental adhesives on the viability of LPS challenged human gingival fibroblasts.

    Science.gov (United States)

    Garner, Angelia D; Tucci, Michelle A; Benghuzzi, Hamed A

    2014-01-01

    Dental adhesives are necessary for the retention of specific dental restorations utilized to repair the anatomy of the tooth after dental decay is removed. Adhesives come into contact with healthy and diseased periodontal tissues. Porphyromonas gingivalis is a gram negative bacterial pathogen, and lipopolysaccharide (LPS-PG) is an endotoxin found in gingival connective tissues of patients who suffer from periodontal disease. The presence of the endotoxin causes inflammation. This study aims to evaluate the effectiveness of potent dental adhesives when human gingival fibroblasts are challenged with LPS-PG. The fibroblasts were exposed to the dental adhesives polymethly methacrylate (PMMA), OptiBond®, and Prime & Bond® which were purchased from Patterson Dental, a national dental materials supplier. The human gingival fibroblasts (HGF-1, ATCC® CRL-2014™) were purchased from American Type Culture Collection (ATCC). The porphyromonas gingival lipopolysaccharide (LPS-PG) was purchased from Fisher Scientific (Pittsburg, PA). No significant differences in metabolic behavior was detected among the groups (padhesives and LPS-PG at 48 hour intervals (p<0.003). No significant changes were noted in cellular morphology at any phases, and all cells demonstrated typical fibroblast spindle shape.

  1. The beta(2)-subtype of adrenoceptors mediates inhibition of pro-fibrotic events in human lung fibroblasts

    NARCIS (Netherlands)

    Lamyel, F.; Warnken-Uhlich, M.; Seemann, W. K.; Mohr, K.; Kostenis, E.; Ahmedat, A. S.; Smit, M.; Gosens, R.; Meurs, H.; Miller-Larsson, A.; Racke, Kurt

    2011-01-01

    Fibrosis is part of airway remodelling observed in bronchial asthma and COPD. Pro-fibrotic activity of lung fibroblasts may be suppressed by beta-adrenoceptor activation. We aimed, first, to characterise the expression pattern of beta-adrenoceptor subtypes in human lung fibroblasts and, second, to p

  2. MCPIP1 mediates silica-induced cell migration in human pulmonary fibroblasts.

    Science.gov (United States)

    Liu, Haijun; Dai, Xiaoniu; Cheng, Yusi; Fang, Shencun; Zhang, Yingming; Wang, Xingang; Zhang, Wei; Liao, Hong; Yao, Honghong; Chao, Jie

    2016-01-15

    Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lungs initiates an inflammatory cascade that results in fibroblast proliferation and migration followed by fibrosis. According to previous data from our laboratory, monocyte chemotactic protein-1 (MCP-1) plays a critical role in fibroblast proliferation and migration in conventional two-dimensional (2D) monolayer cultures. The present study aimed to explore the downstream cascade of MCP-1 in both 2D and three-dimensional (3D) cell culture models of silicosis. Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following: 1) SiO2 treatment induces expression of MCP-1-induced protein (MCPIP1) in a time- and dose-dependent manner in both 2D and 3D cultures; 2) the MAPK and phosphatidylinositol-3-kinase (PI3K)/Akt pathways are involved in SiO2-induced MCPIP1 expression; and 3) MCPIP1 induction mediates the SiO2-induced increase in cell migration in both 2D and 3D cultures. The effect of MCP-1 in silicosis occurs mainly through MCPIP1, which, in turn, mediates the observed SiO2-induced increase in pulmonary fibroblast migration. However, the time frame for MCPIP1 induction differed between 2D and 3D cultures, indicating that, compared with conventional 2D cell culture systems, 3D culture may be useful for analyses of fibroblast physiology under conditions that more closely resemble in vivo environments. Our study determined the link between fibroblast-derived MCPIP1 and SiO2-induced cell migration, and this finding provides novel evidence of the potential of MCPIP1 in the development of novel therapeutic strategies for silicosis.

  3. Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Kegel Magdalena

    2011-10-01

    Full Text Available Abstract Background The kynurenine pathway (KP is the main route of tryptophan degradation in the human body and generates several neuroactive and immunomodulatory metabolites. Altered levels of KP-metabolites have been observed in neuropsychiatric and neurodegenerative disorders as well as in patients with affective disorders. The purpose of the present study was to investigate if skin derived human fibroblasts are useful for studies of expression of enzymes in the KP. Methods Fibroblast cultures were established from cutaneous biopsies taken from the arm of consenting volunteers. Such cultures were subsequently treated with interferon (IFN-γ 200 U/ml and/or tumor necrosis factor (TNF-α, 100 U/ml for 48 hours in serum-free medium. Levels of transcripts encoding different enzymes were determined by real-time PCR and levels of kynurenic acid (KYNA were determined by HPLC. Results At base-line all cultures harbored detectable levels of transcripts encoding KP enzymes, albeit with considerable variation across individuals. Following cytokine treatment, considerable changes in many of the transcripts investigated were observed. For example, increases in the abundance of transcripts encoding indoleamine 2,3-dioxygenase, kynureninase or 3-hydroxyanthranilic acid oxygenase and decreases in the levels of transcripts encoding tryptophan 2,3-dioxygenase, kynurenine aminotransferases or quinolinic acid phosphoribosyltransferase were observed following IFN-γ and TNF-α treatment. Finally, the fibroblast cultures released detectable levels of KYNA in the cell culture medium at base-line conditions, which were increased after IFN-γ, but not TNF-α, treatments. Conclusions All of the investigated genes encoding KP enzymes were expressed in human fibroblasts. Expression of many of these appeared to be regulated in response to cytokine treatment as previously reported for other cell types. Fibroblast cultures, thus, appear to be useful for studies of disease

  4. Effect of three commercial mouth rinses on cultured human gingival fibroblast: An in vitro study

    Directory of Open Access Journals (Sweden)

    Flemingson

    2008-01-01

    Full Text Available Aim: To examine the effect of three commercial mouth rinses (Hexidine 0.2%, Listerine Cool Mint, Betadine 1% upon cultured human gingival fibroblast proliferation. Materials and Methods: Human gingival fibroblasts were cultured and incubated in Dulbecco′s Minimum Eagle′s Medium containing Chlorhexidine, Listerine, Povidone-Iodine at varying concentrations (1%, 2%, 5%, 10%, 20% and 100% of the given solution at 37°C for 1, 5 and 15 min. Control cells received an equal volume of Dulbecco′s Minimum Eagle′s Medium without adding mouth rinses, for similar duration of exposure at 37°C. Following incubation the media were removed, cells were washed twice with medium, supplemented with 10% Fetal Bovine Serum, and fibroblasts in the test and control group were allowed to recover in the same media for 24 h. Results: In all the three groups, the proliferation inhibition was dependent on the concentration of solublized mouth rinses in the cell culture but independent of the duration of exposure to all three mouth rinses. The results showed that all three solutions were toxic to cultured human gingival fibroblasts, Chlorhexidine being the most cytotoxic. It was seen that at dilute concentrations (1% and 2% of given solutions Listerine was more cytotoxic than Chlorhexidine and Povidone-Iodine. Conclusion: These results suggest that Chlorhexidine, Listerine and Povidone-Iodine are capable of inducing a dose-dependent reduction in cellular proliferation of fibroblasts. The results presented are interesting, but to know the clinical significance, further studies are needed.

  5. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis.

    Science.gov (United States)

    Margan, Madalin Marius; Jitariu, Andreea Adriana; Cimpean, Anca Maria; Nica, Cristian; Raica, Marius

    2016-06-01

    Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis.

  6. The period length of fibroblast circadian gene expression varies widely among human individuals.

    Directory of Open Access Journals (Sweden)

    Steven A Brown

    2005-10-01

    Full Text Available Mammalian circadian behavior is governed by a central clock in the suprachiasmatic nucleus of the brain hypothalamus, and its intrinsic period length is believed to affect the phase of daily activities. Measurement of this period length, normally accomplished by prolonged subject observation, is difficult and costly in humans. Because a circadian clock similar to that of the suprachiasmatic nucleus is present in most cell types, we were able to engineer a lentiviral circadian reporter that permits characterization of circadian rhythms in single skin biopsies. Using it, we have determined the period lengths of 19 human individuals. The average value from all subjects, 24.5 h, closely matches average values for human circadian physiology obtained in studies in which circadian period was assessed in the absence of the confounding effects of light input and sleep-wake cycle feedback. Nevertheless, the distribution of period lengths measured from biopsies from different individuals was wider than those reported for circadian physiology. A similar trend was observed when comparing wheel-running behavior with fibroblast period length in mouse strains containing circadian gene disruptions. In mice, inter-individual differences in fibroblast period length correlated with the period of running-wheel activity; in humans, fibroblasts from different individuals showed widely variant circadian periods. Given its robustness, the presented procedure should permit quantitative trait mapping of human period length.

  7. Dimethylarsenic acid damages cellular DNA and inhibits gap junctional intercellular communication between human skin fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    GuoXB; DengFR

    2002-01-01

    Although arsenic is identified as a human carcinogen,there is currently no accepted mechanism for its action or an established animal model for evaluating the carcinogenic activity of arsenic.To elucidate the mechanism of arsenic arcinogenesis,we investigated the effect of dimethylarsenic acid(DMAA),the main metabolite of inorganic arsenic in humans,on the cellular DNA and gap junctional intercellular communication (GJIC) between human skin fibroblast cells.Single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage in human skin fibroblast cells exposed to DMAA,and the GJIC between cells was detected by the scrape loading/dye transfer assay.DMAA at concentrations of 0.01-1.0 mmol·L-1 induced DNA damage in a dose-dependent manner,and GJIC between human skin fibroblast cells was significantly inhibited by DMAA at 1.0 mmol·L-1.Our results suggest that both genotoxic and nongenotoxic mechanism are involved in the mechanism of DMAA-induced cellular toxicity.

  8. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function.

    Science.gov (United States)

    Wang, Xiuli; Sun, Lin; Maffini, Maricel V; Soto, Ana; Sonnenschein, Carlos; Kaplan, David L

    2010-05-01

    Epithelial-stromal interactions play a crucial role in normal embryonic development and carcinogenesis of the human breast while the underlying mechanisms of these events remain poorly understood. To address this issue, we constructed a physiologically relevant, three-dimensional (3D) culture surrogate of complex human breast tissue that included a tri-culture system made up of human mammary epithelial cells (MCF10A), human fibroblasts and adipocytes, i.e., the two dominant breast stromal cell types, in a Matrigel/collagen mixture on porous silk protein scaffolds. The presence of stromal cells inhibited MCF10A cell proliferation and induced both alveolar and ductal morphogenesis and enhanced casein expression. In contrast to the immature polarity exhibited by co-cultures with either fibroblasts or adipocytes, the alveolar structures formed by the tri-cultures exhibited proper polarity similar to that observed in breast tissue in vivo. Only alveolar structures with reverted polarity were observed in MCF10A monocultures. Consistent with their phenotypic appearance, more functional differentiation of epithelial cells was also observed in the tri-cultures, where casein alpha- and -beta mRNA expression was significantly increased. This in vitro tri-culture breast tissue system sustained on silk scaffold effectively represents a more physiologically relevant 3D microenvironment for mammary epithelial cells and stromal cells than either co-cultures or monocultures. This experimental model provides an important first step for bioengineering an informative human breast tissue system, with which to study normal breast morphogenesis and neoplastic transformation.

  9. Inhibition of Breast Cancer Progression by Blocking Heterocellular Contact Between Epithelial Cells and Fibroblasts

    Science.gov (United States)

    2013-04-01

    International Association for Breast Cancer Research/Breakthrough Breast Cancer Conference, Manchester, UK, 2012, Oral presentation. • Sung K E, Pelhke...20), 14906–14915. 22 C. Kuperwasser, T. Chavarria, M. Wu, G. Magrane, J. W. Gray, L. Carey, A. Richardson and R. A. Weinberg, Reconstruction of...DCIS and require autophagy for survival. PLoS ONE 5: e10240. doi:10.1371/journal.pone.0010240. 20.$Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin

  10. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    OpenAIRE

    2013-01-01

    PURPOSE: Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formation and stratification in a humanized animal model. METHODS: Dermo-epidermal skin grafts with either amniocytes or with fibroblasts in the dermis were compared in a rat model. Full-thicknes...

  11. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Commandeur, Suzan; Rietveld, Marion H; Mulder, Aat A; Willemze, Rein

    2009-01-01

    Reconstructed human skin equivalents (HSEs) are representative models of human skin and widely used for research purposes and clinical applications. Traditional methods to generate HSEs are based on the seeding of human keratinocytes onto three-dimensional human fibroblast-populated non-human collagen matrices. Current HSEs have a limited lifespan of approximately 8 weeks, rendering them unsuitable for long-term studies. Here we present a new generation of HSEs being fully composed of human components and which can be cultured up to 20 weeks. This model is generated on a primary human fibroblast-derived dermal matrix. Pro-collagen type I secretion by human fibroblasts stabilized during long-term culture, providing a continuous and functional human dermal matrix. In contrast to rat-tail collagen-based HSEs, the present fibroblast-derived matrix-based HSEs contain more continuity in the number of viable cell layers in long-term cultures. In addition, these new skin models exhibit normal differentiation and proliferation, based on expression of K10/K15, and K16/K17, respectively. Detection of collagen types IV and VII and laminin 332 was confined to the epidermal-dermal junction, as in native skin. The presence of hemidesmosomes and anchoring fibrils was demonstrated by electron microscopy. Finally, we show that the presented HSE contained a higher concentration of the normal moisturizing factor compared to rat-tail collagen-based skin models, providing a further representation of functional normal human skin in vitro. This study, therefore, demonstrates the role of the dermal microenvironment on epidermal regeneration and lifespan in vitro.

  12. An attempt to eliminate fibroblast-like cells from primary cultures of fetal human livers.

    Directory of Open Access Journals (Sweden)

    Tokiwa,Takayoshi

    1986-04-01

    Full Text Available The elimination of fibroblast-like cells from primary cultures of fetal human livers was studied. A fibroblast-like cell line (HuF, which was obtained by subculturing fetal human liver cells 4 or more times, was briefly treated with hydrocortisone (HC or putrescine (PUT. The growth of HuF cells was inhibited by HC at a concentration of 10(-2 M and by PUT at a concentration higher than 10(-3 M. Long-term treatment of HuF cells with 10(-3 M HC inhibited the growth of the cells. Primary cultures of fetal human livers were made in medium containing HC or PUT, and morphological and functional examinations were made. The cultures were predominantly composed of epithelial-like cells, with few fibroblast-like cells, when the HC concentration was 10(-5M to 10(-3 M. A high amount of albumin was secreted at these concentrations of HC. On the other hand, at 10(-3 M PUT, many epithelial-like cells were seen, but albumin was undetectable. The present results indicate that albumin-producing epithelial-like cells can be selectively maintained in medium containing HC, in primary cultures of fetal human livers.

  13. Rationale for targeting fibroblast growth factor receptor signaling in breast cancer

    OpenAIRE

    André, Fabrice; Cortés, Javier

    2015-01-01

    Fibroblast growth factor receptor (FGFR) signaling is involved in multiple biological processes, including cell proliferation, survival, differentiation, migration, and apoptosis during embryonic development and adult tissue homeostasis. Given its role in the activation of critical signaling pathways, aberrant FGFR signaling has been implicated in multiple cancer types. A comprehensive search of PubMed and congress abstracts was conducted to identify reports on FGFR pathway components in brea...

  14. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  15. Chitosan Treatment Delays the Induction of Senescence in Human Foreskin Fibroblast Strains.

    Directory of Open Access Journals (Sweden)

    Ching-Wen Tsai

    Full Text Available Fibroblasts have been extensively used as a model to study cellular senescence. The purpose of this study was to investigate whether the human foreskin fibroblast aging process could be regulated by using the biomaterial chitosan. Fibroblasts cultured on commercial tissue culture polystyrene (TCPS entered senescence after 55-60 population doublings (PDs, and were accompanied by larger cell shape, higher senescence-associated β-galactosidase (SA β-gal activity, lower proliferation capacity, and upregulation of senescence-associated molecular markers p21, p53, retinoblastoma (pRB, and p16. Before senescence was reached, PD48 cells were collected from TCPS and seeded on chitosan for three days (PD48-Cd3 to form multicellular spheroids. The protein expression of senescence-associated secretory phenotypes (SASPs and senescence-associated molecular markers of these cells in PD48-Cd3 spheroids were downregulated significantly. Following chitosan treatment, fibroblasts reseeded on TCPS showed lower SA β-gal activity, increased cellular motility, and a higher proliferation ability of 70-75 PDs. These phenotypic changes were not accompanied by colonies forming in soft agar and a continuous decrease in the senescence-associated proteins p53 and pRB which act as a barrier to tumorigenesis. These results demonstrate that chitosan treatment could delay the induction of senescence which may be useful and safe for future tissue engineering applications.

  16. Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia.

    Directory of Open Access Journals (Sweden)

    Miao Zheng

    Full Text Available To evaluate whether atmospheric-pressure dielectric-barrier-discharge plasma treatment of zirconia enhances its biocompatibility with human gingival fibroblasts.The zirconia disks were divided into four groups and treated using helium atmospheric-pressure dielectric-barrier-discharge plasmas for 30, 60 or 90 s or left untreated. The surface morphology, wettability and chemical elements were analyzed. Fibroblasts density, morphology, morphometry and attachment-related genes expression were measured at different time points from 3 to 72 h.After plasma treatment, the surface morphology and roughness remained the same, while the contact angle decreased from 78.31° to 43.71°, and the surface C/O ratio decreased from 3.17 to 0.89. The surficial areas and perimeters of HGFs were increased two-fold in the treated groups at 3 h. Fibroblasts density increased on treated disks at all time points, especially the ones treated for 60 s. Attachment-related genes in the groups treated for 30 and 60 s were significantly higher at 3 and 24 h.The helium atmospheric-pressure dielectric-barrier-discharge plasma treatment enhances the biological behavior of fibroblasts on zirconia by increasing the expression of attachment-related genes within 24 h and promoting the cell density during longer culture times. Wettability of zirconia, an important physicochemical property, has a vital influence on the cell behaviors.

  17. Breast Fibroblasts Modulate Early Dissemination, Tumorigenesis, and Metastasis through Alteration of Extracellular Matrix Characteristics

    Directory of Open Access Journals (Sweden)

    Nancy Dumont

    2013-03-01

    Full Text Available A wealth of evidence has now demonstrated that the microenvironment in which a tumorigenic cell evolves is as critical to its evolution as the genetic mutations it accrues. However, there is still relatively little known about how signals from the microenvironment contribute to the early events in the progression to malignancy. To address this question, we used a premalignant mammary model to examine how fibroblasts, and the extracellular matrix (ECM proteins they secrete, influence progression to malignancy. Their effect on metastatic malignant cells was also assessed for comparison. We found that carcinoma-associated fibroblasts, and the distinct aligned ECM they deposit, can cause both premalignant and malignant mammary epithelial cells to assume a mesenchymal morphology that is associated with increased dissemination and metastasis, while benign reduction mammoplasty fibroblasts favor the maintenance of an epithelial morphology and constrain early dissemination, tumor growth, and metastasis. Our results suggest that normalizing the organization of the ECM could be effective in limiting systemic dissemination and tumor growth.

  18. Protective Effect of Strawberry Extract against Inflammatory Stress Induced in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Massimiliano Gasparrini

    2017-01-01

    Full Text Available A protracted pro-inflammatory state is a major contributing factor in the development, progression and complication of the most common chronic pathologies. Fruit and vegetables represent the main sources of dietary antioxidants and their consumption can be considered an efficient tool to counteract inflammatory states. In this context an evaluation of the protective effects of strawberry extracts on inflammatory stress induced by E. coli LPS on human dermal fibroblast cells was performed in terms of viability assays, ROS and nitrite production and biomarkers of oxidative damage of the main biological macromolecules. The results demonstrated that strawberry extracts exerted an anti-inflammatory effect on LPS-treated cells, through an increase in cell viability, and the reduction of ROS and nitrite levels, and lipid, protein and DNA damage. This work showed for the first time the potential health benefits of strawberry extract against inflammatory and oxidative stress in LPS-treated human dermal fibroblast cells.

  19. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2017-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi......-proteome") during ageing and age-related diseases represent a restricted set of cellular proteins, indicating that certain proteins are more prone to oxidative carbonylation and subsequent intracellular accumulation. The occurrence of specific carbonylated proteins upon oxidative stress induced premature senescence...... of WI-38 human fibroblasts and their follow-up identification have been addressed in this study. Indeed, it was expected that the identification of these proteins would give insights into the mechanisms by which oxidatively damaged proteins could affect cellular function. Among these proteins, some...

  20. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    Directory of Open Access Journals (Sweden)

    Damon Polioudakis

    Full Text Available miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  1. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    Science.gov (United States)

    Polioudakis, Damon; Abell, Nathan S; Iyer, Vishwanath R

    2015-01-01

    miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  2. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.

    Science.gov (United States)

    Zhang, Hui; Sweezey, Neil B; Kaplan, Feige

    2015-02-15

    Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development.

  3. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor

    OpenAIRE

    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina

    2015-01-01

    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD pol...

  4. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    OpenAIRE

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast c...

  5. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    Full Text Available BACKGROUND: Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days. CONCLUSION/SIGNIFICANCE: Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  6. Gelam Honey Protects against Gamma-Irradiation Damage to Antioxidant Enzymes in Human Diploid Fibroblasts

    OpenAIRE

    Suzana Makpol; Tengku Ahbrizal Farizal Tengku Ahmad; Yasmin Anum Mohd Yusof; Nor Fadilah Rajab; Khairuddin Abdul Rahim; Zakiah Jubri

    2013-01-01

    The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) of human diploid fibroblasts (HDFs) subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam ...

  7. DNA damage in human skin fibroblasts exposed to UVA light used in clinical PUVA treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bredberg, A.

    1981-06-01

    Human skin fibroblasts were irradiated with a clinically used UVA light source. The doses (1.1 and 3 J/cm2) were similar to those reaching the dermis during clinical PUVA treatment of psoriasis. DNA strand breaks, as determined by alkaline elution, were formed in a dose-dependent way and disappeared within 1 hr of postincubation at 37 degrees C. These findings have clinical implications since UVA-induced DNA damage may be accompanied by mutagenic and tumor promoting effects.

  8. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-01-31

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  9. The Role of Human Adult Peripheral and Umbilical Cord Blood Platelet-Rich Plasma on Proliferation and Migration of Human Skin Fibroblasts.

    Science.gov (United States)

    Hashemi, Seyedeh-Sara; Mahmoodi, Mahdokht; Rafati, Ali Reza; Manafi, Farzad; Mehrabani, Davood

    2017-05-01

    Wound healing is a complex and dynamic process following damage in tissue structures. Due to extensive skin damage caused by burn injuries, this study determined the role of human adult peripheral and umbilical cord blood platelet-rich plasma on proliferation and migration in human skin fibroblasts. Platelet-rich plasma (5, 10, 15, 20 and 50% PRP) from human umbilical cord blood and adult peripheral blood were provided and added to fibroblasts cultured from a human skin sample. Migration and proliferation of fibroblasts were assessed in comparison to 10% FBS and by the fibroblast responses to a concentration gradient. All components of the umbilical cord blood PRP significantly stimulated the growth of fibroblasts when compared to the negative control. Fibroblast growth was enhanced in a dose dependent manner. All fibroblast cultures retained normal morphology. No significant difference was noted between umbilical cord blood and adult peripheral blood PRP preparations regarding cell proliferation and migration, but the difference to 10% FBS was significant. 1% and 50% PRP reduced cellular proliferation. The 20% umbilical cord blood PRP and 10% adult peripheral blood PRP had a significant stimulatory effect on the migration of the skin fibroblast cells in comparison with 10% FBS. As PRP could promote the migration and proliferation of dermal fibroblasts, it can be safely added in cultures when treatment of chronic wounds without triggering the immune response is needed.

  10. Suppression of Human Tenon Fibroblast Cell Proliferation by Lentivirus-Mediated VEGF Small Hairpin RNA

    Directory of Open Access Journals (Sweden)

    Zhongqiu Li

    2017-01-01

    Full Text Available Purpose. The functions of vascular endothelial growth factor (VEGF in scar formation after trabeculectomy were investigated in a human Tenon fibroblast cell line from glaucoma patients using lentivirus-mediated VEGF shRNA. Methods. Human Tenon fibroblast (HTF cells were isolated from scar tissue of glaucoma patients during secondary surgery. Lentivirus-VEGF-shRNA was constructed and transfected into HTF cells. Subsequently, VEGF mRNA and protein expression were analyzed using quantitative RT-PCR and western blotting, respectively, and the effects of VEGF knockdown were analyzed. The inhibition of HTF proliferation was monitored according to total cell numbers using ScanArray. Results. Both mRNA and protein levels of VEGF were reduced by lentivirus-mediated VEGF-shRNA, and proliferation of HTF cells was inhibited. Conclusions. Primary cultures of human Tenon fibroblast (HTF were established, and proliferation was decreased following inhibition of VEGF. VEGF may be a suitable therapeutic target for reducing scar tissue formation in glaucoma patients after filtration surgery.

  11. Suppression of Human Tenon Fibroblast Cell Proliferation by Lentivirus-Mediated VEGF Small Hairpin RNA.

    Science.gov (United States)

    Li, Zhongqiu; Hua, Wen; Li, Xuedong; Wang, Wei

    2017-01-01

    Purpose. The functions of vascular endothelial growth factor (VEGF) in scar formation after trabeculectomy were investigated in a human Tenon fibroblast cell line from glaucoma patients using lentivirus-mediated VEGF shRNA. Methods. Human Tenon fibroblast (HTF) cells were isolated from scar tissue of glaucoma patients during secondary surgery. Lentivirus-VEGF-shRNA was constructed and transfected into HTF cells. Subsequently, VEGF mRNA and protein expression were analyzed using quantitative RT-PCR and western blotting, respectively, and the effects of VEGF knockdown were analyzed. The inhibition of HTF proliferation was monitored according to total cell numbers using ScanArray. Results. Both mRNA and protein levels of VEGF were reduced by lentivirus-mediated VEGF-shRNA, and proliferation of HTF cells was inhibited. Conclusions. Primary cultures of human Tenon fibroblast (HTF) were established, and proliferation was decreased following inhibition of VEGF. VEGF may be a suitable therapeutic target for reducing scar tissue formation in glaucoma patients after filtration surgery.

  12. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts

    Science.gov (United States)

    Saini, Natalie; Chan, Kin; Grimm, Sara A.; Dai, Shuangshuang; Fargo, David C.; Kaufmann, William K.; Taylor, Jack A.; Lee, Eunjung; Cortes-Ciriano, Isidro; Park, Peter J.; Schurman, Shepherd H.; Malc, Ewa P.; Mieczkowski, Piotr A.

    2016-01-01

    Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration ClinicalTrials.gov NCT01087307 PMID:27788131

  13. Resinous perforation-repair materials inhibit the growth, attachment, and proliferation of human gingival fibroblasts.

    Science.gov (United States)

    Huang, Fu-Mei; Tai, Kuo-Wei; Chou, Ming-Yung; Chang, Yu-Chao

    2002-04-01

    The choice of repair material is one of the important factors in the prognosis of the endodontically treated tooth with a perforation defect. The cytotoxicity of perforation-repair materials must be investigated to ensure a safe biological response. The aim of this in vitro study was to evaluate the effect of resin-modified, glass-ionomer cement, compomer, and resin on human-gingival fibroblasts. Human gingival fibroblasts from crown lengthening surgery were cultured by using an explant technique with the consent of the patient. Cytotoxicity was judged by using an assay of tetrazolium bromide reduction. The results showed that resin-modified, glass-ionomer cement Fuji II LC, compomer Compoglass, and resin SpectrumTPH (TPH) were cytotoxic to primary human gingival fibroblast cultures by inhibiting cell growth and proliferation. TPH alone had an effect on cell attachment. It was found that TPH was the most cytotoxic repair material among those tested in all cultures. The toxicity decreased in the order of TPH>FLC>CG.

  14. Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts.

    Science.gov (United States)

    Gupta, S L; Carlin, J M; Pyati, P; Dai, W; Pfefferkorn, E R; Murphy, M J

    1994-01-01

    Studies were carried out to evaluate the proposed role of indoleamine 2,3-dioxygenase (INDO) induction in the antimicrobial and antiproliferative effects of gamma interferon (IFN-gamma) in human fibroblasts. The INDO cDNA coding region was cloned in the pMEP4 expression vector, containing the metallothionein (MTII) promoter in the sense (+ve) or the antisense (-ve) orientation. Human fibroblasts (GM637) stably transfected with the sense construct expressed INDO activity after treatment with CdCl2 or ZnSO4, but cells transfected with the antisense construct did not. The growth of Chlamydia psittaci was strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+ or Zn2+. The inhibition correlated with the level of INDO activity induced and could be reversed by the addition of excess tryptophan to the medium. The growth of Toxoplasma gondii was also strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+. Expression of Cd(2+)-induced INDO activity also inhibited thymidine incorporation and led to cytotoxicity in INDO +ve cells but not in INDO -ve cells. Thus, the induction of INDO activity by IFN-gamma may be an important factor in the antimicrobial and antiproliferative effects of IFN-gamma in human fibroblasts. Images PMID:8188349

  15. Treatment of postoperative lower extremity wounds using human fibroblast-derived dermis: a retrospective analysis.

    Science.gov (United States)

    Carlson, Russell M; Smith, Nicholas C; Dux, Katherine; Stuck, Rodney M

    2014-04-01

    Human fibroblast-derived dermis skin substitute is a well-studied treatment for diabetic foot ulcers; however, no case series currently exist for its use in healing postoperative wounds of the lower extremity. A retrospective analysis was conducted on 32 lower extremity postoperative wounds treated weekly with human fibroblast-derived dermis skin substitute. Postoperative wounds were defined as a wound resulting from an open partial foot amputation, surgical wound dehiscence, or nonhealing surgical wound of the lower extremity. Wound surface area was calculated at 4 and 12 weeks or until wound closure if prior to 12 weeks. Postoperative wounds treated with weekly applications showed mean improvement in surface area reduction of 63.6% at 4 weeks and 96.1% at 12 weeks. More than 56% of all wounds healed prior to the 12-week endpoint. Additionally, only one adverse event was noted in this group. This retrospective review supports the use of human fibroblast-derived dermis skin substitute in the treatment of postoperative lower extremity wounds. This advanced wound care therapy aids in decreased total healing time and increased rate of healing for not only diabetic foot wounds but also postoperative wounds of the lower extremity, as demonstrated by this retrospective review.

  16. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie Saini

    2016-10-01

    Full Text Available Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.

  17. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts.

    Science.gov (United States)

    Saini, Natalie; Roberts, Steven A; Klimczak, Leszek J; Chan, Kin; Grimm, Sara A; Dai, Shuangshuang; Fargo, David C; Boyer, Jayne C; Kaufmann, William K; Taylor, Jack A; Lee, Eunjung; Cortes-Ciriano, Isidro; Park, Peter J; Schurman, Shepherd H; Malc, Ewa P; Mieczkowski, Piotr A; Gordenin, Dmitry A

    2016-10-01

    Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.

  18. Expression of human acidic fibroblast growth factor in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    YU Ying; CAI Shaoxi; Harald G. WERIRICH; XIA Yuxian

    2003-01-01

    Pichia pastoris expression system is similar to that of the mammal cell in modification of expressed protein, including refolding and glycosylation. A human aFGF gene was cloned into the intracellular expression vector pPIC9K. The Pichia pastoriS KM71 strain was transformed with the recombined expression plasmid. Transgenic expression was observed after screening the transformants with G418. The expression and secretion of recombinant human aFGF (rhaFGF) into the culture medium were testified by ELISA assay. The yield peaked after two days of induction and was approximately 10 mg.L-1 in shake-flask fermentation medium. The recombinant proteins were purified by the combination of heparin-Sepharose affinity chromatography and gel filtration chromatography. Two proteins with relative molecular masses (Mr) of 17 000 and 35 000 were purified as a single band in SDS-PAGE, whose biological activities were determined by MTT assay. It is found that the protein with Mr of 1 7 000 is nonglycosylated haFGF, and that with Mr of 35 000 is glycosylated haFGF; and the latter has a lower biological activity than the former.

  19. Expression and function of connexin 43 in human gingival wound healing and fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rana Tarzemany

    Full Text Available Connexins (C×s are a family of transmembrane proteins that form hemichannels and gap junctions (GJs on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of

  20. In vitro exposure of human fibroblasts to local anaesthetics impairs cell growth

    Science.gov (United States)

    Fedder, C; Beck-Schimmer, B; Aguirre, J; Hasler, M; Roth-Z'graggen, B; Urner, M; Kalberer, S; Schlicker, A; Votta-Velis, G; Bonvini, J M; Graetz, K; Borgeat, A

    2010-01-01

    Lidocaine, bupivacaine or ropivacaine are used routinely to manage perioperative pain. Sparse data exist evaluating the effects of local anaesthetics (LA) on fibroblasts, which are involved actively in wound healing. Therefore, we investigated the effects of the three LA to assess the survival, viability and proliferation rate of fibroblasts. Human fibroblasts were exposed to 0·3 mg/ml and 0·6 mg/ml of each LA for 2 days, followed by incubation with normal medium for another 1, 4 or 7 days (group 1). Alternatively, cells were incubated permanently with LA for 3, 6 or 9 days (group 2). Live cell count was assessed using trypan blue staining. Viability was measured by the tetrazolium bromide assay. Proliferation tests were performed with the help of the colorimetric bromodeoxyuridine assay. Production of reactive oxygen species (ROS) was determined, measuring the oxidation of non-fluorescent-2,7′-dichlorofluorescin. Treatment of cells with the three LA showed a concentration-dependent decrease of live cells, mitochondrial activity and proliferation rate. Group arrangement played a significant role for cell count and proliferation, while exposure time influenced viability. Among the analysed LA, bupivacaine showed the most severe cytotoxic effects. Increased production of ROS correlated with decreased viability of fibroblasts in lidocaine- and bupivacaine-exposed cells, but not upon stimulation with ropivacaine. This study shows a concentration-dependent cytotoxic effect of lidocaine, bupivacaine and ropivacaine on fibroblasts in vitro, with more pronounced effects after continuous incubation. A possible mechanism of cell impairment could be triggered by production of ROS upon stimulation with lidocaine and bupivacaine. PMID:20819090

  1. Development, fabrication and evaluation of a novel biomimetic human breast tissue derived breast implant surface.

    Science.gov (United States)

    Barr, S; Hill, E W; Bayat, A

    2017-02-01

    Breast implant use has tripled in the last decade with over 320,000 breast implant based reconstructions and augmentations performed in the US per annum. Unfortunately a considerable number of women will experience capsular contracture, the irrepressible and disfiguring, tightening and hardening of the fibrous capsule that envelops the implant. Functionalising implant surfaces with biocompatible tissue-specific textures may improve in vivo performance. A novel biomimetic breast implant is presented here with anti-inflammatory in vitro abilities. Topographical assessment of native breast tissue facilitated the development of a statistical model of adipose tissue. 3D grayscale photolithography and ion etching were combined to successfully replicate a surface modelled upon the statistics of breast tissue. Pro-inflammatory genes ILβ1, TNFα, and IL6 were downregulated (p<0.001) and anti-inflammatory gene IL-10 were upregulated on the novel surface. Pro-inflammatory cytokines Gro-Alpha, TNFα and neutrophil chemoattractant IL8 were produced in lower quantities and anti-inflammatory IL-10 in higher quantities in culture with the novel surface (p<0.01). Immunocytochemistry and SEM demonstrated favourable fibroblast and macrophage responses to these novel surfaces. This study describes the first biomimetic breast tissue derived breast implant surface. Our findings attest to its potential translational ability to reduce the inflammatory phase of the implant driven foreign body reaction.

  2. HEMA but not TEGDMA induces autophagy in human gingival fibroblasts

    Science.gov (United States)

    Teti, Gabriella; Orsini, Giovanna; Salvatore, Viviana; Focaroli, Stefano; Mazzotti, Maria C.; Ruggeri, Alessandra; Mattioli-Belmonte, Monica; Falconi, Mirella

    2015-01-01

    Polymerized resin-based materials are successfully used in restorative dentistry. Despite their growing popularity, one drawback is the release of monomers from the polymerized matrix due to an incomplete polymerization or degradation processes. Released monomers are responsible for several adverse effects in the surrounding biological tissues, inducing high levels of oxidative stress. Reactive oxygen species are important signaling molecules that regulate many signal-trasduction pathways and play critical roles in cell survival, death, and immune defenses. Reactive oxygen species were recently shown to activate autophagy as a mechanism of cell survival and cell death. Although the toxicity induced by dental resin monomers is widely studied, the cellular mechanisms underlying these phenomena are still unknown. The aim of the study was to investigate the behavior of human gingival cells exposed to 2-hydroxy-ethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) to better elucidate the mechanisms of cell survival and cell death induced by resin monomers. Primary culture of human gingival cells were exposed to 3 mmol/L of HEMA or 3 mmol/L of TEGDMA for 24, 48, and 72 h. Morphological investigations were performed by transmission electron microscopy to analyze the ultrastructure of cells exposed to the monomers. The expression of protein markers for apoptosis (caspase – 3 and PARP) and autophagy (beclin – 1 and LC3B I/II) were analyzed by western blot to investigate the influence of dental resin monomers on mechanisms underlying cell death. Results showed that HEMA treatment clearly induced autophagy followed by apoptosis while the lack of any sign of autophagy activation is observed in HGFs exposed to TEGDMA. These data indicate that cells respond to monomer-induced stress by the differential induction of adaptive mechanisms to maintain cellular homeostasis. PMID:26483703

  3. HEMA but not TEGDMA Induces Autophagy in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    gabriella eteti

    2015-10-01

    Full Text Available Polymerized resin-based materials are successfully used in restorative dentistry. Despite their growing popularity, one drawback is the release of monomers from the polymerized matrix due to an incomplete polymerization or degradation processes. Released monomers are responsible for several adverse effects in the surrounding biological tissues, inducing high levels of oxidative stress. Reactive oxygen species are important signaling molecules that regulate many signal-trasduction pathways and play critical roles in cell survival, death, and immune defenses. Reactive oxygen species were recently shown to activate autophagy as a mechanism of cell survival and cell death. Although the toxicity induced by dental resin monomers is widely studied, the cellular mechanisms underlying these phenomena are still unknown. The aim of the study was to investigate the behavior of human gingival cells exposed to 2-hydroxy-ethyl methacrylate (HEMA and triethylene glycol dimethacrylate (TEGDMA to better elucidate the mechanisms of cell survival and cell death induced by resin monomers. Primary culture of human gingival cells were exposed to 3mmol/L of HEMA or 3mmol/L of TEGDMA for 24 h, 48h, and 72 h. Morphological investigations were performed by transmission electron microscopy to analyze the ultrastructure of cells exposed to the monomers. The expression of protein markers for apoptosis (caspase – 3 and PARP and autophagy (beclin – 1 and LC3B I/II were analyzed by western blot to investigate the influence of dental resin monomers on mechanisms underlying cell death. Results showed that HEMA treatment clearly induced autophagy followed by apoptosis while the lack of any sign of autophagy activation is observed in HGFs exposed to TEGDMA. These data indicate that cells respond to monomer-induced stress by the differential induction of adaptive mechanisms to maintain cellular homeostasis.

  4. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration.

    Science.gov (United States)

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-07-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration.

  5. Preventive effects of tamarind seed coat extract on UVA-induced alterations in human skin fibroblasts.

    Science.gov (United States)

    Phetdee, Khemjira; Rakchai, Racharat; Rattanamanee, Kwanchai; Teaktong, Thanasak; Viyoch, Jarupa

    2014-01-01

    One of the most damaging actions on skin is from solar radiation, particularly from its ultraviolet (UV) component, through the formation of oxidative species. Thus, an antioxidant strategy that prevents the formation of these oxidants could form the basis of an efficacious cutaneous protectant. Many herbal materials contain antioxidant polyphenols, and this study assessed the possibility that tamarind seed coat extract could fulfill this role. An alcoholic extract of the tamarind (Tamarindus indica L.) seed coat showed stronger antioxidant activity (2,2-diphenyl-1-picrylhydrazyl inhibition, EC(50) = 12.9 μg/ml) than L-ascorbic acid (EC(50) = 22.9 μg/ml) and α-tocopherol (EC(50) = 29.3 μg/ml). In cultured fibroblasts taken from human skin, hydrogen peroxide (100-1000 μM) damaged 62-92% of the cells compared to only 35-47% when the cells were preincubated in extract (200 μg/ml) for 24 h. UVA (40 J/cm2) irradiation of human fibroblasts damaged 25% of the cells but the death rate was reduced to 10% with extract. UV irradiation increased the proportion of cells arrest in G(0)/G(1) phase (from 59% to 78%) but this was largely prevented by the extract (64%), according to flow cytometry. Intracellular total glutathione of UVA-irradiated cells pretreated with the extract increased to 10-25% compared to the non-pretreated group at 24-72 h after irradiation. Fibroblasts typically increased matrix metalloproteinase-1 secretion after photodamage, and this is prevented by the extract. This is the first report showing that tamarind seed coat extract is an antioxidant and can protect human skin fibroblasts from cellular damage produced by UVA and thus may form the foundation for an antiaging cosmetic.

  6. Combined Proteome and Eicosanoid Profiling Approach for Revealing Implications of Human Fibroblasts in Chronic Inflammation.

    Science.gov (United States)

    Tahir, Ammar; Bileck, Andrea; Muqaku, Besnik; Niederstaetter, Laura; Kreutz, Dominique; Mayer, Rupert L; Wolrab, Denise; Meier, Samuel M; Slany, Astrid; Gerner, Christopher

    2017-02-07

    During inflammation, proteins and lipids act in a concerted fashion, calling for combined analyses. Fibroblasts are powerful mediators of chronic inflammation. However, little is known about eicosanoid formation by human fibroblasts. The aim of this study was to analyze the formation of the most relevant inflammation mediators including proteins and lipids in human fibroblasts upon inflammatory stimulation and subsequent treatment with dexamethasone, a powerful antiphlogistic drug. Label-free quantification was applied for proteome profiling, while an in-house established data-dependent analysis method based on high-resolution mass spectrometry was applied for eicosadomics. Furthermore, a set of 188 metabolites was determined by targeted analysis. The secretion of 40 proteins including cytokines, proteases, and other inflammation agonists as well as 14 proinflammatory and nine anti-inflammatory eicosanoids was found significantly induced, while several acylcarnithins and sphingomyelins were found significantly downregulated upon inflammatory stimulation. Treatment with dexamethasone downregulated most cytokines and proteases, abrogated the formation of pro- but also anti-inflammatory eicosanoids, and restored normal levels of acylcarnithins but not of sphingomyelins. In addition, the chemokines CXCL1, CXCL5, CXCL6, and complement C3, known to contribute to chronic inflammation, were not counter-regulated by dexamethasone. Similar findings were obtained with human mesenchymal stem cells, and results were confirmed by targeted analysis with multiple reaction monitoring. Comparative proteome profiling regarding other cells demonstrated cell-type-specific synthesis of, among others, eicosanoid-forming enzymes as well as relevant transcription factors, allowing us to better understand cell-type-specific regulation of inflammation mediators and shedding new light on the role of fibroblasts in chronic inflammation.

  7. Genetic variants of fibroblast growth factor receptor 2 (FGFR2) are associated with breast cancer risk in Chinese women of the Han nationality.

    Science.gov (United States)

    Chen, Fan; Lu, Min; Lv, Min; Xue, Yun; Zhou, Jing; Hu, Feifei; Chen, Xin; Zhao, Zhanqin; Li, Yang; Wang, XingGuo

    2012-01-01

    Fibroblast growth factor receptor 2 (FGFR2), a recently described risk factor for breast cancer, plays important roles in cell growth, invasiveness, motility, and angiogenesis. In attempt to investigate whether FGFR2 polymorphisms are associated with a risk of breast cancer in Chinese women of the Han nationality, we genotyped single-nucleotide polymorphisms (SNPs) of seven FGFR2 sites (rs2981582, rs17102287, rs17542768, rs10510097, rs11200012, rs3750817, rs2981578) in 816 women including 388 breast cancer patients and 428 healthy controls via the polymerase chain reaction single-strand conformation polymorphism procedure as well as sequence detection. Our results suggest that the A allele and AA genotype of SNP rs2981578 appear to be protective factors associated with breast cancer, while the CT genotype of SNP rs3750817 is a putative risk factor.

  8. The catalytic and the RNA subunits of human telomerase are required to immortalize equid primary fibroblasts.

    Science.gov (United States)

    Vidale, Pamela; Magnani, Elisa; Nergadze, Solomon G; Santagostino, Marco; Cristofari, Gael; Smirnova, Alexandra; Mondello, Chiara; Giulotto, Elena

    2012-10-01

    Many human primary somatic cells can be immortalized by inducing telomerase activity through the exogenous expression of the human telomerase catalytic subunit (hTERT). This approach has been extended to the immortalization of cell lines from several mammals. Here, we show that hTERT expression is not sufficient to immortalize primary fibroblasts from three equid species, namely donkey, Burchelli's zebra and Grevy's zebra. In vitro analysis of a reconstituted telomerase composed by hTERT and an equid RNA component of telomerase (TERC) revealed a low activity of this enzyme compared to human telomerase, suggesting a low compatibility of equid and human telomerase subunits. This conclusion was also strengthened by comparison of human and equid TERC sequences, which revealed nucleotide differences in key regions for TERC and TERT interaction. We then succeeded in immortalizing equid fibroblasts by expressing hTERT and hTERC concomitantly. Expression of both human telomerase subunits led to telomerase activity and telomere elongation, indicating that human telomerase is compatible with the other equid telomerase subunits and proteins involved in telomere metabolism. The immortalization procedure described herein could be extended to primary cells from other mammals. The availability of immortal cells from endangered species could be particularly useful for obtaining new information on the organization and function of their genomes, which is relevant for their preservation.

  9. Estrogen Receptor Mutants/Variants in Human Breast Cancer.

    Science.gov (United States)

    1995-12-01

    Human breast tissues and cell lines. Normal breast tissues were obtained from reduction mammoplastv surgical specimens collected at the Necker Hospital ...mammoplasty specimens collected at the laboratory of F. Kuttenn, Necker Hospital , France (4 cases) and at the Manitoba Breast Tumor Bank (4 cases). Human...method for the identification of mutations and polymorphisms in the gene for glycoprotein IIIa. Blood 1993, 8:2281-2288 2 Ikonen E, Aula P, Gron K

  10. Knockdown of CDK2AP1 in primary human fibroblasts induces p53 dependent senescence.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1 is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1 in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a no increase in senescence associated beta-galactosidase activity, (b decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1

  11. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Alsner, Jan; Rødningen, Olaug K.; Overgaard, Jens

    2007-01-01

    -induced changes in gene expression in fibroblasts, whether differential expression is more pronounced when looking at the fold induction levels, taking into account the differences in background expression levels between patients, and whether there is a linear correlation between individual risk of RIF...... and changes in radiation-induced gene expression in fibroblasts. MATERIAL AND METHODS: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3x3.5Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy....... RESULTS: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk...

  12. Differential gene expression before and after ionizing radiation of subcutaneous fibroblasts identifies breast cancer patients resistant to radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Alsner, Jan; Rødningen, Olaug K.; Overgaard, Jens

    2007-01-01

    -induced changes in gene expression in fibroblasts, whether differential expression is more pronounced when looking at the fold induction levels, taking into account the differences in background expression levels between patients, and whether there is a linear correlation between individual risk of RIF...... and changes in radiation-induced gene expression in fibroblasts. MATERIAL AND METHODS: Gene expression was analysed by quantitative real-time PCR before and after a fractionated scheme with 3x3.5Gy/3 days in fibroblasts derived from 26 patients with breast cancer treated with post-mastectomy radiotherapy....... RESULTS: Robust radiation-induced changes in gene expression were observed, with differential gene expression between low and high risk patients being most pronounced for the fold induction level ('after' value divided by 'before' value for each patient). When including patients with intermediate risk...

  13. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol

    Science.gov (United States)

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    Aim The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Materials and methods Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Results Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. Conclusion This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol. PMID:28293103

  14. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Sivapragasam Gothai

    2016-03-01

    Full Text Available Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for treatment of cuts, wounds and burns. Moringa oleifera is an herb used as traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of M. oleifera leaves extract are completely unknown. Methods: In the current study, ethyl acetate fraction of Moringa oleifera leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 and micro;g/ml, 25 and micro;g/ml, and 50 and micro;g/ml of ethyl acetate fraction of M. oleifera leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: The present study suggested that ethyl acetate fraction of M. oleifera leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. [J Intercult Ethnopharmacol 2016; 5(1.000: 1-6

  15. IFN-Dependent and -Independent Reduction in West Nile Virus Infectivity in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Lisa I. Hoover

    2014-03-01

    Full Text Available Although dermal fibroblasts are one of the first cell types exposed to West Nile virus (WNV during a blood meal by an infected mosquito, little is known about WNV replication within this cell type. Here, we demonstrate that neuroinvasive, WNV-New York (WNV-NY, and nonneuroinvasive, WNV-Australia (WNV-AUS60 strains are able to infect and replicate in primary human dermal fibroblasts (HDFs. However, WNV-AUS60 replication and spread within HDFs was reduced compared to that of WNV-NY due to an interferon (IFN-independent reduction in viral infectivity early in infection. Additionally, replication of both strains was constrained late in infection by an IFN-β-dependent reduction in particle infectivity. Overall, our data indicates that human dermal fibroblasts are capable of supporting WNV replication; however, the low infectivity of particles produced from HDFs late in infection suggests that this cell type likely plays a limited role as a viral reservoir in vivo.

  16. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts

    Science.gov (United States)

    Huh, Christine J; Zhang, Bo; Victor, Matheus B; Dahiya, Sonika; Batista, Luis FZ; Horvath, Steve; Yoo, Andrew S

    2016-01-01

    Aging is a major risk factor in many forms of late-onset neurodegenerative disorders. The ability to recapitulate age-related characteristics of human neurons in culture will offer unprecedented opportunities to study the biological processes underlying neuronal aging. Here, we show that using a recently demonstrated microRNA-based cellular reprogramming approach, human fibroblasts from postnatal to near centenarian donors can be efficiently converted into neurons that maintain multiple age-associated signatures. Application of an epigenetic biomarker of aging (referred to as epigenetic clock) to DNA methylation data revealed that the epigenetic ages of fibroblasts were highly correlated with corresponding age estimates of reprogrammed neurons. Transcriptome and microRNA profiles reveal genes differentially expressed between young and old neurons. Further analyses of oxidative stress, DNA damage and telomere length exhibit the retention of age-associated cellular properties in converted neurons from corresponding fibroblasts. Our results collectively demonstrate the maintenance of age after neuronal conversion. DOI: http://dx.doi.org/10.7554/eLife.18648.001 PMID:27644593

  17. Hexapeptide-11 is a novel modulator of the proteostasis network in human diploid fibroblasts

    Science.gov (United States)

    Sklirou, Aimilia D.; Ralli, Marianna; Dominguez, Maria; Papassideri, Issidora; Skaltsounis, Alexios-Leandros; Trougakos, Ioannis P.

    2015-01-01

    Despite the fact that several natural products (e.g. crude extracts or purified compounds) have been found to activate cell antioxidant responses and/or delay cellular senescence the effect(s) of small peptides on cell viability and/or modulation of protective mechanisms (e.g. the proteostasis network) remain largely elusive. We have thus studied a hexapeptide (Hexapeptide-11) of structure Phe–Val–Ala–Pro–Phe–Pro (FVAPFP) originally isolated from yeast extracts and later synthesized by solid state synthesis to high purity. We show herein that Hexapeptide-11 exhibits no significant toxicity in normal human diploid lung or skin fibroblasts. Exposure of fibroblasts to Hexapeptide-11 promoted dose and time-dependent activation of proteasome, autophagy, chaperones and antioxidant responses related genes. Moreover, it promoted increased nuclear accumulation of Nrf2; higher expression levels of proteasomal protein subunits and increased proteasome peptidase activities. In line with these findings we noted that Hexapeptide-11 conferred significant protection in fibroblasts against oxidative-stress-mediated premature cellular senescence, while at in vivo skin deformation assays in human subjects it improved skin elasticity. Finally, Hexapeptide-11 was found to induce the activity of extracellular MMPs and it also suppressed cell migration. Our presented findings indicate that Hexapeptide-11 is a promising anti-ageing agent. PMID:25974626

  18. Hexapeptide-11 is a novel modulator of the proteostasis network in human diploid fibroblasts

    Directory of Open Access Journals (Sweden)

    Aimilia D. Sklirou

    2015-08-01

    Full Text Available Despite the fact that several natural products (e.g. crude extracts or purified compounds have been found to activate cell antioxidant responses and/or delay cellular senescence the effect(s of small peptides on cell viability and/or modulation of protective mechanisms (e.g. the proteostasis network remain largely elusive. We have thus studied a hexapeptide (Hexapeptide-11 of structure Phe–Val–Ala–Pro–Phe–Pro (FVAPFP originally isolated from yeast extracts and later synthesized by solid state synthesis to high purity. We show herein that Hexapeptide-11 exhibits no significant toxicity in normal human diploid lung or skin fibroblasts. Exposure of fibroblasts to Hexapeptide-11 promoted dose and time-dependent activation of proteasome, autophagy, chaperones and antioxidant responses related genes. Moreover, it promoted increased nuclear accumulation of Nrf2; higher expression levels of proteasomal protein subunits and increased proteasome peptidase activities. In line with these findings we noted that Hexapeptide-11 conferred significant protection in fibroblasts against oxidative-stress-mediated premature cellular senescence, while at in vivo skin deformation assays in human subjects it improved skin elasticity. Finally, Hexapeptide-11 was found to induce the activity of extracellular MMPs and it also suppressed cell migration. Our presented findings indicate that Hexapeptide-11 is a promising anti-ageing agent.

  19. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis.

    Science.gov (United States)

    Lee, Geum-Young; Park, Kang-Gyun; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-03-01

    Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  20. Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells

    Science.gov (United States)

    Kim, Bona; Yoon, Byung Sun; Moon, Jai-Hee; Kim, Jonggun; Jun, Eun Kyoung; Lee, Jung Han; Kim, Jun Sung; Baik, Cheong Soon; Kim, Aeree; Whang, Kwang Youn

    2012-01-01

    Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin-producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis-derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal-endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic β-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin-induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus. PMID:22020533

  1. Biocompatibility of three bioabsorbable membranes assessed in FGH fibroblasts and human osteoblast like cells culture.

    Science.gov (United States)

    Soares, Michelle Pereira Costa Mundim; Soares, Paulo Vinícius; Pereira, Analice Giovani; Moura, Camilla Christian Gomes; Soares, Priscila Barbosa Ferreira; Naves, Lucas Zago; de Magalhães, Denildo

    2014-08-06

    Specific physical and chemical features of the membranes may influence the healing of periodontal tissues after guided tissue regeneration (GTR). The aim of the present investigation was to analyze the biological effects of three bioabsorbable membranes. The hypothesis is that all tested membranes present similar biological effects. Human osteoblast like-cells (SaOs-2) and gingival fibroblasts FGH (BCRJ -RJ) were cultured in DMEM medium. The viability of the cells cultured on the membranes was assesses using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Quantitative determination of activated human Transforming Growth Factor beta 1 (TGF-β1) on the supernatants of the cell culture was observed. Samples were examined using scanning electron microscope (SEM). SaOs2, in 24 hours, PLA group showed higher values when compared to other groups (P statistical significance values when compared two times. In 4 h and 24 h, for the fibroblasts group, significantly difference was found to PLA membrane, when compared with the other groups (p statistically significant difference (p analysis of culture supernatants of fibroblasts, in 24 hours, only PLA group presented significant difference (p = 0,008). The biomaterials analyzed did not show cytotoxicity, since no membrane presented lower results than the control group. PLA membrane presented the best performance due to its higher cell viability and absorbance levels of proliferation. Both collagen membranes showed similar results either when compared to each other or to the control group.

  2. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    Science.gov (United States)

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  3. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension.

    Science.gov (United States)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E; Qvortrup, Klaus; Baar, Keith; Svensson, René B; Magnusson, S Peter; Krogsgaard, Michael; Koch, Manuel; Kjaer, Michael

    2010-06-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned along the axis of tension. The fibrils had a homogeneous narrow diameter that was similar to collagen fibrils occurring in embryonic tendon. Immunostaining showed colocalization of collagen type I with collagen III, XII and XIV. A fibronectin network was formed in parallel with the collagen, and fibroblasts stained positive for integrin alpha(5). Finally, the presence of cell extensions into the extracellular space with membrane-enclosed fibrils in fibripositors indicated characteristics of embryonic tendon. We conclude that mature human tendon fibroblasts retain an intrinsic capability to perform collagen fibrillogenesis similar to that of developing tendon, which implies that the hormonal/mechanical milieu, rather than intrinsic cellular function, inhibits regenerative potential in mature tendon. (c) 2010 Elsevier Ltd. All rights reserved.

  4. In vitro toxicity of grey MTA in comparison to white MTA on human periodontal ligament fibroblasts.

    Science.gov (United States)

    Al-Haj Ali, S N; Al-Jundi, S H; Ditto, D J

    2014-12-01

    This was to define and compare the in vitro toxicity of grey MTA with that of white MTA on cultured human periodontal ligament (PDL) fibroblasts. PDL cells were obtained from sound first permanent molars and cultured in Dulbecco's Modified Eagle's Medium. Cultures were subjected to different concentrations of grey and white MTA (0.5, 5, 50 and 500 µg/ml) for 24 h at 37 °C. Cells that were not exposed to grey or white MTA served as the negative control. In vitro toxicity was assessed using MTT assay. The results were compared using ANOVA and Tukey statistical tests (p MTA presented higher in vitro toxicity than grey MTA. However, the differences were almost insignificant (p > 0.05). Both colours of MTA are biocompatible since they were both able to preserve PDL fibroblasts for up to 24 h. MTA is as a promising alternative in pulpotomy of primary teeth.

  5. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging.

  6. Non-saponifiable fraction of cocoa shell butter: effect on rat and human skin fibroblasts.

    Science.gov (United States)

    Warocquier-Clerout, R; Sigot, M; Ouraghi, M; Chaveron, H

    1992-02-01

    Synopsis Non-saponifiable lipid fraction (ICSB) extracted from cocoa shell butter was solubilized in dimethylformamide (DMF) and analysed for its biological activity on growth of rat and human fibroblasts. Non-saponifiables (10 mug ml(-1)) partially protected cells from toxicity of DMF (1%) and allowed the growth of fibroblasts cultivated in optimal conditions (10% fetal calf serum-FCS, 37 degrees C) or improved the survival of cells maintained in altered conditions (2.5% FCS, 35 degrees C). At higher concentration (ICSB 50 mug ml(-1), DMF 1%), the protective effect was suppressed. ICSB was fractionated by chromatography into four compounds: sterols, terpenic alcohols, tocopherols and hydrocarbons +/- carotenoids. We found that biological activity of ICSB was mostly due to the major fraction containing sterols.

  7. Evidence for a physiological role of intracellularly occurring photolabile nitrogen oxides in human skin fibroblasts.

    Science.gov (United States)

    Opländer, Christian; Wetzel, Wiebke; Cortese, Miriam M; Pallua, Norbert; Suschek, Christoph V

    2008-05-01

    Nitric oxide (NO) plays a pivotal role in human skin biology. Cutaneous NO can be produced enzymatically by NO synthases (NOS) as well as enzyme independently via photodecomposition of photolabile nitrogen oxides (PNOs) such as nitrite or nitroso compounds, both found in human skin tissue in comparably high concentrations. Although the physiological role of NOS-produced NO in human skin is well defined, nothing is known about the biological relevance or the chemical origin of intracellularly occurring PNOs. We here, for the first time, give evidence that in human skin fibroblasts (FB) PNOs represent the oxidation products of NOS-produced NO and that in human skin fibroblasts intracellularly occurring PNOs effectively protect against the injurious effects of UVA radiation by a NO-dependent mechanism. In contrast, in PNO-depleted FB cultures an increased susceptibility to UVA-induced lipid peroxidation and cell death is observed, whereas supplementation of PNO-depleted FB cultures with physiological nitrite concentrations (10 microM) or with exogenously applied NO completely restores UVA-increased injuries. Thus, intracellular PNOs are biologically relevant and represent an important initial shield functioning in human skin physiology against UVA radiation. Consequently, nonphysiological low PNO concentrations might promote known UVA-related skin injuries such as premature aging and carcinogenesis.

  8. Inhibitory and Cytotoxic Activities of Chrysin on Human Breast Adenocarcinoma Cells by Induction of Apoptosis

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Hasanzadeh, Malihe; Jabbari, Farahzad; Farkhondeh, Tahereh; Samini, Mohammad

    2016-01-01

    Objectives: Chrysin, an active natural bioflavonoid found in honey and many plant extracts, was first known for its antioxidant and anti-inflammatory effects. The fact that antioxidants have several inhibitory effects against different diseases, such as cancer, led to search for food rich in antioxidants. In this study, we investigated the antiproliferative and apoptotic effects of chrysin on the cultured human breast cancer cells (MCF-7). Materials and Methods: Cells were cultured in Roswell Park Memorial Institute medium and treated with different chrysin concentrations for three consecutive days. Cell viability was quantitated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The percentage of apoptotic cells was determined by flow cytometry using Annexin V-fluorescein isothiocyanate. Results: The MTT assay showed that chrysin had an antiproliferative effect on MCF-7 cells in a dose- and time-dependent manner. The 50% cell growth inhibition values for chrysin against MCF-7 cells were 19.5 and 9.2 μM after 48 and 72 h, respectively. Chrysin induced apoptosis in MCF-7 cells as determined by flow cytometry. Chrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosis which may, in part, explain its anticancer activity. Conclusion: This study shows that chrysin could also be considered as a promising chemotherapeutic agent and anticancer activity in treatment of the breast cancer cells in future. SUMMARY Chrysin had an antiproliferative effect on human breast cancer cells (MCF-7) cells in a dose- and time-dependent mannerChrysin induced apoptosis in MCF-7 cells, as determined by flow cytometryChrysin inhibits the growth of the breast cancer cells by inducing cancer cell apoptosisChrysin may have anticancer activity. Abbreviations used: Human breast cancer cells (MCF-7), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), phosphate-buffered saline (PBS), normal fibroblast mouse (L929).

  9. Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis.

    Science.gov (United States)

    Sasaki, Soichiro; Baba, Tomohisa; Nishimura, Tatsunori; Hayakawa, Yoshihiro; Hashimoto, Shin-Ichi; Gotoh, Noriko; Mukaida, Naofumi

    2016-08-01

    From a murine breast cancer cell line, 4T1, we established a subclone, 4T1.3, which consistently metastasizes to bone upon its injection into the mammary fat pad. 4T1.3 clone exhibited similar proliferation rate and migration capacity as the parental clone. However, the intra-bone injection of 4T1.3 clone caused larger tumors than that of the parental cells, accompanied with increases in fibroblast, but not osteoclast or osteoblast numbers. 4T1.3 clone displayed an enhanced expression of a chemokine, CCL4, but not its specific receptor, CCR5. CCL4 shRNA-transfection of 4T1.3 clone had few effects on its in vitro properties, but reduced the tumorigenicity arising from the intra-bone injection. Moreover, intra-bone injection of 4T1.3 clone caused smaller tumors in mice deficient in CCR5 or those receiving CCR5 antagonist than in wild-type mice. The reduced tumor formation was associated with attenuated accumulation of CCR5-positive fibroblasts expressing connective tissue growth factor (CTGF)/CCN2. Tumor cell-derived CCL4 could induce fibroblasts to express CTGF/CCN2, which could support 4T1.3 clone proliferation under hypoxic culture conditions. Thus, the CCL4-CCR5 axis can contribute to breast cancer metastasis to bone by mediating the interaction between cancer cells and fibroblasts in bone cavity.

  10. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, So Young [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Jang, Hwan-Hee [Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-853 (Korea, Republic of); Ryu, Sung Ho [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, Beom Joon [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Taehoon G., E-mail: taehoon@novacelltech.com [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  11. Anti-inflammatory effects of budesonide in human lung fibroblasts are independent of histone deacetylase 2

    Directory of Open Access Journals (Sweden)

    Wang X

    2013-08-01

    Full Text Available Xingqi Wang,1 Amy Nelson,1 Zachary M Weiler,1 Amol Patil,1 Tadashi Sato,1 Nobuhiro Kanaji,1 Masanori Nakanishi,1 Joel Michalski,1 Maha Farid,1 Hesham Basma,1 Tricia D LeVan,1 Anna Miller-Larsson,2 Elisabet Wieslander,2 Kai-Christian Muller,3 Olaf Holz,3 Helgo Magnussen,3 Klaus F Rabe,3 Xiangde Liu,1 Stephen I Rennard1 1Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; 2AstraZeneca R&D Molndal, Molndal, Sweden; 3Hospital Grosshansdorf, Center for Pneumology and Thoracic Surgery, Grosshansdorf, Germany Objective and design: Reduced expression of histone deacetylase 2 (HDAC2 in alveolar macrophages and epithelial cells may account for reduced response of chronic obstructive pulmonary disease (COPD patients to glucocorticoids. HDAC2 expression and its role in mediating glucocorticoid effects on fibroblast functions, however, has not been fully studied. This study was designed to investigate whether HDAC2 mediates glucocorticoid effects on release of inflammatory cytokines and matrix metalloproteinases (MMPs from human lung fibroblasts. Methods: Human lung fibroblasts (HFL-1 cells were stimulated with interleukin (IL-1β plus tumor necrosis factor (TNF-α in the presence or absence of the glucocorticoid budesonide. Cytokines (IL-6 and IL-8 were quantified by enzyme linked immunosorbent assay (ELISA and MMPs (MMP-1 and MMP-3 by immunoblotting in culture medium. The role of HDAC2 was investigated using a pharmacologic inhibitor as well as a small interfering ribonucleic acid (siRNA targeting HDAC2. Results: We have demonstrated that budesonide concentration-dependently (10-10–10-7 M inhibited IL-6, IL-8, MMP-1, and MMP-3 release by HFL-1 cells in response to IL-1β plus TNF-a. While an HDAC inhibitor significantly blocked the inhibitory effect of budesonide on human bronchial epithelial cells (HBECs and monocytes (THP-1 cells, it did not block the inhibitory

  12. Human Papilloma Viruses and Breast Cancer – Assessment of Causality

    Science.gov (United States)

    Lawson, James Sutherland; Glenn, Wendy K.; Whitaker, Noel James

    2016-01-01

    High risk human papilloma viruses (HPVs) may have a causal role in some breast cancers. Case–control studies, conducted in many different countries, consistently indicate that HPVs are more frequently present in breast cancers as compared to benign breast and normal breast controls (odds ratio 4.02). The assessment of causality of HPVs in breast cancer is difficult because (i) the HPV viral load is extremely low, (ii) HPV infections are common but HPV associated breast cancers are uncommon, and (iii) HPV infections may precede the development of breast and other cancers by years or even decades. Further, HPV oncogenesis can be indirect. Despite these difficulties, the emergence of new evidence has made the assessment of HPV causality, in breast cancer, a practical proposition. With one exception, the evidence meets all the conventional criteria for a causal role of HPVs in breast cancer. The exception is “specificity.” HPVs are ubiquitous, which is the exact opposite of specificity. An additional reservation is that the prevalence of breast cancer is not increased in immunocompromised patients as is the case with respect to HPV-associated cervical cancer. This indicates that HPVs may have an indirect causal influence in breast cancer. Based on the overall evidence, high-risk HPVs may have a causal role in some breast cancers. PMID:27747193

  13. Cloning, Expression and Functional Characterization of In-House Prepared Human Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Hassan Rassouli

    2013-01-01

    Full Text Available Objective: Human basic fibroblast growth factor (bFGF plays an important role in cellular proliferation, embryonic development, and angiogenesis as well as in several signaling pathways of various cell types. bFGF is an essential growth factor for the maintenance of undifferentiated human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs.Materials and Methods: In this experimental study, we present a straightforward method to produce biologically active recombinant human bFGF protein in E. coli that has long-term storage ability.Results: This procedure provides a rapid, cost effective purification of a soluble human bFGF protein that is biologically active and functional as measured in hESCs and hiPSCs in vitro and in vivo.Conclusion: The results show no significant difference in function between our in-house produced and commercialized bFGF.

  14. Deciphering the differential response of two human fibroblast cell lines following Chikungunya virus infection

    Directory of Open Access Journals (Sweden)

    Thon-Hon Vincent G

    2012-09-01

    Full Text Available Abstract Background Chikungunya virus (CHIKV is an arthritogenic member of the Alphavirus genus (family Togaviridae transmitted by Aedes mosquitoes. CHIKV is now known to target non hematopoietic cells such as epithelial, endothelial cells, fibroblasts and to less extent monocytes/macrophages. The type I interferon (IFN response is an early innate immune mechanism that protects cells against viral infection. Cells express different pattern recognition receptors (including TLR7 and RIG-I to sense viruses and to induce production of type I IFNs which in turn will bind to their receptor. This should result in the phosphorylation and translocation of STAT molecules into the nucleus to promote the transcription of IFN-stimulated antiviral genes (ISGs. We herein tested the capacity of CHIKV clinical isolate to infect two different human fibroblast cell lines HS 633T and HT-1080 and we analyzed the resulting type I IFN innate immune response. Methods Indirect immunofluorescence and quantitative RT-PCR were used to test for the susceptibility of both fibroblast cell lines to CHIKV. Results Interestingly, the two fibroblast cell lines HS 633T and HT-1080 were differently susceptible to CHIKV infection and the former producing at least 30-fold higher viral load at 48 h post-infection (PI. We found that the expression of antiviral genes (RIG-I, IFN-β, ISG54 and ISG56 was more robust in the more susceptible cell line HS 633T at 48 h PI. Moreover, CHIKV was shown to similarly interfere with the nuclear translocation of pSTAT1 in both cell lines. Conclusion Critically, CHIKV can control the IFN response by preventing the nuclear translocation of pSTAT1 in both fibroblast cell lines. Counter-intuitively, the relative resistance of HT-1080 cells to CHIKV infection could not be attributed to more robust innate IFN- and ISG-dependent antiviral responses. These cell lines may prove to be valuable models to screen for novel mechanisms mobilized differentially by

  15. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts.

    Science.gov (United States)

    Onesto, Elisa; Colombrita, Claudia; Gumina, Valentina; Borghi, Maria Orietta; Dusi, Sabrina; Doretti, Alberto; Fagiolari, Gigliola; Invernizzi, Federica; Moggio, Maurizio; Tiranti, Valeria; Silani, Vincenzo; Ratti, Antonia

    2016-05-05

    Dysregulation of RNA metabolism represents an important pathogenetic mechanism in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) due to the involvement of the DNA/RNA-binding proteins TDP-43 and FUS and, more recently, of C9ORF72. A potential link between dysregulation of RNA metabolism and mitochondrial dysfunction is recently emerged in TDP-43 disease models. To further investigate the possible relationship between these two pathogenetic mechanisms in ALS/FTD, we studied mitochondria functionality in human mutant TARDBP(p.A382T) and C9ORF72 fibroblasts grown in galactose medium to induce a switch from a glycolytic to an oxidative metabolism. In this condition we observed significant changes in mitochondria morphology and ultrastructure in both mutant cells with a fragmented mitochondria network particularly evident in TARDBP(p.A382T) fibroblasts. From analysis of the mitochondrial functionality, a decrease of mitochondria membrane potential with no alterations in oxygen consumption rate emerged in TARDBP fibroblasts. Conversely, an increased oxygen consumption and mitochondria hyperpolarization were observed in C9ORF72 fibroblasts in association to increased ROS and ATP content. We found evidence of autophagy/mitophagy in dynamic equilibrium with the biogenesis of novel mitochondria, particularly in mutant C9ORF72 fibroblasts where an increase of mitochondrial DNA content and mass, and of PGC1-α protein was observed. Our imaging and biochemical data show that wild-type and mutant TDP-43 proteins do not localize at mitochondria so that the molecular mechanisms responsible for such mitochondria impairment remain to be further elucidated. For the first time our findings assess a link between C9ORF72 and mitochondria dysfunction and indicate that mitochondria functionality is affected in TARDBP and C9ORF72 fibroblasts with gene-specific features in oxidative conditions. As in neuronal metabolism mitochondria are actively used for ATP

  16. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts.

    Science.gov (United States)

    Buskermolen, Jeroen K; Reijnders, Christianne M A; Spiekstra, Sander W; Steinberg, Thorsten; Kleverlaan, Cornelis J; Feilzer, Albert J; Bakker, Astrid D; Gibbs, Susan

    2016-08-01

    Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and

  17. CYCLOSPORIN A AFFECTS THE PROLIFERATION PROCESS IN NORMAL HUMAN DERMAL FIBROBLASTS.

    Science.gov (United States)

    Janikowska, Grazyna; Janikowsk, Tomasz; Pyka, Alina; Wilczok, Adam; Mazurek, Urszula

    2016-01-01

    Cyclosporin A is an immunosuppressant drug that is used not only in solid transplant rejection, but also in moderate and severe forms of psoriasis, pyoderma, lupus or arthritis. Serious side effects of the drug such as skin cancer or gingival hyperplasia probably start with the latent proliferation process. Little is known about the influence of cyclosporin A on molecular signaling in epidermal tissue. Thus, the aim of this study was to estimate the influence of cyclosporin A on the process of proliferation in normal human dermal fibroblasts. Fibroblasts were cultured in a liquid growth medium in standard conditions. Cyclosporin A was added to the culture after the confluence state. Survival and proliferation tests on human dermal fibroblast cells were performed. Total RNA was extracted from fibroblasts, based on which cDNA and cRNA were synthesized. The obtained cRNA was hybridized with the expression microarray HGU-133A_2.0. Statistical analysis of 2734 mRNAs was performed by the use of GeneSpring 13.0 software and only results with p cyclosporin A) was performed to lower the number of statistically significant results from 679 to 66, and less. Between statistically and biologically significant mRNAs down-regulated were EGRJ, BUBIB, MKI67, CDK1, TTK, E2F8, TPX2, however, the INSIG1, FOSL1, HMOX1 were up-regulated. The experiment data revealed that cyclosporin A up-regulated FOSL1 in the first 24 h, afterwards down-regulating its expression. The HMOX1 gene was up-regulated in the first stage of the experiment (CsA 8 h), however, after the next 16 h of culture time its expression was down-regulated (CsA 24 h), to finally increased in the later time period. The results indicate that cyclosporin A had a significant effect on proliferation in normal human dermal fibroblasts through the changes in the expression of genes related to the cell cycle and transcription regulation process.

  18. Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts

    DEFF Research Database (Denmark)

    Almqvist, Sofia; Werthén, Maria; Johansson, Anna

    2010-01-01

    or down-regulation of genes, of which most are involved in cellular growth, migration and differentiation. The effect of amelogenin was exemplified by increased proliferation over 7 days. In conclusion, the beneficial effects of amelogenin on wound healing are possibly conducted by stimulating fibroblast......Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100...... signalling, proliferation and migration via integrin interactions. It is hypothesized that amelogenin stimulates wound healing by providing connective tissue cells with a temporary extracellular matrix....

  19. Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect.

    Science.gov (United States)

    Kovářová, Nikola; Pecina, Petr; Nůsková, Hana; Vrbacký, Marek; Zeviani, Massimo; Mráček, Tomáš; Viscomi, Carlo; Houštěk, Josef

    2016-06-01

    This paper describes data related to a research article entitled "Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects" [1]. This paper includes data of the quantitative analysis of individual forms of respiratory chain complexes I, III and IV present in SURF1 knockout (SURF1 (-/-) ) and control (SURF1 (+/+) ) mouse fibroblasts and tissues and in fibroblasts of human control and patients with SURF1 gene mutation. Also it includes data demonstrating response of complex IV, cytochrome c oxidase (COX), to reversible inhibition of mitochondrial translation in SURF1 (-/-) mouse and SURF1 patient fibroblast cell lines.

  20. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    Science.gov (United States)

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID

  1. Asiaticoside induces cell proliferation and collagen synthesis in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Linda Yulianti

    2015-08-01

    Full Text Available Asiatiocoside, a saponin component isolated from Centella asiatica can improve wound healing by promoting the proliferation of human dermal fibroblasts (HDF and synthesis of collagen. The skin-renewing cells and type I and III collagen synthesis decrease with aging, resulting in the reduction of skin elasticity and delayed wound healing. Usage of natural active compounds from plants in wound healing should be evaluated and compared to retinoic acid as an active agent that regulates wound healing. The aim of this study was to compare and evaluate the effect of asiaticoside and retinoic acid to induce greater cell proliferation and type I and III collagen synthesis in human dermal fibroblast. Methods Laboratory experiments were conducted using human dermal fibroblasts (HDF isolated from human foreskin explants. Seven passages of HDF were treated with asiaticoside and retinoic acid at several doses and incubated for 24 and 48 hours. Cell viability in all groups was tested with the MTT assay to assess HDF proliferation. Type I and III collagen synthesis was examined using the respective ELISA kits. Analysis of variance was performed to compare the treatment groups. Results Asiaticoside had significantly stronger effects on HDF proliferation than retinoic acid (p<0.05. The type III collagen production was significantly greater induction with asiaticoside compared to retinoic acid (p<0.05. Conclusion Asiaticoside induces HDF proliferation and type I and III collagen synthesis in a time- and dose-dependent pattern. Asiaticoside has a similar effect as retinoic acid on type I and type III collagen synthesis.

  2. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.

    Science.gov (United States)

    Felici, Roberta; Lapucci, Andrea; Cavone, Leonardo; Pratesi, Sara; Berlinguer-Palmini, Rolando; Chiarugi, Alberto

    2015-06-01

    Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic

  3. The upregulation of heat shock protein 47 expression in human buccal fibroblasts stimulated with arecoline.

    Science.gov (United States)

    Yang, Shun-Fa; Tsai, Chung-Hung; Chang, Yu-Chao

    2008-04-01

    Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagen. HSP47 is consistently and dramatically upregulated in a variety of fibrotic diseases. The aim of this study was to compare HSP47 expression in normal human buccal mucosa and oral submucous fibrosis (OSF) specimens and further to explore the potential mechanisms that may lead to induce HSP47 expression. The mRNA levels of HSP47 from fibroblasts cultured from 20 OSF and 10 normal buccal mucosal fibroblasts (BMFs) were evaluated by reverse transcription polymerase chain reaction. The effect of arecoline, the major areca nut alkaloid, was added to explore the potential mechanisms that may lead to induce HSP47 expression. Furthermore, mitogen-activated protein kinase kinase (MEK) inhibitor U0126, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, p38 inhibitor SB203580, cyclo-oxygenase-2 (COX-2) inhibitor NS-398, and glutathione precursor N-acetyl-l-cysteine were added to find the possible mechanisms. OSF demonstrated significantly higher HSP47 mRNA expression than BMFs (P Arecoline was also found to elevate HSP47 mRNA expression in a dose-dependent manner (P arecoline when compared with control (P arecoline-induced HSP47 mRNA expression (P arecoline in fibroblasts may be mediated by MEK, PI3K, and COX-2 signal transduction pathways.

  4. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: Implications for breast cancer prevention

    National Research Council Canada - National Science Library

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Lamb, Rebecca; Hulit, James; Howell, Anthony; Sotgia, Federica; Rubin, Emanuel; Lisanti, Michael P

    2013-01-01

    ...) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation...

  5. Gene transcriptional networks integrate microenvironmental signals in human breast cancer.

    Science.gov (United States)

    Xu, Ren; Mao, Jian-Hua

    2011-04-01

    A significant amount of evidence shows that microenvironmental signals generated from extracellular matrix (ECM) molecules, soluble factors, and cell-cell adhesion complexes cooperate at the extra- and intracellular level. This synergetic action of microenvironmental cues is crucial for normal mammary gland development and breast malignancy. To explore how the microenvironmental genes coordinate in human breast cancer at the genome level, we have performed gene co-expression network analysis in three independent microarray datasets and identified two microenvironment networks in human breast cancer tissues. Network I represents crosstalk and cooperation of ECM microenvironment and soluble factors during breast malignancy. The correlated expression of cytokines, chemokines, and cell adhesion proteins in Network II implicates the coordinated action of these molecules in modulating the immune response in breast cancer tissues. These results suggest that microenvironmental cues are integrated with gene transcriptional networks to promote breast cancer development.

  6. Lubricin in human breast tissue expander capsules.

    Science.gov (United States)

    Cheriyan, Thomas; Guo, Lifei; Orgill, Dennis P; Padera, Robert F; Schmid, Thomas M; Spector, Myron

    2012-10-01

    Capsular contraction is the most common complication of breast reconstruction surgery. While presence of the contractile protein alpha smooth muscle actin (α-SMA) is considered among the causes of capsular contraction, the exact etiology and pathophysiology is not fully understood. The objective of this study was to investigate the possible role of lubricin in capsular formation and contraction by determining the presence and distribution of the lubricating protein lubricin in human breast tissue expander capsules. Related aims were to evaluate select histopathologic features of the capsules, and the percentage of cells expressing α-SMA, which reflects the myofibroblast phenotype. Capsules from tissue expanders were obtained from eight patients. Lubricin, at the tissue-implant interface, in the extracellular matrix, and in cells, and α-SMA-containing cells were evaluated immunohistochemically. The notable finding was that lubricin was identified in all tissue expander capsules: as a discrete layer at the tissue-implant interface, extracellular, and intracellular. There was a greater amount of lubricin in the extracellular matrix in the intimal-subintimal zone when compared with the tissue away from the implant. Varying degrees of synovial metaplasia were seen at the tissue-implant interface. α-SMA-containing cells were also seen in all but one patient. The findings might help us better understand factors involved in capsule formation.

  7. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station.

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  8. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 °C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37 °C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  9. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst, E-mail: e.wolvetang@uq.edu.au

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  10. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    Science.gov (United States)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  11. Intraarticular Sprifermin (Recombinant Human Fibroblast Growth Factor 18) in Knee Osteoarthritis

    DEFF Research Database (Denmark)

    Lohmander, L. S.; Hellot, S.; Dreher, D.

    2014-01-01

    Objective. To evaluate the efficacy and safety of intraarticular sprifermin (recombinant human fibroblast growth factor 18) in the treatment of symptomatic knee osteoarthritis (OA). Methods. The study was a randomized, double-blind, placebo-controlled, proof-of-concept trial. Intraarticular...... in joint space width (JSW) seen on radiographs, and pain scores on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Results. One hundred ninety-two patients were randomized and evaluated for safety, 180 completed the trial, and 168 were evaluated for the primary efficacy end...

  12. Comparison of the Efficiency of Viral Transduction and Episomal Transfection in Human Fibroblast Reprogramming.

    Science.gov (United States)

    Vdovin, A S; Lupatov, A Yu; Kholodenko, I V; Yarygin, K N

    2015-11-01

    Induced pluripotent cells were derived from adult human skin fibroblast by using two methods of reprogramming. Episomal transfection with vectors containing oriP/EBNA-1 sequence for delivery of reprogramming genes Oct4, Sox2, Klf4, L-Myc, and Lin28 proved to be more effective than viral transduction with Sendai virus-based vector: ~200 and 8 colonies per 10(5) cells were found on day 21 of culturing, respectively. Colonies of induced pluripotent cells obtained by these two methods expressed pluripotency marker Tra1-60.

  13. Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts.

    OpenAIRE

    Soldatov, N M

    1992-01-01

    The nucleotide sequence of cDNA encoding the human fibroblast Ca2+ channel of L type (HFCC) has been determined. It is highly homologous to L-type channels previously cloned from rabbit lung and heart as well as from rat brain. At least four sites of molecular diversity were identified in the nucleotide sequence of HFCC. Three of these include regions encoding the transmembrane segments IIS6, IIIS2, and IVS3, which are known to be important for channel gating properties. The positions of thes...

  14. Down regulation of epidermal growth factor receptors: direct demonstration of receptor degradation in human fibroblasts

    OpenAIRE

    1984-01-01

    The metabolism of the receptor for epidermal growth factor (EGF) has been measured by labeling the receptor in vivo with radioactive amino acid precursors and then determining, by immunoprecipitation with specific anti-EGF receptor antisera, the rate of degradation of the receptor when the cells are placed in a nonradioactive medium. In human fibroblasts the rate of EGF receptor degradation (t1/2 = 10.1 h) was faster than the rate of degradation of total cell protein. When EGF was added to th...

  15. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  16. STAT6-dependent collagen synthesis in human fibroblasts is induced by bovine milk

    OpenAIRE

    Stefan Kippenberger; Nadja Zöller; Johannes Kleemann; Jutta Müller; Roland Kaufmann; Matthias Hofmann; August Bernd; Markus Meissner; Eva Valesky

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold,...

  17. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol

    Directory of Open Access Journals (Sweden)

    Donejko M

    2017-03-01

    Full Text Available Magdalena Donejko,1 Edyta Rysiak,2 Elżbieta Galicka,1 Robert Terlikowski,3 Edyta Katarzyna Głażewska,1 Andrzej Przylipiak1 1Department of Esthetic Medicine, 2Department of Medicinal Chemistry, Faculty of Pharmacy, 3Department of Health Restoration, Medical University of Białystok, Białystok, Poland Aim: The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK, and the influence of HA on those processes. Materials and methods: Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Results: Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. Conclusion: This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol. Keywords: apoptosis, skin fibroblast, focal adhesion kinase, hyaluronic acid, ethanol

  18. Comparison of breast cancer mucin (BCM) and CA 15-3 in human breast cancer

    NARCIS (Netherlands)

    Garcia, M.B.; Blankenstein, M.A.; Wall, E. van der; Nortier, J.W.R.; Schornagel, J.H.; Thijssen, J.H.H.

    1990-01-01

    The Breast Cancer Mucin (BCM) enzyme immunoassay utilizes two monoclonal antibodies (Mab), M85/34 and F36/22, for the identification of a mucin-like glycoprotein in serum of breast cancer patients. We have compared BCM with CA 15-3, another member of the human mammary epithelial antigen

  19. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3.

    Science.gov (United States)

    Rauchenberger, Robert; Borges, Eric; Thomassen-Wolf, Elisabeth; Rom, Eran; Adar, Rivka; Yaniv, Yael; Malka, Michael; Chumakov, Irina; Kotzer, Sarit; Resnitzky, Dalia; Knappik, Achim; Reiffert, Silke; Prassler, Josef; Jury, Karin; Waldherr, Dirk; Bauer, Susanne; Kretzschmar, Titus; Yayon, Avner; Rothe, Christine

    2003-10-03

    The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A., and Virnekäs, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.

  20. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih [Institute of Biomedical Sciences, Taiwan (China)] [and others

    1995-08-01

    Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplication in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.

  1. Transcriptomic profiles of human foreskin fibroblast cells in response to orf virus.

    Science.gov (United States)

    Chen, Daxiang; Long, Mingjian; Xiao, Bin; Xiong, Yufeng; Chen, Huiqin; Chen, Yu; Kuang, Zhenzhan; Li, Ming; Wu, Yingsong; Rock, Daniel L; Gong, Daoyuan; Wang, Yong; He, Haijian; Liu, Fang; Luo, Shuhong; Hao, Wenbo

    2017-08-29

    Orf virus has been utilized as a safe and efficient viral vector against not only diverse infectious diseases, but also against tumors. However, the nature of the genes triggered by the vector in human cells is poorly characterized. Using RNA sequencing technology, we compared specific changes in the transcriptomic profiles in human foreskin fibroblast cells following infection by the orf virus. The results indicated that orf virus upregulates or downregulates expression of a variety of genes, including genes involved in antiviral immune response, apoptosis, cell cycle and a series of signaling pathways, such as the IFN and p53-signaling pathways. The orf virus stimulates or inhibits immune gene expression such as chemokines, chemokine receptors, cytokines, cytokine receptors, and molecules involved in antigen uptake and processing after infection. Expression of pro-apoptotic genes increased at 8 hours post-infection. The p53 signaling pathway was activated to induce apoptosis at the same time. However, the cell cycle program was promoted after infection, which may be due to the immunomodulatory genes of the orf virus. This presents the first description of transcription profile changes in human foreskin fibroblast cells after orf virus infection and provides an in-depth analysis of the interaction between the host and orf virus. These data offer new insights into the understanding of the mechanisms of infection by orf virus and identify potential targets for future studies.

  2. Microbial dysbiosis is associated with human breast cancer.

    Directory of Open Access Journals (Sweden)

    Caiyun Xuan

    Full Text Available Breast cancer affects one in eight women in their lifetime. Though diet, age and genetic predisposition are established risk factors, the majority of breast cancers have unknown etiology. The human microbiota refers to the collection of microbes inhabiting the human body. Imbalance in microbial communities, or microbial dysbiosis, has been implicated in various human diseases including obesity, diabetes, and colon cancer. Therefore, we investigated the potential role of microbiota in breast cancer by next-generation sequencing using breast tumor tissue and paired normal adjacent tissue from the same patient. In a qualitative survey of the breast microbiota DNA, we found that the bacterium Methylobacterium radiotolerans is relatively enriched in tumor tissue, while the bacterium Sphingomonas yanoikuyae is relatively enriched in paired normal tissue. The relative abundances of these two bacterial species were inversely correlated in paired normal breast tissue but not in tumor tissue, indicating that dysbiosis is associated with breast cancer. Furthermore, the total bacterial DNA load was reduced in tumor versus paired normal and healthy breast tissue as determined by quantitative PCR. Interestingly, bacterial DNA load correlated inversely with advanced disease, a finding that could have broad implications in diagnosis and staging of breast cancer. Lastly, we observed lower basal levels of antibacterial response gene expression in tumor versus healthy breast tissue. Taken together, these data indicate that microbial DNA is present in the breast and that bacteria or their components may influence the local immune microenvironment. Our findings suggest a previously unrecognized link between dysbiosis and breast cancer which has potential diagnostic and therapeutic implications.

  3. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    Science.gov (United States)

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated.

  4. Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets.

    Science.gov (United States)

    Eberhard, M; Miyagawa, K; Hermsmeyer, K; Erne, P

    1995-12-01

    The Ca2+ antagonist mibefradil at supratherapeutic concentrations induced a sustained increase of cytosolic Ca2+ in cultured rat cardiac fibroblasts and human platelets which lack sensitivity to K+ depolarization and Ca2+ channel block by verapamil or other Ca2+ antagonists. At concentrations above 10 microM, mibefradil elevated substantially cytosolic [Ca2+] without affecting the peak level of agonist-induced Ca2+ transients. These Ca2+-mobilizing actions of 10 or 100 microM mibefradil stand in contrast to the Ca2+ antagonism and relaxation of vascular muscle at 1 microM concentrations. Since a substantial part of mibefradil-induced increase in cytosolic Ca2+ was independent of extracellular Ca2+, and in order to define better the mechanism of Ca2+ increase, we exposed permeabilized cultured rat cardiac fibroblasts and human platelets to mibefradil at concentrations sufficiently high to identify covert effects. In permeabilized fibroblasts or platelets mibefradil at concentrations above 10 microM activated dose-dependent Ca2+ release from intracellular Ca2+ stores. Verapamil had no effect at concentrations of up to 100 microM. Mibefradil-induced Ca2+ release was not affected by ryanodine, thapsigargin, removal of ATP or dithioerythreitol, indicating that neither Ca2+ - nor disulfide reagent-induced Ca2+ release were involved and that mibefradil did not release Ca2+ by inhibition of the Ca2+-ATPase pump of endoplasmic reticulum. The rate, but not the amplitude, of mibefradil-induced Ca2+ release is increased up to fourfold in the presence of pentosan polysulphate or heparin, two potent inhibitors of inositol 1,4,5-trisphosphate-induced Ca2+ release. Depletion of Ca2+ stores of permeabilized cells inositol 1,4,5-trisphosphate in the presence of thapsigargin completely blocked mibefradil-induced Ca2+ release, and depletion of Ca2+ stores by mibefradil prevented further Ca2+ release by inositol 1,4,5-trisphosphate. Mibefradil at supratherapeutic concentrations (> or

  5. Sialidase activities of cultured human fibroblasts and the metabolism of GM3 ganglioside

    Energy Technology Data Exchange (ETDEWEB)

    Usuki, S.; Lyu, S.C.; Sweeley, C.C.

    1988-05-15

    Free sialic acid has been found in the cell-conditioned medium of human foreskin fibroblasts. It is proposed that the accumulation of extracellular sialic acid may result from the hydrolysis of GM3 ganglioside on the cell surface of these fibroblasts. Sialidase activities with GM3 ganglioside and sialyllactitol as substrates were demonstrated in cell-conditioned medium, and the levels of their activities correlated positively with cell density. The GM3 sialidase activity at pH 4.5 was 4.1 and 38 pmol/h/ml of medium at sparse and confluent densities, respectively; the corresponding activities with sialyllactitol as the substrate were 12 and 75 pmol/h/ml of medium (pH 4.5). The pH versus activity profiles with GM3 as the substrate suggested the presence of a second sialidase with an optimal activity at pH 6.5 in the conditioned medium of preconfluent cells. This activity was virtually absent in the medium of contact-inhibited cells and could not be assayed with sialyllactitol as the substrate. The turnover of cell surface GM3 was assessed by pulse labeling human foreskin fibroblasts with a radioactive precursor of sialic acid ((1-14C)N-acetylmannosamine) and a radioactive precursor of ceramide ((3,3-3H2)serine). During a chase period of 24 h turnover of the doubly labeled cellular GM3 was observed; there was a loss of about 35% of the 14C-labeled sialic acid without any measureable loss of 3H-labeled ceramide from GM3. We have speculated that the enzyme-catalyzed removal of sialic acid from the GM3 ganglioside on the extracellular aspect of the plasma membrane may be a necessary event involved in the modulation of cell growth.

  6. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts.

    Science.gov (United States)

    Kim, J-A; Ahn, B-N; Kong, C-S; Kim, S-K

    2013-05-01

    Skin ageing is influenced by environmental factors such as ultraviolet (UV) radiation. The effects of UV radiation on skin functions should be investigated using human in vitro models to understand the mechanisms of skin ageing. Additionally, marine algae provide a valuable source for identifying and extracting biologically active substances. In this study, sargachromanol E was isolated from a marine brown alga, Sargassum horneri, and its inhibitory effect on skin ageing was investigated using UVA-irradiated dermal fibroblasts. Formation of intracellular reactive oxygen species (ROS), lipid peroxidation and protein oxidation induced by UVA irradiation were investigated in UVA-irradiated human dermal fibroblasts. The levels of matrix metalloproteinases (MMPs) were determined by reverse-transcriptase polymerase chain reaction and Western blot analysis. Sargachromanol E did not exhibit any significant cytotoxicity or phototoxicity in UVA-exposed dermal fibroblasts. Additionally, sargachromanol E suppressed intracellular formation of ROS, membrane protein oxidation, lipid peroxidation and expression of collagenases such as MMP-1, MMP-2 and MMP-9, all of which are caused by UVA exposure. It was further found that these inhibitions were related to an increase in the expression of the tissue inhibitor of metalloproteinase (TIMP) genes, TIMP1 and TIMP2. Moreover, we have shown that the transcriptional activation of activator protein 1 (AP-1) signalling caused by UVA irradiation was inhibited by treatment with sargachromanol E. This study suggests that UVA irradiation modulates MMP expression via the transcriptional activation of AP-1 signalling, whereas treatment with sargachromanol E protected cell damage caused by UVA irradiation. © 2013 The Authors. BJD © 2013 British Association of Dermatologists.

  7. Lovastatin inhibits TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts.

    Science.gov (United States)

    Meyer-Ter-Vehn, Tobias; Katzenberger, Barbara; Han, Hong; Grehn, Franz; Schlunck, Günther

    2008-09-01

    The transdifferentiation of Tenon fibroblasts to myofibroblasts is a pivotal step in filtering bleb scarring. It is mediated by the cytokine TGF-beta, Rho-dependent contractility, and cell-matrix interactions in an interdependent fashion. HMG-CoA-reductase inhibitors (statins) have been shown to inhibit Rho-GTPase signaling; therefore, the authors studied the influence of lovastatin on TGF-beta-mediated myofibroblast transdifferentiation to assess the potential use of statins in wound healing modulation. Human Tenon fibroblasts were grown in culture, pretreated with lovastatin, lovastatin and mevalonate, or specific inhibitors of farnesyl transferase or geranylgeranyl transferase and were stimulated with TGF-beta1. alpha-Smooth muscle actin (alpha-SMA) and connective tissue growth factor (CTGF) transcription were assessed by real-time PCR. alpha-SMA protein expression and localization were studied by Western blot and confocal immunofluorescence microscopy. Cell contractility was determined in collagen gel contraction assays. Phosphorylation of the signaling proteins Smad-2/3 and p38 were detected by Western blot, and Smad-2/3 localization was determined by confocal immunofluorescence microscopy. Lovastatin inhibited TGF-beta-induced CTGF transcription, alpha-SMA expression and incorporation into actin stress fibers, and subsequent collagen gel contraction. These effects were reversed by mevalonate. The inhibition of geranylgeranyl transferase but not farnesyl transferase blocked TGF-beta-induced alpha-SMA expression. Lovastatin decreased TGF-beta-induced p38 activation, whereas Smad-2/3 phosphorylation and nuclear translocation were preserved. Lovastatin inhibits TGF-beta-induced myofibroblast transdifferentiation in human Tenon fibroblasts, most likely by interfering with Rho-signaling. Statins may, therefore, serve to inhibit scarring after filtering glaucoma surgery.

  8. Single Exposure of Human Oral Mucosa Fibroblasts to Ultraviolet B Radiation Reduces Proliferation and Induces COX-2 Expression and Activation

    Directory of Open Access Journals (Sweden)

    Y Boza

    2010-12-01

    Full Text Available The lip vermillion constitutes a transition tissue, between oral mucosa and skin, where oral mucosal cells from epithelial and connective tissue compartments are exposed to ultraviolet (UV sunlight. Fibroblasts are abundant resident cells of the connective tissue which are key regulators of extracellular matrix composition, as well as, epithelial and endothelial cell function. UVB light, an inherent component of sunlight, causes several alterations in skin fibroblasts, including premature senescence and increased cyclooxygenase (COX-2 expression. To assess if UVB irradiation had similar effects on fibroblasts derived from human oral mucosa (HOM, primary cultures of HOM fibroblasts were irradiated with a single dose of 30 or 60 mJ/cm²of UVB light or sham-irradiated. Fibroblast proliferation was assessed from 3 to 48 hrs after UVB-irradiation utilizing [³H]-thymidine incorporation and MTT assays. In addition, COX-2 mRNA expression was detected by RT-PCR, and PGE2 production was assessed using enzyme immunoassay from 0.5 to 24 hrs after UVB-irradiation. The results showed a significant decrease in proliferation of UVB-irradiated HOM fibroblasts as compared to controls as measured by both [³H]-thymidine incorporation and MTT assays (p<0.001. HOM fibroblasts had increased COX-2 mRNA expression at 0.5 and 12 hrs after irradiation, and PGE2 production was elevated at 12 and 24 hrs post-irradiation as compared to controls (p<0.05. The results showed an inhibitory effect of a single dose of UVB irradiation on HOM fibroblast proliferation with an increase in COX-2 expression and activation. Therefore, photodamaged fibroblasts may play and important role in the pathogenesis of UV-induced lesions of the lip.

  9. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  10. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Science.gov (United States)

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  11. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Directory of Open Access Journals (Sweden)

    Jianhua Gong

    Full Text Available Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency, hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  12. Generation and characterization of a panel of monoclonal antibodies specific for human fibroblast growth factor receptor 4 (FGFR4).

    Science.gov (United States)

    Chen, Chaoyuan; Patel, Sima; Corisdeo, Susanne; Liu, Xiangdong; Micolochick, Holly; Xue, Jiyang; Yang, Qifeng; Lei, Ying; Wang, Baiyang; Soltis, Daniel

    2005-06-01

    Fibroblast growth factor receptor 4 (FGFR4) is a member of the FGFR family of receptor tyrosine kinases, and plays important roles in a variety of biological functions such as cell proliferation, differentiation, migration, angiogenesis, tissue repair, and tumorigenesis. The human FGFRs share a high degree of sequence homology between themselves, as well as with their murine homologs. Consequently, it has been suggested that it may be difficult to prepare monoclonal antibodies (MAbs) that are specific for the individual receptor types. In this communication, we report on the development and characterization of a panel of anti-human FGFR4 MAbs that were generated in mice using a rapid immunization protocol. Using a modified rapid immunization at multiple sites (RIMMS) protocol with the soluble extracellular domain of human FGFR4 (FGFR4-ECD), the immunized mice developed high levels of polyclonal IgG to the immunogen within 13 days of the first immunization. The lymph node cells isolated from the immunized animals were then fused with mouse myeloma cells for hybridoma generation. Use of an efficient hybridoma cloning protocol in combination with an ELISA screening procedure allowed for early identification of stable hybridomas secreting antihuman FGFR4 IgG. Several identified MAbs specifically reacted with the FGFR4 protein without binding to the other human isoforms (FGFR1, FGFR2, and FGFR3). As evaluated by BIAcore analysis, most anti-FGFR4 MAbs displayed high affinities (8.6 x 10(8) approximately 3.9 x 10(10) M) to FGFR4. Furthermore, these MAbs were able to bind to FGFR4 expressed on human breast tumor cell lines MDA-MB-361 and MDA-MB-453. Taken together, the results demonstrate that the RIMMS strategy is an effective approach for generating class-switched, high-affinity MAbs in mice to evolutionarily conserved proteins such as human FGFR4. These MAbs may be useful tools for further investigation of the biological functions and pathological roles of human FGFR4.

  13. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging.

    Directory of Open Access Journals (Sweden)

    Solène Mine

    Full Text Available Understanding the contribution of the dermis in skin aging is a key question, since this tissue is particularly important for skin integrity, and because its properties can affect the epidermis. Characteristics of matched pairs of dermal papillary and reticular fibroblasts (Fp and Fr were investigated throughout aging, comparing morphology, secretion of cytokines, MMPs/TIMPs, growth potential, and interaction with epidermal keratinocytes. We observed that Fp populations were characterized by a higher proportion of small cells with low granularity and a higher growth potential than Fr populations. However, these differences became less marked with increasing age of donors. Aging was also associated with changes in the secretion activity of both Fp and Fr. Using a reconstructed skin model, we evidenced that Fp and Fr cells do not possess equivalent capacities to sustain keratinopoiesis. Comparing Fp and Fr from young donors, we noticed that dermal equivalents containing Fp were more potent to promote epidermal morphogenesis than those containing Fr. These data emphasize the complexity of dermal fibroblast biology and document the specific functional properties of Fp and Fr. Our results suggest a new model of skin aging in which marked alterations of Fp may affect the histological characteristics of skin.

  14. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    Science.gov (United States)

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells.

  15. Effects of differently polarized microwave radiation on the microscopic structure of the nuclei in human fibroblasts.

    Science.gov (United States)

    Shckorbatov, Yuriy G; Pasiuga, Vladimir N; Goncharuk, Elena I; Petrenko, Tatiana Ph; Grabina, Valentin A; Kolchigin, Nicolay N; Ivanchenko, Dmitry D; Bykov, Victor N; Dumin, Oleksandr M

    2010-10-01

    To investigate the influence of microwave radiation on the human fibroblast nuclei, the effects of three variants of electromagnetic wave polarization, linear and left-handed and right-handed elliptically polarized, were examined. Experimental conditions were: frequency (f) 36.65 GHz, power density (P) at the surface of exposed object 1, 10, 30, and 100 µW/cm(2), exposure time 10 s. Human fibroblasts growing in a monolayer on a cover slide were exposed to microwave electromagnetic radiation. The layer of medium that covered cells during microwave exposure was about 1 mm thick. Cells were stained immediately after irradiation by 2% (w/v) orcein solution in 45% (w/v) acetic acid. Experiments were made at room temperature (25 °C), and control cell samples were processed in the same conditions. We assessed heterochromatin granule quantity (HGQ) at 600× magnification. Microwave irradiation at the intensity of 1 µW/cm(2) produced no effect, and irradiation at the intensities of 10 and 100 µW/cm(2) induced an increase in HGQ. More intense irradiation induced more chromatin condensation. The right-handed elliptically polarized radiation revealed more biological activity than the left-handed polarized one.

  16. Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-06-01

    Full Text Available Abstract Background We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells. Results Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro. Conclusions This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.

  17. Persistent Amplification of DNA Damage Signal Involved in Replicative Senescence of Normal Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Masatoshi Suzuki

    2012-01-01

    Full Text Available Foci of phosphorylated histone H2AX and ATM are the surrogate markers of DNA double strand breaks. We previously reported that the residual foci increased their size after irradiation, which amplifies DNA damage signals. Here, we addressed whether amplification of DNA damage signal is involved in replicative senescence of normal human diploid fibroblasts. Large phosphorylated H2AX foci (>1.5 μm diameter were specifically detected in presenescent cells. The frequency of cells with large foci was well correlated with that of cells positive for senescence-associated β-galactosidase staining. Hypoxic cell culture condition extended replicative life span of normal human fibroblast, and we found that the formation of large foci delayed in those cells. Our immuno-FISH analysis revealed that large foci partially localized at telomeres in senescent cells. Importantly, large foci of phosphorylated H2AX were always colocalized with phosphorylated ATM foci. Furthermore, Ser15-phosphorylated p53 showed colocalization with the large foci. Since the treatment of senescent cells with phosphoinositide 3-kinase inhibitor, wortmannin, suppressed p53 phosphorylation, it is suggested that amplification of DNA damage signaling sustains persistent activation of ATM-p53 pathway, which is essential for replicative senescence.

  18. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.

    Science.gov (United States)

    Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto

    2016-09-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.

  19. Scopoletin has a potential activity for anti-aging via autophagy in human lung fibroblasts.

    Science.gov (United States)

    Nam, Hyang; Kim, Moon-Moo

    2015-03-15

    Autophagy was known to be associated with aging in addition to cancer and neurodegeneration. The effects of scopoletin on autophagy and anti-aging were investigated in human lung fibroblast cell line, IMR 90. Here we show that scopoletin induces autophagy. It is also identified that the modulation of p53 by scopoletin are related to the induction of autophagy. Moreover, the level of SA-β-Gal staining, an aging marker, is reduced by scopoletin. In addition, while the expression levels of histone deacetylases such as HDAC1, SIRT1 and SIRT6 are increased in IMR 90 cells in the presence of scopoletin, the expression levels of histone acetyltransferases are decreased. Furthermore, scopoletin enhances the level of transcription factors such as Nrf-2and p-FoxO1 related to anti-aging. In addition, scopoletin modulates the reprogramming proteins. Therefore, these findings suggest that scopoletin could exert a positive effect on anti-aging related to autophagy through modulation of p53 in human lung fibroblasts. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Biocompatibility of Mineral Trioxide Aggregate with TiO2 Nanoparticles on Human Gingival Fibroblasts

    Science.gov (United States)

    Samiei, Mohammad; Aghazadeh, Marzieh; Divband, Baharak; Akbarzadeh, Farzaneh

    2017-01-01

    Background The New compositions of white mineral trioxide aggregate (WMTA) or use of various additives like nanoparticles might affect MTA’s ideal characteristics This study was performed to evaluate the cytotoxicity of WMTA and WMTA with Titanium dioxide (TiO2) nanoparticles (1% weight ratio) at different storage times after mixing on human gingival fibroblasts (HGFs). Material and Methods HGFs were obtained from the attached gingiva of human premolars. HGFs were cultured in Dulbecco’s Modified Eagle medium, supplemented with 10% fetal calf serum, penicillin and streptomycin. The cells were exposed to WMTA (groups 1 and 2) and WMTA+TiO2 (groups 3 and 4). The fifth and sixth groups served as controls. Each group contained 15 wells. After 24h (groups 1, 3 and 5) and 48 h (groups 2, 4 and 6) of exposure, HGF viability was determined by Mosmann’s tetrazolium toxicity (MTT) assay. Statistical analysis of the data was performed by using one-way analysis of variance and Tukey post hoc test, with significance of p 0.05). Conclusions Under the limitations of the present study, incorporation of TiO2 nanoparticles into MTA at 1 wt% had no negative effect on its biocompatibility. Key words:Cytotoxicity, fibroblast, MTA, MTT assay, nanoparticle, TiO2. PMID:28210432

  1. Arecoline stimulated early growth response-1 production in human buccal fibroblasts: suppression by epigallocatechin-3-gallate.

    Science.gov (United States)

    Hsieh, Yu-Ping; Chen, Hsin-Ming; Chang, Jenny Zwei-Chieng; Chiang, Chun-Pin; Deng, Yi-Ting; Kuo, Mark Yen-Ping

    2015-04-01

    Early growth response-1 (Egr-1) protein plays an important role in many human fibrotic diseases. Areca nut chewing is the most important risk factor of oral submucous fibrosis (OSF). Egr-1 protein expression in OSF was examined using antibody to Egr-1. Arecoline-induced Egr-1 expression and its signaling pathways were assessed by Western blot analyses in human buccal mucosal fibroblasts (BMFs). Elevated Egr-1 staining was observed in epithelial cells, fibroblast, and inflammatory cells in 7 of 10 OSF cases. Arecoline, a main alkaloid found in the areca nut, stimulated Egr-1 synthesis in BMFs. Pretreatment with antioxidant N-acetyl-L-cysteine, c-Jun NH2-terminal kinase inhibitor SP600125, and extracellular signal-regulated kinase inhibitor PD98059 significantly reduced arecoline-induced Egr-1 synthesis. Epigallocatechin-3-gallate (EGCG) inhibited arecoline-induced Egr-1 synthesis and collagen gel contraction in a dose-responsive manner. Constitutive Egr-1 expression during areca nut chewing may play a role in the pathogenesis of OSF. EGCG could be a good candidate for prevention or treatment of OSF. © 2014 Wiley Periodicals, Inc.

  2. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Layman, D.L.; Diedrich, D.L.

    1987-06-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by /sup 3/H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in /sup 3/H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin.

  3. In Vitro Cytotoxicity Evaluation of Three Root-End Filling Materials in Human Periodontal Ligament Fibroblasts.

    Science.gov (United States)

    Coaguila-Llerena, Hernán; Vaisberg, Abraham; Velásquez-Huamán, Zulema

    2016-01-01

    The aim of this study was to evaluate in vitro the cytotoxicity on human periodontal ligament fibroblasts of three root-end filling materials: MTA Angelus®, EndoSequence Root Repair Material Putty® and Super EBA®. A primary culture of human periodontal ligament fibroblasts was previously obtained in order to evaluate the cytotoxicity of the three extracts from the root-end filling materials after 2 and 7 days of setting. Serial dilutions of these extracts (1:1, 1:2, 1:4 and 1:8) were evaluated at 1, 3 and 7 days using the methyl-thiazol-tetrazolium (MTT) colorimetric assay. Cell viability was evaluated as percentage of the negative control group, which represented 100% cell viability. Statistical analyses were done with t-test, ANOVA and Kruskal-Wallis test at a significance level of 5%. It was found that the main difference among root-end filling materials was in the higher dilutions (p0.05). Cell viability of MTA Angelus® was superior for 2-day setting (pMaterial Putty®. Super EBA® showed the lowest percentage of cell viability at higher dilutions (pMaterial Putty® were less cytotoxic in the highest dilution (1:1) compared with Super EBA®.

  4. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts

    Science.gov (United States)

    Budiyanto, Arief; Soebono, Hardyanto

    2016-01-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm-2) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined. PMID:27401663

  5. Transmission of HIV-1 by primary human uterine epithelial cells and stromal fibroblasts.

    Science.gov (United States)

    Asin, Susana N; Fanger, Michael W; Wildt-Perinic, Dunja; Ware, Patricia L; Wira, Charles R; Howell, Alexandra L

    2004-07-15

    Women can become infected with human immunodeficiency virus type 1 (HIV-1) after the heterosexual transmission of virus from an infected male partner. To understand the events that result in transmission of HIV-1 across the female reproductive tract, we characterized the life-cycle events of HIV-1 in primary cultures of human uterine epithelial cells and stromal fibroblasts. Epithelial cells and stromal fibroblasts released virus particles after exposure to either X4- or R5-tropic strains of HIV-1. Virus released by these cells was able to infect CD4(+) T cells. When exposed to an X4-tropic strain of HIV-1, these cells supported HIV-1 reverse transcription, integration, and viral DNA transcription. When exposed to an R5-tropic strain, however, these cells released unmodified virus. These data suggest that uterine cells are targets for productive infection with X4-tropic strains and release unmodified R5-tropic viruses that would then be able to infect submucosal target cells, including T cells and macrophages.

  6. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress

    Directory of Open Access Journals (Sweden)

    Bross Peter

    2009-05-01

    Full Text Available Abstract Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

  7. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts.

    Science.gov (United States)

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure,membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans.

  8. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    2013-01-01

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis formati

  9. Development of a full-thickness human skin equivalent in vitro model derived from TERT-immortalized keratinocytes and fibroblasts

    NARCIS (Netherlands)

    C.M.A. Reijnders; A. van Lier; S. Roffel; D. Kramer; R.J. Scheper; S. Gibbs

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve th

  10. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts

    NARCIS (Netherlands)

    Reijnders, Christianne M. A.; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J.; Gibbs, Susan

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve th

  11. Chikungunya virus exploits miR-146a to regulate NF-κB pathway in human synovial fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sakthi Priya Selvamani

    Full Text Available OBJECTIVES: Chikungunya virus causes chronic infection with manifestations of joint pain. Human synovial fibroblasts get infected with CHIKV and could lead to pro-inflammatory responses. MicroRNAs have potentials to regulate the gene expression of various anti-viral and pro-inflammatory genes. The study aims to investigate the role of miR-146a in modulation of inflammatory responses of human synovial fibroblasts by Chikungunya virus. METHODS: To study the role of miR-146a in CHIKV pathogenesis in human synovial cells and underlying inflammatory manifestations, we performed CHIKV infection in primary human synovial fibroblasts. Western blotting, real-time PCR, luciferase reporter assay, overexpression and knockdown of cellular miR-146a strategies have been employed to validate the role of miR-146a in regulation of pro-inflammatory NF-κB pathway. RESULTS: CHIKV infection induced the expression of cellular miR-146a, which resulted into down-regulation of TRAF6, IRAK1, IRAK2 and increased replication of CHIKV in human synovial fibroblasts. Exogenous expression of miR-146a in human synovial fibroblasts led to decreased expression of TRAF6, IRAK1, IRAK2 and decreased replication of CHIKV. Inhibition of cellular miR-146a by anti-miR-146a restored the expression levels of TRAF6, IRAK1 and IRAK2. Downregulation of TRAF6, IRAK1 and IRAK2 led to downstream decreased NF-κB activation through negative feedback loop. CONCLUSION: This study demonstrated the mechanism of exploitation of cellular miR-146a by CHIKV in modulating the host antiviral immune response in primary human synovial fibroblasts.

  12. Characterization of the autocrine/paracrine function of vitamin D in human gingival fibroblasts and periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Kaining Liu

    Full Text Available BACKGROUND: We previously demonstrated that 25-hydroxyvitamin D(3, the precursor of 1α,25-dihydroxyvitamin D(3, is abundant around periodontal soft tissues. Here we investigate whether 25-hydroxyvitamin D(3 is converted to 1α,25-dihydroxyvitamin D(3 in periodontal soft tissue cells and explore the possibility of an autocrine/paracrine function of 1α,25-dihydroxyvitamin D(3 in periodontal soft tissue cells. METHODOLOGY/PRINCIPAL FINDINGS: We established primary cultures of human gingival fibroblasts and human periodontal ligament cells from 5 individual donors. We demonstrated that 1α-hydroxylase was expressed in human gingival fibroblasts and periodontal ligament cells, as was cubilin. After incubation with the 1α-hydroxylase substrate 25-hydroxyvitamin D(3, human gingival fibroblasts and periodontal ligament cells generated detectable 1α,25-dihydroxyvitamin D(3 that resulted in an up-regulation of CYP24A1 and RANKL mRNA. A specific knockdown of 1α-hydroxylase in human gingival fibroblasts and periodontal ligament cells using siRNA resulted in a significant reduction in both 1α,25-dihydroxyvitamin D(3 production and mRNA expression of CYP24A1 and RANKL. The classical renal regulators of 1α-hydroxylase (parathyroid hormone, calcium and 1α,25-dihydroxyvitamin D(3 and Porphyromonas gingivalis lipopolysaccharide did not influence 1α-hydroxylase expression significantly, however, interleukin-1β and sodium butyrate strongly induced 1α-hydroxylase expression in human gingival fibroblasts and periodontal ligament cells. CONCLUSIONS/SIGNIFICANCE: In this study, the expression, activity and functionality of 1α-hydroxylase were detected in human gingival fibroblasts and periodontal ligament cells, raising the possibility that vitamin D acts in an autocrine/paracrine manner in these cells.

  13. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    Nina Skolucka; Malgorzata Daczewska; Jolanta Saczko; Agnieszka Chwilkowska; Anna Choromanska; Malgorzata Kotulska; Iwona Kaminska; Julita Kulbacka

    2011-01-01

    Objective:To estimate electroporation (EP) influence on malignant and normal cells.Methods:Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following:250,1000,1750,2500 V/cm;50 μs by5 impulses for every case. The viability of cells after EP was estimated byMTT assay. The ultrastructural analysis was observed by transmission electron microscope (ZeissEM900). Results:In the current study we observed the intracellular effect followingEP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated byEP. Conversely, we showed thatEP in some conditions can stimulate cells to proliferation. Some changes induced byEP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters ofEP (250 and1000 V/cm). After applying higher electric field intensities (2500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications afterEP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters ofEP.Conclusions:We can claim thatEP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude thatEP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  14. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells.

    Science.gov (United States)

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-04-01

    To estimate electroporation (EP) influence on malignant and normal cells. Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  15. Cell-type specific DNA methylation patterns define human breast cellular identity.

    Directory of Open Access Journals (Sweden)

    Petr Novak

    Full Text Available DNA methylation plays a role in a variety of biological processes including embryonic development, imprinting, X-chromosome inactivation, and stem cell differentiation. Tissue specific differential methylation has also been well characterized. We sought to extend these studies to create a map of differential DNA methylation between different cell types derived from a single tissue. Using three pairs of isogenic human mammary epithelial and fibroblast cells, promoter region DNA methylation was characterized using MeDIP coupled to microarray analysis. Comparison of DNA methylation between these cell types revealed nearly three thousand cell-type specific differentially methylated regions (ctDMRs. MassARRAY was performed upon 87 ctDMRs to confirm and quantify differential DNA methylation. Each of the examined regions exhibited statistically significant differences ranging from 10-70%. Gene ontology analysis revealed the overrepresentation of many transcription factors involved in developmental processes. Additionally, we have shown that ctDMRs are associated with histone related epigenetic marks and are often aberrantly methylated in breast cancer. Overall, our data suggest that there are thousands of ctDMRs which consistently exhibit differential DNA methylation and may underlie cell type specificity in human breast tissue. In addition, we describe the pathways affected by these differences and provide insight into the molecular mechanisms and physiological overlap between normal cellular differentiation and breast carcinogenesis.

  16. Ontogeny of expression of basic fibroblast growth factor and its receptors in human fetal skin

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; FU Xiao-bing; GE Shi-li; SUN Tong-zhu; SHENG Zhi-yong

    2005-01-01

    Objective : To investigate the expression characteristics of basic fibroblast growth factor (bFGF)and its receptors, flg ( FGFR1 ) and bek ( FGFR2), in fetal skin at different gestational ages underlying the relevance of these 3 proteins to skin development and the mechanisms underlying the phenotypic transition from scarless to scarforming healing.Methods: Eighteen specimens of fetal skin biopsies of human embryo were obtained from spontaneous abortions at different gestational ages of 13-32 weeks. Gene expression of bFGF, bek and flg was examined with reverse transcription-polymerase chain reaction (RT-PCR). The dynamic expression and distribution of these 3 proteins were detected with streptavidin peroxidase ( SP )immunohistochemical staining method.Results: In the early gestational fetal skin, genes of bFGF and flg were strongly expressed and more protein contents of these 2 proteins were found as compared with the genes at late gestation fetal skin (2.446 ± 0.116 and 2.066 ± 0. 152 versus 2.157 ± 0. 101 and 1.818 ± 0.086,respectively, P < 0.05). On the contrary, the levels of gene expression and protein content of bek were not differently expressed in the early gestational fetal skin versus the late ones. Protein particles of bFGF were mainly distributed in the epidermal cells and some fibroblasts. Bek was mainly located in the cell membrane and cytoplasm of epidermal cells while flg protein was principally located in the epidermal cells, endothelial cells and some fibroblasts.Conclusions: The endogenous bFGF and their receptors might be involved in the cutaneous development at fetal stage. The differently expressing levels of bFGF and flg during gestation may be related to scarless or scarforming repair during gestation.

  17. Establishment and identification of fibroblast clones expressing human bone morphogenetic protein 2

    Institute of Scientific and Technical Information of China (English)

    Juan Wang; Weibin Sun; Chun Lu; Guixia Tang

    2005-01-01

    Objective:To establish fibroblasts stably expressing human bone morphogenetic protein 2 (hBMP2). Methods:Eukaryonic expression vector(pcDNA3.1-B2) was transduced into NIH3T3 cells using SofastTM, a new generation cationic polymer gene transfection reagent. The positive cell clones were selected with G418. The stable transfection and expression of BMP2 in the NIH3T3 cells were determined by RT-PCR and immunohistochemical stain. Results: BMP2 mRNA was transcripted and expressed in the transfected NIH3T3 cells. Conclusion: With positive compound transfection, outside human BMP2 gene can be successfully transducted into NIH3T3 cells, which is the key step to induce periodontal cells to osseous phenotypes.

  18. Culture of human limbal epithelial stem cells on tenon's fibroblast feeder-layers: a translational approach.

    Science.gov (United States)

    Scafetta, Gaia; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2015-01-01

    The coculture technique is the standard method to expand ex vivo limbal stem cells (LSCs) by using inactivated embryonic murine feeder layers (3T3). Although alternative techniques such as amniotic membranes or scaffolds have been proposed, feeder layers are still considered to be the best method, due to their ability to preserve some critical properties of LSCs such as cell growth and viability, stemness phenotype, and clonogenic potential. Furthermore, clinical applications of LSCs cultured on 3T3 have taken place. Nevertheless, for an improved Good Manufacturing Practice (GMP) compliance, the use of human feeder-layers as well as a fine standardization of the process is strictly encouraged. Here, we describe a translational approach in accordance with GMP regulations to culture LSCs onto human Tenon's fibroblasts (TFs). In this chapter, based on our experience we identify and analyze issues that often are encountered by researchers and discuss solutions to common problems.

  19. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.; Miller, A.D.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vector containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.

  20. Prevention of the Angiogenic Switch in Human Breast Cancer

    Science.gov (United States)

    2009-03-01

    chronic myeloid leukaemia | colorectal cancer | Down syndrome | infantile haemangiomas | multiple myeloma | non-small-cell lung cancer | rheumatoid...Human Breast Cancer PRINCIPAL INVESTIGATOR: Donald Ingber, M.D., Ph.D. CONTRACTING ORGANIZATION: Children’s Hospital...From - To) 15 FEB 2004 - 14 FEB 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Prevention of the Angiogenic Switch in Human Breast Cancer 5b

  1. Exploring human breast milk composition by NMR-based metabolomics.

    Science.gov (United States)

    Praticò, Giulia; Capuani, Giorgio; Tomassini, Alberta; Baldassarre, Maria Elisabetta; Delfini, Maurizio; Miccheli, Alfredo

    2014-01-01

    Breast milk is a complex fluid evolutionarily adapted to satisfy the nutritional requirements of growing infants. In addition, milk biochemical and immunological components protect newborns against infective agents in the new environment. Human milk oligosaccharides, the third most abundant component of breast milk, are believed to modulate the microbiota composition, thus influencing a wide range of physiological processes of the infant. Human milk also contains a number of other bioactive compounds, the functional role of which has not yet been clearly elucidated. In this scenario, NMR-based metabolic profiling can provide a rapid characterisation of breast milk composition, thus allowing a better understanding of its nutritional properties.

  2. T Cell Coinhibition and Immunotherapy in Human Breast Cancer

    OpenAIRE

    Janakiram, Murali; Abadi, Yael M.; Sparano, Joseph A.; Zang, Xingxing

    2012-01-01

    Costimulation and coinhibition generated by the B7 family and their receptor CD28 family have key roles in regulating T lymphocyte activation and tolerance. These pathways are very attractive therapeutic targets for human cancers including breast cancer. Gene polymorphisms of B7x (B7-H4/B7S1), PD-1 (CD279), and CTLA-4 (CD152) are associated with increased risk of developing breast cancer although the underlying mechanisms are unclear. In human breast cancer microenvironment, up-regulation of ...

  3. GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts.

    Science.gov (United States)

    Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Rigiracciolo, Damiano Cosimo; Perri, Maria Grazia; Vivacqua, Adele; Abonante, Sergio; Cappello, Anna Rita; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria

    2017-02-01

    Zinc (Zn) is an essential trace mineral that contributes to the regulation of several cellular functions; however, it may be also implicated in the progression of breast cancer through different mechanisms. It has been largely reported that the classical estrogen receptor (ER), as well as the G protein estrogen receptor (GPER, previously known as GPR30) can exert a main role in the development of breast tumors. In the present study, we demonstrate that zinc chloride (ZnCl2 ) involves GPER in the activation of insulin-like growth factor receptor I (IGF-IR)/epidermal growth factor receptor (EGFR)-mediated signaling, which in turn triggers downstream pathways like ERK and AKT in breast cancer cells, and main components of the tumor microenvironment namely cancer-associated fibroblasts (CAFs). Further corroborating these findings, ZnCl2 stimulates a functional crosstalk of GPER with IGF-IR and EGFR toward the transcription of diverse GPER target genes. Then, we show that GPER contributes to the stimulatory effects induced by ZnCl2 on cell-cycle progression, proliferation, and migration of breast cancer cells as well as migration of CAFs. Together, our data provide novel insights into the molecular mechanisms through which zinc may exert stimulatory effects in breast cancer cells and CAFs toward tumor progression. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    Directory of Open Access Journals (Sweden)

    Dao Kim-Hien T

    2010-01-01

    Full Text Available Abstract Background The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Methods Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Results Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. Conclusion(s The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas

  5. Ultrastructural visualization of the Mesenchymal-to-Epithelial Transition during reprogramming of human fibroblasts to induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    M.K. Høffding

    2015-01-01

    Here, we integrate a panel of morphological approaches with gene expression analyses to visualize the dynamics of episomal reprogramming of human fibroblasts to iPSCs. We provide the first ultrastructural analysis of human fibroblasts at various stages of episomal iPSC reprogramming, as well as the first real-time live cell visualization of a MET occurring during reprogramming. The results indicate that the MET manifests itself approximately 6–12 days after electroporation, in synchrony with the upregulation of early pluripotency markers, and resembles a reversal of the Epithelial-to-Mesenchymal Transition (EMT which takes place during mammalian gastrulation.

  6. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    María Questa

    2016-03-01

    Full Text Available Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls.

  7. The physiology of the normal human breast: an exploratory study.

    Science.gov (United States)

    Mills, Dixie; Gordon, Eva J; Casano, Ashley; Lahti, Sarah Michelle; Nguyen, Tinh; Preston, Alex; Tondre, Julie; Wu, Kuan; Yanase, Tiffany; Chan, Henry; Chia, David; Esfandiari, Mahtash; Himmel, Tiffany; Love, Susan M

    2011-12-01

    The physiology of the nonlactating human breast likely plays a key role in factors that contribute to the etiology of breast cancer and other breast conditions. Although there has been extensive research into the physiology of lactation, few reports explore the physiology of the resting mammary gland, including mechanisms by which compounds such as hormones, drugs, and potential carcinogens enter the breast ducts. The purpose of this study was to explore transport of exogenous drugs into ductal fluid in nonlactating women and determine if their concentrations in the fluid are similar to those observed in the breast milk of lactating women. We selected two compounds that have been well characterized during lactation, caffeine and cimetidine. Caffeine passively diffuses into breast milk, but cimetidine is actively transported and concentrated in breast milk. After ingestion of caffeine and cimetidine, 14 nonlactating subjects had blood drawn and underwent ductal lavage at five time points over 12 h to measure drug levels in the fluid and blood. The concentrations of both caffeine and cimetidine in lavage fluid were substantially less than those observed in breast milk. Our results support recent evidence that the cimetidine transporter is not expressed in the nonlactating mammary gland, and highlight intriguing differences in the physiology and molecular transport of the lactating and nonlactating breast. The findings of this exploratory study warrant further exploration into the physiology of the nonlactating mammary gland to elucidate factors involved in disease initiation and progression.

  8. Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts.

    Science.gov (United States)

    Belgiovine, Cristina; Chiodi, Ilaria; Mondello, Chiara

    2011-11-01

    Studying neoplastic transformation of telomerase immortalized human fibroblasts (cen3tel), we found that the transition from normal to tumorigenic cells was associated with the loss of growth contact inhibition, the acquisition of an epithelial-like morphology and a change in actin organization, from stress fibers to cortical bundles. We show here that these variations were paralleled by an increase in N-cadherin expression and relocalization of different adhesion molecules, such as N-cadherin, α-catenin, p-120 and β-catenin. These proteins presented a clear membrane localization in tumorigenic cells compared to a more diffuse, cytoplasmic distribution in primary fibroblasts and non-tumorigenic immortalized cells, suggesting that tumorigenic cells could form strong cell-cell contacts and cell contacts did not induce growth inhibition. The epithelial-like appearance of tumorigenic cells did not reflect a mesenchymal-epithelial transition; in fact, cen3tel cells expressed vimentin and did not express cytokeratins at all transformation stages. Moreover, they did not express epithelial proteins such as occluding and claudin-1. In contrast, ZO-1 showed higher levels and a more defined membrane localization in tumorigenic cells compared to non-tumorigenic cells; this confirms its role in adherens junction formation in mesenchymal cells and is in agreement with the strong cell-cell contact formation by neoplastically transformed cells. Finally, we found α-catenin and ZO-1 nuclear localization in non-transformed cells, suggestive of possible additional roles of these proteins besides cell junction formation.

  9. Immunochemistry of a keratinocyte-fibroblast co-culture model for reconstruction of human skin.

    Science.gov (United States)

    Fleischmajer, R; MacDonald, E D; Contard, P; Perlish, J S

    1993-09-01

    Our purpose was to determine differentiation markers of an in vitro co-culture model in which fibroblasts grown in a three-dimensional nylon mesh were recombined with human keratinocytes. The cultures were kept for 5 weeks and then processed for electron microscopy and immunochemistry. The specimens revealed an epidermis, a basal lamina, an anchoring zone, and a dermis. Epidermal differentiation was confirmed by the presence of K10-keratin, trichohyalin, and filaggrin. The basal lamina contained Type IV collagen, laminin, nidogen, and heparan sulfate. Type IV collagen, laminin, and nidogen were also noted in the extracellular matrix. Type VI collagen was present in the anchoring zone and also gave a reticulated pattern in the rest of the dermis. There was a heavy signal for tenascin and fibronectin throughout the dermis. Osteonectin was restricted to the epidermis and dermal fibroblasts. Fibrillin stained at the anchoring zone and dermis but elastin and vitronectin were negative, suggesting early formation of elastic fibrils. Collagen fibrils stained for Types I, III, and V, as well as the amino propeptide of Types I and III procollagen, suggesting newly synthesized collagen. Decorin was present throughout the dermis. The model described appears suitable for in vitro reconstruction of the skin and may be useful to study the development of various supramolecular skin structures.

  10. Donor's age and replicative senescence favour the in-vitro mineralization potential of human fibroblasts.

    Science.gov (United States)

    Boraldi, Federica; Bartolomeo, Angelica; Di Bari, Caterina; Cocconi, Andrea; Quaglino, Daniela

    2015-12-01

    Aberrant mineralization of soft connective tissues (ectopic calcification) may occur as a frequent age-related complication. Still, it remains unclear the role of mesenchymal cell donor's age and of replicative senescence on ectopic calcification. Therefore, the ability of cells to deposit in-vitro hydroxyapatite crystals and the expression of progressive ankylosis protein homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), tissue non specific alkaline phosphatase (TNAP) and osteopontin (OPN) have been evaluated in human dermal fibroblasts derived from neonatal (nHDF) and adult (aHDF) donors (ex-vivo ageing model) or at low and high cumulative population doublings (CPD) up to replicative senescence (in-vitro ageing model). This study demonstrates that: 1) replicative senescence favours hydroxyapatite formation in cultured fibroblasts; 2) donor's age acts as a major modulator of the mineralizing potential of HDF, since nHDF are less prone than aHDF to induce calcification; 3) donor's age and replicative senescence play in concert synergistically increasing the calcification process; 4) the ANKH+ENPP1/TNAP ratio, being crucial for pyrophosphate/inorganic phosphate balance, is greatly influenced by donor's age, as well as by replicative senescence, and regulates mineral deposition; 5) OPN is only modulated by replicative senescence.

  11. The effect of laser-treated titanium surface on human gingival fibroblast behavior.

    Science.gov (United States)

    Baltriukienė, D; Sabaliauskas, V; Balčiūnas, E; Melninkaitis, A; Liutkevičius, E; Bukelskienė, V; Rutkūnas, V

    2014-03-01

    Surface modification, as a means of enhancing soft tissue integration in titanium would have significant advantages including less marginal bone resorption, predictable esthetic outcome, improved soft tissue stability, and seal against bacterial leakage. The aim of this study was to evaluate the effects of laser-roughened titanium surfaces on human gingival fibroblast (HGF) viability, proliferation, and adhesion. Titanium discs were ablated with impulse laser in four different patterns. Polished and sand-blasted titanium discs were used as control groups. Specimen surface properties were determined using optical profilometry and scanning electron microscopy. HGF behavior on modified surfaces was analyzed using cell adhesion, viability, proliferation, and ELISA assays. Results suggested that modified Ti surfaces did not affect the viability of HGFs and improved adhesion was measured in laser treatment groups after 24 h. However, proliferation study showed that the adsorbance of fibroblast cells after 72 h cultured on polished titanium was higher and comparable with that of control cells. As for focal adhesion kinase (FAK), cells grown on laser modified surfaces had higher expression of FAK as compared with polished titanium. In conclusion, tested laser-treated surfaces seem to favor HGF adhesion. There were no significant differences between different laser treatment groups. Copyright © 2013 Society of Plastics Engineers.

  12. Deficient recovery from potentially lethal damage in some gamma-irradiated human fibroblast cell strains

    Energy Technology Data Exchange (ETDEWEB)

    Arlett, C.F.; Priestley, A. (Medical Research Council, Brighton (UK). Cell Mutation Unit)

    1984-01-01

    The repair of potentially lethal damage following treatment with gamma radiation was investigated in human fibroblasts held in a non-cycling state by maintenance in a medium containing 0.5% foetal calf serum. Normal cells were found to be competent in the repair of PLD. Ataxia-telangiectasia cells were deficient as was a heterozygote suggesting that a failure to repair PLD may make it possible to detect such heterozygotes. Fibroblasts from Huntington's disease patients were either slightly or no more sensitive than cells from normal individuals. Cultures from two individuals in the former class showed limited capacity to repair PLD but cells from the latter class were as competent as normals. Thus assays of radiosensitivity where conditions allow for the repair of PLD may maximise small differences in sensitivity. Cells taken from three patients suffering from Basal Cell Naevus Syndrome were also shown to be defective in the repair of PLD. The existence of such a defect may be related to the increased frequency of basal cell cancer observed in exposed fields following irradiation of such individuals.

  13. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Brydone, Alistair S; Dominic Meek, R M [Department of Orthopaedics, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E, E-mail: alibrydone@gmail.com [Centre for Cell Engineering, Joseph Black Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2011-06-15

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 {mu}m wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  14. [Determination of the healing effect of Piper aduncum (spiked pepper or matico) on human fibroblasts].

    Science.gov (United States)

    Paco, Karen; Ponce-Soto, Luis Alberto; Lopez-Ilasaca, Marco; Aguilar, José L

    2016-01-01

    To evaluate the healing effect of a Piper aduncum ethanol-water extract on an adult human dermal fibroblast cell line (hDFa). After obtaining the extract via solid-liquid extraction, concentration, and lyophilization, extract proteins were purified using reverse phase high-performance liquid chromatography, identified using tandem mass spectrometry of tryptic peptides, and analyzed using MALDI-TOF-TOF on an ABSciex4800 mass spectrometer. Half maximum effective concentration values (EC50), half maximum inhibiting concentration (IC50), and percentages of cell proliferation were determined using tetrazolium salt assays. Cell migration was evaluated using a "scratch assay". Growth factor expression in cells was analyzed via quantitative real-time reverse transcription polymerase chain reaction. Against the hDFa cell line, the extract had an IC50 of 200 μg/mL and EC50 of 103.5 µg/mL. In the proliferation assay, protein K2 (obtained from the extract) exhibited increased proliferative activity relative to other treatments (1 µg/mL); this agent also exhibited increased activity (50 µg/mL) in the fibroblast migration assay.Furthermore, the relative expression of platelet-derived growth factor increased by 8.6-fold in the presence of K2 protein relative to the control. The hydroethanolic extract of Piper aduncum and its component proteins increased the proliferation and migration of hDFa and increased the expression of growth factors involved in the healing process.

  15. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung [Department of Prosthodontics, School of Dentistry, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Lee, Heesu [Department of Oral Anatomy, School of Dentistry, Kangnung National University, Gibyun-dong, Kangnung 210-702 (Korea, Republic of); Kwon, Yong-Dae, E-mail: ahranp@hotmail.co, E-mail: nightsu@kangnung.ac.k, E-mail: odontopia@khu.ac.k, E-mail: yongdae.kwon@gmail.co, E-mail: yhwoo@khu.ac.k [Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2009-04-15

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100{mu}m grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-beta1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  16. Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts.

    Science.gov (United States)

    Zhu, Huang; Wang, Jie; Cui, Jiefeng; Fan, Xianqun

    2016-06-01

    This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p effects on HFSFs and could cause abnormality in scleral collagen.

  17. Regulation of hypoxia-inducible factor-1α in human buccal mucosal fibroblasts stimulated with arecoline

    Directory of Open Access Journals (Sweden)

    Yung-Chuan Ho

    2017-06-01

    Full Text Available Hypoxia-inducible factor (HIF-1α is consistently and dramatically upregulated in a variety of fibrotic diseases. The aim of this study was to compare HIF-1α expression from fibroblasts derived from human normal buccal mucosa and oral submucous fibrosis (OSF specimens and further to explore the potential mechanisms that may lead to induce HIF-1α expression. OSF buccal mucosal fibroblasts (BMFs demonstrated significantly higher HIF-1α mRNA expression than normal BMFs (p<0.005. Arecoline, the major areca nut alkaloid, was also found to elevate HIF-1α mRNA expression in a dose-dependent manner (p<0.05. Moreover, arecoline-induced HIF-1α expression was downregulated by mitogen-activated protein kinase inhibitor U0126, phosphatidylinositol 3-kinase inhibitor LY294002, p38 inhibitor SB203580, cyclooxygenase-2 inhibitor NS-398, and glutathione precursor N-acetyl-L-cysteine (p<0.05. Taken together, hypoxia plays an important role in the pathogenesis of areca quid chewing-associated OSF. These pharmacological agents may be further used as chemoprevention agents for OSF.

  18. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin.

    Science.gov (United States)

    Deng, Yi-Ting; Chen, Hsin-Ming; Cheng, Shih-Jung; Chiang, Chun-Pin; Kuo, Mark Yen-Ping

    2009-09-01

    Connective tissue growth factor (CTGF) is associated with the onset and progression of fibrosis in many human tissues. Areca nut (AN) chewing is the most important etiological factor in the pathogenesis of oral submucous fibrosis (OSF). We immunohistochemically examined the expression of CTGF protein in 20 cases of OSF and found positive CTGF staining in fibroblasts and endothelial cells in all cases. Western blot analysis showed that arecoline, a main alkaloid found in AN, stimulated CTGF synthesis in a dose- and time-dependent manner in buccal mucosal fibroblasts. Constitutive overexpression of CTGF during AN chewing may enhance the fibrotic activity in OSF and play a role in the pathogenesis of OSF. Pretreatment with NF-kappaB inhibitor Bay 11-7082, JNK inhibitor SP600125, p38 MAPK inhibitor SB203580 and antioxidant N-acetyl-l-cysteine, but not ERK inhibitor PD98059, significantly reduced arecoline-induced CTGF synthesis. Furthermore, curcumin completely inhibited arecoline-induced CTGF synthesis and the inhibition is dose-dependent. These results indicated that arecoline-induced CTGF synthesis was mediated by ROS, NF-kappaB, JNK, P38 MAPK pathways and curcumin could be a useful agent in controlling OSF.

  19. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide.

    Science.gov (United States)

    Wamer, Wayne G; Yin, Jun-Jie

    2011-01-01

    Titanium dioxide (TiO2) is a pigment widely used in decorative tattoo and permanent makeup inks. However, little is known about the risks associated with its presence in these products. We have developed an in vitro assay to identify inks containing TiO2 that are cytotoxic and/or photocytotoxic. The presence of TiO2 in ten permanent makeup inks was established by X-ray fluorescence. Using X-ray diffraction, we found that seven inks contained predominately TiO2 (anatase), the more photocatalytically active crystalline form of TiO2. The remaining inks contained predominately TiO2 (rutile). To identify cytotoxic and/or photocytotoxic inks, human dermal fibroblasts were incubated for 18 h in media containing inks or pigments isolated from inks. Fibroblasts were then irradiated with 10 J/cm2 UVA radiation combined with 45 J/cm2 visible light for determining photocytotoxicity, or kept in the dark for determining cytotoxicity. Toxicity was assessed as inhibition of colony formation. No inks were cytotoxic. However eight inks, and the pigments isolated from these inks, were photocytotoxic. Using ESR, we found that most pigments from photocytotoxic inks generated hydroxyl radicals when photoexcited with UV radiation. Therefore, the possibility of photocytotoxicity should be considered when evaluating the safety of permanent makeup inks containing TiO2.

  20. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    Science.gov (United States)

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  1. Effect of Cyclosporin A and Angiotensin II on cytosolic calcium levels in primary human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    Ajitkumar Supraja

    2016-01-01

    Full Text Available Background: To evaluate the effect of Cyclosporin A (CsA and angiotensin II (Ang II on cytosolic calcium levels in cultured human gingival fibroblasts (HGFs. Materials and Methods: Healthy gingival samples from six volunteers were obtained, and primary HGFs were cultured. Cell viability and proliferation assay were performed to identify the ideal concentrations of CsA and Ang II. Cytosolic calcium levels in cultured gingival fibroblasts treated with CsA and Ang II were studied using colorimetric assay, confocal and fluorescence imaging. Statistical analyses were done using SPSS software and GraphPad Prism. Results: Higher levels of cytosolic levels were evident in cells treated with CsA and Ang II when compared to control group and was statistically significant (P < 0.05 in both colorimetric assay and confocal imaging. Fluorescent images of the cultured HGFs revealed the same. Conclusion: Thus calcium being a key player in major cellular functions, plays a major role in the pathogenesis of drug-induced gingival overgrowth.

  2. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    Science.gov (United States)

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  3. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    Directory of Open Access Journals (Sweden)

    Shan-Shan Liu

    2013-12-01

    Full Text Available The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II on collagen synthesis in hypoxic human lung fibroblast (HLF cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AT1R and angiotensin II type 2 receptor (AT2R expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR after hypoxic treatment. Additionally, the collagen type I (Col-I, AT1R and nuclear factor κappaB (NF-κB protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA. We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST, an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC, a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts.

  4. Regulation and inhibition of collagenase expression by long-wavelength ultraviolet radiation in cultured human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Marta; Hamilton, Tiffani; Haili Li [Utah Univ., Salt Lake City, UT (United States). Dept. of Internal Medicine

    1995-09-01

    The cellular mechanisms responsible for the connective tissue changes produced by chronic exposure to UV light are poorly understood. collagenase, a metalloproteinase, initiates degradation of types I and III collagen and thus plays a key role in the remodeling of dermal collagen. Collagenase synthesis by fibroblasts and keratinocytes involves the protein kinase C (PKC) second messenger system, and corticosteroids have been shown to suppress its synthesis at the level of gene transcription. Long-wavelength UV light (UVA, 320-400 nm) stimulates the synthesis of interstitial collagenase, as well as increasing PKC activity, in human skin fibroblasts in vitro. This study explores the regulation of collagenase expression by UVA in cultured human skin fibroblasts. Specifically, the time course, the effect of actinomycin D, an inhibitor of RNA synthesis, as well as the effect of PKC inhibitors and dexamethansone on expression of collagenase following UVA irradiation were examined. (Author).

  5. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Directory of Open Access Journals (Sweden)

    Andrew Mamalis

    Full Text Available Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR. For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2 on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched

  6. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Science.gov (United States)

    Mamalis, Andrew; Koo, Eugene; Isseroff, R Rivkah; Murphy, William; Jagdeo, Jared

    2015-01-01

    Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease. The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed. High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2. High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched controls

  7. Differential Expression of Matrix Metalloproteases in Human Fibroblasts with Different Origins

    Directory of Open Access Journals (Sweden)

    Diana Lindner

    2012-01-01

    Full Text Available Fibroblasts are widely distributed cells and are responsible for the deposition of extracellular matrix (ECM components but also secrete ECM-degrading matrix metalloproteases. A finely balanced equilibrium between deposition and degradation of ECM is essential for structural integrity of tissues. In the past, fibroblasts have typically been understood as a uniform cell population with comparable functions regardless of their origin. Here, we determined growth curves of fibroblasts derived from heart, skin, and lung and clearly show the lowest proliferation rate for cardiac fibroblasts. Furthermore, we examined basal expression levels of collagen and different MMPs in these three types of fibroblasts and compared these concerning their site of origin. Interestingly, we found major differences in basal mRNA expression especially for MMP1 and MMP3. Moreover, we treated fibroblasts with TNF-α and observed different alterations under these proinflammatory conditions. In conclusion, fibroblasts show different properties in proliferation and MMP expression regarding their originated tissue.

  8. Clinical impact of human breast milk metabolomics.

    Science.gov (United States)

    Cesare Marincola, Flaminia; Dessì, Angelica; Corbu, Sara; Reali, Alessandra; Fanos, Vassilios

    2015-12-01

    Metabolomics is a research field concerned with the analysis of metabolome, the complete set of metabolites in a given cell, tissue, or biological sample. Being able to provide a molecular snapshot of biological systems, metabolomics has emerged as a functional methodology in a wide range of research areas such as toxicology, pharmacology, food technology, nutrition, microbial biotechnology, systems biology, and plant biotechnology. In this review, we emphasize the applications of metabolomics in investigating the human breast milk (HBM) metabolome. HBM is the recommended source of nutrition for infants since it contains the optimal balance of nutrients for developing babies, and it provides a range of benefits for growth, immunity, and development. The molecular mechanisms beyond the inter- and intra-variability of HBM that make its composition unique are yet to be well-characterized. Although still in its infancy, the study of HBM metabolome has already proven itself to be of great value in providing insights into this biochemical variability in relation to mother phenotype, diet, disease, and lifestyle. The results of these investigations lay the foundation for further developments useful to identify normal and aberrant biochemical changes as well as to develop strategies to promote healthy infant feeding practices.

  9. Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer.

    Science.gov (United States)

    Cerliani, Juan P; Vanzulli, Silvia I; Piñero, Cecilia Pérez; Bottino, María C; Sahores, Ana; Nuñez, Myriam; Varchetta, Romina; Martins, Rubén; Zeitlin, Eduardo; Hewitt, Stephen M; Molinolo, Alfredo A; Lanari, Claudia; Lamb, Caroline A

    2012-06-01

    Fibroblast growth factor receptors (FGFRs) are tyrosine kinase receptors which have been implicated in breast cancer. The aim of this study was to evaluate FGFR-1, -2, -3, and -4 protein expressions in normal murine mammary gland development, and in murine and human breast carcinomas. Using immunohistochemistry and Western blot, we report a hormonal regulation of FGFR during postnatal mammary gland development. Progestin treatment of adult virgin mammary glands resulted in changes in localization of FGFR-3 from the cytoplasm to the nucleus, while treatment with 17-β-estradiol induced changes in the expressions and/or localizations of FGFR-2 and -3. In murine mammary carcinomas showing different degrees of hormone dependence, we found progestin-induced increased expressions, mainly of FGFR-2 and -3. These receptors were constitutively activated in hormone-independent variants. We studied three luminal human breast cancer cell lines growing as xenografts, which particularly expressed FGFR-2 and -3, suggesting a correlation between hormonal status and FGFR expression. Most importantly, in breast cancer samples from 58 patients, we found a strong association (P FGFR-2 and -3 expressions and a weaker correlation of each receptor with estrogen receptor expression. FGFR-4 correlated with c-erbB2 over expression. We conclude that FGFR-2 and -3 may be mechanistically linked and can be potential targets for treatment of estrogen receptor-positive breast cancer patients.

  10. MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Laura N Bonifacio

    Full Text Available Senescence is a highly regulated process that limits cellular replication by enforcing a G1 arrest in response to various stimuli. Replicative senescence occurs in response to telomeric DNA erosion, and telomerase expression can offset replicative senescence leading to immortalization of many human cells. Limited data exists regarding changes of microRNA (miRNA expression during senescence in human cells and no reports correlate telomerase expression with regulation of senescence-related miRNAs. We used miRNA microarrays to provide a detailed account of miRNA profiles for early passage and senescent human foreskin (BJ fibroblasts as well as early and late passage immortalized fibroblasts (BJ-hTERT that stably express the human telomerase reverse transcriptase subunit hTERT. Selected miRNAs that were differentially expressed in senescence were assayed for expression in quiescent cells to identify miRNAs that are specifically associated with senescence-associated growth arrest. From this group of senescence-associated miRNAs, we confirmed the ability of miR-143 to induce growth arrest after ectopic expression in young fibroblasts. Remarkably, miR-143 failed to induce growth arrest in BJ-hTERT cells. Importantly, the comparison of late passage immortalized fibroblasts to senescent wild type fibroblasts reveals that miR-146a, a miRNA with a validated role in regulating the senescence associated secretory pathway, is also regulated during extended cell culture independently of senescence. The discovery that miRNA expression is impacted by expression of ectopic hTERT as well as extended passaging in immortalized fibroblasts contributes to a comprehensive understanding of the connections between telomerase expression, senescence and processes of cellular aging.

  11. Hedgehog signaling is synergistically enhanced by nutritional deprivation and ligand stimulation in human fibroblasts of Gorlin syndrome.

    Science.gov (United States)

    Mizuochi, Hiromi; Fujii, Katsunori; Shiohama, Tadashi; Uchikawa, Hideki; Shimojo, Naoki

    2015-02-13

    Hedgehog signaling is a pivotal developmental pathway that comprises hedgehog, PTCH1, SMO, and GLI proteins. Mutations in PTCH1 are responsible for Gorlin syndrome, which is characterized by developmental defects and tumorigenicity. Although the hedgehog pathway has been investigated extensively in Drosophila and mice, its functional roles have not yet been determined in human cells. In order to elucidate the mechanism by which transduction of the hedgehog signal is regulated in human tissues, we employed human fibroblasts derived from three Gorlin syndrome patients and normal controls. We investigated GLI1 transcription, downstream of hedgehog signaling, to assess native signal transduction, and then treated fibroblasts with a recombinant human hedgehog protein with or without serum deprivation. We also examined the transcriptional levels of hedgehog-related genes under these conditions. The expression of GLI1 mRNA was significantly higher in Gorlin syndrome-derived fibroblasts than in control cells. Hedgehog stimulation and nutritional deprivation synergistically enhanced GLI1 transcription levels, and this was blocked more efficiently by vismodegib, a SMO inhibitor, than by the natural compound, cyclopamine. Messenger RNA profiling revealed the increased expression of Wnt signaling and morphogenetic molecules in these fibroblasts. These results indicated that the hedgehog stimulation and nutritional deprivation synergistically activated the hedgehog signaling pathway in Gorlin syndrome fibroblasts, and this was associated with increments in the transcription levels of hedgehog-related genes such as those involved in Wnt signaling. These fibroblasts may become a significant tool for predicting the efficacies of hedgehog molecular-targeted therapies such as vismodegib.

  12. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  13. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  14. Cellular characterization of human dermal fibroblasts, focus on mitochondria and maple syrup urine disease

    DEFF Research Database (Denmark)

    Fernandez-Guerra, Paula

    and functions are expressed in HDFs’ culture environment. Studies of molecular disease mechanisms often point to the involvement of mitochondria. Mitochondria are involved in the regulation of cell cycle and programmed cell death as well as cellular stress responses because they are the main producers......Cell phenotyping of human dermal fibroblasts (HDFs) from patients with inherited metabolic diseases (IMDs) provide invaluable information for diagnosis, disease aetiology, predicting prognosis, and monitoring of treatments. HDFs possess the genetic composition of patients and many pathways...... of reactive oxygen species (ROS). Advances in technology help the study of complex situations with large amount of data, like cellular phenotyping in cell culture. Image cytometry is an emerging technique that combines morphological information and fluorescent intensity data from single cells. We defined...

  15. Second generation codon optimized minicircle (CoMiC) for nonviral reprogramming of human adult fibroblasts.

    Science.gov (United States)

    Diecke, Sebastian; Lisowski, Leszek; Kooreman, Nigel G; Wu, Joseph C

    2014-01-01

    The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.

  16. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts.

    Science.gov (United States)

    Pandian, Ganesh N; Taniguchi, Junichi; Junetha, Syed; Sato, Shinsuke; Han, Le; Saha, Abhijit; AnandhaKumar, Chandran; Bando, Toshikazu; Nagase, Hiroki; Vaijayanthi, Thangavel; Taylor, Rhys D; Sugiyama, Hiroshi

    2014-01-24

    The influential role of the epigenome in orchestrating genome-wide transcriptional activation instigates the demand for the artificial genetic switches with distinct DNA sequence recognition. Recently, we developed a novel class of epigenetically active small molecules called SAHA-PIPs by conjugating selective DNA binding pyrrole-imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. Screening studies revealed that certain SAHA-PIPs trigger targeted transcriptional activation of pluripotency and germ cell genes in mouse and human fibroblasts, respectively. Through microarray studies and functional analysis, here we demonstrate for the first time the remarkable ability of thirty-two different SAHA-PIPs to trigger the transcriptional activation of exclusive clusters of genes and noncoding RNAs. QRT-PCR validated the microarray data, and some SAHA-PIPs activated therapeutically significant genes like KSR2. Based on the aforementioned results, we propose the potential use of SAHA-PIPs as reagents capable of targeted transcriptional activation.

  17. Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts.

    Science.gov (United States)

    Soldatov, N M

    1992-05-15

    The nucleotide sequence of cDNA encoding the human fibroblast Ca2+ channel of L type (HFCC) has been determined. It is highly homologous to L-type channels previously cloned from rabbit lung and heart as well as from rat brain. At least four sites of molecular diversity were identified in the nucleotide sequence of HFCC. Three of these include regions encoding the transmembrane segments IIS6, IIIS2, and IVS3, which are known to be important for channel gating properties. The positions of these sites correlate with RNA splice sites, indicating that the molecular diversity of the transcripts is a result of alternative splicing. The fourth diversity region is located at the C-terminal region and comprises insertions and deletions. It is suggested that these variations may give rise to multiple subforms of HFCC with altered electrophysiological properties.

  18. Effect of Lactobacillus reuteri on Cell Viability and PGE2 Production in Human Gingival Fibroblasts

    DEFF Research Database (Denmark)

    Castiblanco, Gina A.; Yucel-Lindberg, Tulay; Roos, Stefan

    2017-01-01

    Emerging evidence suggests that probiotic therapy can play a role in the prevention and management of oral inflammatory diseases through immunomodulation and down-regulation of the inflammatory cascade. The aim of this in vitro study was to investigate the viability of human gingival fibroblasts...... immune assay kits. Our findings showed that none of the L. reuteri supernatants were cytotoxic or affected the viability of HGF. The most concentrated bacterial supernatant stimulated the production of PGE2 by the gingival cells in a significant way in the presence of IL-1β (p ... that bacterial products secreted from L. reuteri might play a role in the resolution of inflammation in HGF. Thus, our findings justify further investigations on the influence of probiotic bacteria on gingival inflammatory reactions....

  19. Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia

    DEFF Research Database (Denmark)

    Hojman, Pernille; Pedersen, Maria; Nielsen, Anders Rinnov

    2009-01-01

    OBJECTIVE: Fibroblast growth factor-21 (FGF-21) is a potent metabolic regulator, which in animal models has been shown to improve glucose metabolism and insulin sensitivity. Recently, FGF-21 was shown to be expressed and secreted from murine muscle cells in response to insulin stimulation. RESEARCH...... DESIGN AND METHODS: We studied muscular FGF-21 expression and plasma FGF-21 after acute insulin stimulation in young healthy men during a hyperinsulinemic-euglycemic clamp. Furthermore, we investigated systemic levels and muscle FGF-21 expression in humans with or without insulin resistance and chronic...... elevated insulin. RESULTS: FGF-21 was barely detectable in young healthy men before insulin infusion. After 3 or 4 h of insulin infusion during a hyperinsulinemic-euglycemic clamp, muscular FGF-21 expression increased significantly. Plasma FGF-21 followed the same pattern. In individuals with chronic...

  20. Effect of recombinant human basic fibroblast growth factor on angiogenesis during mandible fracture healing in rabbits

    Institute of Scientific and Technical Information of China (English)

    龚振宇; 周树夏; 顾晓明; 李涤尘; 孙明林

    2003-01-01

    Objective: To investigate the effect of recombinant human basic fibroblast growth factor (rhbFGF) on angiogenesis during mandible fracture healing in rabbit. Methods: Fifty adult white rabbits were used for animal model and randomly divided into a control group (25 rabbits) and an experimental group (25 rabbits). The membranous complex of rhbFGF and bovine type I collagen was prepared and implanted into the rabbit mandible fracture site under periosteum. The animals were sacrificed on 7, 14, 28, 56 and 84 days respectively after operation and the whole mandibles were harvested. The expression of factor VIII related antigen (F8-RA) in callus was examined with immunohistochemical staining. Results: The amounts of microvascular formation in calluses in the rhbFGF-treating group on days 7, 14, 28 and 56 were more than those of the control group (P<0.01).Conclusions: The results indicated that rhbFGF could stimulate microvascular formation during mandible fracture healing in rabbits.

  1. Regulation of protease-activated receptor-1 expression in human buccal fibroblasts stimulated with arecoline.

    Science.gov (United States)

    Tsai, Chung-Hung; Lee, Shiuan-Shinn; Huang, Fu-Mei; Chang, Yu-Chao

    2013-09-01

    The purpose of this study was to compare the major thrombin receptor protease-activated receptor-1 (PAR-1) expression in normal human buccal mucosa and oral submucous fibrosis (OSF) specimens and further explore the potential mechanisms that may lead to induce PAR-1 expression. Thirty OSF and 10 normal buccal mucosa specimens were examined by immunohistochemistry. Buccal mucosal fibroblasts (BMFs) were challenged with arecoline by using Western blot analysis. N-acetyl-L-cysteine (NAC), LY294002, herbimycin A, NS-398, and PD98059 were added to find the possible regulatory mechanisms. PAR-1 expression was significantly higher in OSF specimens (p Arecoline was found to elevate PAR-1 expression in a dose-dependent and time-dependent manner (p arecoline-induced PAR-1 expression (p Arecoline-induced PAR-1 expression was downregulated by NAC, LY294002, herbimycin A, NS398, and PD98059. Copyright © 2012 Wiley Periodicals, Inc.

  2. Apoptotic and necrotic influence of dental resin polymerization initiators in human gingival fibroblast cultures.

    Science.gov (United States)

    Masuki, Kouhei; Nomura, Yuji; Bhawal, Ujjal Kumar; Sawajiri, Masahiko; Hirata, Isao; Nahara, Yukinori; Okazaki, Masayuki

    2007-11-01

    The aim of this study was to examine the apoptotic and necrotic influence of four dental resin polymerization initiators--namely benzoyl peroxide (BPO), camphorquinone (CQ), dimethylaminoethyl methacrylate (DMAEMA), and dimethyl-para-toluidine (DMPT)--on human gingival fibroblast (HGF) cells. To this end, the growth inhibition of HGF cells with 1 mM BPO, CQ, and DMAEMA, and 500 microM DMPT was evaluated using Cell Counting Kit-8. Then, cell cycle analysis by flow cytometry was used to assess propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases). All four dental resin polymerization initiators induced G0/G1 cell cycle arrest. As for the patterns of cell death (necrosis and/or apoptosis), they were analyzed using Annexin V-FITC/PI staining with flow cytometry. All four dental resin polymerization initiators most likely induced necrosis.

  3. QSAR model for cytotoxicity of SiO2 nanoparticles on human lung fibroblasts

    Science.gov (United States)

    Toropova, Alla P.; Toropov, Andrey A.; Benfenati, Emilio; Korenstein, Rafi

    2014-02-01

    The possibility of building up predictive model for cytotoxicity of SiO2-nanoparticles (SiO2-NPs) by means of so-called optimal descriptors which are mathematical functions of size and concentration of SiO2-NPs is demonstrated with data on sixteen systems' "size-concentration." The calculation has been carried out by means of the CORAL software (http://www.insilico.eu/coral/). The statistical quality of the best model for the cytotoxic inhibition ratio (%) of human lung fibroblasts cultured in the media containing different concentrations of SiO2-NPs which is measured by MTT assay is the following: n = 10, r 2 = 0.9837, s = 2.53 %, F = 483 (training set) and n = 6, r 2 = 0.9269, s = 7.94 % (test set). The perspectives of this approach are discussed.

  4. In vitro toxicity of formocresol, ferric sulphate, and grey MTA on human periodontal ligament fibroblasts.

    Science.gov (United States)

    Al-Haj Ali, S N; Al-Jundi, S H; Ditto, D J

    2015-02-01

    This was to assess and compare the in vitro toxicity of formocresol, ferric sulphate and MTA on cultured human periodontal ligament (PDL) fibroblasts. PDL cells were obtained from sound first permanent molars and cultured in Dulbecco's modified Eagle's medium. PDL cells were subjected to different concentrations of formocresol, ferric sulphate, and grey MTA for 24, 48, and 72 h at 37 °C. Cells that were not exposed to the tested materials served as the negative control. In vitro toxicity was assessed using MTT assay. Statistical analysis of data was accomplished using ANOVA and Tukey statistical tests (pformocresol>ferric sulphate>grey MTA. Only grey MTA had comparable cell viability to the negative control, the other tested materials were significantly inferior at the three exposure periods (pformocresol. However, considering MTA's unavailability and high price in Jordan, ferric sulphate may be the best alternative to formocresol in pulpotomy of primary teeth.

  5. Human cytomegalovirus induces alteration of β-actin mRNA and microfilaments in human embryo fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    林茂芳; 魏国庆; 黄河; 蔡真

    2004-01-01

    Objective: To investigate the infection of human embryo fibroblast cell line HF cells by CMV as well as the effects of CMV on β-actin mRNA and microfilaments. Methods: HF cells shape was observed after the infection of CMV.RT-PCR assay was used to detect the mRNA expression of CMV immediate early (IE) gene, β-actin and GAPDH genes of HF cells infected by CMV. CMV particles and cell microfilaments were detected with electron microscope. Results: Shape of HF cell changed after the infection by CMV. HF cells infected by CMV could express IE mRNA and the expression of β-actin mRNA decreased in a time-and titer-dependent manner compared with the uninfected HF cells whose expression of GAPDH mRNA did not change much. CMV particles were found with electron microscope in the cells. Microfilaments were ruptured and shortened after the infection of CMV. Conclusion: CMV can not only infect human embryo fibroblast cells line HF cells and replicate in the cells, but can also affect the expression of β-actin mRNA and the microfilaments.

  6. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    Science.gov (United States)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  7. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    Science.gov (United States)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  8. Transient Gene and MicroRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    Science.gov (United States)

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-01-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NF(kappa)B and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for alpha-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  9. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts

    Science.gov (United States)

    Guzmán-Silva, Alejandro; Vázquez de Lara, Luis G.; Torres-Jácome, Julián; Vargaz-Guadarrama, Ajelet; Flores-Flores, Marycruz; Pezzat Said, Elias; Lagunas-Martínez, Alfredo; Mendoza-Milla, Criselda; Tanzi, Franco; Moccia, Francesco; Berra-Romani, Roberto

    2015-01-01

    Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF. PMID:26230503

  10. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Alejandro Guzmán-Silva

    Full Text Available Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF. As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a a single Ca2+ spike which could be followed by b Ca2+ oscillations, c a sustained Ca2+ plateau or d a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ, Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF.

  11. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    Science.gov (United States)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  12. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    Liu X

    2014-03-01

    Full Text Available Xiangning Liu,1,* Xiaosong Zhou,2,* Shaobing Li,3 Renfa Lai,1 Zhiying Zhou,1 Ye Zhang,1 Lei Zhou3 1The First Affiliated Hospital of Jinan University, Guangzhou, 2Chemistry Science and Technology School, Zhanjiang Normal University, Zhanjiang, 3Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs with or without using bovine serum albumin (BSA to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE, were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1 gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because

  13. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  14. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells.

    Science.gov (United States)

    Smith, Leah J; Holmes, Amie L; Kandpal, Sanjeev Kumar; Mason, Michael D; Zheng, Tongzhang; Wise, John Pierce

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity.

  15. Generation of primitive neural stem cells from human fibroblasts using a defined set of factors

    Directory of Open Access Journals (Sweden)

    Takumi Miura

    2015-11-01

    Full Text Available In mice, leukemia inhibitory factor (LIF-dependent primitive neural stem cells (NSCs have a higher neurogenic potential than bFGF-dependent definitive NSCs. Therefore, expandable primitive NSCs are required for research and for the development of therapeutic strategies for neurological diseases. There is a dearth of suitable techniques for the generation of human long-term expandable primitive NSCs. Here, we have described a method for the conversion of human fibroblasts to LIF-dependent primitive NSCs using a strategy based on techniques for the generation of induced pluripotent stem cells (iPSCs. These LIF-dependent induced NSCs (LD-iNSCs can be expanded for >100 passages. Long-term cultured LD-iNSCs demonstrated multipotent neural differentiation potential and could generate motor neurons and dopaminergic neurons, as well as astrocytes and oligodendrocytes, indicating a high level of plasticity. Furthermore, LD-iNSCs easily reverted to human iPSCs, indicating that LD-iNSCs are in an intermediate iPSC state. This method may facilitate the generation of patient-specific human neurons for studies and treatment of neurodegenerative diseases.

  16. Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells.

    Science.gov (United States)

    Ogawa, Shin-ichiro; Tokumoto, Yasuhito; Miyake, Jun; Nagamune, Teruyuki

    2011-08-01

    Induced pluripotent stem cells (iPSCs) prepared from somatic cells might become a novel therapeutic tool in regenerative medicine, especially for the central nervous system (CNS). In this study, we attempted to induce O4-positive (O4(+)) oligodendrocytes from adult human fibroblast-derived iPSCs in vitro. We used two adult human iPSC cell lines, 201B7 and 253G1. 201B7 was induced by four-gene transduction (oct4, sox2, klf4, c-myc), and 253G1 was induced by three-gene transduction (oct4, sox2, klf4). We treated these cells with two in vitro oligodendrocyte-directed differentiation protocols that were optimized for human embryonic stem cells. One protocol used platelet-derived growth factor as the major mitogen for oligodendrocyte lineage cells, and the other protocol used epidermal growth factor (EGF) as the mitogen. Although the differentiation efficiency was low (less than 0.01%), we could induce O4(+) oligodendrocytes from 253G1 cells using the EGF-dependent differentiation protocol. This is the first report of the in vitro induction of oligodendrocytes differentiation from human iPSCs.

  17. Aptamer-Assisted Detection of the Altered Expression of Estrogen Receptor Alpha in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Rajesh Ahirwar

    Full Text Available An increase in the expression of estrogen receptors (ER and the expanded population of ER-positive cells are two common phenotypes of breast cancer. Detection of the aberrantly expressed ERα in breast cancer is carried out using ERα-antibodies and radiolabelled ligands to make decisions about cancer treatment and targeted therapy. Capitalizing on the beneficial advantages of aptamer over the conventional antibody or radiolabelled ligand, we have identified a DNA aptamer that selectively binds and facilitates the detection of ERα in human breast cancer tissue sections. The aptamer is identified using the high throughput sequencing assisted SELEX screening. Biophysical characterization confirms the binding and formation of a thermodynamically stable complex between the identified DNA aptamer (ERaptD4 and ERα (Ka = 1.55±0.298×108 M(-1; ΔH = 4.32×104±801.1 cal/mol; ΔS = -108 cal/mol/deg. Interestingly, the specificity measurements suggest that the ERaptD4 internalizes into ERα-positive breast cancer cells in a target-selective manner and localizes specifically in the nuclear region. To harness these characteristics of ERaptD4 for detection of ERα expression in breast cancer samples, we performed the aptamer-assisted histochemical analysis of ERα in tissue samples from breast cancer patients. The results were validated by performing the immunohistochemistry on same samples with an ERα-antibody. We found that the two methods agree strongly in assay output (kappa value = 0.930, p-value <0.05 for strong ERα positive and the ERα negative samples; kappa value = 0.823, p-value <0.05 for the weak/moderate ER+ve samples, n = 20. Further, the aptamer stain the ERα-positive cells in breast tissues without cross-reacting to ERα-deficient fibroblasts, adipocytes, or the inflammatory cells. Our results demonstrate a significant consistency in the aptamer-assisted detection of ERα in strong ERα positive, moderate ERα positive and ERα negative

  18. Aedes Aegypti saliva enhances chikungunya virus replication in human skin fibroblasts via inhibition of the type I interferon signaling pathway.

    Science.gov (United States)

    Wichit, Sineewanlaya; Diop, Fodé; Hamel, Rodolphe; Talignani, Loïc; Ferraris, Pauline; Cornelie, Sylvie; Liegeois, Florian; Thomas, Frédéric; Yssel, Hans; Missé, Dorothée

    2017-09-01

    Chikungunya virus (CHIKV) transmission occurs through the bite of an infected Aedes mosquito which injects virus-containing saliva into the skin of the human host during blood feeding. In the present study, we have determined the effect of Aedes aegypti saliva on CHIKV replication in human skin fibroblasts, a major cell type for viral entry, which mimics the events that occur during natural transmission. A significant increase in the expression of viral transcripts and infectious viral particles was observed in fibroblasts infected with CHIKV in the presence of saliva, as compared with those infected with virus alone. CHIKV-infected human fibroblasts were found to express significantly increased levels of various type I IFN-responsive genes, as demonstrated by specific PCR array analysis. In contrast, the expression of these genes was markedly decreased in cells infected with CHIKV in the presence of mosquito saliva. Moreover, Western blotting analysis revealed that STAT2 and its phosphorylated form were down-regulated in the presence of mosquito saliva. Our data demonstrate for the first time the significance of Aedes aegypti saliva in promoting CHIKV infection via down-regulation of several type I IFN-responsive genes in infected human skin fibroblasts via the JAK-STAT signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The effect of exposure duration of self etch dentin bonding on the toxicity of human gingival fibroblast of cell culture

    Directory of Open Access Journals (Sweden)

    Sri Lestari

    2008-06-01

    Full Text Available Self etch dentin bonding created to make light easily activate the application of composite resin on tooth surface. The monomer content has acid effect that could irritate tooth pulp. The purpose of this study was to evaluate the effect of light exposure duration of self etch dentin bonding on toxicity of human gingival fibroblast of cell culture by MTT assay. Self etch dentin bonding was used as on experimental unit and the sample was exposed by visible light curing in different duration: 10, 20, 30 seconds and immerged in artificial saliva in pH 7 for 24 hours. 100 µl artificial saliva was exposed to human gingival fibroblast of cell culture 20.000 cells/100 µl RPMI for 24 hours. Toxicity was evaluated by MTT assay, optical density was measured using 550 nm spectrophotometer. The data was analyzed using Kruskal Wallis in 5% degree of significance. The result showed that increasing exposure duration (10, 20, 30 seconds of self etch dentin bonding will reduce the toxicity of human gingival fibroblast of cell culture. It is concluded that 30 seconds-exposure of self etch dentin bonding will reduce the toxicity of human gingival fibroblast of cell culture.

  20. Differential gene expression in human fibroblasts after alpha-particle emitter (211)At compared with (60)Co irradiation

    DEFF Research Database (Denmark)

    Danielsson, Anna; Claesson, Kristina; Parris, Toshima Z;

    2013-01-01

    trastuzumab monoclonal antibody (0.25, 0.5, and 1 Gy) and (60)Co (1, 2, and 3 Gy). Results: We report gene expression profiles that distinguish the effect different radiation qualities and absorbed doses have on cellular functions in human fibroblasts. In addition, we identified commonly expressed transcripts...

  1. Fibroblast growth factor 21 in breast milk controls neonatal intestine function.

    Science.gov (United States)

    Gavaldà-Navarro, Aleix; Hondares, Elayne; Giralt, Marta; Mampel, Teresa; Iglesias, Roser; Villarroya, Francesc

    2015-09-02

    FGF21 is a hormonal factor with important functions in the control of metabolism. FGF21 is found in rodent and human milk. Radiolabeled FGF21 administered to lactating dams accumulates in milk and is transferred to neonatal gut. The small intestine of neonatal (but not adult) mice highly expresses β-Klotho in the luminal area. FGF21-KO pups fed by FGF21-KO dams showed decreased expression and circulating levels of incretins (GIP and GLP-1), reduced gene expression of intestinal lactase and maltase-glucoamylase, and low levels of galactose in plasma, all associated with a mild decrease in body weight. When FGF21-KO pups were nursed by wild-type dams (expressing FGF21 in milk), intestinal peptides and digestive enzymes were up-regulated, lactase enzymatic activity was induced, and galactose levels and body weight were normalized. Neonatal intestine explants were sensitive to FGF21, as evidenced by enhanced ERK1/2 phosphorylation. Oral infusion of FGF21 into neonatal pups induced expression of intestinal hormone factors and digestive enzymes, lactase activity and lactose absorption. These findings reveal a novel role of FGF21 as a hormonal factor contributing to neonatal intestinal function via its presence in maternal milk. Appropriate signaling of FGF21 to neonate is necessary to ensure optimal digestive and endocrine function in developing intestine.

  2. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    Science.gov (United States)

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins.

  3. Dermal Lipogenesis Inhibits Adiponectin Production in Human Dermal Fibroblasts while Exogenous Adiponectin Administration Prevents against UVA-Induced Dermal Matrix Degradation in Human Skin.

    Science.gov (United States)

    Fang, Chien-Liang; Huang, Ling-Hung; Tsai, Hung-Yueh; Chang, Hsin-I

    2016-07-14

    Adiponectin is one of the most abundant adipokines from the subcutaneous fat, and regulates multiple activities through endocrine, paracrine, or autocrine mechanisms. However, its expression in adipogenic induced fibroblasts, and the potential role in photoaging has not been determined. Here, human dermal fibroblasts, Hs68, were presented as a cell model of dermal lipogenesis through stimulation of adipogenic differentiation medium (ADM). Similar to other studies in murine pre-adipocyte models (i.e., 3T3-L1), Hs68 fibroblasts showed a tendency to lipogenesis based on lipid accumulation, triglyceride formation, and the expressions of PPAR-γ, lipoprotein lipase (LPL), and FABP4 mRNA. As expected, ADM-treated fibroblasts displayed a reduction on adiponectin expression. Next, we emphasized the photoprotective effects of adiponectin against UVA-induced damage in Hs68 fibroblasts. UVA radiation can downregulate cell adhesion strength and elastic modulus of Hs68 fibroblasts. Moreover, UVA radiation could induce the mRNA expressions of epidermal growth factor receptor (EGFR), adiponectin receptor 1 (AdipoR1), matrix metalloproteinase-1 (MMP-1), MMP-3, and cyclooxygenase-2 (COX-2), but downregulate the mRNA expressions of type I and type III collagen. On the other hand, post-treatment of adiponectin can partially overcome UVA-induced reduction in the cell adhesion strength of Hs68 fibroblasts through the activation of AdipoR1 and the suppression of EGF-R. In addition, post-treatment of adiponectin indicated the increase of type III collagen and elastin mRNA expression and the decrease of MMP-1 and MMP-3 mRNA expression, but a limited degree of recovery of elastic modulus on UVA-irradiated Hs68 fibroblasts. Overall, these results suggest that dermal lipogenesis may inhibit the expression of adiponectin while exogenous adiponectin administration prevents against UVA-induced dermal matrix degradation in Hs68 fibroblasts.

  4. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudio Pulito

    Full Text Available Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR. It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954 human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative. These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  5. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Science.gov (United States)

    Pulito, Claudio; Terrenato, Irene; Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  6. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    Science.gov (United States)

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  7. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mami; Inoue, Takahiro; Shirai, Takuma; Takamatsu, Kazuhiko; Kunihiro, Shiori; Ishii, Hirokazu [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Nishikata, Takahito, E-mail: nisikata@konan-u.ac.jp [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047 (Japan)

    2014-07-31

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs.

  8. Comprehensive molecular portraits of human breast tumours.

    Science.gov (United States)

    2012-10-01

    We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer.

  9. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data.

    Science.gov (United States)

    Kiarashi, Nooshin; Nolte, Adam C; Sturgeon, Gregory M; Segars, William P; Ghate, Sujata V; Nolte, Loren W; Samei, Ehsan; Lo, Joseph Y

    2015-07-01

    Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power-law descriptions of the phantom images

  10. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  11. Antioxidant effects of the sarsaparilla via scavenging of reactive oxygen species and induction of antioxidant enzymes in human dermal fibroblasts.

    Science.gov (United States)

    Park, Gunhyuk; Kim, Tae-mi; Kim, Jeong Hee; Oh, Myung Sook

    2014-07-01

    Ultraviolet (UV) radiation from sunlight causes distinct changes in collagenous skin tissues as a result of the breakdown of collagen, a major component of the extracellular matrix. UV irradiation downregulates reactive oxygen species (ROS)-elimination pathways, thereby promoting the production of ROS, which are implicated in skin aging. Smilax glabra Roxb (sarsaparilla) has been used in folk medicine because of its many effects. However, no study on the protective effects of sarsaparilla root (SR) on human dermal fibroblasts has been reported previously. Here, we investigated the protective effect of SR against oxidative stress in dermal fibroblasts. SR significantly inhibited oxidative damage and skin-aging factor via mitogen-activated protein kinase signaling pathways. Also, SR decreased Ca(2+) and ROS, mitochondrial membrane potential, dysfunction, and increased glutathione, NAD(P)H dehydrogenase and heme oxygenase-1. These results demonstrate that SR can protect dermal fibroblasts against UVB-induced skin aging via antioxidant effects.

  12. Fibroblasts isolated from human middle turbinate mucosa cause neural progenitor cells to differentiate into glial lineage cells.

    Directory of Open Access Journals (Sweden)

    Xingjia Wu

    Full Text Available Transplantation of olfactory ensheathing cells (OECs is a potential therapy for repair of spinal cord injury (SCI. Autologous transplantation of OECs has been reported in clinical trials. However, it is still controversial whether purified OECs or olfactory mucosa containing OECs, fibroblasts and other cells should be used for transplantation. OECs and fibroblasts were isolated from olfactory mucosa of the middle turbinate from seven patients. The percentage of OECs with p75(NTR+ and GFAP(+ ranged from 9.2% to 73.2%. Fibroblasts were purified and co-cultured with normal human neural progenitors (NHNPs. Based on immunocytochemical labeling, NHNPs were induced into glial lineage cells when they were co-cultured with the mucosal fibroblasts. These results demonstrate that OECs can be isolated from the mucosa of the middle turbinate bone as well as from the dorsal nasal septum and superior turbinates, which are the typical sites for harvesting OECs. Transplantation of olfactory mucosa containing fibroblasts into the central nervous system (CNS needs to be further investigated before translation to clinical application.

  13. Anti-inflammatory changes of gene expression by Artemisia iwayomogi in the LPS-stimulated human gingival fibroblast: microarray analysis.

    Science.gov (United States)

    Choi, Yeong-Gon; Yeo, Sujung; Kim, Sung-Hoon; Lim, Sabina

    2012-03-01

    The leaves and stems of Asteraceae Artemisia iwayomogi (Ai) for a long time have been known to inhibit inflammatory cytokine production and allergic reactions, and have been used to treat liver diseases. It needs to be elucidated in terms of global gene expression whether Ai has an influence as an anti-inflammatory agent on the cultured human gingival fibroblast stimulated with lipopolysaccharide (LPS). This study investigated the anti-inflammatory changes of the genes by Ai using the Affymetrix genechip human gene 1.0 ST array when the cultured human gingival fibroblast was treated with LPS. It was observed that the inflammation- and immune response-related genes were activated by LPS challenge in the cultured human gingival fibroblast. The array analysis showed that 65 of the 344 genes up-regulated by LPS stimulation, when compared to the control, were down-regulated by the Ai treatment. A number of inflammation- and immune response-related genes of the 65 genes were found. In addition, 78 of the 164 genes down-regulated by the LPS, when compared to the control, were up-regulated by the Ai treatment. The regulatory patterns of the representative genes were correlated with the real-time RT-PCR analysis. The Ai extract and its specific components, scopolin and scopoletin, significantly hindered the production of inflammatory mediators such as IL-6, TNF-α and nitrite in the LPS-challenged fibroblast. This study suggests that Ai can comprehensively inhibit the activation of the inflammation- and immune response-related genes and the inflammatory mediators in the human gingival fibroblast.

  14. Human amniotic membrane-derived stromal cells (hAMSC) interact depending on breast cancer cell type through secreted molecules.

    Science.gov (United States)

    Kim, Sun-Hee; Bang, So Hee; Kang, So Yeong; Park, Ki Dae; Eom, Jun Ho; Oh, Il Ung; Yoo, Si Hyung; Kim, Chan-Wha; Baek, Sun Young

    2015-02-01

    Human amniotic membrane-derived stromal cells (hAMSC) are candidates for cell-based therapies. We examined the characteristics of hAMSC including the interaction between hAMSC and breast cancer cells, MCF-7, and MDA-MB-231. Human amniotic membrane-derived stromal cells showed typical MSC properties, including fibroblast-like morphology, surface antigen expression, and mesodermal differentiation. To investigate cell-cell interaction via secreted molecules, we cultured breast cancer cells in hAMSC-conditioned medium (hAMSC-CM) and analyzed their proliferation, migration, and secretome profiles. MCF-7 and MDA-MB-231 cells exposed to hAMSC-CM showed increased proliferation and migration. However, in hAMSC-CM, MCF-7 cells proliferated significantly faster than MDA-MB-231 cells. When cultured in hAMSC-CM, MCF-7 cells migrated faster than MDA-MB-231 cells. Two cell types showed different profiles of secreted factors. MCF-7 cells expressed much amounts of IL-8, GRO, and MCP-1 in hAMSC-CM. Human amniotic membrane-derived stromal cells interact with breast cancer cells through secreted molecules. Factors secreted by hAMSCs promote the proliferation and migration of MCF-7 breast cancer cells. For much safe cell-based therapies using hAMSC, it is necessary to study carefully about interaction between hAMSC and cancer cells.

  15. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  16. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  17. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells.

    Science.gov (United States)

    Charles, Amelia K; Darbre, Philippa D

    2013-05-01

    The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50(th) percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Clinicopathological significance of PTPN12 expression in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xunyi [Breast Disease Diagnosis and Treatment Centre, Affiliated Hospital of Medical College, Qingdao University, Qingdao Shandong Province (China); Yuan, Zhentao [Department of Anesthesiology, Shengli Oilfield Central Hospital, Dongying Shandong Province (China); Jiang, Dandan; Li, Funian [Breast Disease Diagnosis and Treatment Centre, Affiliated Hospital of Medical College, Qingdao University, Qingdao Shandong Province (China)

    2012-10-15

    Protein tyrosine phosphatase non-receptor type 12 (PTPN12) is a recently identified tumor suppressor gene (TSG) that is frequently compromised in human triple-negative breast cancer. In the present study, we investigated the expression of PTPN12 protein by patients with breast cancer in a Chinese population and the relationship between PTPN12 expression levels and patient clinicopathological features and prognosis. Additionally, we explored the underlying down-regulation mechanism from the perspective of an epigenetic alteration. We examined PTPN12 mRNA expression in five breast cancer cell lines using semi-quantitative reverse-transcription PCR, and detected PTPN12 protein expression using immunohistochemistry in 150 primary invasive breast cancer cases and paired adjacent non-tumor tissues. Methylation-specific PCR was performed to analyze the promoter CpG island methylation status of PTPN12. PTPN12 was significantly down-regulated in breast cancer cases (48/150) compared to adjacent noncancerous tissues (17/150; P < 0.05). Furthermore, low expression of PTPN12 showed a significant positive correlation with tumor size (P = 0.047), lymph node metastasis (P = 0.001), distant metastasis (P = 0.009), histological grade (P = 0.012), and survival time (P = 0.019). Additionally, promoter CpG island hypermethylation occurs more frequently in breast cancer cases and breast cancer cell lines with low PTPN12 expression. Our findings suggest that PTPN12 is potentially a methylation-silenced TSG for breast cancer that may play an important role in breast carcinogenesis and could potentially serve as an independent prognostic factor for invasive breast cancer patients.

  19. Effect of UVA Fluence Rate on Indicators of Oxidative Stress in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    James D. Hoerter, Christopher S. Ward, Kyle D. Bale, Admasu N. Gizachew, Rachelle Graham, Jaclyn Reynolds, Melanie E. Ward, Chesca Choi, Jean-Leonard Kagabo, Michael Sauer, Tara Kuipers, Timothy Hotchkiss, Nate Banner, Renee A. Chellson, Theresa Ohaeri, L

    2008-01-01

    Full Text Available During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm and UVB (315-400 nm spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR and tanning-bed radiation (TBR on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses. Our results show that the higher UVA fluence rate in TBR increases the level of all four indicators of oxidative stress. In sequential exposures when cells are exposed first to SSR, the lower UVA fluence rate in SSR induces a protective response that protects against oxidative stress following a second exposure to a higher UVA fluence rate. Our studies underscore the important role of UVA fluence rate in determining how human skin cells respond to a given dose of radiation containing both UVA and UVB radiation.

  20. High content analysis of human fibroblast cell cultures after exposure to space radiation.

    Science.gov (United States)

    Dieriks, Birger; De Vos, Winnok; Meesen, Geert; Van Oostveldt, Kaat; De Meyer, Tim; Ghardi, Myriam; Baatout, Sarah; Van Oostveldt, Patrick

    2009-10-01

    Space travel imposes risks to human health, in large part by the increased radiation levels compared to those on Earth. To understand the effects of space radiation on humans, it is important to determine the underlying cellular mechanisms. While general dosimetry describes average radiation levels accurately, it says little about the actual physiological impact and does not provide biological information about individual cellular events. In addition, there is no information about the nature and magnitude of a systemic response through extra- and intercellular communication. To assess the stress response in human fibroblasts that were sent into space with the Foton-M3 mission, we have developed a pluralistic setup to measure DNA damage and inflammation response by combining global and local dosimetry, image cytometry and multiplex array technology, thereby maximizing the scientific output. We were able to demonstrate a significant increase in DNA double-strand breaks, determined by a twofold increase of the gamma-H2AX signal at the level of the single cell and a threefold up-regulation of the soluble signal proteins CCL5, IL-6, IL-8, beta-2 microglobulin and EN-RAGE, which are key players in the process of inflammation, in the growth medium.

  1. Gene expression in response to cyclic mechanical stretch in primary human dermal fibroblasts.

    Science.gov (United States)

    Reichenbach, Maria; Reimann, Kerstin; Reuter, Hendrik

    2014-12-01

    The human dermal skin is permanently exposed to mechanical stress, for instance during facial expression, which might cause wrinkles with age. Cyclic mechanical stretching of cells results in cellular and cytoskeleton alignment perpendicular to the stretch direction regulating cellular response. With gene expression profiling it was aimed to identify the differentially expressed genes associated with the regulation of the cytoskeleton to investigate the stretch-induced cell alignment mechanism. Here, the transcription activity of the genome in response to cyclic mechanical stress was measured using DNA microarray technology with Agilent SurePrint G3 Human GE 8x60k Microarrays, based on the overall measurement of the mRNA. Gene expression was measured at the beginning of the alignment process showing first reoriented cells after 5 h stretching and at the end after 24 h, where nearly all cells are aligned. Gene expression data of control vs. stretched primary human dermal fibroblasts after 5 h and 24 h demonstrated the regulation of differentially expressed genes associated with metabolism, differentiation and morphology and were deposited at http://www.ncbi.nlm.nih.gov/geo with the accession number GSE58389.

  2. Prolactin receptor and osteogenic induction of prolactin in human periodontal ligament fibroblasts.

    Science.gov (United States)

    Surarit, Rudee; Krishnamra, Nateetip; Seriwatanachai, Dutmanee

    2016-04-01

    Prolactin is an important hormone involved in the interaction between maternal, extraembryonic, and fetal tissues that remains in high levels during the entire duration of pregnancy. Although many systemic alterations occur during pregnancy, such as hormonal changes, that are known to be associated with periodontitis and tooth loss, PRL function in human periodontal ligament fibroblasts (HPDLF) had never been studied. Herein, we investigated the role of PRL in the regulation of HPDLF proliferation and differentiation. HPDLF were cultured in differentiating medium with various concentrations of PRL. The present study demonstrated that HPDLF and primary human PDL cells that were extracted for orthodontic purpose expressed both short and long isoforms of PRLR mRNA and its proteins. An incubation with of high concentration of PRL (600 and 1,000 ng/mL) modestly decreased the HPDLF number. In contrast, PRL at a non-reproductive level (10 ng/mL) and pregnant level (100 ng/mL) significantly upregulated the markers of osteogenesis, such as RUNX2, BMP2, and POSTN, but not SOX9. Mineral nodule formation was induced, whereas proteoglycan accumulation was reduced by PRL suggesting that HPDLF were undergoing differentiation into preosteoblastic cells. In conclusion, the presence of hPRLR in human PDL together with PRL-induced upregulation of osteogenic markers strongly suggested a direct regulatory role of PRL in PDL and periodontal tissue development.

  3. Negligible immunogenicity of induced pluripotent stem cells derived from human skin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Qiao Lu

    Full Text Available Human induced pluripotent stem cells (hiPSCs have potential applications in cell replacement therapy and regenerative medicine. However, limited information is available regarding the immunologic features of iPSCs. In this study, expression of MHC and T cell co-stimulatory molecules in hiPSCs, and the effects on activation, proliferation and cytokine production in allogeneic human peripheral blood mononuclear cells were examined. We found that no-integrate hiPSCs had no MHC-II and T cell co-stimulatory molecules expressions but had moderate level of MHC-I and HLA-G expressions. In contrast to human skin fibroblasts (HSFs which significantly induced allogeneic T cell activation and proliferation, hiPSCs failed to induce allogeneic CD45+ lymphocyte and CD8+ T cell activation and proliferation but could induce a low level of allogeneic CD4+ T cell proliferation. Unlike HSFs which induced allogeneic lymphocytes to produce high levels of IFN-γ, TNF-α and IL-17, hiPSCs only induced allogeneic lymphocytes to produce IL-2 and IL-10, and promote IL-10-secreting regulatory T cell (Treg generation. Our study suggests that the integration-free hiPSCs had low or negligible immunogenicity, which may result from their induction of IL-10-secreting Treg.

  4. Negligible immunogenicity of induced pluripotent stem cells derived from human skin fibroblasts.

    Science.gov (United States)

    Lu, Qiao; Yu, Meixing; Shen, Chongyang; Chen, Xiaoping; Feng, Ting; Yao, Yongchao; Li, Jinrong; Li, Hong; Tu, Wenwei

    2014-01-01

    Human induced pluripotent stem cells (hiPSCs) have potential applications in cell replacement therapy and regenerative medicine. However, limited information is available regarding the immunologic features of iPSCs. In this study, expression of MHC and T cell co-stimulatory molecules in hiPSCs, and the effects on activation, proliferation and cytokine production in allogeneic human peripheral blood mononuclear cells were examined. We found that no-integrate hiPSCs had no MHC-II and T cell co-stimulatory molecules expressions but had moderate level of MHC-I and HLA-G expressions. In contrast to human skin fibroblasts (HSFs) which significantly induced allogeneic T cell activation and proliferation, hiPSCs failed to induce allogeneic CD45+ lymphocyte and CD8+ T cell activation and proliferation but could induce a low level of allogeneic CD4+ T cell proliferation. Unlike HSFs which induced allogeneic lymphocytes to produce high levels of IFN-γ, TNF-α and IL-17, hiPSCs only induced allogeneic lymphocytes to produce IL-2 and IL-10, and promote IL-10-secreting regulatory T cell (Treg) generation. Our study suggests that the integration-free hiPSCs had low or negligible immunogenicity, which may result from their induction of IL-10-secreting Treg.

  5. Genes Differentially Expressed in Human Lung Fibroblast Cells Transformed by Glycidyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    XUE-JUN YIN; JIAN-NING XU; CHANG-QI ZOU; FENG-SHENG HE; FU-DE FANG

    2004-01-01

    To define the differences in gene expression patterns between glycidyl methacrylate (GMA)-transformed human lung fibroblast cells (2BS cells) and controls. Methods The mRNA differential display polymerase chain reaction (DD-PCR) technique was used. cDNAs were synthesized by reverse transcription and amplified by PCR using 30 primer combinations. After being screened by dot blot analysis, differentially expressed cDNAs were cloned, sequenced and confirmed by Northern blot analysis. Results Eighteen differentially expressed cDNAs were cloned and sequenced, of which 17 were highly homologous to known genes (homology = 89%-100%) and one was an unknown gene. Northern blot analysis confirmed that eight genes encoding human zinc finger protein 217 (ZNF217), mixed-lineage kinase 3 (MLK-3), ribosomal protein (RP) L15, RPL41, RPS16, TBX3, stanniocalcin 2 (STC2) and mouse ubiquitin conjugating enzyme (UBC), respectively, were up-regulated, and three genes including human transforming growth factor ( inducible gene (Betaig-h3), (-1,2-mannosidase 1A2 (MAN 1A2) gene and an unknown gene were down-regulated in the GMA-transformed cells. Conclusion Analysis of the potential function of these genes suggest that they may be possibly linked to a variety of cellular processes such as transcription, signal transduction, protein synthesis and growth, and that their differential expression could contribute to the GMA-induced neoplastic transformation.

  6. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    Science.gov (United States)

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  7. SCN5A variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia

    Science.gov (United States)

    Musa, Hassan; Kline, Crystal F.; Sturm, Amy C.; Murphy, Nathaniel; Adelman, Sara; Wang, Chaojian; Yan, Haidun; Johnson, Benjamin L.; Csepe, Thomas A.; Kilic, Ahmet; Higgins, Robert S. D.; Janssen, Paul M. L.; Fedorov, Vadim V.; Weiss, Raul; Salazar, Christina; Hund, Thomas J.; Pitt, Geoffrey S.; Mohler, Peter J.

    2015-01-01

    Nav channels are essential for metazoan membrane depolarization, and Nav channel dysfunction is directly linked with epilepsy, ataxia, pain, arrhythmia, myotonia, and irritable bowel syndrome. Human Nav channelopathies are primarily caused by variants that directly affect Nav channel permeability or gating. However, a new class of human Nav channelopathies has emerged based on channel variants that alter regulation by intracellular signaling or cytoskeletal proteins. Fibroblast growth factor homologous factors (FHFs) are a family of intracellular signaling proteins linked with Nav channel regulation in neurons and myocytes. However, to date, there is surprisingly little evidence linking Nav channel gene variants with FHFs and human disease. Here, we provide, to our knowledge, the first evidence that mutations in SCN5A (encodes primary cardiac Nav channel Nav1.5) that alter FHF binding result in human cardiovascular disease. We describe a five*generation kindred with a history of atrial and ventricular arrhythmias, cardiac arrest, and sudden cardiac death. Affected family members harbor a novel SCN5A variant resulting in p.H1849R. p.H1849R is localized in the central binding core on Nav1.5 for FHFs. Consistent with these data, Nav1.5 p.H1849R affected interaction with FHFs. Further, electrophysiological analysis identified Nav1.5 p.H1849R as a gain-of-function for INa by altering steady-state inactivation and slowing the rate of Nav1.5 inactivation. In line with these data and consistent with human cardiac phenotypes, myocytes expressing Nav1.5 p.H1849R displayed prolonged action potential duration and arrhythmogenic afterdepolarizations. Together, these findings identify a previously unexplored mechanism for human Nav channelopathy based on altered Nav1.5 association with FHF proteins. PMID:26392562

  8. Induction of Neural Progenitor-Like Cells from Human Fibroblasts via a Genetic Material-Free Approach.

    Directory of Open Access Journals (Sweden)

    Fahimeh Mirakhori

    Full Text Available A number of studies generated induced neural progenitor cells (iNPCs from human fibroblasts by viral delivering defined transcription factors. However, the potential risks associated with gene delivery systems have limited their clinical use. We propose it would be safer to induce neural progenitor-like cells from human adult fibroblasts via a direct non-genetic alternative approach.Here, we have reported that seven rounds of TAT-SOX2 protein transduction in a defined chemical cocktail under a 3D sphere culture gradually morphed fibroblasts into neuroepithelial-like colonies. We were able to expand these cells for up to 20 passages. These cells could give rise to cells that expressed neurons and glia cell markers both in vitro and in vivo.These results show that our approach is beneficial for the genetic material-free generation of iNPCs from human fibroblasts where small chemical molecules can provide a valuable, viable strategy to boost and improve induction in a 3D sphere culture.

  9. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    Science.gov (United States)

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  10. Expression of the familial Mediterranean fever gene and activity of the C5a inhibitor in human primary fibroblast cultures.

    Science.gov (United States)

    Matzner, Y; Abedat, S; Shapiro, E; Eisenberg, S; Bar-Gil-Shitrit, A; Stepensky, P; Calco, S; Azar, Y; Urieli-Shoval, S

    2000-07-15

    Familial Mediterranean fever (FMF) is an inherited disease whose manifestations are acute but reversible attacks of sterile inflammation affecting synovial and serosal spaces. The FMF gene (MEFV) was recently cloned, and it codes for a protein (pyrin/marenostrin) homologous to known nuclear factors. We previously reported the deficient activity of a C5a/interleukin (IL)-8 inhibitor, a physiologic regulator of inflammatory processes, in FMF serosal and synovial fluids. We now describe the concomitant expression of MEFV and C5a/IL-8-inhibitor activity in primary cultures of human fibroblasts. Fibroblasts grown from synovial and peritoneal tissues displayed C5a/IL-8-inhibitor activity that could be further induced with phorbol myristate acetate (PMA) and IL-1 beta. Very low levels of chemotactic inhibitor were evident in skin fibroblast cultures or in peritoneal and skin fibroblasts obtained from FMF patients. MEFV was expressed in peritoneal and skin fibroblasts at a lower level than in neutrophils and could be further induced by PMA and IL-1 beta. In the FMF cultures, the MEFV transcript carried the M694V mutation, consistent with the genetic defect found in patients with this disease. MEFV was also expressed in other cell lines that do not produce C5a/IL-8 inhibitor. These findings suggest that human primary fibroblast cultures express MEFV and produce C5a/IL-8-inhibitor activity. The interrelationship between pyrin, the MEFV product, and the C5a/IL-8 inhibitor requires further investigation. (Blood. 2000;96:727-731)

  11. Plasmid-based generation of induced neural stem cells from adult human fibroblasts

    Directory of Open Access Journals (Sweden)

    Philipp Capetian

    2016-10-01

    Full Text Available Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72% and glial cells (9% astrocytes, 6% oligodendrocytes. Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts. Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside

  12. The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    van Winkelhoff Arie J

    2010-01-01

    Full Text Available Abstract Background Periodontitis is a bacterial infection of the periodontal tissues. The Gram-negative anaerobic bacterium Porphyromonas gingivalis is considered a major causative agent. One of the virulence factors of P. gingivalis is capsular polysaccharide (CPS. Non-encapsulated strains have been shown to be less virulent in mouse models than encapsulated strains. Results To examine the role of the CPS in host-pathogen interactions we constructed an insertional isogenic P. gingivalis knockout in the epimerase-coding gene epsC that is located at the end of the CPS biosynthesis locus. This mutant was subsequently shown to be non-encapsulated. K1 capsule biosynthesis could be restored by in trans expression of an intact epsC gene. We used the epsC mutant, the W83 wild type strain and the complemented mutant to challenge human gingival fibroblasts to examine the immune response by quantification of IL-1β, IL-6 and IL-8 transcription levels. For each of the cytokines significantly higher expression levels were found when fibroblasts were challenged with the epsC mutant compared to those challenged with the W83 wild type, ranging from two times higher for IL-1β to five times higher for IL-8. Conclusions These experiments provide the first evidence that P. gingivalis CPS acts as an interface between the pathogen and the host that may reduce the host's pro-inflammatory immune response. The higher virulence of encapsulated strains may be caused by this phenomenon which enables the bacteria to evade the immune system.

  13. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiawen [Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research (Singapore); Itahana, Koji, E-mail: koji.itahana@duke-nus.edu.sg [Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School (Singapore); Baskar, Rajamanickam, E-mail: r.baskar@nccs.com.sg [Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research (Singapore); Department of Radiation Oncology, National Cancer Centre (Singapore)

    2015-02-27

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G{sub 1}/S or G{sub 2}/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G{sub 0}, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its

  14. Cytotoxic and Oxidative Stress Caused by Cadmium and Lead on Human Skin Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Ali Beman Zaree Mahmodabady

    2006-01-01

    Full Text Available Introduction: Heavy metals are important occupational andenvironmental pollutants that cause damage to various organs.Although there is no effective therapy for such a poisoning,metallothionein has been shown to play a key role in thedetoxification of cadmium (Cd. Evidence in the literature suggeststhat superoxide dismutase, glutathione peroxidase, and catalaseconstitute important defense mechanisms against oxygen toxicity inthe cells. The aim of this study was to investigate the effect ofcadmium chloride and Pb-acetate on antioxidant enzymes in thehuman skin fibroblast cells (HF2FF.Material and Methods: The human skin fibroblast (HF2FF cellswere incubated in serum-free medium containing 20 μM CdCl2 for18 hr three times a week. The same exposure to an equimolar doseof Pb-acetate was performed. After each exposure and after threetimes exposure the cells were collected and cell viability, thecontents of superoxide dismutase (SOD, catalase, glutathioneperoxidase (GSH-Px, GSH and malondialdehyde (MDA weremeasured.Results: Cd caused cytotoxicity and inhibition of glutathioneperoxidase (GSH-Px and SOD activity, as well as depletion of thereduced form of glutathione (GSH in the cell. The level of lipidperoxidation (LP was increased, but catalase activity was notsignificantly altered. These defects were increased with repeatedexposures. The same exposure to an equimolar dose of Pb-acetateevoked only inhibition of GSH-Px and SOD. The values of GSH,catalase and LP activity remained unchanged.Conclusion: The inhibition of GSH-Px and SOD may be consideredas an important biomarker of the toxic effect of metals.

  15. Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice.

    Science.gov (United States)

    Wu, Min; Jung, Lina; Cooper, Adrian B; Fleet, Christina; Chen, Lihao; Breault, Lyne; Clark, Kimberly; Cai, Zuhua; Vincent, Sylvie; Bottega, Steve; Shen, Qiong; Richardson, Andrea; Bosenburg, Marcus; Naber, Stephen P; DePinho, Ronald A; Kuperwasser, Charlotte; Robinson, Murray O

    2009-04-28

    Breast cancer development is a complex pathobiological process involving sequential genetic alterations in normal epithelial cells that results in uncontrolled growth in a permissive microenvironment. Accordingly, physiologically relevant models of human breast cancer that recapitulate these events are needed to study cancer biology and evaluate therapeutic agents. Here, we report the generation and utilization of the human breast cancer in mouse (HIM) model, which is composed of genetically engineered primary human breast epithelial organoids and activated human breast stromal cells. By using this approach, we have defined key genetic events required to drive the development of human preneoplastic lesions as well as invasive adenocarcinomas that are histologically similar to those in patients. Tumor development in the HIM model proceeds through defined histological stages of hyperplasia, DCIS to invasive carcinoma. Moreover, HIM tumors display characteristic responses to targeted therapies, such as HER2 inhibitors, further validating the utility of these models in preclinical compound testing. The HIM model is an experimentally tractable human in vivo system that holds great potential for advancing our basic understanding of cancer biology and for the discovery and testing of targeted therapies.

  16. Secreted proteoglycans directly mediate human embryonic stem cell-basic fibroblast growth factor 2 interactions critical for proliferation.

    Science.gov (United States)

    Levenstein, Mark E; Berggren, W Travis; Lee, Ji Eun; Conard, Kevin R; Llanas, Rachel A; Wagner, Ryan J; Smith, Lloyd M; Thomson, James A

    2008-12-01

    Human embryonic stem (ES) cells can be maintained in an undifferentiated state if the culture medium is first conditioned on a layer of mouse embryonic fibroblast (MEF) feeder cells. Here we show that human ES cell proliferation is coordinated by MEF-secreted heparan sulfate proteoglycans (HSPG) in conditioned medium (CM). These HSPG and other heparinoids can stabilize basic fibroblast growth factor (FGF2) in unconditioned medium at levels comparable to those observed in CM. They also directly mediate binding of FGF2 to the human ES cell surface, and their removal from CM impairs proliferation. Finally, we have developed a purification scheme for MEF-secreted HSPG in CM. Using column chromatography, immunoblotting, and mass spectrometry-based proteomic analysis, we have identified multiple HSPG species in CM. The results demonstrate that HSPG are key signaling cofactors in CM-based human ES cell culture.

  17. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    Directory of Open Access Journals (Sweden)

    Deglesne PA

    2016-02-01

    Full Text Available Pierre-Antoine Deglesne,* Rodrigo Arroyo,* Evgeniya Ranneva, Philippe Deprez Research and Development, SKIN TECH PHARMA GROUP, Castelló d'Empúries, Spain  *These authors contributed equally to this work Abstract: Mesotherapy/biorevitalization with hyaluronic acid (HA is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS® (Repairs, Refills, Stimulates HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15% and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.Keywords: mesotherapy, medical device, RRS, collagen, elastin, extracellular matrix

  18. Salamander-Derived, Human-Optimized nAG Protein Suppresses Collagen Synthesis and Increases Collagen Degradation in Primary Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Mohammad M. Al-Qattan

    2013-01-01

    Full Text Available Unlike humans, salamanders regrow their amputated limbs. Regeneration depends on the presence of regenerating axons which upregulate the expression of newt anterior gradient (nAG protein. We had the hypothesis that nAG might have an inhibitory effect on collagen production since excessive collagen production results in scarring, which is a major enemy to regeneration. nAG gene was designed, synthesized, and cloned. The cloned vector was then transfected into primary human fibroblasts. The results showed that the expression of nAG protein in primary human fibroblast cells suppresses the expression of collagen I and III, with or without TGF-β1 stimulation. This suppression is due to a dual effect of nAG both by decreasing collagen synthesis and by increasing collagen degradation. Furthermore, nAG had an inhibitory effect on proliferation of transfected fibroblasts. It was concluded that nAG suppresses collagen through multiple effects.

  19. Salamander-derived, human-optimized nAG protein suppresses collagen synthesis and increases collagen degradation in primary human fibroblasts.

    Science.gov (United States)

    Al-Qattan, Mohammad M; Shier, Medhat K; Abd-Alwahed, Mervat M; Mawlana, Ola H; El-Wetidy, Mohammed S; Bagayawa, Reginald S; Ali, Hebatallah H; Al-Nbaheen, May S; Aldahmash, Abdullah M

    2013-01-01

    Unlike humans, salamanders regrow their amputated limbs. Regeneration depends on the presence of regenerating axons which upregulate the expression of newt anterior gradient (nAG) protein. We had the hypothesis that nAG might have an inhibitory effect on collagen production since excessive collagen production results in scarring, which is a major enemy to regeneration. nAG gene was designed, synthesized, and cloned. The cloned vector was then transfected into primary human fibroblasts. The results showed that the expression of nAG protein in primary human fibroblast cells suppresses the expression of collagen I and III, with or without TGF- β 1 stimulation. This suppression is due to a dual effect of nAG both by decreasing collagen synthesis and by increasing collagen degradation. Furthermore, nAG had an inhibitory effect on proliferation of transfected fibroblasts. It was concluded that nAG suppresses collagen through multiple effects.

  20. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  1. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells.

    Science.gov (United States)

    Wang, Xiao; Peden, Keith; Murata, Haruhiko

    2015-12-16

    Human cytomegalovirus (HCMV) is a leading cause of congenital infection that can result in serious disabilities in affected children. To facilitate HCMV vaccine development, a microscale neutralization assay based on reverse transcription quantitative PCR (RT-qPCR) was developed to quantify HCMV-neutralizing antibodies. Our approach relies on the generation of crude lysates from virus-infected cells that are amenable to direct analysis by RT-qPCR, thereby circumventing rate-limiting procedures associated with sample RNA extraction and purification. By serial passaging of the laboratory HCMV strain AD169 in epithelial cells (ARPE-19), a revertant virus with restored epithelial cell tropism, designated AD169(wt131), was obtained. AD169 and AD169(wt131) were evaluated in both epithelial cells (ARPE-19) and fibroblasts (MRC-5) by one-step RT-qPCR targeting the immediate-early gene IE1 transcript of HCMV. Expression kinetics indicated that RT-qPCR assessment could be conducted as early as 6h post-infection. Human serum samples (n=30) from healthy donors were tested for HCMV-specific IgG using a commercially available ELISA and for HCMV-neutralizing activity using our RT-qPCR-based neutralization assay. In agreement with the ELISA results, higher neutralizing activity was observed in the HCMV IgG seropositive group when compared with the HCMV IgG seronegative group. In addition, HCMV IgG seropositive human sera exhibited higher neutralizing titers using epithelial cells compared with using fibroblasts (geometric mean titers of 344 and 8 in ARPE-19 cells and MRC-5 cells, respectively). Our assay was robust to variation in input virus dose. In addition, a simple lysis buffer containing a non-ionic detergent was successfully demonstrated to be a less costly alternative to commercial reagents for cell-lysate preparation. Thus, our rapid HCMV neutralization assay may be a straightforward and flexible high-throughput tool for measuring antibody responses induced by vaccination

  2. MicroRNA Regulation of Human Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Shimono

    2015-12-01

    Full Text Available MicroRNAs (miRNAs are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression.

  3. CHL1 is involved in human breast tumorigenesis and progression

    Energy Technology Data Exchange (ETDEWEB)

    He, Li-Hong [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ma, Qin [Department of Oncology, The General Hospital of Tianjin Medical University, Tianjin (China); Shi, Ye-Hui [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie; Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Shu-Fen [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Tong, Zhong-Sheng, E-mail: 83352162@qq.com [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Canc