WorldWideScience

Sample records for human brain vascular

  1. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alcendor Donald J

    2012-05-01

    Full Text Available Abstract Background Congenital human cytomegalovirus (HCMV infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV, microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC. However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha, interleukin-1 beta (IL-1beta, and interleukin-6 (IL-6. Pericytes exposed to SBCMV elicited

  2. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Science.gov (United States)

    2012-01-01

    Background Congenital human cytomegalovirus (HCMV) infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR) methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV), microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC). However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1beta), and interleukin-6 (IL-6). Pericytes exposed to SBCMV elicited higher levels of IL-6

  3. Brain Tumor Tropism of Transplanted Human Neural Stem Cells Is Induced by Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Nils Ole Schmidt

    2005-06-01

    Full Text Available The transplantation of neural stem cells (NSCs offers a new potential therapeutic approach as a cell-based delivery system for gene therapy in brain tumors. This is based on the unique capacity of NSCs to migrate throughout the brain and to target invading tumor cells. However, the signals controlling the targeted migration of transplanted NSCs are poorly defined. We analyzed the in vitro and in vivo effects of angiogenic growth factors and protein extracts from surgical specimens of brain tumor patients on NSC migration. Here, we demonstrate that vascular endothelial growth factor (VEGF is able to induce a long-range attraction of transplanted human NSCs from distant sites in the adult brain. Our results indicate that tumorupregulated VEGF and angiogenic-activated microvasculature are relevant guidance signals for NSC tropism toward brain tumors.

  4. Brain Vascular Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Bàrbara Laviña

    2016-12-01

    Full Text Available Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases.

  5. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma.

    NARCIS (Netherlands)

    Kusters, B.; Waal, R.M.W. de; Wesseling, P.; Verrijp, K.; Maass, C.N.; Heerschap, A.; Barentsz, J.O.; Sweep, C.G.J.; Ruiter, D.J.; Leenders, W.P.J.

    2003-01-01

    We reported previously that vascular endothelial growth factor isoform A (VEGF-A) expression by Mel57 human melanoma cells led to tumor progression in a murine brain metastasis model in an angiogenesis-independent fashion by dilation of co-opted, pre-existing vessels and concomitant enhanced blood

  6. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression.

    Science.gov (United States)

    Winderlich, Joshua N; Kremer, Karlea L; Koblar, Simon A

    2016-06-01

    Stem cell therapy is a promising new treatment option for stroke. Intravascular administration of stem cells is a valid approach as stem cells have been shown to transmigrate the blood-brain barrier. The mechanism that causes this effect has not yet been elucidated. We hypothesized that stem cells would mediate localized discontinuities in the blood-brain barrier, which would allow passage into the brain parenchyma. Here, we demonstrate that adult human dental pulp stem cells express a soluble factor that increases permeability across an in vitro model of the blood-brain barrier. This effect was shown to be the result of vascular endothelial growth factor-a. The effect could be amplified by exposing dental pulp stem cell to stromal-derived factor 1, which stimulates vascular endothelial growth factor-a expression. These findings support the use of dental pulp stem cell in therapy for stroke. © The Author(s) 2015.

  7. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia.

    Science.gov (United States)

    Southern, Louise; Williams, Jonathan; Esiri, Margaret M

    2007-10-16

    Advanced glycation end-products (AGEs) and their receptor (RAGE) occur in dementia of the Alzheimer's type and diabetic microvascular disease. Accumulation of AGEs relates to risk factors for vascular dementia with ageing, including hypertension and diabetes. Cognitive dysfunction in vascular dementia may relate to microvascular disease resembling that in diabetes. We tested if, among people with cerebrovascular disease, (1) those with dementia have higher levels of neuronal and vascular AGEs and (2) if cognitive dysfunction depends on neuronal and/or vascular AGE levels. Brain Sections from 25 cases of the OPTIMA (Oxford Project to Investigate Memory and Ageing) cohort, with varying degrees of cerebrovascular pathology and cognitive dysfunction (but only minimal Alzheimer type pathology) were immunostained for Nepsilon-(carboxymethyl)-lysine (CML), the most abundant AGE. The level of staining in vessels and neurons in the cortex, white matter and basal ganglia was compared to neuropsychological and other clinical measures. The probability of cortical neurons staining positive for CML was higher in cases with worse cognition (p = 0.01) or a history of hypertension (p = 0.028). Additionally, vascular CML staining related to cognitive impairment (p = 0.02) and a history of diabetes (p = 0.007). Neuronal CML staining in the basal ganglia related to a history of hypertension (p = 0.002). CML staining in cortical neurons and cerebral vessels is related to the severity of cognitive impairment in people with cerebrovascular disease and only minimal Alzheimer pathology. These findings support the possibility that cerebral accumulation of AGEs may contribute to dementia in people with cerebrovascular disease.

  8. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  9. Caspase-Cleaved Tau Co-Localizes with Early Tangle Markers in the Human Vascular Dementia Brain.

    Science.gov (United States)

    Day, Ryan J; Mason, Maria J; Thomas, Chloe; Poon, Wayne W; Rohn, Troy T

    2015-01-01

    Vascular dementia (VaD) is the second most common form of dementia in the United States and is characterized as a cerebral vessel vascular disease that leads to ischemic episodes. Whereas the relationship between caspase-cleaved tau and neurofibrillary tangles (NFTs) in Alzheimer's disease (AD) has been previously described, whether caspase activation and cleavage of tau occurs in VaD is presently unknown. To investigate a potential role for caspase-cleaved tau in VaD, we analyzed seven confirmed cases of VaD by immunohistochemistry utilizing a well-characterized antibody that specifically detects caspase-cleaved tau truncated at Asp421. Application of this antibody (TauC3) revealed consistent labeling within NFTs, dystrophic neurites within plaque-rich regions and corpora amylacea (CA) in the human VaD brain. Labeling of CA by the TauC3 antibody was widespread throughout the hippocampus proper, was significantly higher compared to age matched controls, and co-localized with ubiquitin. Staining of the TauC3 antibody co-localized with MC-1, AT8, and PHF-1 within NFTs. Quantitative analysis indicated that roughly 90% of PHF-1-labeled NFTs contained caspase-cleaved tau. In addition, we documented the presence of active caspase-3 within plaques, blood vessels and pretangle neurons that co-localized with TauC3. Collectively, these data support a role for the activation of caspase-3 and proteolytic cleavage of TauC3 in VaD providing further support for the involvement of this family of proteases in NFT pathology.

  10. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells.

    Science.gov (United States)

    Lin, Chih-Yang; Hung, Shih-Ya; Chen, Hsien-Te; Tsou, Hsi-Kai; Fong, Yi-Chin; Wang, Shih-Wei; Tang, Chih-Hsin

    2014-10-15

    Chondrosarcomas are a type of primary malignant bone cancer, with a potent capacity for local invasion and distant metastasis. Brain-derived neurotrophic factor (BDNF) is commonly upregulated during neurogenesis. The aim of the present study was to examine the mechanism involved in BDNF-mediated vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma cells. Here, we knocked down BDNF expression in chondrosarcoma cells and assessed their capacity to control VEGF expression and angiogenesis in vitro and in vivo. We found knockdown of BDNF decreased VEGF expression and abolished chondrosarcoma conditional medium-mediated angiogenesis in vitro as well as angiogenesis effects in vivo in the chick chorioallantoic membrane and Matrigel plug nude mouse models. In addition, in the xenograft tumor angiogenesis model, the knockdown of BDNF significantly reduced tumor growth and tumor-associated angiogenesis. BDNF increased VEGF expression and angiogenesis through the TrkB receptor, PLCγ, PKCα, and the HIF-1α signaling pathway. Finally, we analyzed samples from chondrosarcoma patients by immunohistochemical staining. The expression of BDNF and VEGF protein in 56 chondrosarcoma patients was significantly higher than in normal cartilage. In addition, the high level of BDNF expression correlated strongly with VEGF expression and tumor stage. Taken together, our results indicate that BDNF increases VEGF expression and enhances angiogenesis through a signal transduction pathway that involves the TrkB receptor, PLCγ, PKCα, and the HIF-1α. Therefore, BDNF may represent a novel target for anti-angiogenic therapy for human chondrosarcoma. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Vascular endothelial growth factor and vascular endothelial growth factor receptor-2 expression in mdx mouse brain.

    Science.gov (United States)

    Nico, Beatrice; Corsi, Patrizia; Vacca, Angelo; Roncali, Luisa; Ribatti, Domenico

    2002-10-25

    Recent data have demonstrated that vascular endothelial growth factor (VEGF) is expressed by subsets of neurons, coincident with angiogenesis within its developing cerebral cortex. In this study, with the aim of elucidating the mechanisms of vascular involvement during brain impairment in Duchenne muscular distrophy (DMD), we have correlated the vascular density with VEGF and VEGF receptor-2 (VEGFR-2) expression in the brain cortex of normal and mdx mouse, an animal model with a genetic defect in a region homologous with the human DMD gene. Results showed that in mdx mouse, tissue area occupied by microvessels positive to factor VIII related antigen and VEGFR-2 increased in parallel to the tissue area occupied by neurons positive to VEGF. Our data suggest that increased vascularity in the brain of mdx mouse may be due, at least in part, to proliferation of endothelial cells in response to VEGF secreted by neuronal cells.

  12. Protecting against vascular disease in brain

    Science.gov (United States)

    2011-01-01

    Endothelial cells exert an enormous influence on blood vessels throughout the circulation, but their impact is particularly pronounced in the brain. New concepts have emerged recently regarding the role of this cell type and mechanisms that contribute to endothelial dysfunction and vascular disease. Activation of the renin-angiotensin system plays a prominent role in producing these abnormalities. Both oxidative stress and local inflammation are key mechanisms that underlie vascular disease of diverse etiology. Endogenous mechanisms of vascular protection are also present, including antioxidants, anti-inflammatory molecules, and peroxisome proliferator-activated receptor-γ. Despite their clear importance, studies of mechanisms that underlie cerebrovascular disease continue to lag behind studies of vascular biology in general. Identification of endogenous molecules and pathways that protect the vasculature may result in targeted approaches to prevent or slow the progression of vascular disease that causes stroke and contributes to the vascular component of dementia and Alzheimer's disease. PMID:21335467

  13. The vascular basement membrane as "soil" in brain metastasis.

    Directory of Open Access Journals (Sweden)

    W Shawn Carbonell

    2009-06-01

    Full Text Available Brain-specific homing and direct interactions with the neural substance are prominent hypotheses for brain metastasis formation and a modern manifestation of Paget's "seed and soil" concept. However, there is little direct evidence for this "neurotropic" growth in vivo. In contrast, many experimental studies have anecdotally noted the propensity of metastatic cells to grow along the exterior of pre-existing vessels of the CNS, a process termed vascular cooption. These observations suggest the "soil" for malignant cells in the CNS may well be vascular, rather than neuronal. We used in vivo experimental models of brain metastasis and analysis of human clinical specimens to test this hypothesis. Indeed, over 95% of early micrometastases examined demonstrated vascular cooption with little evidence for isolated neurotropic growth. This vessel interaction was adhesive in nature implicating the vascular basement membrane (VBM as the active substrate for tumor cell growth in the brain. Accordingly, VBM promoted adhesion and invasion of malignant cells and was sufficient for tumor growth prior to any evidence of angiogenesis. Blockade or loss of the beta1 integrin subunit in tumor cells prevented adhesion to VBM and attenuated metastasis establishment and growth in vivo. Our data establishes a new understanding of CNS metastasis formation and identifies the neurovasculature as the critical partner for such growth. Further, we have elucidated the mechanism of vascular cooption for the first time. These findings may help inform the design of effective molecular therapies for patients with fatal CNS malignancies.

  14. Alzheimer and vascular brain disease: Senile dementia

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Alois Alzheimer is best known for his description of a novel disease, subsequently named after him. However, his wide range of interests also included vascular brain diseases. He described Senile dementia, a highly heterogeneous condition, and was able not only to distinguish it from syphilitic brain disease, but also to discriminate two clinicopathological subtypes, that may be labeled a "arteriosclerotic subtype", comparable to the present clinicopathological continuum of "Vascular cognitive impairment", and another as a "neurodegenerative subtype", characterized by primary [cortical] ganglion cell [nerve cells] degeneration, possibly foreshadowing a peculiar presenile disease that he was to describe some years later and would carry his name. He also considered the possibility of a senile presentation of this disease subtype, which was described by Oskar Fischer a short time later. Considering the clinicopathological overlapping features of the "arteriosclerotic subtype" of Senile dementia with Arteriosclerotic atrophy of the brain, it might be possible to consider that both represent a single condition.

  15. Alzheimer and vascular brain disease: Senile dementia.

    Science.gov (United States)

    Engelhardt, Eliasz; Grinberg, Lea T

    2015-01-01

    Alois Alzheimer is best known for his description of a novel disease, subsequently named after him. However, his wide range of interests also included vascular brain diseases. He described Senile dementia, a highly heterogeneous condition, and was able not only to distinguish it from syphilitic brain disease, but also to discriminate two clinicopathological subtypes, that may be labeled a "arteriosclerotic subtype", comparable to the present clinicopathological continuum of "Vascular cognitive impairment", and another as a "neurodegenerative subtype", characterized by primary [cortical] ganglion cell [nerve cells] degeneration, possibly foreshadowing a peculiar presenile disease that he was to describe some years later and would carry his name. He also considered the possibility of a senile presentation of this disease subtype, which was described by Oskar Fischer a short time later. Considering the clinicopathological overlapping features of the "arteriosclerotic subtype" of Senile dementia with Arteriosclerotic atrophy of the brain, it might be possible to consider that both represent a single condition.

  16. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    Science.gov (United States)

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Vascular damage after fractionated whole-brain irradiation in rats.

    Science.gov (United States)

    Brown, William R; Thore, Clara R; Moody, Dixon M; Robbins, Michael E; Wheeler, Kenneth T

    2005-11-01

    Whole-brain irradiation of animals and humans has been reported to lead to late delayed structural (vascular damage, demyelination, white matter necrosis) and functional (cognitive impairment) alterations. However, most of the experimental data on late delayed radiation-induced brain injury have been generated with large single doses or short fractionation schemes that may provide a less accurate indication of the events that occur after clinical whole-brain radiotherapy. The pilot study reported here investigates cerebral vascular pathology in male Fischer 344 rats after whole-brain irradiation with a fractionated total dose of 137Cs gamma rays that is expected to be biologically similar to that given to brain tumor patients. The brains of young adult rats (4 months old) were irradiated with a total dose of 40 Gy, given as eight 5-Gy fractions twice per week for 4 weeks. Brain capillary and arteriole pathology was studied using an alkaline phosphatase enzyme histochemistry method; vessel density and length were quantified using a stereology method with computerized image processing and analysis. Vessel density and length were unchanged 24 h after the last dose, but at 10 weeks postirradiation, both were substantially decreased. After 20 weeks, the rate of decline in the vessel density and length in irradiated rats was similar to that in unirradiated age-matched controls. No gross gliosis or demyelination was observed 12 months postirradiation using conventional histopathology techniques. We suggest that the early (10-week) and persistent vascular damage that occurs after a prolonged whole-brain irradiation fractionation scheme may play an important role in the development of late delayed radiation-induced brain injury.

  18. Brain vascular changes in Cockayne syndrome.

    Science.gov (United States)

    Hayashi, Masaharu; Miwa-Saito, Naho; Tanuma, Naoyuki; Kubota, Masaya

    2012-04-01

    Cockayne syndrome (CS) and xeroderma pigmentosum (XP) are caused by deficient nucleotide excision repair. CS is characterized by cachectic dwarfism, mental disability, microcephaly and progeria features. Neuropathological examination of CS patients reveals dysmyelination and basal ganglia calcification. In addition, arteriosclerosis in the brain and subdural hemorrhage have been reported in a few CS cases. Herein, we performed elastica van Gieson (EVG) staining and immunohistochemistry for collagen type IV, CD34 and aquaporin 4 to evaluate the brain vessels in autopsy cases of CS, XP group A (XP-A) and controls. Small arteries without arteriosclerosis in the subarachnoid space had increased in CS cases but not in either XP-A cases or controls. In addition, string vessels (twisted capillaries) in the cerebral white matter and increased density of CD34-immunoreactive vessels were observed in CS cases. Immunohistochemistry findings for aquaporin 4 indicated no pathological changes in either CS or XP-A cases. Hence, the increased subarachnoid artery space may have caused subdural hemorrhage. Since such vascular changes were not observed in XP-A cases, the increased density of vessels in CS cases was not caused by brain atrophy. Hence, brain vascular changes may be involved in neurological disturbances in CS. © 2011 Japanese Society of Neuropathology.

  19. G-CSF protects human brain vascular endothelial cells injury induced by high glucose, free fatty acids and hypoxia through MAPK and Akt signaling.

    Directory of Open Access Journals (Sweden)

    Jingjing Su

    Full Text Available Granulocyte-colony stimulating factor (G-CSF has been shown to play a neuroprotective role in ischemic stroke by mobilizing bone marrow (BM-derived endothelial progenitor cells (EPCs, promoting angiogenesis, and inhibiting apoptosis. Impairments in mobilization and function of the BM-derived EPCs have previously been reported in animal and human studies of diabetes where there is both reduction in the levels of the BM-derived EPCs and its ability to promote angiogenesis. This is hypothesized to account for the pathogenesis of diabetic vascular complications such as stroke. Here, we sought to investigate the effects of G-CSF on diabetes-associated cerebral vascular defect. We observed that pretreatment of the cultured human brain vascular endothelial cells (HBVECs with G-CSF largely prevented cell death induced by the combination stimulus with high glucose, free fatty acids (FFA and hypoxia by increasing cell viability, decreasing apoptosis and caspase-3 activity. Cell ultrastructure measured by transmission electron microscope (TEM revealed that G-CSF treatment nicely reduced combination stimulus-induced cell apoptosis. The results from fluorescent probe Fluo-3/AM showed that G-CSF greatly suppressed the levels of intracellular calcium ions under combination stimulus. We also found that G-CSF enhanced the expression of cell cycle proteins such as human cell division cycle protein 14A (hCdc14A, cyclinB and cyclinE, inhibited p53 activity, and facilitated cell cycle progression following combination stimulus. In addition, activation of extracellular signal-regulated kinase1/2 (ERK1/2 and Akt, and deactivation of c-Jun N terminal kinase (JNK and p38 were proved to be required for the pro-survival effects of G-CSF on HBVECs exposed to combination stimulus. Overall, G-CSF is capable of alleviating HBVECs injury triggered by the combination administration with high glucose, FFA and hypoxia involving the mitogen-activated protein kinases (MAPK and Akt

  20. Varicella-Zoster Virus Downregulates Programmed Death Ligand 1 and Major Histocompatibility Complex Class I in Human Brain Vascular Adventitial Fibroblasts, Perineurial Cells, and Lung Fibroblasts.

    Science.gov (United States)

    Jones, Dallas; Blackmon, Anna; Neff, C Preston; Palmer, Brent E; Gilden, Don; Badani, Hussain; Nagel, Maria A

    2016-12-01

    Varicella-zoster virus (VZV) vasculopathy produces stroke, giant cell arteritis, and granulomatous aortitis, and it develops after virus reactivates from ganglia and spreads transaxonally to arterial adventitia, resulting in persistent inflammation and pathological vascular remodeling. The mechanism(s) by which inflammatory cells persist in VZV-infected arteries is unknown; however, virus-induced dysregulation of programmed death ligand 1 (PD-L1) may play a role. Specifically, PD-L1 can be expressed on virtually all nucleated cells and suppresses the immune system by interacting with the programmed cell death protein receptor 1, found exclusively on immune cells; thus, downregulation of PD-L1 may promote inflammation, as seen in some autoimmune diseases. Both flow cytometry and immunofluorescence analyses to test whether VZV infection of adventitial cells downregulates PD-L1 showed decreased PD-L1 expression in VZV-infected compared to mock-infected human brain vascular adventitial fibroblasts (HBVAFs), perineural cells (HPNCs), and fetal lung fibroblasts (HFLs) at 72 h postinfection. Quantitative RT-PCR analyses showed no change in PD-L1 transcript levels between mock- and VZV-infected cells, indicating a posttranscriptional mechanism for VZV-mediated downregulation of PD-L1. Flow cytometry analyses showed decreased major histocompatibility complex class I (MHC-I) expression in VZV-infected cells and adjacent uninfected cells compared to mock-infected cells. These data suggest that reduced PD-L1 expression in VZV-infected adventitial cells contribute to persistent vascular inflammation observed in virus-infected arteries from patients with VZV vasculopathy, while downregulation of MHC-I prevents viral clearance. Here, we provide the first demonstration that VZV downregulates PD-L1 expression in infected HBVAFs, HPNCs, and HFLs, which, together with the noted VZV-mediated downregulation of MHC-I, might foster persistent inflammation in vessels, leading to

  1. Neuroimaging Biomarkers of Caloric Restriction on Brain Metabolic and Vascular Functions.

    Science.gov (United States)

    Lin, Ai-Ling; Parikh, Ishita; Hoffman, Jared D; Ma, David

    2017-03-01

    Non-invasive neuroimaging methods have been developed as powerful tools for identifying in vivo brain functions for studies in humans and animals. Here we review the imaging biomarkers that are being used to determine the changes within brain metabolic and vascular functions induced by caloric restriction (CR), and their potential usefulness for future studies with dietary interventions in humans. CR causes an early shift in brain metabolism of glucose to ketone bodies, and enhances ATP production, neuronal activity and cerebral blood flow (CBF). With age, CR preserves mitochondrial activity, neurotransmission, CBF, and spatial memory. CR also reduces anxiety in aging mice. Neuroimaging studies in humans show that CR restores abnormal brain activity in the amygdala of women with obesity and enhances brain connectivity in old adults. Neuroimaging methods have excellent translational values and can be widely applied in future studies to identify dietary effects on brain functions in humans.

  2. Alzheimer and vascular brain diseases: Focal and diffuse subforms

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Alois Alzheimer is best known for his description of the pre-senile neurodegenerative disease named after him. However, his previous interest in vascular brain diseases, underlying cognitive and behavioral changes, was very strong. Besides describing the Arteriosclerotic atrophy of the brain and the arteriosclerotic subtype of Senile dementia which he viewed as main forms of vascular brain diseases, he also identified and described a series of conditions he considered subforms. These may be divided, as suggested by the authors of the present paper, into 3 groups: gliosis and sclerosis, subcortical atrophies, and apoplectic. The subforms of the three groups present characteristic neuropathological features and clinical, cognitive and behavioral manifestations. These provide the basis, together with part of the main forms, for the contemporary condition known as Vascular Cognitive Impairment.

  3. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.; Reiman, E.M. [Univ. of Arizona, Tucson, AZ (United States)]|[Good Samaritan Regional Medical Center, Phoenix, AZ (United States). PET Center; Lawson, M.; Yun, L.S.; Bandy, D. [Good Samaritan Regional Medical Center, Phoenix, AZ (United States). PET Center

    1996-12-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0--60 s after radiotracer administrations, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20--80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the applications of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted us to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging.

  4. Alois Alzheimer and vascular brain disease: Arteriosclerotic atrophy of the brain

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Alois Alzheimer is best known for his description of neurofibrillary changes in brain neurons of a demented patient, identifying a novel disease, soon named after him by Kraepelin. However, the range of his studies was broad, including vascular brain diseases, published between 1894 and 1902. Alzheimer described the clinical picture of Arteriosclerotic atrophy of the brain, differentiating it from other similar disorders. He stated that autopsy allowed pathological distinction between arteriosclerosis and syphilis, thereby achieving some of his objectives of segregating disorders and separating them from syphilis. His studies contributed greatly to establishing the key information on vascular brain diseases, predating the present state of knowledge on the issue, while providing early descriptions of what would be later regarded as the dimensional presentation of the now called "Vascular cognitive impairment", constituted by a spectrum that includes a stage of "Vascular cognitive impairment not dementia" and another of "Vascular dementia".

  5. Large-scale identification of human cerebrovascular proteins: Inter-tissue and intracerebral vascular protein diversity.

    Directory of Open Access Journals (Sweden)

    Soo Jung Lee

    Full Text Available The human cerebrovascular system is responsible for regulating demand-dependent perfusion and maintaining the blood-brain barrier (BBB. In addition, defects in the human cerebrovasculature lead to stroke, intracerebral hemorrhage, vascular malformations, and vascular cognitive impairment. The objective of this study was to discover new proteins of the human cerebrovascular system using expression data from the Human Protein Atlas, a large-scale project which allows public access to immunohistochemical analysis of human tissues. We screened 20,158 proteins in the HPA and identified 346 expression patterns correlating to blood vessels in human brain. Independent experiments showed that 51/52 of these distributions could be experimentally replicated across different brain samples. Some proteins (40% demonstrated endothelial cell (EC-enriched expression, while others were expressed primarily in vascular smooth muscle cells (VSMC; 18%; 39% of these proteins were expressed in both cell types. Most brain EC markers were tissue oligospecific; that is, they were expressed in endothelia in an average of 4.8 out of 9 organs examined. Although most markers expressed in endothelial cells of the brain were present in all cerebral capillaries, a significant number (21% were expressed only in a fraction of brain capillaries within each brain sample. Among proteins found in cerebral VSMC, virtually all were also expressed in peripheral VSMC and in non-vascular smooth muscle cells (SMC. Only one was potentially brain specific: VHL (Von Hippel-Lindau tumor suppressor. HRC (histidine rich calcium binding protein and VHL were restricted to VSMC and not found in non-vascular tissues such as uterus or gut. In conclusion, we define a set of brain vascular proteins that could be relevant to understanding the unique physiology and pathophysiology of the human cerebrovasculature. This set of proteins defines inter-organ molecular differences in the vasculature and

  6. Blood-brain barrier damage in vascular dementia.

    Science.gov (United States)

    Ueno, Masaki; Chiba, Yoichi; Matsumoto, Koichi; Murakami, Ryuta; Fujihara, Ryuji; Kawauchi, Machi; Miyanaka, Hiroshi; Nakagawa, Toshitaka

    2016-04-01

    New findings on flow or drainage pathways of brain interstitial fluid and cerebrospinal fluid have been made. The interstitial fluid flow has an effect on the passage of blood-borne substances in the brain parenchyma, especially in areas near blood-brain barrier (BBB)-free regions. Actually, blood-borne substances can be transferred in areas with intact BBB function, such as the hippocampus, the corpus callosum, periventricular areas, and medial portions of the amygdala, presumably through leaky vessels in the subfornical organs or the choroid plexus. Increasing evidence indicates that dysfunction of the BBB function may play a significant role in the pathogenesis of vascular dementia. Accordingly, we have examined which insults seen in patients suffering from vascular dementia have an effect on the BBB using experimental animal models exhibiting some phenotypes of vascular dementia. The BBB in the hippocampus was clearly deteriorated in Mongolian gerbils exposed to acute ischemia followed by reperfusion and also in stroke-prone spontaneously hypertensive rats (SHRSP) showing hypertension. The BBB in the corpus callosum was clearly deteriorated in Wistar rats with permanent ligation of the bilateral common carotid arteries showing chronic hypoperfusion. The BBB in the hippocampus and the olfactory bulb was mildly deteriorated in aged senescence accelerated prone mice (SAMP8) showing cognitive dysfunction. The BBB in the hippocampus was mildly deteriorated in aged animals with hydrocephalus. Mild endothelial damage was seen in hyperglycemic db/db mice. In addition, mRNA expression of osteopontin, matrix metalloproteinase-13 (MMP-13), and CD36 was increased in vessels showing BBB damage in hypertensive SHRSP. As osteopontin, MMP-13 and CD36 are known to be related to brain injury and amyloid β accumulation or clearance, BBB damage followed by increased gene expression of these molecules not only contributes to the pathogenesis of vascular dementia, but also bridges

  7. Vascular patterning in human heterotopic ossification.

    Science.gov (United States)

    Cocks, Margaret; Mohan, Aditya; Meyers, Carolyn A; Ding, Catherine; Levi, Benjamin; McCarthy, Edward; James, Aaron W

    2017-05-01

    Heterotopic ossification (HO, also termed myositis ossificans) is the formation of extra-skeletal bone in muscle and soft tissues. HO is a tissue repair process gone awry, and is a common complication of surgery and traumatic injury. Medical strategies to prevent and treat HO fall well short of addressing the clinical need. Better characterization of the tissues supporting HO is critical to identifying therapies directed against this common and sometimes devastating condition. The physiologic processes of osteogenesis and angiogenesis are highly coupled and interdependent. However, few efforts have been made to document the vascular patterning within heterotopic ossification. Here, surgical pathology case files of 29 human HO specimens were examined by vascular histomorphometric analysis. Results demonstrate a temporospatial patterning of HO vascularity that depends on the "maturity" of the bony lesion. In sum, human HO demonstrates a time- and space-dependent pattern of vascularization suggesting a coupled pathophysiologic process involving the coordinate processes of osteogenesis and angiogenesis. Further imaging studies may be used to further characterize vasculogenesis within HO and whether anti-angiogenic therapies are a conceivable future therapy for this common condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Vascular endothelial growth factor blockade alters magnetic resonance imaging biomarkers of vascular function and decreases barrier permeability in a rat model of lung cancer brain metastasis.

    Science.gov (United States)

    Pishko, Gregory L; Muldoon, Leslie L; Pagel, Michael A; Schwartz, Daniel L; Neuwelt, Edward A

    2015-02-17

    Blockade of vascular endothelial growth factor (VEGF) to promote vascular normalization and inhibit angiogenesis has been proposed for the treatment of brain metastases; however, vascular normalization has not been well-characterized in this disease. We investigated the effect of treatment with bevacizumab anti-VEGF antibody on magnetic resonance imaging (MRI) biomarkers of brain tumor vascular characteristics in comparison to small molecule delivery in a rat model of human lung cancer brain metastasis. Athymic rats with A549 human lung adenocarcinoma intracerebral xenografts underwent MRI at 11.75 T before and one day after treatment with bevacizumab (n = 8) or saline control (n = 8) to evaluate tumor volume, free water content (edema), blood volume and vascular permeability (Ktrans). One day later, permeability to 14C-aminoisobutyric acid (AIB) was measured in tumor and brain to assess the penetration of a small drug-like molecule. In saline control animals, tumor volume, edema and permeability increased over the two day assessment period. Compared to controls, bevacizumab treatment slowed the rate of tumor growth (P = 0.003) and blocked the increase in edema (P = 0.033), but did not alter tumor blood volume. Bevacizumab also significantly reduced Ktrans (P = 0.033) and AIB passive permeability in tumor (P = 0.04), but not to peritumoral tissue or normal brain. Post-treatment Ktrans correlated with AIB levels in the bevacizumab-treated rats but not in the saline controls. The correlation of an MRI biomarker for decreased vascular permeability with decreased AIB concentration in tumor after antiangiogenic treatment suggests that bevacizumab partially restored the normal low permeability characteristics of the blood-brain barrier in a model of human lung cancer brain metastasis.

  9. Body representation in patients after vascular brain injuries

    OpenAIRE

    Razmus, Magdalena

    2017-01-01

    Neuropsychological literature suggests that body representation is a multidimensional concept consisting of various types of representations. Previous studies have demonstrated dissociations between three types of body representation specified by the kind of data and processes, i.e. body schema, body structural description, and body semantics. The aim of the study was to describe the state of body representation in patients after vascular brain injuries and to provide evidence for the differe...

  10. Selective brain cooling and its vascular basis in diving seals.

    Science.gov (United States)

    Blix, Arnoldus Schytte; Walløe, Lars; Messelt, Edward B; Folkow, Lars P

    2010-08-01

    Brain (T(brain)), intra-aorta (T(aorta)), latissimus dorsi muscle (T(m)) and rectal temperature (T(r)) were measured in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals during experimental dives in 4 degrees C water. The median brain cooling was about 1 degrees C during 15 min diving, but in some cases it was as much as 2.5 degrees C. Cooling rates were slow for the first couple of minutes, but increased significantly after about 5 min of diving. The onset of cooling sometimes occurred before the start of the dive, confirming that the cooling is under cortical control, like the rest of the diving responses. T(aorta) also fell significantly, and was always lower than T(brain), while T(m) was fairly stable during dives. Detailed studies of the vascular anatomy of front flippers revealed that brachial arterial blood can be routed either through flipper skin capillaries for nutritive purposes and return through sophisticated vascular heat exchangers to avoid heat loss to the environment, or, alternatively, through numerous arterio-venous shunts in the skin and return by way of large superficial veins, which then carry cold blood to the heart. In the latter situation the extent to which the brain is cooled is determined by the ratio of carotid to brachial arterial blood flow, and water temperature, and the cooling is selective in that only those organs that are circulated will be cooled. It is concluded that T(brain) is actively down-regulated during diving, sometimes by as much as 2.5 degrees C, whereby cerebral oxygen requirements may be reduced by as much as 25% during extended dives.

  11. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    Science.gov (United States)

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-11-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  12. Body representation in patients after vascular brain injuries.

    Science.gov (United States)

    Razmus, Magdalena

    2017-11-01

    Neuropsychological literature suggests that body representation is a multidimensional concept consisting of various types of representations. Previous studies have demonstrated dissociations between three types of body representation specified by the kind of data and processes, i.e. body schema, body structural description, and body semantics. The aim of the study was to describe the state of body representation in patients after vascular brain injuries and to provide evidence for the different types of body representation. The question about correlations between body representation deficits and neuropsychological dysfunctions was also investigated. Fifty patients after strokes and 50 control individuals participated in the study. They were examined with tasks referring to dynamic representation of body parts positions, topological body map, and lexical and semantic knowledge about the body. Data analysis showed that vascular brain injuries result in deficits of body representation, which may co-occur with cognitive dysfunctions, but the latter are a possible risk factor for body representation deficits rather than sufficient or imperative requisites for them. The study suggests that types of body representation may be separated on the basis not only of their content, but also of their relation with self. Principal component analysis revealed three factors, which explained over 66% of results variance. The factors, which may be interpreted as types or dimensions of mental model of a body, represent different degrees of connection with self. The results indicate another possibility of body representation types classification, which should be verified in future research.

  13. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    Science.gov (United States)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  14. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABAA, glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABAB, as well as an adenosine A1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel

  15. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  16. Vascular adaption to physical inactivity in humans

    OpenAIRE

    Bleeker, M.W.P.

    2006-01-01

    This thesis presents studies on vascular adaptation to physical inactivity and deconditioning. Although it is clear that physical inactivity is an important risk factor for cardiovascular disease, the underlying physiological mechanisms have not yet been elucidated. In contrast to physical inactivity, exercise decreases the risk for cardiovascular disease. This beneficial effect of exercise is partly due to changes in vascular function and structure. However, far less is known about vascular ...

  17. Dysglycemia, brain volume and vascular lesions on MRI in a memory clinic population

    NARCIS (Netherlands)

    Exalto, L.G.; van der Flier, W.M.; Scheltens, P.; Vrenken, H.; Biessels, G.J.

    2014-01-01

    Objective It is unclear, if the association between abnormalities in glucose metabolism (dysglycemia) and impaired cognitive functioning is primarily driven by degenerative or vascular brain damage. We therefore examined the relation between dysglycemia and brain volume and vascular lesions on MRI

  18. Vascular adaption to physical inactivity in humans

    NARCIS (Netherlands)

    Bleeker, M.W.P.

    2006-01-01

    This thesis presents studies on vascular adaptation to physical inactivity and deconditioning. Although it is clear that physical inactivity is an important risk factor for cardiovascular disease, the underlying physiological mechanisms have not yet been elucidated. In contrast to physical

  19. Pathological Deformations of Brain Vascular System Modelling Using Analogous Eletromagnetic Systems

    Directory of Open Access Journals (Sweden)

    Klara Capova

    2004-01-01

    Full Text Available The contribution deals with the modelling and simulation of human brain haemodynamics using analogous electromagnetic systems characteristic especially propagation properties of distributed parameters circuits. The cascade connection of analogical transmission line elements represents the vascular tree both from the point of the parameters and the topology as well. In the paper there are presented simulation examples of the healthy cerebral system mainly in the big arteries in comparing with the pathologically changed ones. The various degrees of stenosis are considered for the simulations of blood pressure and blood flow velocity and the results are compared with the healthy arteries. According to the last investigations the pathological deformations of brain arteries are th most frequently reasons of deaths in the world. The stenoses or aneurysms change the physical properties of arteries and they follow insufficient vascularisation of the brain. These computer-aided non-invasive methods together with the non-invasive experimental techniques represent a helpful tool both for the diagnostics and the treatment of vascular pathological deformations.

  20. PINK1 and its familial Parkinson's disease-associated mutation regulate brain vascular endothelial inflammation.

    Science.gov (United States)

    Yunfu, Wang; Guangjian, Liu; Ping, Zhong; Yanpeng, Sun; Xiaoxia, Fang; Wei, Hu; Jiang, Yuan; Jingquan, Hu; Songlin, Wang; Hongyan, Zhang; Yong, Liu; Shi, Chen

    2014-05-01

    Parkinson's disease (PD) is a debilitating disorder that affects movement. Inflammation-mediated endothelial dysfunction has been found to be involved in neurodegenerative diseases, including PD. More than 40 PTEN-induced putative kinase 1 (PINK1) mutations have been found in PD patients. The effects of PINK1 in vascular inflammation are as yet unknown. In this study, our findings revealed that PINK1 can be increased by the inflammatory cytokine tumor necrosis factor-α in primary human brain microvascular endothelial cells (HBMECs). We found that wild-type PINK1 prevents expression of the adhesion molecule vascular cell adhesion molecule-1 (VCAM-1), thus inhibiting the attachment of monocytes to brain endothelial cells. However, PINK1G309D, the loss-of-function mutation associated with early-onset familial PD, promotes expression of VCAM-1 and exacerbates attachment of monocytes to brain endothelial cells. Mechanism studies revealed that overexpression of wild-type PINK1 inhibits the VCAM-1 promoter by inhibiting the transcriptional activity of interferon regulatory factor 1 (IRF-1). However, PINK1G309D promotes the VCAM-1 promoter by increasing the transcriptional activity of IRF-1.

  1. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Shize Jiang

    Full Text Available The blood-brain barrier (BBB impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF on BBB permeability in Kunming (KM mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse, while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI. Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001. Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.

  2. A Multiscale Model for the Brain Vascular Network

    Science.gov (United States)

    Grinberg, Leopold; Karniadakis, George

    2007-11-01

    Simulations of blood flow in arterial networks requires physiologicaly correct boundary condition at inlets and outlets. Outflow boundary conditions for the Macrovascular Network (MaN) can be imposed by solving a closure problem based on modeling the rest of the flow in ten millions arterioles (Mesovascular Network, MeN) and one billion capillaries (Microvascular Network, MiN). Numerical solution of the three-level MaN-MeN-MiN integration can be performed on the future generation of petaflop supercomputers. An alternative approach for the MaN simulation is to impose the clinically measured flow rates at outlets. We have developed a new method to incorporate such measurements at multiple outlets, it is based on imposing Neumann boundary condition for the velocity and time-dependent resistance boundary conditions for the pressure. The convergence of numerical solution for the outlet flow-rates is achieved immediately. The computational complexity of the method is comparable to the widely used constant pressure boundary condition. Our approach is verified on a model of Brain Vascular Network with tens of arterial segments and outlets.

  3. C5a induces caspase-dependent apoptosis in brain vascular endothelial cells in experimental lupus.

    Science.gov (United States)

    Mahajan, Supriya D; Tutino, Vincent M; Redae, Yonas; Meng, Hui; Siddiqui, Adnan; Woodruff, Trent M; Jarvis, James N; Hennon, Teresa; Schwartz, Stanley; Quigg, Richard J; Alexander, Jessy J

    2016-08-01

    Blood-brain barrier (BBB) dysfunction complicates central nervous system lupus, an important aspect of systemic lupus erythematosus. To gain insight into the underlying mechanism, vascular corrosion casts of brain were generated from the lupus mouse model, MRL/lpr mice and the MRL/MpJ congenic controls. Scanning electron microscopy of the casts showed loss of vascular endothelial cells in lupus mice compared with controls. Immunostaining revealed a significant increase in caspase 3 expression in the brain vascular endothelial cells, which suggests that apoptosis could be an important mechanism causing cell loss, and thereby loss of BBB integrity. Complement activation occurs in lupus resulting in increased generation of circulating C5a, which caused the endothelial layer to become 'leaky'. In this study, we show that C5a and lupus serum induced apoptosis in cultured human brain microvascular endothelial cells (HBMVECs), whereas selective C5a receptor 1 (C5aR1) antagonist reduced apoptosis in these cells, demonstrating C5a/C5aR1-dependence. Gene expression of initiator caspases, caspase 1 and caspase 8, and pro-apoptotic proteins death-associated protein kinase 1, Fas-associated protein (FADD), cell death-inducing DNA fragmentation factor 45 000 MW subunit A-like effector B (CIDEB) and BCL2-associated X protein were increased in HBMVECs treated with lupus serum or C5a, indicating that both the intrinsic and extrinsic apoptotic pathways could be critical mediators of brain endothelial cell apoptosis in this setting. Overall, our findings suggest that C5a/C5aR1 signalling induces apoptosis through activation of FADD, caspase 8/3 and CIDEB in brain endothelial cells in lupus. Further elucidation of the underlying apoptotic mechanisms mediating the reduced endothelial cell number is important in establishing the potential therapeutic effectiveness of C5aR1 inhibition that could prevent and/or reduce BBB alterations and preserve the physiological function of BBB in

  4. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain.

    Directory of Open Access Journals (Sweden)

    Songchao Xue

    Full Text Available The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm(3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.

  5. Mindboggling morphometry of human brains

    Science.gov (United States)

    Bao, Forrest S.; Giard, Joachim; Stavsky, Eliezer; Lee, Noah; Rossa, Brian; Reuter, Martin; Chaibub Neto, Elias

    2017-01-01

    Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available. PMID:28231282

  6. 3D Bioprinting of Vascularized Human Tissues

    OpenAIRE

    Kolesky, David Barry

    2016-01-01

    The ability to manufacture human tissues that replicate the spatial, mechano-chemical, and temporal aspects of biological tissues would enable myriad applications, including drug screening, disease modeling, and tissue repair and regeneration. However, given the complexity of human tissues, this is a daunting challenge. Current biofabrication methods are unable to fully recapitulate the form and function of human tissues, which are composed of multiple cell types, extracellular matrices, and ...

  7. Vascular Basis for Brain Degeneration: Faltering Controls and Risk Factors for Dementia

    Science.gov (United States)

    Kalaria, Raj N.

    2010-01-01

    The integrity of the vascular system is essential for the efficient functioning of the brain. Ageing related structural and functional disturbances in the macro- or microcirculation of the brain make it vulnerable to cognitive dysfunction leading to brain degeneration and dementing illness. Several faltering controls including impairment in autoregulation, neurovascular coupling, blood-brain barrier leakage, decreased cerebrospinal fluid and reduced vascular tone appear responsible for variable degrees of neurodegeneration in old age. There is ample evidence that vascular risk factors are also linked to neurodegenerative processes preceding cognitive decline and dementia. Age is the strongest risk factor for brain degeneration whether it results from vascular or neurodegenerative mechanisms or both. However, several modifiable risks such as cardiovascular disease, hypertension, dyslipidaemia, diabetes and obesity enhance the rate of cognitive decline and increase the risk of Alzheimer’s disease in particular. The ultimate accumulation of brain pathological lesions may be modified by genetic influences such as apoliopoprotein E ε4 allele and the environment. Lifestyle measures that maintain or improve cardiovascular health including consumption of healthy diets, moderate use of alcohol and implementing regular physical exercise are important factors for brain protection. PMID:21091952

  8. Human brain lesion-deficit inference remapped.

    Science.gov (United States)

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint; Nachev, Parashkev

    2014-09-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  9. Human brain arteriovenous malformations express lymphatic-associated genes

    OpenAIRE

    Shoemaker, Lorelei D.; Fuentes, Laurel F; Santiago, Shauna M; Allen, Breanna M; Cook, Douglas J.; Steinberg, Gary K.; Chang, Steven D.

    2014-01-01

    Objective Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may ...

  10. Local vascular CO2 reactivity in the infant brain assessed by functional MRI

    DEFF Research Database (Denmark)

    Toft, P.B.; Leth, H; Lou, H.C.

    1995-01-01

    hyperventilated voluntarily, the vascular reactivity was homogeneously distributed predominantly over the grey matter. The experiments demonstrate that local impairment of vascular CO2 reactivity in the distressed infant brain can be detected by T2 sensitive gradient-echo MRI, which is also known as functional......The local cerebral vascular response to hyperventilation was investigated in five distressed, intubated infants by means of a T2 sensitive gradient-echo MRI technique at 1.5 T. In one preterm infant, the MR signal change during hyperventilation was sparse. In four term infants, the mean MR signal...... of the brain slice investigated decreased by 1.2-2.6% per kPa change in PCO2 as a reflection of decreased cerebral blood flow during hyperventilation. Pixel-wise analysis revealed absence of vascular response in the basal ganglia, the thalamus or in the occipital region. In two adult controls, who...

  11. Basic Vascular Neuroanatomy of the Brain and Spine: What the General Interventional Radiologist Needs to Know

    OpenAIRE

    Prince, Ethan A.; Ahn, Sun Ho

    2013-01-01

    This article is intended to provide a review of clinically relevant neurovascular anatomy. A solid understanding of the vascular anatomy of the brain and spine are essential for the safe and effective performance of neurointerventional radiology. Key concepts to master include collateral pathways and anastomoses between the external and internal carotid circulation, the Circle of Willis as a route to otherwise inaccessible intracranial vascular distributions, and the origin of spinal arterial...

  12. Sexual differences of human brain

    Directory of Open Access Journals (Sweden)

    Masoud Pezeshki Rad

    2014-04-01

    Full Text Available During the last decades there has been an increasing interest in studying the differences between males and females. These differences extend from behavioral to cognitive to micro- and macro- neuro-anatomical aspects of human biology. There have been many methods to evaluate these differences and explain their determinants. The most studied cause of this dimorphism is the prenatal sex hormones and their organizational effect on brain and behavior. However, there have been new and recent attentions to hormone's activational influences in puberty and also the effects of genomic imprinting. In this paper, we reviewed the sex differences of brain, the evidences for possible determinants of these differences and also the methods that have been used to discover them. We reviewed the most conspicuous findings with specific attention to macro-anatomical differences based on Magnetic Resonance Imaging (MRI data. We finally reviewed the findings and the many opportunities for future studies.

  13. Prenatal exposure to permethrin influences vascular development of fetal brain and adult behavior in mice offspring.

    Science.gov (United States)

    Imanishi, Satoshi; Okura, Masahiro; Zaha, Hiroko; Yamamoto, Toshifumi; Akanuma, Hiromi; Nagano, Reiko; Shiraishi, Hiroaki; Fujimaki, Hidekazu; Sone, Hideko

    2013-11-01

    Pyrethroids are one of the most widely used classes of insecticides and show neurotoxic effects that induce oxidative stress in the neonatal rat brain. However, little is still known about effects of prenatal exposure to permethrin on vascular development in fetal brain, central nervous system development, and adult offspring behaviors. In this study, the effects of prenatal exposure to permethrin on the development of cerebral arteries in fetal brains, neurotransmitter in neonatal brains, and locomotor activities in offspring mice were investigated. Permethrin (0, 2, 10, 50, and 75 mg/kg) was orally administered to pregnant females once on gestation day 10.5. The brains of permethrin-treated fetuses showed altered vascular formation involving shortened lengths of vessels, an increased number of small branches, and, in some cases, insufficient fusion of the anterior communicating arteries in the area of circle of Willis. The prenatal exposure to permethrin altered neocortical and hippocampus thickness in the mid brain and significantly increased norepinephrine and dopamine levels at postnatal day 7 mice. For spontaneous behavior, the standing ability test using a viewing jar and open-field tests showed significant decrease of the standing ability and locomotor activity in male mice at 8 or 12 weeks of age, respectively. The results suggest that prenatal exposure to permethrin may affect insufficient development of the brain through alterations of vascular development. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  14. Serpins Promote Cancer Cell Survival and Vascular Cooption in Brain Metastasis

    Science.gov (United States)

    Valiente, Manuel; Obenauf, Anna C.; Jin, Xin; Chen, Qing; Zhang, Xiang H.-F.; Lee, Derek J.; Chaft, Jamie E.; Kris, Mark G.; Huse, Jason T.; Brogi, Edi; Massagué, Joan

    2014-01-01

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM that metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its deleterious consequences. By protecting cancer cells from death signals and fostering vascular cooption, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. PMID:24581498

  15. Brain mechanisms underlying human communication

    Directory of Open Access Journals (Sweden)

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  16. Analysis of vascular homogeneity and anisotropy on high-resolution primate brain imaging.

    Science.gov (United States)

    Kennel, Pol; Fonta, Caroline; Guibert, Romain; Plouraboué, Franck

    2017-11-01

    Using a systematic investigation of brain blood volume, in high-resolution synchrotron 3D images of microvascular structures within cortical regions of a primate brain, we challenge several basic questions regarding possible vascular bias in high-resolution functional neuroimaging. We present a bilateral comparison of cortical regions, where we analyze relative vascular volume in voxels from 150 to 1000 μm side lengths in the white and grey matter. We show that, if voxel size reaches a scale smaller than 300 µm, the vascular volume can no longer be considered homogeneous, either within one hemisphere or in bilateral comparison between samples. We demonstrate that voxel size influences the comparison between vessel-relative volume distributions depending on the scale considered (i.e., hemisphere, lobe, or sample). Furthermore, we also investigate how voxel anisotropy and orientation can affect the apparent vascular volume, in accordance with actual fMRI voxel sizes. These findings are discussed from the various perspectives of high-resolution brain functional imaging. Hum Brain Mapp 38:5756-5777, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Overdiagnosing Vascular Dementia using Structural Brain Imaging for Dementia Work-Up

    NARCIS (Netherlands)

    Niemantsverdriet, Ellis; Feyen, Bart F. E.; Le Bastard, Nathalie; Martin, Jean-Jacques; Goeman, Johan; De Deyn, Peter Paul; Engelborghs, Sebastiaan

    2015-01-01

    Hypothesizing that non-significant cerebrovascular lesions on structural brain imaging lead to overdiagnosis of a vascular etiology of dementia as compared to autopsy-confirmed diagnosis, we set up a study including 71 patients with autopsy-confirmed diagnoses. Forty-two patients in the population

  18. Management strategies for neoplastic and vascular brain lesions presenting during pregnancy: A series of 29 patients

    Science.gov (United States)

    Pereira, Celestino Esteves; Lynch, Jose Carlos

    2017-01-01

    Background: The occurrence of a brain tumor or intracranial vascular lesion during pregnancy is a rare event, but when it happens, it jeopardizes the lives of both the mother and infant. It also creates challenges of a neurosurgical, obstetric, and ethical nature. A multidisciplinary approach should be used for their care. Methods: Between 1986 and 2015, 12 pregnant women diagnosed with brain tumors and 17 women with intracranial vascular lesion underwent treatment at the Neurosurgery Department of the Servidores do Estado Hospital and Rede D’Or/São Luis. The Neurosurgery Department teamed up with Obstetrics Anesthesiology Departments in establishing the procedures. The patients’ records, surgical descriptions, imaging studies, and histopathological material were reviewed. Results: Among 12 patients presenting with brain tumors, there were neither operative mortality nor fetal deaths. Among the vascular lesions, aneurysm rupture was responsible for bleeding in 6 instances. Arteriovenous malformation was diagnosed in 7 patients. In this subgroup, the maternal and fetal mortality rates were 11.7% and 23.7%, respectively. Conclusions: We can assert that the association between a brain tumor and vascular lesions with pregnancy is a very unusual event, which jeopardizes both the lives of the mother and infant. It remains incompletely characterized due to the rare nature of these potentially devastating events. Knowing the exact mechanism responsible for the interaction of pregnancy and with these lesions will improve the treatment of these patients. PMID:28303207

  19. What is the blood-brain barrier? A molecular perspective. Cerebral vascular biology.

    Science.gov (United States)

    Drewes, L R

    1999-01-01

    The term "blood-brain barrier" was coined over one hundred years ago as a result of the observation that vital dyes introduced into the circulation quickly penetrated and stained nearly all organs and tissues of the mammalian body except the brain which retained its pale creamy appearance. Advances in microscopy revealed that, in contrast to other vascular beds, the brain endothelial cells lining the vascular wall are tightly linked with junctional complexes that eliminate gaps or spaces between cells and prevent any free diffusion of blood-borne substances into the brain parenchymal space. The endothelial cells, situated at the interface between blood and brain, therefore, play a critical role in performing essential biological functions including transport of micro- and macronutrients, receptor-mediated signaling, leukocyte trafficking, and osmoregulation. A number of molecular components responsible for some of these unique properties have now been identified and are being characterized under physiological and disease conditions. These include the proteins involved in formation and assembly of tight junctions; the plasma membrane-embedded proteins that are responsible for transport of brain energy substrates and nutrients (glucose, monocarboxylic acids, nucleosides, amino acids, others); the multi-drug transporter protein, p-glycoprotein, and other drug-rejecting proteins that protect the brain from foreign, potentially disruptive chemicals. These and other recent findings, taken as a whole, reveal the brain endothelium as a complex and dynamic biological system, in contrast to the simple, inert and rigid barrier initially perceived.

  20. Effects Of Gelatine-Coated Vascular Grafts On Human Neutrophils.

    Science.gov (United States)

    Meyer, Frank; Buerger, Thomas; Halloul, Zuhir; Lippert, Hans; König, Brigitte; Tautenhahn, Joerg

    2015-09-01

    The aim of the study was to investigate the immune-modulatory potential of commercially available PTFE and polyester vascular grafts with and without gelatine-coating. The biomaterial-cell-interaction was characterized by changes of established parameters such as PMN-related receptors/mediators, phagocytosis potential and capacity as well as the effect of an additional plasma-dependent modulation. By means of a standardized experimental in vitro model, various vascular graft material (PTFE/polyester/uncoated/gelatine-coated) was used for incubation with or without plasma and co-culturing with human neutrophile granulocytes (PMN) followed by analysis of representative receptors and mediators (CD62L, CD11b, CXCR2, fMLP-R, IL-8, Elastase, LTB4). Oxidative burst assessed phagocytosis capacity. Comparing the vascular grafts, un-coated PTFE induced the lowest magnitude of cell stimulation whereas in case of gelatine-coating, cell response exceeded those of the other vascular grafts. This was also found comparing the polyester-based prosthetic material. Gelatine-coated polyester led to a more pronounced release of elastase than gelatine-coated PTFE and the uncoated materials. The results of oxidative burst indicated a reduced phagocytosis capacity in case of gelatine-coated polyester. Plasma incubation did also provide an impact on the cellular response. While in case of gelatine-coating, PMN-related receptor stimulation became lower, it increased by native polyester. The latter one did also induce more mediators such as IL-8 and LTB4 than gelatine-coated material. There have been no extensive data on cell-cell interactions, cytokines and general histo-/hemocompatibility of human cells by the new generation of vascular grafts. It remains still open whether healing process and infectious resistance can be compromised by material-dependent over-stimulation or reduced phagocytosis potential of the immune cells of the primary unspecific immune response induced by gelatine

  1. Brain evolution and human neuropsychology: the inferential brain hypothesis.

    Science.gov (United States)

    Koscik, Timothy R; Tranel, Daniel

    2012-05-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. (JINS, 2012, 18, 394-401).

  2. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    Science.gov (United States)

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  3. Vascular Cell Senescence Contributes to Blood-Brain Barrier Breakdown

    NARCIS (Netherlands)

    Yamazaki, Y.; Baker, D.J.; Tachibana, M.; Liu, C.C.; Deursen, J.M.A. van; Brott, T.G.; Bu, G.; Kanekiyo, T.

    2016-01-01

    BACKGROUND AND PURPOSE: Age-related changes in the cerebrovasculature, including blood-brain barrier (BBB) disruption, are emerging as potential risks for diverse neurological conditions. Because the accumulation of senescent cells in tissues is increasingly recognized as a critical step leading to

  4. Gliomas and the vascular fragility of the blood brain barrier

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo eDubois

    2014-12-01

    Full Text Available Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB. By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM, characterized by a highly heterogeneous cell population (including tumor stem cells, extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the blood brain barrier and the concerns that arise when this barrier is affected.

  5. Effect of microgravity on forearm subcutaneous vascular resistance in humans

    DEFF Research Database (Denmark)

    Gabrielsen, A; Norsk, P; Videbæk, R

    1995-01-01

    To test the hypothesis that the subcutaneous vascular constrictor response to an orthostatic stress in humans is augmented after exposure to microgravity, the following experiment was performed. Four male astronauts underwent a standardized stepwise lower body negative pressure (LBNP) profile 5 m...... after 1-2 days after exposure to 10 days of microgravity and could act as a defense mechanism to alleviate decreased orthostatic tolerance...

  6. Human cadaver brain infusion skull model for neurosurgical training.

    Science.gov (United States)

    Olabe, Jon; Olabe, Javier; Roda, Jose Maria; Sancho, Vidal

    2011-01-01

    Microsurgical technique and anatomical knowledge require extensive laboratory training. Human cadaver models are especially valuable as they supply a good microsurgical training environment simultaneously providing authentic brain anatomy. We developed the "skull infusion model" as an extension of our previous "brain infusion model" taking it a step further maintaining simplicity but enhancing realism. Four human cadaveric brains donated for educational purposes were explanted at autopsy. The specimens were prepared cannulating carotid and vertebral arteries with plastic tubings, flushed with abundant water and fixed for 1 month in formaldehyde. They were then enclosed with white silk clothing (emulating the dura mater) and inserted into human skulls cut previously into two pieces. Tap water at a flow rate of 10 L/h was infused through the arterial tubings. Diverse microsurgical procedures were performed by two trainees, including craniotomies with microsurgical approaches and techniques such as sylvian fissure exposure, extra-intracranial and intra-intracranial bypass, approaches to the ventricles and choroidal fissure opening. The water infusion fills the arterial system, leaking into the interstitial and cisternal space and finally moistening the whole specimen. This makes vascular microsurgical techniques become extremely realistic, increasing its compliance making manipulations easier and more authentic. Standard microsurgical laboratories frequently have difficulties to work with decapitated human cadaver heads but could have human brains readily available. Using the infusion model and inserting it in a human skull makes the environment much more realistic. Its simplicity and inexpensiveness make it a good alternative for developing microsurgical techniques.

  7. Vascular targets for cannabinoids: animal and human studies

    Science.gov (United States)

    Stanley, Christopher; O'Sullivan, Saoirse E

    2014-01-01

    Application of cannabinoids and endocannabinoids to perfused vascular beds or individual isolated arteries results in changes in vascular resistance. In most cases, the result is vasorelaxation, although vasoconstrictor responses are also observed. Cannabinoids also modulate the actions of vasoactive compounds including acetylcholine, methoxamine, angiotensin II and U46619 (thromboxane mimetic). Numerous mechanisms of action have been proposed including receptor activation, potassium channel activation, calcium channel inhibition and the production of vasoactive mediators such as calcitonin gene-related peptide, prostanoids, NO, endothelial-derived hyperpolarizing factor and hydrogen peroxide. The purpose of this review is to examine the evidence for the range of receptors now known to be activated by cannabinoids. Direct activation by cannabinoids of CB1, CBe, TRPV1 (and potentially other TRP channels) and PPARs in the vasculature has been observed. A potential role for CB2, GPR55 and 5-HT1A has also been identified in some studies. Indirectly, activation of prostanoid receptors (TP, IP, EP1 and EP4) and the CGRP receptor is involved in the vascular responses to cannabinoids. The majority of this evidence has been obtained through animal research, but recent work has confirmed some of these targets in human arteries. Vascular responses to cannabinoids are enhanced in hypertension and cirrhosis, but are reduced in obesity and diabetes, both due to changes in the target sites of action. Much further work is required to establish the extent of vascular actions of cannabinoids and the application of this research in physiological and pathophysiological situations. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24329566

  8. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  9. Basic vascular neuroanatomy of the brain and spine: what the general interventional radiologist needs to know.

    Science.gov (United States)

    Prince, Ethan A; Ahn, Sun Ho

    2013-09-01

    This article is intended to provide a review of clinically relevant neurovascular anatomy. A solid understanding of the vascular anatomy of the brain and spine are essential for the safe and effective performance of neurointerventional radiology. Key concepts to master include collateral pathways and anastomoses between the external and internal carotid circulation, the Circle of Willis as a route to otherwise inaccessible intracranial vascular distributions, and the origin of spinal arterial blood supply. These concepts will be highlighted using clinical angiographic examples with discussion of relevant embryology and pathology as needed.

  10. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Z.; Du, C.; Yuan, Z.; Luo, Z.; Volkow, N.D.; Pan, Y.; Du, C.

    2010-09-08

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 {micro}m, 10 Hz) and over a large field of view (3 x 5 mm{sup 2}). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 {+-} 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 {+-} 0.2 min, phase (2) lasting over 20 min whereas Ca{sup 2+} increased immediately (peaked at t = 4.1 {+-} 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 {+-} 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  11. Post-treatment vascular leakage and inflammatory responses around brain cysts in porcine neurocysticercosis.

    Directory of Open Access Journals (Sweden)

    Siddhartha Mahanty

    2015-03-01

    Full Text Available Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB dysfunction, as determined by Evans blue (EB extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue and non stained (clear cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3 was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model

  12. Post-treatment vascular leakage and inflammatory responses around brain cysts in porcine neurocysticercosis.

    Science.gov (United States)

    Mahanty, Siddhartha; Orrego, Miguel Angel; Mayta, Holger; Marzal, Miguel; Cangalaya, Carla; Paredes, Adriana; Gonzales-Gustavson, Eloy; Arroyo, Gianfranco; Gonzalez, Armando E; Guerra-Giraldez, Cristina; García, Hector H; Nash, Theodore E

    2015-03-01

    Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB) dysfunction, as determined by Evans blue (EB) extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue) and non stained (clear) cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα) were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3) was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model can be used to

  13. Vascular brain lesions, brain atrophy, and cognitive decline. The Second Manifestations of ARTerial diseased-Magnetic Resonance (SMART-MR) study

    NARCIS (Netherlands)

    Kooistra, M.; Geerlings, M.I.; van der Graaf, Y.; Mali, W.P.T.M.; Vincken, K.L.; Kappelle, L.J.; Muller, M.; Biessels, G.J.

    2014-01-01

    We examined the association between brain atrophy and vascular brain lesions (i.e., white matter lesions [WMLs] or brain infarcts), alone or in combination, with decline in memory and executive functioning over 4 years of follow-up in 448 patients (57 ± 9.5 years) with symptomatic atherosclerotic

  14. Male microchimerism in the human female brain.

    Directory of Open Access Journals (Sweden)

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  15. Vascular damage: a persisting pathology common to Alzheimer's disease and traumatic brain injury.

    Science.gov (United States)

    Franzblau, Max; Gonzales-Portillo, Chiara; Gonzales-Portillo, Gabriel S; Diamandis, Theo; Borlongan, Mia C; Tajiri, Naoki; Borlongan, Cesar V

    2013-11-01

    Alzheimer's disease (AD) and traumatic brain injury (TBI) are both significant clinical problems characterized by debilitating symptoms with limited available treatments. Interestingly, both neurological diseases are characterized by neurovascular damage. This impaired brain vasculature correlates with the onset of dementia, a symptom associated with hippocampal degeneration seen in both diseases. We posit that vascular damage is a major pathological link between TBI and AD, in that TBI victims are predisposed to AD symptoms due to altered brain vasculature; vice versa, the progression of AD pathology may be accelerated by TBI especially when the brain insult worsens hippocampal degeneration. Our hypothesis is supported by recent data reporting expedited AD pathology in presymptomatic transgenic AD mice subjected to TBI. If our hypothesis is correct, treatments targeted at repairing the vasculature may prove effective at treating both diseases and preventing the evolution of AD symptoms in TBI victims. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Invasive and transcranial photoacoustic imaging of the vascular response to brain electrical stimulation

    Science.gov (United States)

    Tsytsarev, Vassiliy; Yao, Junjie; Hu, Song; Li, Li; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2010-02-01

    Advances in the brain functional imaging greatly facilitated the understanding of neurovascular coupling. For monitoring of the microvascular response to the brain electrical stimulation in vivo we used optical-resolution photoacoustic microscopy (OR-PAM) through the cranial openings as well as transcranially. Both types of the vascular response, vasoconstriction and vasodilatation, were clearly observed with good spatial and temporal resolution. Obtained results confirm one of the primary points of the neurovascular coupling theory that blood vessels could present vasoconstriction or vasodilatation in response to electrical stimulation, depending on the balance between inhibition and excitation of the different parts of the elements of the neurovascular coupling system.

  17. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Jared D. Hoffman

    2017-09-01

    Full Text Available Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD. However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF, gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age and compared those to old mice (18–20 months of age by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to

  18. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome.

    Science.gov (United States)

    Hoffman, Jared D; Parikh, Ishita; Green, Stefan J; Chlipala, George; Mohney, Robert P; Keaton, Mignon; Bauer, Bjoern; Hartz, Anika M S; Lin, Ai-Ling

    2017-01-01

    Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer's disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5-6 months of age) and compared those to old mice (18-20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the

  19. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells

    Science.gov (United States)

    Watkins, Stacey; Robel, Stefanie; Kimbrough, Ian F.; Robert, Stephanie M.; Ellis-Davies, Graham; Sontheimer, Harald

    2014-01-01

    Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites, and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood-brain barrier (BBB) and release vasoactive molecules that regulate vascular tone. Malignant gliomas are highly invasive tumors that use the perivascular space for invasion and co-opt existing vessels as satellite tumors form. Here we use a clinically relevant mouse model of glioma and find that glioma cells, as they populate the perivascular space of pre-existing vessels, displace astrocytic endfeet from endothelial or vascular smooth muscle cells. This causes a focal breach in the BBB. Furthermore, astrocyte-mediated gliovascular coupling is lost, and glioma cells seize control over regulation of vascular tone through Ca2+-dependent release of K+. These findings have important clinical implications regarding blood flow in the tumor-associated brain and the ability to locally deliver chemotherapeutic drugs in disease. PMID:24943270

  20. Hookworm (Necator americanus) Larval Enzymes Disrupt Human Vascular Endothelium

    Science.gov (United States)

    Souadkia, Nahed; Brown, Alan; Leach, Lopa; Pritchard, David I.

    2010-01-01

    Knowledge of the molecular mechanisms used by Necator americanus larvae to penetrate the human skin and the vasculature would aid the development of effective vaccines against this important pathogen. In this work, the impact of N. americanus exsheathing fluid (EF) and excretory/secretory products (ES) on the endothelial barrier was examined using human umbilical vein endothelial cells (HUVEC). Cellular responses were assessed by investigating molecular changes at cell–cell junctions and by determining levels of secreted IL-6, IL-8, and vascular endothelial growth factor (VEGF) in the culture medium. It would appear that a repertoire of larval proteases caused a dose-related increase in endothelial permeability as characterized by a decrease in monolayer resistance with increased permeation of tracer-albumin. These barrier changes were associated with disruption of junctional vascular endothelial cadherin (VE-cadherin) and F-actin and an increase in endothelial secretion of IL-6 and IL-8. Our data suggest that larval proteases play an important role in negotiating the endothelium. PMID:20810819

  1. Consumption of seaweeds and the human brain

    DEFF Research Database (Denmark)

    Cornish, M. Lynn; Critchley, Alan T.; Mouritsen, Ole G.

    2017-01-01

    highlighting the potential impacts of the consumption of a variety of seaweeds on human brain health and includes theories in relation to the benefits to early Homo sapiens. The emphasis is on a varied diet including macroalgae and the gut/microbe/brain axis, the importance of polyunsaturated fatty acids...

  2. Lactate fuels the human brain during exercise

    NARCIS (Netherlands)

    Quistorff, Bjorn; Secher, Niels H.; van Lieshout, Johannes J.

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up

  3. An introduction to human brain anatomy

    NARCIS (Netherlands)

    Forstmann, B.U.; Keuken, M.C.; Alkemade, A.; Forstmann, B.U.; Wagenmakers, E.-J.

    2015-01-01

    This tutorial chapter provides an overview of the human brain anatomy. Knowledge of brain anatomy is fundamental to our understanding of cognitive processes in health and disease; moreover, anatomical constraints are vital for neurocomputational models and can be important for psychological

  4. Interoperable atlases of the human brain.

    Science.gov (United States)

    Amunts, K; Hawrylycz, M J; Van Essen, D C; Van Horn, J D; Harel, N; Poline, J-B; De Martino, F; Bjaalie, J G; Dehaene-Lambertz, G; Dehaene, S; Valdes-Sosa, P; Thirion, B; Zilles, K; Hill, S L; Abrams, M B; Tass, P A; Vanduffel, W; Evans, A C; Eickhoff, S B

    2014-10-01

    The last two decades have seen an unprecedented development of human brain mapping approaches at various spatial and temporal scales. Together, these have provided a large fundus of information on many different aspects of the human brain including micro- and macrostructural segregation, regional specialization of function, connectivity, and temporal dynamics. Atlases are central in order to integrate such diverse information in a topographically meaningful way. It is noteworthy, that the brain mapping field has been developed along several major lines such as structure vs. function, postmortem vs. in vivo, individual features of the brain vs. population-based aspects, or slow vs. fast dynamics. In order to understand human brain organization, however, it seems inevitable that these different lines are integrated and combined into a multimodal human brain model. To this aim, we held a workshop to determine the constraints of a multi-modal human brain model that are needed to enable (i) an integration of different spatial and temporal scales and data modalities into a common reference system, and (ii) efficient data exchange and analysis. As detailed in this report, to arrive at fully interoperable atlases of the human brain will still require much work at the frontiers of data acquisition, analysis, and representation. Among them, the latter may provide the most challenging task, in particular when it comes to representing features of vastly different scales of space, time and abstraction. The potential benefits of such endeavor, however, clearly outweigh the problems, as only such kind of multi-modal human brain atlas may provide a starting point from which the complex relationships between structure, function, and connectivity may be explored. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Characterizing Brain Iron Deposition in Patients with Subcortical Vascular Mild Cognitive Impairment Using Quantitative Susceptibility Mapping: A Potential Biomarker

    OpenAIRE

    Sun, Yawen; Ge, Xin; Han, Xu; Cao, Wenwei; Wang, Yao; Ding, Weina; Cao, Mengqiu; Zhang, Yong; Xu, Qun; Zhou, Yan; Xu, Jianrong

    2017-01-01

    The presence and pattern of iron accumulation in subcortical vascular mild cognitive impairment (svMCI) and their effects on cognition have rarely been investigated. We aimed to examine brain iron deposition in svMCI subjects using quantitative susceptibility mapping (QSM). Moreover, we aimed to investigate the correlation between brain iron deposition and the severity of cognitive impairment as indicated by z-scores. We recruited 20 subcortical ischemic vascular disease (SIVD) patients who f...

  6. Constitutional Aneuploidy in the Normal Human Brain

    National Research Council Canada - National Science Library

    Rehen, Stevens K; Yung, Yun C; McCreight, Matthew P; Kaushal, Dhruv; Yang, Amy H; Almeida, Beatriz S. V; Kingsbury, Marcy A; Cabral, Katia M. S; McConnell, Michael J; Anliker, Brigitte; Fontanoz, Marisa; Chun, Jerold

    2005-01-01

    .... Chromosome 21 aneuploid cells constitute approximately 4% of the estimated one trillion cells in the human brain and include non-neuronal cells and postmitotic neurons identified by the neuronspecific nuclear protein marker...

  7. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  8. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    Science.gov (United States)

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. 168 sections of a human brain

    OpenAIRE

    Biscotti, Rossella

    2015-01-01

    Tiré du site Internet de Boabooks: "The book displays a close up of a human brain with layers of memory and dreams visualized through a method of psychoanalysis and pharmacological propaganda. It is composed of two scientific researches that investigated the theme of memory and psychoanalysis. The first photos ever realized of sections of the human brain by psychiatric G. Jelgersma at the University of Leiden (1908-1911) are paired with the transcript of narcoanalytic sessions conducted by th...

  10. Brain vascular image segmentation based on fuzzy local information C-means clustering

    Science.gov (United States)

    Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie

    2017-02-01

    Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.

  11. Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats.

    Science.gov (United States)

    Rodriguez, Uylissa A; Zeng, Yaping; Deyo, Donald; Parsley, Margaret A; Hawkins, Bridget E; Prough, Donald S; DeWitt, Douglas S

    2017-12-20

    To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO-), the effects of the administration of the ONOO- scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO- may contribute to blast-induced cerebral vascular dysfunction.

  12. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo

    2015-03-01

    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  13. Vascular smooth muscle cell hypertrophy induced by glycosylated human oxyhaemoglobin.

    Science.gov (United States)

    Peiró, C; Angulo, J; Rodríguez-Mañas, L; Llergo, J L; Vallejo, S; Cercas, E; Sánchez-Ferrer, C F

    1998-10-01

    1. Nonenzymatic protein glycosylation is a possible mechanism contributing to oxidative stress and vascular disease in diabetes. In this work, the influence of 14%-glycosylated human oxyhaemoglobin (GHHb), compared to the non-glycosylated protein (HHb), was studied on several growth parameters of rat cultured vascular smooth muscle cells (VSMC). A role for reactive oxygen species was also analysed. 2. Treatment of VSMC for 48 h with GHHb, but not with HHb, increased planar cell surface area in a concentration dependent manner. The threshold concentration was 10 nM, which increased cell size from 7965+/-176 to 9411+/-392 microm2. Similarly, only GHHb enhanced protein content per well in VSMC cultures. 3. The planar surface area increase induced by 10 nM GHHb was abolished by superoxide dismutase (SOD; 50 200 u ml(-1)), deferoxamine (100 nM-100 microM), or dimethylthiourea (1 mM), while catalase (50 200 u ml(-1)) or mannitol (1 mM) resulted in a partial inhibition of cell size enhancement. 4. When a known source of oxygen free radicals was administered to VSMC, the xanthine/xanthine oxidase system, the results were analogous to those produced by GHHb. Indeed, enhancements of cell size were observed, which were inhibited by SOD, deferoxamine, or catalase. 5. These results indicate that, at low concentrations, GHHb induces hypertrophy in VSMC, this effect being mediated by superoxide anions, hydrogen peroxide, and/or hydroxyl radicals. Therefore, glycosylated proteins can have a role in the development of the structural vascular alterations associated to diabetes by enhancing oxidative stress.

  14. Vascular smooth muscle cell hypertrophy induced by glycosylated human oxyhaemoglobin

    Science.gov (United States)

    Peiró, Concepción; Angulo, Javier; Rodríguez-Mañas, Leocadio; Llergo, José L; Vallejo, Susana; Cercas, Elena; Sánchez-Ferrer, Carlos F

    1998-01-01

    Nonenzymatic protein glycosylation is a possible mechanism contributing to oxidative stress and vascular disease in diabetes. In this work, the influence of 14%-glycosylated human oxyhaemoglobin (GHHb), compared to the non-glycosylated protein (HHb), was studied on several growth parameters of rat cultured vascular smooth muscle cells (VSMC). A role for reactive oxygen species was also analysed.Treatment of VSMC for 48 h with GHHb, but not with HHb, increased planar cell surface area in a concentration dependent manner. The threshold concentration was 10 nM, which increased cell size from 7965±176 to 9411±392 μm2. Similarly, only GHHb enhanced protein content per well in VSMC cultures.The planar surface area increase induced by 10 nM GHHb was abolished by superoxide dismutase (SOD; 50–200 u ml−1), deferoxamine (100 nM–100 μM), or dimethylthiourea (1 mM), while catalase (50–200 u ml−1) or mannitol (1 mM) resulted in a partial inhibition of cell size enhancement.When a known source of oxygen free radicals was administered to VSMC, the xanthine/xanthine oxidase system, the results were analogous to those produced by GHHb. Indeed, enhancements of cell size were observed, which were inhibited by SOD, deferoxamine, or catalase.These results indicate that, at low concentrations, GHHb induces hypertrophy in VSMC, this effect being mediated by superoxide anions, hydrogen peroxide, and/or hydroxyl radicals. Therefore, glycosylated proteins can have a role in the development of the structural vascular alterations associated to diabetes by enhancing oxidative stress. PMID:9831896

  15. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  16. Deleted in Malignant Brain Tumors 1 is Present in the Vascular Extracellular Matrix and Promotes Angiogenesis

    DEFF Research Database (Denmark)

    Müller-Enbergs, Helmut; Hu, Jiong; Popp, Rüdiger

    2012-01-01

    into the extracellular matrix (ECM) by endothelial cells in vitro and in situ and the presence of DMBT1 in the ECM increased endothelial cell adherence. Endothelial cell-derived DMBT1 associated with galectin-3 (coprecipitation), and human recombinant DMBT1 bound EGF, vascular endothelial growth factor and Delta...

  17. Inhibition of human vascular NADPH oxidase by apocynin derived oligophenols.

    Science.gov (United States)

    Mora-Pale, Mauricio; Weïwer, Michel; Yu, Jingjing; Linhardt, Robert J; Dordick, Jonathan S

    2009-07-15

    Enzymatic oxidation of apocynin, which may mimic in vivo metabolism, affords a large number of oligomers (apocynin oxidation products, AOP) that inhibit vascular NADPH oxidase. In vitro studies of NADPH oxidase activity were performed to identify active inhibitors, resulting in a trimer hydroxylated quinone (IIIHyQ) that inhibited NADPH oxidase with an IC(50)=31nM. Apocynin itself possessed minimal inhibitory activity. NADPH oxidase is believed to be inhibited through prevention of the interaction between two NADPH oxidase subunits, p47(phox) and p22(phox). To that end, while apocynin was unable to block the interaction of his-tagged p47(phox) with a surface immobilized biotinylated p22(phox) peptide, the IIIHyQ product strongly interfered with this interaction (apparent IC(50)=1.6microM). These results provide evidence that peroxidase-generated AOP, which consist of oligomeric phenols and quinones, inhibit critical interactions that are involved in the assembly and activation of human vascular NADPH oxidase.

  18. Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Kilsdonk, Iris D.; Wattjes, Mike P.; Lopez-Soriano, Alexandra; Jong, Marcus C. de; Graaf, Wolter L. de; Conijn, Mandy M.A.; Barkhof, Frederik [VU University Medical Center, Department of Radiology, De Boelelaan 1118, HZ, Amsterdam (Netherlands); Kuijer, Joost P.A. [VU University Medical Center, Department of Physics and Medical Technology, Amsterdam (Netherlands); Polman, Chris H. [VU University Medical Center, Department of Neurology, Amsterdam (Netherlands); Luijten, Peter R. [University Medical Center, Department of Radiology, Utrecht (Netherlands); Geurts, Jeroen J.G. [VU University, Department of Anatomy and Neurosciences, Amsterdam (Netherlands); Geerlings, Mirjam I. [University Medical Center, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands)

    2014-04-15

    To investigate whether a new magnetic resonance image (MRI) technique called T2*-weighted fluid attenuation inversion recovery (FLAIR*) can differentiate between multiple sclerosis (MS) and vascular brain lesions, at 7 Tesla (T). We examined 16 MS patients and 16 age-matched patients with (risk factors for) vascular disease. 3D-FLAIR and T2*-weighted images were combined into FLAIR* images. Lesion type and intensity, perivascular orientation and presence of a hypointense rim were analysed. In total, 433 cerebral lesions were detected in MS patients versus 86 lesions in vascular patients. Lesions in MS patients were significantly more often orientated in a perivascular manner: 74 % vs. 47 % (P < 0.001). Ten MS lesions (2.3 %) were surrounded by a hypointense rim on FLAIR*, and 24 MS lesions (5.5 %) were hypointense on T2*. No lesions in vascular patients showed any rim or hypointensity. Specificity of differentiating MS from vascular lesions on 7-T FLAIR* increased when the presence of a central vessel was taken into account (from 63 % to 88 %), most obviously for deep white matter lesions (from 69 % to 94 %). High sensitivity remained (81 %). 7-T FLAIR* improves differentiation between MS and vascular lesions based on lesion location, perivascular orientation and presence of hypointense (rims around) lesions. circle A new MRI technique T2*-weighted fluid attenuation inversion recovery (FLAIR*) was investigated. circle FLAIR* at 7-T MRI combines FLAIR and T2* images into a single image. circle FLAIR* at 7 T does not require enhancement with contrast agents. (orig.)

  19. Flow distributions and spatial correlations in human brain capillary networks

    Science.gov (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  20. Genetic control of postnatal human brain growth.

    Science.gov (United States)

    van Dyck, Laura I; Morrow, Eric M

    2017-02-01

    Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here, we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, post-mortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. To understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders.

  1. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.

    Science.gov (United States)

    Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O

    2016-05-01

    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.

  2. Important Roles of Ring Finger Protein 112 in Embryonic Vascular Development and Brain Functions.

    Science.gov (United States)

    Tsou, Jen-Hui; Yang, Ying-Chen; Pao, Ping-Chieh; Lin, Hui-Ching; Huang, Nai-Kuei; Lin, Shih-Ting; Hsu, Kuei-Sen; Yeh, Che-Ming; Lee, Kuen-Haur; Kuo, Chu-Jen; Yang, De-Ming; Lin, Jiann-Her; Chang, Wen-Chang; Lee, Yi-Chao

    2017-04-01

    Rnf112 is a member of the RING finger protein family. The expression of Rnf112 is abundant in the brain and is regulated during brain development. Our previous study has revealed that Rnf112 can promote neuronal differentiation by inhibiting the progression of the cell cycle in cell models. In this study, we further revealed the important functions of Rnf112 in embryo development and in adult brain. Our data showed that most of the Rnf112 -/- embryos exhibited blood vascular defects and died in utero. Upon further investigation, we found that the survival rate of homozygous Rnf112 knockout mice in 129/sv and C57BL/6 mixed genetic background was increased. The survived newborns of Rnf112 -/- mice manifested growth retardation as indicated by smaller size and a reduced weight. Although the overall organization of the brain did not appear to be severely affected in Rnf112 -/- mice, using in vivo 3D MRI imaging, we found that when compared to wild-type littermates, brains of Rnf112 -/- mice were smaller. In addition, Rnf112 -/- mice displayed impairment of brain functions including motor balance, and spatial learning and memory. Our results provide important aspects for the study of Rnf112 gene functions.

  3. Human cadaver brain infusion model for neurosurgical training.

    Science.gov (United States)

    Olabe, Jon; Olabe, Javier; Sancho, Vidal

    2009-12-01

    Microneurosurgical technique and anatomical knowledge require extensive laboratory training before mastering these skills. There are diverse training models based on synthetic materials, anesthetized animals, cadaver animals, or human cadaver. Human cadaver models are especially beneficial because they are the closest to live surgery with the greatest disadvantage of lacking hemodynamic factors. We developed the "brain infusion model" to provide a simple but realistic training method minimizing animal use or needs for special facilities. Four human cadaveric brains donated for educational purposes were explanted at autopsy. Carotids and vertebral arteries were cannulated with plastic tubes and fixed with suture. Water was flushed through the tubings until the whole arterial vasculature was observed as clean. The cannulated specimens were fixed with formaldehyde. Tap water infusion at a flow rate of 10 L/h was infused through the arterial tubings controlled with a drip regulator filling the arterial tree and leaking into the interstitial and cisternal space. Multiple microneurosurgical procedures were performed by 4 trainees. Cisternal and vascular dissection was executed in a very realistic fashion. Bypass anastomosis was created as well as aneurysm simulation with venous pouches. Vessel and aneurysm clipping and rupture situations were emulated and solution techniques were trained. Standard microsurgical laboratories regularly have scarce opportunities for working with decapitated human cadaver heads but could have human brains readily available. The human brain infusion model presents a realistic microneurosurgical training method. It is inexpensive and easy to set up. Such simplicity provides the adequate environment for developing microsurgical techniques. Copyright 2009 Elsevier Inc. All rights reserved.

  4. The Human Brain Project: Creating a European Research Infrastructure to Decode the Human Brain.

    Science.gov (United States)

    Amunts, Katrin; Ebell, Christoph; Muller, Jeff; Telefont, Martin; Knoll, Alois; Lippert, Thomas

    2016-11-02

    Decoding the human brain is perhaps the most fascinating scientific challenge in the 21st century. The Human Brain Project (HBP), a 10-year European Flagship, targets the reconstruction of the brain's multi-scale organization. It uses productive loops of experiments, medical, data, data analytics, and simulation on all levels that will eventually bridge the scales. The HBP IT architecture is unique, utilizing cloud-based collaboration and development platforms with databases, workflow systems, petabyte storage, and supercomputers. The HBP is developing toward a European research infrastructure advancing brain research, medicine, and brain-inspired information technology. Copyright © 2016. Published by Elsevier Inc.

  5. The Molecular Basis of Human Brain Evolution.

    Science.gov (United States)

    Enard, Wolfgang

    2016-10-24

    Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Association of Ideal Cardiovascular Health With Vascular Brain Injury and Incident Dementia.

    Science.gov (United States)

    Pase, Matthew P; Beiser, Alexa; Enserro, Danielle; Xanthakis, Vanessa; Aparicio, Hugo; Satizabal, Claudia L; Himali, Jayandra J; Kase, Carlos S; Vasan, Ramachandran S; DeCarli, Charles; Seshadri, Sudha

    2016-05-01

    The American Heart Association developed the ideal cardiovascular health (CVH) index as a simple tool to promote CVH; yet, its association with brain atrophy and dementia remains unexamined. Our aim was to investigate the prospective association of ideal CVH with vascular brain injury, including the 10-year risks of incident stroke and dementia, as well as cognitive decline and brain atrophy on magnetic resonance imaging, measured for ≈7 years. We studied 2750 stroke- and dementia-free Framingham Heart Study Offspring cohort participants (mean age, 62±9 years; 45% men). Ideal CVH was quantified on a 7-point scale with 1 point awarded for each of the following: nonsmoking status, ideal body mass index, regular physical activity, healthy diet, as well as optimum blood pressure, cholesterol, and fasting blood glucose. Both recent (baseline) and remote (6.9 years earlier) ideal CVH scores were examined. Recent ideal CVH was associated with stroke (hazard ratio, 0.80; 95% confidence interval, 0.67-0.95), vascular dementia (hazard ratio, 0.49; 95% confidence interval, 0.30-0.81), frontal brain atrophy (P=0.003), and cognitive decline on tasks measuring visual memory and reasoning (Pvascular dementia, whole-brain atrophy, and cognitive decline, remote ideal CVH was associated with the incidence of all-cause dementia (hazard ratio, 0.80; 95% confidence interval, 0.67-0.97) and Alzheimer disease (hazard ratio, 0.79; 95% confidence interval, 0.64-0.98). Adherence to the American Heart Association's ideal CVH factors and behaviors, particularly in midlife, may protect against cerebrovascular disease and dementia. © 2016 American Heart Association, Inc.

  7. Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling.

    Directory of Open Access Journals (Sweden)

    Shang Ma

    Full Text Available The cerebral cortex performs complex cognitive functions at the expense of tremendous energy consumption. Blood vessels in the brain are known to form stereotypic patterns that facilitate efficient oxygen and nutrient delivery. Yet little is known about how vessel development in the brain is normally regulated. Radial glial neural progenitors are well known for their central role in orchestrating brain neurogenesis. Here we show that, in the late embryonic cortex, radial glial neural progenitors also play a key role in brain angiogenesis, by interacting with nascent blood vessels and regulating vessel stabilization via modulation of canonical Wnt signaling. We find that ablation of radial glia results in vessel regression, concomitant with ectopic activation of Wnt signaling in endothelial cells. Direct activation of Wnt signaling also results in similar vessel regression, while attenuation of Wnt signaling substantially suppresses regression. Radial glial ablation and ectopic Wnt pathway activation leads to elevated endothelial expression of matrix metalloproteinases, while inhibition of metalloproteinase activity significantly suppresses vessel regression. These results thus reveal a previously unrecognized role of radial glial progenitors in stabilizing nascent brain vascular network and provide novel insights into the molecular cascades through which target neural tissues regulate vessel stabilization and patterning during development and throughout life.

  8. Segmentation and Visualisation of Human Brain Structures

    OpenAIRE

    Hult, Roger

    2003-01-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradigraphy) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomograpy (SPECT)). When working with anatomical images, the structures segmented are visible as d...

  9. Seasonality in human cognitive brain responses.

    Science.gov (United States)

    Meyer, Christelle; Muto, Vincenzo; Jaspar, Mathieu; Kussé, Caroline; Lambot, Erik; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Luxen, André; Middleton, Benita; Archer, Simon N; Collette, Fabienne; Dijk, Derk-Jan; Phillips, Christophe; Maquet, Pierre; Vandewalle, Gilles

    2016-03-15

    Daily variations in the environment have shaped life on Earth, with circadian cycles identified in most living organisms. Likewise, seasons correspond to annual environmental fluctuations to which organisms have adapted. However, little is known about seasonal variations in human brain physiology. We investigated annual rhythms of brain activity in a cross-sectional study of healthy young participants. They were maintained in an environment free of seasonal cues for 4.5 d, after which brain responses were assessed using functional magnetic resonance imaging (fMRI) while they performed two different cognitive tasks. Brain responses to both tasks varied significantly across seasons, but the phase of these annual rhythms was strikingly different, speaking for a complex impact of season on human brain function. For the sustained attention task, the maximum and minimum responses were located around summer and winter solstices, respectively, whereas for the working memory task, maximum and minimum responses were observed around autumn and spring equinoxes. These findings reveal previously unappreciated process-specific seasonality in human cognitive brain function that could contribute to intraindividual cognitive changes at specific times of year and changes in affective control in vulnerable populations.

  10. Magnetic resonance spectroscopy of the human brain

    Science.gov (United States)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  11. Altered Expression of Human Mitochondrial Branched Chain Aminotransferase in Dementia with Lewy Bodies and Vascular Dementia.

    Science.gov (United States)

    Ashby, Emma L; Kierzkowska, Marta; Hull, Jonathon; Kehoe, Patrick G; Hutson, Susan M; Conway, Myra E

    2017-01-01

    Cytosolic and mitochondrial human branched chain aminotransferase (hBCATc and hBCATm, respectively) play an integral role in brain glutamate metabolism. Regional increased levels of hBCATc in the CA1 and CA4 region of Alzheimer's disease (AD) brain together with increased levels of hBCATm in frontal and temporal cortex of AD brains, suggest a role for these proteins in glutamate excitotoxicity. Glutamate toxicity is a key pathogenic feature of several neurological disorders including epilepsy associated dementia, AD, vascular dementia (VaD) and dementia with Lewy bodies (DLB). To further understand if these increases are specific to AD, the expression profiles of hBCATc and hBCATm were examined in other forms of dementia including DLB and VaD. Similar to AD, levels of hBCATm were significantly increased in the frontal and temporal cortex of VaD cases and in frontal cortex of DLB cases compared to controls, however there were no observed differences in hBCATc between groups in these areas. Moreover, multiple forms of hBCATm were observed that were particular to the disease state relative to matched controls. Real-time PCR revealed similar expression of hBCATm mRNA in frontal and temporal cortex for all cohort comparisons, whereas hBCATc mRNA expression was significantly increased in VaD cases compared to controls. Collectively our results suggest that hBCATm protein expression is significantly increased in the brains of DLB and VaD cases, similar to those reported in AD brain. These findings indicate a more global response to altered glutamate metabolism and suggest common metabolic responses that might reflect shared neurodegenerative mechanisms across several forms of dementia.

  12. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence.

    Science.gov (United States)

    Uyama, O; Okamura, N; Yanase, M; Narita, M; Kawabata, K; Sugita, M

    1988-04-01

    Mongolian gerbils were used to evaluate brain edema during restoration of flow following bilateral carotid occlusion for 1 h. We have modified the method for fluorometric measurement of Evans blue to monitor vascular protein leakage (vasogenic edema). The extraction of extravasated Evans blue was performed by homogenizing the whole brain in 50% trichloroacetic acid. The supernatant was diluted fourfold with ethanol and the Evans blue fluorescence was measured. The tissue blank was negligible. Evans blue content of the plasma was similarly determined and the ratio of tissue to plasma Evans blue content was calculated. Furthermore, Evans blue fluorescence was used for microscopic investigation. It is suggested that Evans blue fluorescence can be applied for quantification of protein leakage with much more sensitivity and accuracy than the colorimetric absorbance method, as well as for tissue localization of protein leakage.

  13. Vascular dementia: different forms of vessel disorders contribute to the development of dementia in the elderly brain.

    Science.gov (United States)

    Thal, Dietmar Rudolf; Grinberg, Lea Tenenholz; Attems, Johannes

    2012-11-01

    The diagnosis of vascular dementia (VaD) describes a group of various vessel disorders with different types of vascular lesions that finally contribute to the development of dementia. Most common forms of VaD in the elderly brain are subcortical vascular encephalopathy, strategic infarct dementia, and the multi infarct encephalopathy. Hereditary forms of VaD are rare. Most common is the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Sporadic forms of VaD are caused by degenerative vessel disorders such as atherosclerosis, small vessel disease (SVD) including small vessel arteriosclerosis, arteriolosclerosis, and lipohyalinosis, and cerebral amyloid angiopathy (CAA). Less frequently inflammatory vessel disorders and tumor-associated vessel lesions (e.g. angiocentric T-cell or angiotropic large cell lymphoma) can cause symptoms of dementia. Here, we review and discuss the impact of vessel disorders to distinct vascular brain tissue lesions and to the development of dementia in elderly individuals. The impact of coexisting neurodegenerative pathology in the elderly brain to VaD as well as the correlation between SVD and CAA expansion in the brain parenchyma with that of Alzheimer's disease (AD)-related pathology is highlighted. We conclude that "pure" VaD is rare and most frequently caused by infarctions. However, there is a significant contribution of vascular lesions and vessel pathology to the development of dementia that may go beyond tissue damage due to vascular lesions. Insufficient blood blow and alterations of the perivascular drainage mechanisms of the brain may also lead to a reduced protein clearance from extracellular space and subsequent increase of proteins in the brain parenchyma, such as the amyloid β-protein, and foster, thereby, the development of AD-related neurodegeneration. As such, it seems to be important for clinical practice to consider treatment of potentially coexisting AD pathology in

  14. Elucidation of mechanism of blood-brain barrier damage for prevention and treatment of vascular dementia.

    Science.gov (United States)

    Ueno, Masaki

    2017-03-28

    . These clearance pathways may play a role in maintenance of the barrier in the entire brain. Obstruction of the passage of fluids through the perivascular drainage and glymphatic pathways as well as damage of the BBB and BCSFB may induce several kinds of brain disorders, such as vascular dementia. In this review, we focus on the relationship between damage of the barriers and the pathogenesis of vascular dementia and introduce recent findings including our experimental data using animal models.

  15. Impact of shear rate modulation on vascular function in humans.

    Science.gov (United States)

    Tinken, Toni M; Thijssen, Dick H J; Hopkins, Nicola; Black, Mark A; Dawson, Ellen A; Minson, Christopher T; Newcomer, Sean C; Laughlin, M Harold; Cable, N Timothy; Green, Daniel J

    2009-08-01

    Shear stress is an important stimulus to arterial adaptation in response to exercise and training in humans. We recently observed significant reverse arterial flow and shear during exercise and different antegrade/retrograde patterns of shear and flow in response to different types of exercise. The purpose of this study was to simultaneously examine flow-mediated dilation, a largely NO-mediated vasodilator response, in both brachial arteries of healthy young men before and after 30-minute interventions consisting of bilateral forearm heating, recumbent leg cycling, and bilateral handgrip exercise. During each intervention, a cuff inflated to 60 mm Hg was placed on 1 arm to unilaterally manipulate the shear rate stimulus. In the noncuffed arm, antegrade flow and shear increased similarly in response to each intervention (ANOVA; P<0.001, no interaction between interventions; P=0.71). Baseline flow-mediated dilation (4.6%, 6.9%, and 6.7%) increased similarly in response to heating, handgrip, and cycling (8.1%, 10.4%, and 8.9%, ANOVA; P<0.001, no interaction; P=0.89). In contrast, cuffed arm antegrade shear rate was lower than in the noncuffed arm for all of the conditions (P<0.05), and the increase in flow-mediated dilation was abolished in this arm (4.7%, 6.7%, and 6.1%; 2-way ANOVA: all conditions interacted P<0.05). These results suggest that differences in the magnitude of antegrade shear rate transduce differences in endothelial vasodilator function in humans, a finding that may have relevance for the impact of different exercise interventions on vascular adaptation in humans.

  16. Protective Effect of Allium tuberosum Extract on Vascular Inflammation in Tumor Necrosis Factor-α-induced Human Vascular Endothelial Cells.

    Science.gov (United States)

    Hur, Haeng Jeon; Lee, Ae Sin

    2017-12-01

    Endothelial adhesion molecule expression induced by pro-inflammatory cytokine plays an important role in vascular endothelial cell injury, leading to vascular disease. Allium tuberosum (AT), which is used as a functional food, has a thrombolytic effect. It contains vitamin A, vitamin C, carbohydrate, calcium, iron, and phosphorus. There are many carotenes that turn into vitamin A in the body. Also, it helps blood circulation and stimulates metabolism. The purpose of the this study was to estimate the anti-inflammatory effects of the AT extract. Human vascular endothelial cells were pre-treated with 100 μg/mL AT extract for 30 minutes and subsequently co-treated with TNF-α (10 ng/mL) and AT extract (100 μg/mL) for 1, 4, and 6 hours. After treatment, the cells were lysed and used for quantitative reverse transcription PCR, Western blot analysis, and monocyte adhesion assay. We examined the effect of the AT extract on inflammatory gene expression in TNF-α-induced human umbilical vein endothelial cells (HUVECs). The extract reduced the expression levels of mRNA and protein of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in TNF-α-stimulated HUVECs. It also inhibited the TNF-α-induced phosphorylation of the NF-κB p65 subunit and degradation of IκBα. Furthermore, the AT extract prevented the increased adhesion capacity of monocyte to TNF-α-stimulated vascular endothelial cells by reducing ICAM-1 and VCAM-1 expression. The AT extract has preventive and anti-inflammatory effect against vascular disease and has potential for supporting prevention against the early process of atherosclerosis.

  17. Brain vascular image enhancement based on gradient adjust with split Bregman

    Science.gov (United States)

    Liang, Xiao; Dong, Di; Hui, Hui; Zhang, Liwen; Fang, Mengjie; Tian, Jie

    2016-04-01

    Light Sheet Microscopy is a high-resolution fluorescence microscopic technique which enables to observe the mouse brain vascular network clearly with immunostaining. However, micro-vessels are stained with few fluorescence antibodies and their signals are much weaker than large vessels, which make micro-vessels unclear in LSM images. In this work, we developed a vascular image enhancement method to enhance micro-vessel details which should be useful for vessel statistics analysis. Since gradient describes the edge information of the vessel, the main idea of our method is to increase the gradient values of the enhanced image to improve the micro-vessels contrast. Our method contained two steps: 1) calculate the gradient image of LSM image, and then amplify high gradient values of the original image to enhance the vessel edge and suppress low gradient values to remove noises. Then we formulated a new L1-norm regularization optimization problem to find an image with the expected gradient while keeping the main structure information of the original image. 2) The split Bregman iteration method was used to deal with the L1-norm regularization problem and generate the final enhanced image. The main advantage of the split Bregman method is that it has both fast convergence and low memory cost. In order to verify the effectiveness of our method, we applied our method to a series of mouse brain vascular images acquired from a commercial LSM system in our lab. The experimental results showed that our method could greatly enhance micro-vessel edges which were unclear in the original images.

  18. Human brain arteriovenous malformations express lymphatic-associated genes.

    Science.gov (United States)

    Shoemaker, Lorelei D; Fuentes, Laurel F; Santiago, Shauna M; Allen, Breanna M; Cook, Douglas J; Steinberg, Gary K; Chang, Steven D

    2014-12-01

    Brain arteriovenous malformations (AVMs) are devastating, hemorrhage-prone, cerebrovascular lesions characterized by well-defined feeding arteries, draining vein(s) and the absence of a capillary bed. The endothelial cells (ECs) that comprise AVMs exhibit a loss of arterial and venous specification. Given the role of the transcription factor COUP-TFII in vascular development, EC specification, and pathological angiogenesis, we examined human AVM tissue to determine if COUP-FTII may have a role in AVM disease biology. We examined 40 human brain AVMs by immunohistochemistry (IHC) and qRT-PCR for the expression of COUP-TFII as well as other genes involved in venous and lymphatic development, maintenance, and signaling. We also examined proliferation and EC tube formation with human umbilical ECs (HUVEC) following COUP-TFII overexpression. We report that AVMs expressed COUP-TFII, SOX18, PROX1, NFATC1, FOXC2, TBX1, LYVE1, Podoplanin, and vascular endothelial growth factor (VEGF)-C, contained Ki67-positive cells and heterogeneously expressed genes involved in Hedgehog, Notch, Wnt, and VEGF signaling pathways. Overexpression of COUP-TFII alone in vitro resulted in increased EC proliferation and dilated tubes in an EC tube formation assay in HUVEC. This suggests AVM ECs are further losing their arterial/venous specificity and acquiring a partial lymphatic molecular phenotype. There was significant correlation of gene expression with presence of clinical edema and acute hemorrhage. While the precise role of these genes in the formation, stabilization, growth and risk of hemorrhage of AVMs remains unclear, these findings have potentially important implications for patient management and treatment choice, and opens new avenues for future work on AVM disease mechanisms.

  19. Simvastatin Combined with Antioxidant Attenuates the Cerebral Vascular Endothelial Inflammatory Response in a Rat Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kuo-Wei Wang

    2014-01-01

    Full Text Available Traumatic brain injury (TBI leads to important and deleterious neuroinflammation, as evidenced by indicators such as edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, cerebral vascular endothelial cells play a crucial role in the pathogenesis of inflammation. In our previous study, we proved that simvastatin could attenuate cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. This purpose of this study was to determine whether simvastatin combined with an antioxidant could produce the same effect or greater and to examine affected surrogate biomarkers for the neuroinflammation after traumatic brain injury in rat. In our study, cortical contusions were induced, and the effect of acute and continuous treatment of simvastatin and vitamin C on behavior and inflammation in adult rats following experimental TBI was evaluated. The results demonstrated that simvastatin combined with an antioxidant could provide neuroprotection and it may be attributed to a dampening of cerebral vascular endothelial inflammatory response.

  20. Effects of beta-hydroxybutyrate on brain vascular permeability in rats with traumatic brain injury.

    Science.gov (United States)

    Orhan, Nurcan; Ugur Yilmaz, Canan; Ekizoglu, Oguzhan; Ahishali, Bulent; Kucuk, Mutlu; Arican, Nadir; Elmas, Imdat; Gürses, Candan; Kaya, Mehmet

    2016-01-15

    This study investigates the effect of beta-hydroxybutyrate (BHB) on blood-brain barrier (BBB) integrity during traumatic brain injury (TBI) in rats. Evans blue (EB) and horseradish peroxidase (HRP) were used as determinants of BBB permeability. Glutathione (GSH) and malondialdehyde (MDA) levels were estimated in the right (injury side) cerebral cortex of animals. The gene expression levels for occludin, glucose transporter (Glut)-1, aquaporin4 (AQP4) and nuclear factor-kappaB (NF-κB) were performed, and Glut-1 and NF-κB activities were analyzed. BHB treatment decreased GSH and MDA levels in intact animals and in those exposed to TBI (P<0.05). Glut-1 protein levels decreased in sham, BHB and TBI plus BHB groups (P<0.05). NF-κB protein levels increased in animals treated with BHB and/or exposed to TBI (P<0.05). The expression levels of occludin and AQP4 did not significantly change among experimental groups. Glut-1 expression levels increased in BHB treated and untreated animals exposed to TBI (P<0.05). While NF-κB expression levels increased in animals in TBI (P<0.01), a decrease was noticed in these animals upon BHB treatment (P<0.01). In animals exposed to TBI, EB extravasation was observed in the ipsilateral cortex regardless of BHB treatment. Ultrastructurally, BHB attenuated but did not prevent the presence of HRP in brain capillary endothelial cells of animals with TBI; moreover, the drug also led to the observation of the tracer when used in intact rats (P<0.01). Altogether, these results showed that BHB not only failed to provide overall protective effects on BBB in TBI but also led to BBB disruption in healthy animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Brain activation during human male ejaculation

    NARCIS (Netherlands)

    Holstege, Ger; Georgiadis, Janniko R.; Paans, Anne M.J.; Meiners, Linda C.; Graaf, Ferdinand H.C.E. van der; Reinders, A.A.T.Simone

    2003-01-01

    Brain mechanisms that control human sexual behavior in general, and ejaculation in particular, are poorly understood. We used positron emission tomography to measure increases in regional cerebral blood flow (rCBF) during ejaculation compared with sexual stimulation in heterosexual male volunteers.

  2. Brain activation during human male ejaculation revisited

    NARCIS (Netherlands)

    Georgiadis, Janniko R.; Reinders, A. A. T. Simone; Van der Graaf, Ferdinand H. C. E.; Paans, Anne M. J.; Kortekaas, Rudie

    2007-01-01

    In a prior [O-15]-H2O positron emission tomographic study we reported brain regions involved in human male ejaculation. Here, we used another, more recently acquired data set to evaluate the methodological approach of this previous study, and discovered that part of the reported activation pattern

  3. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4.

    Directory of Open Access Journals (Sweden)

    Heling Chu

    Full Text Available Vascular endothelial growth factor (VEGF has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH is largely unknown. Our previous study has shown aquaporin-4 (AQP4 plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165 was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4(+/+ and AQP4 knock-out (AQP4(-/- mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4(+/+ mice at each time point, but had no effect on AQP4(-/- mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4(-/- mice, but not AQP4(+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl's staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK and extracellular signal-regulated kinase (p-ERK and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to

  4. Magnetite pollution nanoparticles in the human brain

    Science.gov (United States)

    Maher, Barbara A.; Ahmed, Imad A. M.; Karloukovski, Vassil; MacLaren, Donald A.; Foulds, Penelope G.; Allsop, David; Mann, David M. A.; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian

    2016-09-01

    Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.

  5. Individual differences in human brain development.

    Science.gov (United States)

    Brown, Timothy T

    2017-01-01

    This article discusses recent scientific advances in the study of individual differences in human brain development. Focusing on structural neuroimaging measures of brain morphology and tissue properties, two kinds of variability are related and explored: differences across individuals of the same age and differences across age as a result of development. A recent multidimensional modeling study is explained, which was able to use brain measures to predict an individual's chronological age within about one year on average, in children, adolescents, and young adults between 3 and 20 years old. These findings reveal great regularity in the sequence of the aggregate brain state across different ages and phases of development, despite the pronounced individual differences people show on any single brain measure at any given age. Future research is suggested, incorporating additional measures of brain activity and function. WIREs Cogn Sci 2017, 8:e1389. doi: 10.1002/wcs.1389 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.

  6. [Evolution of human brain and intelligence].

    Science.gov (United States)

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are

  7. Native Mutant Huntingtin in Human Brain

    Science.gov (United States)

    Sapp, Ellen; Valencia, Antonio; Li, Xueyi; Aronin, Neil; Kegel, Kimberly B.; Vonsattel, Jean-Paul; Young, Anne B.; Wexler, Nancy; DiFiglia, Marian

    2012-01-01

    Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer. PMID:22375012

  8. Pharmacological interference of vascular smooth muscle cell hypertrophy induced by glycosylated human oxyhaemoglobin.

    Science.gov (United States)

    Peiró, C; Vallejo, S; Nevado, J; Angulo, J; Llergo, J L; Cercas, E; Rodríguez-Mañas, L; Sánchez-Ferrer, C F

    1999-12-15

    Nonenzymatically glycosylated human oxyhaemoglobin induces vascular smooth muscle cell hypertrophy by releasing reactive oxygen species. We analysed the ability of drugs with antihypertrophic properties for the vascular wall and/or antioxidant activity, such as captopril, losartan, and nifedipine, or gliclazide, carvedilol, and ascorbic acid, to interfere with 10 nM glycosylated human oxyhaemoglobin-induced increase in vascular smooth muscle cell size (118+/-0.5% of basal). Vascular smooth muscle cell hypertrophy was abolished concentration-dependently, with pD(2) values over a 100-fold interval: 6.4+/-0.3, 7.7+/-0.4, 7.3+/-0.4, 7.4+/-0.6, 8. 8+/-0.2, and 9.0+/-0.2 for captopril, losartan, nifedipine, ascorbic acid, carvedilol and gliclazide, respectively. Drugs with powerful antioxidant properties, especially carvedilol and gliclazide, are particularly effective in preventing glycosylated human oxyhaemoglobin-induced vascular smooth muscle cell hypertrophy.

  9. Microchimerism in the human brain: More questions than answers

    OpenAIRE

    Chan, William F.N.; Nelson, J. Lee

    2013-01-01

    Recently, our group reported the presence of microchimerism (Mc) in the human brain by performing quantitative PCR on female human brain tissues to amplify male DNA. We found brain Mc to be relatively frequent in humans and widely distributed in this organ. Our data also suggested a lower prevalence of brain Mc in women without Alzheimer disease than women without neurological disease. Altogether, these findings suggest that Mc could sometimes influence health and disease of the brain. As fur...

  10. Human freedom and the brain.

    Science.gov (United States)

    Kornhuber, Hans Helmut

    2009-06-01

    Freedom of will does exist, it is self-leadership of man based on reason and ethos. Evidence comes from truth. Determinism cannot be proved since if you try, you mean to prove a truth; but there is no truth without freedom. By contrast for freedom there are many pieces of evidence e.g. science, arts, technology. Freedom utilizes creative abstract thinking with phantasy. Freedom is graded, limited, based on nature, but not developed without good will. We perceive reliably freedom by self-consciousness and in other persons as long as we are sober. Freedom needs intelligence, but is more, it is a creative and moral virtue. The basis for freedom is phylogenesis and culture, in the individual learning and experimenting. Factors in the becoming of freedom are not only genes and environment but also self-discipline. But the creativity of free will is dangerous. Man therefore needs morale. Drives and feelings become humanized, cultural interests are developed. There is a humane nobility from long good will.

  11. Puberty and structural brain development in humans.

    Science.gov (United States)

    Herting, Megan M; Sowell, Elizabeth R

    2017-01-01

    Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual- based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. Copyright © 2016. Published by Elsevier Inc.

  12. Primo Vascular System in the Subarachnoid Space of a Mouse Brain

    Directory of Open Access Journals (Sweden)

    Sang-Ho Moon

    2013-01-01

    Full Text Available Objective. Recently, a novel circulatory system, the primo vascular system (PVS, was found in the brain ventricles and in the central canal of the spinal cord of a rat. The aim of the current work is to detect the PVS along the transverse sinuses between the cerebrum and the cerebellum of a mouse brain. Materials and Methods. The PVS in the subarachnoid space was analyzed after staining with 4',6-diamidino-2-phenylindole (DAPI and phalloidin in order to identify the PVS. With confocal microscopy and polarization microscopy, the primo vessel underneath the sagittal sinus was examined. The primo nodes under the transversal sinuses were observed after peeling off the dura and pia maters of the brain. Results. The primo vessel underneath the superior sagittal sinus was observed and showed linear optical polarization, similarly to the rabbit and the rat cases. The primo nodes were observed under the left and the right transverse sinuses at distances of 3,763 μm and 5,967 μm. The average size was 155 μm × 248 μm. Conclusion. The observation of primo vessels was consistent with previous observations in rabbits and rats, and primo nodes under the transverse sinuses were observed for the first time in this work.

  13. Viscoelastic parameter identification of human brain tissue.

    Science.gov (United States)

    Budday, S; Sommer, G; Holzapfel, G A; Steinmann, P; Kuhl, E

    2017-10-01

    Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model parameters are typically calibrated with a single loading mode and fail to predict the behavior under arbitrary loading conditions. Here we used a finite viscoelastic Ogden model with six material parameters-an elastic stiffness, two viscoelastic stiffnesses, a nonlinearity parameter, and two viscous time constants-to model the characteristic nonlinearity, conditioning, hysteresis and tension-compression asymmetry of the human brain. We calibrated the model under shear, shear relaxation, compression, compression relaxation, and tension for four different regions of the human brain, the cortex, basal ganglia, corona radiata, and corpus callosum. Strikingly, unconditioned gray matter with 0.36kPa and white matter with 0.35kPa were equally stiff, whereas conditioned gray matter with 0.52kPa was three times stiffer than white matter with 0.18kPa. While both unconditioned viscous time constants were larger in gray than in white matter, both conditioned constants were smaller. These rheological differences suggest a different porosity between both tissues and explain-at least in part-the ongoing controversy between reported stiffness differences in gray and white matter. Our unconditioned and conditioned parameter sets are readily available for finite element simulations with commercial software packages that feature Ogden type models at finite deformations. As such, our results have direct implications on improving the accuracy of human brain simulations in health and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mechanical characterization of human brain tissue.

    Science.gov (United States)

    Budday, S; Sommer, G; Birkl, C; Langkammer, C; Haybaeck, J; Kohnert, J; Bauer, M; Paulsen, F; Steinmann, P; Kuhl, E; Holzapfel, G A

    2017-01-15

    Mechanics are increasingly recognized to play an important role in modulating brain form and function. Computational simulations are a powerful tool to predict the mechanical behavior of the human brain in health and disease. The success of these simulations depends critically on the underlying constitutive model and on the reliable identification of its material parameters. Thus, there is an urgent need to thoroughly characterize the mechanical behavior of brain tissue and to identify mathematical models that capture the tissue response under arbitrary loading conditions. However, most constitutive models have only been calibrated for a single loading mode. Here, we perform a sequence of multiple loading modes on the same human brain specimen - simple shear in two orthogonal directions, compression, and tension - and characterize the loading-mode specific regional and directional behavior. We complement these three individual tests by combined multiaxial compression/tension-shear tests and discuss effects of conditioning and hysteresis. To explore to which extent the macrostructural response is a result of the underlying microstructural architecture, we supplement our biomechanical tests with diffusion tensor imaging and histology. We show that the heterogeneous microstructure leads to a regional but not directional dependence of the mechanical properties. Our experiments confirm that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry. Using our measurements, we compare the performance of five common constitutive models, neo-Hookean, Mooney-Rivlin, Demiray, Gent, and Ogden, and show that only the isotropic modified one-term Ogden model is capable of representing the hyperelastic behavior under combined shear, compression, and tension loadings: with a shear modulus of 0.4-1.4kPa and a negative nonlinearity parameter it captures the compression-tension asymmetry and the increase in shear stress under superimposed

  15. Protective effects of vascular endothelial growth factor in cultured brain endothelial cells against hypoglycemia.

    Science.gov (United States)

    Zhao, Fei; Deng, Jiangshan; Yu, Xiaoyan; Li, Dawei; Shi, Hong; Zhao, Yuwu

    2015-08-01

    Hypoglycemia is a common and serious problem among patients with type 1 diabetes receiving treatment with insulin. Clinical studies have demonstrated that hypoglycemic edema is involved in the initiation of hypoglycemic brain damage. However, the mechanisms of this edema are poorly understood. Vascular endothelial growth factor (VEGF), a potent regulator of blood vessel function, has been observed an important candidate hormone induced by hypoglycemia to protect neurons by restoring plasma glucose. Whether VEGF has a protective effect against hypoglycemia-induced damage in brain endothelial cells is still unknown. To investigate the effects of hypoglycemia on cerebral microvascular endothelial cells and assess the protective effect of exogenous VEGF on endothelial cells during hypoglycemia, confluent monolayers of the brain endothelial cell line bEnd.3 were treated with normal (5.5 mM glucose), hypoglycemic (0, 0.5, 1 mM glucose) medium or hypoglycemic medium in the presence of VEGF. The results clearly showed that hypoglycemia significantly downregulated the expression of claudin-5 in bEnd.3 cells, without affecting ZO-1 and occludin expression and distribution. Besides, transendothelial permeability significantly increased under hypoglycemic conditions compared to that under control conditions. Moreover, the hypoglycemic medium in presence of VEGF decreased endothelial permeability via the inhibition of claudin-5 degradation and improved hypoglycemia-induced cell toxicity. Furthermore, Glucose transporter-1 (Glut-1) and apoptosis regulator Bcl-2 expression were significantly upregulated. Taken together, hypoglycemia can significantly increase paraendocellular permeability by downregulating claudin-5 expression. We further showed that VEGF protected brain endothelial cells against hypoglycemia by enhancing glucose passage, reducing endothelial cell death, and ameliorating paraendocellular permeability.

  16. Imaging retinotopic maps in the human brain

    Science.gov (United States)

    Wandell, Brian A.; Winawer, Jonathan

    2010-01-01

    A quarter-century ago visual neuroscientists had little information about the number and organization of retinotopic maps in human visual cortex. The advent of functional magnetic resonance imaging (MRI), a non-invasive, spatially-resolved technique for measuring brain activity, provided a wealth of data about human retinotopic maps. Just as there are differences amongst nonhuman primate maps, the human maps have their own unique properties. Many human maps can be measured reliably in individual subjects during experimental sessions lasting less than an hour. The efficiency of the measurements and the relatively large amplitude of functional MRI signals in visual cortex make it possible to develop quantitative models of functional responses within specific maps in individual subjects. During this last quarter century, there has also been significant progress in measuring properties of the human brain at a range of length and time scales, including white matter pathways, macroscopic properties of gray and white matter, and cellular and molecular tissue properties. We hope the next twenty-five years will see a great deal of work that aims to integrate these data by modeling the network of visual signals. We don’t know what such theories will look like, but the characterization of human retinotopic maps from the last twenty-five years is likely to be an important part of future ideas about visual computations. PMID:20692278

  17. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells

    National Research Council Canada - National Science Library

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Boulouis, Henri Jean; Haddad, Nadia

    2011-01-01

    ... lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development...

  18. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  19. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  20. Sense of agency in the human brain

    OpenAIRE

    Haggard, P.

    2017-01-01

    In adult life, people normally know what they are doing. This experience of controlling one's own actions and, through them, the course of events in the outside world is called 'sense of agency'. It forms a central feature of human experience; however, the brain mechanisms that produce the sense of agency have only recently begun to be investigated systematically. This recent progress has been driven by the development of better measures of the experience of agency, improved design of cogniti...

  1. Sex beyond the genitalia: The human brain mosaic

    OpenAIRE

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains ("female brain" or "male brain"). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features ...

  2. Towards Developmental Connectomics of the Human Brain

    Directory of Open Access Journals (Sweden)

    Miao eCao

    2016-03-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and

  3. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com [Department of Applied Mathematics and Sciences, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Christoforou, Nicolas, E-mail: nicolas.christoforou@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States); Teo, Jeremy C.M., E-mail: jeremy.teo@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates)

    2016-05-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  4. Brain structures in the sciences and humanities.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  5. Segmentation and Visualisation of Human Brain Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Roger

    2003-10-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give.

  6. Structural brain correlates of human sleep oscillations.

    Science.gov (United States)

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Deconstructing Anger in the Human Brain.

    Science.gov (United States)

    Gilam, Gadi; Hendler, Talma

    2017-01-01

    Anger may be caused by a wide variety of triggers, and though it has negative consequences on health and well-being, it is also crucial in motivating to take action and approach rather than avoid a confrontation. While anger is considered a survival response inherent in all living creatures, humans are endowed with the mental flexibility that enables them to control and regulate their anger, and adapt it to socially accepted norms. Indeed, a profound interpersonal nature is apparent in most events which evoke anger among humans. Since anger consists of physiological, cognitive, subjective, and behavioral components, it is a contextualized multidimensional construct that poses theoretical and operational difficulties in defining it as a single psychobiological phenomenon. Although most neuroimaging studies have neglected the multidimensionality of anger and thus resulted in brain activations dispersed across the entire brain, there seems to be several reoccurring neural circuits subserving the subjective experience of human anger. Nevertheless, to capture the large variety in the forms and fashions in which anger is experienced, expressed, and regulated, and thus to better portray the related underlying neural substrates, neurobehavioral investigations of human anger should aim to further embed realistic social interactions within their anger induction paradigms.

  8. Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling.

    Science.gov (United States)

    Ozen, Gulsev; Daci, Armond; Norel, Xavier; Topal, Gokce

    2015-11-05

    Obesity is one of the major risk factors for the development of cardiovascular diseases. It is characterized by excessive or abnormal accumulation of adipose tissue, including depots which surround the blood vessels named perivascular adipose tissue (PVAT). PVAT plays endocrine and paracrine roles by producing large numbers of metabolically vasoactive adipokines. The present review outlines our current understanding of the beneficial roles of PVAT in vascular tone and remodeling in healthy subjects supported by clinical studies, highlighting different factors or mechanisms that could mediate protective effects of PVAT on vascular function. Most studies in humans show that adiponectin is the best candidate for the advantageous effect of PVAT. However, in pathological conditions especially obesity-related cardiovascular diseases, the beneficial effects of PVAT on vascular functions are impaired and transform into detrimental roles. This change is defined as PVAT dysfunction. In the current review, the contribution of PVAT dysfunction to obesity-related cardiovascular diseases has been discussed with a focus on possible mechanisms including an imbalance between beneficial and detrimental adipokines (commonly described as decreased levels of adiponectin and increased levels of leptin or tumor necrosis factor-alpha (TNFα)), increased quantity of adipose tissue, inflammation, cell proliferation and endothelial dysfunction. Finally, novel pharmacotherapeutic targets for the treatment of cardiovascular and metabolic disorders are addressed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Visualization of monoamine oxidase in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  10. Inferring human intentions from the brain data

    DEFF Research Database (Denmark)

    Stanek, Konrad

    The human brain is a massively complex organ composed of approximately a hundred billion densely interconnected, interacting neural cells. The neurons are not wired randomly - instead, they are organized in local functional assemblies. It is believed that the complex patterns of dynamic electric...... discharges across the neural tissue are responsible for emergence of high cognitive function, conscious perception and voluntary action. The brain’s capacity to exercise free will, or internally generated free choice, has long been investigated by philosophers, psychologists and neuroscientists. Rather than...... assuming a causal power of conscious will, the neuroscience of volition is based on the premise that "mental states rest on brain processes”, and hence by measuring spatial and temporal correlates of volition in carefully controlled experiments we can infer about their underlying mind processes, including...

  11. Carotid ultrasonographic and brain computerized tomographic findings in patients with vascular ocular syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Toshihiko; Matsushima, Chikage; Shimizu, Souichirou; Takasaki, Masaru; Iwasaki, Takuya; Usui, Masahiko [Tokyo Medical Coll. (Japan)

    2002-02-01

    To clarify the characteristics of cerebrovascular lesions in subtypes of vascular ocular syndrome, including amaurosis fugax (AF), retinal artery occlusion (RAO), and retinal vein occlusion (RVO), 93 patients with vascular ocular syndrome were studied by means of carotid ultrasonography (US) and brain computerized tomography (CT). The subjects comprised 21 patients with AF, 37 with RAO, and 35 with RVO who were sequentially given these diagnoses by the department of ophthalmology. On the basis of US findings, carotid lesions were defined as the presence of plaque or stenotic changes. CT findings were assessed for the presence and distribution of low-density areas (LDAs). Mean age was similar in each group, ranging from 64.5 to 67.4 years. The RAO group had high rates of men, hypertension, and smokers. US showed that the prevalence of carotid lesions ipsilateral to the affected eye was high in the RAO group and that severe stenosis and ulcerated plaque were present in 28.6% of the AF group and 45.9% of the RAO group. On CT examination, cerebral infarctions appeared as LDAs in about 10% of the patients in each group, and the incidence and distribution of LDAs were similar. Of 13 patients with cerebral infarction, only 2 were presumably due to carotid lesions; the others had a variety of causes. The discrepancy between US and CT findings was attributed to the small number of patients with cerebral infarction, since most patients had visual defects as an initial symptom. Our results suggest that extracranial carotid lesions, considered to be a major risk factor for stroke, should be carefully assessed in patients with AF or RAO to prevent further stroke. (author)

  12. Inhibition of Human Vascular NADPH Oxidase by Apocynin Derived Oligophenols

    OpenAIRE

    Mora-Pale, Mauricio; Weïwer, Michel; Yu, Jingjing; Linhardt, Robert J.; Dordick, Jonathan S.

    2009-01-01

    Enzymatic oxidation of apocynin, which may mimic in vivo metabolism, affords a large number of oligomers (apocynin oxidation products, AOP) that inhibit vascular NADPH oxidase. In vitro studies of NADPH oxidase activity were performed to identify active inhibitors, resulting in a trimer hydroxylated quinone (IIIHyQ) that inhibited NADPH oxidase with an IC50 = 31 nM. Apocynin itself possessed minimal inhibitory activity. NADPH oxidase is believed to be inhibited through prevention of the inter...

  13. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    Science.gov (United States)

    Parsons-Wingerter, P. A.; Vickerman, M. B.; Keith, P. A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of plants, animals and humans is significantly modified in such extraterrestrial environments. One physiological requirement shared by larger plants and animals with humans is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  14. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  15. Physical biology of human brain development

    Directory of Open Access Journals (Sweden)

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  16. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Science.gov (United States)

    Kabu, Shushi; Jaffer, Hayder; Petro, Marianne; Dudzinski, Dave; Stewart, Desiree; Courtney, Amy; Courtney, Michael; Labhasetwar, Vinod

    2015-01-01

    Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic strategies

  17. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Shushi Kabu

    Full Text Available Blast-associated shock wave-induced traumatic brain injury (bTBI remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB integrity following blast exposure. Reactive oxygen species (ROS levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective

  18. [Mathematical modeling of passive mechanisms of the human vascular regulation in orthostatic position].

    Science.gov (United States)

    Bednenko, V S; Matiushev, T V; Mukhin, V A; Ryzhenkov, S P; Abashev, V Iu

    2002-01-01

    Formalized description of the vascular component of the human circulation system taking in the effects of gravity on the human organism during the standing test is presented. The structure proposed in the model by R.D. Grigorian has been used as basic to describe the vascular system. The neuroreflex and humoral regulators of circulation have been counted as constant. Organs and elements of the vascular system were represented as a network of sequential and parallel separate elastic reservoirs with distributed parameters. The pressure-volume ratio was represented by piecewise linear approximation with 3 fragments imitating main forms of the vascular cross section. Primary focus was put on investigation of circulation in the leg and the head which is of interest for evaluating body reactions to postural changes. Result of modeling have been displayed as curves of volumetric velocity, and blood volume and pressure in different fragments of cranial and crus vessels.

  19. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Biraja C. Dash

    2016-07-01

    Full Text Available There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs. Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.

  20. Plasma from preeclamptic women increases blood-brain barrier permeability: role of vascular endothelial growth factor signaling.

    Science.gov (United States)

    Amburgey, Odül A; Chapman, Abbie C; May, Victor; Bernstein, Ira M; Cipolla, Marilyn J

    2010-11-01

    Circulating factors in preeclamptic women are thought to cause endothelial dysfunction and thereby contribute to the progression of this hypertensive condition. Despite the involvement of neurological complications in preeclampsia, there is a paucity of data regarding the effect of circulating factors on cerebrovascular function. Using a rat model of pregnancy, we investigated blood-brain barrier permeability, myogenic activity, and the influence of endothelial vasodilator mechanisms in cerebral vessels exposed intraluminally to plasma from normal pregnant or preeclamptic women. In addition, the role of vascular endothelial growth factor signaling in mediating changes in permeability in response to plasma was investigated. A 3-hour exposure to 20% normal pregnant or preeclamptic plasma increased blood-brain barrier permeability by ≈6.5- and 18.0-fold, respectively, compared with no plasma exposure (Pvascular endothelial growth factor receptor kinase activity prevented the increase in permeability in response to preeclamptic plasma but had no effect on changes in permeability of vessels exposed to normal pregnant plasma. Circulating factors in preeclamptic plasma did not affect myogenic activity or the influence of endothelium on vascular tone. These findings demonstrate that acute exposure to preeclamptic plasma has little effect on reactivity of cerebral arteries but significantly increases blood-brain barrier permeability. Prevention of increased permeability by inhibition of vascular endothelial growth factor signaling suggests that activation of this pathway may be responsible for increased blood-brain barrier permeability after exposure to preeclamptic plasma.

  1. Evolvability of Amyloidogenic Proteins in Human Brain

    Science.gov (United States)

    Hashimoto, Makoto; Ho, Gilbert; Sugama, Shuei; Takamatsu, Yoshiki; Shimizu, Yuka; Takenouchi, Takato; Waragai, Masaaki; Masliah, Eliezer

    2018-01-01

     Currently, the physiological roles of amyloidogenic proteins (APs) in human brain, such as amyloid-β and α-synuclein, are elusive. Given that many APs arose by gene duplication and have been resistant against the pressures of natural selection, APs may be associated with some functions that are advantageous for survival of offspring. Nonetheless, evolvability is the sole physiological quality of APs that has been characterized in microorganisms such as yeast. Since yeast and human brain may share similar strategies in coping with diverse range of critical environmental stresses, the objective of this paper was to discuss the potential role of evolvability of APs in aging-associated neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease. Given the heterogeneity of APs in terms of structure and cytotoxicity, it is argued that APs might be involved in preconditioning against diverse stresses in human brain. It is further speculated that these stress-related APs, most likely protofibrillar forms, might be transmitted to offspring via the germline, conferring preconditioning against forthcoming stresses. Thus, APs might represent a vehicle for the inheritance of the acquired characteristics against environmental stresses. Curiously, such a characteristic of APs is reminiscent of Charles Darwin’s ‘gemmules’, imagined molecules of heritability described in his pangenesis theory. We propose that evolvability might be a physiological function of APs during the reproductive stage and neurodegenerative diseases could be a by-product effect manifested later in aging. Collectively, our evolvability hypothesis may play a complementary role in the pathophysiology of APs with the conventional amyloid cascade hypothesis. PMID:29439348

  2. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo.

    Science.gov (United States)

    Geoghegan, James C; Keiser, Nicholas W; Okulist, Anna; Martins, Inês; Wilson, Matthew S; Davidson, Beverly L

    2014-10-14

    Recently, we described a peptide-modified AAV2 vector (AAV-GMN) containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.

  3. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo

    Directory of Open Access Journals (Sweden)

    James C Geoghegan

    2014-01-01

    Full Text Available Recently, we described a peptide-modified AAV2 vector (AAV-GMN containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.

  4. Molecular biology of the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.G.

    1988-01-01

    This book examines new methods of molecular biology that are providing valuable insights into the human brain, the genes that govern its assembly and function, and the many genetic defects that cause neurological diseases such as Alzheimer's, Cri du Chat syndrome, Huntington's disease, and bipolar depression disorder. In addition, the book reviews techniques in molecular neurobiological research, including the use of affinity reagents, chimeric receptors, and site-directed mutagenesis in localizing the ion channel and cholinergic binding site, and the application of somatic cell genetics in isolating specific chromosomes or chromosomal segments.

  5. Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer.

    Science.gov (United States)

    Yang, Tianzhi; Fogarty, Brittany; LaForge, Bret; Aziz, Salma; Pham, Thuy; Lai, Leanne; Bai, Shuhua

    2017-03-01

    Although small interfering RNA (siRNA) holds great therapeutic promise, its delivery to the disease site remains a paramount obstacle. In this study, we tested whether brain endothelial cell-derived exosomes could deliver siRNA across the blood-brain barrier (BBB) in zebrafish. Natural exosomes were isolated from brain endothelial bEND.3 cell culture media and vascular endothelial growth factor (VEGF) siRNA was loaded in exosomes with the assistance of a transfection reagent. While fluorescence-activated cell flow cytometry and immunocytochemistry staining studies indicated that wild-type exosomes significantly increased the uptake of fluorescence-labeled siRNA in the autologous brain endothelial cells, decreased fluorescence intensity was observed in the cells treated with the tetraspanin CD63 antibody-blocked exosome-delivered formulation (p brain endothelial bEND.3 cell and astrocyte. Inhibition at the expression of VEGF RNA and protein levels was observed in glioblastoma-astrocytoma U-87 MG cells treated with exosome-delivered siRNAs. Imaging results showed that exosome delivered more siRNAs across the BBB in Tg(fli1:GFP) zebrafish. In a xenotransplanted brain tumor model, exosome-delivered VEGF siRNAs decreased the fluorescence intensity of labeled cancer cells in the brain of zebrafish. Brain endothelial cell-derived exosomes could be potentially used as a natural carrier for the brain delivery of exogenous siRNA.

  6. Mouse Genetic Models of Human Brain Disorders

    Directory of Open Access Journals (Sweden)

    Celeste eLeung

    2016-03-01

    Full Text Available Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioural phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases.

  7. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males......, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  8. NG2 Proteoglycan-Dependent Contributions of Pericytes and Macrophages to Brain Tumor Vascularization and Progression.

    Science.gov (United States)

    Stallcup, William B; You, Weon-Kyoo; Kucharova, Karolina; Cejudo-Martin, Pilar; Yotsumoto, Fusanori

    2016-02-01

    The NG2 proteoglycan promotes tumor growth as a component of both tumor and stromal cells. Using intracranial, NG2-negative B16F10 melanomas, we have investigated the importance of PC and Mac NG2 in brain tumor progression. Reduced melanoma growth in Mac-NG2ko and PC-NG2ko mice demonstrates the importance of NG2 in both stromal compartments. In each genotype, the loss of PC-endothelial cell interaction diminishes the formation of endothelial junctions and assembly of the basal lamina. Tumor vessels in Mac-NG2ko mice have smaller diameters, reduced patency, and increased leakiness compared to PC-NG2ko mice, thus decreasing tumor blood supply and increasing hypoxia. While the reduced PC interaction with endothelial cells in PC-NG2ko mice results from the loss of PC activation of β1 integrin signaling in endothelial cells, reduced PC-endothelial cell interaction in Mac-NG2ko mice results from 90% reduced Mac recruitment. The absence of Mac-derived signals in Mac-NG2ko mice causes the loss of PC association with endothelial cells. Reduced Mac recruitment may be due to diminished activation of integrins in the absence of NG2, causing decreased Mac interaction with endothelial adhesion molecules that are needed for extravasation. These results reflect the complex interplay that occurs between Mac, PC, and endothelial cells during tumor vascularization. © 2015 John Wiley & Sons Ltd.

  9. β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain

    Directory of Open Access Journals (Sweden)

    Teppei Fujioka

    2017-02-01

    Full Text Available Cerebral ischemic stroke is a main cause of chronic disability. However, there is currently no effective treatment to promote recovery from stroke-induced neurological symptoms. Recent studies suggest that after stroke, immature neurons, referred to as neuroblasts, generated in a neurogenic niche, the ventricular-subventricular zone, migrate toward the injured area, where they differentiate into mature neurons. Interventions that increase the number of neuroblasts distributed at and around the lesion facilitate neuronal repair in rodent models for ischemic stroke, suggesting that promoting neuroblast migration in the post-stroke brain could improve efficient neuronal regeneration. To move toward the lesion, neuroblasts form chain-like aggregates and migrate along blood vessels, which are thought to increase their migration efficiency. However, the molecular mechanisms regulating these migration processes are largely unknown. Here we studied the role of β1-class integrins, transmembrane receptors for extracellular matrix proteins, in these migrating neuroblasts. We found that the neuroblast chain formation and blood vessel-guided migration critically depend on β1 integrin signaling. β1 integrin facilitated the adhesion of neuroblasts to laminin and the efficient translocation of their soma during migration. Moreover, artificial laminin-containing scaffolds promoted neuroblast chain formation and migration toward the injured area. These data suggest that laminin signaling via β1 integrin supports vasculature-guided neuronal migration to efficiently supply neuroblasts to injured areas. This study also highlights the importance of vascular scaffolds for cell migration in development and regeneration.

  10. Urokinase and tissue-type plasminogen activator stimulate human vascular smooth muscle cell migration

    NARCIS (Netherlands)

    Wijnberg, M.J.; Nieuwenbroek, N.M.E.; Slomp, J.; Quax, P.H.A.; Verheijen, J.H.

    1996-01-01

    The objective of this study was to investigate the role of the plasminogen activation system in the migration of human vascular smooth muscle cells in vitro. After wounding of confluent human smooth muscle cell cultures by stripping cells from their extracellular matrix, cells start to migrate from

  11. Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations With Subclinical Vascular Brain Injury and Incident Stroke

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Preis, Sarah R; Beiser, Alexa

    2015-01-01

    BACKGROUND AND PURPOSE: Growth differentiation factor-15 (GDF-15) and soluble (s)ST2 are markers of cardiac and vascular stress. We investigated the associations between circulating concentrations of these biomarkers and incident stroke and subclinical vascular brain injury in a sample from.......04). Higher GDF-15 concentrations were also associated with greater log-transformed white-matter hyperintensity volumes (β for Q4 versus Q1=0.19; P=0.01). Prospectively, a total of 203 (6%) individuals developed incident stroke/transient ischemic attack during follow-up. After multivariable adjustment, sST2...... remained significantly associated with stroke/transient ischemic attack, hazard ratio for Q4 versus Q1 of 1.76, 95% confidence interval of 1.06 to 2.92, and P=0.03. CONCLUSIONS: Circulating GDF-15 and sST2 are associated with subclinical brain injury and cognitive impairment. Higher sST2 concentrations...

  12. Evolution of the human brain: changing brain size and the fossil record.

    Science.gov (United States)

    Park, Min S; Nguyen, Andrew D; Aryan, Henry E; U, Hoi Sang; Levy, Michael L; Semendeferi, Katerina

    2007-03-01

    Although the study of the human brain is a rapidly developing and expanding science, we must take pause to examine the historical and evolutionary events that helped shape the brain of Homo sapiens. From an examination of the human lineage to a discussion of evolutionary principles, we describe the basic principles and theories behind the evolution of the human brain. Specifically, we examine several theories concerning changes in overall brain size during hominid evolution and relate them to the fossil record. This overview is intended to provide a broad understanding of some of the controversial issues that are currently being debated in the multidisciplinary field of brain evolution research.

  13. Comparative primate neuroimaging: insights into human brain evolution.

    Science.gov (United States)

    Rilling, James K

    2014-01-01

    Comparative neuroimaging can identify unique features of the human brain and teach us about human brain evolution. Comparisons with chimpanzees, our closest living primate relative, are critical in this endeavor. Structural magnetic resonance imaging (MRI) has been used to compare brain size development, brain structure proportions and brain aging. Positron emission tomography (PET) imaging has been used to compare resting brain glucose metabolism. Functional MRI (fMRI) has been used to compare auditory and visual system pathways, as well as resting-state networks of connectivity. Finally, diffusion-weighted imaging (DWI) has been used to compare structural connectivity. Collectively, these methods have revealed human brain specializations with respect to development, cortical organization, connectivity, and aging. These findings inform our knowledge of the evolutionary changes responsible for the special features of the modern human mind.

  14. The human brain in numbers: a linearly scaled-up primate brain

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    2009-11-01

    Full Text Available The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10x more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a novel method to determine the cellular composition of the brain of humans and other primates as well as of rodents and insectivores show that, since different cellular scaling rules apply to the brains within these orders, brain size can no longer be considered a proxy for the number of neurons in the brain. These studies also showed that the human brain is not exceptional in its cellular composition, as it was found to contain as many neuronal and nonneuronal cells as would be expected of a primate brain of its size. Additionally, the so-called overdeveloped human cerebral cortex holds only 19% of all brain neurons, a fraction that is similar to that found in other mammals. In what regards absolute numbers of neurons, however, the human brain does have two advantages compared to other mammalian brains: compared to rodents, and probably to whales and elephants as well, it is built according to the very economical, space-saving scaling rules that apply to other primates; and, among economically-built primate brains, it is the largest, hence containing the most neurons. These findings argue in favor of a view of cognitive abilities that is centered on absolute numbers of neurons, rather than on body size or encephalization, and call for a re-examination of several concepts related to the exceptionality of the human brain.

  15. The Human Brain in Numbers: A Linearly Scaled-up Primate Brain

    Science.gov (United States)

    Herculano-Houzel, Suzana

    2009-01-01

    The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10× more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a novel method to determine the cellular composition of the brain of humans and other primates as well as of rodents and insectivores show that, since different cellular scaling rules apply to the brains within these orders, brain size can no longer be considered a proxy for the number of neurons in the brain. These studies also showed that the human brain is not exceptional in its cellular composition, as it was found to contain as many neuronal and non-neuronal cells as would be expected of a primate brain of its size. Additionally, the so-called overdeveloped human cerebral cortex holds only 19% of all brain neurons, a fraction that is similar to that found in other mammals. In what regards absolute numbers of neurons, however, the human brain does have two advantages compared to other mammalian brains: compared to rodents, and probably to whales and elephants as well, it is built according to the very economical, space-saving scaling rules that apply to other primates; and, among economically built primate brains, it is the largest, hence containing the most neurons. These findings argue in favor of a view of cognitive abilities that is centered on absolute numbers of neurons, rather than on body size or encephalization, and call for a re-examination of several concepts related to the exceptionality of the human brain. PMID:19915731

  16. Left Brain to Right Brain: Notes from the Human Laboratory.

    Science.gov (United States)

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  17. Estimation of cerebral vascular tone during exercise; evaluation by critical closing pressure in humans

    DEFF Research Database (Denmark)

    Ogoh, Shigehiko; Brothers, R Matthew; Jeschke, Monica

    2010-01-01

    The aim of the present study was to calculate critical closing pressure (CCP) of the cerebral vasculature at rest and during exercise to estimate cerebral vascular tone. Five men and two women were seated upright for 15 min and then performed 15 min of right-legged knee extension exercise at 40, ......, P = 0.564) or adrenaline concentrations (right, P = 0.138; left, P = 0.108). We consider that an exercise-induced increase in cerebral vascular tone serves to protect the blood-brain barrier from the exercise-induced hypertension....... and the left MCA. In both arteries, the CCP increased (right MCA, +6.6 +/- 8.5 mmHg, P = 0.023; left MCA, +7.3 +/- 9.1 mmHg, P = 0.016) during 75% WL(max) without changes in resistance-area product, while femoral vascular resistance of the non-exercising leg decreased (from 0.32 +/- 0.07 to 0.18 +/- 0.05 mm......Hg min ml(1); P right and left MCA (P = 0.31). These findings suggest an increase in cerebral vascular tone in both the right and the left MCA from rest to exercise despite a decrease in vascular resistance of the systemic vasculature...

  18. Longitudinal MRI evaluation of intracranial development and vascular characteristics of breast cancer brain metastases in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heling Zhou

    Full Text Available Longitudinal MRI was applied to monitor intracranial initiation and development of brain metastases and assess tumor vascular volume and permeability in a mouse model of breast cancer brain metastases. Using a 9.4T system, high resolution anatomic MRI and dynamic susceptibility contrast (DSC perfusion MRI were acquired at different time points after an intracardiac injection of brain-tropic breast cancer MDA-MB231BR-EGFP cells. Three weeks post injection, multifocal brain metastases were first observed with hyperintensity on T2-weighted images, but isointensity on T1-weighted post contrast images, indicating that blood-tumor-barrier (BTB at early stage of brain metastases was impermeable. Follow-up MRI revealed intracranial tumor growth and increased number of metastases that distributed throughout the whole brain. At the last scan on week 5, T1-weighted post contrast images detected BTB disruption in 160 (34% of a total of 464 brain metastases. Enhancement in some of the metastases was only seen in partial regions of the tumor, suggesting intratumoral heterogeneity of BTB disruption. DSC MRI measurements of relative cerebral blood volume (rCBV showed that rCBV of brain metastases was significantly lower (mean= 0.89±0.03 than that of contralateral normal brain (mean= 1.00±0.03; p<0.005. Intriguingly, longitudinal measurements revealed that rCBV of individual metastases at early stage was similar to, but became significantly lower than that of contralateral normal brain with tumor growth (p<0.05. The rCBV data were concordant with histological analysis of microvascular density (MVD. Moreover, comprehensive analysis suggested no significant correlation among tumor size, rCBV and BTB permeability. In conclusion, longitudinal MRI provides non-invasive in vivo assessments of spatial and temporal development of brain metastases and their vascular volume and permeability. The characteristic rCBV of brain metastases may have a diagnostic value.

  19. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Science.gov (United States)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  20. Brain-Computer Interfaces and Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney; Tan, Desney S.; Nijholt, Antinus

    2010-01-01

    Advances in cognitive neuroscience and brain imaging technologies have started to provide us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that can monitor some of the physical processes that occur within the brain that

  1. Dynamic analysis of the human brain with complex cerebral sulci.

    Science.gov (United States)

    Tseng, Jung-Ge; Huang, Bo-Wun; Ou, Yi-Wen; Yen, Ke-Tien; Wu, Yi-Te

    2016-07-03

    The brain is one of the most vulnerable organs inside the human body. Head accidents often appear in daily life and are easy to cause different level of brain damage inside the skull. Once the brain suffered intense locomotive impact, external injuries, falls, or other accidents, it will result in different degrees of concussion. This study employs finite element analysis to compare the dynamic characteristics between the geometric models of an assumed simple brain tissue and a brain tissue with complex cerebral sulci. It is aimed to understand the free vibration of the internal brain tissue and then to protect the brain from injury caused by external influences. Reverse engineering method is used for a Classic 5-Part Brain (C18) model produced by 3B Scientific Corporation. 3D optical scanner is employed to scan the human brain structure model with complex cerebral sulci and imported into 3D graphics software to construct a solid brain model to simulate the real complex brain tissue. Obtaining the normal mode analysis by inputting the material properties of the true human brain into finite element analysis software, and then to compare the simplified and the complex of brain models.

  2. Cristobalite and Hematite Particles in Human Brain.

    Science.gov (United States)

    Kopani, Martin; Kopaniova, A; Trnka, M; Caplovicova, M; Rychly, B; Jakubovsky, J

    2016-11-01

    Foreign substances get into the internal environment of living bodies and accumulate in various organs. Cristobalite and hematite particles in the glial cells of pons cerebri of human brain with diagnosis of Behhet disease with scanning electron microscopy (SEM), energy-dispersive microanalysis (EDX), and transmission electron microscopy (TEM) with diffraction were identified. SEM with EDX revealed the matter of irregular micrometer-sized particles sometimes forming polyhedrons with fibrilar or stratified structure. It was found in some particles Ti, Fe, and Zn. Some particles contained Cu. TEM and electron diffraction showed particles of cristobalite and hematite. The presence of the particles can be a result of environmental effect, disruption of normal metabolism, and transformation of physiologically iron-ferrihydrite into more stable form-hematite. From the size of particles can be drawn the long-term accumulation of elements in glial cells.

  3. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  4. Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain.

    Science.gov (United States)

    Luo, Chongyuan; Lancaster, Madeline A; Castanon, Rosa; Nery, Joseph R; Knoblich, Juergen A; Ecker, Joseph R

    2016-12-20

    Organoids derived from human pluripotent stem cells recapitulate the early three-dimensional organization of the human brain, but whether they establish the epigenomic and transcriptional programs essential for brain development is unknown. We compared epigenomic and regulatory features in cerebral organoids and human fetal brain, using genome-wide, base resolution DNA methylome and transcriptome sequencing. Transcriptomic dynamics in organoids faithfully modeled gene expression trajectories in early-to-mid human fetal brains. We found that early non-CG methylation accumulation at super-enhancers in both fetal brain and organoids marks forthcoming transcriptional repression in the fully developed brain. Demethylated regions (74% of 35,627) identified during organoid differentiation overlapped with fetal brain regulatory elements. Interestingly, pericentromeric repeats showed widespread demethylation in multiple types of in vitro human neural differentiation models but not in fetal brain. Our study reveals that organoids recapitulate many epigenomic features of mid-fetal human brain and also identified novel non-CG methylation signatures of brain development. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain

    Directory of Open Access Journals (Sweden)

    Chongyuan Luo

    2016-12-01

    Full Text Available Organoids derived from human pluripotent stem cells recapitulate the early three-dimensional organization of the human brain, but whether they establish the epigenomic and transcriptional programs essential for brain development is unknown. We compared epigenomic and regulatory features in cerebral organoids and human fetal brain, using genome-wide, base resolution DNA methylome and transcriptome sequencing. Transcriptomic dynamics in organoids faithfully modeled gene expression trajectories in early-to-mid human fetal brains. We found that early non-CG methylation accumulation at super-enhancers in both fetal brain and organoids marks forthcoming transcriptional repression in the fully developed brain. Demethylated regions (74% of 35,627 identified during organoid differentiation overlapped with fetal brain regulatory elements. Interestingly, pericentromeric repeats showed widespread demethylation in multiple types of in vitro human neural differentiation models but not in fetal brain. Our study reveals that organoids recapitulate many epigenomic features of mid-fetal human brain and also identified novel non-CG methylation signatures of brain development.

  6. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    Science.gov (United States)

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  7. "Messing with the Mind: Evolutionary Challenges to Human Brain Augmentation

    Directory of Open Access Journals (Sweden)

    ARTHUR eSANIOTIS

    2014-09-01

    Full Text Available The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce augmented brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties.

  8. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  9. STEREOLOGICAL ANALYSIS OF THE HUMAN PONS VASCULAR NETWORK

    Directory of Open Access Journals (Sweden)

    Ivan Jovanović

    2003-04-01

    Full Text Available Liver is the largest parenchymatous organ, well vascularized, weighing approximately 1.8-3.0% of the whole body weight. Among all abdominal traumas liver injuries account for 25%. For more serious liver injuries the mortality is around 40% in children below 10 years of age. For lesions of the juxtahepatic veins (three major hepatic veins or the retrohepatic portion of v. cava or for complex, combined intra abdominal injuries, the mortality is even up to 70%.This work analyzed the period 1988-2000 during which there were 19 children admitted and treated for blunt liver injuries at the Clinic of Pediatric Surgery and Orthopedics in Nis; I, II and III scale injuries prevailed (17 cases; 89.4%. These injuries were surgically treated for the most part (17 cases; 89.4%. In 7 children (36.8% there were combined injuries. The lethality was 26.3%-5 cases, with three major complications: two intrahepatic hematomas and one biliary fistula associated with biliary peritonitis and biloma formation.

  10. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution.

    Science.gov (United States)

    Cunnane, Stephen C; Crawford, Michael A

    2014-12-01

    The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Studying variability in human brain aging in a population-based German cohort – Rationale and design of 1000BRAINS

    Directory of Open Access Journals (Sweden)

    Svenja eCaspers

    2014-07-01

    Full Text Available The ongoing 1000 brains study (1000BRAINS is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions & language; examination of motor skills; ratings of personality, life quality, mood & daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla of the brain. The latter includes (i 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fibre tracking and for diffusion kurtosis imaging; (iii resting-state and task-based functional MRI; and (iv fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  12. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    Science.gov (United States)

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  13. Conditional deletion of Ccm2 causes hemorrhage in the adult brain: a mouse model of human cerebral cavernous malformations.

    Science.gov (United States)

    Cunningham, Kirk; Uchida, Yutaka; O'Donnell, Erin; Claudio, Estefania; Li, Wenling; Soneji, Kosha; Wang, Hongshan; Mukouyama, Yoh-suke; Siebenlist, Ulrich

    2011-08-15

    Cerebral cavernous malformations (CCM) are irregularly shaped and enlarged capillaries in the brain that are prone to hemorrhage, resulting in headaches, seizures, strokes and even death in patients. The disease affects up to 0.5% of the population and the inherited form has been linked to mutations in one of three genetic loci, CCM1, CCM2 and CCM3. To understand the pathophysiology underlying the vascular lesions in CCM, it is critical to develop a reproducible mouse genetic model of this disease. Here, we report that limited conditional ablation of Ccm2 in young adult mice induces observable neurological dysfunction and reproducibly results in brain hemorrhages whose appearance is highly reminiscent of the lesions observed in human CCM patients. We first demonstrate that conventional or endothelial-specific deletion of Ccm2 leads to fatal cardiovascular defects during embryogenesis, including insufficient vascular lumen formation as well as defective arteriogenesis and heart malformation. These findings confirm and extend prior studies. We then demonstrate that the inducible deletion of Ccm2 in adult mice recapitulates the CCM-like brain lesions in humans; the lesions display disrupted vascular lumens, enlarged capillary cavities, loss of proper neuro-vascular associations and an inflammatory reaction. The CCM lesions also exhibit damaged neuronal architecture, the likely cause of neurologic defects, such as ataxia and seizure. These mice represent the first CCM2 animal model for CCM and should provide the means to elucidate disease mechanisms and evaluate therapeutic strategies for human CCM.

  14. Quantification of vascular endothelial growth factor and neuropilins mRNAs during rat brain maturation by real-time PCR.

    Science.gov (United States)

    Adris, Soraya; Ojeda, Elizabeth; Genero, Mario; Argibay, Pablo

    2005-09-01

    1. Vascular endothelial growth factor (VEGF) has been related with several brain functions such as angiogenesis, neuroprotection, and neurogenesis. 2. We studied the mRNA expression of the two most important isoforms of VEGF (VEGF120 and VEGF164) as well as one type of VEGF receptors, neuropilins (NRP), during maturation in the rat brain using real-time PCR. 3. Today, real-time PCR is the method of choice for rapid and reliable quantification of mRNA transcription. 4. VEGF120 has little changes in its expression between P5 and P30. 5. However, VEGF164 increased its expression 2-folds at P15 in comparison to P5, remaining at this level in the adult brain (P30). 6. Both types of NRP, NRP-1 and NRP-2, which only bind VEGF164, increased their expression about 2-folds only at P30, at levels similar to those observed for VEGF164.

  15. Vascular Pathology and Blood-Brain Barrier Disruption in Cognitive and Psychiatric Complications of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Yonatan Serlin

    2011-01-01

    Full Text Available Vascular pathology is recognized as a principle insult in type 2 diabetes mellitus (T2DM. Co-morbidities such as structural brain abnormalities, cognitive, learning and memory deficits are also prevailing in T2DM patients. We previously suggested that microvascular pathologies involving blood-brain barrier (BBB breakdown results in leakage of serum-derived components into the brain parenchyma, leading to neuronal dysfunction manifested as psychiatric illnesses. The current postulate focuses on the molecular mechanisms controlling BBB permeability in T2DM, as key contributors to the pathogenesis of mental disorders in patients. Revealing the mechanisms underlying BBB dysfunction and inflammatory response in T2DM and their role in metabolic disturbances, abnormal neurovascular coupling and neuronal plasticity, would contribute to the understanding of the mechanisms underlying psychopathologies in diabetic patients. Establishing this link would offer new targets for future therapeutic interventions.

  16. Subcortical vascular cognitive impairment, no dementia: EEG global power independently predicts vascular impairment and brain symmetry index reflects severity of cognitive decline.

    Science.gov (United States)

    Sheorajpanday, Rishi V A; Mariën, Peter; Nagels, Guy; Weeren, Arie J T M; Saerens, Jos; van Putten, Michel J A M; De Deyn, Peter P

    2014-10-01

    Vascular cognitive impairment, no dementia (vCIND) is a prevalent and potentially preventable disorder. Clinical presentation of the small-vessel subcortical subtype may be insidious, and differential difficulties can arise with mild cognitive impairment. We investigated EEG parameters in subcortical vCIND in comparison with amnestic multidomain mild cognitive impairment to determine the additional diagnostic value of quantitative EEG in this setting. Fifty-seven community-residing patients with an uneventful central neurologic history and first presentation of cognitive decline without dementia were included. Neuropsychological test results were correlated with EEG parameters. Predictive values for vCIND and amnestic multidomain mild cognitive impairment were calculated using receiver operating characteristic curves and logistic regression modeling. Vascular cognitive impairment, no dementia and amnestic multidomain mild cognitive impairment differed with regard to the EEG (delta + theta)/(alpha + beta) ratio (DTABR) and pairwise derived brain symmetry index. We found statistically significant correlations between pairwise derived brain symmetry index and immediate verbal memory, immediate global memory, verbal recognition, working memory, and mean memory score in vCIND. Verbal fluency (odds ratio: 1.54, 95% confidence interval: 1.04-2.28, P = 0.033) and (delta + theta)/(alpha + beta) ratio (odds ratio: 2.28, 95% confidence interval: 1.06-4.94, P = 0.036) emerged as independent diagnostic predictors for vCIND with an overall correct classification rate of 95.0%. Our data indicate that EEG is of additional value in the differential diagnosis and follow-up of patients presenting with cognitive decline. These findings may have an impact on memory care.

  17. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  18. Understanding the continuum of radionecrosis and vascular disorders in the brain following gamma knife irradiation: An MRI study.

    Science.gov (United States)

    Constanzo, Julie; Masson-Côté, Laurence; Tremblay, Luc; Fouquet, Jérémie P; Sarret, Philippe; Geha, Sameh; Whittingstall, Kevin; Paquette, Benoit; Lepage, Martin

    2017-10-01

    The radiation dose delivered to brain tumors is limited by the possibility to induce vascular damage and necrosis in surrounding healthy tissue. In the present study, we assessed the ability of MRI to monitor the cascade of events occurring in the healthy rat brain after stereotactic radiosurgery, which could be used to optimize the radiation treatment planning. The primary somatosensory forelimb area (S1FL) and the primary motor cortex in the right hemisphere of Fischer rats (n = 6) were irradiated with a single dose of Gamma Knife radiation (Leksell Perfexion, Elekta AG, Stockholm, Sweden). Rats were scanned with a small-animal 7 Tesla MRI scanner before treatment and 16, 21, 54, 82, and 110 days following irradiation. At every imaging session, T2 -weighted (T2 w), Gd-DTPA dynamic contrast-enhanced MRI (DCE-MRI), and T2*-weighted ( T2* w) images were acquired to measure changes in fluid content, blood vessel permeability, and structure, respectively. At days 10, 110, and 140, histopathology was performed on brain sections. Locomotion and spatial memory ability were assessed longitudinally by behavioral tests. No vascular changes were initially observed. After 54 days, a small necrotic volume in the white matter below the S1FL, surrounded by an area presenting significant vascular permeability, was revealed. Between 54 and 110 days, the necrotic volume increased and was accompanied by the formation of a ring-like region, where a mixture of necrosis and permeable blood vessels were observed, as confirmed by histology. Behavioral changes were only observed after day 82. Together, DCE-MRI and T2* w images supported by histology provided a coherent picture of the phenomena involved in the formation of new, leaky blood vessels, which was followed by the detection of radionecrosis in a preclinical model of brain irradiation. Magn Reson Med 78:1420-1431, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic

  19. Evolutionary origins of human brain and spirituality.

    Science.gov (United States)

    Henneberg, Maciej; Saniotis, Arthur

    2009-12-01

    Evolving brains produce minds. Minds operate on imaginary entities. Thus they can create what does not exist in the physical world. Spirits can be deified. Perception of spiritual entities is emotional--organic. Spirituality is a part of culture while culture is an adaptive mechanism of human groups as it allows for technology and social organization to support survival and reproduction. Humans are not rational, they are emotional. Most of explanations of the world, offered by various cultures, involve an element of "fiat", a will of a higher spiritual being, or a reference to some ideal. From this the rules of behaviour are deduced. These rules are necessary to maintain social peace and allow a complex unit consisting of individuals of both sexes and all ages to function in a way ensuring their reproductive success and thus survival. There is thus a direct biological benefit of complex ideological superstructure of culture. This complex superstructure most often takes a form of religion in which logic is mixed with appeals to emotions based on images of spiritual beings. God is a consequence of natural evolution. Whether a deity is a cause of this evolution is difficult to discover, but existence of a deity cannot be questioned.

  20. Human Vascular Microphysiological System for in vitro Drug Screening

    Science.gov (United States)

    Fernandez, C. E.; Yen, R. W.; Perez, S. M.; Bedell, H. W.; Povsic, T. J.; Reichert, W. M.; Truskey, G. A.

    2016-01-01

    In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400–800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-NG-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor – α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli. PMID:26888719

  1. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Prats Gavalda, Clara; Qvortrup, Klaus

    2013-01-01

    The subcellular distribution and secretion of vascular endothelial growth factor (VEGF) was examined in skeletal muscle of healthy humans. Skeletal muscle biopsies were obtained from m.v. lateralis before and after a 2 h bout of cycling exercise. VEGF localization was conducted on preparations...

  2. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  3. Human genetics of diabetic vascular complications. J Genet 92: 677 ...

    Indian Academy of Sciences (India)

    therapy and cardiovascular interventions (Wild et al. 2004). A large body of evidence indicates that major ..... are involved in the control cell proliferation, cell ageing and apoptosis (Kamb et al. 1994; Visel et al. 2010). ..... stem cells and both human and mouse insulin promoters were specifically demethylated in pancreatic β ...

  4. Expression of vascular endothelial growth factor and its two receptors in normal human endometrium

    Institute of Scientific and Technical Information of China (English)

    王海燕; 陈贵安

    2003-01-01

    Objectives: We try to demonstrate the expression of vascular endothelial growthfactor (VEGF) and its receptors, flt-1 and KDR, in normal human emdometrium duringthe menstrual cycle.Methods: Immunohistochemical method was used to observe the expression ofVEGF and its two receptors in emdometrium throughout the normal menstrual cyclemeanwhile the isoforms of VEGF were also detected by Western blot analysis. The en-dothelial cells of micro-vessels were marked with Ⅷ factor antibody.Results: VEGF and its receptors existed in endometrial glandular, stromal and vas-cular endothelial cells of human endometrium. Their expressions were higher in the mid-secretory phase of menstrual cycle and highest at menstruation. VEGF121 and VEGF165were the predominant isoforms in normal human endometrium.Conclusion: The expression of VEGF and its two receptors showed cycle-dependentin human endometrium, probably involved in embryonic implantation and endometrialproliferation and differentiation.

  5. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development

    Directory of Open Access Journals (Sweden)

    Mariella eErrede

    2014-10-01

    Full Text Available This study was conducted on human developing brain by laser confocal and transmission electron microscopy to make a detailed analysis of important features of blood-brain barrier microvessels and possible control mechanisms of vessel growth and differentiation during cerebral cortex vascularization. The blood-brain barrier status of cortex microvessels was examined at a defined stage of cortex development, at the end of neuroblast waves of migration and before cortex lamination, with blood-brain barrier-endothelial cell markers, namely tight junction proteins (occludin and claudin-5 and influx and efflux transporters (Glut-1 and P-glycoprotein, the latter supporting evidence for functional effectiveness of the fetal blood-brain barrier. According to the well-known roles of astroglia cells on microvessel growth and differentiation, the early composition of astroglia/endothelial cell relationships was analysed by detecting the appropriate astroglia, endothelial, and pericyte markers. GFAP, chemokine CXCL12, and connexin 43 (Cx43 were utilized as markers of radial glia cells, CD105 (endoglin as a marker of angiogenically activated endothelial cells, and proteoglycan NG2 as a marker of immature pericytes. Immunolabeling for CXCL12 showed the highest level of the ligand in radial glial fibres in contact with the growing cortex microvessels. These specialized contacts, recognizable on both perforating radial vessels and growing collaterals, appeared as CXCL12-reactive en passant, symmetrical and asymmetrical vessel-specific RG fibre swellings. At the highest confocal resolution, these RG varicosities showed a CXCL12-reactive dot-like content whose microvesicular nature was confirmed by ultrastructural observations. A further analysis of radial glial varicosities reveals colocalization of CXCL12 with connexin Cx43, which is possibly implicated in vessel-specific chemokine signalling.

  7. A survey of human brain transcriptome diversity at the single cell level.

    Science.gov (United States)

    Darmanis, Spyros; Sloan, Steven A; Zhang, Ye; Enge, Martin; Caneda, Christine; Shuer, Lawrence M; Hayden Gephart, Melanie G; Barres, Ben A; Quake, Stephen R

    2015-06-09

    The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.

  8. Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study

    Directory of Open Access Journals (Sweden)

    Tolón Rosa M

    2011-01-01

    Full Text Available Abstract Background The phytocannabinoid cannabidiol (CBD exhibits antioxidant and antiinflammatory properties. The present study was designed to explore its effects in a mouse model of sepsis-related encephalitis by intravenous administration of lipopolysaccharide (LPS. Methods Vascular responses of pial vessels were analyzed by intravital microscopy and inflammatory parameters measured by qRT-PCR. Results CBD prevented LPS-induced arteriolar and venular vasodilation as well as leukocyte margination. In addition, CBD abolished LPS-induced increases in tumor necrosis factor-alpha and cyclooxygenase-2 expression as measured by quantitative real time PCR. The expression of the inducible-nitric oxide synthase was also reduced by CBD. Finally, preservation of Blood Brain Barrier integrity was also associated to the treatment with CBD. Conclusions These data highlight the antiinflammatory and vascular-stabilizing effects of CBD in endotoxic shock and suggest a possible beneficial effect of this natural cannabinoid.

  9. Metabolic costs and evolutionary implications of human brain development.

    Science.gov (United States)

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-09

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.

  10. Induction of angiogenesis and modulation of vascular endothelial growth factor receptor-2 by simvastatin after traumatic brain injury.

    Science.gov (United States)

    Wu, Hongtao; Jiang, Hao; Lu, Dunyue; Qu, Changsheng; Xiong, Ye; Zhou, Dong; Chopp, Michael; Mahmood, Asim

    2011-05-01

    Our previous studies demonstrated that simvastatin reduced neuronal death, increased neurogenesis, and promoted functional recovery after traumatic brain injury (TBI). To investigate the effect of simvastatin on angiogenesis after TBI and the related signaling pathways. Saline or simvastatin (1 mg/kg) was administered orally to rats starting at day 1 after TBI or sham surgery and then daily for 14 days. Rats were sacrificed at 3 and 14 days after treatment. Brain sections and tissues were prepared for immunohistochemical staining, enzyme-linked immunosorbent assay, and Western blot analysis. Cultured rat brain microvascular endothelial cells were subjected to oxygen-glucose deprivation followed by immunocytochemical staining with phallotoxins and vascular endothelial growth factor receptor-2 (VEGFR-2). Western blot analysis was carried out to examine the simvastatin-induced activation of the v-akt murine thymoma viral oncogene homolog (Akt) signaling pathway. The expression of VEGFR-2 was detected by enzyme-linked immunosorbent assay. Simvastatin significantly increased the length of vascular perimeter, promoted the proliferation of endothelial cells, and improved the sensorimotor function after TBI. Simvastatin stimulated endothelial cell tube formation after oxygen-glucose deprivation in vitro. VEGFR-2 expression in both brain tissues and cultured rat brain microvascular endothelial cells was enhanced after simvastatin treatment, which may be modulated by activation of Akt. Akt-dependent endothelial nitric oxide synthase phosphorylation was also induced by simvastatin in vivo and in vitro. Simvastatin augments TBI-induced angiogenesis in the lesion boundary zone and hippocampus and improves functional recovery. Simvastatin also promotes angiogenesis in vitro. These beneficial effects on angiogenesis may be related to simvastatin-induced activation of the VEGFR-2/Akt/endothelial nitric oxide synthase signaling pathway.

  11. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  12. The immune response of the human brain to abdominal surgery

    DEFF Research Database (Denmark)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin

    2017-01-01

    OBJECTIVE: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans....... This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. METHODS: Eight males undergoing prostatectomy under general...... to change in [(11) C]PBR28 binding (p = 0.027). INTERPRETATION: This study translates preclinical data on changes in the brain immune system after surgery to humans, and suggests an interplay between the human brain and the inflammatory response of the peripheral innate immune system. These findings may...

  13. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  14. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells.

    Science.gov (United States)

    Tancharoen, Waleephan; Aungsuchawan, Sirinda; Pothacharoen, Peraphan; Markmee, Runchana; Narakornsak, Suteera; Kieodee, Junjira; Boonma, Nonglak; Tasuya, Witoon

    2017-03-01

    Endothelial dysfunction is a principle feature of vascular-related disease. Endothelial cells have been acquired for the purposes of the restoration of damaged tissue in therapeutic angiogenesis. However, their use is limited by expansion capacity and the small amount of cells that are obtained. Human amniotic fluid mesenchymal stem cells (hAF-MSCs) are considered an important source for vascular tissue engineering. In this study, hAF-MSCs were characterized and then induced in order to differentiate into the endothelial-like cells. Human amniotic fluid cells (hAFCs) were obtained from amniocentesis at the second trimester of gestation. The cells were characterized as mesenchymal stem cells by flow cytometry. The results showed that the cells were positive for mesenchymal stem cell markers CD44, CD73, CD90 and HLA-ABC, and negative for CD31, Amniotic fluid stem cells marker: CD117, anti-human fibroblasts, HLA-DR and hematopoietic differentiation markers CD34 and CD45. The hAF-MSCs were differentiated into endothelial cells under the induction of vascular endothelial growth factor (VEGF) and analyzed for the expression of the endothelial-specific markers and function. The expression of the endothelial-specific markers was determined by reverse transcriptase-quantitative PCR (RT-qPCR), while immunofluorescent analysis demonstrated that the induced hAF-MSCs expressed von Willebrand factor (vWF), vascular endothelial growth factor receptor 2 (VEGFR2), CD31 and endothelial nitric oxide synthase (eNOS). The network formation assay showed that the induced hAF-MSCs formed partial networks. All results indicated that hAF-MSCs have the potential to be differentiated into endothelial-like cells, while human amniotic fluid might be a suitable source of MSCs for vascularized tissue engineering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography

    Science.gov (United States)

    Campbell, J. P.; Zhang, M.; Hwang, T. S.; Bailey, S. T.; Wilson, D. J.; Jia, Y.; Huang, D.

    2017-02-01

    Optical coherence tomography angiography (OCTA) is a noninvasive method of 3D imaging of the retinal and choroidal circulations. However, vascular depth discrimination is limited by superficial vessels projecting flow signal artifact onto deeper layers. The projection-resolved (PR) OCTA algorithm improves depth resolution by removing projection artifact while retaining in-situ flow signal from real blood vessels in deeper layers. This novel technology allowed us to study the normal retinal vasculature in vivo with better depth resolution than previously possible. Our investigation in normal human volunteers revealed the presence of 2 to 4 distinct vascular plexuses in the retina, depending on location relative to the optic disc and fovea. The vascular pattern in these retinal plexuses and interconnecting layers are consistent with previous histologic studies. Based on these data, we propose an improved system of nomenclature and segmentation boundaries for detailed 3-dimensional retinal vascular anatomy by OCTA. This could serve as a basis for future investigation of both normal retinal anatomy, as well as vascular malformations, nonperfusion, and neovascularization.

  16. VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Kao, David; Valizadegan, Hamed; Martin, Rodney; Murray, Matthew C.; Ramesh, Sneha; Sekaran, Srinivaas

    2017-01-01

    Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes. NASA developed an innovative, globally requested beta-level software, VESsel GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

  17. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease.

    Science.gov (United States)

    Schinzari, F; Tesauro, M; Cardillo, C

    2017-01-01

    Hyperpolarization causing smooth muscle relaxation contributes to the maintenance of vascular homeostasis, particularly in small-calibre arteries and arterioles. It may also become a compensatory vasodilator mechanism upregulated in states with impaired nitric oxide (NO) availability. Bioassay of vascular hyperpolarization in the human circulation has been hampered by the complexity of mechanisms involved and the limited availability of investigational tools. Firm evidence, however, supports the notion that hyperpolarization participates in the regulation of resting vasodilator tone and vascular reactivity in healthy subjects. In addition, an enhanced endothelium-derived hyperpolarization contributes to both resting and agonist-stimulated vasodilation in a variety of cardiovascular risk conditions and disease. Thus, hyperpolarization mediated by epoxyeicosatrienoic acids (EETs) and H 2 O 2 has been observed in coronary arterioles of patients with coronary artery disease. Similarly, ouabain-sensitive and EETs-mediated hyperpolarization has been observed to compensate for NO deficiency in patients with essential hypertension. Moreover, in non-hypertensive patients with multiple cardiovascular risk factors and in hypercholesterolaemia, K Ca channel-mediated vasodilation appears to be activated. A novel paradigm establishes that perivascular adipose tissue (PVAT) is an additional regulator of vascular tone/function and endothelium is not the only agent in vascular hyperpolarization. Indeed, some PVAT-derived relaxing substances, such as adiponectin and angiotensin 1-7, may exert anticontractile and vasodilator actions by the opening of K Ca channels in smooth muscle cells. Conversely, PVAT-derived factors impair coronary vasodilation via differential inhibition of some K + channels. In view of adipose tissue abnormalities occurring in human obesity, changes in PVAT-dependent hyperpolarization may be relevant for vascular dysfunction also in this condition. © 2015

  18. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sex beyond the genitalia: The human brain mosaic.

    Science.gov (United States)

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-12-15

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains ("female brain" or "male brain"). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only "male" or only "female" features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the "maleness-femaleness" continuum are rare. Rather, most brains are comprised of unique "mosaics" of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain.

  20. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  1. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints...... individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships...... in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/....

  2. [Survival of the fattest: the key to human brain evolution].

    Science.gov (United States)

    Cunnane, Stephen C

    2006-01-01

    The circumstances of human brain evolution are of central importance to accounting for human origins, yet are still poorly understood. Human evolution is usually portrayed as having occurred in a hot, dry climate in East Africa where the earliest human ancestors became bipedal and evolved tool-making skills and language while struggling to survive in a wooded or savannah environment. At least three points need to be recognised when constructing concepts of human brain evolution : (1) The human brain cannot develop normally without a reliable supply of several nutrients, notably docosahexaenoic acid, iodine and iron. (2) At term, the human fetus has about 13 % of body weight as fat, a key form of energy insurance supporting brain development that is not found in other primates. (3) The genome of humans and chimpanzees is human brain become so much larger, and how was its present-day nutritional vulnerability circumvented during 5-6 million years of hominid evolution ? The abundant presence of fish bones and shellfish remains in many African hominid fossil sites dating to 2 million years ago implies human ancestors commonly inhabited the shores, but this point is usually overlooked in conceptualizing how the human brain evolved. Shellfish, fish and shore-based animals and plants are the richest dietary sources of the key nutrients needed by the brain. Whether on the shores of lakes, marshes, rivers or the sea, the consumption of most shore-based foods requires no specialized skills or tools. The presence of key brain nutrients and a rich energy supply in shore-based foods would have provided the essential metabolic and nutritional support needed to gradually expand the hominid brain. Abundant availability of these foods also provided the time needed to develop and refine proto-human attributes that subsequently formed the basis of language, culture, tool making and hunting. The presence of body fat in human babies appears to be the product of a long period of

  3. Ionizing radiation activates vascular endothelial growth factor-A transcription in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyounji; Kim, Kwang Seok; Jeong, Jae Hoon; Lim, Young Bin [Radiation Cancer Biology Team, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-12-15

    Vascular endothelial growth factor (VEGF) is an essential paracrine factor for developmental and pathological angiogenesis. VEGF also exerts its effects in an autocrine manner in VEGF-producing cells. For instance, autocrine VEGF signaling occurs in tumor cells and contributes to key aspects of tumorigenesis, such as in the function of cancer stem cells and tumor initiation, which are independent of angiogenesis. In addition to tumors cells, non-transformed cells also express VEGF. For example, a VEGF dependent intracellular autocrine mechanism is crucial for the survival of hematopoietic stem cells and hematopoiesis. Stereotactic body radiation therapy (SBRT) is a novel treatment modality for early primary cancer and oligometastatic disease. SBRT delivers high-dose hypofractionated radiation, such as 20-60 Gy, to tumors in a single fraction or 2-5 fractions. As VEGF is a critical regulator of functional integrity and viability of vascular endothelial cells, we examined whether high-dose irradiation alters VEGF signaling by measuring the expression levels of VEGFA transcript. It is generally believed that endothelial cells do not produce VEGF in response to radiation. In present study, however, we provide the first demonstration of transcriptional regulation of VEGFA in human vascular endothelial cells by IR treatment. Irradiation with doses higher than 10 Gy in a single exposure triggers up-regulation of VEGFA transcription within 2 hours in HUVECs, whereas irradiation with 10 Gy does not alter VEGFA levels. Our data have shown that high-dose irradiation triggers immediate transactivation of VEGFA in human vascular endothelial cells.

  4. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magn...

  5. Cell diversity and network dynamics in photosensitive human brain organoids

    Science.gov (United States)

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z.; Sherwood, John L.; Yang, Sung Min; Berger, Daniel; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin; Boyden, Edward S.; Lichtman, Jeff; Williams, Ziv M.; McCarroll, Steven A.; Arlotta, Paola

    2017-01-01

    In vitro models of the developing brain such as 3D brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, it remains undefined what cells are generated within organoids and to what extent they recapitulate the regional complexity, cellular diversity, and circuit functionality of the brain. Here, we analyzed gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (over 9 months) enabling unprecedented levels of maturity including the formation of dendritic spines and of spontaneously-active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photoreceptor-like cells, which may offer ways to probe the functionality of human neuronal circuits using physiological sensory stimuli. PMID:28445462

  6. Impact of Human like Cues on Human Trust in Machines: Brain Imaging and Modeling Studies for Human-Machine Interactions

    Science.gov (United States)

    2018-01-05

    AFRL-AFOSR-JP-TR-2018-0006 Impact of Human like Cues on Human Trust in Machines: Brain Imaging and Modeling Studies for Human -Machine Interactions...AND SUBTITLE Impact of Human like Cues on Human Trust in Machines: Brain Imaging and Modeling Studies for Human -Machine Interactions 5a.  CONTRACT...DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT When a human and an intelligent machine work together as a team, human

  7. Metabolic costs and evolutionary implications of human brain development

    Science.gov (United States)

    Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

    2014-01-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  8. An anatomically comprehensive atlas of the adult human brain transcriptome

    NARCIS (Netherlands)

    Hawrylycz, M.J.; Beckmann, Christian

    2012-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising

  9. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  10. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  11. Genetic contributions to human brain morphology and intelligence

    NARCIS (Netherlands)

    Hulshoff Pol, H.E.; Schnack, H.G.; Posthuma, D.; Mandl, R.C.W.; Baaré, W.F.; van Oel, C.J.; van Haren, N.E.M.; Colins, D.L.; Evans, A.C.; Amunts, K.; Bürgel, U.; Zilles, K.; de Geus, E.J.C.; Boomsma, D.I.; Kahn, R.S.

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology of

  12. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology of spec...

  13. A reproducible brain tumour model established from human glioblastoma biopsies

    Directory of Open Access Journals (Sweden)

    Li Xingang

    2009-12-01

    Full Text Available Abstract Background Establishing clinically relevant animal models of glioblastoma multiforme (GBM remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. Methods In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. Results The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. Conclusions In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression.

  14. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung.

    Science.gov (United States)

    Kaner, R J; Crystal, R G

    2001-04-01

    Based on assessment of mRNA expression, the lung is a major site of expression of the vascular endothelial growth factor (VEGF) gene, largely from type II alveolar epithelial cells. With the knowledge that VEGF can function to induce vascular leak, we hypothesized that to protect the lung from pulmonary edema, the VEGF produced in the lung must be compartmentalized from the pulmonary endothelium, and thus must be compartmentalized to the surface of the respiratory epithelium. To assess this hypothesis, we quantified the levels of VEGF in human respiratory epithelial lining fluid recovered by bronchoalveolar lavage from normal individuals. Strikingly, human respiratory epithelial lining fluid contains 11 +/- 5 ng/mL as quantified by ELISA, a 500-fold greater concentration than plasma (22 +/- 10 pg/mL, p Damocles sword" poised to induce lung endothelial permeability in conditions of acute lung injury when the integrity of the alveolar epithelial barrier is breached.

  15. Toward discovery science of human brain function.

    Science.gov (United States)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

    2010-03-09

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.

  16. Isolation of Borna Disease Virus from Human Brain Tissue

    Science.gov (United States)

    Nakamura, Yurie; Takahashi, Hirokazu; Shoya, Yuko; Nakaya, Takaaki; Watanabe, Makiko; Tomonaga, Keizo; Iwahashi, Kazuhiko; Ameno, Kiyoshi; Momiyama, Noriko; Taniyama, Hiroyuka; Sata, Tetsutaro; Kurata, Takeshi; de la Torre, Juan Carlos; Ikuta, Kazuyoshi

    2000-01-01

    Serological and molecular epidemiological studies indicate that Borna disease virus (BDV) can infect humans and is possibly associated with certain neuropsychiatric disorders. We examined brain tissue collected at autopsy from four schizophrenic patients and two healthy controls for the presence of BDV markers in 12 different brain regions. BDV RNA and antigen was detected in four brain regions of a BDV-seropositive schizophrenic patient (P2) with a very recent (2 years) onset of disease. BDV markers exhibited a regionally localized distribution. BDV RNA was found in newborn Mongolian gerbils intracranially inoculated with homogenates from BDV-positive brain regions of P2. Human oligodendroglia (OL) cells inoculated with brain homogenates from BDV-positive gerbils allowed propagation and isolation of BDVHuP2br, a human brain-derived BDV. Virus isolation was also possible by transfection of Vero cells with ribonucleoprotein complexes prepared from BDV-positive human and gerbil brain tissues. BDVHuP2br was genetically closely related to but distinct from previously reported human- and animal-derived BDV sequences. PMID:10775596

  17. Sex beyond the genitalia: The human brain mosaic

    Science.gov (United States)

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains (“female brain” or “male brain”). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only “male” or only “female” features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the “maleness-femaleness” continuum are rare. Rather, most brains are comprised of unique “mosaics” of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  18. Dual roles of heparanase in vascular calcification associated with human carotid atherosclerosis

    DEFF Research Database (Denmark)

    Aldi, S.; Eriksson, L.; Kronqvist, M.

    2017-01-01

    Vascular intimal calcification is a hallmark of advanced atherosclerosis and an active process akin to bone remodeling. Heparanase (HPSE) is an endo-β-glucuronidase, which cleaves glycosaminoglycan chains of heparan sulfate proteoglycans. The role of heparanase in osteogenesis and bone remodeling...... is controversial. Previously, we have reported the upregulation of HPSE in human carotid endarterectomies from symptomatic patients and showed that the HPSE expression levels correlated with markers of inflammation and increased thrombogenicity....

  19. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...... amounts of GFA, up to 85 times the concentration in parietal grey substance of normal human brain. GFA was not found in neurinomas, meningiomas, adenomas of the hypophysis, or in a single case of metastasis of adenocarcinoma. Non-glial tumours of craniopharyngioma and haemangioblastoma were infiltrated...

  20. Optogenetic control of human neurons in organotypic brain cultures

    DEFF Research Database (Denmark)

    Andersson, My; Avaliani, Natalia; Svensson, Andreas

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof......-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies....

  1. Characterization of ionizing radiation-induced unfolded protein response in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ju; Lee, Yoon Jin; Kang, Seong Man [Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-04-15

    Misfolded or unfolded proteins within the endoplasmic reticulum (ER stress), viral infection, or amino acid deprivation induce eukaryotic translation initiation factor 2α phosphorylation (eIF2α) in eukaryotic cells, repressing global protein synthesis coincident with preferential translation of activating transcription factor 4 (ATF4). ATF4 is a transcriptional activator of genes involved in amino acid metabolism, cellular redox homeostasis, and regulation of apoptosis. When the eIF2α/ATF4 pathway is initiated by ER stress, the pathway is referred toas the unfolded protein response (UPR). In addition to DNA, proteins may be initial and important targets of ionizing radiation (IR), and the damaged protein can trigger ER stress pathway. Recent investigations suggested that IR induces ER stress followed by UPR in various cell types including intestinal epithelial cells. We conducted this study to determine whether IR can activate UPR in human vascular endothelial cells. Our data have shown that IR increased PERK-dependent eIF2α phosphorylation accompanied by induction in ATF4 protein levels in human vascular endothelial cells without alterations in expressions of XBP-1s and GRP78. Based on these data, we suggest that IR selectively activates PERK branch of unfolded protein response in human vascular endothelial cells.

  2. Polyphenols modulate calcium-independent mechanisms in human arterial tissue-engineered vascular media.

    Science.gov (United States)

    Diebolt, Myriam; Laflamme, Karina; Labbé, Raymond; Auger, François A; Germain, Lucie; Andriantsitohaina, Ramaroson

    2007-10-01

    In the present study, an arterial tissue-engineered vascular media (TEVM) was produced from cultured human smooth muscle cells of the umbilical artery and we took advantage of this model to evaluate the regulation of contraction and the signalling pathways of polyphenols in arteries. Cultured human smooth muscle cells of the umbilical artery were used to produce arterial TEVMs. Contraction experiments were performed to determine intracellular targets involved in the modulation of contraction by polyphenols extract from red wine, Provinols (SEPPIC Groupe Air Liquide, Paris, France). Smooth muscle cells in arterial TEVM displayed a differentiated phenotype as demonstrated by the expression of alpha-smooth muscle actin, a vascular smooth muscle-specific marker, and tissue contraction in response to vasoconstrictor and vasodilator agents. Contractions caused by histamine were associated with an increase in [Ca(2+)](i) and a Ca(2+)-independent signalling pathway. The latter pathway involved mechanisms sensitive to protein kinase C, myosin light chain kinase, and Rho-associated protein kinase inhibitors. The regulation of contraction induced by Provinols shows that treatment of arterial TEVM with this compound significantly decreased histamine-induced contraction. This effect was associated with the inhibition of the Rho-associated protein kinase pathway and the decrease in alpha-smooth muscle actin expression. The use of arterial TEVM, brings new insights into the mechanisms by which polyphenols regulate vascular contraction in the human artery.

  3. Detection of histidine decarboxylase mRNA in human vascular smooth muscle and endothelial cells.

    Science.gov (United States)

    Tippens, A S; Gruetter, C A

    2004-06-01

    The objective of this study was to investigate histamine synthesis capability of human vascular smooth muscle and endothelial cells by detecting histidine decarboxylase (HDC) mRNA. HDC catalyzes exclusively the formation of histamine in mammalian cells. Experiments utilizing nested reverse transcription-polymerase chain reaction (nRT-PCR) were conducted to detect the presence of HDC mRNA. Human aortic smooth muscle cells (HAoSMC) and human aortic endothelial cells (HAEC) were cultured and RNA was extracted and amplified using two sets of HDC-specific primers. Rat liver and kidney RNA were isolated and amplified to serve as positive and negative controls, respectively. Gel electrophoresis of HAoSMC, HAEC and liver mRNA revealed bands coinciding with an expected product size of 440 base pairs. Sequence analysis revealed that the observed bands were the appropriate HDC amplicons. These findings are the first to indicate the presence of HDC mRNA in vascular smooth muscle cells and confirm the presence of HDC mRNA in endothelial cells which is consistent with an ability of these cell types to synthesize histamine in the vascular wall.

  4. Centrality of Social Interaction in Human Brain Function.

    Science.gov (United States)

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  6. Bioengineering functional human aortic vascular smooth-muscle strips in vitro.

    Science.gov (United States)

    Hecker, Louise; Khait, Luda; Welsh, Michael J; Birla, Ravi

    2008-07-01

    The contraction and relaxation of VSM (vascular smooth muscle) are responsible for the maintenance of vascular tone, which is a major determinant of blood pressure. However, the molecular events leading to the contraction and relaxation of VSM are poorly understood. The development of three-dimensional bioengineered tissues provides an opportunity to investigate the molecular events controlling vascular tone in vitro. In the present study we used fibrin-gel casting to bioengineer functional VSM strips from primary human aortic VSM cells. Our bioengineered VSM strips are functionally similar to VSM in vivo and remained viable in culture for up to 5 weeks. VSM strips demonstrate spontaneous basal tone and can generate an active force (contraction) of up to 85.2 microN on stimulation with phenylephrine. Bioengineered VSM strips exhibited Ca(2+)-dependent contraction and calcium-independent relaxation. The development of functional bioengineered VSM tissue provides a new in vitro model system that can be used to investigate the molecular events controlling vascular tone.

  7. Microstructured human fibroblast-derived extracellular matrix scaffold for vascular media fabrication.

    Science.gov (United States)

    Bourget, Jean-Michel; Laterreur, Véronique; Gauvin, Robert; Guillemette, Maxime D; Miville-Godin, Caroline; Mounier, Maxence; Tondreau, Maxime Y; Tremblay, Catherine; Labbé, Raymond; Ruel, Jean; Auger, François A; Veres, Teodor; Germain, Lucie

    2017-09-01

    In the clinical and pharmacological fields, there is a need for the production of tissue-engineered small-diameter blood vessels. We have demonstrated previously that the extracellular matrix (ECM) produced by fibroblasts can be used as a scaffold to support three-dimensional (3D) growth of another cell type. Thus, a resistant tissue-engineered vascular media can be produced when such scaffolds are used to culture smooth muscle cells (SMCs). The present study was designed to develop an anisotropic fibroblastic ECM sheet that could replicate the physiological architecture of blood vessels after being assembled into a small diameter vascular conduit. Anisotropic ECM scaffolds were produced using human dermal fibroblasts, grown on a microfabricated substrate with a specific topography, which led to cell alignment and unidirectional ECM assembly. Following their devitalization, the scaffolds were seeded with SMCs. These cells elongated and migrated in a single direction, following a specific angle relative to the direction of the aligned fibroblastic ECM. Their resultant ECM stained for collagen I and III and elastin, and the cells expressed SMC differentiation markers. Seven days after SMCs seeding, the sheets were rolled around a mandrel to form a tissue-engineered vascular media. The resulting anisotropic ECM and cell alignment induced an increase in the mechanical strength and vascular reactivity in the circumferential direction as compared to unaligned constructs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Urea immunoliposome inhibits human vascular endothelial cell proliferation for hemangioma treatment

    Science.gov (United States)

    2013-01-01

    Background Urea injection has been used in hemangioma treatment as sclerotherapy. It shrinks vascular endothelial cells and induces degeneration, necrosis, and fibrosis. However, this treatment still has disadvantages, such as lacking targeting and difficulty in controlling the urea dosage. Thus, we designed a urea immunoliposome to improve the efficiency of treatment. Methods The urea liposome was prepared by reverse phase evaporation. Furthermore, the urea immunoliposome was generated by coupling the urea liposome with a vascular endothelial growth factor receptor (VEGFR) monoclonal antibody using the glutaraldehyde cross-linking method. The influence of the urea immunoliposome on cultured human hemangioma vascular endothelial cells was observed preliminarily. Results Urea immunoliposomes showed typical liposome morphology under a transmission electron microscope, with an encapsulation percentage of 54.4% and a coupling rate of 36.84% for anti-VEGFR. Treatment with the urea immunoliposome significantly inhibited the proliferation of hemangioma vascular endothelial cells (HVECs) in a time- and dose-dependent manner. Conclusions The urea immunoliposome that we developed distinctly and persistently inhibited the proliferation of HVECs and is expected to be used in clinical hemangioma treatment. PMID:24266957

  9. The role of vascular endothelial growth factor in neurogenesis in adult brain.

    Science.gov (United States)

    Galvan, Veronica; Greenberg, David A; Jin, Kunlin

    2006-06-01

    VEGF is a canonical angiogenic factor. In addition, its role as a stimulator of neurogenesis was recently uncovered. Vascular and nervous networks share common molecular mechanisms underlying their morphogenesis. VEGF is likely to regulate both processes during development and in adult organisms.

  10. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten

    2011-01-01

    (VEGF) is an endothelial cell-specific mitogen and angiogen. VEGF-A protein, which is identical to vascular permeability factor, is a regulator of angiogenesis. In this study, 101 patients with meningiomas, and possible co-factors to PTBE, such as meningioma subtypes and tumor location, were examined...

  11. Diabetes increases atrophy and vascular lesions on brain MRI in patients with symptomatic arterial disease

    NARCIS (Netherlands)

    Tiehuis, Audrey M.; Van der Graaf, Yolanda; Visseren, Frank L.; Vincken, Koen L.; Biessels, Geert Jan; Appelman, Auke P. A.; Kappelle, L. Jaap; Mali, Willem P. T. M.

    Background and Purpose - Diabetes type 2 (DM2) is associated with accelerated cognitive decline and structural brain abnormalities. Macrovascular disease has been described as a determinant for brain MRI changes in DM2, but little is known about the involvement of other DM2-related factors. Methods

  12. Modern human brain growth and development. Contribution to brain evolution in hominids

    OpenAIRE

    Ventrice, F

    2011-01-01

    Human phylogenetic history is directly related to brain evolution. But many biologic processes related to the appearance of this complex organ are unknown, mainly due to the fact that it is an organ composed of soft tissue, which is not sensitive to the fossilization processes. Hence, to infer human brain evolution it is essential to study the indirect evidences it leaves in the cranial bones, such as the endocranial size (cranial capacity) and shape. In this sense, the hominid fossil record ...

  13. Estimating Neural Signal Dynamics in the Human Brain

    Directory of Open Access Journals (Sweden)

    Christopher W Tyler

    2011-06-01

    Full Text Available Although brain imaging methods are highly effective for localizing the effects of neural activation throughout the human brain in terms of the blood oxygenation level dependent (BOLD response, there is currently no way to estimate the underlying neural signal dynamics in generating the BOLD response in each local activation region (except for processes slower than the BOLD time course. Knowledge of the neural signal is critical information if spatial mapping is to progress to the analysis of dynamic information flow through the cortical networks as the brain performs its tasks. We introduce an analytic approach that provides a new level of conceptualization and specificity in the study of brain processing by noninvasive methods. This technique allows us to use brain imaging methods to determine the dynamics of local neural population responses to their native temporal resolution throughout the human brain, with relatively narrow confidence intervals on many response properties. The ability to characterize local neural dynamics in the human brain represents a significant enhancement of brain imaging capabilities, with potential application from general cognitive studies to assessment of neuropathologies.

  14. The Stress and Vascular Catastrophes in Newborn Rats: Mechanisms Preceding and Accompanying the Brain Hemorrhages.

    Science.gov (United States)

    Semyachkina-Glushkovskaya, Oxana; Borisova, Ekaterina; Abakumov, Maxim; Gorin, Dmitry; Avramov, Latchezar; Fedosov, Ivan; Namykin, Anton; Abdurashitov, Arkady; Serov, Alexander; Pavlov, Alexey; Zinchenko, Ekaterina; Lychagov, Vlad; Navolokin, Nikita; Shirokov, Alexander; Maslyakova, Galina; Zhu, Dan; Luo, Qingming; Chekhonin, Vladimir; Tuchin, Valery; Kurths, Jürgen

    2016-01-01

    In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health.

  15. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Plastination of dissected brain specimens and Mulligan-stained sections of the human brain.

    Science.gov (United States)

    Baeres, F M; Møller, M

    2001-12-01

    The difficulties in obtaining human brain material for teaching neuroanatomy have increased the demand for more durable brain specimens. In this paper, we describe results obtained by preparing large, plastinated, dissected human brain specimens and Mulligan-stained sections of the human brain. The brains were fixed in formalin, washed and dissected in order to visualize the fibre tracts and larger nuclei in the central nervous system. This was followed by dehydration at -20 degrees C in acetone. The specimens were then impregnated with silicone, Biodur S10, in vacuo and hardened in Biodur S6 vapour. The grey and white substance in the central nervous system as well as the larger fibre tracts and nuclei were clearly visible in the dissected, plastinated specimens. Coronal and sagittal sections of the human brain were stained according to Tompsett's modification of the Mulligan method. The sections were then dehydrated in cold acetone followed by forced impregnation with Biodur S10 and hardening. The plastinated sections stained distinctly and strongly and the nuclei in the forebrain, cerebellum and brain stem could be identified easily. The sections did not fade when exposed to light and could be easily handled in the classroom without damage. Therefore, the distinct visualization of neuroanatomical structures, the improved durability of the specimens, as well as the lack of odour make plastinated specimens and stained sections of the central nervous system a valuable tool for teaching neuroanatomy that compliments the use of wet preparations.

  17. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Science.gov (United States)

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  18. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  19. Optogenetic control of human neurons in organotypic brain cultures

    DEFF Research Database (Denmark)

    Andersson, My; Avaliani, Natalia; Svensson, Andreas

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-c......-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies.......Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof...

  20. Construction and analysis of SSH cDNA library of human vascular endothelial cells related to gastrocarcinoma

    OpenAIRE

    Liu, Yong-Bo; Wei, Zhao-Xia; Li, Li; Li, Hang-Sheng; Chen, Hui; Li, Xiao-Wen

    2003-01-01

    AIM: To construct subtracted cDNA libraries of human vascular endothelial cells (VECs) related to gastrocarcinoma using suppression substractive hybridization (SSH) and to analyze cDNA libraries of gastrocarcinoma and VECs in Cancer Gene Anatomy Project (CGAP) database.

  1. Differential Effects of Bartonella henselae on Human and Feline Macro- and Micro-Vascular Endothelial Cells: e20204

    National Research Council Canada - National Science Library

    Moez Berrich; Claudine Kieda; Catherine Grillon; Martine Monteil; Nathalie Lamerant; Julie Gavard; Henri Jean Boulouis; Nadia Haddad

    2011-01-01

    .... To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development...

  2. Learning brain aneurysm microsurgical skills in a human placenta model: predictive validity.

    Science.gov (United States)

    de Oliveira, Marcelo Magaldi Ribeiro; Ferrarez, Carlos Eduardo; Ramos, Taise Mosso; Malheiros, Jose Augusto; Nicolato, Arthur; Machado, Carla Jorge; Ferreira, Mauro Tostes; de Oliveira, Fellype Borges; de Sousa, Cecília Félix Penido Mendes; Costa, Pollyana Helena Vieira; Gusmao, Sebastiao; Lanzino, Giuseppe; Maestro, Rolando Del

    2017-03-24

    OBJECTIVE Surgery for brain aneurysms is technically demanding. In recent years, the process to learn the technical skills necessary for these challenging procedures has been affected by a decrease in the number of surgical cases available and progressive restrictions on resident training hours. To overcome these limitations, surgical simulators such as cadaver heads and human placenta models have been developed. However, the effectiveness of these models in improving technical skills is unknown. This study assessed concurrent and predictive validity of brain aneurysm surgery simulation in a human placenta model compared with a "live" human brain cadaveric model. METHODS Two human cadaver heads and 30 human placentas were used. Twelve neurosurgeons participated in the concurrent validity part of this study, each operating on 1 human cadaver head aneurysm model and 1 human placenta model. Simulators were evaluated regarding their ability to simulate different surgical steps encountered during real surgery. The time to complete the entire aneurysm task in each simulator was analyzed. The predictive validity component of the study involved 9 neurosurgical residents divided into 3 groups to perform simulation exercises, each lasting 6 weeks. The training for the 3 groups consisted of educational video only (3 residents), human cadaver only (3 residents), and human placenta only (3 residents). All residents had equivalent microsurgical experience with superficial brain tumor surgery. After completing their practice training, residents in each of the 3 simulation groups performed surgery for an unruptured middle cerebral artery (MCA) aneurysm, and their performance was assessed by an experienced vascular neurosurgeon who watched the operative videos. RESULTS All human cadaver heads and human placentas were suitable to simulate brain aneurysm surgery. In the concurrent validity portion of the experiment, the placenta model required a longer time (p model was considered

  3. Lactate fuels the human brain during exercise

    DEFF Research Database (Denmark)

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    lactate in proportion to the arterial concentration. Cerebral lactate uptake, together with glucose uptake, is larger than the uptake accounted for by the concomitant O(2) uptake, as reflected by the decrease in cerebral metabolic ratio (CMR) [the cerebral molar uptake ratio O(2)/(glucose+(1/2) lactate...... blockade but not with beta(1)-adrenergic blockade alone. Also, CMR decreases in response to epinephrine, suggesting that a beta(2)-adrenergic receptor mechanism enhances glucose and perhaps lactate transport across the blood-brain barrier. The pattern of CMR decrease under various forms of brain activation...

  4. Resting Brain Perfusion and Selected Vascular Risk Factors in Healthy Elderly Subjects

    DEFF Research Database (Denmark)

    Henriksen, Otto M.; Jensen, Lars T; Krabbe, Katja

    2014-01-01

    with circulating homocysteine, but not with asymmetric dimethylarginine, dyslipidemia or the carotid intima-media thickness. The relative regional brain perfusion was associated with circulating homocysteine, with a relative parietal hypoperfusion and a frontal hyperperfusion. No effect on regional brain perfusion...... was observed for any of the other risk factors. A multiple regression model including homocysteine, caffeine, hematocrit and end-tidal PCO2, explained nearly half of the observed variability. CONCLUSION: Both intrinsic and extrinsic factors influenced global cerebral perfusion variation between subjects....... Further, the results suggest that the inverse relation between homocysteine and brain perfusion is owing to other mechanisms, than reflected by asymmetric dimethylarginine, and that homocysteine may be a marker of cerebral perfusion in aging brains....

  5. Human induced pluripotent stem cell-derived vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Ayoubi, Sohrab; Sheikh, Søren P; Eskildsen, Tilde V

    2017-01-01

    . To this end, human induced pluripotent stem cells (hiPSCs) have generated great enthusiasm, and have been a driving force for development of novel strategies in drug discovery and regenerative cell-therapy for the last decade. Hence, investigating the mechanisms underlying the differentiation of hi......PSCs into specialized cell types such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs) may lead to a better understanding of developmental cardiovascular processes and potentiate progress of safe autologous regenerative therapies in pathological conditions. In this review, we summarize......Cardiovascular diseases remain the leading cause of death worldwide and current treatment strategies have limited effect of disease progression. It would be desirable to have better models to study developmental and pathological processes and model vascular diseases in laboratory settings...

  6. In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography

    Science.gov (United States)

    Liew, Yih Miin; McLaughlin, Robert A.; Gong, Peijun; Wood, Fiona M.; Sampson, David D.

    2013-06-01

    In scars arising from burns, objective assessment of vascularity is important in the early identification of pathological scarring, and in the assessment of progression and treatment response. We demonstrate the first clinical assessment and automated quantification of vascularity in cutaneous burn scars of human patients in vivo that uses optical coherence tomography (OCT). Scar microvasculature was delineated in three-dimensional OCT images using speckle decorrelation. The diameter and area density of blood vessels were automatically quantified. A substantial increase was observed in the measured density of vasculature in hypertrophic scar tissues (38%) when compared against normal, unscarred skin (22%). A proliferation of larger vessels (diameter≥100 μm) was revealed in hypertrophic scarring, which was absent from normal scars and normal skin over the investigated physical depth range of 600 μm. This study establishes the feasibility of this methodology as a means of clinical monitoring of scar progression.

  7. Brain blood-flow changes during motion sickness. [thalamus vascular changes in dogs during swing tests

    Science.gov (United States)

    Johnson, W. H.; Hsuen, J.

    1973-01-01

    The possibility of diminished blood flow in the brain is studied as one of the factors resulting from an increase in skeletal muscle blood volume concomitant with other characteristics of motion sickness. Thermistors are implanted in the thalamus of dogs and blood flow changes are recorded while they are subjected to sinusoidal movement on a two pole swing. Results of these initial steps in a proposed long term exploration of different areas of the brain are presented.

  8. Human Development XII: A Theory for the Structure and Function of the Human Brain

    OpenAIRE

    Søren Ventegodt; Tyge Dahl Hermansen; Isack Kandel; Joav Merrick

    2008-01-01

    The human brain is probably the most complicated single structure in the biological universe. The cerebral cortex that is traditionally connected with consciousness is extremely complex. The brain contains approximately 1,000,000 km of nerve fibers, indicating its enormous complexity and which makes it difficult for scientists to reveal the function of the brain. In this paper, we propose a new model for brain functions, i.e., information-guided self-organization of neural patterns, where inf...

  9. Cytocompatibility and biologic characteristics of synthetic scaffold materials of rabbit acellular vascular matrix combining with human-like collagen I.

    Science.gov (United States)

    Liu, Xuqian; Wang, Jie; Dong, Fusheng; Song, Peng; Tian, Songbo; Li, Hexiang; Hou, Yali

    2017-10-01

    Scaffold material provides a three-dimensional growing environment for seed cells in the research field of tissue engineering. In the present study, rabbit arterial blood vessel cells were chemically removed with trypsin and Triton X-100 to prepare rabbit acellular vascular matrix scaffold material. Observation by He&Masson staining revealed that no cellular components or nuclei existed in the vascular intima and media after decellularization. Human-like collagen I was combined with acellular vascular matrix by freeze-drying to prepare an acellular vascular matrix-0.25% human-like collagen I scaffold to compensate for the extracellular matrix loss during the decellularization process. We next performed a series of experiments to test the water absorbing quality, biomechanics, pressure resistance, cytotoxicity, and ultra-micro structure of the acellular vascular matrix composite material and natural rabbit artery and found that the acellular vascular matrix-0.25% human-like collagen I material behaved similarly to natural rabbit artery. In conclusion, the acellular vascular matrix-0.25% human-like collagen I composite material provides a new approach and lays the foundation for novel scaffold material research into tissue engineering of blood vessels.

  10. Toward discovery science of human brain function.

    NARCIS (Netherlands)

    Biswal, B.B.; Mennes, M.J.J.; Zuo, X.N.; Gohel, S.; Kelly, C.; Smith, S.M.; Beckmann, C.F.; Adelstein, J.S.; Buckner, R.L.; Colcombe, S.; Dogonowski, A.M.; Ernst, M.; Fair, D.; Hampson, M.; Hoptman, M.J.; Hyde, J.S.; Kiviniemi, V.J.; Kotter, R.; Li, S.J.; Lin, C.P.; Lowe, M.J.; Mackay, C.; Madden, D.J.; Madsen, K.H.; Margulies, D.S.; Mayberg, H.S.; McMahon, K.; Monk, C.S.; Mostofsky, S.H.; Nagel, B.J.; Pekar, J.J.; Peltier, S.J.; Petersen, S.E.; Riedl, V.; Rombouts, S.A.R.B.; Rypma, B.; Schlaggar, B.L.; Schmidt, S.; Seidler, R.D.; Siegle, G.J.; Sorg, C.; Teng, G.J.; Veijola, J.; Villringer, A.; Walter, M.; Wang, L.; Weng, X.C.; Whitfield-Gabrieli, S.; Williamson, P.; Windischberger, C.; Zang, Y.F.; Zhang, H.Y.; Castellanos, F.X.; Milham, M.P.

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a

  11. Weight lifting in the human brain

    NARCIS (Netherlands)

    Lange, F.P. de

    2006-01-01

    The world, just like us, is constantly changing. Making predictions about what will happen to you when you do something (and correcting these predictions based on what is actually happening) is therefore of vital importance. An influential theory states that the brain solves this challenge by using

  12. TV, Brain Waves and Human Behavior

    Science.gov (United States)

    Science News, 1978

    1978-01-01

    Describes the procedure to test the hypothesis that subjects' brain waves in response to a television flicker (distraction) would be smaller in amplitude during television programs of high, in contrast to low, interest. Results from 12 viewers support the hypothesis. (CP)

  13. On Expression Patterns and Developmental Origin of Human Brain Regions.

    Science.gov (United States)

    Kirsch, Lior; Chechik, Gal

    2016-08-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions.

  14. On Expression Patterns and Developmental Origin of Human Brain Regions.

    Directory of Open Access Journals (Sweden)

    Lior Kirsch

    2016-08-01

    Full Text Available Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92% exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions.

  15. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  16. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  17. Conservation of regional gene expression in mouse and human brain.

    Directory of Open Access Journals (Sweden)

    Andrew D Strand

    2007-04-01

    Full Text Available Many neurodegenerative diseases have a hallmark regional and cellular pathology. Gene expression analysis of healthy tissues may provide clues to the differences that distinguish resistant and sensitive tissues and cell types. Comparative analysis of gene expression in healthy mouse and human brain provides a framework to explore the ability of mice to model diseases of the human brain. It may also aid in understanding brain evolution and the basis for higher order cognitive abilities. Here we compare gene expression profiles of human motor cortex, caudate nucleus, and cerebellum to one another and identify genes that are more highly expressed in one region relative to another. We separately perform identical analysis on corresponding brain regions from mice. Within each species, we find that the different brain regions have distinctly different expression profiles. Contrasting between the two species shows that regionally enriched genes in one species are generally regionally enriched genes in the other species. Thus, even when considering thousands of genes, the expression ratios in two regions from one species are significantly correlated with expression ratios in the other species. Finally, genes whose expression is higher in one area of the brain relative to the other areas, in other words genes with patterned expression, tend to have greater conservation of nucleotide sequence than more widely expressed genes. Together these observations suggest that region-specific genes have been conserved in the mammalian brain at both the sequence and gene expression levels. Given the general similarity between patterns of gene expression in healthy human and mouse brains, we believe it is reasonable to expect a high degree of concordance between microarray phenotypes of human neurodegenerative diseases and their mouse models. Finally, these data on very divergent species provide context for studies in more closely related species that address

  18. Shortcomings of the Human Brain and Remedial Action by Religion

    Science.gov (United States)

    Reich, K. Helmut

    2010-01-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial…

  19. Anandamide hydrolysis by human cells in culture and brain

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Maccarrone, M.; Stelt, M. van der; Rossi, A.; Veldink, G.A.; Finazzi Agrò, A.

    1998-01-01

    Anandamide (arachidonylethanolamide; AnNH) has important neuromodulatory and immunomodulatory activities. This lipid is rapidly taken up and hydrolyzed to arachidonate and ethanolamine in many organisms. As yet, AnNH inactivation has not been studied in humans. Here, a human brain fatty-acid amide

  20. Vascular endothelium-specific overexpression of human catalase in cloned pigs.

    Science.gov (United States)

    Whyte, J J; Samuel, M; Mahan, E; Padilla, J; Simmons, G H; Arce-Esquivel, A A; Bender, S B; Whitworth, K M; Hao, Y H; Murphy, C N; Walters, E M; Prather, R S; Laughlin, M H

    2011-10-01

    The objective of this study was to develop transgenic Yucatan minipigs that overexpress human catalase (hCat) in an endothelial-specific manner. Catalase metabolizes hydrogen peroxide (H(2)O(2)), an important regulator of vascular tone that contributes to diseases such as atherosclerosis and preeclampsia. A large animal model to study reduced endothelium-derived H(2)O(2) would therefore generate valuable translational data on vascular regulation in health and disease. Yucatan minipig fetal fibroblasts stably co-transfected with human catalase (Tie2-hCat) and eGFP expression constructs were isolated into single-cell populations. The presence of the Tie2-hCat transgene in individual colonies of fibroblasts was determined by PCR. Transgenic fibroblasts were used for nuclear transfer into enucleated oocytes by electrofusion. A minimum of 140 cloned embryos were transferred per surrogate sow (n = 4). All four surrogates maintained pregnancies and piglets were delivered by cesarean section. Nine male piglets from three of the four litters carried the Tie2-hCat transgene. Expression of human catalase mRNA and overall elevated catalase protein in isolated umbilical endothelial cells from transgenic piglets were verified by RT-PCR and western blot, respectively, and endothelial localization was confirmed by immunohistochemistry. Increased enzymatic activity of catalase in transgenic versus wild-type endothelial cells was inferred based on significantly reduced levels of H(2)O(2) in culture. The similarities in swine and human cardiovascular anatomy and physiology will make this pig model a valuable source of information on the putative role of endothelium-derived H(2)O(2) in vasodilation and in the mechanisms underlying vascular health and disease.

  1. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1.

    Science.gov (United States)

    Tang, Yangfeng; Yu, Shangyi; Liu, Yang; Zhang, Jiajun; Han, Lin; Xu, Zhiyun

    2017-09-01

    Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis and aortic dissection. However, the mechanisms of phenotypic modulation are still unclear. MicroRNAs have emerged as important regulators of VSMC function. We recently found that microRNA-124 (miR-124) was downregulated in proliferative vascular diseases that were characterized by a VSMC phenotypic switch. Therefore, we speculated that the aberrant expression of miR-124 might play a critical role in human aortic VSMC phenotypic switch. Using quantitative RT-PCR, we found that miR-124 was dramatically downregulated in the aortic media of clinical specimens of the dissected aorta and correlated with molecular markers of the contractile VSMC phenotype. Overexpression of miR-124 by mimicking transfection significantly attenuated platelet-derived growth factor-BB-induced human aortic VSMC proliferation and phenotypic switch. Furthermore, we identified specificity protein 1 (Sp1) as the downstream target of miR-124. A luciferase reporter assay was used to confirm direct miR-124 targeting of the 3'-untranslated region of the Sp1 gene and repression of Sp1 expression in human aortic VSMCs. Furthermore, constitutively active Sp1 in miR-124-overexpressing VSMCs reversed the antiproliferative effects of miR-124. These results demonstrated a novel mechanism of miR-124 modulation of VSMC phenotypic switch by targeting Sp1 expression.NEW & NOTEWORTHY Previous studies have demonstrated that miR-124 is involved in the proliferation of a variety of cell types. However, miRNAs are expressed in a tissue-specific manner. We first identified miR-124 as a critical regulator in human aortic vascular smooth muscle cell differentiation, proliferation, and phenotype switch by targeting the 3'-untranslated region of specificity protein 1. Copyright © 2017 the American Physiological Society.

  2. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    Science.gov (United States)

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  3. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  4. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules

    Science.gov (United States)

    Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T.; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge

    2015-01-01

    The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease. PMID:26077718

  5. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.

    Science.gov (United States)

    Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge; Alitalo, Kari

    2015-06-29

    The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease. © 2015 Aspelund et al.

  6. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability.

    NARCIS (Netherlands)

    Pickkers, P.; Sprong, T.; Eijk, L.T. van; Hoeven, J.G. van der; Smits, P.; Deuren, M. van

    2005-01-01

    Meningococcal septic shock is an important cause of morbidity and mortality in children and young adults worldwide and is the prototypical gram-negative septic shock. One of the key factors in the development of shock is increased microvascular permeability. Vascular endothelial growth factor (VEGF)

  7. The bilingual brain: Flexibility and control in the human cortex

    Science.gov (United States)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  8. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  9. The maternal brain and its plasticity in humans

    Science.gov (United States)

    Kim, Pilyoung; Strathearn, Lane; Swain, James E.

    2015-01-01

    Early mother-infant relationships play important roles in infants’ optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers’ brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  10. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    Science.gov (United States)

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  12. Decade of the Brain 1990--2000: Maximizing human potential

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  13. Fundamental Dynamical Modes Underlying Human Brain Synchronization

    Directory of Open Access Journals (Sweden)

    Catalina Alvarado-Rojas

    2012-01-01

    Full Text Available Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle. Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively activated across wake-sleep states.

  14. Small-world human brain networks: Perspectives and challenges.

    Science.gov (United States)

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Parameters Derived from Integrated Nuclear Fluorescence, Syntactic Structure Analysis, and Vascularization in Human Lung Carcinomas

    Directory of Open Access Journals (Sweden)

    Klaus Kayser

    1997-01-01

    Full Text Available Combined measurements of integrated nuclear fluorescence (INF and vascularization were performed on surgical specimens of human lung carcinomas. Histological slides of formalin‐fixed, paraffin‐embedded tissue samples were treated with Texas Red‐labeled antibody to factor VIII and the fluorochrome DAPI. The resulting images were analyzed with an epi‐illumination fluorescence microscope and two different filter blocks. The first image displayed the vessels, and the second the DAPI‐stained nuclei of surrounding cells. The extent of vascularization was assessed by calculating the volume fraction (Vv, the surface fraction (Sv, the area, and the minimum diameter of the vessels. The INF was measured in tumour cells and lymphocytes, and was grouped according to the distance from the nearest vascular boundary into the intervals of 0–20, 21–40, 41–60, 61–80, and >80 μ. The numerical densities (Nv as well as the percentages of S‐phase‐related tumour cell fraction (SPRF and of tumour cells with an INF > 5C were computed. A minimum of 50 vessels and 300 tumour cells were examined. The material included 100 cases with primary lung carcinoma (39 epidermoid carcinomas, 39 adenocarcinomas, 13 large cell carcinomas, three small cell anaplastic carcinomas, and 6 carcinoid tumours. On the average, the volume density of the stroma amounts to 16.7%, and that of the vessels (Vv to 12.8%. The minimum diameter of the intratumoral vessels is 13 μ and the measured circumference 138 μ. The numerical densities of tumour cells (lymphocytes decrease with increasing distance from the vascular boundary from 6.3 (1.7 to 1.0 (0.1. A reduction is also seen in the percentage of the SPRF from 10.7 to 8.1%. The percentage of tumour cells with an INF > 5C, however, is positively correlated to the distance from the vascular surfaces from 34.2 to 38.2%. The measurements reveal that tumour cells are densely positioned and have an increased proportion of

  16. Human induced pluripotent stem cell-derived vascular smooth muscle cells: differentiation and therapeutic potential.

    Science.gov (United States)

    Ayoubi, Sohrab; Sheikh, Søren P; Eskildsen, Tilde V

    2017-09-01

    Cardiovascular diseases remain the leading cause of death worldwide and current treatment strategies have limited effect of disease progression. It would be desirable to have better models to study developmental and pathological processes and model vascular diseases in laboratory settings. To this end, human induced pluripotent stem cells (hiPSCs) have generated great enthusiasm, and have been a driving force for development of novel strategies in drug discovery and regenerative cell-therapy for the last decade. Hence, investigating the mechanisms underlying the differentiation of hiPSCs into specialized cell types such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs) may lead to a better understanding of developmental cardiovascular processes and potentiate progress of safe autologous regenerative therapies in pathological conditions. In this review, we summarize the latest trends on differentiation protocols of hiPSC-derived VSMCs and their potential application in vascular research and regenerative therapy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  17. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    Science.gov (United States)

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (pobese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (pobese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  18. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  19. Platelet Endothelial Cell Adhesion Molecule-1, a Putative Receptor for the Adhesion of Streptococcus pneumoniae to the Vascular Endothelium of the Blood-Brain Barrier

    NARCIS (Netherlands)

    Iovino, Federico; Molema, Grietje; Bijlsma, Jetta J. E.

    The Gram-positive bacterium Streptococcus pneumoniae is the main causative agent of bacterial meningitis. S. pneumoniae is thought to invade the central nervous system via the bloodstream by crossing the vascular endothelium of the blood-brain barrier. The exact mechanism by which pneumococci cross

  20. Human-like brain hemispheric dominance in birdsong learning

    OpenAIRE

    Moorman, Sanne; Gobes, Sharon M. H.; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A.; Bolhuis, Johan J.

    2012-01-01

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca’s area in the frontal lobe and Wernicke’s area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsivenes...

  1. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  2. Several methods to determine heavy metals in the human brain

    Science.gov (United States)

    Andrási, Erzsébet; Igaz, Sarolta; Szoboszlai, Norbert; Farkas, Éva; Ajtony, Zsolt

    1999-05-01

    The determination of naturally occurring heavy metals in various parts of the human brain is discussed. The patients had no diseases in their central nervous systems (five individuals, mean age 70 years). Twenty brain parts were selected from both hemispheres. The analysis was carried out by graphite furnace atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis methods. Accuracy and precision of the applied techniques were tested by using standard reference materials. Two digestion methods were used to dissolve the brain samples for ICP-AES and GF-AAS. One was performed in a Parr-bomb and the second in a microwave oven. The present results show a non-homogeneous distribution of the essential elements (Cu, Fe, Mn, Zn) in normal human brain. Corresponding regions in both hemispheres showed an almost identical concentration of these elements. In the case of toxic elements (Pb, Cd) an average value in different brain regions can not be established because of the high variability of individual data. This study indicates that beside differences in Pb and Cd intake with foods or cigarette smoke inhalation, the main factors of the high inter-individual variability of these element concentrations in human brain parts may be a marked difference in individual elimination or accumulation capabilities.

  3. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  4. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    Science.gov (United States)

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Purification and characterization of a human brain galectin-1 ligand.

    Science.gov (United States)

    Chadli, A; LeCaer, J P; Bladier, D; Joubert-Caron, R; Caron, M

    1997-04-01

    Our previous studies have characterized an endogenous lectin from human brain identified as galectin-1. A soluble ligand of galectin-1 was purified from human brain by affinity chromatography and preparative electrophoresis. The purified ligand (termed HBGp82, for human brain galectin-1-binding polypeptide of 82,000 daltons) has an apparent molecular mass of 82 kDa and is glycosylated by N-linked biantennary complex structures. HBGp82 was partially characterized by microsequencing of peptide fragments. Similar peptides were found in a heat shock of protein of 90,000 daltons, hsp90. However, comparison of apparent molecular weights and matrix-assisted laser desorption mass spectrometry clearly showed that HBGp82 differs to some degree from hsp90.

  6. Phosphorylethanolamine content of human brain tumors.

    Science.gov (United States)

    Kinoshita, Y; Yokota, A; Koga, Y

    1994-12-01

    Phosphorylethanolamine (PEA) is the major component of the phosphomonoester peak detected by phosphorus-31 magnetic resonance spectroscopy, but the absolute concentration has not been determined. This study measured the PEA concentration in biopsy specimens of brain tumors and lobectomized cerebral cortex using high-performance liquid chromatography. The concentration of PEA was 118.5 +/- 10.0 mumol/100 g wet wt in cortex, and was significantly higher in malignant gliomas, metastatic pulmonary adenocarcinoma, and neurinoma. The concentration of PEA was especially high in pituitary adenoma, malignant lymphoma, and medulloblastoma.

  7. Human-like brain hemispheric dominance in birdsong learning.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  8. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  9. Vascular Endothelial Growth Factor Increases during Blood-Brain Barrier-Enhanced Permeability Caused by Phoneutria nigriventer Spider Venom

    Directory of Open Access Journals (Sweden)

    Monique C. P. Mendonça

    2014-01-01

    Full Text Available Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV causes blood-brain barrier breakdown (BBBb. The PNV-induced excitotoxicity results from disturbances on Na+, K+ and Ca2+ channels and glutamate handling. The vascular endothelial growth factor (VEGF, beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation.

  10. Fetal microchimerism in human brain tumors.

    Science.gov (United States)

    Broestl, Lauren; Rubin, Joshua B; Dahiya, Sonika

    2017-09-18

    Sex differences in cancer incidence and survival, including central nervous system tumors, are well documented. Multiple mechanisms contribute to sex differences in health and disease. Recently, the presence of fetal-in-maternal microchimeric cells has been shown to have prognostic significance in breast and colorectal cancers. The frequency and potential role of these cells has not been investigated in brain tumors. We therefore selected two common primary adult brain tumors for this purpose: meningioma, which is sex hormone responsive and has a higher incidence in women, and glioblastoma, which is sex hormone independent and occurs more commonly in men. Quantitative PCR was used to detect the presence of male DNA in tumor samples from women with a positive history of male pregnancy and a diagnosis of either glioblastoma or meningioma. Fluorescence in situ hybridization for the X and Y chromosomes was used to verify the existence of intact male cells within tumor tissue. Fetal microchimerism was found in approximately 80% of glioblastoma cases and 50% of meningioma cases. No correlations were identified between the presence of microchimerism and commonly used clinical or molecular diagnostic features of disease. The impact of fetal microchimeric cells should be evaluated prospectively. © 2017 International Society of Neuropathology.

  11. SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo.

    Science.gov (United States)

    Paul, Jonathan D; Coulombe, Kareen L K; Toth, Peter T; Zhang, Yanmin; Marsboom, Glenn; Bindokas, Vytas P; Smith, David W; Murry, Charles E; Rehman, Jalees

    2013-11-01

    Successful implantation and long-term survival of engineered tissue grafts hinges on adequate vascularization of the implant. Endothelial cells are essential for patterning vascular structures, but they require supportive mural cells such as pericytes/mesenchymal stem cells (MSCs) to generate stable, functional blood vessels. While there is evidence that the angiogenic effect of MSCs is mediated via the secretion of paracrine signals, the identity of these signals is unknown. By utilizing two functionally distinct human MSC clones, we found that so-called "pericytic" MSCs secrete the pro-angiogenic vascular guidance molecule SLIT3, which guides vascular development by directing ROBO4-positive endothelial cells to form networks in engineered tissue. In contrast, "non-pericytic" MSCs exhibit reduced activation of the SLIT3/ROBO4 pathway and do not support vascular networks. Using live cell imaging of organizing 3D vascular networks, we show that siRNA knockdown of SLIT3 in MSCs leads to disorganized clustering of ECs. Knockdown of its receptor ROBO4 in ECs abolishes the generation of functional human blood vessels in an in vivo xenogenic implant. These data suggest that the SLIT3/ROBO4 pathway is required for MSC-guided vascularization in engineered tissues. Heterogeneity of SLIT3 expression may underlie the variable clinical success of MSCs for tissue repair applications. © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic...... in the medial and lateral aspects of the parietal lobe were identified in both species. A tract connecting the medial parietal cortex to the lateral inferior parietal cortex was observed in the monkey brain only. Our findings suggest a consistent pattern of intralobar parietal connections between humans...

  13. PET evaluation of the dopamine system of the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Fowler, J.S.; Gatley, S. [Brookhaven National Laboratory, Upton, NY (United States)]|[SUNY-Stony Brook, NY (United States)] [and others

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  14. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: A review

    Directory of Open Access Journals (Sweden)

    Hui Zhu

    2015-10-01

    Full Text Available Weightlessness is an extreme environment that can cause a series of adaptive changes in the human body. Findings from real and simulated weightlessness indicate altered cardiovascular functions, such as reduction in left ventricular (LV mass, cardiac arrhythmia, reduced vascular tone and so on. These alterations induced by weightlessness are detrimental to the health, safety and working performance of the astronauts, therefore it is important to study the effects of weightlessness on the cardiovascular functions of humans. The cardiovascular functional alterations caused by weightlessness (including long-term spaceflight and simulated weightlessness are briefly reviewed in terms of the cardiac and peripheral vascular functions. The alterations include: changes of shape and mass of the heart; cardiac function alterations; the cardiac arrhythmia; lower body vascular regulation and upper body vascular regulation. A series of conclusions are reported, some of which are analyzed, and a few potential directions are presented.

  15. Gender development and the human brain.

    Science.gov (United States)

    Hines, Melissa

    2011-01-01

    Convincing evidence indicates that prenatal exposure to the gonadal hormone, testosterone, influences the development of children's sex-typical toy and activity interests. In addition, growing evidence shows that testosterone exposure contributes similarly to the development of other human behaviors that show sex differences, including sexual orientation, core gender identity, and some, though not all, sex-related cognitive and personality characteristics. In addition to these prenatal hormonal influences, early infancy and puberty may provide additional critical periods when hormones influence human neurobehavioral organization. Sex-linked genes could also contribute to human gender development, and most sex-related characteristics are influenced by socialization and other aspects of postnatal experience, as well. Neural mechanisms underlying the influences of gonadal hormones on human behavior are beginning to be identified. Although the neural mechanisms underlying experiential influences remain largely uninvestigated, they could involve the same neural circuitry as that affected by hormones.

  16. Vascular endothelial growth factor A protein level and gene expression in intracranial meningiomas with brain edema

    DEFF Research Database (Denmark)

    Nassehi, Damoun; Dyrbye, Henrik; Andresen, Morten

    2011-01-01

    (VEGF) is an endothelial cell-specific mitogen and angiogen. VEGF-A protein, which is identical to vascular permeability factor, is a regulator of angiogenesis. In this study, 101 patients with meningiomas, and possible co-factors to PTBE, such as meningioma subtypes and tumor location, were examined....... Forty-three patients had primary, solitary, supratentorial meningiomas with PTBE. In these, correlations in PTBE, edema index, VEGF-A protein, VEGF gene expression, capillary length, and tumor water content were investigated. DNA-branched hybridization was used for measuring VEGF gene expression...... in tissue homogenates prepared from frozen tissue samples. The method for VEGF-A analysis resembled an ELISA assay, but was based on chemiluminescence. The edema index was positively correlated to VEGF-A protein (p = 0.014) and VEGF gene expression (p

  17. Computerized evaluation method of white matter hyperintensities related to subcortical vascular dementia in brain MR images

    Science.gov (United States)

    Arimura, Hidetaka; Kawata, Yasuo; Yamashita, Yasuo; Magome, Taiki; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu; Tsuchiya, Kazuhiro

    2010-03-01

    We have developed a computerized evaluation method of white matter hyperintensity (WMH) regions for the diagnosis of vascular dementia (VaD) based on magnetic resonance (MR) images, and implemented the proposed method as a graphical interface program. The WMH regions were segmented using either a region growing technique or a level set method, one of which was selected by using a support vector machine. We applied the proposed method to MR images acquired from 10 patients with a diagnosis of VaD. The mean similarity index between WMH regions determined by a manual method and the proposed method was 78.2+/-11.0%. The proposed method could effectively assist neuroradiologists in evaluating WMH regions.

  18. Vascular Functions and Brain Integrity in Midlife: Effects of Obesity and Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Andreana P. Haley

    2014-01-01

    Full Text Available Intact cognitive function is the best predictor of quality of life and functional ability in older age. Thus, preventing cognitive decline is central to any effort to guarantee successful aging for our growing population of elderly. The purpose of the work discussed in this outlook paper is to bridge knowledge from basic and clinical neuroscience with the aim of improving how we understand, predict, and treat age- and disease-related cognitive impairment. Over the past six years, our research team has focused on intermediate neuroimaging phenotypes of brain vulnerability in midlife and isolating the underlying physiological mechanisms. The ultimate goal of this work was to pave the road for the development of early interventions to enhance cognitive function and preserve brain integrity throughout the lifespan.

  19. Vascular permeability in cerebral cavernous malformations

    DEFF Research Database (Denmark)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao

    2015-01-01

    -controlled observational study investigated whether the brains of human subjects with familial CCM show vascular hyperpermeability by dynamic contrast-enhanced quantitative perfusion magnetic resonance imaging, in comparison with CCM cases without familial disease, and whether lesional or brain vascular permeability...... vascular hyperpermeability in humans with an autosomal dominant disease, as predicted mechanistically. Brain permeability, more than lesion permeability, may serve as a biomarker of CCM disease activity, and help calibrate potential drug therapy....... correlates with CCM disease activity. Permeability in white matter far (WMF) from lesions was significantly greater in familial than in sporadic cases, but was similar in CCM lesions. Permeability in WMF increased with age in sporadic patients, but not in familial cases. Patients with more aggressive...

  20. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans.

    Science.gov (United States)

    Schroeter, Hagen; Heiss, Christian; Balzer, Jan; Kleinbongard, Petra; Keen, Carl L; Hollenberg, Norman K; Sies, Helmut; Kwik-Uribe, Catherine; Schmitz, Harold H; Kelm, Malte

    2006-01-24

    Epidemiological and medical anthropological investigations suggest that flavanol-rich foods exert cardiovascular health benefits. Endothelial dysfunction, a prognostically relevant key event in atherosclerosis, is characterized by a decreased bioactivity of nitric oxide (NO) and impaired flow-mediated vasodilation (FMD). We show in healthy male adults that the ingestion of flavanol-rich cocoa was associated with acute elevations in levels of circulating NO species, an enhanced FMD response of conduit arteries, and an augmented microcirculation. In addition, the concentrations and the chemical profiles of circulating flavanol metabolites were determined, and multivariate regression analyses identified (-)-epicatechin and its metabolite, epicatechin-7-O-glucuronide, as independent predictors of the vascular effects after flavanol-rich cocoa ingestion. A mixture of flavanols/metabolites, resembling the profile and concentration of circulating flavanol compounds in plasma after cocoa ingestion, induced a relaxation in preconstricted rabbit aortic rings ex vivo, thus mimicking acetylcholine-induced relaxations. Ex vivo flavanol-induced relaxation, as well as the in vivo increases in FMD, were abolished by inhibition of NO synthase. Oral administration of chemically pure (-)-epicatechin to humans closely emulated acute vascular effects of flavanol-rich cocoa. Finally, the concept that a chronic intake of high-flavanol diets is associated with prolonged, augmented NO synthesis is supported by data that indicate a correlation between the chronic consumption of a cocoa flavanol-rich diet and the augmented urinary excretion of NO metabolites. Collectively, our data demonstrate that the human ingestion of the flavanol (-)-epicatechin is, at least in part, causally linked to the reported vascular effects observed after the consumption of flavanol-rich cocoa.

  1. (–)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans

    Science.gov (United States)

    Schroeter, Hagen; Heiss, Christian; Balzer, Jan; Kleinbongard, Petra; Keen, Carl L.; Hollenberg, Norman K.; Sies, Helmut; Kwik-Uribe, Catherine; Schmitz, Harold H.; Kelm, Malte

    2006-01-01

    Epidemiological and medical anthropological investigations suggest that flavanol-rich foods exert cardiovascular health benefits. Endothelial dysfunction, a prognostically relevant key event in atherosclerosis, is characterized by a decreased bioactivity of nitric oxide (NO) and impaired flow-mediated vasodilation (FMD). We show in healthy male adults that the ingestion of flavanol-rich cocoa was associated with acute elevations in levels of circulating NO species, an enhanced FMD response of conduit arteries, and an augmented microcirculation. In addition, the concentrations and the chemical profiles of circulating flavanol metabolites were determined, and multivariate regression analyses identified (–)-epicatechin and its metabolite, epicatechin-7-O-glucuronide, as independent predictors of the vascular effects after flavanol-rich cocoa ingestion. A mixture of flavanols/metabolites, resembling the profile and concentration of circulating flavanol compounds in plasma after cocoa ingestion, induced a relaxation in preconstricted rabbit aortic rings ex vivo, thus mimicking acetylcholine-induced relaxations. Ex vivo flavanol-induced relaxation, as well as the in vivo increases in FMD, were abolished by inhibition of NO synthase. Oral administration of chemically pure (–)-epicatechin to humans closely emulated acute vascular effects of flavanol-rich cocoa. Finally, the concept that a chronic intake of high-flavanol diets is associated with prolonged, augmented NO synthesis is supported by data that indicate a correlation between the chronic consumption of a cocoa flavanol-rich diet and the augmented urinary excretion of NO metabolites. Collectively, our data demonstrate that the human ingestion of the flavanol (–)-epicatechin is, at least in part, causally linked to the reported vascular effects observed after the consumption of flavanol-rich cocoa. PMID:16418281

  2. DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests

    Directory of Open Access Journals (Sweden)

    Xavier eLópez-Gil

    2014-07-01

    Full Text Available The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm3 isometric resolution at 10, 14, 18, 22, 26 and 40 weeks after birth. Diffusion weighted imaging was analyzed in 2 different ways, by regional characterization of diffusion tensor imaging indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, diffusion tensor imaging scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and grey matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional 3-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.

  3. Comprehensive cellular‐resolution atlas of the adult human brain

    Science.gov (United States)

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  4. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  5. Neurospin Seminar: From the Proton to the Human Brain

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    From the Proton to the Human Brain Speaker: Prof Denis Le Bihan Abstract: The understanding of the human brain is one of the main scientific challenges of the 21st century. In the early 2000s the French Atomic Energy Commission (CEA) launched a program to conceive and build a “human brain explorer”, the first human MRI scanner operating at 11.7T. This scanner was envisioned to be part of the ambitious Iseult project, bridging together industrial and academic partners to push the limits of molecular neuroimaging, from mouse to man, using Ultra-High Field (UHF) MRI. In this seminar a summary of the main features of this magnet, and the neuroscience and medical targets of NeuroSpin where this outstanding instrument will be installed in 2017 will be surveyed. The unprecedented resolution and the new contrasts allowed by such UHF magnets, in combination with innovative concepts in physics and neurobiology, will allow to explore the human brain at a mesoscale at which everything remains to d...

  6. Addiction circuitry in the human brain (*).

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

    2011-09-27

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

  7. The sleep-deprived human brain.

    Science.gov (United States)

    Krause, Adam J; Simon, Eti Ben; Mander, Bryce A; Greer, Stephanie M; Saletin, Jared M; Goldstein-Piekarski, Andrea N; Walker, Matthew P

    2017-07-01

    How does a lack of sleep affect our brains? In contrast to the benefits of sleep, frameworks exploring the impact of sleep loss are relatively lacking. Importantly, the effects of sleep deprivation (SD) do not simply reflect the absence of sleep and the benefits attributed to it; rather, they reflect the consequences of several additional factors, including extended wakefulness. With a focus on neuroimaging studies, we review the consequences of SD on attention and working memory, positive and negative emotion, and hippocampal learning. We explore how this evidence informs our mechanistic understanding of the known changes in cognition and emotion associated with SD, and the insights it provides regarding clinical conditions associated with sleep disruption.

  8. ``the Human BRAIN & Fractal quantum mechanics''

    Science.gov (United States)

    Rosary-Oyong, Se, Glory

    In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  9. Mathematical logic in the human brain: syntax.

    Directory of Open Access Journals (Sweden)

    Roland Friedrich

    Full Text Available Theory predicts a close structural relation of formal languages with natural languages. Both share the aspect of an underlying grammar which either generates (hierarchically structured expressions or allows us to decide whether a sentence is syntactically correct or not. The advantage of rule-based communication is commonly believed to be its efficiency and effectiveness. A particularly important class of formal languages are those underlying the mathematical syntax. Here we provide brain-imaging evidence that the syntactic processing of abstract mathematical formulae, written in a first order language, is, indeed efficient and effective as a rule-based generation and decision process. However, it is remarkable, that the neural network involved, consisting of intraparietal and prefrontal regions, only involves Broca's area in a surprisingly selective way. This seems to imply that despite structural analogies of common and current formal languages, at the neural level, mathematics and natural language are processed differently, in principal.

  10. Abnormal brain iron homeostasis in human and animal prion disorders.

    Directory of Open Access Journals (Sweden)

    Ajay Singh

    2009-03-01

    Full Text Available Neurotoxicity in all prion disorders is believed to result from the accumulation of PrP-scrapie (PrP(Sc, a beta-sheet rich isoform of a normal cell-surface glycoprotein, the prion protein (PrP(C. Limited reports suggest imbalance of brain iron homeostasis as a significant associated cause of neurotoxicity in prion-infected cell and mouse models. However, systematic studies on the generality of this phenomenon and the underlying mechanism(s leading to iron dyshomeostasis in diseased brains are lacking. In this report, we demonstrate that prion disease-affected human, hamster, and mouse brains show increased total and redox-active Fe (II iron, and a paradoxical increase in major iron uptake proteins transferrin (Tf and transferrin receptor (TfR at the end stage of disease. Furthermore, examination of scrapie-inoculated hamster brains at different timepoints following infection shows increased levels of Tf with time, suggesting increasing iron deficiency with disease progression. Sporadic Creutzfeldt-Jakob disease (sCJD-affected human brains show a similar increase in total iron and a direct correlation between PrP and Tf levels, implicating PrP(Sc as the underlying cause of iron deficiency. Increased binding of Tf to the cerebellar Purkinje cell neurons of sCJD brains further indicates upregulation of TfR and a phenotype of neuronal iron deficiency in diseased brains despite increased iron levels. The likely cause of this phenotype is sequestration of iron in brain ferritin that becomes detergent-insoluble in PrP(Sc-infected cell lines and sCJD brain homogenates. These results suggest that sequestration of iron in PrP(Sc-ferritin complexes induces a state of iron bio-insufficiency in prion disease-affected brains, resulting in increased uptake and a state of iron dyshomeostasis. An additional unexpected observation is the resistance of Tf to digestion by proteinase-K, providing a reliable marker for iron levels in postmortem human brains. These

  11. The modular and integrative functional architecture of the human brain.

    Science.gov (United States)

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-08

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions.

  12. Unveiling the mystery of visual information processing in human brain.

    Science.gov (United States)

    Diamant, Emanuel

    2008-08-15

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. Why was it overlooked in brain information processing research remains a conundrum. In this paper, I am trying to find a remedy for this bizarre situation. I propose an uncommon definition of "information", which can be derived from Kolmogorov's Complexity Theory and Chaitin's notion of Algorithmic Information. Embracing this new definition leads to an inevitable revision of traditional dogmas that shape the state of the art of brain information processing research. I hope this revision would better serve the challenging goal of human visual information processing modeling.

  13. Human-specific transcriptional networks in the brain

    Science.gov (United States)

    Konopka, Genevieve; Friedrich, Tara; Davis-Turak, Jeremy; Winden, Kellen; Oldham, Michael C.; Gao, Fuying; Chen, Leslie; Wang, Guang-Zhong; Luo, Rui; Preuss, Todd M.; Geschwind, Daniel H.

    2013-01-01

    Summary Understanding human-specific patterns of brain gene expression and regulation can provide key insights into human brain evolution and speciation. Here, we use next generation sequencing, and Illumina and Affymetrix microarray platforms, to compare the transcriptome of human, chimpanzee, and macaque telencephalon. Our analysis reveals a predominance of genes differentially expressed within human frontal lobe and a striking increase in transcriptional complexity specific to the human lineage in the frontal lobe. In contrast, caudate nucleus gene expression is highly conserved. We also identify gene co-expression signatures related to either neuronal processes or neuropsychiatric diseases, including a human-specific module with CLOCK as its hub gene and another module enriched for neuronal morphological processes and genes co-expressed with FOXP2, a gene important for language evolution. These data demonstrate that transcriptional networks have undergone evolutionary remodeling even within a given brain region, providing a new window through which to view the foundation of uniquely human cognitive capacities. PMID:22920253

  14. Rock magnetism linked to human brain magnetite

    Science.gov (United States)

    Kirschvink, Joseph L.

    Magnetite has a long and distinguished career as one of the most important minerals in geophysics, as it is responsible for most of the remanent magnetization in marine sediments and the oceanic crust. It may come as a surprise to discover that it also ranks as the third or fourth most diverse mineral product formed biochemically by living organisms, and forms naturally in a variety of human tissues [Kirschvink et al., 1992].Magnetite was discovered in teeth of the Polyplacophora mollusks over 30 years ago, in magnetotactic bacteria nearly 20 years ago, in honey bees and homing pigeons nearly 15 years ago, but only recently in human tissue.

  15. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells.

    Science.gov (United States)

    Ghanaati, Shahram; Unger, Ronald E; Webber, Matthew J; Barbeck, Mike; Orth, Carina; Kirkpatrick, Jenny A; Booms, Patrick; Motta, Antonella; Migliaresi, Claudio; Sader, Robert A; Kirkpatrick, C James

    2011-11-01

    Successful cell-based tissue engineering requires a rapid and thorough vascularization in order to ensure long-term implant survival and tissue integration. The vascularization of a scaffold is a complex process, and is modulated by the presence of transplanted cells, exogenous and endogenous signaling proteins, and the host tissue reaction, among other influencing factors. This paper presents evidence for the significance of pre-seeded osteoblasts for the in vivo vascularization of a biodegradable scaffold. Human osteoblasts, cultured on silk fibroin micronets in vitro, migrated throughout the interconnected pores of the scaffold and produced extensive bone matrix. When these constructs were implanted in SCID mice, a rapid and thorough vascularization of the scaffold by the host blood capillaries occurred. This profound response was not seen for the silk fibroin scaffold alone. Moreover, when the pre-cultivation time of human osteoblasts was reduced from 14 days to only 24 h, the significant effect these cells exerted on vascularization rate in vivo was still detectable. From these studies, we conclude that matrix and soluble factors produced by osteoblasts can serve to instruct host endothelial cells to migrate, proliferate, and initiate the process of scaffold vascularization. This finding represents a potential paradigm shift for the field of tissue engineering, especially in bone, as traditional strategies to enhance scaffold vascularization have focused on endovascular cells and regarded osteoblasts primarily as cell targets for mineralization. In addition, the migration of host macrophages and multinucleated giant cells into the scaffold was also found to influence the vascularization of the biomaterial. Therefore, the robust effect on scaffold vascularization seen by pre-culturing with osteoblasts appears to occur in concert with the pro-angiogenic stimuli arising from host immune cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz, spontaneous fluctuations of the blood oxygen level dependent (BOLD signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the "default" system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in

  17. Visual dictionaries as intermediate features in the human brain

    Directory of Open Access Journals (Sweden)

    Kandan eRamakrishnan

    2015-01-01

    Full Text Available The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2 and V3. However BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.

  18. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes.

    Science.gov (United States)

    Manschot, S M; Biessels, G J; de Valk, H; Algra, A; Rutten, G E H M; van der Grond, J; Kappelle, L J

    2007-11-01

    The determinants of cerebral complications of type 2 diabetes are unclear. The present study aimed to identify metabolic and vascular factors that are associated with impaired cognitive performance and abnormalities on brain MRI in patients with type 2 diabetes. The study included 122 patients and 56 controls. Neuropsychological test scores were divided into five cognitive domains and expressed as standardised z values. Brain MRI scans were rated for white matter lesions (WML), cortical and subcortical atrophy, and infarcts. Data on glucose metabolism, vascular risk factors and micro- and macrovascular disease were collected. Patients with type 2 diabetes had more cortical (p cognitive performance was worse. In multivariate regression analyses within the type 2 diabetes group, hypertension (p cognitive performance, while statin use was associated (p performance. Retinopathy and brain infarcts on MRI were associated with more severe cortical atrophy (both p Type 2 diabetes is associated with modest impairments in cognition, as well as atrophy and vascular lesions on MRI. This 'diabetic encephalopathy' is a multifactorial condition, for which atherosclerotic (macroangiopathic) vascular disease is an important determinant. Chronic hyperglycaemia, hyperinsulinaemia and hypertension may play additional roles.

  19. The identification of gene pathways involved in vascular adaptations after physical deconditioning versus exercise training in humans

    NARCIS (Netherlands)

    Lammers, G.; van Duijnhoven, T.L.; Hoenderop, J.G.; Horstman, A.M.H.; de Haan, A.; Janssen, T.W.J.; de Graaf, M.; Pardoel, E.M.; Verwiel, E.T.P.; Thijssen, D.H.J.; Hopman, M.T.E.

    2013-01-01

    New Findings: • What is the central question of this study? The aim of this study is to identify genes that are involved in vascular adaptations after physical deconditioning and exercise training in humans. • What is the main finding and its importance? Using unique human in vivo models for local

  20. Chemical Probes for Visualizing Intact Animal and Human Brain Tissue.

    Science.gov (United States)

    Lai, Hei Ming; Ng, Wai-Lung; Gentleman, Steve M; Wu, Wutian

    2017-06-22

    Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.

    Directory of Open Access Journals (Sweden)

    Venkat M Ramakrishnan

    Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that

  2. Human vascular endothelial cells transport foreign exosomes from cow's milk by endocytosis.

    Science.gov (United States)

    Kusuma, Rio Jati; Manca, Sonia; Friemel, Taylor; Sukreet, Sonal; Nguyen, Christopher; Zempleni, Janos

    2016-05-15

    Encapsulation of microRNAs in exosomes confers protection against degradation and a vehicle for shuttling of microRNAs between cells and tissues, and cellular uptake by endocytosis. Exosomes can be found in foods including milk. Humans absorb cow's milk exosomes and deliver the microRNA cargo to peripheral tissues, consistent with gene regulation by dietary nucleic acids across species boundaries. Here, we tested the hypothesis that human vascular endothelial cells transport milk exosomes by endocytosis, constituting a step crucial for the delivery of dietary exosomes and their cargo to peripheral tissues. We tested this hypothesis by using human umbilical vein endothelial cells and fluorophore-labeled exosomes isolated from cow's milk. Exosome uptake followed Michaelis-Menten kinetics (Vmax = 0.057 ± 0.004 ng exosome protein × 40,000 cells/h; Km = 17.97 ± 3.84 μg exosomal protein/200 μl media) and decreased by 80% when the incubation temperature was lowered from 37°C to 4°C. When exosome surface proteins were removed by treatment with proteinase K, or transport was measured in the presence of the carbohydrate competitor d-galactose or measured in the presence of excess unlabeled exosomes, transport rates decreased by 45% to 80% compared with controls. Treatment with an inhibitor of endocytosis, cytochalasin D, caused a 50% decrease in transport. When fluorophore-labeled exosomes were administered retro-orbitally, exosomes accumulated in liver, spleen, and lungs in mice. We conclude that human vascular endothelial cells transport bovine exosomes by endocytosis and propose that this is an important step in the delivery of dietary exosomes and their cargo to peripheral tissues. Copyright © 2016 the American Physiological Society.

  3. Integration of letters and speech sounds in the human brain

    NARCIS (Netherlands)

    van Atteveldt, Nienke; Formisano, Elia; Goebel, Rainer; Blomert, Leo

    2004-01-01

    Most people acquire literacy skills with remarkable ease, even though the human brain is not evolutionarily adapted to this relatively new cultural phenomenon. Associations between letters and speech sounds form the basis of reading in alphabetic scripts. We investigated the functional neuroanatomy

  4. Quantitative MRI of the human brain at 7 tesla

    NARCIS (Netherlands)

    Polders, D.L.

    2012-01-01

    This thesis describes the implementation of quantitative MR methods in the human brain at 7 T. By highlighting the drawbacks and advantages of the increased field strength, the use of 7 T MRI for quantitative measurements in clinical research was demonstrated. Inhomogeneities in the transmitted RF

  5. Human brain evolution, theories of innovation, and lessons from the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 29; Issue 3. Human brain evolution, theories of innovation, and lessons from the history of technology. Alfred Gierer. Perspectives Volume 29 Issue 3 September 2004 pp 235-244. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. TLR4 signaling is involved in brain vascular toxicity of PCB153 bound to nanoparticles.

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    Full Text Available PCBs bind to environmental particles; however, potential toxicity exhibited by such complexes is not well understood. The aim of the present study is to study the hypothesis that assembling onto nanoparticles can influence the PCB153-induced brain endothelial toxicity via interaction with the toll-like receptor 4 (TLR4. To address this hypothesis, TLR4-deficient and wild type control mice (males, 10 week old were exposed to PCB153 (5 ng/g body weight bound to chemically inert silica nanoparticles (PCB153-NPs, PCB153 alone, silica nanoparticles (NPs; diameter, 20 nm, or vehicle. Selected animals were also subjected to 40 min ischemia, followed by a 24 h reperfusion. As compared to exposure to PCB153 alone, treatment with PCB153-NP potentiated the brain infarct volume in control mice. Importantly, this effect was attenuated in TLR4-deficient mice. Similarly, PCB153-NP-induced proinflammatory responses and disruption of tight junction integrity were less pronounced in TLR4-deficient mice as compared to control animals. Additional in vitro experiments revealed that TLR4 mediates toxicity of PCB153-NP via recruitment of tumor necrosis factor-associated factor 6 (TRAF6. The results of current study indicate that binding to seemingly inert nanoparticles increase cerebrovascular toxicity of PCBs and suggest that targeting the TLR4/TRAF6 signaling may protect against these effects.

  7. TLR4 signaling is involved in brain vascular toxicity of PCB153 bound to nanoparticles.

    Science.gov (United States)

    Zhang, Bei; Choi, Jeong June; Eum, Sung Yong; Daunert, Sylvia; Toborek, Michal

    2013-01-01

    PCBs bind to environmental particles; however, potential toxicity exhibited by such complexes is not well understood. The aim of the present study is to study the hypothesis that assembling onto nanoparticles can influence the PCB153-induced brain endothelial toxicity via interaction with the toll-like receptor 4 (TLR4). To address this hypothesis, TLR4-deficient and wild type control mice (males, 10 week old) were exposed to PCB153 (5 ng/g body weight) bound to chemically inert silica nanoparticles (PCB153-NPs), PCB153 alone, silica nanoparticles (NPs; diameter, 20 nm), or vehicle. Selected animals were also subjected to 40 min ischemia, followed by a 24 h reperfusion. As compared to exposure to PCB153 alone, treatment with PCB153-NP potentiated the brain infarct volume in control mice. Importantly, this effect was attenuated in TLR4-deficient mice. Similarly, PCB153-NP-induced proinflammatory responses and disruption of tight junction integrity were less pronounced in TLR4-deficient mice as compared to control animals. Additional in vitro experiments revealed that TLR4 mediates toxicity of PCB153-NP via recruitment of tumor necrosis factor-associated factor 6 (TRAF6). The results of current study indicate that binding to seemingly inert nanoparticles increase cerebrovascular toxicity of PCBs and suggest that targeting the TLR4/TRAF6 signaling may protect against these effects.

  8. Downregulation of an astrocyte-derived inflammatory protein, S100B, reduces vascular inflammatory responses in brains persistently infected with Borna disease virus.

    Science.gov (United States)

    Ohtaki, Naohiro; Kamitani, Wataru; Watanabe, Yohei; Hayashi, Yohei; Yanai, Hideyuki; Ikuta, Kazuyoshi; Tomonaga, Keizo

    2007-06-01

    Borna disease virus (BDV) is a neurotropic virus that causes a persistent infection in the central nervous system (CNS) of many vertebrate species. Although a severe reactive gliosis is observed in experimentally BDV-infected rat brains, little is known about the glial reactions contributing to the viral persistence and immune modulation in the CNS. In this regard, we examined the expression of an astrocyte-derived factor, S100B, in the brains of Lewis rats persistently infected with BDV. S100B is a Ca(2+)-binding protein produced mainly by astrocytes. A prominent role of this protein appears to be the promotion of vascular inflammatory responses through interaction with the receptor for advanced glycation end products (RAGE). Here we show that the expression of S100B is significantly reduced in BDV-infected brains despite severe astrocytosis with increased glial fibrillary acidic protein immunoreactivity. Interestingly, no upregulation of the expression of S100B, or RAGE, was observed in the persistently infected brains even when incited with several inflammatory stimuli, including lipopolysaccharide. In addition, expression of the vascular cell adhesion molecule 1 (VCAM-1), as well as the infiltration of encephalitogenic T cells, was significantly reduced in persistently infected brains in which an experimental autoimmune encephalomyelitis was induced by immunization with myelin-basic protein. Furthermore, we demonstrated that the continuous activation of S100B in the brain may be necessary for the progression of vascular immune responses in neonatally infected rat brains. Our results suggested that BDV infection may impair astrocyte functions via a downregulation of S100B expression, leading to the maintenance of a persistent infection.

  9. Identifying topological motif patterns of human brain functional networks.

    Science.gov (United States)

    Wei, Yongbin; Liao, Xuhong; Yan, Chaogan; He, Yong; Xia, Mingrui

    2017-05-01

    Recent imaging connectome studies demonstrated that the human functional brain network follows an efficient small-world topology with cohesive functional modules and highly connected hubs. However, the functional motif patterns that represent the underlying information flow remain largely unknown. Here, we investigated motif patterns within directed human functional brain networks, which were derived from resting-state functional magnetic resonance imaging data with controlled confounding hemodynamic latencies. We found several significantly recurring motifs within the network, including the two-node reciprocal motif and five classes of three-node motifs. These recurring motifs were distributed in distinct patterns to support intra- and inter-module functional connectivity, which also promoted integration and segregation in network organization. Moreover, the significant participation of several functional hubs in the recurring motifs exhibited their critical role in global integration. Collectively, our findings highlight the basic architecture governing brain network organization and provide insight into the information flow mechanism underlying intrinsic brain activities. Hum Brain Mapp 38:2734-2750, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation.

    Science.gov (United States)

    Lum, Fok-Moon; Low, Donovan K S; Fan, Yiping; Tan, Jeslin J L; Lee, Bernett; Chan, Jerry K Y; Rénia, Laurent; Ginhoux, Florent; Ng, Lisa F P

    2017-04-01

    The unprecedented reemergence of Zika virus (ZIKV) has startled the world with reports of increased microcephaly in Brazil. ZIKV can infect human neural progenitors and impair brain growth. However, direct evidence of ZIKV infection in human fetal brain tissues remains elusive. Investigations were performed with brain cell preparations obtained from 9 donors. Virus infectivity was assessed by detection of virus antigen by flow cytometry together with various hematopoietic cell surface markers. Virus replication was determined by viral RNA quantification. Cytokine levels in supernatant obtained from virus-infected fetal brain cells were measured simultaneously in microbead-based immunoassays. We also show that ZIKV infection was particularly evident in hematopoietic cells with microglia, the brain-resident macrophage population being one of the main targets. Infection induces high levels of proinflammatory immune mediators such as interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and monocyte chemotactic protein 1 (MCP-1). Our results highlight an important role for microglia and neuroinflammation during congenital ZIKV pathogenesis.

  11. Ex-vivo MR Volumetry of Human Brain Hemispheres

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos

    2013-01-01

    Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751

  12. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  13. Downregulation of Pin1 in human atherosclerosis and its association with vascular smooth muscle cell senescence.

    Science.gov (United States)

    Lv, Lei; Ye, Meng; Duan, Rundan; Yuan, Kai; Chen, Jiaquan; Liang, Wei; Zhou, Zhaoxiong; Zhang, Lan

    2017-10-03

    Pin1 is prevalently overexpressed in human cancers and implicated to regulate cell growth and apoptosis. Thus far, however, no role for Pin1 has been described in modulating vascular smooth muscle cell (VSMC) senescence. Immunohistochemistry and Western blotting were used to assess Pin1 protein level in human normal and atherosclerotic tissues. β-galactosidase staining, cumulative population doubling level, telomerase activity, and relative telomere length measurement were used to confirm VSMC senescence. The expressions of Pin1 and other genes involved in this research were analyzed by quantitative reverse-transcription polymerase chain reaction and Western blotting in VSMCs. Apolipoprotein E gene-deleted mice (ApoE-/-) fed a high-fat diet were treated with juglone or 10% ethanol, respectively, for 3 weeks. The extent of atherosclerosis was evaluated by Oil Red O, Masson trichrome staining, and immunohistology. Pin1 protein level decreased in human atherosclerotic tissues and VSMCs, synchronously with increased VSMC senescence. Adenoviral-mediated Pin1 overexpression rescued cellular senescence in atherosclerotic VSMCs, with concurrent down-regulation of P53, p21, growth arrest and DNA-damage-inducible protein 45-alpha (Gadd45a), phosphorylated retinoblastoma (p-pRb), p65 and upregulation of cyclin subfamilies (cyclin B, D, and E), and cyclin-dependent kinase subfamilies (2, 4, and 6), whereas Pin1 knockdown resulted in the converse effects, indicating that VSMC senescence mediated by Pin1 is an integrated response to diverse signals. In vivo data from ApoE-/- mice showed that treatment of juglone led to accelerated atherosclerosis development. Altogether this work supports a role for Pin1 as a vital modulator of VSMC senescence, thereby providing a novel target for regulation and control of atherosclerosis. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  14. Caveolin-1 influences vascular protease activity and is a potential stabilizing factor in human atherosclerotic disease.

    Directory of Open Access Journals (Sweden)

    Juan A Rodriguez-Feo

    Full Text Available Caveolin-1 (Cav-1 is a regulatory protein of the arterial wall, but its role in human atherosclerosis remains unknown. We have studied the relationships between Cav-1 abundance, atherosclerotic plaque characteristics and clinical manisfestations of atherosclerotic disease.We determined Cav-1 expression by western blotting in atherosclerotic plaques harvested from 378 subjects that underwent carotid endarterectomy. Cav-1 levels were significantly lower in carotid plaques than non-atherosclerotic vascular specimens. Low Cav-1 expression was associated with features of plaque instability such as large lipid core, thrombus formation, macrophage infiltration, high IL-6, IL-8 levels and elevated MMP-9 activity. Clinically, a down-regulation of Cav-1 was observed in plaques obtained from men, patients with a history of myocardial infarction and restenotic lesions. Cav-1 levels above the median were associated with absence of new vascular events within 30 days after surgery [0% vs. 4%] and a trend towards lower incidence of new cardiovascular events during longer follow-up. Consistent with these clinical data, Cav-1 null mice revealed elevated intimal hyperplasia response following arterial injury that was significantly attenuated after MMP inhibition. Recombinant peptides mimicking Cav-1 scaffolding domain (Cavtratin reduced gelatinase activity in cultured porcine arteries and impaired MMP-9 activity and COX-2 in LPS-challenged macrophages. Administration of Cavtratin strongly impaired flow-induced expansive remodeling in mice. This is the first study that identifies Cav-1 as a novel potential stabilizing factor in human atherosclerosis. Our findings support the hypothesis that local down-regulation of Cav-1 in atherosclerotic lesions contributes to plaque formation and/or instability accelerating the occurrence of adverse clinical outcomes. Therefore, given the large number of patients studied, we believe that Cav-1 may be considered as a novel target

  15. Topological isomorphisms of human brain and financial market networks.

    Science.gov (United States)

    Vértes, Petra E; Nicol, Ruth M; Chapman, Sandra C; Watkins, Nicholas W; Robertson, Duncan A; Bullmore, Edward T

    2011-01-01

    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimized for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets.

  16. The song system of the human brain.

    Science.gov (United States)

    Brown, Steven; Martinez, Michael J; Hodges, Donald A; Fox, Peter T; Parsons, Lawrence M

    2004-08-01

    Although sophisticated insights have been gained into the neurobiology of singing in songbirds, little comparable knowledge exists for humans, the most complex singers in nature. Human song complexity is evidenced by the capacity to generate both richly structured melodies and coordinated multi-part harmonizations. The present study aimed to elucidate this multi-faceted vocal system by using 15O-water positron emission tomography to scan "listen and respond" performances of amateur musicians either singing repetitions of novel melodies, singing harmonizations with novel melodies, or vocalizing monotonically. Overall, major blood flow increases were seen in the primary and secondary auditory cortices, primary motor cortex, frontal operculum, supplementary motor area, insula, posterior cerebellum, and basal ganglia. Melody repetition and harmonization produced highly similar patterns of activation. However, whereas all three tasks activated secondary auditory cortex (posterior Brodmann Area 22), only melody repetition and harmonization activated the planum polare (BA 38). This result implies that BA 38 is responsible for an even higher level of musical processing than BA 22. Finally, all three of these "listen and respond" tasks activated the frontal operculum (Broca's area), a region involved in cognitive/motor sequence production and imitation, thereby implicating it in musical imitation and vocal learning.

  17. Regional mechanical properties of human brain tissue for computational models of traumatic brain injury.

    Science.gov (United States)

    Finan, John D; Sundaresh, Sowmya N; Elkin, Benjamin S; McKhann, Guy M; Morrison, Barclay

    2017-06-01

    To determine viscoelastic shear moduli, stress relaxation indentation tests were performed on samples of human brain tissue resected in the course of epilepsy surgery. Through the use of a 500µm diameter indenter, regional mechanical properties were measured in cortical grey and white matter and subregions of the hippocampus. All regions were highly viscoelastic. Cortical grey matter was significantly more compliant than the white matter or hippocampus which were similar in modulus. Although shear modulus was not correlated with the age of the donor, cortex from male donors was significantly stiffer than from female donors. The presented material properties will help to populate finite element models of the brain as they become more anatomically detailed. We present the first mechanical characterization of fresh, post-operative human brain tissue using an indentation loading mode. Indentation generates highly localized data, allowing structure-specific mechanical properties to be determined from small tissue samples resected during surgery. It also avoids pitfalls of cadaveric tissue and allows data to be collected before degenerative processes alter mechanical properties. To correctly predict traumatic brain injury, finite element models must calculate intracranial deformation during head impact. The functional consequences of injury depend on the anatomical structures injured. Therefore, morbidity depends on the distribution of deformation across structures. Accurate prediction of structure-specific deformation requires structure-specific mechanical properties. This data will facilitate deeper understanding of the physical mechanisms that lead to traumatic brain injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Mechanism of the toxicity induced by natural humic acid on human vascular endothelial cells.

    Science.gov (United States)

    Kihara, Yusuke; Yustiawati; Tanaka, Masato; Gumiri, Sulmin; Ardianor; Hosokawa, Toshiyuki; Tanaka, Shunitz; Saito, Takeshi; Kurasaki, Masaaki

    2014-08-01

    Humic acid (HA), a group of high-molecular weight organic compounds characterized by an ability to bind heavy metals, is normally found in natural water. Although the impairment of vascular endothelial cells in the presence of humic substances has been reported to be involved in some diseases, the mechanisms responsible for this involvement remain unclear. In this study, we examined the cytotoxicity of HA obtained from peatland in Central Kalimantan, Indonesia, to human vascular endothelial cells, as well as the mechanisms behind these effects. It was found that 50 mg/L HA showed cytotoxicity, which we considered to be mediated by apoptosis through the mitochondrial pathway because of an increase in the expression of caspases 6 and 9 in response to HA administration. In addition, this cytotoxicity was enhanced when cells in this experimental system were exposed to oxidative stress, while it was decreased by the addition of vitamin C. Thus, we conclude that the apoptosis induced by HA depends upon oxidative stress. Furthermore, an iron chelator, DFO, showed a tendency to decrease HA-induced cytotoxicity, suggesting that iron may potentially mediate HA-induced oxidative stress. In conclusion, long-term consumption of HA-rich water obtained from our study area may cause damage to endothelial cells and subsequent chronic health problems. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  19. Anti-Inflammatory effect of Buddleja officinalis on vascular inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Moon, Mi Kyoung; Hwang, Sun Mi; Yoon, Jung Joo; Lee, So Min; Seo, Kwan Soo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-01-01

    Vascular inflammation process has been suggested to be an important risk factor in the initiation and development of atherosclerosis. In this study, we investigated whether and by what mechanisms an aqueous extract of Buddleja officinalis (ABO) inhibited the expressions of cellular adhesion molecules, which are relevant to inflammation and atherosclerosis. Pretreatment of human umbilical vein endothelial cells (HUVEC) with ABO (1-10 microg/ml) for 18 hours dose-dependently inhibited TNF-alpha-induced adhesion U937 monocytic cells, as well as mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1). Pretreatment with ABO also blocked TNF-alpha-induced ROS formation. Nuclear factor-kappa B (NF-kappaB) is required in the transcription of these adhesion molecule genes. Western blot analysis revealed that ABO inhibits the translocation of the p65 subunit of NF-kappaB to the nucleus. ABO inhibited the TNF-alpha-induced degradation of IkappaB-alpha, an inhibitor of NF-kappaB, by inhibiting the phosphorylation of IkappaB-alpha in HUVEC. Taken together, ABO could reduce cytokine-induced endothelial adhesiveness throughout down-regulating intracellular ROS production, NF-kappaB, and adhesion molecule expression in HUVEC, suggesting that the natural herb Buddleja officinalis may have potential implications in atherosclerosis.

  20. Brain lactate metabolism in humans with subarachnoid hemorrhage.

    Science.gov (United States)

    Oddo, Mauro; Levine, Joshua M; Frangos, Suzanne; Maloney-Wilensky, Eileen; Carrera, Emmanuel; Daniel, Roy T; Levivier, Marc; Magistretti, Pierre J; LeRoux, Peter D

    2012-05-01

    Lactate is central for the regulation of brain metabolism and is an alternative substrate to glucose after injury. Brain lactate metabolism in patients with subarachnoid hemorrhage has not been fully elucidated. Thirty-one subarachnoid hemorrhage patients monitored with cerebral microdialysis (CMD) and brain oxygen (PbtO(2)) were studied. Samples with elevated CMD lactate (>4 mmol/L) were matched to PbtO(2) and CMD pyruvate and categorized as hypoxic (PbtO(2) 119 μmol/L) versus nonhyperglycolytic. Median per patient samples with elevated CMD lactate was 54% (interquartile range, 11%-80%). Lactate elevations were more often attributable to cerebral hyperglycolysis (78%; interquartile range, 5%-98%) than brain hypoxia (11%; interquartile range, 4%-75%). Mortality was associated with increased percentage of samples with elevated lactate and brain hypoxia (28% [interquartile range 9%-95%] in nonsurvivors versus 9% [interquartile range 3%-17%] in survivors; P=0.02) and lower percentage of elevated lactate and cerebral hyperglycolysis (13% [interquartile range, 1%-87%] versus 88% [interquartile range, 27%-99%]; P=0.07). Cerebral hyperglycolytic lactate production predicted good 6-month outcome (odds ratio for modified Rankin Scale score, 0-3 1.49; CI, 1.08-2.05; P=0.016), whereas increased lactate with brain hypoxia was associated with a reduced likelihood of good outcome (OR, 0.78; CI, 0.59-1.03; P=0.08). Brain lactate is frequently elevated in subarachnoid hemorrhage patients, predominantly because of hyperglycolysis rather than hypoxia. A pattern of increased cerebral hyperglycolytic lactate was associated with good long-term recovery. Our data suggest that lactate may be used as an aerobic substrate by the injured human brain.

  1. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  2. The nicotinic cholinergic system function in the human brain.

    Science.gov (United States)

    Nees, Frauke

    2015-09-01

    Research on the nicotinic cholinergic system function in the brain was previously mainly derived from animal studies, yet, research in humans is growing. Up to date, findings allow significant advances on the understanding of nicotinic cholinergic effects on human cognition, emotion and behavior using a range of functional brain imaging approaches such as pharmacological functional magnetic resonance imaging or positron emission tomography. Studies provided insights across various mechanistic psychological domains using different tasks as well as at rest in both healthy individuals and patient populations, with so far partly mixed results reporting both enhancements and decrements of neural activity related to the nicotinic cholinergic system. Moreover, studies on the relation between brain structure and the nicotinic cholinergic system add important information in this context. The present review summarizes the current status of human brain imaging studies and presents the findings within a theoretical and clinical perspective as they may be useful not only for an advancement of the understanding of basic nicotinic cholinergic-related mechanisms, but also for the development and integration of psychological and pharmacological treatment approaches. Patterns of functional neuroanatomy and neural circuitry across various cognitive and emotional domains may be used as neuropsychological markers of mental disorders such as addiction, Alzheimer's disease, Parkinson disease or schizophrenia, where nicotinic cholinergic system changes are characteristic. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mapping the calcitonin receptor in human brain stem

    DEFF Research Database (Denmark)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J

    2016-01-01

    understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract...... receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our...

  4. Variable effects of human and canine polymorphonuclear leucocytes on vascular smooth muscle tone.

    Science.gov (United States)

    Gonzales, J; Mehta, J L; Lawson, D L; Nichols, W W; Nicolini, F A

    1992-08-01

    Previous studies have shown variable effects of human and canine polymorphonuclear leucocytes (neutrophils) on vascular tone. The aim of this study was to identify whether these variations in neutrophil function are due to species differences. Canine and human arterial rings (with and without endothelium) were contracted with the thromboxane A2 analogue U46619, and then exposed to isolated neutrophils. Human neutrophils caused a significant relaxation of the human mammary arterial rings, and the relaxation was unaffected by the cyclo-oxygenase inhibitor indomethacin, enhanced by superoxide dismutase (SOD), and inhibited by oxyhaemoglobin. The relaxant effect of human neutrophils was also diminished upon pretreatment with NG-monomethyl-l-arginine (L-NMMA), indicating that the vasorelaxant material released by the neutrophils was nitric oxide (NO). Human neutrophils also relaxed canine femoral arterial rings, and the relaxant effect was potentiated by SOD and inhibited by pretreatment with oxyhaemoglobin or L-NMMA, confirming that the vasorelaxation was via release of NO. Canine neutrophils, on the other hand, caused an endothelium dependent contraction of autologous femoral arterial rings. This vasoconstriction was not affected by indomethacin, SOD, oxyhaemoglobin, or L-NMMA. However, treatment of canine neutrophils with the 5-lipoxygenase inhibitor piriprost attenuated (p neutrophil generated 5-lipoxygenase products were probably responsible for smooth muscle contraction. Presence of the leukotriene C4 and D4 receptor antagonist FPL 55,712 totally blocked the contractile effects of canine neutrophils, indicating that femoral arterial ring contraction was mediated by peptido-leukotrienes. The endothelium dependent nature of the canine neutrophil induced contraction suggests that the 5-lipoxygenase product leukotriene A4 is taken up by endothelial cells for conversion to peptido-leukotrienes. Since SOD had no effect and FPL 55,712 totally blocked the vasoconstrictor

  5. The synergistic effect of vascular cell adhesion molecule-1 and coronary artery disease on brain-derived neurotrophic factor.

    Science.gov (United States)

    Lee, I-Te; Wang, Jun-Sing; Lee, Wen-Jane; Lin, Shih-Yi; Fu, Chia-Po; Liang, Kae-Woei; Hsu, Chiann-Yi; Sheu, Wayne Huey-Herng

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) is important for neural protection and energy homeostasis. In this study, we examined the effects of vascular cell adhesion molecule-1 (VCAM-1) and coronary artery disease (CAD) on BDNF. Subjects who had undergone diagnostic angiography for angina were recruited, and a total of 240 subjects (144 with CAD and 96 without CAD) were enrolled. Serum BDNF was determined at 0, 30, and 120min during an oral glucose tolerance test (OGTT) to calculate the area under the curve (AUC) for BDNF. Serum VCAM-1 was determined at fasting. Significantly lower AUC of BDNF (42.8±10.7 vs. 47.4±11.7ng-h/ml, P=0.002) and higher serum VCAM-1 (583±383 vs. 482±171ng/ml, P=0.017) were noted in subjects with CAD compared to those without CAD. High VCAM-1 level was an independent predictor of low AUC of BDNF in subjects with and without CAD (95%CI between -0.011 and -0.002, P=0.008; -0.033 and -0.002, P=0.029, respectively). Serum BDNF was lowest in the CAD subjects with high VCAM-1 levels at all time points during OGTT. Our results showed that CAD was associated with low serum BDNF in response to OGTT, and VCAM-1 had a synergistic effect with CAD on the BDNF. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Deep Learning vs. Conventional Machine Learning: Pilot Study of WMH Segmentation in Brain MRI with Absence or Mild Vascular Pathology

    Directory of Open Access Journals (Sweden)

    Muhammad Febrian Rachmadi

    2017-12-01

    Full Text Available In the wake of the use of deep learning algorithms in medical image analysis, we compared performance of deep learning algorithms, namely the deep Boltzmann machine (DBM, convolutional encoder network (CEN and patch-wise convolutional neural network (patch-CNN, with two conventional machine learning schemes: Support vector machine (SVM and random forest (RF, for white matter hyperintensities (WMH segmentation on brain MRI with mild or no vascular pathology. We also compared all these approaches with a method in the Lesion Segmentation Tool public toolbox named lesion growth algorithm (LGA. We used a dataset comprised of 60 MRI data from 20 subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI database, each scanned once every year during three consecutive years. Spatial agreement score, receiver operating characteristic and precision-recall performance curves, volume disagreement score, agreement with intra-/inter-observer reliability measurements and visual evaluation were used to find the best configuration of each learning algorithm for WMH segmentation. By using optimum threshold values for the probabilistic output from each algorithm to produce binary masks of WMH, we found that SVM and RF produced good results for medium to very large WMH burden but deep learning algorithms performed generally better than conventional ones in most evaluations.

  7. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  8. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  9. Clinically silent Alzheimer's and vascular pathologies influence brain networks supporting executive function in healthy older adults.

    Science.gov (United States)

    Gold, Brian T; Brown, Christopher A; Hakun, Jonathan G; Shaw, Leslie M; Trojanowski, John Q; Smith, Charles D

    2017-10-01

    Aging is associated with declines in executive function. We examined how executive functional brain systems are influenced by clinically silent Alzheimer's disease (AD) pathology and cerebral white-matter hyperintensities (WMHs). Twenty-nine younger adults and 34 cognitively normal older adults completed a working memory paradigm while functional magnetic resonance imaging was performed. Older adults further underwent lumbar cerebrospinal fluid draw for the assessment of AD pathology and FLAIR imaging for the assessment of WMHs. Accurate working memory performance in both age groups was associated with high fronto-visual functional connectivity (fC). However, in older adults, higher expression of fronto-visual fC was linked with lower levels of clinically silent AD pathology. In addition, AD pathology and WMHs were each independently related to increased functional magnetic resonance imaging response in the left dorsolateral prefrontal cortex, a pattern associated with slower task performance. Our results suggest that clinically silent AD pathology is related to lower expression of a fronto-visual fC pattern supporting executive task performance. Further, our findings suggest that AD pathology and WMHs appear to be linked with ineffective increases in frontal response in CN older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The 5-Lipoxygenase as a Common Pathway for Pathological Brain and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Jin Chu

    2009-01-01

    Full Text Available Epidemiological studies indicate age as a strong risk factor for developing cardiovascular and neurodegenerative diseases. During the aging process, changes in the expression of particular genes can influence the susceptibility to these diseases. 5-Lipoxygenase (5-LO by oxidizing fatty acids forms leukotrienes, potent mediators of oxidative and inflammatory reactions, two key pathogenic events in both clinical settings. This enzyme is widely distributed in the cardiovascular as well as in the central nervous system, where its expression levels increase with age, suggesting that it may be involved in their diseases of aging. The central theme of this article is that during aging, 5-LO acts as biologic link between different stressors and the development of cardiovascular and neurodegenerative diseases. We hypothesize that the age-dependent upregulation of 5-LO represents a “priming” factor in the vasculature as well as in the brain, where a subsequent exposure to triggering stimuli (i.e., infections leads to an abnormal chronic inflammatory reaction, and ultimately results in increased organ vulnerability and functional deficits.

  11. Protective Effect of Low-Intensity Pulsed Ultrasound on Memory Impairment and Brain Damage in a Rat Model of Vascular Dementia.

    Science.gov (United States)

    Huang, Sin-Luo; Chang, Chi-Wei; Lee, Yi-Hsuan; Yang, Feng-Yi

    2017-01-01

    Purpose To investigate the neuroprotective effects of low-intensity pulsed (LIP) ultrasound on memory impairment and central nervous system injury in a rat model of vascular dementia. Materials and Methods All animal experiments were approved by the animal care and use committee and adhered to experimental animal care guidelines. A 1.0-MHz focused ultrasound transducer was used to stimulate the brain noninvasively with 50-msec bursts at a 5% duty cycle, repetition frequency of 1 Hz, and spatial peak temporal average intensity of 528 mW/cm(2). LIP ultrasound treatment was performed daily with triple sonications in each hemisphere. The duration of each sonicaton was 5 minutes, with a 5-minute interval between each sonication. Permanent bilateral common carotid artery occlusion (BCCAO) was used as a model of vascular dementia. After 2 weeks of LIP ultrasound, neuroprotective effects of LIP ultrasound were evaluated with behavioral analysis, including the passive avoidance task and elevated plus maze. Myelin content was detected with carbon 11 ((11)C) Pittsburgh compound B (PIB). Brain sections were stained with hematoxylin-eosin and Luxol fast blue. Two-way analysis of variance and Student t test were used for statistical analyses, with a significance level of .05. Results Protein expressions of brain-derived neurotrophic factor (BDNF) in the BCCAO rats treated with LIP ultrasound were significantly higher than those in BCCAO rats (1.1 ± 0.0 vs 0.8 ± 0.1, P vascular dementia compared with rats with untreated vascular dementia (P vascular dementia. The beneficial effect of LIP ultrasound may be partly induced by upregulation of protein expression of BDNF. (©) RSNA, 2016.

  12. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  13. [Vascular trauma].

    Science.gov (United States)

    Furuya, T; Nobori, M; Tanaka, N

    1999-07-01

    Vascular trauma is essentially acute arterial obstruction, often combined with hemorrhage, fracture, and infection. It can be both life-threatening and limb-threatening and needs an emergency operation. In vascular trauma patient, multiple fracture and organ injury, such as brain, lung, liver, spleen, kidney, or gastrointestinal tract should be evaluated to decide treatment priority. When the pulse distal from the injured site is absent or diminished, vascular trauma is most likely and reconstruction should be accomplished within "the golden time (6-8 hours)". Intimal damage followed by platelet aggregation and thrombus formation will necessitate resection and repair of the site instead of simple thrombectomy. Although autogenous vein is the first choice, artificial graft can be implanted for short segment in non-infected field.

  14. Is the Social Brain Theory Applicable to Human Individual Differences? Relationship between Sociability Personality Dimension and Brain Size

    Directory of Open Access Journals (Sweden)

    Klára Horváth

    2011-04-01

    Full Text Available Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  15. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    Science.gov (United States)

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  16. Vascular Actions of Angiotensin 1–7 in the Human Microcirculation – Novel Role for Telomerase

    Science.gov (United States)

    Durand, Matthew J.; Zinkevich, Natalya S.; Riedel, Michael; Gutterman, David D.; Nasci, Victoria L.; Salato, Valerie K.; Hijjawi, John B.; Reuben, Charles F.; North, Paula E.; Beyer, Andreas M.

    2016-01-01

    Objective This study examined vascular actions of angiotensin 1–7 (ANG 1–7) in human atrial and adipose arterioles. Approach and Results The endothelial-derived hyperpolarizing factor of flow mediated dilation (FMD) switches from anti-proliferative nitric oxide (NO) to pro-atherosclerotic hydrogen peroxide (H2O2) in arterioles from humans with coronary artery disease (CAD). Given the known vasoprotective properties of ANG 1–7, we tested the hypothesis that overnight ANG 1–7 treatment restores the NO-component of FMD in arterioles from CAD patients. Endothelial telomerase activity is essential for preserving the NO-component of vasodilation in the human microcirculation, thus we also tested whether telomerase activity was necessary for ANG 1–7 mediated vasoprotection by treating separate arterioles with ANG 1–7 ± the telomerase inhibitor BIBR-1532. ANG 1–7 dilated arterioles from patients without CAD, whereas dilation was significantly reduced in arterioles from CAD patients. In atrial arterioles from CAD patients incubated with ANG 1–7 overnight, the NO synthase inhibitor L-NAME abolished FMD while the H2O2 scavenger PEG catalase had no effect. Conversely, in vessels incubated with ANG 1–7 + BIBR-1532, L-NAME had no effect on FMD but PEG catalase abolished dilation. In cultured human coronary artery endothelial cells, ANG 1–7 significantly increased telomerase activity. These results indicate that ANG 1–7 dilates human microvessels, and dilation is abrogated in the presence of CAD. Further, ANG 1–7 treatment is sufficient to restore the NO component of FMD in arterioles from CAD patients in a telomerase-dependent fashion. Conclusion ANG 1–7 exerts vasoprotection in the human microvasculature via modulation of telomerase activity. PMID:27079876

  17. Vascular Actions of Angiotensin 1-7 in the Human Microcirculation: Novel Role for Telomerase.

    Science.gov (United States)

    Durand, Matthew J; Zinkevich, Natalya S; Riedel, Michael; Gutterman, David D; Nasci, Victoria L; Salato, Valerie K; Hijjawi, John B; Reuben, Charles F; North, Paula E; Beyer, Andreas M

    2016-06-01

    This study examined vascular actions of angiotensin 1-7 (ANG 1-7) in human atrial and adipose arterioles. The endothelium-derived hyperpolarizing factor of flow-mediated dilation (FMD) switches from antiproliferative nitric oxide (NO) to proatherosclerotic hydrogen peroxide in arterioles from humans with coronary artery disease (CAD). Given the known vasoprotective properties of ANG 1-7, we tested the hypothesis that overnight ANG 1-7 treatment restores the NO component of FMD in arterioles from patients with CAD. Endothelial telomerase activity is essential for preserving the NO component of vasodilation in the human microcirculation; thus, we also tested whether telomerase activity was necessary for ANG 1-7-mediated vasoprotection by treating separate arterioles with ANG 1-7±the telomerase inhibitor 2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid. ANG 1-7 dilated arterioles from patients without CAD, whereas dilation was significantly reduced in arterioles from patients with CAD. In atrial arterioles from patients with CAD incubated with ANG 1-7 overnight, the NO synthase inhibitor NG-nitro-l-arginine methyl ester abolished FMD, whereas the hydrogen peroxide scavenger polyethylene glycol catalase had no effect. Conversely, in vessels incubated with ANG 1-7+2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid, NG-nitro-l-arginine methyl ester had no effect on FMD, but polyethylene glycol catalase abolished dilation. In cultured human coronary artery endothelial cells, ANG 1-7 significantly increased telomerase activity. These results indicate that ANG 1-7 dilates human microvessels, and dilation is abrogated in the presence of CAD. Furthermore, ANG 1-7 treatment is sufficient to restore the NO component of FMD in arterioles from patients with CAD in a telomerase-dependent manner. ANG 1-7 exerts vasoprotection in the human microvasculature via modulation of telomerase activity. © 2016 American Heart Association, Inc.

  18. Subcortical vascular cognitive impairment, no dementia : EEG global power independently predicts vascular impairment and brain symmetry index reflects severity of cognitive decline

    NARCIS (Netherlands)

    Sheorajpanday, Rishi V.A.; Mariën, Peter; Nagels, Guy; Weeren, Arie J.T.M.; Saerens, Jos; Van Putten, Michel J.A.M.; de Deyn, Peter P.

    2014-01-01

    Background and Purpose: Vascular cognitive impairment, no dementia (vCIND) is a prevalent and potentially preventable disorder. Clinical presentation of the small-vessel subcortical subtype may be insidious, and differential difficulties can arise with mild cognitive impairment. We investigated EEG

  19. Subcortical Vascular Cognitive Impairment, No Dementia : EEG Global Power Independently Predicts Vascular Impairment and Brain Symmetry Index Reflects Severity of Cognitive Decline

    NARCIS (Netherlands)

    Sheorajpanday, Rishi V. A.; Marien, Peter; Nagels, Guy; Weeren, Arie J. T. M.; Saerens, Jos; van Putten, Michel J. A. M.; De Deyn, Peter P.

    2014-01-01

    Background and Purpose:Vascular cognitive impairment, no dementia (vCIND) is a prevalent and potentially preventable disorder. Clinical presentation of the small-vessel subcortical subtype may be insidious, and differential difficulties can arise with mild cognitive impairment. We investigated EEG

  20. Deformation of the human brain induced by mild acceleration.

    Science.gov (United States)

    Bayly, P V; Cohen, T S; Leister, E P; Ajo, D; Leuthardt, E C; Genin, G M

    2005-08-01

    Rapid deformation of brain matter caused by skull acceleration is most likely the cause of concussion, as well as more severe traumatic brain injury (TBI). The inability to measure deformation directly has led to disagreement and confusion about the biomechanics of concussion and TBI. In the present study, brain deformation in human volunteers was measured directly during mild, but rapid, deceleration of the head (20-30 m/sec2 peak, approximately 40 msec duration), using an imaging technique originally developed to measure cardiac deformation. Magnetic resonance image sequences with imposed "tag" lines were obtained at high frame rates by repeating the deceleration and acquiring a subset of image data each repetition. Displacements of points on tag lines were used to estimate the Lagrangian strain tensor field. Qualitative (visual) and quantitative (strain) results illustrate clearly the deformation of brain matter due to occipital deceleration. Strains of 0.02-0.05 were typical during these events (0.05 strain corresponds roughly to a 5% change in the dimension of a local tissue element). Notably, compression in frontal regions and stretching in posterior regions were observed. The motion of the brain appears constrained by structures at the frontal base of the skull; it must pull away from such constraints before it can compress against the occipital bone. This mechanism is consistent with observations of contrecoup injury in occipital impact.

  1. Pulsatile cerebrospinal fluid dynamics in the human brain.

    Science.gov (United States)

    Linninger, Andreas A; Tsakiris, Cristian; Zhu, David C; Xenos, Michalis; Roycewicz, Peter; Danziger, Zachary; Penn, Richard

    2005-04-01

    Disturbances of the cerebrospinal fluid (CSF) flow in the brain can lead to hydrocephalus, a condition affecting thousands of people annually in the US. Considerable controversy exists about fluid and pressure dynamics, and about how the brain responds to changes in flow patterns and compression in hydrocephalus. This paper presents a new model based on the first principles of fluid mechanics. This model of fluid-structure interactions predicts flows and pressures throughout the brain's ventricular pathways consistent with both animal intracranial pressure (ICP) measurements and human CINE phase-contrast magnetic resonance imaging data. The computations provide approximations of the tissue deformations of the brain parenchyma. The model also quantifies the pulsatile CSF motion including flow reversal in the aqueduct as well as the changes in ICPs due to brain tissue compression. It does not require the existence of large transmural pressure differences as the force for ventricular expansion. Finally, the new model gives an explanation of communicating hydrocephalus and the phenomenon of asymmetric hydrocephalus.

  2. The maternal brain and its plasticity in humans.

    Science.gov (United States)

    Kim, Pilyoung; Strathearn, Lane; Swain, James E

    2016-01-01

    This article is part of a Special Issue "Parental Care". Early mother-infant relationships play important roles in infants' optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers' brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Mapping human brain lesions and their functional consequences.

    Science.gov (United States)

    Karnath, Hans-Otto; Sperber, Christoph; Rorden, Christopher

    2018-01-15

    Neuroscience has a long history of inferring brain function by examining the relationship between brain injury and subsequent behavioral impairments. The primary advantage of this method over correlative methods is that it can tell us if a certain brain region is necessary for a given cognitive function. In addition, lesion-based analyses provide unique insights into clinical deficits. In the last decade, statistical voxel-based lesion behavior mapping (VLBM) emerged as a powerful method for understanding the architecture of the human brain. This review illustrates how VLBM improves our knowledge of functional brain architecture, as well as how it is inherently limited by its mass-univariate approach. A wide array of recently developed methods appear to supplement traditional VLBM. This paper provides an overview of these new methods, including the use of specialized imaging modalities, the combination of structural imaging with normative connectome data, as well as multivariate analyses of structural imaging data. We see these new methods as complementing rather than replacing traditional VLBM, providing synergistic tools to answer related questions. Finally, we discuss the potential for these methods to become established in cognitive neuroscience and in clinical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Human Brain Stem Structures Respond Differentially to Noxious Heat

    Directory of Open Access Journals (Sweden)

    Alexander eRitter

    2013-09-01

    Full Text Available Concerning the physiological correlates of pain, the brain stem is considered to be one core region that is activated by noxious input. In animal studies, different slopes of skin heating (SSH with noxious heat led to activation in different columns of the midbrain periaqueductal grey (PAG. The present study aimed at finding a method for differentiating structures in PAG and other brain stem structures, which are associated with different qualities of pain in humans according to the structures that were associated with different behavioral significances to noxious thermal stimulation in animals. Brain activity was studied by fMRI in healthy subjects in response to steep and shallow SSH with noxious heat. We found differential activation to different SSH in the PAG and the rostral ventromedial medulla (RVM. In a second experiment we demonstrate that the different SSH were associated with different pain qualities. Our experiments provide evidence that brainstem structures, i.e. the PAG and the RVM, become differentially activated by different SSH. Therefore, different SSH can be utilized when brain stem structures are investigated and when it is aimed to activate these structures differentially. Moreover, percepts of first pain were elicited by shallow SSH whereas percepts of second pain were elicited by steep SSH. The stronger activation of these brain stem structures to SSH, eliciting percepts of second vs. first pain, might be of relevance for activating different coping strategies in response to the noxious input with the two types of SSH.

  5. Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells.

    Science.gov (United States)

    Drukker, Micha; Tang, Chad; Ardehali, Reza; Rinkevich, Yuval; Seita, Jun; Lee, Andrew S; Mosley, Adriane R; Weissman, Irving L; Soen, Yoav

    2012-05-27

    To identify early populations of committed progenitors derived from human embryonic stem cells (hESCs), we screened self-renewing, BMP4-treated and retinoic acid-treated cultures with >400 antibodies recognizing cell-surface antigens. Sorting of >30 subpopulations followed by transcriptional analysis of developmental genes identified four distinct candidate progenitor groups. Subsets detected in self-renewing cultures, including CXCR4(+) cells, expressed primitive endoderm genes. Expression of Cxcr4 in primitive endoderm was confirmed in visceral endoderm of mouse embryos. BMP4-induced progenitors exhibited gene signatures of mesoderm, trophoblast and vascular endothelium, suggesting correspondence to gastrulation-stage primitive streak, chorion and allantois precursors, respectively. Functional studies in vitro and in vivo confirmed that ROR2(+) cells produce mesoderm progeny, APA(+) cells generate syncytiotrophoblasts and CD87(+) cells give rise to vasculature. The same progenitor classes emerged during the differentiation of human induced pluripotent stem cells (hiPSCs). These markers and progenitors provide tools for purifying human tissue-regenerating progenitors and for studying the commitment of pluripotent stem cells to lineage progenitors.

  6. The Speculative Neuroscience of the Future Human Brain

    Directory of Open Access Journals (Sweden)

    Robert A. Dielenberg

    2013-05-01

    Full Text Available The hallmark of our species is our ability to hybridize symbolic thinking with behavioral output. We began with the symmetrical hand axe around 1.7 mya and have progressed, slowly at first, then with greater rapidity, to producing increasingly more complex hybridized products. We now live in the age where our drive to hybridize has pushed us to the brink of a neuroscientific revolution, where for the first time we are in a position to willfully alter the brain and hence, our behavior and evolution. Nootropics, transcranial direct current stimulation (tDCS, transcranial magnetic stimulation (TMS, deep brain stimulation (DBS and invasive brain mind interface (BMI technology are allowing humans to treat previously inaccessible diseases as well as open up potential vistas for cognitive enhancement. In the future, the possibility exists for humans to hybridize with BMIs and mobile architectures. The notion of self is becoming increasingly extended. All of this to say: are we in control of our brains, or are they in control of us?

  7. Selective vulnerability in brain hypoxia

    DEFF Research Database (Denmark)

    Cervos-Navarro, J.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis......Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis...

  8. A Novel Human Body Area Network for Brain Diseases Analysis.

    Science.gov (United States)

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system.

  9. Magnetic Deposits of Iron Oxides in the Human Brain

    Directory of Open Access Journals (Sweden)

    Makohusová Miroslava

    2014-06-01

    Full Text Available Deposits of iron oxides in the human brain (globus pallidus are visible under electron microscopy as object of regular and or/irregular shape but giving sharp diffraction patterns in the transmission mode. The SQUID magnetometry reveals that the magnetization curves decline form an ideal Langevin function due to the dominating diamagnetism of organic tissue. The fitting procedure yields the quantitative characteristics of the overall magnetization curves that were further processed by statistical multivariate methods

  10. Dynamic Network Centrality Summarizes Learning in the Human Brain

    OpenAIRE

    Mantzaris, Alexander V.; Bassett, Danielle S.; Wymbs, Nicholas F.; Estrada, Ernesto; Porter, Mason A.; Mucha, Peter J; Grafton, Scott T.; Higham, Desmond J.

    2012-01-01

    We study functional activity in the human brain using functional Magnetic Resonance Imaging and recently developed tools from network science. The data arise from the performance of a simple behavioural motor learning task. Unsupervised clustering of subjects with respect to similarity of network activity measured over three days of practice produces significant evidence of `learning', in the sense that subjects typically move between clusters (of subjects whose dynamics are similar) as time ...

  11. A mechanistic account of value computation in the human brain

    OpenAIRE

    Philiastides, Marios G.; Biele, Guido; Heekeren, Hauke R.

    2010-01-01

    To make decisions based on the value of different options, we often have to combine different sources of probabilistic evidence. For example, when shopping for strawberries on a fruit stand, one uses their color and size to infer—with some uncertainty—which strawberries taste best. Despite much progress in understanding the neural underpinnings of value-based decision making in humans, it remains unclear how the brain represents different sources of probabilistic evidence and how they are use...

  12. The identification of genetic pathways involved in vascular adaptations after physical deconditioning versus exercise training in humans.

    Science.gov (United States)

    Lammers, Gerwen; van Duijnhoven, Noortje T L; Hoenderop, Joost G; Horstman, Astrid M; de Haan, Arnold; Janssen, Thomas W J; de Graaf, Mark J J; Pardoel, Elisabeth M; Verwiel, Eugène T P; Thijssen, Dick H J; Hopman, Maria T E

    2013-03-01

    Physical inactivity and exercise training result in opposite adaptations of vascular structure. However, the molecular mechanisms behind these adaptations are not completely understood. We used a unique study design to examine both vascular characteristics of the superficial femoral artery (using ultrasound) and gene expression levels (from a muscle biopsy) in human models for physical deconditioning and exercise training. Initially, we compared able-bodied control subjects (n = 6) with spinal cord-injured individuals (n = 8) to assess the effects of long-term deconditioning. Subsequently, able-bodied control subjects underwent short-term lower limb deconditioning using 3 weeks of unilateral limb suspension. Spinal cord-injured individuals were examined before and after 6 weeks of functional electrical stimulation exercise training. Baseline femoral artery diameter and hyperaemic flow were lower after short- and long-term deconditioning and higher after exercise training, whilst intima-media thickness/lumen ratio was increased with short- and long-term deconditioning and decreased with exercise training. Regarding gene expression levels of vasculature-related genes, we found that groups of genes including the vascular endothelial growth factor pathway, transforming growth factor β1 and extracellular matrix proteins were strongly associated with vascular adaptations in humans. This approach resulted in the identification of important genes that may be involved in vascular adaptations after physical deconditioning and exercise.

  13. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...

  14. Investigation of G72 (DAOA expression in the human brain

    Directory of Open Access Journals (Sweden)

    Hirsch Steven

    2008-12-01

    Full Text Available Abstract Background Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO, supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions. Methods The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth in silico analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability. Results Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala, spinal cord or testis. A detailed in silico analysis provides several lines of evidence that support the apparent low or absent expression of G72. Conclusion Our results suggest that native G72 protein is not normally present in the tissues that we analysed

  15. Imaging synaptic density in the living human brain.

    Science.gov (United States)

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. Copyright © 2016, American Association for the Advancement of Science.

  16. Functional interactions as big data in the human brain.

    Science.gov (United States)

    Turk-Browne, Nicholas B

    2013-11-01

    Noninvasive studies of human brain function hold great potential to unlock mysteries of the human mind. The complexity of data generated by such studies, however, has prompted various simplifying assumptions during analysis. Although this has enabled considerable progress, our current understanding is partly contingent upon these assumptions. An emerging approach embraces the complexity, accounting for the fact that neural representations are widely distributed, neural processes involve interactions between regions, interactions vary by cognitive state, and the space of interactions is massive. Because what you see depends on how you look, such unbiased approaches provide the greatest flexibility for discovery.

  17. Expression of intercellular and vascular cell adhesion molecules and class II major histocompatibility antigens in human lungs: lack of influence by conditions of organ preservation.

    Science.gov (United States)

    Hasegawa, S; Ritter, J H; Patterson, A; Ockner, D M; Sawa, H; Mohanakumar, T; Cooper, J D; Wick, M R

    1995-01-01

    The expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and class II major histocompatibility complex antigens was studied in control lung tissue and preserved human donor lungs. The three controls were represented by wedge biopsy specimens taken from non-neoplastic lung surrounding bronchogenic carcinomas. Nine lungs were harvested from six brain-dead donors, flushed with Euro-Collins solution or low potassium-dextran-glucose solution, and stored at 1 degree C or 10 degrees C. Samples of the latter organs were taken at the time of surgical harvest (baseline) and after 2, 12, 24, and 48 hours of preservation time. Immunostains with monoclonal antibodies against intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and class II major histocompatibility complex molecules were performed on all samples, and the relative presence of these determinants was evaluated. In both the controls and preserved lungs, intercellular adhesion molecule-1 expression was intense in the septal capillary endothelium and alveolar pneumocytes, but essentially absent in bronchial epithelium. Vascular cell adhesion molecule-1 was moderately to strongly labeled in the endothelia of large and small blood vessels of all types, and it was not seen in other cell types. Class II major histocompatibility complex antigens were variably observed in pulmonary epithelial cells, but they were not expressed by endothelia. There appeared to be no significant difference in the immunohistologic density of intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 immunostaining in allografts at the specified time points of preservation; this conclusion was confirmed by Western blot analysis. Similar findings pertained to staining results for human leukocyte DR antigens. There was likewise no significant difference in the expression of the three analytes when donor lungs perfused with Euro-Collins solution versus low potassium

  18. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  19. Arctigenin improves vascular tone and decreases inflammation in human saphenous vein.

    Science.gov (United States)

    Daci, Armond; Neziri, Burim; Krasniqi, Shaip; Cavolli, Raif; Alaj, Rame; Norata, Giuseppe Danilo; Beretta, Giangiacomo

    2017-09-05

    The goal of this study was to test the effects of bioactive phenylpropanoid dibenzylbutyrolactone lignan arctigenin (ATG) in vascular tone. Human bypass graft vessel, from a saphenous vein (SV), were set up in organ bath system and contracted with potassium chloride (KCl, 40mM). Two concentration-response curves of noradrenaline (NE) (10nM-100μM) separated with an incubation period of 30min without (Control) or with ATG (3-100μM) were established. Inhibitors of nitric oxide, prostaglandins, K+ related channels or calcium influx were used to delineate the molecular mechanisms beyond ATG effects. To investigate anti-inflammatory actions, SV were treated with 10μM or 100μM ATG and incubated for 18h in the absence or presence of both interleukin-1beta (IL-1β) and lipopolysaccharide (LPS) to mimic the physiological or inflamed tissue conditions. Proatherogenic and inflammatory mediators İnterleukine-1 beta (IL-1β), Monocyte Chemoattractant Proteine-1 (MCP-1), Tumor Necrosis Factor- α (TNF-α), İnterleukine-6 (IL-6), Prostaglandin E2 (PGE2) and İnterleukine-8 (IL-8) in the supernatant were measured. ATG significantly decreased vascular contractile response to NE. Moreover, it reduced contractions induced by KCl and cumulative addition of CaCl2. The mediators were significantly increased in inflammatory conditions compared to normal conditions, an effect which was inhibited by ATG (10 and 100µM). ATG reduces contractions in SV and decreases the production of proinflammatory-proatherogenic mediators, setting the stage for further evaluating the effect of ATG in cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Identification of a characteristic vascular belt zone in human colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Jakob Nikolas Kather

    Full Text Available Intra-tumoral blood vessels are of supreme importance for tumor growth, metastasis and therapy. Yet, little is known about spatial distribution patterns of these vessels. Most experimental or theoretical tumor models implicitly assume that blood vessels are equally abundant in different parts of the tumor, which has far-reaching implications for chemotherapy and tumor metabolism. In contrast, based on histological observations, we hypothesized that blood vessels follow specific spatial distribution patterns in colorectal cancer tissue. We developed and applied a novel computational approach to identify spatial patterns of angiogenesis in histological whole-slide images of human colorectal cancer.In 33 of 34 (97% colorectal cancer primary tumors blood vessels were significantly aggregated in a sharply limited belt-like zone at the interface of tumor tissue to the intestinal lumen. In contrast, in 11 of 11 (100% colorectal cancer liver metastases, a similar hypervascularized zone could be found at the boundary to surrounding liver tissue. Also, in an independent validation cohort, we found this vascular belt zone: 22 of 23 (96% samples of primary tumors and 15 of 16 (94% samples of liver metastases exhibited the above-mentioned spatial distribution.We report consistent spatial patterns of tumor vascularization that may have far-reaching implications for models of drug distribution, tumor metabolism and tumor growth: luminal hypervascularization in colorectal cancer primary tumors is a previously overlooked feature of cancer tissue. In colorectal cancer liver metastases, we describe a corresponding pattern at the invasive margin. These findings add another puzzle piece to the complex concept of tumor heterogeneity.

  1. The inhibitory effect of simvastatin and aspirin on histamine responsiveness in human vascular endothelial cells.

    Science.gov (United States)

    Absi, Mais; Bruce, Jason I; Ward, Donald T

    2014-04-01

    Statins and aspirin deliver well-established cardiovascular benefits resulting in their increased use as combined polypills to decrease risk of stroke and heart disease. However, the direct endothelial effect of combined statin/aspirin cotreatment remains unclear. Histamine is an inflammatory mediator that increases vascular permeability, and so we examined the effect of treating human umbilical vein endothelial cells (HUVECs) for 24 h with 1 μM simvastatin and 100 μM aspirin on histamine responsiveness. Subsequent histamine (1 μM) challenge increased intracellular calcium (Ca(2+)i) concentration, an effect that was significantly inhibited by combined simvastatin/aspirin pretreatment but not when then the compounds were given separately, even at 10-fold higher concentrations. In contrast, the Ca(2+)i mobilization response to ATP challenge (10 μM) was not inhibited by combined simvastatin/aspirin pretreatment. The H1 receptor antagonist pyrilamine significantly inhibited both histamine-induced Ca(2+)i mobilization and extracellular signal-regulated kinase (ERK) activation, whereas ranitidine (H2 receptor antagonist) was without effect. However, combined simvastatin/aspirin pretreatment failed to decrease H1 receptor protein expression ruling out receptor downregulation as the mechanism of action. Histamine-induced ERK activation was also inhibited by atorvastatin pretreatment, while simvastatin further inhibited histamine-induced vascular endothelial cadherin phosphorylation as well as altered HUVEC morphology and inhibited actin polymerization. Therefore, in addition to the known therapeutic benefits of statins and aspirin, here we provide initial cellular evidence that combined statin/aspirin treatment inhibits histamine responsiveness in HUVECs.

  2. Preseeding of human vascular cells in decellularized bovine pericardium scaffold for tissue-engineered heart valve : An in vitro and in vivo feasibility study

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Shu, Yu-Sheng; Shi, Wei-Ping; Cheng, Shao-Fei; Gu, Y. John

    Human vascular cells from saphenous veins have been used for cell seeding on the synthetic scaffolds for constructing tissue-engineered heart valve (TEHV). However, little is known about the seeding of human vascular cells on bovine pericardium, a potential natural scaffold for TEHV. This study was

  3. Effects of psychotropic drugs on brain plasticity in humans.

    Science.gov (United States)

    Paulzen, Michael; Veselinovic, Tanja; Gründer, Gerhard

    2014-01-01

    Although neurotransmitter-based hypotheses still prevail current thinking about the mechanism of action of psychotropic drugs, recent insight into the pathophysiology of psychiatric disorders has unveiled a range of new therapeutic actions of the drugs used to treat those disorders. Especially antidepressants seem to exert at least some of their effects via restoration of synaptic/neuronal plasticity. In addition, there is increasing evidence that several of the second-generation antipsychotics and some anticonvulsants affect neuronal survival/apoptosis as well as synaptic plasticity. Most of this evidence stems from work in animals. In this review, we will focus on the evidence for neuroplastic effects of psychotropic drugs in humans being aware of the fact that most of the data are derived from animals and that volumetric studies in humans can only indicate structural plasticity and not necessarily functional plasticity. However, as the data from human studies are rather poor and inconclusive, and sometimes even conflicting, it seems impossible to draw general conclusions. Until now studies on neuroplasticity in humans can only explain small pieces of the effects of psychotropic drugs on brain plasticity in humans. Nevertheless, future prospects for the development of new drugs targeting brain plasticity will be of importance and will complete this overview.

  4. Catechins inhibit vascular endothelial growth factor production and cyclooxygenase-2 expression in human dental pulp cells.

    Science.gov (United States)

    Nakanishi, T; Mukai, K; Hosokawa, Y; Takegawa, D; Matsuo, T

    2015-03-01

    To investigate the effect of catechins on vascular endothelial growth factor (VEGF) production and cyclooxygenase-2 (COX-2) expression in human dental pulp cells (HDPC) stimulated with bacteria-derived factors or pro-inflammatory cytokines. Morphologically fibroblastic cells established from explant cultures of healthy human dental pulp tissues were used as HDPC. HDPC pre-treated with catechins, epigallocatechin-3-gallate (EGCG) or epicatechin gallate (ECG), were exposed to lipopolysaccharide (LPS), peptidoglycan (PG), interlukin-1β (IL-1β) or tumour necrosis factor-α (TNF-α). VEGF production was examined by enzyme-linked immunosorbent assay, and COX-2 expression was assessed by immunoblot. EGCG and ECG significantly reduced LPS- or PG-mediated VEGF production in the HDPC in a dose-dependent manner. EGCG also prevented IL-1β-mediated VEGF production. Although TNF-α did not enhance VEGF production in the dental pulp cells, treatment of 20 μg mL(-1) of EGCG decreased the level of VEGF. In addition, the catechins attenuated COX-2 expression induced by LPS and IL-1β. The up-regulated VEGF and COX-2 expressions in the HDPC stimulated with these bacteria-derived factors or IL-1β were diminished by the treatment of EGCG and ECG. These findings suggest that the catechins may be beneficial as an anti-inflammatory tool of the treatment for pulpal inflammation. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Effect of dehydroepiandrosterone (DHEA) on memory and brain derived neurotrophic factor (BDNF) in a rat model of vascular dementia.

    Science.gov (United States)

    Sakr, H F; Khalil, K I; Hussein, A M; Zaki, M S A; Eid, R A; Alkhateeb, M

    2014-02-01

    The effect of dehydroepiandrosterone (DHEA) on memory and cognition in experimental animals is well known, but its efficacy in clinical dementia is unproven. So, the aim of the present study was to investigate the effect of DHEA on learning and memory activities in a rat model of vascular dementia (VD). Forty-eight male rats that positively passed the holeboard memory test were chosen for the study before bilateral permanent occlusion of the common carotid artery. They were divided into four groups (n=12, each) as follows (i) untreated control, (ii) rats exposed to surgical permanent bilateral occlusion of the common carotid arteries (BCCAO) leading to chronic cerebral hypoperfusion, (iii) rats exposed to BCCAO then received DHEA (BCCAO + DHEA) and (i.v.) rats exposed to BCCAO then received donepezil (BCCAO + DON). Holeboard memory test was used to assess the time, latency, working memory and reference memory. Central level of acetylcholine, norepinephrine and dopamine in the hippocampus were measured. Furthermore, the expression of brain derived neurotrophic factor (BDNF) in the hippocampus was determined. Histopathological studies of the cerebral cortex and transmission electron microscope of the hippocampus were performed. BCCAO decreased the learning and memory activities in the holeboard memory. Also, it decreased the expression of BDNF as well as the central level of acetylcholine, noradrenaline and dopamine as compared to control rats. Treatment with DHEA and donepezil increased the working and reference memories, BDNF expression as well as the central acetylcholine in the hippocampus as compared to BCCAO rats. DHEA produced neuroprotective effects through increasing the expression of BDNF as well as increasing the central level of acetylcholine and catecholamines which are non-comparable to donepezil effects.

  6. Vascular gene transfer of the human inducible nitric oxide synthase: characterization of activity and effects on myointimal hyperplasia.

    OpenAIRE

    E.; Tzeng; Shears, L. L.; Robbins, P. D.; Pitt, B.R.; Geller, D. A.; Watkins, S C; Simmons, R.L.; Billiar, T R

    1996-01-01

    BACKGROUND: Nitric oxide (NO) has been shown to decrease myointimal hyperplasia in injured blood vessels. We hypothesize inducible No synthase (iNOS) gene transfer even at low efficiency will provide adequate local no production to achieve this goal. MATERIALS AND METHODS: A retroviral vector containing the human iNOS cDNA (DFGiNOS) was used to transfer the iNOS gene into vascular cells and isolated blood vessels to answer the following questions: can vascular endothelial and smooth muscle ce...

  7. Propagation of Aß pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.

    Science.gov (United States)

    Eisele, Yvonne S; Duyckaerts, Charles

    2016-01-01

    In brains of patients with Alzheimer's disease (AD), Aβ peptides accumulate in parenchyma and, almost invariably, also in the vascular walls. Although Aβ aggregation is, by definition, present in AD, its impact is only incompletely understood. It occurs in a stereotypical spatiotemporal distribution within neuronal networks in the course of the disease. This suggests a role for synaptic connections in propagating Aβ pathology, and possibly of axonal transport in an antero- or retrograde way-although, there is also evidence for passive, extracellular diffusion. Striking, in AD, is the conjunction of tau and Aβ pathology. Tau pathology in the cell body of neurons precedes Aβ deposition in their synaptic endings in several circuits such as the entorhino-dentate, cortico-striatal or subiculo-mammillary connections. However, genetic evidence suggests that Aβ accumulation is the first step in AD pathogenesis. To model the complexity and consequences of Aβ aggregation in vivo, various transgenic (tg) rodents have been generated. In rodents tg for the human Aβ precursor protein, focal injections of preformed Aβ aggregates can induce Aβ deposits in the vicinity of the injection site, and over time in more distant regions of the brain. This suggests that Aβ shares with α-synuclein, tau and other proteins the property to misfold and aggregate homotypic molecules. We propose to group those proteins under the term "propagons". Propagons may lack the infectivity of prions. We review findings from neuropathological examinations of human brains in different stages of AD and from studies in rodent models of Aβ aggregation and discuss putative mechanisms underlying the initiation and spread of Aβ pathology.

  8. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate...... brain water content during the course of cerebral infarction. Measurements were performed serially in the acute, subacute, and chronic phase of infarction. Fourteen patients with acute cerebral infarction were examined as well as 9 healthy controls. To correlate with regional cerebral blood flow (r......CBF from Day 0-3 to Day 4-7 (p = 0.050) and from Day 0-3 to Day 8-21 (p = 0.028). No correlation between rCBF and water content was found. Water content in ischemic brain tissue increased significantly between Day 4-7 after stroke. This should be considered when performing quantitative 1H-MRS using water...

  9. A new microcontroller-based human brain hypothermia system.

    Science.gov (United States)

    Kapidere, Metin; Ahiska, Raşit; Güler, Inan

    2005-10-01

    Many studies show that artificial hypothermia of brain in conditions of anesthesia with the rectal temperature lowered down to 33 degrees C produces pronounced prophylactic effect protecting the brain from anoxia. Out of the methods employed now in clinical practice for reducing the oxygen consumption by the cerebral tissue, the most efficacious is craniocerebral hypothermia (CCH). It is finding even more extensive application in cardiovascular surgery, neurosurgery, neurorenimatology and many other fields of medical practice. In this study, a microcontroller-based designed human brain hypothermia system (HBHS) is designed and constructed. The system is intended for cooling and heating the brain. HBHS consists of a thermoelectric hypothermic helmet, a control and a power unit. Helmet temperature is controlled by 8-bit PIC16F877 microcontroller which is programmed using MPLAB editor. Temperature is converted to 10-bit digital and is controlled automatically by the preset values which have been already entered in the microcontroller. Calibration is controlled and the working range is tested. Temperature of helmet is controlled between -5 and +46 degrees C by microcontroller, with the accuracy of +/-0.5 degrees C.

  10. Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution.

    Science.gov (United States)

    Shi, Lei; Hu, Enzhi; Wang, Zhenbo; Liu, Jiewei; Li, Jin; Li, Ming; Chen, Hua; Yu, Chunshui; Jiang, Tianzi; Su, Bing

    2017-02-01

    Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.

  11. Neuroprotection, learning and memory improvement of a standardized extract from Renshen Shouwu against neuronal injury and vascular dementia in rats with brain ischemia.

    Science.gov (United States)

    Wan, Li; Cheng, Yufang; Luo, Zhanyuan; Guo, Haibiao; Zhao, Wenjing; Gu, Quanlin; Yang, Xu; Xu, Jiangping; Bei, Weijian; Guo, Jiao

    2015-05-13

    The Renshen Shouwu capsule (RSSW) is a patented Traditional Chinese Medicine (TCM), that has been proven to improve memory and is widely used in China to apoplexy syndrome and memory deficits. To investigate the neuroprotective and therapeutic effect of the Renshen Shouwu standardized extract (RSSW) on ischemic brain neuronal injury and impairment of learning and memory related to Vascular Dementia (VD) induced by a focal and global cerebral ischemia-reperfusion injury in rats. Using in vivo rat models of both focal ischemia/reperfusion (I/R) injuries induced by a middle cerebral artery occlusion (MCAO), and VD with transient global brain I/R neuronal injuries induced by a four-vessel occlusion (4-VO) in Sprague-Dawley (SD) rats, RSSW (50,100, and 200 mg kg(-1) body weights) and Egb761® (80 mg kg(-1)) were administered orally for 20 days (preventively 6 days+therapeutically 14 days) in 4-VO rats, and for 7 days (3 days preventively+4 days therapeutically) in MCAO rats. Learning and memory behavioral performance was assayed using a Morris water maze test including a place navigation trial and a spatial probe trial. Brain histochemical morphology and hippocampal neuron survival was quantified using microscope assay of a puffin brain/hippocampus slice with cresyl violet staining. MCAO ischemia/reperfusion caused infarct damage in rat brain tissue. 4-VO ischemia/reperfusion caused a hippocampal neuronal lesion and learning and memory deficits in rats. Administration of RSSW (50, 100, and 200mg/kg) or EGb761 significantly reduced the size of the insulted brain hemisphere lesion and improved the neurological behavior of MCAO rats. In addition, RSSW markedly reduced an increase in the brain infarct volume from an I/R-induced MCAO and reduced the cerebral water content in a dose-dependent way. Administration of RSSW also increased the pyramidal neuronal density in the hippocampus of surviving rats after transient global brain ischemia and improved the learning and memory

  12. Silk biomaterials functionalized with recombinant domain V of human perlecan modulate endothelial cell and platelet interactions for vascular applications.

    Science.gov (United States)

    Rnjak-Kovacina, Jelena; Tang, Fengying; Whitelock, John M; Lord, Megan S

    2016-12-01

    Modulation of endothelial cell and platelet interactions is an essential feature of vascular materials. Silk biomaterials were functionalized with recombinantly expressed domain V of human perlecan, an essential vascular proteoglycan involved in vasculogenesis, angiogenesis and wound healing, using passive adsorption or covalent cross-linking via carbodiimide chemistry. The orientation of domain V on the surface of silk biomaterials was modulated by the immobilization technique and glycosaminoglycan chains played an essential role in the proteoglycan presentation on the material surface. Covalent immobilization supported improved integrin binding site presentation to endothelial cells compared to passive adsorption in the presence of glycosaminoglycan chains, but removal of glycosaminoglycan chains resulted in reduced integrin site availability and thus cell binding. Silk biomaterials covalently functionalized with domain V supported endothelial cell adhesion, spreading and proliferation and were anti-adhesive for platelets, making them promising surfaces for the development of the next-generation vascular grafts. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Organizational Principles of Abstract Words in the Human Brain.

    Science.gov (United States)

    Wang, Xiaosha; Wu, Wei; Ling, Zhenhua; Xu, Yangwen; Fang, Yuxing; Wang, Xiaoying; Binder, Jeffrey R; Men, Weiwei; Gao, Jia-Hong; Bi, Yanchao

    2017-11-23

    words constitute nearly half of the human lexicon and are critically associated with human abstract thoughts, yet little is known about how they are represented in the brain. We tested the neural basis of 2 classical cognitive notions of abstract meaning representation: by linguistic contexts and by semantic features. We collected fMRI BOLD responses for 360 abstract words and built theoretical representational models from state-of-the-art corpus-based natural language processing models and behavioral ratings of semantic features. Representational similarity analyses revealed that both linguistic contextual and semantic feature similarity affected the representation of abstract concepts, but in distinct neural levels. The corpus-based similarity was coded in the high-level linguistic processing system, whereas semantic feature information was reflected in distributed brain regions and in the principal component space derived from whole-brain activation patterns. These findings highlight the multidimensional organization and the neural dissociation between linguistic contextual and featural aspects of abstract concepts. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Canonical Genetic Signatures of the Adult Human Brain

    Science.gov (United States)

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  15. Transient disruption of vascular barriers using focused ultrasound and microbubbles for targeted drug delivery in the brain

    Science.gov (United States)

    Aryal, Muna

    The physiology of the vasculature in the central nervous system (CNS) which includes the blood-brain-barrier (BBB) and other factors, prevents the transport of most anticancer agents to the brain and restricts delivery to infiltrating brain tumors. The heterogeneous vascular permeability in tumor vessels (blood-tumor barrier; BTB), along with several other factors, creates additional hurdles for drug treatment of brain tumors. Different methods have been used to bypass the BBB/BTB, but they have their own limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Magnetic Resonance Imaging guided Focused Ultrasound (MRIgFUS), when combined with circulating microbubbles, is an emerging noninvasive method to temporarily permeabilize the BBB and BTB. The purpose of this thesis was to use this alternative approach to deliver chemotherapeutic agents through the BBB/BTB for brain tumor treatment in a rodent model to overcome the hinderances encountered in prior approaches tested for drug delivery in the CNS. The results presented in thesis demonstrate that MRIgFUS can be used to achieve consistent and reproducible BBB/BTB disruption in rats. It enabled us to achieve clinically-relevant concentrations of doxorubicin (~ 4.8+/-0.5 microg/g) delivered to the brain with the sonication parameters (0.69 MHz; 0.55 MPa; 10 ms bursts; 1 Hz PRF; 60 s duration), microbubble concentration (Definity, 10 microl/kg), and liposomoal doxorubicin (Lipo-DOX) dose (5.67 mg/kg) used. The resulting doxorubicin concentration was reduced by 32% when the agent was injected 10 minute after the last sonication. Three weekly sessions of FUS and Lipo-DOX appeared to be safe in the rat brain, despite some minor tissue damage. Importantly, the severe neurotoxicity seen in earlier works using other approaches does not appear to occur with delivery via FUS-BBB disruption. The resuls from three weekly treatments of FUS and Lipo-DOX in a rat glioma model are highly

  16. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability.

    Science.gov (United States)

    Nieuwdorp, Max; Meuwese, Marijn C; Mooij, Hans L; Ince, Can; Broekhuizen, Lysette N; Kastelein, John J P; Stroes, Erik S G; Vink, Hans

    2008-03-01

    The endothelial glycocalyx is increasingly considered as an intravascular compartment that protects the vessel wall against pathogenic insults. The purpose of this study was to translate an established experimental method of estimating capillary glycocalyx dimension into a clinically useful tool and to assess its reproducibility in humans. We first evaluated by intravital microscopy the relation between the distance between the endothelium and erythrocytes, as a measure of glycocalyx thickness, and the transient widening of the erythrocyte column on glycocalyx compression by passing leukocytes in hamster cremaster muscle capillaries. We subsequently assessed sublingual microvascular glycocalyx thickness in 24 healthy men using orthogonal polarization spectral imaging. In parallel, systemic glycocalyx volume (using a previously published tracer dilution technique) as well as cardiovascular risk profiles were assessed. Estimates of microvascular glycocalyx dimension from the transient erythrocyte widening correlated well with the size of the erythrocyte-endothelium gap (r = 0.63). Measurements in humans were reproducible (0.58 +/- 0.16 and 0.53 +/- 0.15 microm, coefficient of variance 15 +/- 5%). In univariate analysis, microvascular glycocalyx thickness significantly correlated with systemic glycocalyx volume (r = 0.45), fasting plasma glucose (r = 0.43), and high-density lipoprotein-cholesterol (r = 0.40) and correlated negatively with low-density lipoprotein-cholesterol (r = -0.41) as well as body mass index (r = -0.45) (all P < 0.05). In conclusion, the dimension of the endothelial glycocalyx can be measured reproducibly in humans and is related to cardiovascular risk factors. It remains to be tested whether glycocalyx dimension can be used as an early marker of vascular damage and whether therapies aimed at glycocalyx repair can protect the vasculature against pathogenic challenges.

  17. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  18. Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels.

    Science.gov (United States)

    Zanotelli, Matthew R; Ardalani, Hamisha; Zhang, Jue; Hou, Zhonggang; Nguyen, Eric H; Swanson, Scott; Nguyen, Bao Kim; Bolin, Jennifer; Elwell, Angela; Bischel, Lauren L; Xie, Angela W; Stewart, Ron; Beebe, David J; Thomson, James A; Schwartz, Michael P; Murphy, William L

    2016-04-15

    Here, we describe an in vitro strategy to model vascular morphogenesis where human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) are encapsulated in peptide-functionalized poly(ethylene glycol) (PEG) hydrogels, either on standard well plates or within a passive pumping polydimethylsiloxane (PDMS) tri-channel microfluidic device. PEG hydrogels permissive towards cellular remodeling were fabricated using thiol-ene photopolymerization to incorporate matrix metalloproteinase (MMP)-degradable crosslinks and CRGDS cell adhesion peptide. Time lapse microscopy, immunofluorescence imaging, and RNA sequencing (RNA-Seq) demonstrated that iPSC-ECs formed vascular networks through mechanisms that were consistent with in vivo vasculogenesis and angiogenesis when cultured in PEG hydrogels. Migrating iPSC-ECs condensed into clusters, elongated into tubules, and formed polygonal networks through sprouting. Genes upregulated for iPSC-ECs cultured in PEG hydrogels relative to control cells on tissue culture polystyrene (TCP) surfaces included adhesion, matrix remodeling, and Notch signaling pathway genes relevant to in vivo vascular development. Vascular networks with lumens were stable for at least 14days when iPSC-ECs were encapsulated in PEG hydrogels that were polymerized within the central channel of the microfluidic device. Therefore, iPSC-ECs cultured in peptide-functionalized PEG hydrogels offer a defined platform for investigating vascular morphogenesis in vitro using both standard and microfluidic formats. Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) cultured in synthetic hydrogels self-assemble into capillary networks through mechanisms consistent with in vivo vascular morphogenesis. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia.

    Science.gov (United States)

    Iadecola, Costantino

    2010-09-01

    There is increasing evidence that cerebrovascular dysfunction plays a role not only in vascular causes of cognitive impairment but also in Alzheimer's disease (AD). Vascular risk factors and AD impair the structure and function of cerebral blood vessels and associated cells (neurovascular unit), effects mediated by vascular oxidative stress and inflammation. Injury to the neurovascular unit alters cerebral blood flow regulation, depletes vascular reserves, disrupts the blood-brain barrier, and reduces the brain's repair potential, effects that amplify the brain dysfunction and damage exerted by incident ischemia and coexisting neurodegeneration. Clinical-pathological studies support the notion that vascular lesions aggravate the deleterious effects of AD pathology by reducing the threshold for cognitive impairment and accelerating the pace of the dementia. In the absence of mechanism-based approaches to counteract cognitive dysfunction, targeting vascular risk factors and improving cerebrovascular health offers the opportunity to mitigate the impact of one of the most disabling human afflictions.

  20. Pathological Tau Strains from Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain.

    Science.gov (United States)

    Narasimhan, Sneha; Guo, Jing L; Changolkar, Lakshmi; Stieber, Anna; McBride, Jennifer D; Silva, Luisa V; He, Zhuohao; Zhang, Bin; Gathagan, Ronald J; Trojanowski, John Q; Lee, Virginia M Y

    2017-11-22

    Pathological tau aggregates occur in Alzheimer's disease (AD) and other neurodegenerative tauopathies. It is not clearly understood why tauopathies vary greatly in the neuroanatomical and histopathological patterns of tau aggregation, which contribute to clinical heterogeneity in these disorders. Recent studies have shown that tau aggregates may form distinct structural conformations, known as tau strains. Here, we developed a novel model to test the hypothesis that cell-to-cell transmission of different tau strains occurs in nontransgenic (non-Tg) mice, and to investigate whether there are strain-specific differences in the pattern of tau transmission. By injecting pathological tau extracted from postmortem brains of AD (AD-tau), progressive supranuclear palsy (PSP-tau), and corticobasal degeneration (CBD-tau) patients into different brain regions of female non-Tg mice, we demonstrated the induction and propagation of endogenous mouse tau aggregates. Specifically, we identified differences in tau strain potency between AD-tau, CBD-tau, and PSP-tau in non-Tg mice. Moreover, differences in cell-type specificity of tau aggregate transmission were observed between tau strains such that only PSP-tau and CBD-tau strains induce astroglial and oligodendroglial tau inclusions, recapitulating the diversity of neuropathology in human tauopathies. Furthermore, we demonstrated that the neuronal connectome, but not the tau strain, determines which brain regions develop tau pathology. Finally, CBD-tau- and PSP-tau-injected mice showed spatiotemporal transmission of glial tau pathology, suggesting glial tau transmission contributes to the progression of tauopathies. Together, our data suggest that different tau strains determine seeding potency and cell-type specificity of tau aggregation that underlie the diversity of human tauopathies. SIGNIFICANCE STATEMENT Tauopathies show great clinical and neuropathological heterogeneity, despite the fact that tau aggregates in each disease

  1. Consequences of traumatic brain injury for human vergence dynamics.

    Science.gov (United States)

    Tyler, Christopher W; Likova, Lora T; Mineff, Kristyo N; Elsaid, Anas M; Nicholas, Spero C

    2014-01-01

    Traumatic brain injury involving loss of consciousness has focal effects in the human brainstem, suggesting that it may have particular consequences for eye movement control. This hypothesis was investigated by measurements of vergence eye movement parameters. Disparity vergence eye movements were measured for a population of 123 normally sighted individuals, 26 of whom had suffered diffuse traumatic brain injury (dTBI) in the past, while the remainder served as controls. Vergence tracking responses were measured to sinusoidal disparity modulation of a random-dot field. Disparity vergence step responses were characterized in terms of their dynamic parameters separately for the convergence and divergence directions. The control group showed notable differences between convergence and divergence dynamics. The dTBI group showed significantly abnormal vergence behavior on many of the dynamic parameters. The results support the hypothesis that occult injury to the oculomotor control system is a common residual outcome of dTBI.

  2. Memory-related brain lateralisation in birds and humans.

    Science.gov (United States)

    Moorman, Sanne; Nicol, Alister U

    2015-03-01

    Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation. Copyright © 2014. Published by Elsevier Ltd.

  3. A Map for Social Navigation in the Human Brain.

    Science.gov (United States)

    Tavares, Rita Morais; Mendelsohn, Avi; Grossman, Yael; Williams, Christian Hamilton; Shapiro, Matthew; Trope, Yaacov; Schiller, Daniela

    2015-07-01

    Deciphering the neural mechanisms of social behavior has propelled the growth of social neuroscience. The exact computations of the social brain, however, remain elusive. Here we investigated how the human brain tracks ongoing changes in social relationships using functional neuroimaging. Participants were lead characters in a role-playing game in which they were to find a new home and a job through interactions with virtual cartoon characters. We found that a two-dimensional geometric model of social relationships, a "social space" framed by power and affiliation, predicted hippocampal activity. Moreover, participants who reported better social skills showed stronger covariance between hippocampal activity and "movement" through "social space." The results suggest that the hippocampus is crucial for social cognition, and imply that beyond framing physical locations, the hippocampus computes a more general, inclusive, abstract, and multidimensional cognitive map consistent with its role in episodic memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Supramodal representations of perceived emotions in the human brain.

    Science.gov (United States)

    Peelen, Marius V; Atkinson, Anthony P; Vuilleumier, Patrik

    2010-07-28

    Basic emotional states (such as anger, fear, and joy) can be similarly conveyed by the face, the body, and the voice. Are there human brain regions that represent these emotional mental states regardless of the sensory cues from which they are perceived? To address this question, in the present study participants evaluated the intensity of emotions perceived from face movements, body movements, or vocal intonations, while their brain activity was measured with functional magnetic resonance imaging (fMRI). Using multivoxel pattern analysis, we compared the similarity of response patterns across modalities to test for brain regions in which emotion-specific patterns in one modality (e.g., faces) could predict emotion-specific patterns in another modality (e.g., bodies). A whole-brain searchlight analysis revealed modality-independent but emotion category-specific activity patterns in medial prefrontal cortex (MPFC) and left superior temporal sulcus (STS). Multivoxel patterns in these regions contained information about the category of the perceived emotions (anger, disgust, fear, happiness, sadness) across all modality comparisons (face-body, face-voice, body-voice), and independently of the perceived intensity of the emotions. No systematic emotion-related differences were observed in the overall amplitude of activation in MPFC or STS. These results reveal supramodal representations of emotions in high-level brain areas previously implicated in affective processing, mental state attribution, and theory-of-mind. We suggest that MPFC and STS represent perceived emotions at an abstract, modality-independent level, and thus play a key role in the understanding and categorization of others' emotional mental states.

  5. Brain aging, cognition in youth and old age and vascular disease in the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging protocol.

    Science.gov (United States)

    Wardlaw, Joanna M; Bastin, Mark E; Valdés Hernández, Maria C; Maniega, Susana Muñoz; Royle, Natalie A; Morris, Zoe; Clayden, Jonathan D; Sandeman, Elaine M; Eadie, Elizabeth; Murray, Catherine; Starr, John M; Deary, Ian J

    2011-12-01

    intelligence has on brain structural parameters in old age, and the role of genetic, vascular, educational and lifestyle factors. Final outcomes include associations between early and late life cognition and integrity of key white matter tracts, volume of gray and white matter, myelination, brain water content, and visible abnormalities such as white matter lesions and mineral deposits; and influences of vascular risk factors, diet, environment, social metrics, education and genetics on healthy brain aging. It is intended that this information will help to inform and develop strategies for successful cognitive aging. © 2011 The Authors. International Journal of Stroke © 2011 World Stroke Organization.

  6. The evolution of distributed association networks in the human brain.

    Science.gov (United States)

    Buckner, Randy L; Krienen, Fenna M

    2013-12-01

    The human cerebral cortex is vastly expanded relative to other primates and disproportionately occupied by distributed association regions. Here we offer a hypothesis about how association networks evolved their prominence and came to possess circuit properties vital to human cognition. The rapid expansion of the cortical mantle may have untethered large portions of the cortex from strong constraints of molecular gradients and early activity cascades that lead to sensory hierarchies. What fill the gaps between these hierarchies are densely interconnected networks that widely span the cortex and mature late into development. Limitations of the tethering hypothesis are discussed as well as its broad implications for understanding critical features of the human brain as a byproduct of size scaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Social Rewards and Social Networks in the Human Brain.

    Science.gov (United States)

    Fareri, Dominic S; Delgado, Mauricio R

    2014-08-01

    The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations. © The Author(s) 2014.

  8. Comparative Analysis of the Macroscale Structural Connectivity in the Macaque and Human Brain

    NARCIS (Netherlands)

    Goulas, A.; Bastiani, M.; Bezgin, G.; Uylings, H.B.M.; Roebroeck, A.; Stiers, P.

    2014-01-01

    The macaque brain serves as a model for the human brain, but its suitability is challenged by unique human features, including connectivity reconfigurations, which emerged during primate evolution. We perform a quantitative comparative analysis of the whole brain macroscale structural connectivity

  9. Resistance of human brain microvascular endothelial cells in culture to methylmercury: cell-density-dependent defense mechanisms.

    Science.gov (United States)

    Hirooka, Takashi; Fujiwara, Yasuyuki; Shinkai, Yasuhiro; Yamamoto, Chika; Yasutake, Akira; Satoh, Masahiko; Eto, Komyo; Kaji, Toshiyuki

    2010-06-01

    Vascular toxicity is important for understanding the neurotoxicity of methylmercury, because microvessels strongly influence the construction of microenvironment around neurons. Previously, we found that low density-human brain microvascular pericytes are markedly susceptible to methylmercury cytotoxicity due to high expression levels of the L-type amino acid transporter 1 (LAT-1) that transports methylmercury into the cells. Although LAT-1 can be, in general, highly expressed in sparse cells that require amino acids for growth, we found that human brain microvascular endothelial cells, regardless of cell density, were resistant to methylmercury cytotoxicity. To investigate the mechanisms underlying this resistance, we exposed the endothelial cells at low and high cell densities to methylmercury and determined the extent of nonspecific cell damage, intracellular accumulation of methylmercury, expression of LAT-1 and LAT-2 mRNAs, and intracellular expression of reduced glutathione and metallothionein. These experiments indicate that sparse endothelial cells intracellularly accumulate more methylmercury via the highly expressed LAT-1, but are resistant to methylmercury cytotoxicity by higher expression of the protective sulfhydryl peptides, namely, reduced glutathione and metallothionein. It is suggested that both nonspecific and functional damage is caused in pericytes, whereas functional abnormalities rather than nonspecific damage may occur to a greater extent in the endothelial cells in the brain microvessels exposed to methylmercury. The previous and present data also suggest that methylmercury exhibits toxicity in endothelial cells in a manner different from that in pericytes in the brain microvessels.

  10. Relationship between cardio-ankle vascular index and N-terminal pro-brain natriuretic peptide in hypertension and coronary heart disease subjects.

    Science.gov (United States)

    Wang, Hongyu; Liu, Jinbo; Zhao, Hongwei; Zhou, Yingyan; Zhao, Xujing; Song, Yuejie; Li, Lihong; Shi, Hongyan

    2014-09-01

    Arterial stiffness is an independent predictor for vascular diseases. Cardio-ankle vascular index (CAVI) is a new index of arterial stiffness. N-terminal pro-brain natriuretic peptide (NT-proBNP) is a strong prognostic marker in advanced stage of coronary heart disease (CHD). In the present study, we investigated the relationship between CAVI and NT-proBNP in hypertension and CHD subjects. Five hundred one subjects (male/female, 209/292) from Vascular Medicine of Peking University Shougang Hospital were divided into four groups: healthy group (n = 186), hypertension group (n = 159), CHD group (n = 45), and hypertension with CHD group (n = 111). CAVI was measured using VS-1000 apparatus. Our results showed that CAVI was significantly higher in hypertension subjects with CHD than in healthy and hypertension group, respectively (8.42 ± 1.51 vs. 7.77 ± 1.19; 8.42 ± 1.51 vs. 7.92 ± 1.11; both P vascular-related diseases. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  11. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ok-Nam [College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung [College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Eun-Sun [College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Jeong, Tae Cheon [College of Pharmacy, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Chun, Young-Jin [College of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Ai-Young, E-mail: leeay@duih.org [Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 410-773 (Korea, Republic of); Noh, Minsoo, E-mail: minsoo@alum.mit.edu [College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  12. Optical coherence tomography in quantifying the permeation of human plasma lipoproteins in vascular tissues

    Science.gov (United States)

    Ghosn, M. G.; Mashiatulla, M.; Tuchin, V. V.; Morrisett, J. D.; Larin, K. V.

    2012-03-01

    Atherosclerosis is the most common underlying cause of vascular disease, occurring in multiple arterial beds including the carotid, coronary, and femoral arteries. Atherosclerosis is an inflammatory process occurring in arterial tissue, involving the subintimal accumulation of low-density lipoproteins (LDL). Little is known about the rates at which these accumulations occur. Measurements of the permeability rate of LDL, and other lipoproteins such as high-density lipoprotein (HDL) and very low-density lipoprotein (VLDL), could help gain a better understanding of the mechanisms involved in the development of atherosclerotic lesions. The permeation of VLDL, LDL, HDL, and glucose was monitored and quantified in normal and diseased human carotid endarterectomy tissues at 20°C and 37°C using optical coherence tomography (OCT). The rates for LDL permeation through normal tissue at 20°C was (3.16 +/- 0.37) × 10-5 cm/sec and at 37°C was (4.77 +/- 0.48) × 10-5 cm/sec, significantly greater (plipoproteins.

  13. DPP-4 inhibition protects human umbilical vein endothelial cells from hypoxia-induced vascular barrier impairment

    Directory of Open Access Journals (Sweden)

    Naoko Hashimoto

    2017-09-01

    Full Text Available Dipeptidyl peptidase-4 (DPP-4 inhibitors are relatively new class of anti-diabetic drugs. Some protective effects of DPP-4 on cardiovascular disease have been described independently from glucose-lowering effect. However, the detailed mechanisms by which DPP-4 inhibitors exert on endothelial cells remain elusive. The purpose of this research was to determine the effects of DPP-4 inhibitor on endothelial barrier function. Human umbilical vein endothelial cells (HUVECs were cultured and exposed to hypoxia in the presence or absence of Diprotin A, a DPP-4 inhibitor. Immunocytochemistry of vascular endothelial (VE- cadherin showed that jagged VE-cadherin staining pattern induced by hypoxia was restored by treatment with Diprotin A. The increased level of cleaved β-catenin in response to hypoxia was significantly attenuated by Diprotin A, suggesting that DPP-4 inhibition protects endothelial adherens junctions from hypoxia. Subsequently, we found that Diprotin A inhibited hypoxia-induced translocation of NF-κB from cytoplasm to nucleus through decreasing TNF-α expression level. Furthermore, the tube formation assay showed that Diprotin A significantly restored hypoxia-induced decrease in number of tubes by HUVECs. These results suggest that DPP-4 inhibitior protects HUVECs from hypoxia-induced barrier impairment.

  14. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada); Bernatchez, Pascal, E-mail: pbernatc@mail.ubc.ca [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  15. Multi-dimensional dynamics of human electromagnetic brain activity

    Directory of Open Access Journals (Sweden)

    Tetsuo eKida

    2016-01-01

    Full Text Available Magnetoencephalography (MEG and electroencephalography (EEG are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency, which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  16. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity.

    Science.gov (United States)

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2015-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  17. Why our brains cherish humanity: Mirror neurons and colamus humanitatem

    Directory of Open Access Journals (Sweden)

    John R. Skoyles

    2008-06-01

    Full Text Available Commonsense says we are isolated. After all, our bodies are physically separate. But Seneca’s colamus humanitatem, and John Donne’s observation that “no man is an island” suggests we are neither entirely isolated nor separate. A recent discovery in neuroscience—that of mirror neurons—argues that the brain and the mind is neither built nor functions remote from what happens in other individuals. What are mirror neurons? They are brain cells that process both what happens to or is done by an individual, and, as it were, its perceived “refl ection,” when that same thing happens or is done by another individual. Thus, mirror neurons are both activated when an individual does a particular action, and when that individual perceives that same action done by another. The discovery of mirror neurons suggests we need to radically revise our notions of human nature since they offer a means by which we may not be so separated as we think. Humans unlike other apes are adapted to mirror interact nonverbally when together. Notably, our faces have been evolved to display agile and nimble movements. While this is usually explained as enabling nonverbal communication, a better description would be nonverbal commune based upon mirror neurons. I argue we cherish humanity, colamus humanitatem, because mirror neurons and our adapted mirror interpersonal interface blur the physical boundaries that separate us.

  18. Studying variability in human brain aging in a population-based German cohort—rationale and design of 1000BRAINS

    OpenAIRE

    Svenja eCaspers; Susanne eMoebus; Silke eLux; Noreen ePundt; Holger eSchütz; Mühleisen, Thomas W.; Vincent eGras; Eickhoff, Simon B.; Sandro eRomanzetti; Tony eStöcker; Rüdiger eStirnberg; Kirlangic, Mehmet E.; Martina eMinnerop; Peter ePieperhoff; Ulrich eMödder

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collectio...

  19. Role of formic receptors in soluble urokinase receptor-induced human vascular smooth muscle migration.

    Science.gov (United States)

    Duru, Enrico A; Fu, Yuyang; Davies, Mark G

    2015-05-15

    Vascular smooth muscle cell (VSMC) migration in response to urokinase is dependent on binding of the urokinase molecule to the urokinase plasminogen receptor (uPAR) and cleavage of the receptor. The aim of this study was to examine the role of the soluble uPAR (suPAR) in VSMC migration. Human VSMCs were cultured in vitro. Linear wound and Boyden microchemotaxis assays of migration were performed in the presence of suPAR. Inhibitors to G-protein signaling and kinase activation were used to study these pathways. Assays were performed for mitogen-activated protein kinase and epidermal growth factor receptor activation. suPAR induced concentration-dependent migration of VSMC, which was G protein-dependent and was blocked by Gαi and Gβγ inhibitors. Removal of the full uPAR molecule by incubation of the cells with a phospholipase did not interfere with this response. suPAR induced ERK1/2, p38(MAPK), and c-Jun N-terminal kinase [JNK] activation in a Gαi/Gβγ-dependent manner, and interruption of these signaling pathways prevented suPAR-mediated migration. suPAR activity was independent of plasmin activity. suPAR did not activate epidermal growth factor receptor. Interruption of the low affinity N-formyl-Met-Leu-Phe receptor (FPRL1) but not high affinity N-formyl-Met-Leu-Phe receptor (FPR) prevented cell migration and activation in response to suPAR. suPAR increased matrix metalloproteinase-2 expression and activity, and this was dependent on the low affinity N-formyl-Met-Leu-Phe receptor (FPRL1) and ERK1/2. suPAR induces human smooth muscle cell activation and migration independent of the full uPAR through activation of the G protein-coupled receptor FPRL1, which is not linked to the plasminogen activation cascade. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  1. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Science.gov (United States)

    Kouprina, Natalay; Pavlicek, Adam; Mochida, Ganeshwaran H; Solomon, Gregory; Gersch, William; Yoon, Young-Ho; Collura, Randall; Ruvolo, Maryellen; Barrett, J Carl; Woods, C Geoffrey; Walsh, Christopher A; Jurka, Jerzy; Larionov, Vladimir

    2004-05-01

    Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes) consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  2. Alcohol's Effects on the Brain: Neuroimaging Results in Humans and Animal Models

    National Research Council Canada - National Science Library

    Natalie M Zahr; Adolf Pfefferbaum

    2017-01-01

    ... into the effects of chronic alcoholism on the human brain. Magnetic resonance imaging (MRI) studies have distinguished alcohol-related brain effects that are permanent from those that are reversible with abstinence...

  3. brain-coX: investigating and visualising gene co-expression in seven human brain transcriptomic datasets.

    Science.gov (United States)

    Freytag, Saskia; Burgess, Rosemary; Oliver, Karen L; Bahlo, Melanie

    2017-06-08

    The pathogenesis of neurological and mental health disorders often involves multiple genes, complex interactions, as well as brain- and development-specific biological mechanisms. These characteristics make identification of disease genes for such disorders challenging, as conventional prioritisation tools are not specifically tailored to deal with the complexity of the human brain. Thus, we developed a novel web-application-brain-coX-that offers gene prioritisation with accompanying visualisations based on seven gene expression datasets in the post-mortem human brain, the largest such resource ever assembled. We tested whether our tool can correctly prioritise known genes from 37 brain-specific KEGG pathways and 17 psychiatric conditions. We achieved average sensitivity of nearly 50%, at the same time reaching a specificity of approximately 75%. We also compared brain-coX's performance to that of its main competitors, Endeavour and ToppGene, focusing on the ability to discover novel associations. Using a subset of the curated SFARI autism gene collection we show that brain-coX's prioritisations are most similar to SFARI's own curated gene classifications. brain-coX is the first prioritisation and visualisation web-tool targeted to the human brain and can be freely accessed via http://shiny.bioinf.wehi.edu.au/freytag.s/ .

  4. The representation of biological classes in the human brain.

    Science.gov (United States)

    Connolly, Andrew C; Guntupalli, J Swaroop; Gors, Jason; Hanke, Michael; Halchenko, Yaroslav O; Wu, Yu-Chien; Abdi, Hervé; Haxby, James V

    2012-02-22

    Evidence of category specificity from neuroimaging in the human visual system is generally limited to a few relatively coarse categorical distinctions-e.g., faces versus bodies, or animals versus artifacts-leaving unknown the neural underpinnings of fine-grained category structure within these large domains. Here we use fMRI to explore brain activity for a set of categories within the animate domain, including six animal species-two each from three very different biological classes: primates, birds, and insects. Patterns of activity throughout ventral object vision cortex reflected the biological classes of the stimuli. Specifically, the abstract representational space-measured as dissimilarity matrices defined between species-specific multivariate patterns of brain activity-correlated strongly with behavioral judgments of biological similarity of the same stimuli. This biological class structure was uncorrelated with structure measured in retinotopic visual cortex, which correlated instead with a dissimilarity matrix defined by a model of V1 cortex for the same stimuli. Additionally, analysis of the shape of the similarity space in ventral regions provides evidence for a continuum in the abstract representational space-with primates at one end and insects at the other. Further investigation into the cortical topography of activity that contributes to this category structure reveals the partial engagement of brain systems active normally for inanimate objects in addition to animate regions.

  5. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B

    1999-01-01

    CBF) SPECT-scanning using 99mTc-HMPAO as flow tracer was performed in the patients. Mean water content (SD) in the infarct area was 37.7 (5.1); 41.8 (4.8); 35.2 (5.4); and 39.3 (5.1) mol x [kg wet weight](-1) at 0-3; 4-7; 8-21; and >180 days after stroke, respectively. Water content increased between Day 0......Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate...... brain water content during the course of cerebral infarction. Measurements were performed serially in the acute, subacute, and chronic phase of infarction. Fourteen patients with acute cerebral infarction were examined as well as 9 healthy controls. To correlate with regional cerebral blood flow (r...

  6. Mobile phone types and SAR characteristics of the human brain

    Science.gov (United States)

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-04-01

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  7. Unmasking Language Lateralization in Human Brain Intrinsic Activity.

    Science.gov (United States)

    McAvoy, Mark; Mitra, Anish; Coalson, Rebecca S; d'Avossa, Giovanni; Keidel, James L; Petersen, Steven E; Raichle, Marcus E

    2016-04-01

    Lateralization of function is a fundamental feature of the human brain as exemplified by the left hemisphere dominance of language. Despite the prominence of lateralization in the lesion, split-brain and task-based fMRI literature, surprisingly little asymmetry has been revealed in the increasingly popular functional imaging studies of spontaneous fluctuations in the fMRI BOLD signal (so-called resting-state fMRI). Here, we show the global signal, an often discarded component of the BOLD signal in resting-state studies, reveals a leftward asymmetry that maps onto regions preferential for semantic processing in left frontal and temporal cortex and the right cerebellum and a rightward asymmetry that maps onto putative attention-related regions in right frontal, temporoparietal, and parietal cortex. Hemispheric asymmetries in the global signal resulted from amplitude modulation of the spontaneous fluctuations. To confirm these findings obtained from normal, healthy, right-handed subjects in the resting-state, we had them perform 2 semantic processing tasks: synonym and numerical magnitude judgment and sentence comprehension. In addition to establishing a new technique for studying lateralization through functional imaging of the resting-state, our findings shed new light on the physiology of the global brain signal. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Pathology of the Aging Brain in Domestic and Laboratory Animals, and Animal Models of Human Neurodegenerative Diseases.

    Science.gov (United States)

    Youssef, S A; Capucchio, M T; Rofina, J E; Chambers, J K; Uchida, K; Nakayama, H; Head, E

    2016-03-01

    According to the WHO, the proportion of people over 60 years is increasing and expected to reach 22% of total world's population in 2050. In parallel, recent animal demographic studies have shown that the life expectancy of pet dogs and cats is increasing. Brain aging is associated not only with molecular and morphological changes but also leads to different degrees of behavioral and cognitive dysfunction. Common age-related brain lesions in humans include brain atrophy, neuronal loss, amyloid plaques, cerebrovascular amyloid angiopathy, vascular mineralization, neurofibrillary tangles, meningeal osseous metaplasia, and accumulation of lipofuscin. In aging humans, the most common neurodegenerative disorder is Alzheimer's disease (AD), which progressively impairs cognition, behavior, and quality of life. Pathologic changes comparable to the lesions of AD are described in several other animal species, although their clinical significance and effect on cognitive function are poorly documented. This review describes the commonly reported age-associated neurologic lesions in domestic and laboratory animals and the relationship of these lesions to cognitive dysfunction. Also described are the comparative interspecies similarities and differences to AD and other human neurodegenerative diseases including Parkinson's disease and progressive supranuclear palsy, and the spontaneous and transgenic animal models of these diseases. © The Author(s) 2016.

  9. Stable functional networks exhibit consistent timing in the human brain.

    Science.gov (United States)

    Chapeton, Julio I; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Despite many advances in the study of large-scale human functional networks, the question of timing, stability, and direction of communication between cortical regions has not been fully addressed. At the cellular level, neuronal communication occurs through axons and dendrites, and the time required for such communication is well defined and preserved. At larger spatial scales, however, the relationship between timing, direction, and communication between brain regions is less clear. Here, we use a measure of effective connectivity to identify connections between brain regions that exhibit communication with consistent timing. We hypothesized that if two brain regions are communicating, then knowledge of the activity in one region should allow an external observer to better predict activity in the other region, and that such communication involves a consistent time delay. We examine this question using intracranial electroencephalography captured from nine human participants with medically refractory epilepsy. We use a coupling measure based on time-lagged mutual information to identify effective connections between brain regions that exhibit a statistically significant increase in average mutual information at a consistent time delay. These identified connections result in sparse, directed functional networks that are stable over minutes, hours, and days. Notably, the time delays associated with these connections are also highly preserved over multiple time scales. We characterize the anatomic locations of these connections, and find that the propagation of activity exhibits a preferred posterior to anterior temporal lobe direction, consistent across participants. Moreover, networks constructed from connections that reliably exhibit consistent timing between anatomic regions demonstrate features of a small-world architecture, with many reliable connections between anatomically neighbouring regions and few long range connections. Together, our results demonstrate

  10. WISP1 overexpression promotes proliferation and migration of human vascular smooth muscle cells via AKT signaling pathway.

    Science.gov (United States)

    Lu, Shun; Liu, Hao; Lu, Lihe; Wan, Heng; Lin, Zhiqi; Qian, Kai; Yao, Xingxing; Chen, Qing; Liu, Wenjun; Yan, Jianyun; Liu, Zhengjun

    2016-10-05

    Proliferation and migration of vascular smooth muscle cells (VSMCs) play crucial roles in the development of vascular restenosis. Our previous study showed that CCN4, namely Wnt1 inducible signaling pathway protein 1 (WISP1), significantly promotes proliferation and migration of rat VSMCs, but its mechanism remains unclear. This study aims to investigate whether and how WISP1 stimulates proliferation and migration of human VSMCs. Western blot analysis showed that FBS treatment increased WISP1 protein levels in human VSMCs in a dose-dependent manner. Overexpression of WISP1 using adenovirus encoding WISP1 (AD-WISP1) significantly increased proliferation rate of human VSMCs by 2.98-fold compared with empty virus (EV)-transfected cells, shown by EdU incorporation assay. Additionally, Scratch-induced wound healing assay revealed that adenovirus-mediated overexpression of WISP1 significantly increased cell migration compared with EV-transfected cells from 6h (4.56±1.14% vs. 11.23±2.25%, PMigration Assay confirmed that WISP1 overexpression significantly promoted human VSMC migration by 2.25-fold compared with EV. Furthermore, WISP1 overexpression stimulated Akt signaling activation in human VSMCs. Blockage of Akt signaling by Akt inhibitor AZD5363 or PI3K inhibitor LY294002, led to an inhibitory effect of WISP1-induced proliferation and migration in human VSMCs. Moreover, we found that WISP1 overexpression stimulated GSK3α/β phosphorylation, and increased expression of cyclin D1 and MMP9 in human VSMCs, and this effect was abolished by AZD5363. Collectively, we demonstrated that Akt signaling pathway mediates WISP1-induced migration and proliferation of human VSMCs, suggesting that WISP1 may act as a novel potential therapeutic target for vascular restenosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The brain's silent messenger: using selective attention to decode human thought for brain-based communication.

    Science.gov (United States)

    Naci, Lorina; Cusack, Rhodri; Jia, Vivian Z; Owen, Adrian M

    2013-05-29

    The interpretation of human thought from brain activity, without recourse to speech or action, is one of the most provoking and challenging frontiers of modern neuroscience. In particular, patients who are fully conscious and awake, yet, due to brain damage, are unable to show any behavioral responsivity, expose the limits of the neuromuscular system and the necessity for alternate forms of communication. Although it is well established that selective attention can significantly enhance the neural representation of attended sounds, it remains, thus far, untested as a response modality for brain-based communication. We asked whether its effect could be reliably used to decode answers to binary (yes/no) questions. Fifteen healthy volunteers answered questions (e.g., "Do you have brothers or sisters?") in the fMRI scanner, by selectively attending to the appropriate word ("yes" or "no"). Ninety percent of the answers were decoded correctly based on activity changes within the attention network. The majority of volunteers conveyed their answers with less than 3 min of scanning, suggesting that this technique is suited for communication in a reasonable amount of time. Formal comparison with the current best-established fMRI technique for binary communication revealed improved individual success rates and scanning times required to detect responses. This novel fMRI technique is intuitive, easy to use in untrained participants, and reliably robust within brief scanning times. Possible applications include communication with behaviorally nonresponsive patients.

  12. Jugular venous overflow of noradrenaline from the brain: a neurochemical indicator of cerebrovascular sympathetic nerve activity in humans

    Science.gov (United States)

    Mitchell, David A; Lambert, Gavin; Secher, Niels H; Raven, Peter B; van Lieshout, Johannes; Esler, Murray D

    2009-01-01

    A novel neurochemical method was applied for studying the activity of sympathetic nerves in the human cerebral vascular system. The aim was to investigate whether noradrenaline plasma kinetic measurements made with internal jugular venous sampling reflect cerebrovascular sympathetic activity. A database was assembled of fifty-six healthy subjects in whom total body noradrenaline spillover (indicative of whole body sympathetic nervous activity), brain noradrenaline spillover and brain lipophlic noradrenaline metabolite (3,4-dihydroxyphenolglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG)) overflow rates were measured. These measurements were also made following ganglion blockade (trimethaphan, n= 6), central sympathetic inhibition (clonidine, n= 4) and neuronal noradrenaline uptake blockade (desipramine, n= 13) and in a group of patients (n= 9) with pure autonomic failure (PAF). The mean brain noradrenline spillover and brain noradrenaline metabolite overflow in healthy subjects were 12.5 ± 1.8, and 186.4 ± 25 ng min−1, respectively, with unilateral jugular venous sampling for both. Total body noradrenaline spillover was 605.8 ng min−1± 34.4 ng min−1. As expected, trimethaphan infusion lowered brain noradrenaline spillover (P= 0.03), but perhaps surprisingly increased jugular overflow of brain metabolites (P= 0.01). Suppression of sympathetic nervous outflow with clonidine lowered brain noradrenaline spillover (P= 0.004), without changing brain metabolite overflow (P= 0.3). Neuronal noradrenaline uptake block with desipramine lowered the transcranial plasma extraction of tritiated noradrenaline (P= 0.001). The PAF patients had 77% lower brain noradrenaline spillover than healthy recruits (P= 0.06), indicating that in them sympathetic nerve degeneration extended to the cerebral circulation, but metabolites overflow was similar to healthy subjects (P= 0.3). The invariable discordance between noradrenline spillover and noradrenaline metabolite overflow

  13. Cycloxygenase-2 is expressed in vasculature of normal and ischemic adult human kidney and is colocalized with vascular prostaglandin E2 EP4 receptors

    DEFF Research Database (Denmark)

    Therland, Karina L; Stubbe, Jane; Thiesson, Helle C

    2004-01-01

    . COX-2 had a similar localization in fetal kidney and was additionally observed in Henle's loop and macula densa. Human tissue arrays displayed COX-2 labeling of vascular smooth muscle in multiple extrarenal tissues. Vascular COX-2 expression was significantly increased in kidneys with arterial...... stenosis. COX-1 was colocalized with microsomal prostaglandin E(2) synthase (PGES) in collecting ducts, and PGES was also detected in macula densa cells. Vascular COX-2 was colocalized with prostaglandin E(2) EP4 receptors but not with EP2 receptors. Thus, renovascular COX-2 expression was a constitutive...... feature encountered in human kidneys at all ages, whereas COX-2 was seen in macula densa only in fetal kidney. Vascular COX-2 activity in human kidney and extrarenal tissues may support blood flow and affect vascular wall-blood interaction....

  14. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  15. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  16. Selectively altering belief formation in the human brain.

    Science.gov (United States)

    Sharot, Tali; Kanai, Ryota; Marston, David; Korn, Christoph W; Rees, Geraint; Dolan, Raymond J

    2012-10-16

    Humans form beliefs asymmetrically; we tend to discount bad news but embrace good news. This reduced impact of unfavorable information on belief updating may have important societal implications, including the generation of financial market bubbles, ill preparedness in the face of natural disasters, and overly aggressive medical decisions. Here, we selectively improved people's tendency to incorporate bad news into their beliefs by disrupting the function of the left (but not right) inferior frontal gyrus using transcranial magnetic stimulation, thereby eliminating the engrained "good news/bad news effect." Our results provide an instance of how selective disruption of regional human brain function paradoxically enhances the ability to incorporate unfavorable information into beliefs of vulnerability.

  17. Generation of iPSC-derived Human Brain Organoids to Model Early Neurodevelopmental Disorders.

    Science.gov (United States)

    Gabriel, Elke; Gopalakrishnan, Jay

    2017-04-14

    The restricted availability of suitable in vitro models that can reliably represent complex human brain development is a significant bottleneck that limits the translation of basic brain research into clinical application. While induced pluripotent stem cells (iPSCs) have replaced the ethically questionable human embryonic stem cells, iPSC-based neuronal differentiation studies remain descriptive at the cellular level but fail to adequately provide the details that could be derived from a complex, 3D human brain tissue. This gap is now filled through the application of iPSC-derived, 3D brain organoids, "Brains in a dish," that model many features of complex human brain development. Here, a method for generating iPSC-derived, 3D brain organoids is described. The organoids can help with modeling autosomal recessive primary microcephaly (MCPH), a rare human neurodevelopmental disorder. A widely accepted explanation for the brain malformation in MCPH is a depletion of the neural stem cell pool during the early stages of human brain development, a developmental defect that is difficult to recreate or prove in vitro. To study MCPH, we generated iPSCs from patient-derived fibroblasts carrying a mutation in the centrosomal protein CPAP. By analyzing the ventricular zone of microcephaly 3D brain organoids, we showed the premature differentiation of neural progenitors. These 3D brain organoids are a powerful in vitro system that will be instrumental in modeling congenital brain disorders induced by neurotoxic chemicals, neurotrophic viral infections, or inherited genetic mutations.

  18. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle.

    Directory of Open Access Journals (Sweden)

    William Hartman

    Full Text Available Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF, can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs.48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia.Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy.

  19. Patients with advanced Parkinson's disease with and without freezing of gait: a comparative analysis of vascular lesions using brain MRI.

    Science.gov (United States)

    Gallardo, M J; Cabello, J P; Pastor, C; Muñoz-Torrero, J J; Carrasco, S; Ibañez, R; Vaamonde, J

    2014-05-01

    Freezing of gait (FOG) is one of the most disabling and enigmatic symptoms in Parkinson's disease. Vascular lesions, observed in magnetic resonance imaging (MRI) scans, may produce or exacerbate this symptom. The study includes 22 patients with Parkinson's disease subjects, 12 with freezing of gait and 10 without. All patients underwent an MRI scan and any vascular lesions were analysed using the modified Fazekas scale. Patients with FOG scored higher on the modified Fazekas scale than the rest of the group. Although the two groups contained the same percentage of patients with vascular lesions (50% in both groups), lesion load was higher in the group of patients with FOG. Vascular lesions in the periventricular area and deep white matter seem to be the most involved in the development of FOG. Vascular lesions may contribute to the onset or worsening of FOG in patients with PD. This study suggests that cerebral vascular disease should be considered in patients with FOG. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  20. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function.

    Science.gov (United States)

    Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J

    2017-11-01

    Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r  = -0.49, P = 0.003), p21 ( r  = -0.38, P = 0.03), and p16 ( r  = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function. Copyright © 2017 the American Physiological Society.

  1. Three cortical stages of colour processing in the human brain.

    Science.gov (United States)

    Zeki, S; Marini, L

    1998-09-01

    We used the technique of functional magnetic resonance imaging to chart the colour pathways in the human brain beyond V4. We asked subjects to view objects that were dressed in natural and unnatural colours as well as their achromatic counterparts and compared the activity produced in the brain by each condition. The results showed that both naturally and unnaturally coloured objects activate a pathway extending from V1 to V4, though not overlapping totally the activity produced by viewing abstract coloured Mondrian scenes. Normally coloured objects activated, in addition, more anterior parts of the fusiform gyrus, the hippocampus and the ventrolateral frontal cortex. Abnormally coloured objects, by contrast, activated the dorsolateral frontal cortex. A study of the cortical covariation produced by these activations revealed that activity in large parts of the occipital lobe covaried with each. These results, considered against the background of previous physiological and clinical studies, allow us to discern three broad cortical stages of colour processing in the human brain. The first is based on V1 and possibly V2 and is concerned mainly with registering the presence and intensity of different wavelengths, and with wavelength differencing. The second stage is based on V4 and is concerned with automatic colour constancy operations, without regard to memory, judgement and learning. The third stage, based on the inferior temporal and frontal cortex, is more concerned with object colours. The results we report, as well as the schema that we suggest, also allow us to reconcile the computatio