WorldWideScience

Sample records for human brain images

  1. Perfusion harmonic imaging of the human brain

    Science.gov (United States)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  2. Fast optical imaging of human brain function

    Directory of Open Access Journals (Sweden)

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  3. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  4. Automated regional behavioral analysis for human brain images

    National Research Council Canada - National Science Library

    Lancaster, Jack L; Laird, Angela R; Eickhoff, Simon B; Martinez, Michael J; Fox, P Mickle; Fox, Peter T

    2012-01-01

    Behavioral categories of functional imaging experiments along with standardized brain coordinates of associated activations were used to develop a method to automate regional behavioral analysis of human brain images...

  5. Image reconstruction techniques for high resolution human brain PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Comtat, C.; Bataille, F.; Sureau, F. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    High resolution PET imaging is now a well established technique not only for small animal, but also for human brain studies. The ECAT HRRT brain PET scanner(Siemens Molecular Imaging) is characterized by an effective isotropic spatial resolution of 2.5 mm, about a factor of 2 better than for state-of-the-art whole-body clinical PET scanners. Although the absolute sensitivity of the HRRT (6.5 %) for point source in the center of the field-of-view is increased relative to whole-body scanner (typically 4.5 %) thanks to a larger co-polar aperture, the sensitivity in terms of volumetric resolution (75 (m{sup 3} at best for whole-body scanners and 16 (m{sup 3} for t he HRRT) is much lower. This constraint has an impact on the performance of image reconstruction techniques, in particular for dynamic studies. Standard reconstruction methods used with clinical whole-body PET scanners are not optimal for this application. Specific methods had to be developed, based on fully 3D iterative techniques. Different refinements can be added in the reconstruction process to improve image quality: more accurate modeling of the acquisition system, more accurate modeling of the statistical properties of the acquired data, anatomical side information to guide the reconstruction . We will present the performances these added developments for neuronal imaging in humans. (author)

  6. Forthergillian Lecture. Imaging human brain function.

    Science.gov (United States)

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  7. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  8. Human brain activity with functional NIR optical imager

    Science.gov (United States)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  9. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  10. Automated regional behavioral analysis for human brain images.

    Science.gov (United States)

    Lancaster, Jack L; Laird, Angela R; Eickhoff, Simon B; Martinez, Michael J; Fox, P Mickle; Fox, Peter T

    2012-01-01

    Behavioral categories of functional imaging experiments along with standardized brain coordinates of associated activations were used to develop a method to automate regional behavioral analysis of human brain images. Behavioral and coordinate data were taken from the BrainMap database (http://www.brainmap.org/), which documents over 20 years of published functional brain imaging studies. A brain region of interest (ROI) for behavioral analysis can be defined in functional images, anatomical images or brain atlases, if images are spatially normalized to MNI or Talairach standards. Results of behavioral analysis are presented for each of BrainMap's 51 behavioral sub-domains spanning five behavioral domains (Action, Cognition, Emotion, Interoception, and Perception). For each behavioral sub-domain the fraction of coordinates falling within the ROI was computed and compared with the fraction expected if coordinates for the behavior were not clustered, i.e., uniformly distributed. When the difference between these fractions is large behavioral association is indicated. A z-score ≥ 3.0 was used to designate statistically significant behavioral association. The left-right symmetry of ~100K activation foci was evaluated by hemisphere, lobe, and by behavioral sub-domain. Results highlighted the classic left-side dominance for language while asymmetry for most sub-domains (~75%) was not statistically significant. Use scenarios were presented for anatomical ROIs from the Harvard-Oxford cortical (HOC) brain atlas, functional ROIs from statistical parametric maps in a TMS-PET study, a task-based fMRI study, and ROIs from the ten "major representative" functional networks in a previously published resting state fMRI study. Statistically significant behavioral findings for these use scenarios were consistent with published behaviors for associated anatomical and functional regions.

  11. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    OpenAIRE

    Sunil L. Bangare; Madhura Patil

    2015-01-01

    This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed wor...

  12. [Molecular imaging of histamine receptors in the human brain].

    Science.gov (United States)

    Tashiro, Manabu; Yanai, Kazuhiko

    2007-03-01

    Brain histamine is involved in a wide range of physiological functions such as regulation of sleep-wake cycle, arousal, appetite control, cognition, learning and memory mainly through the 4 receptor subtypes: H1, H2, H3 and H4. Neurons producing histamine, histaminergic neurons, are exclusively located in the tuberomammillary nucleus of the posterior hypothalamus and are transmitting histamine to almost all regions of the brain. Roles of brain histamine have been studied using animals including knock-out mice and human subjects. For clinical studies, molecular imaging technique such as positron emission tomography (PET), with ligands such as [11C]doxepin and [11C]pyrilamine, has been a useful tool. A series of clinical studies on histamine H1 antagonists, or antihistamines, have demonstrated that antihistamines can be classified into sedative, mildly-sedative and non-sedative drugs according to their blood-brain barrier (BBB) permeability, showing apparent clinical usefulness regarding QOL, work efficiency and traffic safety of allergic patients. PET has also been used for elucidation of aging effects and pathophysiological roles of histaminergic nervous system in various neuropsychiatric disorders such as Alzheimer's disease, schizophrenia and depression, where H1 receptor binding potentials were lower than age-matched healthy controls. It has been also demonstrated that brain histamine functions as an endogenous anti-epileptic. In addition, H3 receptors are located in the presynaptic sites of not only histaminergic nerves but also in other nervous systems such as serotonergic, cholinergic and dopaminergic systems, and to be regulating secretion of various neurotransmitters. Nowadays, H3 receptors have been thought to be a new target of drug treatment of various neuropsychiatric disorders. There are still many research topics to be investigated regarding molecular imaging of histamine and histamine receptors. The authors hope that this line of research contributes

  13. Hypnosis and imaging of the living human brain.

    Science.gov (United States)

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  14. Blood-Brain Barrier Imaging in Human Neuropathologies

    Science.gov (United States)

    Veksler, Ronel; Shelef, Ilan; Friedman, Alon

    2014-01-01

    The blood–brain barrier (BBB) is essential for normal function of the brain, and its role in many brain pathologies has been the focus of numerous studies during the last decades. Dysfunction of the BBB is not only being shown in numerous brain diseases, but animal studies have indicated that it plays a direct key role in the genesis of neurovascular dysfunction and associated neurodegeneration. As such evidence accumulates, the need for robust and clinically applicable methods for minimally invasive assessment of BBB integrity is becoming urgent. This review provides an introduction to BBB imaging methods in the clinical scenario. First, imaging modalities are reviewed, with a focus on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We then proceed to review image analysis methods, including quantitative and semi-quantitative methods. The advantages and limitations of each approach are discussed, and future directions and questions are highlighted. PMID:25453223

  15. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Sunil L. Bangare

    2015-04-01

    Full Text Available This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed work is divided in to following Modules: Module 1: Image Pre-Processing Module 2: Feature Extraction, Segmentation using K-Means Algorithm and Fuzzy C-Means Algorithm Module 3: Tumor Area calculation & Stage detection Module 4: Classification and position calculation of tumor using Neural Network

  16. 5-HT radioligands for human brain imaging with PET and SPECT

    DEFF Research Database (Denmark)

    Paterson, Louise M; Kornum, Birgitte R; Nutt, David J

    2013-01-01

    for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists...... to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.......The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used...

  17. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis.

    Science.gov (United States)

    Tamura, Yasuhisa; Kataoka, Yosky

    2017-01-01

    Neural stem cells are present in 2 neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), and continue to generate new neurons throughout life. Adult hippocampal neurogenesis is linked to a variety of psychiatric disorders such as depression and anxiety, and to the therapeutic effects of antidepressants, as well as learning and memory. In vivo imaging for hippocampal neurogenic activity may be used to diagnose psychiatric disorders and evaluate the therapeutic efficacy of antidepressants. However, these imaging techniques remain to be established until now. Recently, we established a quantitative positron emission tomography (PET) imaging technique for neurogenic activity in the adult brain with 3'-deoxy-3'-[(18)F]fluoro-L-thymidine ([(18)F]FLT) and probenecid, a drug transporter inhibitor in blood-brain barrier. Moreover, we showed that this PET imaging technique can monitor alterations in neurogenic activity in the hippocampus of adult rats with depression and following treatment with an antidepressant. This PET imaging method may assist in diagnosing depression and in monitoring the therapeutic efficacy of antidepressants. In this commentary, we discuss the possibility of in vivo PET imaging for neurogenic activity in adult non-human primates and humans.

  18. The human sexual response cycle : Brain imaging evidence linking sex to other pleasures

    NARCIS (Netherlands)

    Georgiadis, J. R.; Kringelbach, M. L.

    2012-01-01

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable t

  19. Development of a high angular resolution diffusion imaging human brain template.

    Science.gov (United States)

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-05-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy.

  20. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Science.gov (United States)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  1. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  2. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  3. Functional Magnetic Resonance Imaging for Imaging Neural Activity in the Human Brain: The Annual Progress

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area.

  4. Real-time functional near-infrared imager and imaging of human brain activity

    Science.gov (United States)

    Luo, Qingming; Zeng, Shaoqun; Gong, Hui; Chen, Weiguo; Zhang, Zhi; Chance, Britton

    1999-02-01

    A real time functional near infrared imager (fNIRI) was introduced. The imager was controlled by a computer and the signals from the detectors were converted and processed in real time. A user-friendly software was programmed with Visual C++ language. Relative changes of oxy - Hb, Hb, and total blood concentration in 16 channels and the corresponding images can be displayed in real time on the computer. The imager was used as a real time monitor in psychological tests to record the response of the frontal cortex of human subjects. In mental work and pattern recognition tests, we recorded oxygen consumption and blood flow changes of volunteers' frontal cortex. The psychological results showed that the lower part of the left frontal gyres had intensive relation to pattern recognition and has definite boundaries. However, the mental work involved more zones of the frontal gyres and may be a complex conceptual model. The results also suggested that the human brain has an precise and complicated adjustability. The oxygen supplement in the stimulated area increased as the neuron stimulation.

  5. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    Science.gov (United States)

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  6. In-vivo human brain molecular imaging with a brain-dedicated PET/MRI system.

    Science.gov (United States)

    Cho, Zang Hee; Son, Young Don; Choi, Eun Jung; Kim, Hang Keun; Kim, Jeong Hee; Lee, Sang Yoon; Ogawa, Seiji; Kim, Young Bo

    2013-02-01

    Advances in the new-generation of ultra-high-resolution, brain-dedicated positron emission tomography-magnetic resonance imaging (PET/MRI) systems have begun to provide many interesting insights into the molecular dynamics of the brain. First, the finely delineated structural information from ultra-high-field MRI can help us to identify accurate landmark structures, thereby making it easier to locate PET activation sites that are anatomically well-correlated with metabolic or ligand-specific organs in the neural structures in the brain. This synergistic potential of PET/MRI imaging is discussed in terms of neuroscience and neurological research from both translational and basic research perspectives. Experimental results from the hippocampus, thalamus, and brainstem obtained with (18)F-fluorodeoxyglucose and (11)C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile are used to demonstrate the potential of this new brain PET/MRI system.

  7. Brain imaging and human nutrition: which measures to use in intervention studies?

    Science.gov (United States)

    Sizonenko, Stéphane V; Babiloni, Claudio; de Bruin, Eveline A; Isaacs, Elizabeth B; Jönsson, Lena S; Kennedy, David O; Latulippe, Marie E; Mohajeri, M Hasan; Moreines, Judith; Pietrini, Pietro; Walhovd, Kristine B; Winwood, Robert J; Sijben, John W

    2013-08-01

    The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.

  8. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging

    Science.gov (United States)

    Feinberg, David A.; Setsompop, Kawin

    2013-04-01

    The recent advancement of simultaneous multi-slice imaging using multiband excitation has dramatically reduced the scan time of the brain. The evolution of this parallel imaging technique began over a decade ago and through recent sequence improvements has reduced the acquisition time of multi-slice EPI by over ten fold. This technique has recently become extremely useful for (i) functional MRI studies improving the statistical definition of neuronal networks, and (ii) diffusion based fiber tractography to visualize structural connections in the human brain. Several applications and evaluations are underway which show promise for this family of fast imaging sequences.

  9. Third harmonic generation imaging for fast, label-free pathology of human brain tumors.

    Science.gov (United States)

    Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L

    2016-05-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.

  10. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    Science.gov (United States)

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C. de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies. PMID:27231629

  11. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Imaging the structure of the human anxious brain: a review of findings from neuroscientific personality psychology.

    Science.gov (United States)

    Montag, Christian; Reuter, Martin; Jurkiewicz, Magdalena; Markett, Sebastian; Panksepp, Jaak

    2013-01-01

    The emotion of anxiety represents one of the most studied topics in the neurosciences, in part due to its relevance for understanding the evolutionary development of the human brain and its role in the pathogenesis of psychopathological conditions. Structural magnetic resonance imaging (sMRI) has enabled mapping of the anxious human brain and has contributed substantially to the understanding of anxiety. Alongside the fields of clinical psychology/psychiatry, personality psychology aims to support the research endeavor of mapping the anxious brain and has found that individual differences in anxiety-related personality dimensions such as Neuroticism or Harm Avoidance (measured by self-report) are correlated with gray and white matter volumes in different areas of the human brain. This review reveals that structures including parts of the frontal cortex (e.g., the orbitofrontal cortex) and the temporal lobe (e.g., the hippocampus) are often associated with trait anxiety, and it points out the inconsistencies that exist in the personality-sMRI literature on human anxiety. Consequently, we suggest new research strategies to overcome the inconsistencies. This review outlines how results from animal research can guide scientists in developing testable hypotheses in search of the anxious brain. Moreover, genetic imaging is presented as an interesting approach to mapping the anxious brain.

  13. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  14. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    Science.gov (United States)

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)).

  15. Fast magnetic resonance spectroscopic imaging techniques in human brain- applications in multiple sclerosis.

    Science.gov (United States)

    Al-Iedani, Oun; Lechner-Scott, Jeannette; Ribbons, Karen; Ramadan, Saadallah

    2017-02-28

    Multi voxel magnetic resonance spectroscopic imaging (MRSI) is an important imaging tool that combines imaging and spectroscopic techniques. MRSI of the human brain has been beneficially applied to different clinical applications in neurology, particularly in neurooncology but also in multiple sclerosis, stroke and epilepsy. However, a major challenge in conventional MRSI is the longer acquisition time required for adequate signal to be collected. Fast MRSI of the brain in vivo is an alternative approach to reduce scanning time and make MRSI more clinically suitable.Fast MRSI can be categorised into spiral, echo-planar, parallel and turbo imaging techniques, each with its own strengths. After a brief introduction on the basics of non-invasive examination ((1)H-MRS) and localization techniques principles, different fast MRSI techniques will be discussed from their initial development to the recent innovations with particular emphasis on their capacity to record neurochemical changes in the brain in a variety of pathologies.The clinical applications of whole brain fast spectroscopic techniques, can assist in the assessment of neurochemical changes in the human brain and help in understanding the roles they play in disease. To give a good example of the utilities of these techniques in clinical context, MRSI application in multiple sclerosis was chosen. The available up to date and relevant literature is discussed and an outline of future research is presented.

  16. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    Science.gov (United States)

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  17. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    Science.gov (United States)

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages.

  18. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head

    Directory of Open Access Journals (Sweden)

    Kai Li

    2016-01-01

    Full Text Available BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM or finite element model (FEM created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa. BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages.

  19. Multivariate Analysis of Magnetic Resonance Imaging Signals of the Human Brain.

    Science.gov (United States)

    Miyawaki, Yoichi

    2016-01-01

    Magnetic resonance imaging (MRI) of the human brain plays an important role in the field of medical imaging as well as basic neuroscience. It measures proton spin relaxation, the time constant of which depends on tissue type, and allows us to visualize anatomical structures in the brain. It can also measure functional signals that depend on the local ratio of oxyhemoglobin to deoxyhemoglobin in the blood, which is believed to reflect the degree of neural activity in the corresponding area. MRI thus provides anatomical and functional information about the human brain with high spatial resolution. Conventionally, MRI signals are measured and analyzed for each individual voxel. However, these signals are essentially multivariate because they are measured from multiple voxels simultaneously, and the pattern of activity might carry more useful information than each individual voxel does. This paper reviews recent trends in multivariate analysis of MRI signals in the human brain, and discusses applications of this technique in the fields of medical imaging and neuroscience.

  20. Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces.

    Science.gov (United States)

    Marzluff, John M; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J

    2012-09-25

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal's brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure to familiar human faces previously associated with either capture (threatening) or caretaking (caring) activated several brain regions that allow birds to discriminate, associate, and remember visual stimuli, including the rostral hyperpallium, nidopallium, mesopallium, and lateral striatum. Perception of threatening faces activated circuitry including amygdalar, thalamic, and brainstem regions, known in humans and other vertebrates to be related to emotion, motivation, and conditioned fear learning. In contrast, perception of caring faces activated motivation and striatal regions. In our experiments and in nature, when perceiving a threatening face, crows froze and fixed their gaze (decreased blink rate), which was associated with activation of brain regions known in birds to regulate perception, attention, fear, and escape behavior. These findings indicate that, similar to humans, crows use sophisticated visual sensory systems to recognize faces and modulate behavioral responses by integrating visual information with expectation and emotion. Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior.

  1. Brain imaging reveals neuronal circuitry underlying the crow’s perception of human faces

    Science.gov (United States)

    Marzluff, John M.; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J.

    2012-01-01

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal’s brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure to familiar human faces previously associated with either capture (threatening) or caretaking (caring) activated several brain regions that allow birds to discriminate, associate, and remember visual stimuli, including the rostral hyperpallium, nidopallium, mesopallium, and lateral striatum. Perception of threatening faces activated circuitry including amygdalar, thalamic, and brainstem regions, known in humans and other vertebrates to be related to emotion, motivation, and conditioned fear learning. In contrast, perception of caring faces activated motivation and striatal regions. In our experiments and in nature, when perceiving a threatening face, crows froze and fixed their gaze (decreased blink rate), which was associated with activation of brain regions known in birds to regulate perception, attention, fear, and escape behavior. These findings indicate that, similar to humans, crows use sophisticated visual sensory systems to recognize faces and modulate behavioral responses by integrating visual information with expectation and emotion. Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior. PMID:22984177

  2. Brain imaging and human nutrition: which measures to use in intervention studies?

    Science.gov (United States)

    Sizonenko, Stéphane V; Babiloni, Claudio; Sijben, John W; Walhovd, Kristine B

    2013-09-01

    Throughout the life span, the brain is a metabolically highly active organ that uses a large proportion of total nutrient and energy intake. Furthermore, the development and repair of neural tissue depend on the proper intake of essential structural nutrients, minerals, and vitamins. Therefore, what we eat, or refrain from eating, may have an important impact on our cognitive ability and mental performance. Two of the key areas in which diet is thought to play an important role are in optimizing neurodevelopment in children and in preventing neurodegeneration and cognitive decline during aging. From early development to aging, brain imaging can detect structural, functional, and metabolic changes in humans and modifications due to altered nutrition or to additional nutritional supplementation. Inclusion of imaging measures in clinical studies can increase understanding with regard to the modification of brain structure, metabolism, and functional endpoints and may provide early sensitive measures of long-term effects. In this symposium, the utility of existing brain imaging technologies to assess the effects of nutritional intervention in humans is described. Examples of current research showing the utility of these markers are reviewed.

  3. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    OpenAIRE

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable mor...

  4. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    OpenAIRE

    Andras eJakab; Ernst eSchwartz; Gregor eKasprian; Gerlinde Maria Gruber; Daniela ePrayer; Veronika eSchöpf; Georg eLangs

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging data of 32 fetuses with no detectable morphologi...

  5. Functional magnetic resonance imaging and diffusion tensor tractography of the corticopontocerebellar tract in the human brain

    Institute of Scientific and Technical Information of China (English)

    Ji Heon Hong; Sung Ho Jang

    2011-01-01

    The anatomical organization of the corticopontocerebellar tract (CPCT) in the human brain remains poorly understood.The present study investigated probabilistic tractography of the CPCT in the human brain using diffusion tensor tractography with functional magnetic resonance imaging.CPCT data was obtained from 14 healthy subjects.CPCT images were obtained from functional magnetic resonance imaging and diffusion tensor tractography,revealing that the CPCT originated from the primary sensorimotor cortex and descended to the pontine nucleus through the corona radiata,the posterior limb of the internal capsule,and the cerebral peduncle.After crossing the pons through the transverse pontine fibers,the CPCT entered the cerebellum via the middle cerebral peduncle.However,some variation was detected in the midbrain (middle cerebral peduncle and/or medial lemniscus) and pons (ventral and/or dorsal transverse pontine fibers).The CPCT was analyzed in 3 dimensions from the cerebral cortex to the cerebellum.These results could be informative for future studies of motor control in the human brain.

  6. 101 labeled brain images and a consistent human cortical labeling protocol

    Directory of Open Access Journals (Sweden)

    Arno eKlein

    2012-12-01

    Full Text Available We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The Desikan-Killiany-Tourville (DKT protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://www.mindboggle.info/data/ website.

  7. Quantitative imaging of protein targets in the human brain with PET

    Science.gov (United States)

    Gunn, Roger N.; Slifstein, Mark; Searle, Graham E.; Price, Julie C.

    2015-11-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  8. The action sites of propofol in the normal human brain revealed by functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Hui; Wang, Wei; Zhao, Zhijing; Ge, Yali; Zhang, Jinsong; Yu, Daihua; Chai, Wei; Wu, Shengxi; Xu, Lixian

    2010-12-01

    Propofol has been used for many years but its functional target in the intact brain remains unclear. In the present study, we used functional magnetic resonance imaging to demonstrate blood oxygen level dependence signal changes in the normal human brain during propofol anesthesia and explored the possible action targets of propofol. Ten healthy subjects were enrolled in two experimental sessions. In session 1, the Observer's Assessment of Alertness/Sedation Scale was performed to evaluate asleep to awake/alert status. In session 2, images with blood oxygen level dependence contrast were obtained with echo-planar imaging on a 1.5-T Philips Gyroscan Magnetic Resonance System and analyzed. In both sessions, subjects were intravenously administered with saline (for 3 min) and then propofol (for 1.5 min) and saline again (for 10.5 min) with a constant speed infusion pump. Observer's Assessment of Alertness/Sedation Scale scoring showed that the subjects experienced conscious–sedative–unconscious–analepsia, which correlated well with the signal decreases in the anesthesia states. Propofol induced significant signal decreases in hypothalamus (18.2%±3.6%), frontal lobe (68.5%±11.2%), and temporal lobe (34.7%±6.1%). Additionally, the signals at these three sites were fulminant and changed synchronously. While in the thalamus, the signal decrease was observed in 5 of 10 of the subjects and the magnitude of decrease was 3.9%±1.6%. These results suggest that there is most significant inhibition in hypothalamus, frontal lobe, and temporal in propofol anesthesia and moderate inhibition in thalamus. These brain regions might be the targets of propofol anesthesia in human brain.

  9. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our spe...

  10. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E;

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our spe...

  11. Magnetic-resonance imaging of the human brain with an atomic magnetometer.

    Science.gov (United States)

    Savukov, I; Karaulanov, T

    2013-07-22

    Magnetic resonance imaging (MRI) is conventionally performed in very high fields, and this leads to some restrictions in applications. To remove such restrictions, the ultra-low field MRI approach has been proposed. Because of the loss of sensitivity, the detection methods based on superconducting quantum interference devices (SQUIDs) in a shielded room were used. Atomic magnetometers have similar sensitivity as SQUIDs and can also be used for MRI, but there are some technical difficulties to overcome. We demonstrate that MRI of the human brain can be obtained with an atomic magnetometer with in-plane resolution of 3 mm in 13 min.

  12. Using human brain imaging studies as a guide toward animal models of schizophrenia.

    Science.gov (United States)

    Bolkan, S S; Carvalho Poyraz, F; Kellendonk, C

    2016-05-03

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points toward the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients.

  13. Using human brain imaging studies as a guide towards animal models of schizophrenia

    Science.gov (United States)

    BOLKAN, Scott S.; DE CARVALHO, Fernanda D.; KELLENDONK, Christoph

    2015-01-01

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points towards the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients. PMID:26037801

  14. Harnessing anesthesia and brain imaging for the study of human consciousness.

    Science.gov (United States)

    Långsjo, Jaakko W; Revonsuo, Antti; Scheinin, Harry

    2014-01-01

    Philosophers have been trying to solve the mind-body problem for hundreds of years. Consciousness is the core of this problem: How do subjective conscious sensations, perceptions, feelings, and thoughts arise out of objective physical brain activities? How is this subjective conscious world in causal interaction with the objective sensory and motor mechanisms of the brain and the body? Although we witness the seamless interaction of the mental and the physical worlds in our everyday lives, no scientific theory can yet fully describe or explain it. The hard problem of consciousness, the question why and how any brain activity should be accompanied by any subjective experiences at all, remains a mystery and a challenge for modern science. Anesthesia offers a unique and safe way to directly manipulate the state of consciousness and can, thus, be used as a tool in consciousness research. With neuroimaging, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) performed at different states of consciousness, it is possible to visualize the state-related changes and pinpoint the brain structures or neural mechanisms related to changes in consciousness. With these tools, neurosciences now show promise in disentangling the eternal enigma of human consciousness. In this article, we will review the recent advancements in the field.

  15. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans.

    Science.gov (United States)

    Purnell, J Q; Klopfenstein, B A; Stevens, A A; Havel, P J; Adams, S H; Dunn, T N; Krisky, C; Rooney, W D

    2011-03-01

    In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during glucose ingestion or infusion have demonstrated suppression of hypothalamic signalling, but no studies have compared the effects of glucose and fructose. We therefore sought to determine if the brain response differed to glucose vs. fructose in humans independently of the ingestive process. Nine healthy, normal weight subjects underwent blood oxygenation level dependent (BOLD) fMRI measurements during either intravenous (IV) glucose (0.3 mg/kg), fructose (0.3 mg/kg) or saline, administered over 2 min in a randomized, double-blind, crossover study. Blood was sampled every 5 min during a baseline period and following infusion for 60 min in total for glucose, fructose, lactate and insulin levels. No significant brain BOLD signal changes were detected in response to IV saline. BOLD signal in the cortical control areas increased during glucose infusion (p = 0.002), corresponding with increased plasma glucose and insulin levels. In contrast, BOLD signal decreased in the cortical control areas during fructose infusion (p = 0.006), corresponding with increases of plasma fructose and lactate. Neither glucose nor fructose infusions significantly altered BOLD signal in the hypothalamus. In normal weight humans, cortical responses as assessed by BOLD fMRI to infused glucose are opposite to those of fructose. Differential brain responses to these sugars and their metabolites may provide insight into the neurologic basis for dysregulation of food intake during high dietary fructose intake. © 2011 Blackwell Publishing Ltd.

  16. The cerebral imaging using vessel-around method in the perfusion CT of the human brain

    Science.gov (United States)

    Ahn, Choong-Il; Choi, Seung-Wook; Park, Seung-Chul; Shin, Yeong-Gil; Kim, Jae-Hyoung; Chong, Gi-Bong

    2005-04-01

    Perfusion CT has been successfully used as a functional imaging technique for diagnosis of patients with hyperacute stroke. However, the commonly used methods based on curve-fitting are time consuming. Numerous researchers have investigated to what extent Perfusion CT can be used for the quantitative assessment of cerebral ischemia and to rapidly obtain comprehensive information regarding the extent of ischemic damage in acute stroke patients. The aim of this study is to propose an alternative approach to rapidly obtain the brain perfusion mapping and to show the proposed cerebral flow imaging of the vessel and tissue in human brain be reliable and useful. Our main design concern was algorithmic speed, robustness and automation in order to allow its potential use in the emergency situation of acute stroke. To obtain a more effective mapping, we analyzed the signal characteristics of Perfusion CT and defined the vessel-around model which includes the vessel and tissue. We proposed a nonparametric vessel-around approach which automatically discriminates the vessel and tissue around vessel from non-interested brain matter stratifying the level of maximum enhancement of pixel-based TAC. The stratification of pixel-based TAC was executed using the mean and standard deviation of the signal intensity of each pixel and mapped to the cerebral flow imaging. The defined vessel-around model was used to show the cerebral flow imaging and to specify the area of markedly reduced perfusion with loss of function of still viable neurons. Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. The vessel-around approach reduces the computation time significantly when compared with the perfusion imaging using the GVF. The proposed cerebral imaging shows reliable results which are validated by physicians and

  17. A model of working memory: bridging the gap between electrophysiology and human brain imaging.

    Science.gov (United States)

    Tagamets, M A; Horwitz, B

    2000-01-01

    Human neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging have made possible the study of large-scale distributed networks in the behaving human brain. Although many imaging studies support and extend knowledge gained from other experimental modalities such as animal single-cell recordings, there have also been a substantial number of experiments that appear to contradict the animal studies. Part of the reason for this is that neuroimaging is an indirect measure of neuronal firing activity, and thus interpretation is difficult. Computational modeling can help to bridge the gap by providing a substrate for making explicit the assumptions and constraints provided from other sources such as anatomy, physiology and behavior. We describe a large-scale model of working memory that we have used to examine a number of issues relating to the interpretation of imaging data. The gating mechanism that regulates engagement and retention of short-term memory is revised to better reflect hypothesized underlying neuromodulatory mechanisms. It is shown that in addition to imparting better performance for the memory circuit, this mechanism also provides a better match to imaging data from working memory studies.

  18. Triple-Quantum Filtered NMR Imaging of Sodium -23 in the Human Brain

    Science.gov (United States)

    Keltner, John Robinson

    In the past multiple-quantum filtered imaging of biexponential relaxation sodium-23 nuclei in the human brain has been limited by low signal to noise ratios; this thesis demonstrates that such imaging is feasible when using a modified gradient-selected triple-quantum filter at a repetition time which maximizes the signal to noise ratio. Nuclear magnetic resonance imaging of biexponential relaxation sodium-23 (^{23}Na) nuclei in the human brain may be useful for detecting ischemia, cancer, and pathophysiology related to manic-depression. Multiple -quantum filters may be used to selectively image biexponential relaxation ^{23}Na signals since these filters suppress single-exponential relaxation ^{23}Na signals. In this thesis, the typical repetition times (200 -300 ms) used for in vivo multiple-quantum filtered ^{23}Na experiments are shown to be approximately 5 times greater than the optimal repetition time which maximizes multiple-quantum filtered SNR. Calculations and experimental verification show that the gradient-selected triple-quantum (GS3Q) filtered SNR for ^ {23}Na in a 4% agarose gel increases by a factor of two as the repetition time decreases from 300 ms to 55 ms. It is observed that a simple reduction of repetition time also increases spurious single-quantum signals from GS3Q filtered experiments. Irreducible superoperator calculations have been used to design a modified GS3Q filter which more effectively suppresses the spurious single-quantum signals. The modified GS3Q filter includes a preparatory crusher gradient and two-step-phase cycling. Using the modified GS3Q filter and a repetition time of 70 ms, a three dimensional triple-quantum filtered image of a phantom modelling ^{23} Na in the brain was obtained. The phantom consisted of two 4 cm diameter spheres inside of a 8.5 cm x 7 cm ellipsoid. The two spheres contained 0.012 and 0.024 M ^{23}Na in 4% agarose gel. Surrounding the spheres and inside the ellipsoid was 0.03 M aqueous ^{23}Na. The image

  19. Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-Chau [National Taiwan University, Graduate Institute of Oncology, Taipei (China); National Taiwan University, Graduate Institute of Clinical Medicine, Taipei (China); National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Chen, Ya-Fang; Yang, Shun-Chung; My, Pei-Chi [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Tseng, Han-Min [National Taiwan University Hospital, Department of Neurology, Taipei (China)

    2015-08-15

    To numerically and experimentally investigate the robustness of intravoxel incoherent motion (IVIM) magnetic resonance imaging in measuring perfusion indexes in the human brain. Eighteen healthy volunteers were imaged on a 3 T clinical system. Data of IVIM imaging (12 b-values ranging from 0 to 1000 s/mm{sup 2}, 12 repetitions) were fitted with a bi-exponential model to extract blood volume fraction (f) and pseudo-diffusion coefficient (D*). The robustness of measurement was assessed by bootstrapping. Dynamic susceptibility contrast (DSC) imaging and arterial spin-labelling (ASL) imaging were performed for cross-modal comparison. Numerical simulations were performed to assess the accuracy and precision of f and D* estimates at varied signal-to-noise ratio (SNR{sub b1000}). Based on our experimental setting (SNR{sub b1000} ∝ 30), the average error/variability is ∝ 5 %/25 % for f and ∝ 100 %/30 % for D* in gray matter, and ∝ 10 %/50 % for f and ∝ 300 %/60 % for D* in white matter. Correlation was found between f and DSC-derived cerebral blood volume in gray matter (r = 0.29 - 0.48 across subjects, p < 10{sup -5}), but not in white matter. No correlation was found between f-D* product and ASL-derived cerebral blood flow. f may provide noninvasive measurement of cerebral blood volume, particularly in gray matter. D* has limited robustness and should be interpreted with caution. (orig.)

  20. Unsupervised feature learning improves prediction of human brain activity in response to natural images.

    Directory of Open Access Journals (Sweden)

    Umut Güçlü

    2014-08-01

    Full Text Available Encoding and decoding in functional magnetic resonance imaging has recently emerged as an area of research to noninvasively characterize the relationship between stimulus features and human brain activity. To overcome the challenge of formalizing what stimulus features should modulate single voxel responses, we introduce a general approach for making directly testable predictions of single voxel responses to statistically adapted representations of ecologically valid stimuli. These representations are learned from unlabeled data without supervision. Our approach is validated using a parsimonious computational model of (i how early visual cortical representations are adapted to statistical regularities in natural images and (ii how populations of these representations are pooled by single voxels. This computational model is used to predict single voxel responses to natural images and identify natural images from stimulus-evoked multiple voxel responses. We show that statistically adapted low-level sparse and invariant representations of natural images better span the space of early visual cortical representations and can be more effectively exploited in stimulus identification than hand-designed Gabor wavelets. Our results demonstrate the potential of our approach to better probe unknown cortical representations.

  1. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  2. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  3. Automatic segmentation of the caudate nucleus from human brain MR images.

    Science.gov (United States)

    Xia, Yan; Bettinger, Keith; Shen, Lin; Reiss, Allan L

    2007-04-01

    We describe a knowledge-driven algorithm to automatically delineate the caudate nucleus (CN) region of the human brain from a magnetic resonance (MR) image. Since the lateral ventricles (LVs) are good landmarks for positioning the CN, the algorithm first extracts the LVs, and automatically localizes the CN from this information guided by anatomic knowledge of the structure. The face validity of the algorithm was tested with 55 high-resolution T1-weighted magnetic resonance imaging (MRI) datasets, and segmentation results were overlaid onto the original image data for visual inspection. We further evaluated the algorithm by comparing automated segmentation results to a "gold standard" established by human experts for these 55 MR datasets. Quantitative comparison showed a high intraclass correlation between the algorithm and expert as well as high spatial overlap between the regions-of-interest (ROIs) generated from the two methods. The mean spatial overlap +/- standard deviation (defined by the intersection of the 2 ROIs divided by the union of the 2 ROIs) was equal to 0.873 +/- 0.0234. The algorithm has been incorporated into a public domain software program written in Java and, thus, has the potential to be of broad benefit to neuroimaging investigators interested in basal ganglia anatomy and function.

  4. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain. Application to assess Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Hironaka; Katayama, Yasuo; Tsuganezawa, Toshikazu; Yamamuro, Manabu; Terashi, Akiro; Owan, Chojin [Nippon Medical School, Tokyo (Japan)

    1998-08-01

    Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging is a new algorithm for the treatment of apparent diffusion tensor using the three primary colors. To determine if 3DAC has a clinical application for human brain, six normal volunteers and twenty patients with supratentorial cerebrovascular accidents were examined using clinical magnetic resonance imaging (MRI), and the changes in the 3DAC images associated with Wallerian degeneration of the pyramidal tract were evaluated. The 3DAC images exhibited impressive anatomical resolution. In all chronic stage patients with hemiparesis, the colors in the pyramidal tract were faded. Patients examined during the acute stage who later recovered from hemiparesis had no visible changes of the 3DAC image, whereas patients who recovered poorly showed distinct color fading in the pyramidal tract within 14 days following stroke. In conclusion, very fine anatomical structures are visible on 3DAC images, and it can be used as a diagnostic tool for the human brain. (author)

  5. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo-Variawa, S [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Hey-Cunningham, A J [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Lehnert, W [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kench, P L [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kassiou, M [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Banati, R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Meikle, S R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia)

    2007-11-21

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm{sup 3} FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm{sup 3}) and 3D reprojection (3DRP) (5.9-9.1 mm{sup 3}). A pilot {sup 18}F-2-fluoro-2-deoxy-d-glucose ([{sup 18}F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  6. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Science.gov (United States)

    Cuaya, Laura V; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  7. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    Science.gov (United States)

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  8. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    Science.gov (United States)

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  9. Measurement of human advanced brain function in calculation processing using functional magnetic resonance imaging (fMRI)

    Energy Technology Data Exchange (ETDEWEB)

    Hashida, Masahiro; Yamauchi, Syuichi [Yamaguchi Univ., Ube (Japan). Hospital; Wu, Jing-Long (and others)

    2001-06-01

    Using functional magnetic resonance imaging (fMRI), we investigated the activated areas of the human brain related with calculation processing as an advanced function of the human brain. Furthermore, we investigated differences in activation between visual and auditory calculation processing. The eight subjects (all healthy men) were examined on a clinical MR unit (1.5 tesla) with a gradient echo-type EPI sequence. SPM99 software was used for data processing. Arithmetic problems were used for the visual stimulus (visual image) as well as for the auditory stimulus (audible voice). The stimuli were presented to the subjects as follows: no stimulation, presentation of random figures, and presentation of arithmetic problems. Activated areas of the human brain related with calculation processing were the inferior parietal lobule, middle frontal gyrus, and inferior frontal gyrus. Comparing the arithmetic problems with the presentation of random figures, we found that the activated areas of the human brain were not differently affected by visual and auditory systems. The areas activated in the visual and auditory experiments were observed at nearly the same place in the brain. It is possible to study advanced functions of the human brain such as calculation processing in a general clinical hospital when adequate tasks and methods of presentation are used. (author)

  10. Functional Brain Imaging: A Comprehensive Survey

    CERN Document Server

    Sarraf, Saman

    2016-01-01

    Functional brain imaging allows measuring dynamic functionality in all brain regions. It is broadly used in clinical cognitive neuroscience as, well as in research. It will allow the observation of neural activities in the brain simultaneously. From the beginning when functional brain imaging was initiated by the mapping of brain functions proposed by phrenologists, many scientists were asking why we need to image brain functionality since we have already structural information. Simply, their important question was including a great answer. Functional information of the human brain would definitely complement structural information, helping to have a better understanding of what is happening in the brain. This paper, which could be useful to those who have an interest in functional brain imaging, such as engineers, will present a quick review of modalities used in functional brain imaging. We will concentrate on the most used techniques in functional imaging which are functional magnetic resonance imaging (fM...

  11. Quantitative analysis of human brain MR images at ultrahigh field strength

    NARCIS (Netherlands)

    Doan, Nhat Trung

    2014-01-01

    T2*-weighted imaging provides a non-invasive means to study susceptibility changes of substances such as myelin and iron in the brain. Particularly, phase images show an increased sensitivity to magnetic susceptibility differences with increased field strengths. The primary goal of the thesis was to

  12. Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging.

    Science.gov (United States)

    Jahng, Geon-Ho; Song, Enmin; Zhu, Xiao-Ping; Matson, Gerald B; Weiner, Michael W; Schuff, Norbert

    2005-03-01

    The Committee of Human Research of the University of California San Francisco approved this study, and all volunteers provided written informed consent. The goal of this study was to prospectively determine the global and regional reliability and reproducibility of noninvasive brain perfusion measurements obtained with different pulsed arterial spin-labeling (ASL) magnetic resonance (MR) imaging methods and to determine the extent to which within-subject variability and random noise limit reliability and reproducibility. Thirteen healthy volunteers were examined twice within 2 hours. The pulsed ASL methods compared in this study differ mainly with regard to magnetization transfer and eddy current effects. There were two main results: (a) Pulsed ASL MR imaging consistently had high measurement reliability (intraclass correlation coefficients greater than 0.75) and reproducibility (coefficients of variation less than 8.5%), and (b) random noise rather than within-subject variability limited reliability and reproducibility. It was concluded that low signal-to-noise ratios substantially limit the reliability and reproducibility of perfusion measurements.

  13. Functional Brain Imaging by EEG: A Window to the Human Mind

    DEFF Research Database (Denmark)

    Stahlhut, Carsten

    be confused with each other as noise is present in the EEG recordings. Moreover, we examine how errors in the forward model affect the source confusion. The primary aim of this thesis is to provide sharper EEG brain images by improving current inverse methods. In this relation we focus the attention on two......This thesis presents electroencephalography (EEG) brain imaging by covering topics as empirical evaluation of source confusion, probabilistic inverse methods, and source analysis performed on infant EEG data. In terms of source confusion we inspect how current sources within the brain may...... topics in EEG source reconstruction, namely, the forward progation model (describing the mapping from the current sources within the brain to the sensors at the scalp) and the temporal patterns present in the EEG. As forward models may suffer from a number of errors including the geometrical...

  14. Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging.

    Science.gov (United States)

    Hasan, Khader M; Sankar, Ambika; Halphen, Christopher; Kramer, Larry A; Brandt, Michael E; Juranek, Jenifer; Cirino, Paul T; Fletcher, Jack M; Papanicolaou, Andrew C; Ewing-Cobbs, Linda

    2007-10-29

    We used a diffusion tensor imaging-based whole-brain tissue segmentation to characterize age-related changes in (a) whole-brain grey matter, white matter, and cerebrospinal fluid relative to intracranial volume and (b) the corresponding brain tissue microstructure using measures of diffusion tensor anisotropy and mean diffusivity. The sample, a healthy cohort of 119 right-handed males and females aged 7-68 years. Our results demonstrate that white matter and grey matter volumes and their corresponding diffusion tensor anisotropy and mean diffusivity follow nonlinear trajectories with advancing age. In contrast, cerebrospinal fluid volume increases linearly with age.

  15. DCS-SVM: a novel semi-automated method for human brain MR image segmentation.

    Science.gov (United States)

    Ahmadvand, Ali; Daliri, Mohammad Reza; Hajiali, Mohammadtaghi

    2016-12-08

    In this paper, a novel method is proposed which appropriately segments magnetic resonance (MR) brain images into three main tissues. This paper proposes an extension of our previous work in which we suggested a combination of multiple classifiers (CMC)-based methods named dynamic classifier selection-dynamic local training local Tanimoto index (DCS-DLTLTI) for MR brain image segmentation into three main cerebral tissues. This idea is used here and a novel method is developed that tries to use more complex and accurate classifiers like support vector machine (SVM) in the ensemble. This work is challenging because the CMC-based methods are time consuming, especially on huge datasets like three-dimensional (3D) brain MR images. Moreover, SVM is a powerful method that is used for modeling datasets with complex feature space, but it also has huge computational cost for big datasets, especially those with strong interclass variability problems and with more than two classes such as 3D brain images; therefore, we cannot use SVM in DCS-DLTLTI. Therefore, we propose a novel approach named "DCS-SVM" to use SVM in DCS-DLTLTI to improve the accuracy of segmentation results. The proposed method is applied on well-known datasets of the Internet Brain Segmentation Repository (IBSR) and promising results are obtained.

  16. Multimodal Randomized Functional MR Imaging of the Effects of Methylene Blue in the Human Brain.

    Science.gov (United States)

    Rodriguez, Pavel; Zhou, Wei; Barrett, Douglas W; Altmeyer, Wilson; Gutierrez, Juan E; Li, Jinqi; Lancaster, Jack L; Gonzalez-Lima, Francisco; Duong, Timothy Q

    2016-11-01

    Purpose To investigate the sustained-attention and memory-enhancing neural correlates of the oral administration of methylene blue in the healthy human brain. Materials and Methods The institutional review board approved this prospective, HIPAA-compliant, randomized, double-blinded, placebo-controlled clinical trial, and all patients provided informed consent. Twenty-six subjects (age range, 22-62 years) were enrolled. Functional magnetic resonance (MR) imaging was performed with a psychomotor vigilance task (sustained attention) and delayed match-to-sample tasks (short-term memory) before and 1 hour after administration of low-dose methylene blue or a placebo. Cerebrovascular reactivity effects were also measured with the carbon dioxide challenge, in which a 2 × 2 repeated-measures analysis of variance was performed with a drug (methylene blue vs placebo) and time (before vs after administration of the drug) as factors to assess drug × time between group interactions. Multiple comparison correction was applied, with cluster-corrected P methylene blue increased response in the bilateral insular cortex during a psychomotor vigilance task (Z = 2.9-3.4, P = .01-.008) and functional MR imaging response during a short-term memory task involving the prefrontal, parietal, and occipital cortex (Z = 2.9-4.2, P = .03-.0003). Methylene blue was also associated with a 7% increase in correct responses during memory retrieval (P = .01). Conclusion Low-dose methylene blue can increase functional MR imaging activity during sustained attention and short-term memory tasks and enhance memory retrieval. (©) RSNA, 2016 Online supplemental material is available for this article.

  17. Demonstration of brain noise on human EEG signals in perception of bistable images

    Science.gov (United States)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  18. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor.

    Science.gov (United States)

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S; Zhau, Haiyen E; Chung, Leland W K

    2015-10-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.

  19. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor

    Science.gov (United States)

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S.; Zhau, Haiyen E.; Chung, Leland W.K.

    2016-01-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic aniontransporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors. PMID:26197410

  20. MR venography of the human brain using susceptibility weighted imaging at very high field strength

    NARCIS (Netherlands)

    Koopmans, Peter J.; Manniesing, Rashindra; Niessen, Wiro J.; Viergever, Max A.; Barth, Markus

    2008-01-01

    Objective We investigate the implications of high magnetic field strength on MR venography based on susceptibility-weighted imaging (SWI) and estimate the optimum echo time to obtain maximum contrast between blood and brain tissue. Materials and methods We measured tissue contrast and T*(2) relaxati

  1. Signal changes in gradient echo images of human brain induced by hypo- and hyperoxia

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B;

    1995-01-01

    The effect of hypoxia (inspired oxygen fraction, FiO2 of 10% and 16%) and hyperoxia (FiO2) of 100%) on gradient echo images of the brain using long echo times was investigated in six healthy volunteers (age 24-28 years). Different flip angles were used with an FiO2 of 10% to assess the importance...

  2. Near-infrared spectroscopy of image clarity perception in the human brain

    Science.gov (United States)

    Lugo, J. E.; Habak, C.; Doti, Rafael; Faubert, Jocelyn

    2014-09-01

    The perception of blur in humans is intrinsic to our visual system, and dioptric power can improve clarity in many cases. This was evaluated experimentally to establish the best correction with dioptric power shifts. We used Near Infrared Spectroscopy (NIRS) to measure Oxy-, Deoxy- and Total-hemoglobin concentration changes in the brain while viewing images and reading a Snellen chart. Participants were tested with their usual correction (no diopter power shift (0 D)), with a 0.25 diopter power shift (0.25 D), and with a 0.5 diopter power shift (0.5 D). The concept of Approximate Entropy (AE) was applied to quantify the regularity of these hemoglobin time series of finite length. AE computations are based on the likelihood that similar templates in a time series remain similar on the next incremental comparison, so that time series with large AE have high irregular fluctuation. We found that the dioptric power shift eliciting the highest AE indicates the clearest visual condition for subjects. This technique may impact the current way in which ophthalmic lenses are prescribed.

  3. MR imaging of human brain during apnea. Evaluation by T{sub 2}-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kamba, Masayuki; Suto, Yuji; Ohta, Yoshio; Inoue, Yuichi; Higami, Shigeru [Tottori Univ., Yonago (Japan). Faculty of Medicine

    1997-09-01

    We performed T{sub 2}-weighted MRI studies of normal subjects and patients with obstructive sleep apnea (OSA) to determine the potential of T{sub 2}-weighted MRI for use as a noninvasive method for evaluation of cerebral hemodynamics. We studied 8 normal subjects and 6 patients with OSA. For normal subjects, one-shot turbo gradient spin echo images (repetition time, 3 s; echo time, 42 ms) were obtained during breath-holding. For patients with OSA, 3 to 6 series of 128 sequential images were obtained during sleep. For the normal subjects, signal intensities for cortex and white matter increased by 0.78 to 4.63% (mean, 2.40%) and -0.35 to 3.60% (mean, 0.77%), respectively. Linear regression analysis yielded slopes of 0.036 to 0.226%/s (mean, 0.092%/s) for cortex and slopes of -0.049 to 0.258%/s (mean, 0.024%/s) for white matter. For the patients with OSA, signal intensities for cortex and white matter increased by 1.36 to 5.95% (mean, 3.00%) and -0.92 to 1.68% (mean, 0.72%), respectively. Linear regression analysis yielded slopes of 0.056 to 0.691%/s (mean, 0.252%/s) for cortex and slopes of -0.077 to 0.222%/s (mean, 0.017%/s) for white matter. A significant difference was found between slopes for cerebral cortex in patients with OSA and those in normal subjects (p=0.001). The increase in signal intensity during apnea suggests that increase in cerebral blood flow in response to hypercapnia overwhelms the effects of decreased arterial blood oxygenation and increased cerebral blood volume. Changes in signal intensity thus appear to reflect hemodynamic responses to changes in respiratory condition. These findings suggest that T{sub 2}-weighted MRI has the potential for use as a noninvasive method for evaluation of global change in cerebral hemodynamics. (author)

  4. In Vivo Imaging of Human MDR1 Transcription in the Brain and Spine of MDR1-Luciferase Reporter Mice.

    Science.gov (United States)

    Yasuda, Kazuto; Cline, Cynthia; Lin, Yvonne S; Scheib, Rachel; Ganguly, Samit; Thirumaran, Ranjit K; Chaudhry, Amarjit; Kim, Richard B; Schuetz, Erin G

    2015-11-01

    P-glycoprotein (Pgp) [the product of the MDR1 (ABCB1) gene] at the blood-brain barrier (BBB) limits central nervous system (CNS) entry of many prescribed drugs, contributing to the poor success rate of CNS drug candidates. Modulating Pgp expression could improve drug delivery into the brain; however, assays to predict regulation of human BBB Pgp are lacking. We developed a transgenic mouse model to monitor human MDR1 transcription in the brain and spinal cord in vivo. A reporter construct consisting of ∼10 kb of the human MDR1 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line (MDR1-luc). Fluorescence in situ hybridization localized the MDR1-luciferase transgene on chromosome 3. Reporter gene expression was monitored with an in vivo imaging system following D-luciferin injection. Basal expression was detectable in the brain, and treatment with activators of the constitutive androstane, pregnane X, and glucocorticoid receptors induced brain and spinal MDR1-luc transcription. Since D-luciferin is a substrate of ABCG2, the feasibility of improving D-luciferin brain accumulation (and luciferase signal) was tested by coadministering the dual ABCB1/ABCG2 inhibitor elacridar. The brain and spine MDR1-luc signal intensity was increased by elacridar treatment, suggesting enhanced D-luciferin brain bioavailability. There was regional heterogeneity in MDR1 transcription (cortex > cerebellum) that coincided with higher mouse Pgp protein expression. We confirmed luciferase expression in brain vessel endothelial cells by ex vivo analysis of tissue luciferase protein expression. We conclude that the MDR1-luc mouse provides a unique in vivo system to visualize MDR1 CNS expression and regulation.

  5. Study of complex hemodynamic fluctuations in the human brain by simultaneous near-infrared spectro-imaging and functional magnetic resonance imaging

    Science.gov (United States)

    Toronov, Vladislav Y.; Franceschini, Maria-Angela; Fantini, Sergio; Webb, Andrew G.; Gratton, Enrico

    2004-05-01

    In this paper we discuss temporal and spatial patterns of brain hemodynamics under rest and motor stimulation conditions obtained by functional magnetic resonance imaging and simultaneous fast multi-channel near-infrared spectro-imaging in the human motor cortex. Our data indicate that the main difference between the brain hemodynamics under the repetitive stimulation and the rest conditions is not in the appearance of hemoglobin concentration changes during the stimulations (since fluctuations occur at rest as well), but in their more regular, i.e. phase-synchronous with the stimulation behavior.

  6. The Genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics.

    Science.gov (United States)

    Piétu, G; Mariage-Samson, R; Fayein, N A; Matingou, C; Eveno, E; Houlgatte, R; Decraene, C; Vandenbrouck, Y; Tahi, F; Devignes, M D; Wirkner, U; Ansorge, W; Cox, D; Nagase, T; Nomura, N; Auffray, C

    1999-02-01

    Expression profiles of 5058 human gene transcripts represented by an array of 7451 clones from the first IMAGE Consortium cDNA library from infant brain have been collected by semiquantitative hybridization of the array with complex probes derived by reverse transcription of mRNA from brain and five other human tissues. Twenty-one percent of the clones corresponded to transcripts that could be classified in general categories of low, moderate, or high abundance. These expression profiles were integrated with cDNA clone and sequence clustering and gene mapping information from an upgraded version of the Genexpress Index. For seven gene transcripts found to be transcribed preferentially or specifically in brain, the expression profiles were confirmed by Northern blot analyses of mRNA from eight adult and four fetal tissues, and 15 distinct regions of brain. In four instances, further documentation of the sites of expression was obtained by in situ hybridization of rat-brain tissue sections. A systematic effort was undertaken to further integrate available cytogenetic, genetic, physical, and genic map informations through radiation-hybrid mapping to provide a unique validated map location for each of these genes in relation to the disease map. The resulting Genexpress IMAGE Knowledge Base is illustrated by five examples presented in the printed article with additional data available on a dedicated Web site at the address http://idefix.upr420.vjf.cnrs.fr/EXPR++ +/ welcome.html.

  7. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our...... and after chemotherapy. The spectra showed considerable changes during chemotherapy. It is concluded that 31P spectroscopy using surface coils is of limited value for tumour characterization, but may add useful information in monitoring the effect of chemotherapy....

  8. Long-wave infrared functional brain imaging in human: a pilot study.

    Science.gov (United States)

    Joyal, Christian C; Henry, Mylene

    2013-01-01

    Although some authors suggest to use Long-Wave Infrared (LWIR) sensors to evaluate brain functioning, the link between emissions of LWIR and mental effort is not established. The goal of this pilot study was to determine whether frontal LWIR emissions vary during execution of neuropsychological tasks known to differentially activate the pre-frontal cortex (simple color presentations, induction of the Stroop effect, and a gambling task with real money). Surprisingly, LWIR emissions as measured with bilateral frontal sensors in 47 participants significantly differed between tasks, in the supposed direction (Colorpilot study suggests that investigations of convergent validity with other types of brain imaging techniques can be initiated with LWIR imaging. If confirmed, this technique would offer a simple and accessible method to evaluate frontal cortex activation.

  9. Scatter correction for large non-human primate brain imaging using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo-Variawa, S; Lehnert, W; Banati, R B; Meikle, S R, E-mail: snai3212@uni.sydney.edu.au [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia)

    2011-04-07

    The baboon is well suited to pre-clinical evaluation of novel radioligands for positron emission tomography (PET). We have previously demonstrated the feasibility of using a high resolution animal PET scanner for this application in the baboon brain. However, the non-homogenous distribution of tissue density within the head may give rise to photon scattering effects that reduce contrast and compromise quantitative accuracy. In this study, we investigated the magnitude and distribution of scatter contributing to the final reconstructed image and its variability throughout the baboon brain using phantoms and Monte Carlo simulated data. The scatter fraction is measured up to 36% at the centre of the brain for a wide energy window (350-650 keV) and 19% for a narrow (450-650 keV) window. We observed less than 3% variation in the scatter fraction throughout the brain and found that scattered events arising from radioactivity outside the field of view contribute less than 1% of measured coincidences. In a contrast phantom, scatter and attenuation correction improved contrast recovery compared with attenuation correction on its own and reduced bias to less than 10% at the expense of the reduced signal-to-noise ratio. We conclude that scatter correction is a necessary step for ensuring high quality measurements of the radiotracer distribution in the baboon brain with a microPET scanner, while it is not necessary to model out of field of view scatter or a spatially variant scatter function.

  10. Quantitative analysis of sodium fast and slow component in in vivo human brain tissue using MR Na image

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Hirokazu; Yamasaki, Katsuhito; Kidena, Hitoshi; Kono, Michio (Kobe Univ. (Japan). School of Medicine)

    1992-12-01

    In vivo sodium concentrations in the normal brain tissue and a tumorous tissue were analyzed using MR Na image. The nuclear magnetic resonance enabled us to divide the signal from sodium in the living tissue into 2 parts based on the differences of T[sub 2] value. Those are fast component having the T[sub 2] value of less than 5 msec and slow component of 15-40 msec. We investigated the effect of macromolecules on T[sub 2] value of sodium image using polyvinylalcohol (PVA) powder. MR Na image was taken with the parameters of TR/TD, 110 ms/1.9 ms (FID image) and TR/TE, 110 ms/20 ms (SE image). Saline solution showed high intensity on both FID image and SE image. Saline solution added PVA (PVA phantom) also showed high intensity on FID image, whereas the signal intensity of PVA phantom in SE image extinguished. To know the relation between the signal intensity and sodium concentration, sodium concentration-signal intensity curve was obtained using phantoms with various sodium concentrations (0.05-1.0%). This curve showed a direct proportion between sodium concentration and signal intensity on Na image. We measured further the sodium concentrations of the human brain tissue. Sodium phantoms were arranged around the heads and the MR Na images of the normal brains from 3 volunteers and a patient with a brain tumor (meningioma) were taken. The sodium concentrations of occipital lobe, basal ganglia and the tumorous tissue were calculated using the sodium concentration-signal intensity curve obtained from the phantoms arranged around the heads. Two tailed t-test shows significant differences (p<0.01) in total sodium and slow component between occipital lobe and basal ganglia. Further more high concentration of fast component in tumorous tissue was observed. As fast component reflects the intracellular condition, present experiments suggest that measurement of fast component may be useful for obtaining the functional information of the brain tissue. (author).

  11. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  12. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  13. MRI brain imaging.

    Science.gov (United States)

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  14. 3D spatially encoded and accelerated TE-averaged echo planar spectroscopic imaging in healthy human brain.

    Science.gov (United States)

    Iqbal, Zohaib; Wilson, Neil E; Thomas, M Albert

    2016-03-01

    Several different pathologies, including many neurodegenerative disorders, affect the energy metabolism of the brain. Glutamate, a neurotransmitter in the brain, can be used as a biomarker to monitor these metabolic processes. One method that is capable of quantifying glutamate concentration reliably in several regions of the brain is TE-averaged (1) H spectroscopic imaging. However, this type of method requires the acquisition of multiple TE lines, resulting in long scan durations. The goal of this experiment was to use non-uniform sampling, compressed sensing reconstruction and an echo planar readout gradient to reduce the scan time by a factor of eight to acquire TE-averaged spectra in three spatial dimensions. Simulation of glutamate and glutamine showed that the 2.2-2.4 ppm spectral region contained 95% glutamate signal using the TE-averaged method. Peak integration of this spectral range and home-developed, prior-knowledge-based fitting were used for quantitation. Gray matter brain phantom measurements were acquired on a Siemens 3 T Trio scanner. Non-uniform sampling was applied retrospectively to these phantom measurements and quantitative results of glutamate with respect to creatine 3.0 (Glu/Cr) ratios showed a coefficient of variance of 16% for peak integration and 9% for peak fitting using eight-fold acceleration. In vivo scans of the human brain were acquired as well and five different brain regions were quantified using the prior-knowledge-based algorithm. Glu/Cr ratios from these regions agreed with previously reported results in the literature. The method described here, called accelerated TE-averaged echo planar spectroscopic imaging (TEA-EPSI), is a significant methodological advancement and may be a useful tool for categorizing glutamate changes in pathologies where affected brain regions are not known a priori. Copyright © 2016 John Wiley & Sons, Ltd.

  15. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... between grey and white matter as well as regional differences within the white matter were seen. In two patients with infarction, alternations in water self diffusion were seen in the region of the infarct. Likewise, pronounced changes in brain water self diffusion were observed in a patient with benign...... intracranial hypertension. The results indicate that brain water self diffusion can be measured in vivo with reasonable accuracy. The clinical examples suggest that diffusion measurements may be clinically useful adding further information about in vivo MR tissue characterization....

  16. Quantitative magnetic resonance imaging and studies of degenerative diseases of the developing human brain

    Energy Technology Data Exchange (ETDEWEB)

    Caviness, V.S. Jr. (Massachusetts General Hospital, Boston, MA (United States)); Phil, D.; Filipek, P.A.; Kennedy, D.N.

    1992-05-01

    The Rett syndrome is a progressive disorder which is associated with regression of psychomotor development and precipitous deceleration of brain growth during the first year of life. General histopathological surveys in postmortem specimens have identified degeneration of subpopulations of neurons of the nigrostriatal system but no other evidence of degenerative process. Magnetic resonance imaging-based morphometry may usefully guide application of rigorous but demanding quantitative histologic search for evidence of neuronal degeneration. The volumes of the principal set of cortical and nuclear structures of principal interest in the disorder may be measured by currently avaiable MRI-based methods. Opimized levels of precision now allow detection of volumetric changes over time in the same brain of approximately 10% at the 95% confidence level. (author).

  17. Minireview of Stereoselective Brain Imaging

    DEFF Research Database (Denmark)

    Smith, Donald F.; Jakobsen, Steen

    2014-01-01

    Stereoselectivity is a fundamental principle in living systems. Stereoselectivity reflects the dependence of molecular processes on the spatial orientation of constituent atoms. Stereoselective processes govern many aspects of brain function and direct the course of many psychotropic drugs. Today......, modern imaging techniques such as SPECT and PET provide a means for studying stereoselective processes in the living brain. Chemists have prepared numerous radiolabelled stereoisomers for use in SPECT and PET in order to explore various molecular processes in the living brain of anesthetized laboratory...... animals and awake humans. The studies have demonstrated how many aspects of neurotransmission consist of crucial stereoselective events that can affect brain function in health and disease. Here, we present a brief account of those findings in hope of stimulating further interest in the vital topic....

  18. Brain Imaging Studies on the Cognitive, Pharmacological and Neurobiological Effects of Cannabis in Humans: Evidence from Studies of Adult Users.

    Science.gov (United States)

    Weinstein, Aviv; Livny, Abigail; Weizman, Abraham

    2016-01-01

    Cannabis is the most widely used illicit drug worldwide. Regular cannabis use has been associated with a range of acute and chronic mental health problems, such as anxiety, depression, psychotic symptoms and neurocognitive impairments and their neural mechanisms need to be examined. This review summarizes and critically evaluates brain-imaging studies of cannabis in recreational and regular cannabis users between January 2000 and January 2016. The search has yielded eligible 103 structural and functional studies. Regular use of cannabis results in volumetric, gray matter and white matter structural changes in the brain, in particular in the hippocampus and the amygdala. Regular use of cannabis affects cognitive processes such as attention, memory, inhibitory control, decision-making, emotional processing, social cognition and their associated brain areas. There is evidence that regular cannabis use leads to altered neural function during attention and working memory and that recruitment of activity in additional brain regions can compensate for it. Similar to other drugs of abuse, cannabis cues activated areas in the reward pathway. Pharmacological studies showed a modest increase in human striatal dopamine transmission after administration of THC in healthy volunteers. Regular cannabis use resulted in reduced dopamine transporter occupancy and reduced dopamine synthesis but not in reduced striatal D2/D3 receptor occupancy compared with healthy control participants. Studies also showed different effects of Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on emotion, cognition and associated brain regions in healthy volunteers, whereby CBD protects against the psychoactive effects of THC. Brain imaging studies using selective high-affinity radioligands for the imaging of cannabinoid CB1 receptor availability in Positron Emission Tomography (PET) showed downregulation of CB1 in regular users of cannabis. In conclusion, regular use of the cannabinoids exerts

  19. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  20. Central nervous system regulation of eating: Insights from human brain imaging.

    Science.gov (United States)

    Farr, Olivia M; Li, Chiang-Shan R; Mantzoros, Christos S

    2016-05-01

    Appetite and body weight regulation are controlled by the central nervous system (CNS) in a rather complicated manner. The human brain plays a central role in integrating internal and external inputs to modulate energy homeostasis. Although homeostatic control by the hypothalamus is currently considered to be primarily responsible for controlling appetite, most of the available evidence derives from experiments in rodents, and the role of this system in regulating appetite in states of hunger/starvation and in the pathogenesis of overeating/obesity remains to be fully elucidated in humans. Further, cognitive and affective processes have been implicated in the dysregulation of eating behavior in humans, but their exact relative contributions as well as the respective underlying mechanisms remain unclear. We briefly review each of these systems here and present the current state of research in an attempt to update clinicians and clinical researchers alike on the status and future directions of obesity research.

  1. Event-related potential study on image-symmetry discrimination in the human brain.

    Science.gov (United States)

    Sambul, Alwin Melkie; Murayama, Nobuki; Igasaki, Tomohiko

    2013-01-01

    The human visual system seems to have a highly perceptual sensitivity to symmetry. However, where and when the discrimination of symmetrical properties begins in the context of visual information processing is largely unclear. This study investigates event-related potential (ERP) patterns in humans when perceiving symmetry-varied complex object images. ERP responses were derived from electroencephalography (EEG) data recorded from eight healthy subjects using 128-channel scalp electrodes. Visual stimulation was provided using gray-scaled photographs of a car with six different viewpoints, hence disrupting the vertical symmetry, where one of the stimuli was intentionally made symmetric by mirroring the image about its center vertical axis. The results show that discrimination of image symmetry is revealed by potential deflection in early ERP components recorded at occipito-temporal sites and can be significantly observed around 220 ms after stimulus onset.

  2. Human brain asymmetry in microstructural connectivity demonstrated by diffusional kurtosis imaging.

    Science.gov (United States)

    Lee, Chu-Yu; Tabesh, Ali; Nesland, Travis; Jensen, Jens H; Helpern, Joseph A; Spampinato, Maria V; Bonilha, Leonardo

    2014-11-07

    Structural asymmetry of whole brain white matter (WM) pathways, i.e., the connectome, has been demonstrated using fiber tractography based on diffusion tensor imaging (DTI). However, DTI-based tractography fails to resolve axonal fiber bundles that intersect within an imaging voxel, and therefore may not fully characterize the extent of asymmetry. The goal of this study was to assess structural asymmetry with tractography based on diffusional kurtosis imaging (DKI), which improves upon DTI-based tractography by delineating intravoxel crossing fibers. DKI images were obtained from 42 healthy subjects. By using automatic segmentation, gray matter (GM) was parcellated into anatomically defined regions of interest (ROIs). WM pathways were reconstructed with both DKI- and DTI-based tractography. The connectivity between the ROIs was quantified with the streamlines connecting the ROIs. The asymmetry index (AI) was utilized to quantify hemispheric differences in the connectivity of cortical ROIs and of links interconnecting cortical ROIs. Our results demonstrated that leftward asymmetrical ROIs and links were observed in frontal, parietal, temporal lobes, and insula. Rightward asymmetrical ROI and links were observed in superior frontal lobe, cingulate cortex, fusiform, putamen, and medial temporal lobe. Interestingly, these observed structural asymmetries were incompletely identified with DTI-based tractography. These results suggest that DKI-based tractography can improve the identification of asymmetrical connectivity patterns, thereby serving as an additional tool in the evaluation of the structural bases of functional lateralization.

  3. Development and initial evaluation of 7-T q-ball imaging of the human brain.

    Science.gov (United States)

    Mukherjee, Pratik; Hess, Christopher P; Xu, Duan; Han, Eric T; Kelley, Douglas A; Vigneron, Daniel B

    2008-02-01

    Diffusion tensor imaging (DTI) noninvasively depicts white matter connectivity in regions where the Gaussian model of diffusion is valid but yields inaccurate results in those where diffusion has a more complex distribution, such as fiber crossings. q-ball imaging (QBI) overcomes this limitation of DTI by more fully characterizing the angular dependence of intravoxel diffusion with larger numbers of diffusion-encoding directional measurements at higher diffusion-weighting factors (b values). However, the former technique results in longer acquisition times and the latter technique results in a lower signal-to-noise ratio (SNR). In this project, we developed specialized 7-T acquisition methods utilizing novel radiofrequency pulses, eight-channel parallel imaging EPI and high-order shimming with a phase-sensitive multichannel B0 field map reconstruction. These methods were applied in initial healthy adult volunteer studies, which demonstrated the feasibility of performing 7-T QBI. Preliminary comparisons of 3 T with 7 T within supratentorial crossing white matter tracts documented a 79.5% SNR increase for b=3000 s/mm2 (P=.0001) and a 38.6% SNR increase for b=6000 s/mm2 (P=.015). With spherical harmonic reconstruction of the q-ball orientation distribution function at b=3000 s/mm2, 7-T QBI allowed for accurate visualization of crossing fiber tracts with fewer diffusion-encoding acquisitions as compared with 3-T QBI. The improvement of 7-T QBI at b factors as high as 6000 s/mm2 resulted in better angular resolution as compared with 3-T QBI for depicting fibers crossing at shallow angles. Although the increased susceptibility effects at 7 T caused problematic distortions near brain-air interfaces at the skull base and posterior fossa, these initial 7-T QBI studies demonstrated excellent quality in much of the supratentorial brain, with significant improvements as compared with 3-T acquisitions in the same individuals.

  4. Considerations in applying compressed sensing to in vivo phosphorus MR spectroscopic imaging of human brain at 3T.

    Science.gov (United States)

    Hatay, Gokce Hale; Yildirim, Muhammed; Ozturk-Isik, Esin

    2017-08-01

    The purpose of this study was to apply compressed sensing method for accelerated phosphorus MR spectroscopic imaging ((31)P-MRSI) of human brain in vivo at 3T. Fast (31)P-MRSI data of five volunteers were acquired on a 3T clinical MR scanner using pulse-acquire sequence with a pseudorandom undersampling pattern for a data reduction factor of 5.33 and were reconstructed using compressed sensing. Additionally, simulated (31)P-MRSI human brain tumor datasets were created to analyze the effects of k-space sampling pattern, data matrix size, regularization parameters of the reconstruction, and noise on the compressed sensing accelerated (31)P-MRSI data. The (31)P metabolite peak ratios of the full and compressed sensing accelerated datasets of healthy volunteers in vivo were similar according to the results of a Bland-Altman test. The estimated effective spatial resolution increased with reduction factor and sampling more at the k-space center. A lower regularization parameter for both total variation and L1-norm penalties resulted in a better compressed sensing reconstruction of (31)P-MRSI. Although the root-mean-square error increased with noise levels, the compressed sensing reconstruction was robust for up to a reduction factor of 10 for the simulated data that had sharply defined tumor borders. As a result, compressed sensing was successfully applied to accelerate (31)P-MRSI of human brain in vivo at 3T.

  5. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  6. Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging.

    Science.gov (United States)

    Ding, Zhaohua; Xu, Ran; Bailey, Stephen K; Wu, Tung-Lin; Morgan, Victoria L; Cutting, Laurie E; Anderson, Adam W; Gore, John C

    2016-01-01

    Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Microstructural development of human brain assessed in utero by diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bui, T.; Daire, J.L.; Chalard, F.; Sebag, G. [Hopital Robert Debre, Paris (France). Dept. of Paediatric Imaging; Zaccaria, I.; Alberti, C. [Hopital Robert Debre, Paris (France). Clinical Epidemiology; Elmaleh, M.; Garel, C. [Hopital Robert Debre, Paris (France). Dept. of Paediatric Imaging; Univ. of Paris-7 (France). Faculty of Medicine; Luton, D. [Hopital Robert Debre, Paris (France); Blanc, N. [Hopital Robert Debre, Paris (France). Neurology Service

    2006-11-15

    Diffusion-weighted MR imaging (DWI) has been shown to be a great tool to assess white matter development in normal infants. Comparison of cerebral diffusion properties between preterm infants and fetuses of corresponding ages should assist in determining the impact of premature ex utero life on brain maturation. To assess in utero maturation-dependent microstructural changes of fetal cerebral white matter using diffusion tensor MR imaging. An echoplanar sequence with diffusion gradient (b=700 s/mm{sup 2}) applied in six non-colinear directions was performed between 31 and 37{sup +3} weeks of gestation in 24 fetuses without cerebral abnormality on T1- and T2-weighted images. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in the white matter. Mean ADC values were 1.8 {mu}m{sup 2}/ms in the centrum semiovale, 1.2 {mu}m{sup 2}/ms in the splenium of the corpus callosum and 1.1 {mu}m{sup 2}/ms in the pyramidal tract. The paired Wilcoxon rank test showed significant differences in ADC between these three white matter regions. Mean FA values were 1.1%, 3.8% and 4.7%, respectively, in the centrum semiovale, corpus callosum and pyramidal tract.

  8. Linking brain imaging signals to visual perception.

    Science.gov (United States)

    Welchman, Andrew E; Kourtzi, Zoe

    2013-11-01

    The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.

  9. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  10. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun [Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Chang Hyun; Park, Hyun-wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Kyung Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 139-709 (Korea, Republic of)

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  11. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.

    Science.gov (United States)

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-01

    The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of

  12. Age-related changes of the corticospinal tract in the human brain A diffusion tensor imaging study

    Institute of Scientific and Technical Information of China (English)

    Sung Ho Jang; Sang-Hyun Cho; Mi Young Lee; Yong Hyun Kwon; Min Cheul Chang

    2011-01-01

    The corticospinal tract (CST) is one of the most important neural tracts for motor function in the human brain. Little is known about age-related changes of the CST. In this study, we tried to evaluate age-related changes of the CST using diffusion tensor imaging in 60 healthy subjects. The diffusion tensor imaging result revealed that the tract number and fractional anisotropy value were decreased, and the apparent diffusion coefficient (ADC) value was increased with aging. The distribution showed a semilog pattern for tract number, fractional anisotropy and ADC of the CST, and the pattern of each graph was near-linear. When compared with the diffusion tensor imaging parameters of subjects in the 20 s age group, tract number and fractional anisotropy values were significantly decreased in the 50 s–70 s age groups. Likewise, the ADC value was significantly higher in the 50 s–70 s age groups. The CST in the brain of normal subjects degenerated continuously from the 20 s to the 70 s, with a near-linear pattern, and degeneration of the CST began to manifest significantly in the subjects in their 50 s, compared with the subjects in their 20 s.

  13. Monitoring mental work and pattern recognition of a human brain with a functional near-infrared imager

    Science.gov (United States)

    Chen, Weiguo; Zeng, Shaoqun; Luo, Qingming; Gong, Hui; Yang, Zhongzhong; Guan, Lingchu; Chance, Britton

    1999-03-01

    A NIRS imager is used as a real time monitor in psychological test to record the response in blood oxyhemoglobin state and blood flow of the frontal gyri of human subject. The imager has 9 lamps and 4 dual detector pairs and an area of 9*4 cm. In mental work and pattern recognition test, we recorded oxygen consumption and blood flow changes of the volunteer's frontal gyri. The psychological results showed that down part of the left frontal gyri has intensive relation with pattern recognition and has definite boundaries. However, the mental work involved more zones of frontal gyri and it may be a more complicated think model. The results also suggested that brain have an exquisite and complicated adjust ability. As a result, the oxygen supplement in excited area increased as the neuron excited.

  14. Imaging brain development: the adolescent brain.

    Science.gov (United States)

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain.

  15. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging.

    Science.gov (United States)

    Liu, Tian; Liu, Jing; de Rochefort, Ludovic; Spincemaille, Pascal; Khalidov, Ildar; Ledoux, James Robert; Wang, Yi

    2011-09-01

    Magnetic susceptibility varies among brain structures and provides insights into the chemical and molecular composition of brain tissues. However, the determination of an arbitrary susceptibility distribution from the measured MR signal phase is a challenging, ill-conditioned inverse problem. Although a previous method named calculation of susceptibility through multiple orientation sampling (COSMOS) has solved this inverse problem both theoretically and experimentally using multiple angle acquisitions, it is often impractical to carry out on human subjects. Recently, the feasibility of calculating the brain susceptibility distribution from a single-angle acquisition was demonstrated using morphology enabled dipole inversion (MEDI). In this study, we further improved the original MEDI method by sparsifying the edges in the quantitative susceptibility map that do not have a corresponding edge in the magnitude image. Quantitative susceptibility maps generated by the improved MEDI were compared qualitatively and quantitatively with those generated by calculation of susceptibility through multiple orientation sampling. The results show a high degree of agreement between MEDI and calculation of susceptibility through multiple orientation sampling, and the practicality of MEDI allows many potential clinical applications.

  16. Multimedia human brain database system for surgical candidacy determination in temporal lobe epilepsy with content-based image retrieval

    Science.gov (United States)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-01-01

    This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  17. In vivo proton magnetic resonance spectroscopic imaging of the healthy human brain at 9.4 T: initial experience.

    Science.gov (United States)

    Chadzynski, Grzegorz L; Pohmann, Rolf; Shajan, Gunamony; Kolb, Rupert; Bisdas, Sotirios; Klose, Uwe; Scheffler, Klaus

    2015-06-01

    In this study, the feasibility of in vivo proton magnetic resonance spectroscopic imaging ((1)H MRSI) of the healthy human brain at a field strength of 9.4 T, using conventional acquisition techniques, is examined and the initial experience is summarized. MRSI measurements were performed on a 9.4 T MR scanner (Siemens, Erlangen, Germany) equipped with head-only gradient insert (AC84, Siemens) and custom-developed, 8-channel transmit/24-channel receive, and 16-channel transmit/31-channel receive coils. Spectra were acquired from the superior part of the human brain with a modified STEAM sequence. Spectral quantification was done with LCModel software. Reasonable quality and signal-to-noise ratio of the acquired spectra allowed reliable quantification of 12 metabolites (Cramer-Rao lower bounds < 20 %), some of which may be difficult to quantify at field strengths below 7 T due to overlapping resonances or low concentrations. While further developments are necessary to minimize chemical shift displacement and homogeneity of the transmit field, it is demonstrated that in vivo (1)H MRSI at a field strength of 9.4 T is possible. However, further studies applying up-to-date techniques to overcome high-field specific problems are needed in order to assess the potential gain in sensitivity that may be offered by MRSI at 9.4 T.

  18. [sup 123]I-SCH 23982 is not suitable for dopamine D1 receptor imaging in vivo in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeff, N.P.L.G.; Fennema, P.; Royen, E.A. van (Academic Medical Centre, Amsterdam (Netherlands). Dept. of Nuclear Medicine); Bekier, A. (Kantonsspital, St Gallen (Switzerland). Inst. for Nuclear Medicine); Beer, H.-F.; Schubiger, P.A. (Paul Scherrer Inst. (PSI), Villigen (Switzerland))

    1993-02-01

    The tracer [sup 123]I-SCH 23982 was tested with regard to its ability to image dopamine D1 receptor in the human brain in vivo with single photon emission computed tomography (SPECT). The tracer did not reach equilibrium with regard to its bindign to dopamine D1 receptors, presumably owing to fast metabolism to hydrophilic products and deiodination. It is concluded that [sup 123]I-SCH 23982 is not suitable for dopamine D1 receptor imaging with SPECT in the human brain. (author).

  19. Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin [School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology, Shanghai (China); Yu, Tong Gang [Dept. of Radiology, Huashan Hospital, Fudan University, Shanghai (China)

    2015-04-15

    To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.

  20. Brain SPECT imaging and whole-body biodistribution with [{sup 123}I]ADAM - a serotonin transporter radiotracer in healthy human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-J. [Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan (China); Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Nuclear Medicine, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Liu, C.-Y. [Neuroscience Research Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Psychiatry, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Wey, S.-P. [Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan (China); Hsiao, I.-T. [Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan (China); Wu, Jay [Health Physics Divisions, Atomic Energy Council, Institute of Nuclear Energy Research, Tao-Yuan 325, Taiwan (China); Fu, Y.-K. [Atomic Energy Council, Institute of Nuclear Energy Research, Tao-Yuan 325, Taiwan (China); Yen, T.-C. [Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China) and Department of Nuclear Medicine, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China)]. E-mail: yen1110@adm.cgmh.org.tw

    2006-02-15

    Introduction: [{sup 123}I]-2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine ([{sup 123}I]ADAM), a novel radiotracer, has promising application in the imaging of the serotonin transporter (SERT) in the human brain. In this study, the optimal scanning time for acquiring brain single photon emission computed tomography (SPECT) images was determined by performing dynamic SPECT studies at intervals from 0 to 6 h postinjection of [{sup 123}I]ADAM. Additionally, radiation-absorbed doses were determined for three healthy human subjects using attenuation-corrected images. Methods: Twelve subjects were randomized into one of three study groups as follows: whole-body distribution imaging (n=3), dynamic SPECT imaging (n=3) and brain SPECT imaging (n=6). The radiation-absorbed dose was calculated using MIRDOSE 3.0 software with attenuation-corrected data. The specific binding (SB) ratio of the brain stem was measured from dynamic SPECT images to determine the optimal scanning time. Results: Dynamic SPECT images showed that the SB of the brain stem gradually increased to a maximum 4 h postinjection. Single photon emission computed tomography images at 4 h postinjection showed a high uptake of the radiotracer (SB) in the hypothalamus (1.40{+-}0.12), brain stem (1.44{+-}0.16), pons (1.13{+-}0.14) and medial temporal lobe (0.59{+-}0.10). The mean adult male value of effective dose was 3.37x10{sup -2} mSv/MBq with a 4.8-h urine-voiding interval. Initial high uptake in SERT-rich sites was demonstrated in the lung and brain. A prominent washout of the radiotracer from the lung further increased brain radioactivity that reached a peak value of 5.03% of injected dose 40 min postinjection. Conclusions: [{sup 123}I]ADAM is a promising radiotracer for SPECT imaging of SERT in humans with acceptable dosimetry and high uptake in SERT-rich regions. Brain SPECT images taken within 4 h following injection show optimal levels of radiotracer uptake in known SERT sites. However, dynamic

  1. Towards ultra-high resolution fibre tract mapping of the human brain - registration of polarised light images and reorientation of fibre vectors

    Directory of Open Access Journals (Sweden)

    Christoph Palm

    2010-04-01

    Full Text Available Polarised Light Imaging (PLI utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-micrometer thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography.

  2. Lattice light sheet imaging of membrane nanotubes between human breast cancer cells in culture and in brain metastases.

    Science.gov (United States)

    Parker, Ian; Evans, Katrina T; Ellefsen, Kyle; Lawson, Devon A; Smith, Ian F

    2017-09-08

    Membrane nanotubes are cytosolic protrusions with diameters <1 µm that extend between cells separated by tens of µm. They mediate several forms of intercellular communication and are upregulated in diverse diseases. Difficulties in visualizing and studying nanotubes within intact tissues have, however, prompted skepticism regarding their in vivo relevance, and most studies have been confined to cell culture systems. Here, we introduce lattice-light sheet imaging of MDA-MB-231 human breast cancer cells genetically engineered to brightly express membrane-targeted GFP as a promising approach to visualize membrane nanotubes in vitro and in situ. We demonstrate that cultured cells form multiple nanotubes that mediate intercellular communication of Ca(2+) signals and actively traffic GFP-tagged membrane vesicles along their length. Furthermore, we directly visualize nanotubes in situ, interconnecting breast cancer cells in live acute brain slices from an experimental mouse model of breast cancer brain metastasis. This amenable experimental system should facilitate the transition of the study of intercellular communication by membrane nanotubes from cell culture to the whole animal.

  3. Intersection-based registration of slice stacks to form 3D images of the human fetal brain

    DEFF Research Database (Denmark)

    Kim, Kio; Hansen, Mads Fogtmann; Habas, Piotr;

    2008-01-01

    Clinical fetal MR imaging of the brain commonly makes use of fast 2D acquisitions of multiple sets of approximately orthogonal 2D slices. We and others have previously proposed an iterative slice-to-volume registration process to recover a geometrically consistent 3D image. However, these approac...

  4. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment

    Energy Technology Data Exchange (ETDEWEB)

    Neuner, Irene [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); RWTH Aachen University, Department of Psychiatry, Psychotherapy and Psychosomatics, Aachen (Germany); JARA-BRAIN-Translational Medicine, Aachen (Germany); Kaffanke, Joachim B. [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); MR-Transfer e.K., Wuppertal (Germany); Langen, Karl-Josef; Kops, Elena Rota; Tellmann, Lutz; Stoffels, Gabriele; Weirich, Christoph; Filss, Christian; Scheins, Juergen; Herzog, Hans [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); RWTH Aachen University, Department of Neurology, Aachen (Germany); JARA-BRAIN-Translational Medicine, Aachen (Germany)

    2012-12-15

    The development of integrated magnetic resonance (MR)-positron emission tomography (PET) hybrid imaging opens up new horizons for imaging in neuro-oncology. In cerebral gliomas the definition of tumour extent may be difficult to ascertain using standard MR imaging (MRI) only. The differentiation of post-therapeutic scar tissue, tumour rests and tumour recurrence is challenging. The relationship to structures such as the pyramidal tract to the tumour mass influences the therapeutic neurosurgical approach. The diagnostic information may be enriched by sophisticated MR techniques such as diffusion tensor imaging (DTI), multiple-volume proton MR spectroscopic imaging (MRSI) and functional MRI (fMRI). Metabolic imaging with PET, especially using amino acid tracers such as {sup 18}F-fluoroethyl-l-tyrosine (FET) or {sup 11}C-l-methionine (MET) will indicate tumour extent and response to treatment. The new technologies comprising MR-PET hybrid systems have the advantage of providing comprehensive answers by a one-stop-job of 40-50 min. The combined approach provides data of different modalities using the same iso-centre, resulting in optimal spatial and temporal realignment. All images are acquired exactly under the same physiological conditions. We describe the imaging protocol in detail and provide patient examples for the different imaging modalities such as FET-PET, standard structural imaging (T1-weighted, T2-weighted, T1-weighted contrast agent enhanced), DTI, MRSI and fMRI. (orig.)

  5. Age-related white matter degradation rule of normal human brain: the evidence from diffusion tensor magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiang; Li Baoqing; Shan Baoci

    2014-01-01

    Background Diffusion tensor imaging can evaluate white matter function in human brain.Fractional anisotropy is the most important parameter.This study aimed to find regional reduction of fractional anisotropy (FA) with aging in the whole brain and the changing rules of anisotropy with aging.Methods Fifty volunteers from 20 to 75 years old were divided into five consecutive age groups; a young group and four senior groups.FA values were calculated with diffusion tensor imaging (DTI) studio software.The difference of FA between the young group and the four senior groups were analyzed by analysis of voxel-level height threshold in Statistic Parametric Mapping (SPM),and the regions with decreased FA were obtained.The FA values of these regions were then extracted using an in-house developed program,and a multiple linear regression model was built to assess the influence of age and sex on the FA values of these regions.Results Eight regions,including frontal lobe,postcentral gyrus,optic radiation,hippocampus,cerebella hemisphere,corona radiate,corpus callosum and internal capsule,were found to have decreased FA.There was a strong negative correlation between age and the FA in the frontal lobe,postcentral gyrus,optic radiation,hippocampus,and cerebella hemisphere,while a weaker negative correlation in the corona radiate,corpus callosum,and internal capsule was found.The FA reduction in the frontal lobe,postcentral gyrus,optic radiation,hippocampus and cerebella hemisphere were found earlier than in the corona radiate,corpus callosum and internal capsule.There was no correlation between sex and FA in these regions.Conclusions The FA in the subcortical white matter area reduces earlier than that in deep white matter.The areas with decreased FA continuously enlarge with aqing.The FAs in these regions have a strong negative correlation with age.

  6. Functional differentiation of the premotor cortex : Behavioural and brain imaging studies in humans

    NARCIS (Netherlands)

    Potgieser, Adriaan Remco Ewoud

    2015-01-01

    The premotor cortex is a brain structure that is involved in the preparation of movements. It has an important role in the final integration of task-related information and to funnel this to the primary motor cortex, which subsequently causes the execution of a movement. Premotor areas can also infl

  7. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    NARCIS (Netherlands)

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third

  8. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    NARCIS (Netherlands)

    Kuzmin, N.V.; Wesseling, P.; Hamer, P.C.; Noske, D.P.; Galgano, G.D.; Mansvelder, H.D.; Baayen, J.C.; Groot, M.L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third

  9. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  10. Binary and nonbinary description of hypointensity in human brain MR images

    CERN Document Server

    Chen, Xiaojing

    2011-01-01

    Accumulating evidence has shown that iron is involved in the mechanism underlying many neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Abnormal (higher) iron accumulation has been detected in the brains of most neurodegenerative patients, especially in the basal ganglia region. Presence of iron leads to changes in MR signal in both magnitude and phase. Accordingly, tissues with high iron concentration appear hypo-intense (darker than usual) in MR contrasts. In this report, we proposed an improved binary hypointensity description and a novel nonbinary hypointensity description based on principle components analysis. Moreover, Kendall's rank correlation coefficient was used to compare the complementary and redundant information provided by the two methods in order to better understand the individual descriptions of iron accumulation in the brain.

  11. Is amyloid-β harmful to the brain? Insights from human imaging studies.

    Science.gov (United States)

    Jagust, William

    2016-01-01

    Although the amyloid-β protein associated with the Alzheimer's disease plaque has been detectable in living people for over a decade, its importance in the pathogenesis of Alzheimer's disease is still debated. The frequent presence of amyloid-β in the brains of cognitively healthy older people has been interpreted as evidence against a causative role. If amyloid-β is crucial to the development of Alzheimer's disease, it should be associated with other Alzheimer's disease-like neurological changes. This review examines whether amyloid-β is associated with other biomarkers indicative of early Alzheimer's disease in normal older people. The preponderance of evidence links amyloid-β to functional change, progressive brain atrophy, and cognitive decline. Individuals at greatest risk of decline seem to be those with evidence of both amyloid-β and findings suggestive of neurodegeneration. The crucial question is thus how amyloid-β is related to brain degeneration and how these two processes interact to cause cognitive decline and dementia.

  12. Approaching the biology of human parental attachment: brain imaging, oxytocin and coordinated assessments of mothers and fathers.

    Science.gov (United States)

    Swain, J E; Kim, P; Spicer, J; Ho, S S; Dayton, C J; Elmadih, A; Abel, K M

    2014-09-11

    Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting enables the formation of each individual's first social bonds and critically shapes development. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce themes in the literature on parental brain circuits studied to date. Next, we present a thorough chronological review of state-of-the-art fMRI studies that probe the parental brain with a range of baby audio and visual stimuli. We also highlight the putative role of oxytocin and effects of psychopathology, as well as the most recent work on the paternal brain. Taken together, a new model emerges in which we propose that cortico-limbic networks interact to support parental brain responses to infants. These include circuitry for arousal/salience/motivation/reward, reflexive/instrumental caring, emotion response/regulation and integrative/complex cognitive processing. Maternal sensitivity and the quality of caregiving behavior are likely determined by the responsiveness of these circuits during early parent-infant experiences. The function of these circuits is modifiable by current and early-life experiences, hormonal and other factors. Severe deviation from the range of normal function in these systems is particularly associated with (maternal) mental illnesses - commonly, depression and anxiety, but also schizophrenia and bipolar disorder. Finally, we discuss the limits and extent to which brain imaging may broaden our understanding of the parental brain given our current model. Developments in the understanding of the parental brain may have profound implications for long-term outcomes in families across risk, resilience and possible interventions. This article is part of a Special Issue

  13. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.;

    2005-01-01

    delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method......The purpose of this study was to develop and validate an observer-independent approach for automatic generation of volume-of-interest (VOI) brain templates to be used in emission tomography studies of the brain. The method utilizes a VOI probability map created on the basis of a database of several...... subjects' MR-images, where VOI sets have been defined manually. High-resolution structural MR-images and 5-HT(2A) receptor binding PET-images (in terms of (18)F-altanserin binding) from 10 healthy volunteers and 10 patients with mild cognitive impairment were included for the analysis. A template including...

  14. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    Science.gov (United States)

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements.

  15. Free magnesium levels in normal human brain and brain tumors: sup 31 P chemical-shift imaging measurements at 1. 5 T

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.S.; Vigneron, D.B.; Murphy-Boesch, J.; Nelson, S.J.; Kessler, H.B.; Coia, L.; Curran, W.; Brown, T.R. (Fox Chase Cancer Center, Philadelphia, PA (United States))

    1991-08-01

    The authors have studied a series of normal subjects and patients with brain tumors, by using {sup 31}P three-dimensional chemical shift imaging to obtain localized {sup 31}P spectra of the brain. A significant proportion of brain cytosolic ATP in normal brain is not complexed to Mg{sup 2+}, as indicated by the chemical shift {delta} of the {beta}-P resonance of ATP. The ATP {beta}P resonance position in brain thus is sensitive to changes in intracellular free Mg{sup 2+} concentration and in the proportion of ATP complexed with Mg because this shift lies on the rising portion of the {delta} vs. Mg{sup 2+} titration curve for ATP. They have measured the ATP {beta}-P shift and compared intracellular free Mg{sup 2+} concentration and fractions of free ATP for normal individuals and a limited series of patients with brain tumors. In four of the five spectra obtained from brain tissue containing a substantial proportion of tumor, intracellular free Mg{sup 2+} was increased, and the fraction of free ATP was decreased, compared with normal brain.

  16. APPROACHING THE BIOLOGY OF HUMAN PARENTAL ATTACHMENT: BRAIN IMAGING, OXYTOCIN AND COORDINATED ASSESSMENTS OF MOTHERS AND FATHERS

    Science.gov (United States)

    Swain, JE; Kim, P; Spicer, J; Ho, SS; Dayton, CJ; Elmadih, A; Abel, KM

    2014-01-01

    Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting of offspring enable formation of each individual’s first social bonds and critically shape infants’ behavior. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce themes in the literature on parental brain circuits studied to date. Next, we present a thorough chronological review of state-of-the-art fMRI studies that probe the parental brain with a range of baby audio and visual stimuli. We also highlight the putative role of oxytocin and effects of psychopathology, as well as the most recent work on the paternal brain. Taken together, a new model emerges in which we propose that cortico-limbic networks interact to support parental brain responses to infants for arousal/salience/motivation/reward, reflexive/instrumental caring, emotion response/regulation and integrative/complex cognitive processing. Maternal sensitivity and the quality of caregiving behavior are likely determined by the responsiveness of these circuits toward long-term influence of early-life experiences on offspring. The function of these circuits is modifiable by current and early-life experiences, hormonal and other factors. Known deviation from the range of normal function in these systems is particularly associated with (maternal) mental illnesses – commonly, depression and anxiety, but also schizophrenia and bipolar disorder. Finally, we discuss the limits and extent to which brain imaging may broaden our understanding of the parental brain, and consider a current model and future directions that may have profound implications for intervention long term outcomes in families across risk and resilience profiles. PMID:24637261

  17. Fiber crossing in human brain depicted with diffusion tensor MR imaging

    DEFF Research Database (Denmark)

    Wiegell, M.R.; Larsson, H.B.; Wedeen, V.J.

    2000-01-01

    Human white matter fiber crossings were investigated with use of the full eigenstructure of the magnetic resonance diffusion tensor. Intravoxel fiber dispersions were characterized by the plane spanned by the major and medium eigenvectors and depicted with three-dimensional graphics. This method ...

  18. Statistical epistasis and functional brain imaging support a role of voltage-gated potassium channels in human memory.

    Directory of Open Access Journals (Sweden)

    Angela Heck

    Full Text Available Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed "missing heritability." The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5 was observed (P(nominal combined=0.000001. The epistatic interaction was robust, as it was significant in a screening (P(nominal=0.0000012 and in a replication sample (P(nominal=0.01. Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (P(nominal=0.001 supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits.

  19. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Gillings, Nic; Madsen, Karine

    2010-01-01

    subjects (20-45 years, 8 males) using the simplified reference tissue model. We tested within our population the effect of age and other demographic factors on the endpoint. In seven subjects, we tested the vulnerability of radioligand binding to a pharmacolological challenge with citalopram, which...... is expected to increase competition from endogenous serotonin. Given radiotracer administration at a range of specific activities, we were able to use the individual BP(ND) measurements for population-based estimation of the saturation binding parameters; B(max) ranged from 0.3 to 1.6 nM. B......(max) was in accordance with post-mortem brain studies (Spearman's r=0.83, p=0.04), and the regional binding potentials, BP(ND), were on average 2.6 in striatum, 0.42 in prefrontal cortex, and 0.91 in hippocampus. We found no effect of sex but a decreased binding with age (p=0.046). A power analysis showed that, given...

  20. Advantages in functional imaging of the brain

    Directory of Open Access Journals (Sweden)

    Walter eMier

    2015-05-01

    Full Text Available As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET and functional magnetic resonance imaging (fMRI, two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. In the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  1. Brain imaging of affective disorders and schizophrenia.

    Science.gov (United States)

    Kishimoto, H; Yamada, K; Iseki, E; Kosaka, K; Okoshi, T

    1998-12-01

    We review recent findings in human brain imaging, for example, which brain areas are used during perception of colors, moving objects, human faces, facial expressions, sadness and happiness etc. One study used fluorine-18-labeled deoxyglucose positron emission tomography (PET) in patients with unipolar depression and bipolar depression, and found hypometabolism in the left anterolateral prefrontal cortex. Another study reported increased regional cerebral blood flow in the amygdala in familial pure depressive disease. Using 11C-glucose PET, we reported that the glutamic acid pool was reduced in cortical areas of the brain in patients with major depression. We also found that the thalamic and cingulate areas were hyperactive in drug-naive (never medicated) acute schizophrenics, while the associative frontal, parietal, temporal gyri were hypoactive in drug-naive chronic schizophrenics. Brain biochemical disturbances of schizophrenic patients involved glutamic acid, N-acetyl aspartic acid, phosphatidylcholine and sphingomyelin which are important chemical substances in the working brain. The areas of the thalamus and the cingulate which become hyperactive in acute schizophrenic patients are important brain areas for perception and communication. The association areas of the cortex which become disturbed in chronic schizophrenia are essential brain areas in human creativity (language, concepts, formation of cultures and societies) and exist only in human beings.

  2. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  3. Sexual differences of human brain

    Directory of Open Access Journals (Sweden)

    Masoud Pezeshki Rad

    2014-04-01

    Full Text Available During the last decades there has been an increasing interest in studying the differences between males and females. These differences extend from behavioral to cognitive to micro- and macro- neuro-anatomical aspects of human biology. There have been many methods to evaluate these differences and explain their determinants. The most studied cause of this dimorphism is the prenatal sex hormones and their organizational effect on brain and behavior. However, there have been new and recent attentions to hormone's activational influences in puberty and also the effects of genomic imprinting. In this paper, we reviewed the sex differences of brain, the evidences for possible determinants of these differences and also the methods that have been used to discover them. We reviewed the most conspicuous findings with specific attention to macro-anatomical differences based on Magnetic Resonance Imaging (MRI data. We finally reviewed the findings and the many opportunities for future studies.

  4. Human brain mapping: Experimental and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J. [Los Alamos National Lab., NM (US); Sanders, J. [Albuquerque VA Medical Center, NM (US); Belliveau, J. [Massachusetts General Hospital, Boston, MA (US)

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  5. Human brain mapping: Experimental and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J. [Los Alamos National Lab., NM (US); Sanders, J. [Albuquerque VA Medical Center, NM (US); Belliveau, J. [Massachusetts General Hospital, Boston, MA (US)

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  6. Brain image Compression, a brief survey

    Directory of Open Access Journals (Sweden)

    Saleha Masood

    2013-01-01

    Full Text Available Brain image compression is known as a subfield of image compression. It allows the deep analysis and measurements of brain images in different modes. Brain images are compressed to analyze and diagnose in an effective manner while reducing the image storage space. This survey study describes the different existing techniques regarding brain image compression. The techniques come under different categories. The study also discusses these categories.

  7. Study of 99m Tc-TRODAT-1 Imaging on Human Brain with Children Autism by Single Photon Emission Computed Tomography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: Evaluate the application values of 99mTc-2 β [ N, N'-bis( 2-mercaptoethy1 ) ethylenediamino ] methyl, 3 β -(4-chlorophenyl) tropane ( TRODAT-1 ) dopamine transporter (DAT) SPECT imaging in children autism, and offer the academic foundation to etiology, mechanism and clinical therapy of autism. Methods:Ten autistic children and ten healthy controls were examined with 99mTc-TRODAT-1 DAT SPECT imaging.Striatal specific uptake of 99mTc-TRODAT-1 was calculated with region of interest analysis according to the ratios between striatum and cerebellum [ (STR-BKG)/BKG]. Results:There was no difference in semiquantitative dopamine transporter between bilateral striatum in autistic children ( P = 0. 562) and in normal controls ( P = 0. 573 ); dopamine transporter in brain of patients with autism increased more significantly than that in normal controls ( P = 0. 017 ). Conclusion: Dopaminergic nervous system is dysfunction in human brain with children autism, and DAT 99mTc-TRODAT-1 SPECT imaging on human brain will help the imaging diagnosis of children autism.

  8. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells.

    Science.gov (United States)

    Wang, Xueqin; Tu, Miaomiao; Tian, Baoming; Yi, Yanjie; Wei, ZhenZhen; Wei, Fang

    2016-11-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future.

  9. Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Barker

    Full Text Available We present a new method for magnetization transfer (MT ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay and reference images (5-8 s delay for MT ratio (MTR imaging of the brain. The effects of varying flip angle and phase encoding (PE order were investigated experimentally in normal, healthy subjects. Values of up to ∼50% and ∼40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma.

  10. Revisiting a historic human brain with magnetic resonance imaging - the first description of a divided central sulcus.

    Science.gov (United States)

    Schweizer, Renate; Helms, Gunther; Frahm, Jens

    2014-01-01

    In 1860 and 1862, the German physiologist Wagner published two studies, in which he compared the cortical surfaces of brain specimens. This provided the first account of a rare anatomical variation - bridges across the central sulci in both hemispheres connecting the forward and backward facing central convolutions in one of the brains. The serendipitous rediscovery of the preserved historic brain specimen in the collections at Göttingen University, being mistaken as the brain of the mathematician C.F. Gauss, allowed us to further investigate the morphology of the bridges Wagner had described with magnetic resonance imaging (MRI). On the historic lithograph, current photographs and MRI surface reconstructions of the brain, a connection across the central sulcus can only be seen in the left hemisphere. In the right hemisphere, contrary to the description of Wagner, a connecting structure is only present across the post-central sulcus. MRI reveals that the left-hemispheric bridge extends into the depth of the sulcus, forming a transverse connection between the two opposing gyri. This rare anatomical variation, generally not associated with neurological symptoms, would nowadays be categorized as a divided central sulcus. The left-hemispheric connection seen across the post-central sulcus, represents the very common case of a segmented post-central sulcus. MRI further disclosed a connection across the right-hemispheric central sulcus, which terminates just below the surface of the brain and is therefore not depicted on the historical lithography. This explains the apparent inconsistency between the bilateral description of bridges across the central sulci and the unilateral appearance on the brain surface. The results are discussed based on the detailed knowledge of anatomists of the late 19th century, who already recognized the divided central sulcus as an extreme variation of a deep convolution within the central sulcus.

  11. Revisiting a historic human brain with magnetic resonance imaging – the first description of a divided central sulcus

    Science.gov (United States)

    Schweizer, Renate; Helms, Gunther; Frahm, Jens

    2014-01-01

    In 1860 and 1862, the German physiologist Wagner published two studies, in which he compared the cortical surfaces of brain specimens. This provided the first account of a rare anatomical variation – bridges across the central sulci in both hemispheres connecting the forward and backward facing central convolutions in one of the brains. The serendipitous rediscovery of the preserved historic brain specimen in the collections at Göttingen University, being mistaken as the brain of the mathematician C.F. Gauss, allowed us to further investigate the morphology of the bridges Wagner had described with magnetic resonance imaging (MRI). On the historic lithograph, current photographs and MRI surface reconstructions of the brain, a connection across the central sulcus can only be seen in the left hemisphere. In the right hemisphere, contrary to the description of Wagner, a connecting structure is only present across the post-central sulcus. MRI reveals that the left-hemispheric bridge extends into the depth of the sulcus, forming a transverse connection between the two opposing gyri. This rare anatomical variation, generally not associated with neurological symptoms, would nowadays be categorized as a divided central sulcus. The left-hemispheric connection seen across the post-central sulcus, represents the very common case of a segmented post-central sulcus. MRI further disclosed a connection across the right-hemispheric central sulcus, which terminates just below the surface of the brain and is therefore not depicted on the historical lithography. This explains the apparent inconsistency between the bilateral description of bridges across the central sulci and the unilateral appearance on the brain surface. The results are discussed based on the detailed knowledge of anatomists of the late 19th century, who already recognized the divided central sulcus as an extreme variation of a deep convolution within the central sulcus. PMID:24904304

  12. Quantitative volumetric analysis of the optic radiation in the normal human brain using diffusion tensor magnetic resonance imaging-based tractography

    Institute of Scientific and Technical Information of China (English)

    Dong-Hoon Lee; Ji-Won Park; Cheol-Pyo Hong

    2014-01-01

    To attain the volumetric information of the optic radiation in normal human brains, we per-formed diffusion tensor imaging examination in 13 healthy volunteers. Simultaneously, we used a brain normalization method to reduce individual brain variation and increase the accuracy of volumetric information analysis. In addition, tractography-based group mapping method was also used to investigate the probability and distribution of the optic radiation pathways. Our results showed that the measured optic radiation ifber tract volume was a range of about 0.16%and that the fractional anisotropy value was about 0.53. Moreover, the optic radiation probability ifber pathway that was determined with diffusion tensor tractography-based group mapping was able to detect the location relatively accurately. We believe that our methods and results are help-ful in the study of optic radiation ifber tract information.

  13. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.;

    2005-01-01

    delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method...... applies well in elderly subjects, even in the presence of pronounced cerebral atrophy...... subjects' MR-images, where VOI sets have been defined manually. High-resolution structural MR-images and 5-HT(2A) receptor binding PET-images (in terms of (18)F-altanserin binding) from 10 healthy volunteers and 10 patients with mild cognitive impairment were included for the analysis. A template including...

  14. Classification of Medical Brain Images

    Institute of Scientific and Technical Information of China (English)

    Pan Haiwei(潘海为); Li Jianzhong; Zhang Wei

    2003-01-01

    Since brain tumors endanger people's living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.

  15. Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: a systematic review.

    Science.gov (United States)

    Toffoletto, Simone; Lanzenberger, Rupert; Gingnell, Malin; Sundström-Poromaa, Inger; Comasco, Erika

    2014-12-01

    Ovarian hormones are pivotal for the physiological maintenance of the brain function as well as its response to environmental stimuli. There is mounting evidence attesting the relevance of endogenous ovarian hormones as well as exogenous estradiol and progesterone for emotional and cognitive processing. The present review systematically summarized current knowledge on sex steroid hormonal modulation of neural substrates of emotion and cognition revealed by functional magnetic resonance imaging (fMRI). Twenty-four studies of healthy naturally cycling and combined oral contraceptives (COC) user women, or women undergoing experimental manipulations, during their reproductive age, were included. Furthermore, six studies of premenstrual dysphoric disorder (PMDD), a hormonally based mood disorder, and three of gender dysphoria (GD), which provides an intriguing opportunity to examine the effect of high-dose cross-sex hormone therapy (CSHT) on brain functioning, were included. Globally, low (early follicular and the entire follicular phase for estrogen and progesterone, respectively) and high (COC, CSHT, late follicular and luteal phase for estrogen; COC, mid- and late-luteal phase for progesterone) hormonal milieu diversely affected the response of several brain regions including the amygdala, anterior cingulate cortex, and inferior frontal gyrus, but their functional recruitment across groups and domains was scattered. The constellation of findings provides initial evidence of the influence of sex steroid hormones on cortical and subcortical regions implicated in emotional and cognitive processing. Further well-powered and multimodal neuroimaging studies will be needed to identify the neural mechanism of functional brain alterations induced by sex steroid hormones.

  16. Providing and optimizing functional MR (Magnetic Resonance) of motor cortex of human brain by MRI ( Magnetic Resonance Imaging) facilities of Imam Khomeinie Hospital

    CERN Document Server

    Khosravie, H R

    2000-01-01

    During the stimulation, an observable increased signal (%2-%5)in respective sensory-motor cortex was obtained after correcting for partial volume effects, optimizing S/N,and incorporating small vowels. The 2 D F A S T functional image obtained by this method, showed an anatomical association of the increased signal with gray matter of sensory-motor cortex(in T 1 weighted image). The resultant data showed the feasibility of functional magnetic resonance imaging using optimized gradient echo sequences on a standard 1.5 T imager. Display of human brain cortical activity is accomplished using various techniques, by them different spatial and temporal resolution may be obtained. F MRI technique with proper spatial and temporal resolution due to its noninvasivity is one of the promising techniques for detection of brain activities. This can be used as an important tool by neurologists, since a great development has been achieved for display different brain function. This thesis report the results of simulation effe...

  17. High-field magnetic resonance imaging of the developing human brain from the 10th to the 16th week of gestational Age.

    Science.gov (United States)

    Sbarbati, A; Marzola, P; Simonati, A; Nicolato, E; Osculati, F

    1998-01-01

    In the present work, high-field magnetic resonance imaging (HF-MRI) was applied to study the developing human brain paying particular attention to the structures of interest in pathology of malformation. The aim of the work was to evaluate the possible application of HF-MRI to the analysis of brain development in the absence of some limits of conventional histological technique. Seven formalin-fixed human fetuses of 50, 65, 70, 85, 110, 116 and 125 mm crown/ rump length (corresponding to a gestational age ranging from 10 to 16 weeks) were examined in an imager-spectrometer equipped with a 4. 7-tesla horizontal magnet with a 33-cm bore. In the brain of all the fetuses the telencephalic, mesencephalic and rhombencephalic vesicles were recognizable and an easy quantitative evaluation of the brain curvatures in the absence of distortion due to dissection was possible. Comparing fetuses at different gestational ages, the spatial modification of the different vesicles was evident. In fetuses at 16 weeks of gestational age, stratified compartments of the telencephalic wall were evident. The germinal zone and the cortical plate were visible: the germinal layer was identifiable as a hypointensity in the periventricular area. The subplate zone and the intermediate zone emitted a strong intensity signal. Our study demonstrates that HF-MRI can contribute to the study of the complex developmental events in the human brain from the 10th to 16th week of gestational age in a submillimetric scale of resolution. This technique can provide information about the morphology of the encephalic vesicles and their relations with the bone cavity that cannot be obtained with conventional methods and may be a useful adjunct to histological techniques.

  18. Consistent Reconstruction of Cortical Surfaces from Longitudinal Brain MR Images

    OpenAIRE

    Li, Gang; Nie, Jingxin; Wu, Guorong; Wang, Yaping; Shen, Dinggang

    2011-01-01

    Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying longitudinal subtle change of the cerebral cortex. This paper presents a novel deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal brain MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstr...

  19. Electromagnetic imaging of dynamic brain activity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.; Leahy, R. [University of Southern California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Lewis, P.; Lewine, J.; George, J. [Los Alamos National Lab., NM (United States); Singh, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Radiology

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  20. Brain Imaging in Alzheimer Disease

    Science.gov (United States)

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  1. Monkey brain cortex imaging by photoacoustic tomography

    OpenAIRE

    Yang, Xinmai; Wang, Lihong V.

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultras...

  2. Consistent 4D Brain Extraction of Serial Brain MR Images

    OpenAIRE

    Wang, Yaping; Li, Gang; Nie, Jingxin; Yap, Pew-Thian; Guo, Lei; Shen, Dinggang

    2013-01-01

    Accurate and consistent skull stripping of serial brain MR images is of great importance in longitudinal studies that aim to detect subtle brain morphological changes. To avoid inconsistency and the potential bias introduced by independently performing skull-stripping for each time-point image, we propose an effective method that is capable of skull-stripping serial brain MR images simultaneously. Specifically, all serial images of the same subject are first affine aligned in a groupwise mann...

  3. Thermoacoustic tomography arising in brain imaging

    CERN Document Server

    Stefanov, Plamen

    2010-01-01

    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary.

  4. Functional Neuroanatomy Associated with Natural and Urban Scenic Views in the Human Brain: 3.0T Functional MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Won; Jeong, Gwang Woo; Kim, Tae Hoon; Baek, Han Su; Oh, Seok Kyun; Kang, Heoung Keun; Lee, Sam Gyu; Kim, Yoon Soo; Song, Jin Kyu [Chonnam National University, Gwangju (Korea, Republic of)

    2010-10-15

    By using a functional magnetic resonance imaging (fMRI) technique we assessed brain activation patterns while subjects were viewing the living environments representing natural and urban scenery. A total of 28 healthy right-handed subjects underwent an fMRI on a 3.0 Tesla MRI scanner. The stimulation paradigm consisted of three times the rest condition and two times the activation condition, each of which lasted for 30 and 120 seconds, respectively. During the activation period, each subject viewed natural and urban scenery, respectively. The predominant brain activation areas observed following exposure to natural scenic views in contrast with urban views included the superior and middle frontal gyri, superior parietal gyrus, precuneus, basal ganglia, superior occipital gyrus, anterior cingulate gyrus, superior temporal gyrus, and insula. On the other hand, the predominant brain activation areas following exposure to urban scenic views in contrast with natural scenes included the middle and inferior occipital gyri, parahippocampal gyrus, hippocampus, amygdala, anterior temporal pole, and inferior frontal gyrus. Our findings support the idea that the differential functional neuroanatomies for each scenic view are presumably related with subjects emotional responses to the natural and urban environment, and thus the differential functional neuroanatomy can be utilized as a neural index for the evaluation of friendliness in ecological housing

  5. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  6. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  7. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  8. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  9. Comparative primate neuroimaging: insights into human brain evolution.

    Science.gov (United States)

    Rilling, James K

    2014-01-01

    Comparative neuroimaging can identify unique features of the human brain and teach us about human brain evolution. Comparisons with chimpanzees, our closest living primate relative, are critical in this endeavor. Structural magnetic resonance imaging (MRI) has been used to compare brain size development, brain structure proportions and brain aging. Positron emission tomography (PET) imaging has been used to compare resting brain glucose metabolism. Functional MRI (fMRI) has been used to compare auditory and visual system pathways, as well as resting-state networks of connectivity. Finally, diffusion-weighted imaging (DWI) has been used to compare structural connectivity. Collectively, these methods have revealed human brain specializations with respect to development, cortical organization, connectivity, and aging. These findings inform our knowledge of the evolutionary changes responsible for the special features of the modern human mind.

  10. Neuroimaging in Traumatic Brain Imaging

    OpenAIRE

    Lee, Bruce; Newberg, Andrew

    2005-01-01

    Summary: Traumatic brain injury (TBI) is a common and potentially devastating clinical problem. Because prompt proper management of TBI sequelae can significantly alter the clinical course especially within 48 h of the injury, neuroimaging techniques have become an important part of the diagnostic work up of such patients. In the acute setting, these imaging studies can determine the presence and extent of injury and guide surgical planning and minimally invasive interventions. Neuroimaging a...

  11. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-Current state of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, N.F., E-mail: nina.schwenzer@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Stegger, L., E-mail: stegger@gmx.net [Department of Nuclear Medicine and European Institute for Molecular Imaging, University of Muenster, Muenster (Germany); Bisdas, S., E-mail: sbisdas@gmail.com [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Schraml, C., E-mail: christina.schraml@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de [Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Boss, A., E-mail: Andreas.Boss@usz.ch [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Institute of Diagnostic and Interventional Radiology, University Hospital Zuerich, Zuerich (Switzerland); Mueller, M., E-mail: mark.mueller@med.uni-tuebingen.de [Department of Nuclear Medicine, Eberhard-Karls University Tuebingen, Tuebingen (Germany); and others

    2012-11-15

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [{sup 18}F]-FDG, [{sup 11}C]-methionine or [{sup 68}Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [{sup 11}C]-methionine and [{sup 68}Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 {+-} 0.54; FLAIR: 1.38 {+-} 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 {+-} 0.69; ASL: 1.10 {+-} 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [{sup 11}C]-methionine; additional lesions were found in 2/8 [{sup 68}Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 {+-} 2.2% vs. 0.9 {+-} 3.6%; mean ratio (frontal/parieto-occipital) 0.93 {+-} 0.08 vs. 0.96 {+-} 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance

  12. Optimized Discretization Schemes For Brain Images

    Directory of Open Access Journals (Sweden)

    USHA RANI.N,

    2011-02-01

    Full Text Available In medical image processing active contour method is the important technique in segmenting human organs. Geometric deformable curves known as levelsets are widely used in segmenting medical images. In this modeling , evolution of the curve is described by the basic lagrange pde expressed as a function of space and time. This pde can be solved either using continuous functions or discrete numerical methods.This paper deals with the application of numerical methods like finite diffefence and TVd-RK methods for brain scans. The stability and accuracy of these methods are also discussed. This paper also deals with the more accurate higher order non-linear interpolation techniques like ENO and WENO in reconstructing the brain scans like CT,MRI,PET and SPECT is considered.

  13. Human Brain and Its Size

    Institute of Scientific and Technical Information of China (English)

    邹国如

    2006-01-01

    @@ Two studies suggest that the human brain continues to change through the process of evolution.The findings conflict with a common belief that the brain has evolved about as much as it ever will.Scientists say modern humans developed about two hundred thousand years ago.Bruce Lahn of the Howard Hughes Medical Institute and the University of Chicago led the studies.The findings appeared in Science magazine.

  14. Brain imaging, genetics and emotion.

    Science.gov (United States)

    Aleman, André; Swart, Marte; van Rijn, Sophie

    2008-09-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other polymorphisms (e.g. the COMT val158met polymorphism, tryptophan hydroxylase-2 -703 G/T) and putative effects on affective processing in cortical and limbic regions. A different line of research concerns studies with genetic disorders. Although at a less fine-grained level, studies with individuals with aneuploidies of the X chromosome (Turner syndrome and Klinefelter syndrome), who display impairments in emotion processing, have resulted in new insights and hypotheses with regard to X chromosomal influences on brain systems supporting cognition and emotion. These have also implicated a key role for the amygdala. Integration of the emerging evidence, suggests that the study of polymorphisms using brain imaging can potentially elucidate biological pathways and mechanisms contributing to individual differences in brain circuits that may bias behavior and affect risk for psychiatric illness.

  15. MRI and MRS of human brain tumors.

    Science.gov (United States)

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM).

  16. Brain-Computer Interfaces and Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney; Nijholt, Anton; Tan, Desney S.; Nijholt, Anton

    2010-01-01

    Advances in cognitive neuroscience and brain imaging technologies have started to provide us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that can monitor some of the physical processes that occur within the brain that correspo

  17. Brain-Computer Interfaces and Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney; Tan, Desney S.; Nijholt, Antinus

    2010-01-01

    Advances in cognitive neuroscience and brain imaging technologies have started to provide us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that can monitor some of the physical processes that occur within the brain that

  18. Transcriptional landscape of the prenatal human brain.

    Science.gov (United States)

    Miller, Jeremy A; Ding, Song-Lin; Sunkin, Susan M; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L; Royall, Joshua J; Aiona, Kaylynn; Arnold, James M; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A; Dee, Nick; Dolbeare, Tim A; Facer, Benjamin A C; Feng, David; Fliss, Tim P; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Howard, Robert E; Jochim, Jayson M; Kuan, Chihchau L; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D; Parry, Sheana E; Stevens, Allison; Pletikos, Mihovil; Reding, Melissa; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V; Shen, Elaine H; Sjoquist, Nathan; Slaughterbeck, Clifford R; Smith, Michael; Sodt, Andy J; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B; Geschwind, Daniel H; Glass, Ian A; Hawrylycz, Michael J; Hevner, Robert F; Huang, Hao; Jones, Allan R; Knowles, James A; Levitt, Pat; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G; Lein, Ed S

    2014-04-10

    The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.

  19. Brain 'imaging' in the Renaissance.

    Science.gov (United States)

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  20. Advances in brain imaging of neuropathic pain

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-yong; TAO Wei; LI Yong-jie

    2008-01-01

    Objective To review the literature on the use of brain imaging,including functional magnetic resonance imaging(fMRI), positron emission tomography(PET),magnetic resonance spectroscopy(MRS)and voxel-based morphometry(VBM)in investigation of the activity in diverse brain regions that creates and modulates chronic neuropathic pain. Data sources English literatures from January 1,2000 to July 31,2007 that examined human brain activity in chronic neuropathic pain were accessed through MEDLINE/CD ROM,using PET,fMRI,VBM,MRS and receptor binding. Study selection Published articles about the application of fMRI,PET,VBM,MRS and chronic neuropathic pain were selected. Data extraction Data were mainly extracted from 40 representative articles as the research basis. Results The PET studies suggested that spontaneous neuropathic pain is associated with changes in thalamic activity. Both PET and fMRI have been used to investigate the substrate of allodynia.The VBM demonstrated that brain structural changes are involved in chronic neuropathic pain,which is not seen in a matched control group.However,the results obtained had a large variety,which may be due to different pain etiology,pain distribution,lesion tomography,symptoms and stimulation procedures. Conclusions Application of the techniques of brain imaging plays a very important role in the study of structural and functional reorganization In patients with neuropathic pain.However,a unique"pain matrix" has not been defined.Future studies should be conducted using a prospective longitudinal research design,which would guarantee the control for many confounding factors.

  1. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging (3D-PLI

    Directory of Open Access Journals (Sweden)

    Markus eAxer

    2011-12-01

    Full Text Available Functional interactions between different brain regions require connecting fiber tracts, the structural basis of the human connectome. To assemble a comprehensive structural understanding of neural network elements from the microscopic to the macroscopic dimensions, a multimodal and multiscale approach has to be envisaged. However, the integration of results from complementary neuroimaging techniques poses a particular challenge. In this paper, we describe a steadily evolving neuroimaging technique referred to as three-dimensional polarized light imaging (3D-PLI. It is based on the birefringence of the myelin sheaths surrounding axons, and enables the high-resolution analysis of myelinated axons constituting the fiber tracts. 3D-PLI provides the mapping of spatial fiber architecture in the postmortem human brain at a sub-millimeter resolution, i.e. at the mesoscale. The fundamental data structure gained by 3D-PLI is a comprehensive 3D vector field description of fibers and fiber tract orientations – the basis for subsequent tractography. To demonstrate how 3D-PLI can contribute to unravel and assemble the human connectome, a multiscale approach with the same technology was pursued. Two complementary state-of-the-art polarimeters providing different sampling grids (pixel sizes of 100 μm and 1.6 μm were used. To exemplarily highlight the potential of this approach, fiber orientation maps and 3D fiber models were reconstructed in selected regions of the brain (e.g., Corpus callosum, Internal capsule, Pons. The results demonstrate that 3D-PLI is an ideal tool to serve as an interface between the microscopic and macroscopic levels of organization of the human connectome.

  2. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies.

    Science.gov (United States)

    Huang, Chuan; Ackerman, Jerome L; Petibon, Yoann; Normandin, Marc D; Brady, Thomas J; El Fakhri, Georges; Ouyang, Jinsong

    2014-05-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey's head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. PET imaging of the brain serotonin transporters (SERT) with N,N-dimethyl-2-(2-amino-4-[{sup 18}F]fluorophenylthio)benzylamine (4-[{sup 18}F]-ADAM) in humans: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wen-Sheng [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); Changhua Christian Hospital, Department of Nuclear Medicine, Changhua (China); Huang, San-Yuan; Ho, Pei-Shen; Yeh, Chin-Bin [Tri-Service General Hospital, Department of Psychiatry, Taipei (China); Ma, Kuo-Hsing [National Defense Medical Center, Department of Biology and Anatomy, Taipei (China); Huang, Ya-Yao; Shiue, Chyng-Yann [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China); PET Center, National Taiwan University Hospital, Department of Nuclear Medicine, Taipei (China); Liu, Ren-Syuan [Taipei Veterans General Hospital, Department of Nuclear Medicine, Taipei (China); Cheng, Cheng-Yi [PET Center, Tri-Service General Hospital, Department of Nuclear Medicine, Neihu, Taipei (China)

    2013-01-15

    The aim of this study was to assess the feasibility of using 4-[{sup 18}F]-ADAM as a brain SERT imaging agent in humans. Enrolled in the study were 19 healthy Taiwanese subjects (11 men, 8 women; age 33 {+-} 9 years). The PET data were semiquantitatively analyzed and expressed as specific uptake ratios (SUR) and distribution volume ratios (DVR) using the software package PMOD. The SUR and DVR of 4-[{sup 18}F]-ADAM in the raphe nucleus (RN), midbrain (MB), thalamus (TH), striatum (STR) and prefrontal cortex (PFC) were determined using the cerebellum (CB) as the reference region. 4-[{sup 18}F]-ADAM bound to known SERT-rich regions in human brain. The order of the regional brain uptake was MB (RN) > TH > STR > PFC > CB. The DVR (n = 4, t* = 60 min) in the RN, TH, STR and PFC were 3.00 {+-} 0.50, 2.25 {+-} 0.45, 2.05 {+-} 0.31 and 1.40 {+-} 0.13, respectively. The optimal time for imaging brain SERT with 4-[{sup 18}F]-ADAM was 120-140 min after injection. At the optimal imaging time, the SURs (n = 15) in the MB, TH, STR, and PFC were 2.25 {+-} 0.20, 2.28 {+-} 0.20, 2.12 {+-} 0.18 and 1.47 {+-} 0.14, respectively. There were no significant differences in SERT availability between men and women (p < 0.05). The results of this study showed that 4-[{sup 18}F]-ADAM was safe for human studies and its distribution in human brain appeared to correlate well with the known distribution of SERT in the human brain. In addition, it had high specific binding and a reasonable optimal time for imaging brain SERT in humans. Thus, 4-[{sup 18}F]-ADAM may be feasible for assessing the status of brain SERT in humans. (orig.)

  4. Cerebral Anatomy of the Spider Monkey Ateles Geoffroyi Studied Using Magnetic Resonance Imaging. First Report: a Comparative Study with the Human Brain Homo Sapiens

    Directory of Open Access Journals (Sweden)

    Fernando Chico-Ponce de León

    2009-04-01

    Full Text Available The objective of the present qualitative studywas to analyze the morphological aspects of theinner cerebral anatomy of two species of primates,using magnetic resonance images (MRI:spider monkey (A. geoffroyi and human (H.sapiens, on the basis of a comparative study ofthe cerebral structures of the two species, focusingupon the brain of the spider monkey and,primarily, its limbic system. In spite of beingan endemic Western hemisphere species, a factwhich is by its own right interesting for researchdue to this animal’s social organization and motorfunctions, the spider monkey (A. geoffroyihas hardly been studied in regard to its neuroanatomy.MRI was carried out, in one spidermonkey, employing a General Electric Signa1.5 T scanner. This investigation was carried inaccordance to international regulations for theprotection of animals in captivity, taking intoaccount all protective means utilized in experimentalhandling, and not leaving behind any residualeffects, either physiological or behavioral.From a qualitative point of view, the brains ofthe spider monkey and the human were found to have similar structures. In reference to shape,the most similar structures were found in thelimbic system; proportionally, however, cervical curvature, amygdala, hippocampus, anteriorcommissure and the colliculi, were larger in thespider monkey than in the human.

  5. Monkey brain cortex imaging by photoacoustic tomography.

    Science.gov (United States)

    Yang, Xinmai; Wang, Lihong V

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultrasound signal attenuation and distortion caused by a relatively thick skull.

  6. Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans.

    Science.gov (United States)

    Rabiner, E A; Beaver, J; Makwana, A; Searle, G; Long, C; Nathan, P J; Newbould, R D; Howard, J; Miller, S R; Bush, M A; Hill, S; Reiley, R; Passchier, J; Gunn, R N; Matthews, P M; Bullmore, E T

    2011-08-01

    Opioid neurotransmission has a key role in mediating reward-related behaviours. Opioid receptor (OR) antagonists, such as naltrexone (NTX), can attenuate the behaviour-reinforcing effects of primary (food) and secondary rewards. GSK1521498 is a novel OR ligand, which behaves as an inverse agonist at the μ-OR sub-type. In a sample of healthy volunteers, we used [(11)C]-carfentanil positron emission tomography to measure the OR occupancy and functional magnetic resonance imaging (fMRI) to measure activation of brain reward centres by palatable food stimuli before and after single oral doses of GSK1521498 (range, 0.4-100 mg) or NTX (range, 2-50 mg). GSK1521498 had high affinity for human brain ORs (GSK1521498 effective concentration 50 = 7.10 ng ml(-1)) and there was a direct relationship between receptor occupancy (RO) and plasma concentrations of GSK1521498. However, for both NTX and its principal active metabolite in humans, 6-β-NTX, this relationship was indirect. GSK1521498, but not NTX, significantly attenuated the fMRI activation of the amygdala by a palatable food stimulus. We thus have shown how the pharmacological properties of OR antagonists can be characterised directly in humans by a novel integration of molecular and functional neuroimaging techniques. GSK1521498 was differentiated from NTX in terms of its pharmacokinetics, target affinity, plasma concentration-RO relationships and pharmacodynamic effects on food reward processing in the brain. Pharmacological differentiation of these molecules suggests that they may have different therapeutic profiles for treatment of overeating and other disorders of compulsive consumption.

  7. Investigating human brain cognition using spiral imaging%基于螺旋成像的人脑认知功能研究

    Institute of Scientific and Technical Information of China (English)

    邵涵钰; 翁旭初

    2014-01-01

    Human brain cognition has been mostly investigated with single-short echo-planar imaging (EPI) in order to cover the whole brain within a few seconds. However, the duration of EPI readout is relatively long because it utilizes a Cartesian trajectory to cover k-space and only Gx gradient contributes to the trajectory. The longer duration can result in substantial artifacts from off-resonance and gradient imperfections. Moreover, EPI is sensitive to motion because the ifrst-and higher order moments of the gradient waveforms near the k-space origin is large. Here we present another fast imaging technique, namely spiral imaging for the study of human brain cognition. Spiral samples an Archimedean or similar trajectory to cover k-space that either begins at the k-space center and spirals to the edge (spiral-out), or begins at the edge and ends at the origin (spiral-in). The readout duration of spiral is shorter than that of EPI due to its efifcient use of both Gx and Gy gradients to drive the trajectory, and its sensitivity to motion is lower since the gradient moments are low at the center of k-space and increase slowly with time. Spiral is a promising imaging technique in terms of breaking the bottle neck in EPI study of human brain cognition. Speciifcally, the use of spiral-in/out trajectories in which a spiral-in readout is followed by a spiral-out can simultaneously increase the SNR in uniform brain regions as well as to reduce the signal dropout in regions compromised by susceptibility-induced ifeld gradients. Furthermore, a variable-density spiral, which consists of an Archimedean spiral from the space origin to a user-speciifed k-space radius and a undersampled variable density spiral from the speciifed points to the maximum radius, can achieve high temporal and spatial resolution fMRI without loss of SNR using single-short.%目前,人脑认知功能研究广泛使用平面回波成像(EPI)来快速扫描全脑。然而,EPI采用笛卡尔轨迹覆盖k空间

  8. Image derived input function for [18F]-FEPPA: application to quantify translocator protein (18 kDa in the human brain.

    Directory of Open Access Journals (Sweden)

    Rostom Mabrouk

    Full Text Available In [18F]-FEPPA positron emission topography (PET imaging, automatic blood sampling system (ABSS is currently the gold standard to obtain the blood time activity curve (TAC required to extract the input function (IF. Here, we compare the performance of two image-based methods of IF extraction to the ABSS gold standard method for the quantification of translocator protein (TSPO in the human brain. The IFs were obtained from a direct delineation of the internal carotid signal (CS and a new concept of independent component analysis (ICA. PET scans were obtained from 18 healthy volunteers. The estimated total distribution volume (V(T by CS-IF and ICA-IF were compared to the reference V(T obtained by ABSS-IF in the frontal and temporal cortex, cerebellum, striatum and thalamus regions. The V(T values estimated using ICA-IF were more reliable than CS-IF for all brain regions. Specifically, the slope regression in the frontal cortex with ICA-IF was r² = 0.91 (p<0.05, and r² = 0.71 (p<0.05 using CS-IF.

  9. Consistent Reconstruction of Cortical Surfaces from Longitudinal Brain MR Images

    OpenAIRE

    Li, Gang; Nie, Jingxin; Shen, Dinggang

    2011-01-01

    Accurate and consistent reconstruction of cortical surfaces from longitudinal human brain MR images is of great importance in studying subtle morphological changes of the cerebral cortex. This paper presents a new deformable surface method for consistent and accurate reconstruction of inner, central and outer cortical surfaces from longitudinal MR images. Specifically, the cortical surfaces of the group-mean image of all aligned longitudinal images of the same subject are first reconstructed ...

  10. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  11. Spatial normalization of brain images and beyond.

    Science.gov (United States)

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images.

  12. Brain Image Representation and Rendering: A Survey

    Directory of Open Access Journals (Sweden)

    Mudassar Raza

    2012-09-01

    Full Text Available Brain image representation and rendering processes are basically used for evaluation, development and investigation consent experimental examination and formation of brain images of a variety of modalities that includes the major brain types like MEG, EEG, PET, MRI, CT or microscopy. So, there is a need to conduct a study to review the existing work in this area. This paper provides a review of different existing techniques and methods regarding the brain image representation and rendering. Image Rendering is the method of generating an image by means of a model, through computer programs. The basic purpose of brain image representation and rendering processes is to analyze the brain images precisely in order to effectively diagnose and examine the diseases and problems. The basic objective of this study is to evaluate and discuss different techniques and approaches proposed in order to handle different brain imaging types. The paper provides a short overview of different methods, in the form of advantages and limitations, presented in the prospect of brain image representation and rendering along with their sub categories proposed by different authors.

  13. Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection

    Directory of Open Access Journals (Sweden)

    Zi Jun Meng

    2013-01-01

    Full Text Available Magnetic resonance electrical impedance tomography (MREIT is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull’s low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  14. Numerical simulations of MREIT conductivity imaging for brain tumor detection.

    Science.gov (United States)

    Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  15. Test-retest reliability of {sup 11}C-ORM-13070 in PET imaging of α{sub 2C}-adrenoceptors in vivo in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Lehto, Jussi; Peltonen, Juha M.; Volanen, Iina; Scheinin, Mika [University of Turku, Clinical Research Services Turku CRST, Turku (Finland); TYKSLAB, Unit of Clinical Pharmacology, Turku (Finland); Virta, Jere R. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Turku University Hospital, Division of Clinical Neurosciences, Turku (Finland); Oikonen, Vesa; Roivainen, Anne; Luoto, Pauliina; Arponen, Eveliina; Helin, Semi; Virtanen, Kirsi [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Hietamaeki, Johanna; Holopainen, Aila; Rouru, Juha; Sallinen, Jukka [Orion Pharma, Turku (Finland); Kailajaervi, Marita [Turku Imanet, GE Healthcare, Turku (Finland); Rinne, Juha O. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland); Turku University Hospital, Division of Clinical Neurosciences, Turku (Finland); University of Turku, Clinical Research Services Turku CRST, Turku (Finland)

    2015-01-15

    α{sub 2C}-Adrenoceptors share inhibitory presynaptic functions with the more abundant α{sub 2A}-adrenoceptor subtype, but they also have widespread postsynaptic modulatory functions in the brain. Research on the noradrenergic system of the human brain has been hampered by the lack of suitable PET tracers targeted to the α{sub 2}-adrenoceptor subtypes. PET imaging with the specific α{sub 2C}-adrenoceptor antagonist tracer [{sup 11}C]ORM-13070 was performed twice in six healthy male subjects to investigate the test-retest reliability of tracer binding. The bound/free ratio of tracer uptake relative to nonspecific uptake into the cerebellum during the time interval of 5 - 30 min was most prominent in the dorsal striatum: 0.77 in the putamen and 0.58 in the caudate nucleus. Absolute test-retest variability in bound/free ratios of tracer ranged from 4.3 % in the putamen to 29 % in the hippocampus. Variability was also <10 % in the caudate nucleus and thalamus. Intraclass correlation coefficients (ICC) ranged from 0.50 in the hippocampus to 0.89 in the thalamus (ICC >0.70 was also reached in the caudate nucleus, putamen, lateral frontal cortex and parietal cortex). The pattern of [{sup 11}C]ORM-13070 binding, as determined by PET, was in good agreement with receptor density results previously derived from post-mortem autoradiography. PET data analysis results obtained with a compartmental model fit, the simplified reference tissue model and a graphical reference tissue analysis method were convergent with the tissue ratio method. The results of this study support the use of [{sup 11}C]ORM-13070 PET in the quantitative assessment of α{sub 2C}-adrenoceptors in the human brain in vivo. Reliable assessment of specific tracer binding in the dorsal striatum is possible with the help of reference tissue ratios. (orig.)

  16. Genetic basis of human brain evolution

    OpenAIRE

    Vallender, Eric J.; Mekel-Bobrov, Nitzan; Lahn, Bruce T

    2008-01-01

    Human evolution is characterized by a rapid increase in brain size and complexity. Decades of research have made important strides in identifying anatomical and physiological substrates underlying the unique features of the human brain. By contrast, it has become possible only very recently to examine the genetic basis of human brain evolution. Through comparative genomics, tantalizing insights regarding human brain evolution have emerged. The genetic changes that potentially underlie human b...

  17. Brain imaging of pain: state of the art.

    Science.gov (United States)

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony Kp

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain's role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained.

  18. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.

    Directory of Open Access Journals (Sweden)

    Kristofer E Bouchard

    Full Text Available A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial--especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship across speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics.

  19. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings

    Science.gov (United States)

    Anumanchipalli, Gopala K.; Dichter, Benjamin; Chaisanguanthum, Kris S.; Johnson, Keith; Chang, Edward F.

    2016-01-01

    A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial—especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship across speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics. PMID:27019106

  20. Functional brain imaging across development.

    Science.gov (United States)

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  1. From complex B(1) mapping to local SAR estimation for human brain MR imaging using multi-channel transceiver coil at 7T.

    Science.gov (United States)

    Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; Liu, Jiaen; He, Bin

    2013-06-01

    Elevated specific absorption rate (SAR) associated with increased main magnetic field strength remains a major safety concern in ultra-high-field (UHF) magnetic resonance imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radio-frequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission.

  2. Brain MR imaging in dietarily treated phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, L. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Smet, M.H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Johannik, K. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Hecke, P. van [Dept. of Radiology, University Hospitals, Leuven (Belgium); Francois, B. [L. Willems Inst., Diepenbeek (Belgium); Wilms, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Bosmans, H. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Marchal, G. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Jaeken, J. [Dept. of Pediatrics, University Hospitals, Leuven (Belgium); Demaerel, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium)

    1994-08-01

    Magnetic resonance imaging is the most efficient imaging modality to evaluate brain gray and white matter of patients with metabolic diseases. The main purpose of our study was to investigate the relation between brain MRI abnormalities and the phenylalanine (phe) and tyrosine (tyr) blood levels in 38 phenylketonuria (PKU) patients. Increased periventricular white matter intensity on T2-weighted brain images was the only pathologic finding in 24 patients. Brain MRI abnormalities were scored (4) and correlated with the individual mean phe and phe/tyr levels during 1 year preceding MR examination and with phe tolerance. The residual activity of phenylalanine hydroxylase was defined for each patient by an oral phe tolerance. The appearance of MRI abnormalities on brain T2-weighted images correlates with a threshold mean phe level (averaged over the year preceding the examination). (orig.)

  3. Hierarchical modularity in human brain functional networks

    CERN Document Server

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  4. Neurolight -astonishing advances in brain imaging.

    Science.gov (United States)

    Rojczyk-Gołębiewska, Ewa; Pałasz, Artur; Worthington, John J; Markowski, Grzegorz; Wiaderkiewicz, Ryszard

    2015-02-01

    In recent years, significant advances in basic neuroanatomical studies have taken place. Moreover, such classical, clinically-oriented human brain imaging methods such as MRI, PET and DTI have been applied to small laboratory animals allowing improvement in current experimental neuroscience. Contemporary structural neurobiology also uses various technologies based on fluorescent proteins. One of these is optogenetics, which integrates physics, genetics and bioengineering to enable temporal precise control of electrical activity of specific neurons. Another important challenge in the field is the accurate imaging of complicated neural networks. To address this problem, three-dimensional reconstruction techniques and retrograde labeling with modified viruses has been developed. However, a revolutionary step was the invention of the "Brainbow" system, utilizing gene constructs including the sequences of fluorescent proteins and the usage of Cre recombinase to create dozens of colour combinations, enabling visualization of neurons and their connections in extremely high resolution. Furthermore, the newly- introduced CLARITY method should make it possible to visualize three-dimensionally the structure of translucent brain tissue using the hydrogel polymeric network. This original technique is a big advance in neuroscience creating novel viewpoints completely different than standard glass slide immunostaining.

  5. Brain imaging in the context of food perception and eating.

    Science.gov (United States)

    Hollmann, Maurice; Pleger, Burkhard; Villringer, Arno; Horstmann, Annette

    2013-02-01

    Eating behavior depends heavily on brain function. In recent years, brain imaging has proved to be a powerful tool to elucidate brain function and brain structure in the context of eating. In this review, we summarize recent findings in the fast growing body of literature in the field and provide an overview of technical aspects as well as the basic brain mechanisms identified with imaging. Furthermore, we highlight findings linking neural processing of eating-related stimuli with obesity. The consumption of food is based on a complex interplay between homeostatic and hedonic mechanisms. Several hormones influence brain activity to regulate food intake and interact with the brain's reward circuitry, which is partly mediated by dopamine signaling. Additionally, it was shown that food stimuli trigger cognitive control mechanisms that incorporate internal goals into food choice. The brain mechanisms observed in this context are strongly influenced by genetic factors, sex and personality traits. Overall, a complex picture arises from brain-imaging findings, because a multitude of factors influence human food choice. Although several key mechanisms have been identified, there is no comprehensive model that is able to explain the behavioral observations to date. Especially a careful characterization of patients according to genotypes and phenotypes could help to better understand the current and future findings in neuroimaging studies.

  6. A functional magnetic resonance imaging study of human brain in pain-related areas induced by electrical stimulation with different intensities

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2010-01-01

    Full Text Available Background: Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. Aim: This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Materials and Methods: Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. Results: The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII, insula, anterior cingulate cortex (ACC, thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Conclusion: Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.

  7. Quantification of [11C]PIB PET for imaging myelin in the human brain: a test–retest reproducibility study in high-resolution research tomography

    Science.gov (United States)

    Veronese, Mattia; Bodini, Benedetta; García-Lorenzo, Daniel; Battaglini, Marco; Bongarzone, Salvatore; Comtat, Claude; Bottlaender, Michel; Stankoff, Bruno; Turkheimer, Federico E

    2015-01-01

    An accurate in vivo measure of myelin content is essential to deepen our insight into the mechanisms underlying demyelinating and dysmyelinating neurological disorders, and to evaluate the effects of emerging remyelinating treatments. Recently [11C]PIB, a positron emission tomography (PET) tracer originally conceived as a beta-amyloid marker, has been shown to be sensitive to myelin changes in preclinical models and humans. In this work, we propose a reference-region methodology for the voxelwise quantification of brain white-matter (WM) binding for [11C]PIB. This methodology consists of a supervised procedure for the automatic extraction of a reference region and the application of the Logan graphical method to generate distribution volume ratio (DVR) maps. This approach was assessed on a test–retest group of 10 healthy volunteers using a high-resolution PET tomograph. The [11C]PIB PET tracer binding was shown to be up to 23% higher in WM compared with gray matter, depending on the image reconstruction. The DVR estimates were characterized by high reliability (outliers 0.95). [11C]PIB parametric maps were also found to be significantly correlated (R2>0.50) to mRNA expressions of the most represented proteins in the myelin sheath. On the contrary, no correlation was found between [11C]PIB imaging and nonmyelin-associated proteins. PMID:26058700

  8. Quantification of [(11)C]PIB PET for imaging myelin in the human brain: a test-retest reproducibility study in high-resolution research tomography.

    Science.gov (United States)

    Veronese, Mattia; Bodini, Benedetta; García-Lorenzo, Daniel; Battaglini, Marco; Bongarzone, Salvatore; Comtat, Claude; Bottlaender, Michel; Stankoff, Bruno; Turkheimer, Federico E

    2015-11-01

    An accurate in vivo measure of myelin content is essential to deepen our insight into the mechanisms underlying demyelinating and dysmyelinating neurological disorders, and to evaluate the effects of emerging remyelinating treatments. Recently [(11)C]PIB, a positron emission tomography (PET) tracer originally conceived as a beta-amyloid marker, has been shown to be sensitive to myelin changes in preclinical models and humans. In this work, we propose a reference-region methodology for the voxelwise quantification of brain white-matter (WM) binding for [(11)C]PIB. This methodology consists of a supervised procedure for the automatic extraction of a reference region and the application of the Logan graphical method to generate distribution volume ratio (DVR) maps. This approach was assessed on a test-retest group of 10 healthy volunteers using a high-resolution PET tomograph. The [(11)C]PIB PET tracer binding was shown to be up to 23% higher in WM compared with gray matter, depending on the image reconstruction. The DVR estimates were characterized by high reliability (outliers 0.95). [(11)C]PIB parametric maps were also found to be significantly correlated (R(2)>0.50) to mRNA expressions of the most represented proteins in the myelin sheath. On the contrary, no correlation was found between [(11)C]PIB imaging and nonmyelin-associated proteins.

  9. Mapping of neural activity produced by thermal pain in the healthy human spinal cord and brain stem: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Cahill, Catherine M; Stroman, Patrick W

    2011-04-01

    Functional magnetic resonance imaging (fMRI) has greatly advanced our current understanding of pain, although most studies to date have focused on imaging of cortical structures. In the present study, we have used fMRI at 3 T to investigate the neural activity evoked by thermal sensation and pain (42 °C and 46 °C) throughout the entire lower neuroaxis from the first synapse in the spinal cord rostral to the thalamus in healthy subjects. The results demonstrate that noxious thermal stimulation (46 °C) produces consistent activity within various structures known to be involved in the pain matrix including the dorsal spinal cord, reticular formation, periaqueductal gray and rostral ventral medulla. However, additional areas of activity were evident that are not considered to be part of the pain matrix, including the olivary nucleus. Thermal stimulation (42 °C) reported as either not painful or mildly painful produced quantitative, but not qualitative, differences in neuronal activity depending on the order of experiments. Activity was greater in the spinal cord and brain stem in earlier experiments, compared with repeated experiments after the more noxious (46 °C) stimulus had been applied. This study provides significant insight into how the lower neuroaxis integrates and responds to pain in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Brain imaging in type 2 diabetes.

    Science.gov (United States)

    Brundel, Manon; Kappelle, L Jaap; Biessels, Geert Jan

    2014-12-01

    Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction and dementia. Brain imaging may provide important clues about underlying processes. This review focuses on the relationship between T2DM and brain abnormalities assessed with different imaging techniques: both structural and functional magnetic resonance imaging (MRI), including diffusion tensor imaging and magnetic resonance spectroscopy, as well as positron emission tomography and single-photon emission computed tomography. Compared to people without diabetes, people with T2DM show slightly more global brain atrophy, which increases gradually over time compared with normal aging. Moreover, vascular lesions are seen more often, particularly lacunar infarcts. The association between T2DM and white matter hyperintensities and microbleeds is less clear. T2DM has been related to diminished cerebral blood flow and cerebrovascular reactivity, particularly in more advanced disease. Diffusion tensor imaging is a promising technique with respect to subtle white matter involvement. Thus, brain imaging studies show that T2DM is associated with both degenerative and vascular brain damage, which develops slowly over the course of many years. The challenge for future studies will be to further unravel the etiology of brain damage in T2DM, and to identify subgroups of patients that will develop distinct progressive brain damage and cognitive decline.

  11. Radiological-Pathological Correlations Following Blast-Related Traumatic Brain Injury in the Whole Human Brain Using ex Vivo Diffusion Tensor Imaging

    Science.gov (United States)

    2014-01-01

    injuries caused by non-blast related trauma (e.g. falls, motor vehicle accidents, etc.), post - mortem pathological analyses have revealed that...issues: 1) Selection of control cases: we will select only young, otherwise healthy patients who died from non-head trauma and had a short post - mortem ...20 Oppenheimer, D. R. (1968). "Microscopic lesions in the brain following head injury." J Neurol Neurosurg Psychiatry 31(4): 299-306. http

  12. Brain imaging of pain: state of the art

    Science.gov (United States)

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  13. The Potential of Using Brain Images for Authentication

    Directory of Open Access Journals (Sweden)

    Fanglin Chen

    2014-01-01

    Full Text Available Biometric recognition (also known as biometrics refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition.

  14. The potential of using brain images for authentication.

    Science.gov (United States)

    Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition.

  15. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  16. Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain

    Directory of Open Access Journals (Sweden)

    Shaode Yu

    2013-01-01

    Full Text Available Mapping extraction is useful in medical image analysis. Similarity coefficient mapping (SCM replaced signal response to time course in tissue similarity mapping with signal response to TE changes in multiecho T2-star weighted magnetic resonance imaging without contrast agent. Since different tissues are with different sensitivities to reference signals, a new algorithm is proposed by adding a sensitivity index to SCM. It generates two mappings. One measures relative signal strength (SSM and the other depicts fluctuation magnitude (FMM. Meanwhile, the new method is adaptive to generate a proper reference signal by maximizing the sum of contrast index (CI from SSM and FMM without manual delineation. Based on four groups of images from multiecho T2-star weighted magnetic resonance imaging, the capacity of SSM and FMM in enhancing image contrast and morphological evaluation is validated. Average contrast improvement index (CII of SSM is 1.57, 1.38, 1.34, and 1.41. Average CII of FMM is 2.42, 2.30, 2.24, and 2.35. Visual analysis of regions of interest demonstrates that SSM and FMM show better morphological structures than original images, T2-star mapping and SCM. These extracted mappings can be further applied in information fusion, signal investigation, and tissue segmentation.

  17. An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images.

    Science.gov (United States)

    Wiemerslage, Lyle; Nilsson, Emil K; Solstrand Dahlberg, Linda; Ence-Eriksson, Fia; Castillo, Sandra; Larsen, Anna L; Bylund, Simon B A; Hogenkamp, Pleunie S; Olivo, Gaia; Bandstein, Marcus; Titova, Olga E; Larsson, Elna-Marie; Benedict, Christian; Brooks, Samantha J; Schiöth, Helgi B

    2016-05-01

    Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low- or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing.

  18. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio embryonic brain

    Directory of Open Access Journals (Sweden)

    Vittori Milos

    2016-06-01

    Full Text Available An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio embryos, which enable the visualization of cancer progression in a living animal.

  19. Novel optical system for neonatal brain imaging

    Science.gov (United States)

    Chen, Yu; Zhou, Shuoming; Nioka, Shoko; Chance, Britton; Anday, Endla; Ravishankar, Sudha; Delivoria-Papadopoulos, Maria

    1999-03-01

    A highly portable, fast, safe and affordable imaging system that provides interpretable images of brain function in full- and pre-term neonates within a few seconds has been applied to neonates with normal and pathological states. We have used a uniquely sensitive optical tomography system, termed phased array, which has revealed significant functional responses, particularly to parietal stimulation in neonate brain. This system can indicate the blood concentration and oxygenation change during the parietal brain activation in full- and pre-term neonates. The preliminary clinical results, especially a longitudinal study of a cardiac arrest neonate, suggest a variety of future applications.

  20. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  1. MRI Brain Image Segmentation based on Thresholding

    Directory of Open Access Journals (Sweden)

    G. Evelin Sujji, Y.V.S. Lakshmi, G. Wiselin Jiji

    2013-03-01

    Full Text Available Medical Image processing is one of the mostchallenging topics in research field. The mainobjective of image segmentation is to extract variousfeatures of the image that are used foranalysing,interpretation and understanding of images.Medical Resonance Image plays a major role inMedical diagnostics. Image processing in MRI ofbrain is highlyessential due to accurate detection ofthe type of brain abnormality which can reduce thechance of fatal result. This paper outlines anefficient image segmentation technique that candistinguish the pathological tissues such asedemaandtumourfrom thenormal tissues such as WhiteMatter(WM,GreyMatter(GM, andCerebrospinal Fluid(CSF. Thresholding is simplerand most commonly used techniques in imagesegmentation. This technique can be used to detectthe contour of thetumourin brain.

  2. Tracking White Matter Fiber in Human Brain

    Institute of Scientific and Technical Information of China (English)

    KANGNing; ZHANGJun; EricSCarlson

    2004-01-01

    A new approach for noninvasively tracing brain white matter fiber tracts is presented using diffusion tensor magnetic resonance imaging (DT-MRI) data. This technique is based on successive anisotropic diffusion simulations over the human brain, which are utilized to construct three dimensional diffusion fronts. The fiber pathways are determined by evaluating the distance and orientation from fronts to their corresponding diffusion seeds. Real DT-MRI data are used to demonstrate the tracking scheme. It is shown that several major white matter fiber pathways can be reproduced noninvasively, with the tract branching being allowed. Since the diffusion simulation,which is a truly physical phenomenon reflecting the underlying architecture of cerebral tissues, makes full use of the entire diffusion tensor data, the proposed approach is expected to enhance robustness and reliability of the DT-MRI based fiber tracking techniques in white matter fiber reconstruction.

  3. Multimodal optical imaging database from tumour brain human tissue: endogenous fluorescence from glioma, metastasis and control tissues

    Science.gov (United States)

    Poulon, Fanny; Ibrahim, Ali; Zanello, Marc; Pallud, Johan; Varlet, Pascale; Malouki, Fatima; Abi Lahoud, Georges; Devaux, Bertrand; Abi Haidar, Darine

    2017-02-01

    Eliminating time-consuming process of conventional biopsy is a practical improvement, as well as increasing the accuracy of tissue diagnoses and patient comfort. We addressed these needs by developing a multimodal nonlinear endomicroscope that allows real-time optical biopsies during surgical procedure. It will provide immediate information for diagnostic use without removal of tissue and will assist the choice of the optimal surgical strategy. This instrument will combine several means of contrast: non-linear fluorescence, second harmonic generation signal, reflectance, fluorescence lifetime and spectral analysis. Multimodality is crucial for reliable and comprehensive analysis of tissue. Parallel to the instrumental development, we currently improve our understanding of the endogeneous fluorescence signal with the different modalities that will be implemented in the stated. This endeavor will allow to create a database on the optical signature of the diseased and control brain tissues. This proceeding will present the preliminary results of this database on three types of tissues: cortex, metastasis and glioblastoma.

  4. Magnetic resonance imaging of brain death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.H.; Nathanson, J.A.; Fox, A.J.; Pelz, D.M.; Lownie, S.P.

    1995-06-01

    In order to demonstrate the magnetic resonance imaging (MRI) appearance of the brain in patients with clinical brain death, high-field MRI was performed on 5 patients using conventional T1-weighted and T2-weighted imaging. The study showed MRI exhibited similar features for all of the patients, features which were not found in MRI of comatose patients who were not clinically brain dead. It was stated that up to now the most important limitation in MRI of patients with suspected brain death has been the extreme difficulty of moving them out of the intensive care setting. If this problem can be overcome, and it appears possible with with the advent of MRI-compatible ventilators and noninvasive monitoring, MRI could become an excellent alternative for confirming clinical diagnosis of brain death for such patients. 15 refs., 3 figs.

  5. Human brain imaging of nicotinic acetylcholine α4β2* receptors using [(18) F]Nifene: selectivity, functional activity, toxicity, aging effects, gender effects, and extrathalamic pathways.

    Science.gov (United States)

    Mukherjee, Jogeshwar; Lao, Patrick J; Betthauser, Tobey J; Samra, Gurleen K; Pan, Min-Liang; Patel, Ishani H; Liang, Christopher; Metherate, Raju; Christian, Bradley T

    2017-09-05

    Nicotinic acetylcholinergic receptors (nAChR's) have been implicated in several brain disorders, including addiction, Parkinson's disease, Alzheimer's disease and schizophrenia. Here we report in vitro selectivity and functional properties, toxicity in rats, in vivo evaluation in humans, and comparison across species of [(18) F]Nifene, a fast acting PET imaging agent for α4β2* nAChRs. Nifene had subnanomolar affinities for hα2β2 (0.34 nM), hα3β2 (0.80 nM) and hα4β2 (0.83 nM) nAChR but weaker (27-219 nM) for hβ4 nAChR subtypes and 169 nM for hα7 nAChR. In functional assays, Nifene (100 μM) exhibited 14% agonist and >50% antagonist characteristics. In 14-day acute toxicity in rats, the maximum tolerated dose (MTD) and the no observed adverse effect level (NOAEL) were estimated to exceed 40 μg/kg/day (278 μg/m(2) /day). In human PET studies, [(18) F]Nifene (185 MBq; F]Nifene in white matter thalamic radiations were ∼1.6 (anterior) and ∼1.5 (superior longitudinal fasciculus). Habenula known to contain α3β2 nAChR exhibited low levels of [(18) F]Nifene binding while the red nucleus with α2β2 nAChR had DVR ∼1.6-1.7. Females had higher [(18) F]Nifene binding in all brain regions, with thalamus showing >15% than males. No significant aging effect was observed in [(18) F]Nifene binding over 5 decades. In all species (mice, rats, monkeys, and humans) thalamus showed highest [(18) F]Nifene binding with reference region ratios >2 compared to extrathalamic regions. Our findings suggest that [(18) F]Nifene PET may be used to study α4β2* nAChRs in various CNS disorders and for translational research. © 2017 Wiley Periodicals, Inc.

  6. Hemorrhage detection in MRI brain images using images features

    Science.gov (United States)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  7. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  8. Potential for photoacoustic imaging of the neonatal brain

    Science.gov (United States)

    Tavakolian, Pantea; Kosik, Ivan; Chamson-Reig, Astrid; St. Lawrence, Keith; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) has been proposed as a non-invasive technique for imaging neonatal brain injury. Since PAI combines many of the merits of both optical and ultrasound imaging, images with high contrast, high resolution, and a greater penetration depth can be obtained when compared to more traditional optical methods. However, due to the strong attenuation and reflection of photoacoustic pressure waves at the skull bone, PAI of the brain is much more challenging than traditional methods (e.g. near infrared spectroscopy) for optical interrogation of the neonatal brain. To evaluate the potential limits the skull places on 3D PAI of the neonatal brain, we constructed a neonatal skull phantom (1.4-mm thick) with a mixture of epoxy and titanium dioxide powder that provided acoustic insertion loss (1-5MHz) similar to human infant skull bone. The phantom was molded into a realistic infant skull shape by means of a CNCmachined mold that was based upon a 3D CAD model. To evaluate the effect of the skull bone on PAI, a photoacoustic point source was raster scanned within the phantom brain cavity to capture the imaging operator of the 3D PAI system (128 ultrasound transducers in a hemispherical arrangement) with and without the intervening skull phantom. The resultant imaging operators were compared to determine the effect of the skull layer on the PA signals in terms of amplitude loss and time delay.

  9. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T.

    Science.gov (United States)

    Atkinson, Ian C; Thulborn, Keith R

    2010-06-01

    The reduction of molecular oxygen to water is the final step of oxidative phosphorylation that couples adenosine triphosphate production to the reoxidation of reducing equivalents formed during the oxidation of glucose to carbon dioxide. This coupling makes the cerebral metabolic rate of oxygen consumption (CMRO(2)) an excellent reflection of the metabolic health of the brain. A multi-nuclear magnetic resonance (MR) imaging based method for CMRO(2) mapping is proposed. Oxygen consumption is determined by applying a new three-phase metabolic model for water generation and clearance to the changing 17-oxygen ((17)O) labeled water MR signal measured using quantitative (17)O MR imaging during inhalation of (17)O-enriched oxygen gas. These CMRO(2) data are corrected for the regional brain tissue mass computed from quantitative 23-sodium MR imaging of endogenous tissue sodium ions to derive quantitative results of oxygen consumption in micromoles O(2)/g tissue/minute that agree with literature results reported from positron emission tomography. The proposed technique is demonstrated in the human brain using a 9.4 T MR scanner optimized for human brain imaging.

  10. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    Science.gov (United States)

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  11. CT scan of the brain (image)

    Science.gov (United States)

    ... CAT scan (computed tomography) is a much more sensitive imaging technique than x-ray, allowing high definition not only of the bony structures, but of the soft tissues. Clear images of organs such as the brain, muscles, joint structures, veins ...

  12. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  13. A detector insert based on continuous scintillators for hybrid MR–PET imaging of the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Rato Mendes, P., E-mail: pedro.rato@ciemat.es [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J.C.; Cela, J.M. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Núñez, L.; Pastrana, M. [Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222 Majadahonda (Spain); Romero, L.; Willmott, C. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain)

    2013-02-21

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR–PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  14. A detector insert based on continuous scintillators for hybrid MR-PET imaging of the human brain

    Science.gov (United States)

    Rato Mendes, P.; Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J. C.; Cela, J. M.; Núñez, L.; Pastrana, M.; Romero, L.; Willmott, C.

    2013-02-01

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR-PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  15. Semi-automatic Epileptic Hot Spot Detection in ECD brain SPECT images

    Science.gov (United States)

    Papp, Laszlo; Zuhayra, Maaz; Henze, Eberhard

    A method is proposed to process ECD brain SPECT images representing epileptic hot spots inside the brain. For validation 35 ictal —interictal patient image data were processed. The images were registered by a normalized mutual information method, then the separation of the suspicious and normal brain areas were performed by two threshold-based segmentations. Normalization between the images was performed by local normal brain mean values. Based on the validation made by two medical physicians, minimal human intervention in the segmentation parameters was necessary to detect all epileptic spots and minimize the number of false spots inside the brain.

  16. [Functional imaging of deep brain stimulation in idiopathic Parkinson's disease].

    Science.gov (United States)

    Hilker, R

    2010-10-01

    Functional brain imaging allows the effects of deep brain stimulation (DBS) on the living human brain to be investigated. In patients with advanced Parkinson's disease (PD), positron emission tomography (PET) studies were undertaken at rest as well as under motor, cognitive or behavioral activation. DBS leads to a reduction of abnormal PD-related network activity in the motor system, which partly correlates with the improvement of motor symptoms. The local increase of energy consumption within the direct target area suggests a predominant excitatory influence of the stimulation current on neuronal tissue. Remote effects of DBS of the subthalamic nucleus (STN) on frontal association cortices indicate an interference of stimulation energy with associative and limbic basal ganglia loops. Taken together, functional brain imaging provides very valuable data for advancement of the DBS technique in PD therapy.

  17. 人脑神经心理功能的DTI研究%Diffusion tensor imaging research on some neuropsychological function of human brain

    Institute of Scientific and Technical Information of China (English)

    何冠勇; 刘远健

    2016-01-01

    目的:探讨MR弥散张量成像( DTI)技术在记忆、学习、语言、音乐及思维活动相关脑区白质纤维的研究进展。方法在 Medline 和 Embase 数据库,以“diffusion tensor imaging”与“memory”、“study”、“language”、“music”、“cognition”等为关键词,检索2015年6月之前发表的MR DTI技术研究有关心理神经功能的文章进行分析总结。对检索到100余篇文献进行筛选,以近5年发表在较权威期刊者优先纳入,主要文献32篇。结果人脑白质纤维通过记忆、学习、语言、音乐及认知活动可发生重塑性改变。结论 MR DTI技术作为一种能无创显示活体内脑白质纤维变化的技术,可广泛应用于各种认知训练及神经心理功能研究。%Objective To explore the progress of neuropsychological profile on memory, study, language, music, and cognition with diffusion tensor imaging(DTI). Methods A computer-based online database of Medline and Embase were undertaken to identify all articles about neuropsychological activities and diffusion tensor imaging with the key words of "memory, study, language, music, and cognition"published from January 2004 to June 2015. The search involved in more than 100 articles, as the key 32 of them were issued on authority magazines recently. Results The white matter fiber of human brain can be changed and remodeled through memory, learning, language, music and cognitive activity. Conclusions As a kind of technology to display the changing white matter construction of brain in vivo, magnetic resonance DTI are widely used in research on a variety of neuropsychological function as well as cognitive training.

  18. Effect of Mobile Phone-Induced Electromagnetic Field on Brain Hemodynamics and Human Stem Cell Functioning: Possible Mechanistic Link to Cancer Risk and Early Diagnostic Value of Electronphotonic Imaging.

    Science.gov (United States)

    Bhargav, Hemant; Srinivasan, T M; Varambally, S; Gangadhar, B N; Koka, Prasad

    2015-01-01

    The mobile phones (MP) are low power radio devices which work on electromagnetic fields (EMFs), in the frequency range of 900-1800 MHz. Exposure to MPEMFs may affect brain physiology and lead to various health hazards including brain tumors. Earlier studies with positron emission tomography (PET) have found alterations in cerebral blood flow (CBF) after acute exposure to MPEMFs. It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination of various leukemia and tumors, including brain tumors such as gliomas. Both significant misbalance in DSB repair and severe stress response have been triggered by MPEMFs and EMFs from cell towers. It has been shown that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells. This may be important for cancer risk assessment and indicates that stem cells are the most relevant cellular model for validating safe mobile communication signals. Recently developed technology for recording the human bio-electromagnetic (BEM) field using Electron photonic Imaging (EPI) or Gas Discharge Visualisation (GDV) technique provides useful information about the human BEM. Studies have recorded acute effects of Mobile Phone Electromagnetic Fields (MPEMFs) using EPI and found quantifiable effects on human BEM field. Present manuscript reviews evidences of altered brain physiology and stem cell functioning due to mobile phone/cell tower radiations, its association with increased cancer risk and explores early diagnostic value of EPI imaging in detecting EMF induced changes on human BEM.

  19. Brain mechanisms underlying human communication.

    Science.gov (United States)

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  20. Brain mechanisms underlying human communication

    Directory of Open Access Journals (Sweden)

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  1. Genetic basis of human brain evolution.

    Science.gov (United States)

    Vallender, Eric J; Mekel-Bobrov, Nitzan; Lahn, Bruce T

    2008-12-01

    Human evolution is characterized by a rapid increase in brain size and complexity. Decades of research have made important strides in identifying anatomical and physiological substrates underlying the unique features of the human brain. By contrast, it has become possible only very recently to examine the genetic basis of human brain evolution. Through comparative genomics, tantalizing insights regarding human brain evolution have emerged. The genetic changes that potentially underlie human brain evolution span a wide range from single-nucleotide substitutions to large-scale structural alterations of the genome. Similarly, the functional consequences of these genetic changes vary greatly, including protein-sequence alterations, cis-regulatory changes and even the emergence of new genes and the extinction of existing ones. Here, we provide a general review of recent findings into the genetic basis of human brain evolution, highlight the most notable trends that have emerged and caution against over-interpretation of current data.

  2. Leveraging Human Brain Activity to Improve Object Classification

    OpenAIRE

    Fong, Ruth Catherine

    2015-01-01

    Today, most object detection algorithms differ drastically from how humans tackle visual problems. In this thesis, I present a new paradigm for improving machine vision algorithms by designing them to better mimic how humans approach these tasks. Specifically, I demonstrate how human brain activity from functional magnetic resonance imaging (fMRI) can be leveraged to improve object classification. Inspired by the graduated manner in which humans learn, I present a novel algorithm that sim...

  3. Human Brain Reacts to Transcranial Extraocular Light.

    Science.gov (United States)

    Sun, Lihua; Peräkylä, Jari; Kovalainen, Anselmi; Ogawa, Keith H; Karhunen, Pekka J; Hartikainen, Kaisa M

    2016-01-01

    Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear canals abolished normal emotional modulation of attention related brain responses. With no extraocular light delivered, emotional distractors reduced centro-parietal P300 amplitude compared to neutral distractors. This phenomenon disappeared with extraocular light delivery. Extraocular light delivered through the ear canals was shown to penetrate at the base of the scull of a cadaver. Thus, we have shown that extraocular light impacts human brain functioning calling for further research on the mechanisms of action of light on the human brain.

  4. Imaging of Traumatic Brain Injury

    NARCIS (Netherlands)

    Zagorchev, L.; McAllister, T.

    2011-01-01

    Traumatic brain injury (TBI) represents an enormous public health challenge and is often associated with life long neurobehavioral sequelae in survivors. Several factors including higher percentages of individuals surviving TBI, as well as increasing concern about potential long term sequelae of ev

  5. Brain imaging, genetics and emotion

    NARCIS (Netherlands)

    Aleman, Andre; Swart, Marte; van Rijn, Sophie

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other

  6. Brain imaging, genetics and emotion

    NARCIS (Netherlands)

    Aleman, Andre; Swart, Marte; van Rijn, Sophie

    2008-01-01

    This paper reviews the published evidence on genetically driven variation in neurotransmitter function and brain circuits involved in emotion. Several studies point to a role of the serotonin transporter promoter polymorphism in amygdala activation during emotion perception. We also discuss other po

  7. Proton echo-planar spectroscopic imaging of J-coupled resonances in human brain at 3 and 4 Tesla.

    Science.gov (United States)

    Posse, Stefan; Otazo, Ricardo; Caprihan, Arvind; Bustillo, Juan; Chen, Hongji; Henry, Pierre-Gilles; Marjanska, Malgorzata; Gasparovic, Charles; Zuo, Chun; Magnotta, Vincent; Mueller, Bryon; Mullins, Paul; Renshaw, Perry; Ugurbil, Kamil; Lim, Kelvin O; Alger, Jeffry R

    2007-08-01

    In this multicenter study, 2D spatial mapping of J-coupled resonances at 3T and 4T was performed using short-TE (15 ms) proton echo-planar spectroscopic imaging (PEPSI). Water-suppressed (WS) data were acquired in 8.5 min with 1-cm(3) spatial resolution from a supraventricular axial slice. Optimized outer volume suppression (OVS) enabled mapping in close proximity to peripheral scalp regions. Constrained spectral fitting in reference to a non-WS (NWS) scan was performed with LCModel using correction for relaxation attenuation and partial-volume effects. The concentrations of total choline (tCho), creatine + phosphocreatine (Cr+PCr), glutamate (Glu), glutamate + glutamine (Glu+Gln), myo-inositol (Ins), NAA, NAA+NAAG, and two macromolecular resonances at 0.9 and 2.0 ppm were mapped with mean Cramer-Rao lower bounds (CRLBs) between 6% and 18% and approximately 150-cm(3) sensitive volumes. Aspartate, GABA, glutamine (Gln), glutathione (GSH), phosphoethanolamine (PE), and macromolecules (MMs) at 1.2 ppm were also mapped, although with larger mean CRLBs between 30% and 44%. The CRLBs at 4T were 19% lower on average as compared to 3T, consistent with a higher signal-to-noise ratio (SNR) and increased spectral resolution. Metabolite concentrations were in the ranges reported in previous studies. Glu concentration was significantly higher in gray matter (GM) compared to white matter (WM), as anticipated. The short acquisition time makes this methodology suitable for clinical studies.

  8. Brain evolution and human neuropsychology: the inferential brain hypothesis.

    Science.gov (United States)

    Koscik, Timothy R; Tranel, Daniel

    2012-05-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. (JINS, 2012, 18, 394-401).

  9. Proton MRS imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Maria [Aghia Sophia Children' s Hospital, Department of Radiology, Athens (Greece); Tzika, A.A. [Harvard Medical School, Department of Surgery, Massachusetts General Hospital, Boston, MA (United States); Shriners Burn Hospital, Boston, MA (United States)

    2016-06-15

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. (orig.)

  10. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    Science.gov (United States)

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  11. Brain imaging of pain: state of the art

    Directory of Open Access Journals (Sweden)

    Morton DL

    2016-09-01

    Full Text Available Debbie L Morton, Javin S Sandhu, Anthony KP Jones Human Pain Research Group, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK Abstract: Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. Keywords: fMRI, PET, EEG, arthritis, fibromyalgia

  12. Individual 3D region-of-interest atlas of the human brain: knowledge-based class image analysis for extraction of anatomical objects

    Science.gov (United States)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Sabri, Osama; Buell, Udalrich

    2000-06-01

    After neural network-based classification of tissue types, the second step of atlas extraction is knowledge-based class image analysis to get anatomically meaningful objects. Basic algorithms are region growing, mathematical morphology operations, and template matching. A special algorithm was designed for each object. The class label of each voxel and the knowledge about the relative position of anatomical objects to each other and to the sagittal midplane of the brain can be utilized for object extraction. User interaction is only necessary to define starting, mid- and end planes for most object extractions and to determine the number of iterations for erosion and dilation operations. Extraction can be done for the following anatomical brain regions: cerebrum; cerebral hemispheres; cerebellum; brain stem; white matter (e.g., centrum semiovale); gray matter [cortex, frontal, parietal, occipital, temporal lobes, cingulum, insula, basal ganglia (nuclei caudati, putamen, thalami)]. For atlas- based quantification of functional data, anatomical objects can be convoluted with the point spread function of functional data to take into account the different resolutions of morphological and functional modalities. This method allows individual atlas extraction from MRI image data of a patient without the need of warping individual data to an anatomical or statistical MRI brain atlas.

  13. Genomic connectivity networks based on the BrainSpan atlas of the developing human brain

    Science.gov (United States)

    Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

    2014-03-01

    The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

  14. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    OpenAIRE

    Koscik, Timothy R.; Tranel, Daniel

    2012-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the the...

  15. Simultaneous imaging of MR angiographic image and brain surface image using steady-state free precession

    Energy Technology Data Exchange (ETDEWEB)

    Takane, Atsushi; Tsuda, Munetaka (Hitachi Ltd., Katsuta, Ibaraki (Japan)); Koizumi, Hideaki; Koyama, Susumu; Yoshida, Takeyuki

    1993-09-01

    Synthesis of a brain surface image and an angiographic image representing brain surface vasculatures can be useful for pre-operational contemplation of brain surgery. Both brain surface images and brain surface vasculature images were successfully acquired simultaneously utilizing both FID signals and time-reversed FID signals created under steady-state free precession (SSFP). This simultaneous imaging method has several advantages. No positional discrepancies between both images and prolongation of scan time are anticipated because of concurrent acquisition of the two kinds of image data. Superimposition and stereo-display of both images enable understanding of their spatial relationship, and therefore afford a useful means for pre-operational simulation of brain surgery. (author).

  16. Human brain lesion-deficit inference remapped.

    Science.gov (United States)

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint; Nachev, Parashkev

    2014-09-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  17. Diffusion tensor imaging reveals evolution of primate brain architectures.

    Science.gov (United States)

    Zhang, Degang; Guo, Lei; Zhu, Dajiang; Li, Kaiming; Li, Longchuan; Chen, Hanbo; Zhao, Qun; Hu, Xiaoping; Liu, Tianming

    2013-11-01

    Evolution of the brain has been an inherently interesting problem for centuries. Recent studies have indicated that neuroimaging is a powerful technique for studying brain evolution. In particular, a variety of reports have demonstrated that consistent white matter fiber connection patterns derived from diffusion tensor imaging (DTI) tractography reveal common brain architecture and are predictive of brain functions. In this paper, based on our recently discovered 358 dense individualized and common connectivity-based cortical landmarks (DICCCOL) defined by consistent fiber connection patterns in DTI datasets of human brains, we derived 65 DICCCOLs that are common in macaque monkey, chimpanzee and human brains and 175 DICCCOLs that exhibit significant discrepancies amongst these three primate species. Qualitative and quantitative evaluations not only demonstrated the consistencies of anatomical locations and structural fiber connection patterns of these 65 common DICCCOLs across three primates, suggesting an evolutionarily preserved common brain architecture but also revealed regional patterns of evolutionarily induced complexity and variability of those 175 discrepant DICCCOLs across the three species.

  18. Imaging biomarkers in primary brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lopci, Egesta; Chiti, Arturo [Humanitas Clinical and Research Center, Nuclear Medicine Department, Rozzano, MI (Italy); Franzese, Ciro; Navarria, Pierina; Scorsetti, Marta [Humanitas Clinical and Research Center, Radiosurgery and Radiotherapy, Rozzano, MI (Italy); Grimaldi, Marco [Humanitas Clinical and Research Center, Radiology, Rozzano, MI (Italy); Zucali, Paolo Andrea; Simonelli, Matteo [Humanitas Clinical and Research Center, Medical Oncology, Rozzano, MI (Italy); Bello, Lorenzo [Humanitas Clinical and Research Center, Neurosurgery, Rozzano, MI (Italy)

    2015-04-01

    We are getting used to referring to instrumentally detectable biological features in medical language as ''imaging biomarkers''. These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context. (orig.)

  19. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  20. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  1. [Psychopathology of schizophrenia and brain imaging].

    Science.gov (United States)

    Gross, G; Huber, G

    2008-05-01

    While in the midth the 19th century Griesinger and 80 years later Mayer-Gross regarded schizophrenia as a brain disease, a far-reaching change in the view of schizophrenia found expression in the review of Manfred Bleuler in 1951: All classical assumptions of the schizophrenia doctrine and especially, that schizophrenia could be classified a somatically conditioned illness and not psychogenic, would be, as he wrote, shaken severely. On the 1st International Meeting of Neuropathology in Rome (1952) the opinion became generally accepted that pathological changes of the brain could not be expected in schizophrenias. The neuropathological research into psychoses, considered as unfruitful, has been practically stopped. The World Congress of Zürich "The group of schizophrenias" has summarized through Walter Schulte that schizophrenia must be understood as a "riddle of the human being", unapproachable for the methods of scientific medicine. In contrary to the main trends of psychiatry of that time, we were convinced that schizophrenias have a pathological-somatic basis and considered the search for empirical indications of the somatosis hypothesis an aim of research having priority. Thus, we tried to associate findings gained with the available somatic methods (neurohistopathology, neuroradiology, neurophysiology, neuropsychology, neurochemistry) with clinical syndromes and course of the disorder. These investigations, directed to psychopathological-somatic correlations went already since the monograph of 1957 hand in hand with the gradual development of the basic symptom concept (BSC) and of the Bonn Scale for the Assessment of Basic symptoms (BSABS) and with our long-term course- and early recognition research. I originated with three observations, made at the Heidelberg Clinic of Kurt Schneider, (1.) the cenesthetic schizophrenia; (2.) the asthenic pure defect and (3.) lethal catatonias, patients who were diagnosed clinically as idiopathic schizophrenias, but could be

  2. Functional magnetic resonance imaging and the brain: A brief review

    Science.gov (United States)

    Chow, Maggie S M; Wu, Sharon L; Webb, Sarah E; Gluskin, Katie; Yew, D T

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is employed in many behavior analysis studies, with blood oxygen level dependent- (BOLD-) contrast imaging being the main method used to generate images. The use of BOLD-contrast imaging in fMRI has been refined over the years, for example, the inclusion of a spin echo pulse and increased magnetic strength were shown to produce better recorded images. Taking careful precautions to control variables during measurement, comparisons between different specimen groups can be illustrated by fMRI imaging using both quantitative and qualitative methods. Differences have been observed in comparisons of active and resting, developing and aging, and defective and damaged brains in various studies. However, cognitive studies using fMRI still face a number of challenges in interpretation that can only be overcome by imaging large numbers of samples. Furthermore, fMRI studies of brain cancer, lesions and other brain pathologies of both humans and animals are still to be explored. PMID:28144401

  3. Brain Imaging Studies of Developmental Stuttering.

    Science.gov (United States)

    Ingham, Roger J.

    2001-01-01

    A review of research on brain imaging of developmental stuttering concludes that findings increasingly point to a failure of normal temporal lobe activation during speech that may either contribute to (or is the result of) a breakdown in the sequencing of processing among premotor regions implicated in phonologic planning. (Contains references.)…

  4. Analysis of Dynamic Brain Imaging Data

    CERN Document Server

    Mitra, P

    1998-01-01

    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based repres...

  5. Imaging Study Confirms Brain Differences in People with ADHD

    Science.gov (United States)

    ... Imaging Study Confirms Brain Differences in People With ADHD Attention-deficit/hyperactivity should be considered a brain ... Researchers who pinpointed brain differences in people with attention-deficit/hyperactivity disorder (ADHD) say their findings show the condition should ...

  6. Progress on the paternal brain: theory, animal models, human brain research, and mental health implications.

    Science.gov (United States)

    Swain, J E; Dayton, C J; Kim, P; Tolman, R M; Volling, B L

    2014-01-01

    With a secure foundation in basic research across mammalian species in which fathers participate in the raising of young, novel brain-imaging approaches are outlining a set of consistent brain circuits that regulate paternal thoughts and behaviors in humans. The newest experimental paradigms include increasingly realistic baby-stimuli to provoke paternal cognitions and behaviors with coordinated hormone measures to outline brain networks that regulate motivation, reflexive caring, emotion regulation, and social brain networks with differences and similarities to those found in mothers. In this article, on the father brain, we review all brain-imaging studies on PubMed to date on the human father brain and introduce the topic with a selection of theoretical models and foundational neurohormonal research on animal models in support of the human work. We discuss potentially translatable models for the identification and treatment of paternal mood and father-child relational problems, which could improve infant mental health and developmental trajectories with potentially broad public health importance. © 2014 Michigan Association for Infant Mental Health.

  7. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  8. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  9. Optical Coherence Tomography for Brain Imaging

    Science.gov (United States)

    Liu, Gangjun; Chen, Zhongping

    Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

  10. Ultra-High Resolution Imaging of the Human Brain with Phase-Cycled Balanced Steady State Free Precession at 7.0T

    Science.gov (United States)

    Zeineh, Michael; Parekh, Mansi; Zaharchuk, Greg; Su, Jason; Rosenberg, Jarrett; Fischbein, Nancy; Rutt, Brian

    2015-01-01

    Objective To acquire ultra-high resolution images of the brain using balanced steady-state free precession (bSSFP) at 7.0T and to identify the potential utility of this sequence. Materials and Methods 8 subjects participated in this study after providing informed consent. Each subject was scanned with 8 phase-cycles of bSSFP at 0.4mm isotropic resolution using 0.5 NEX and two-dimensional parallel acceleration of 1.75 × 1.75. Each phase cycle required 5 minutes of scanning, with pauses between the phase cycles allowing short periods of rest. The individual phase cycles were aligned and then averaged. The same subjects underwent scanning using 3D multi-echo GRE at 0.8mm isotropic resolution, 3D CUBE T2 at 0.7mm isotropic resolution, and thin-section coronal oblique T2-weighted FSE at 0.22 × 0.22 × 2.0 mm resolution for comparison. Two neuroradiologists assessed image quality and potential research and clinical utility. Results Subjects generally tolerated the scan sessions well, and composite high-resolution bSSFP images were produced for each subject. Rater analysis demonstrated that bSSFP had superior 3D visualization of the microarchitecture of the hippocampus, very good contrast to delineate the borders of the subthalamic nucleus, and relatively good B1 homogeneity throughout. In addition to excellent visualization of the cerebellum, subtle details of brain and skull base anatomy were also easier to identify on the bSSFP images, including the line of Gennari, membrane of Lillequist, and cranial nerves. bSSFP had a strong iron contrast similar to or better than the comparison sequences. However, cortical gray-white contrast was significantly better with CUBE T2 and T2-weighted FSE. Conclusions bSSFP can facilitate ultra-high resolution imaging of the brain. While total imaging times are long, the individually short phase-cycles can be acquired separately, improving exam tolerability. These images may be beneficial for studies of the hippocampus, iron

  11. Increased morphological asymmetry, evolvability and plasticity in human brain evolution.

    Science.gov (United States)

    Gómez-Robles, Aida; Hopkins, William D; Sherwood, Chet C

    2013-06-22

    The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with special emphasis on the study of asymmetric variation. Our study reveals that chimpanzee-human differences in cerebral morphology are mainly symmetric; by contrast, there is continuity in asymmetric variation between species, with humans showing an increased range of variation. Moreover, asymmetric variation does not appear to be the result of allometric scaling at intraspecific levels, whereas symmetric changes exhibit very slight allometric effects within each species. Our results emphasize two key properties of brain evolution in the hominine clade: first, evolution of chimpanzee and human brains (and probably their last common ancestor and related species) is not strongly morphologically constrained, thus making their brains highly evolvable and responsive to selective pressures; second, chimpanzee and, especially, human brains show high levels of fluctuating asymmetry indicative of pronounced developmental plasticity. We infer that these two characteristics can have a role in human cognitive evolution.

  12. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  13. Male microchimerism in the human female brain.

    Directory of Open Access Journals (Sweden)

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  14. MR imaging of the fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Orit A. [University of California, San Francisco, Department of Radiology, Neuroradiology Section, San Francisco, CA (United States)

    2010-01-15

    Fetal MRI is clinically performed to evaluate the brain in cases where an abnormality is detected by prenatal sonography. These most commonly include ventriculomegaly, abnormalities of the corpus callosum, and abnormalities of the posterior fossa. Fetal MRI is also increasingly performed to evaluate fetuses who have normal brain findings on prenatal sonogram but who are at increased risk for neurodevelopmental abnormalities, such as complicated monochorionic twin pregnancies. This paper will briefly discuss the common clinical conditions imaged by fetal MRI as well as recent advances in fetal MRI research. (orig.)

  15. Lymphoreticular cells in human brain tumours and in normal brain.

    OpenAIRE

    1982-01-01

    The present investigation, using various rosetting assays of cell suspensions prepared by mechanical disaggregation or collagenase digestion, demonstrated lymphoreticular cells in human normal brain (cerebral cortex and cerebellum) and in malignant brain tumours. The study revealed T and B lymphocytes and their subsets (bearing receptors for Fc(IgG) and C3) in 5/14 glioma suspensions, comprising less than 15% of the cell population. Between 20-60% of cells in tumour suspensions morphologicall...

  16. Comprehensive cellular-resolution atlas of the adult human brain.

    Science.gov (United States)

    Ding, Song-Lin; Royall, Joshua J; Sunkin, Susan M; Ng, Lydia; Facer, Benjamin A C; Lesnar, Phil; Guillozet-Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A; Koch, Christof; Phillips, John W; Sestan, Nenad; Wohnoutka, Paul; Zielke, H Ronald; Hohmann, John G; Jones, Allan R; Bernard, Amy; Hawrylycz, Michael J; Hof, Patrick R; Fischl, Bruce; Lein, Ed S

    2016-11-01

    Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole-brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high-resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and 1,356 large-format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto- and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127-3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. Copyright © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  17. Comprehensive cellular‐resolution atlas of the adult human brain

    Science.gov (United States)

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  18. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  19. Molecular imaging of the brain. Using multi-quantum coherence and diagnostics of brain disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kaila, M.M. [New South Wales Univ., Sydney, NSW (Australia). School of Physics; Kaila, Rakhi [Univ. of New South Wales, Sydney (Australia). School of Medicine

    2013-11-01

    Explains the basics of the MRI and its use in the diagnostics and the treatment of the human brain disorders. Examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. Covers how in a non-invasive manner one can diagnose diseases of the brain. This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical practices are included to illustrate the newly emerging ideas and techniques. The reader should note that the two parts of the book are written with no interdependence. One can read them quite independently.

  20. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visualizations of three-dimensional fibre bundles. One class of these algorithms is probabilistic...... be used. Within a two year period, no statistical inter- or intra-brain difference in the diffusion coefficient was found in perfusion fixated minipig brains. However, a decreasing tendency in the diffusion coefficient was found at the last time points about 24 months post mortem and might be explained...

  1. An introduction to human brain anatomy

    NARCIS (Netherlands)

    Forstmann, B.U.; Keuken, M.C.; Alkemade, A.; Forstmann, B.U.; Wagenmakers, E.-J.

    2015-01-01

    This tutorial chapter provides an overview of the human brain anatomy. Knowledge of brain anatomy is fundamental to our understanding of cognitive processes in health and disease; moreover, anatomical constraints are vital for neurocomputational models and can be important for psychological

  2. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Brain SPECT imaging in Sydenham's chorea

    Directory of Open Access Journals (Sweden)

    Barsottini O.G.P.

    2002-01-01

    Full Text Available The objective of the present study was to determine whether brain single-photon emission computed tomography (SPECT imaging is capable of detecting perfusional abnormalities. Ten Sydenham's chorea (SC patients, eight females and two males, 8 to 25 years of age (mean 13.4, with a clinical diagnosis of SC were submitted to brain SPECT imaging. We used HMPAO labeled with technetium-99m at a dose of 740 MBq. Six examinations revealed hyperperfusion of the basal ganglia, while the remaining four were normal. The six patients with abnormal results were females and their data were not correlated with severity of symptoms. Patients with abnormal brain SPECT had a more recent onset of symptoms (mean of 49 days compared to those with normal SPECT (mean of 85 days but this difference did not reach statistical significance. Brain SPECT can be a helpful method to determine abnormalities of the basal ganglia in SC patients but further studies on a larger number of patients are needed in order to detect the phase of the disease during which the examination is more sensitive.

  4. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images.......55). Intelligence shared a common genetic origin with superior occipitofrontal, callosal, and left optical radiation WM and frontal, occipital, and parahippocampal GM (phenotypic correlations up to 0.35). These findings point to a neural network that shares a common genetic origin with human intelligence...

  5. Interoperable atlases of the human brain.

    Science.gov (United States)

    Amunts, K; Hawrylycz, M J; Van Essen, D C; Van Horn, J D; Harel, N; Poline, J-B; De Martino, F; Bjaalie, J G; Dehaene-Lambertz, G; Dehaene, S; Valdes-Sosa, P; Thirion, B; Zilles, K; Hill, S L; Abrams, M B; Tass, P A; Vanduffel, W; Evans, A C; Eickhoff, S B

    2014-10-01

    The last two decades have seen an unprecedented development of human brain mapping approaches at various spatial and temporal scales. Together, these have provided a large fundus of information on many different aspects of the human brain including micro- and macrostructural segregation, regional specialization of function, connectivity, and temporal dynamics. Atlases are central in order to integrate such diverse information in a topographically meaningful way. It is noteworthy, that the brain mapping field has been developed along several major lines such as structure vs. function, postmortem vs. in vivo, individual features of the brain vs. population-based aspects, or slow vs. fast dynamics. In order to understand human brain organization, however, it seems inevitable that these different lines are integrated and combined into a multimodal human brain model. To this aim, we held a workshop to determine the constraints of a multi-modal human brain model that are needed to enable (i) an integration of different spatial and temporal scales and data modalities into a common reference system, and (ii) efficient data exchange and analysis. As detailed in this report, to arrive at fully interoperable atlases of the human brain will still require much work at the frontiers of data acquisition, analysis, and representation. Among them, the latter may provide the most challenging task, in particular when it comes to representing features of vastly different scales of space, time and abstraction. The potential benefits of such endeavor, however, clearly outweigh the problems, as only such kind of multi-modal human brain atlas may provide a starting point from which the complex relationships between structure, function, and connectivity may be explored. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Fetal trauma: brain imaging in four neonates

    Energy Technology Data Exchange (ETDEWEB)

    Breysem, Luc; Mussen, E.; Demaerel, P.; Smet, M. [Department of Radiology, University Hospitals, Herestraat 49, 3000, Leuven (Belgium); Cossey, V. [Department of Pediatrics, University Hospitals, Leuven (Belgium); Voorde, W. van de [Department of Forensic Medicine, University Hospitals, Leuven (Belgium)

    2004-09-01

    The purpose of this paper is to describe brain pathology in neonates after major traffic trauma in utero during the third trimester. Our patient cohort consisted of four neonates born by emergency cesarean section after car accident in the third trimester of pregnancy. The median gestational age (n=4) was 36 weeks (range: 30-38). Immediate post-natal and follow-up brain imaging consisted of cranial ultrasound (n=4), computed tomography (CT) (n=1) and post-mortem magnetic resonance imaging (MRI) (n=1). Pathology findings were correlated with the imaging findings (n=3). Cranial ultrasound demonstrated a huge subarachnoidal hemorrhage (n=1), subdural hematoma (n=1), brain edema with inversion of the diastolic flow (n=1) and severe ischemic changes (n=1). In one case, CT demonstrated the presence and extension of the subarachnoidal hemorrhage, a parietal fracture and a limited intraventricular hemorrhage. Cerebellar hemorrhage and a small cerebral frontal contusion were seen on post-mortem MRI in a child with a major subarachnoidal hemorrhage on ultrasound. None of these four children survived (three children died within 2 days and one child died after 1 month). Blunt abdominal trauma during pregnancy can cause fetal cranial injury. In our cases, skull fracture, intracranial hemorrhage and hypoxic-ischemic encephalopathy were encountered. (orig.)

  7. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  8. Brain imaging of neurovascular dysfunction in Alzheimer's disease.

    Science.gov (United States)

    Montagne, Axel; Nation, Daniel A; Pa, Judy; Sweeney, Melanie D; Toga, Arthur W; Zlokovic, Berislav V

    2016-05-01

    Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.

  9. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  10. Development of human brain structural networks through infancy and childhood.

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Lactate fuels the human brain during exercise

    DEFF Research Database (Denmark)

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up...... suggests that lactate may partially replace glucose as a substrate for oxidation. Thus, the notion of the human brain as an obligatory glucose consumer is not without exceptions....... blockade but not with beta(1)-adrenergic blockade alone. Also, CMR decreases in response to epinephrine, suggesting that a beta(2)-adrenergic receptor mechanism enhances glucose and perhaps lactate transport across the blood-brain barrier. The pattern of CMR decrease under various forms of brain activation...

  12. CARS and non-linear microscopy imaging of brain tumors

    Science.gov (United States)

    Galli, Roberta; Uckermann, Ortrud; Tamosaityte, Sandra; Geiger, Kathrin; Schackert, Gabriele; Steiner, Gerald; Koch, Edmund; Kirsch, Matthias

    2013-06-01

    Nonlinear optical microscopy offers a series of techniques that have the potential to be applied in vivo, for intraoperative identification of tumor border and in situ pathology. By addressing the different content of lipids that characterize the tumors with respect to the normal brain tissue, CARS microscopy enables to discern primary and secondary brain tumors from healthy tissue. A study performed in mouse models shows that the reduction of the CARS signal is a reliable quantity to identify brain tumors, irrespective from the tumor type. Moreover it enables to identify tumor borders and infiltrations at a cellular resolution. Integration of CARS with autogenous TPEF and SHG adds morphological and compositional details about the tissue. Examples of multimodal CARS imaging of different human tumor biopsies demonstrate the ability of the technique to retrieve information useful for histopathological diagnosis.

  13. The human brain: rewired and running hot.

    Science.gov (United States)

    Preuss, Todd M

    2011-05-01

    The past two decades have witnessed tremendous advances in noninvasive and postmortem neuroscientific techniques, advances that have made it possible, for the first time, to compare in detail the organization of the human brain to that of other primates. Studies comparing humans to chimpanzees and other great apes reveal that human brain evolution was not merely a matter of enlargement, but involved changes at all levels of organization that have been examined. These include the cellular and laminar organization of cortical areas; the higher order organization of the cortex, as reflected in the expansion of association cortex (in absolute terms, as well as relative to primary areas); the distribution of long-distance cortical connections; and hemispheric asymmetry. Additionally, genetic differences between humans and other primates have proven to be more extensive than previously thought, raising the possibility that human brain evolution involved significant modifications of neurophysiology and cerebral energy metabolism.

  14. Human brain evolution: insights from microarrays.

    Science.gov (United States)

    Preuss, Todd M; Cáceres, Mario; Oldham, Michael C; Geschwind, Daniel H

    2004-11-01

    Several recent microarray studies have compared gene-expression patterns n humans, chimpanzees and other non-human primates to identify evolutionary changes that contribute to the distinctive cognitive and behavioural characteristics of humans. These studies support the surprising conclusion that the evolution of the human brain involved an upregulation of gene expression relative to non-human primates, a finding that could be relevant to understanding human cerebral physiology and function. These results show how genetic and genomic methods can shed light on the basis of human neural and cognitive specializations, and have important implications for neuroscience, anthropology and medicine.

  15. Evolutionary origins of human brain and spirituality.

    Science.gov (United States)

    Henneberg, Maciej; Saniotis, Arthur

    2009-12-01

    Evolving brains produce minds. Minds operate on imaginary entities. Thus they can create what does not exist in the physical world. Spirits can be deified. Perception of spiritual entities is emotional--organic. Spirituality is a part of culture while culture is an adaptive mechanism of human groups as it allows for technology and social organization to support survival and reproduction. Humans are not rational, they are emotional. Most of explanations of the world, offered by various cultures, involve an element of "fiat", a will of a higher spiritual being, or a reference to some ideal. From this the rules of behaviour are deduced. These rules are necessary to maintain social peace and allow a complex unit consisting of individuals of both sexes and all ages to function in a way ensuring their reproductive success and thus survival. There is thus a direct biological benefit of complex ideological superstructure of culture. This complex superstructure most often takes a form of religion in which logic is mixed with appeals to emotions based on images of spiritual beings. God is a consequence of natural evolution. Whether a deity is a cause of this evolution is difficult to discover, but existence of a deity cannot be questioned.

  16. Structural imaging measures of brain aging.

    Science.gov (United States)

    Lockhart, Samuel N; DeCarli, Charles

    2014-09-01

    During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily "normal" or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer's disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer's disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between "Normal" and "Healthy" brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society.

  17. Radionuclide brain imaging in acquired immunodeficiency syndrome (AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, D.C.; Gacinovic, S.; Miller, R.F. [London University College Medical School, Middlesex Hospital, London (United Kingdom)

    1995-09-01

    Infection with the Human Immunodeficiency Virus type 1 (HIV-1) may produce a variety of central nervous system (CNS) symptoms and signs. CNS involvement in patients with the Acquired Immunodeficiency Syndrome (AIDS) includes AIDS dementia complex or HIV-1 associated cognitive/motor complex (widely known as HIV encephalopathy), progressive multifocal leucoencephalopathy (PML), opportunistic infections such as Toxoplasma gondii, TB, Cryptococcus and infiltration by non-Hodgkin`s B cell lymphoma. High resolution structural imaging investigations, either X-ray Computed Tomography (CT scan) or Magnetic Resonance Imaging (MRI) have contributed to the understanding and definition of cerebral damage caused by HIV encephalopathy. Atrophy and mainly high signal scattered white matter abnormalities are commonly seen with MRI. PML produces focal white matter high signal abnormalities due to multiple foci of demyelination. However, using structural imaging techniques there are no reliable parameters to distinguish focal lesions due to opportunistic infection (Toxoplasma gondii abscess) from neoplasm (lymphoma infiltration). It is studied the use of radionuclide brain imaging techniques in the investigation of HIV infected patients. Brain perfusion Single Photon Emission Tomography (SPET), neuroreceptor and Positron Emission Tomography (PET) studies are reviewed. Greater emphasis is put on the potential of some radiopharmaceuticals, considered to be brain tumour markers, to distinguish intracerebral lymphoma infiltration from Toxoplasma infection. SPET with {sup 201}Tl using quantification (tumour to non-tumour radioactivity ratios) appears a very promising technique to identify intracerebral lymphoma.

  18. PANDA: a pipeline toolbox for analyzing brain diffusion images

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2013-02-01

    Full Text Available Diffusion magnetic resonance imaging (dMRI is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named Pipeline for Analyzing braiN Diffusion imAges (PANDA for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL, Pipeline System for Octave and Matlab (PSOM, Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics (e.g., FA and MD that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI, allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  19. PANDA: a pipeline toolbox for analyzing brain diffusion images.

    Science.gov (United States)

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  20. Microtesla MRI of the human brain with simultaneous MEG

    CERN Document Server

    Zotev, V S; Matlashov, A N; Savukov, I M; Espy, M A; Mosher, J C; Gómez, J J; Kraus, R H

    2007-01-01

    Magnetic resonance imaging at ultra-low fields (ULF MRI) uses SQUIDs (superconducting quantum interference devices) to measure spin precession at a microtesla-range field after sample magnetization is enhanced by a stronger pre-polarizing field. Here, the first ULF images of the human head acquired at 46 microtesla measurement field with pre-polarization at 30 mT are reported. The imaging was performed with 3 mm x 3 mm x 6 mm resolution using the seven-channel SQUID system designed for both ULF MRI and magnetoencephalography (MEG). Auditory MEG signals were measured immediately after the imaging while the human subject remained inside the system. These results demonstrate that ULF MRI of the human brain is feasible and can be naturally combined with MEG.

  1. Imaging brain mechanisms in chronic visceral pain.

    Science.gov (United States)

    Mayer, Emeran A; Gupta, Arpana; Kilpatrick, Lisa A; Hong, Jui-Yang

    2015-04-01

    Chronic visceral pain syndromes are important clinical problems with largely unmet medical needs. Based on the common overlap with other chronic disorders of visceral or somatic pain, mood and affect, and their responsiveness to centrally targeted treatments, an important role of central nervous system in their pathophysiology is likely. A growing number of brain imaging studies in irritable bowel syndrome, functional dyspepsia, and bladder pain syndrome/interstitial cystitis has identified abnormalities in evoked brain responses, resting state activity, and connectivity, as well as in gray and white matter properties. Structural and functional alterations in brain regions of the salience, emotional arousal, and sensorimotor networks, as well as in prefrontal regions, are the most consistently reported findings. Some of these changes show moderate correlations with behavioral and clinical measures. Most recently, data-driven machine-learning approaches to larger data sets have been able to classify visceral pain syndromes from healthy control subjects. Future studies need to identify the mechanisms underlying the altered brain signatures of chronic visceral pain and identify targets for therapeutic interventions.

  2. Toward discovery science of human brain function.

    Science.gov (United States)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

    2010-03-09

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.

  3. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  4. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  5. GMP-compliant automated synthesis of [{sup 18}F]AV-45 (Florbetapir F 18) for imaging {beta}-amyloid plaques in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yao, C.-H. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Lin, K.-J. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Weng, C.-C. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Hsiao, I.-T. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Ting, Y.-S. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Yen, T.-C. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Jan, T.-R. [Department and Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Kung, M.-P. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Wey, S.-P., E-mail: spwey@mail.cgu.edu.t [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China)

    2010-12-15

    We report herein the Good Manufacturing Practice (GMP)-compliant automated synthesis of {sup 18}F-labeled styrylpyridine, AV-45 (Florbetapir), a novel tracer for positron emission tomography (PET) imaging of {beta}-amyloid (A{beta}) plaques in the brain of Alzheimer's disease patients. [{sup 18}F]AV-45 was prepared in 105 min using a tosylate precursor with Sumitomo modules for radiosynthesis under GMP-compliant conditions. The overall yield was 25.4{+-}7.7% with a final radiochemical purity of 95.3{+-}2.2% (n=19). The specific activity of [{sup 18}F]AV-45 reached as high as 470{+-}135 TBq/mmol (n=19). The present studies show that [{sup 18}F]AV-45 can be manufactured under GMP-compliant conditions and could be widely available for routine clinical use.

  6. Human diversity in images

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    A photo contest is being jointly organized by the CERN Equal Opportunities team and the CERN Photo Club. All you need to do is submit a photo or quotation. The contest is open to everyone.   Diversity at CERN You don’t need to be a photographer or to have sophisticated photographic equipment to capture CERN’s diversity of working styles, gender, age, ethnic, origin and physical ability. Its many facets are all around you! The emphasis of the initiative is on capturing this diversity in an image using creativity, intuition and cultural empathy. You can also contribute with a quotation (whether or not you specify who said it is optional) telling the organizers what strikes you about diversity at CERN. The photo entries and a collection of the quotations will be displayed in an exhibition to be held in May in the Main Building, as well as on the CERN Photo Club website. The best photos will be awarded prizes. So over to you: dig deep inside human nature, explore individual tal...

  7. Impact of fluoxetine on the human brain in multiple sclerosis as quantified by proton magnetic resonance spectroscopy and diffusion tensor imaging.

    Science.gov (United States)

    Sijens, Paul E; Mostert, Jop P; Irwan, Roy; Potze, Jan Hendrik; Oudkerk, Matthijs; De Keyser, Jacques

    2008-12-30

    The antidepressant fluoxetine stimulates astrocytic glycogenolysis, which serves as an energy source for axons. In multiple sclerosis patients fluoxetine administration may improve energy supply in neuron cells and thus inhibit axonal degeneration. In a preliminary pilot study, 15 patients with multiple sclerosis (MS) were examined by diffusion tensor imaging (DTI) and (1)H magnetic resonance spectroscopy (MRS) in order to quantify the brain tissue diffusion properties (fractional anisotropy, apparent diffusion coefficient) and metabolite levels (choline, creatine and N-acetylaspartate) in cortical gray matter brain tissue, in normal appearing white matter and in white matter lesions. After oral administration of fluoxetine (20 mg/day) for 1 week, the DTI and MRS measurements were repeated and after treatment with a higher dose (40 mg/day) during the next week, a third series of DTI/MRS examinations was performed in order to assess any changes in diffusion properties and metabolism. One trend was observed in gray matter tissue, a decrease of choline measured at weeks 1 and 2 (significant in a subgroup of 11 relapsing remitting/secondary progressive MS patients). In white matter lesions, the apparent diffusion coefficient was increased at week 1 and N-acetylaspartate was increased at week 2 (both significant). These preliminary results provide evidence of a neuroprotective effect of fluoxetine in MS by the observed partial normalization of the structure-related MRS parameter N-acetylaspartate in white matter lesions.

  8. The Molecular Basis of Human Brain Evolution.

    Science.gov (United States)

    Enard, Wolfgang

    2016-10-24

    Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. BRAIN FUNCTIONAL IMAGING BASED ON BRAIN TISSUE OXYGEN CONTENT VIA MAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    M.A OGHABIAN

    2003-03-01

    Full Text Available Introduction: FMRI is a new approach in MRI to provide functional data of human brain activities. Some methods such as BOLD contrast, perfusion imaging, diffusion imaging, and spectroscopy in MRI have used to yield functional images. Material and Methods: This research was performed in imaging center of IMAM KHOMEINI hospital in TEHRAN in 1997. The experiments were performed on a conventional 1.5- T picker MR instrument, using a standard head coil. CE – FAST gradient echo images were obtained (TR=100, TE = 35, 128*256 matrix, 10 mm slice, FOV = 250 mm, F.A =25 Degree, NEX = 1, 13 s per image. Images were obtained during sensory - motor stimulation by pressing fingers to each other, coronal oblique images were acquired through central sulcus (precentral gyrus where the related sensory cortex is. Then, the Images were transferred to personal computers in order to eliminate noise and highlight the functional differences. These images were processed by various mathematical methods such as subtraction and student T- test. Results: Although some changes were seen in functional area, there were not significant results by the conventional system protocols. Some new protocols were designed and implemented to increase the sensitivity of the system to functional changes. Discussion: However, more research needs to be done in the future to obtain faster and more efficient techniques and in regard to clinical applications of the method.

  10. Optimizing full-brain coverage in human brain MRI through population distributions of brain size

    NARCIS (Netherlands)

    Mennes, M.; Jenkinson, M.; Valabregue, R.; Buitelaar, J.; Beckmann, C.; Smith, S.

    2014-01-01

    When defining an MRI protocol, brain researchers need to set multiple interdependent parameters that define repetition time (TR), voxel size, field-of-view (FOV), etc. Typically, researchers aim to image the full brain, making the expected FOV an important parameter to consider. Especially in 2D-EPI

  11. Susceptibility weighted imaging of the neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Meoded, A.; Poretti, A. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Northington, F.J. [Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tekes, A.; Intrapiromkul, J. [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Huisman, T.A.G.M., E-mail: thuisma1@jhmi.edu [Division of Pediatric Radiology and Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2012-08-15

    Susceptibility weighted imaging (SWI) is a well-established magnetic resonance technique, which is highly sensitive for blood, iron, and calcium depositions in the brain and has been implemented in the routine clinical use in both children and neonates. SWI in neonates might provide valuable additional diagnostic and prognostic information for a wide spectrum of neonatal neurological disorders. To date, there are few articles available on the application of SWI in neonatal neurological disorders. The purpose of this article is to illustrate and describe the characteristic SWI findings in various typical neonatal neurological disorders.

  12. MR brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics.

    Science.gov (United States)

    Niessen, Wiro J

    2016-10-01

    MR brain image analysis has constantly been a hot topic research area in medical image analysis over the past two decades. In this article, it is discussed how the field developed from the construction of tools for automatic quantification of brain morphology, function, connectivity and pathology, to creating models of the ageing brain in normal ageing and disease, and tools for integrated analysis of imaging and genetic data. The current and future role of the field in improved understanding of the development of neurodegenerative disease is discussed, and its potential for aiding in early and differential diagnosis and prognosis of different types of dementia. For the latter, the use of reference imaging data and reference models derived from large clinical and population imaging studies, and the application of machine learning techniques on these reference data, are expected to play a key role. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue

    NARCIS (Netherlands)

    Menzel, M.; Michielsen, K.; De Raedt, H.; Reckfort, J.; Amunts, K.; Axer, M.

    2015-01-01

    The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve

  14. Brain Imaging of Nicotinic Receptors in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Jin Wu

    2010-01-01

    Full Text Available Neuronal nicotinic acetylcholine receptors (nAChRs are a family of ligand-gated ion channels which are widely distributed in the human brain. Several lines of evidence suggest that two major subtypes (α4β2 and α7 of nAChRs play an important role in the pathophysiology of Alzheimer's disease (AD. Postmortem studies demonstrated alterations in the density of these subtypes of nAChRs in the brain of patients with AD. Currently, nAChRs are one of the most attractive therapeutic targets for AD. Therefore, several researchers have made an effort to develop novel radioligands that can be used to study quantitatively the distribution of these two subtypes in the human brain with positron emission tomography (PET and single-photon emission computed tomography (SPECT. In this paper, we discuss the current topics on in vivo imaging of two subtypes of nAChRs in the brain of patients with AD.

  15. Brain imaging and schizophrenia. Imagerie cerebrale et schizophrenie

    Energy Technology Data Exchange (ETDEWEB)

    Martinot, J.L. (Hopital de Bicetre, 94 - Le Kremlin-Bicetre (FR)); Dao-Castellana, M.H. (CEA, 91 - Orsay (FR). Service Hospitalier Frederic Joliot)

    1991-03-01

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics.

  16. Brain mechanisms underlying human communication

    NARCIS (Netherlands)

    Noordzij, M.L.; Newman-Norlund, S.E.; Ruiter, J.P.A. de; Hagoort, P.; Levinson, S.C.; Toni, I.

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we

  17. Brain mechanisms underlying human communication

    NARCIS (Netherlands)

    Noordzij, Matthijs Leendert; Newman-Norlund, Sarah E.; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C.; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we

  18. Human brain evolution writ large and small.

    Science.gov (United States)

    Sherwood, Chet C; Bauernfeind, Amy L; Bianchi, Serena; Raghanti, Mary Ann; Hof, Patrick R

    2012-01-01

    Human evolution was marked by an extraordinary increase in total brain size relative to body size. While it is certain that increased encephalization is an important factor contributing to the origin of our species-specific cognitive abilities, it is difficult to disentangle which aspects of human neural structure and function are correlated by-products of brain size expansion from those that are specifically related to particular psychological specializations, such as language and enhanced "mentalizing" abilities. In this chapter, we review evidence from allometric scaling studies demonstrating that much of human neocortical organization can be understood as a product of brain enlargement. Defining extra-allometric specializations in humans is often hampered by a severe lack of comparative data from the same neuroanatomical variables across a broad range of primates. When possible, we highlight evidence for features of human neocortical architecture and function that cannot be easily explained as correlates of brain size and, hence, might be more directly associated with the evolution of uniquely human cognitive capacities. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Human bites (image)

    Science.gov (United States)

    Human bites present a high risk of infection. Besides the bacteria which can cause infection, there is ... the wound extends below the skin. Anytime a human bite has broken the skin, seek medical attention.

  20. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low......- and high-grade glioma patients – manually annotated by up to four raters – and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74...... a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  1. Imaging of sodium in the brain: a brief review.

    Science.gov (United States)

    Shah, N Jon; Worthoff, Wieland A; Langen, Karl-Josef

    2016-02-01

    Sodium-based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology--in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra- and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET-derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging.

  2. Optimizing full-brain coverage in human brain MRI through population distributions of brain size.

    Science.gov (United States)

    Mennes, Maarten; Jenkinson, Mark; Valabregue, Romain; Buitelaar, Jan K; Beckmann, Christian; Smith, Stephen

    2014-09-01

    When defining an MRI protocol, brain researchers need to set multiple interdependent parameters that define repetition time (TR), voxel size, field-of-view (FOV), etc. Typically, researchers aim to image the full brain, making the expected FOV an important parameter to consider. Especially in 2D-EPI sequences, non-wasteful FOV settings are important to achieve the best temporal and spatial resolution. In practice, however, imperfect FOV size estimation often results in partial brain coverage for a significant number of participants per study, or, alternatively, an unnecessarily large voxel-size or number of slices to guarantee full brain coverage. To provide normative FOV guidelines we estimated population distributions of brain size in the x-, y-, and z-direction using data from 14,781 individuals. Our results indicated that 11mm in the z-direction differentiate between obtaining full brain coverage for 90% vs. 99.9% of participants. Importantly, we observed that rotating the FOV to optimally cover the brain, and thus minimize the number of slices needed, effectively reduces the required inferior-superior FOV size by ~5%. For a typical adult imaging study, 99.9% of the population can be imaged with full brain coverage when using an inferior-superior FOV of 142mm, assuming optimal slice orientation and minimal within-scan head motion. By providing population distributions for brain size in the x-, y-, and z-direction we improve the potential for obtaining full brain coverage, especially in 2D-EPI sequences used in most functional and diffusion MRI studies. We further enable optimization of related imaging parameters including the number of slices, TR and total acquisition time.

  3. Consumption of seaweeds and the human brain

    DEFF Research Database (Denmark)

    Cornish, M. Lynn; Critchley, Alan T.; Mouritsen, Ole G.

    2017-01-01

    Much of the content of the human head is brain matter. This functions as the epicenter of human physical existence, including a sense of well-being and the manifestation of human consciousness. The human brain is a precious and complex organ which increases from 350 to 400 g in infants to 1......, and the impacts of anti-oxidant activities in neuroprotection. These elements have the capacity to help in the defense of human cognitive disorders, such as dementia, Alzheimer’s disease, depression, bipolar diseases, and adverse conditions characterized by progressive neurodegeneration. Psychological benefits...... associated with the moderate consumption of a diet fortified with macroalgae are also discussed in terms of reduction of depressive symptoms and furthermore highlighting possible improvements in sexual function....

  4. The human brain. Prenatal development and structure

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  5. Molecular insights into human brain evolution.

    Science.gov (United States)

    Hill, Robert Sean; Walsh, Christopher A

    2005-09-01

    Rapidly advancing knowledge of genome structure and sequence enables new means for the analysis of specific DNA changes associated with the differences between the human brain and that of other mammals. Recent studies implicate evolutionary changes in messenger RNA and protein expression levels, as well as DNA changes that alter amino acid sequences. We can anticipate having a systematic catalogue of DNA changes in the lineage leading to humans, but an ongoing challenge will be relating these changes to the anatomical and functional differences between our brain and that of our ancient and more recent ancestors.

  6. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  7. Human intelligence and brain networks.

    Science.gov (United States)

    Colom, Roberto; Karama, Sherif; Jung, Rex E; Haier, Richard J

    2010-01-01

    Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other.

  8. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  9. REVISITING GLYCOGEN CONTENT IN THE HUMAN BRAIN

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R.

    2015-01-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3–4 µmol/g brain glycogen content using in vivo 13C magnetic resonance spectroscopy (MRS) in conjunction with [1-13C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3–5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state 13C labeling in glycogen, here we administered [1-13C]glucose to healthy volunteers for 80 hours. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-13C]glucose administration and 13C-glycogen levels in the occipital lobe were measured by 13C MRS approximately every 12 hours. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the 13C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  10. Human functional neuroimaging of brain changes associated with practice

    OpenAIRE

    GARAVAN, HUGH PATRICK

    2005-01-01

    PUBLISHED The discovery that experience-driven changes in the human brain can occur from a neural to a cortical level throughout the lifespan has stimulated a proliferation of research into how neural function changes in response to experience, enabled by neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging. Studies attempt to characterize these changes by examining how practice on a task affects the functional anatomy underlying performance. ...

  11. Tomographic brain imaging with nucleolar detail and automatic cell counting

    Science.gov (United States)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-09-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.

  12. Compact and mobile high resolution PET brain imager

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  13. Infrared Imaging System for Studying Brain Function

    Science.gov (United States)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  14. Essential fatty acids and human brain.

    Science.gov (United States)

    Chang, Chia-Yu; Ke, Der-Shin; Chen, Jen-Yin

    2009-12-01

    The human brain is nearly 60 percent fat. We've learned in recent years that fatty acids are among the most crucial molecules that determine your brain's integrity and ability to perform. Essential fatty acids (EFAs) are required for maintenance of optimal health but they can not synthesized by the body and must be obtained from dietary sources. Clinical observation studies has related imbalance dietary intake of fatty acids to impaired brain performance and diseases. Most of the brain growth is completed by 5-6 years of age. The EFAs, particularly the omega-3 fatty acids, are important for brain development during both the fetal and postnatal period. Dietary decosahexaenoic acid (DHA) is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Beyond their important role in building the brain structure, EFAs, as messengers, are involved in the synthesis and functions of brain neurotransmitters, and in the molecules of the immune system. Neuronal membranes contain phospholipid pools that are the reservoirs for the synthesis of specific lipid messengers on neuronal stimulation or injury. These messengers in turn participate in signaling cascades that can either promote neuronal injury or neuroprotection. The goal of this review is to give a new understanding of how EFAs determine our brain's integrity and performance, and to recall the neuropsychiatric disorders that may be influenced by them. As we further unlock the mystery of how fatty acids affect the brain and better understand the brain's critical dependence on specific EFAs, correct intake of the appropriate diet or supplements becomes one of the tasks we undertake in pursuit of optimal wellness.

  15. The modular and integrative functional architecture of the human brain.

    Science.gov (United States)

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions.

  16. The immune response of the human brain to abdominal surgery.

    Science.gov (United States)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin; Rasmussen, Lars S; Zetterberg, Henrik; Erlandsson Harris, Helena; Stridh, Pernilla; Christensson, Eva; Granström, Anna; Schening, Anna; Dymmel, Karin; Knave, Nina; Terrando, Niccolò; Maze, Mervyn; Borg, Jacqueline; Varrone, Andrea; Halldin, Christer; Blennow, Kaj; Farde, Lars; Eriksson, Lars I

    2017-04-01

    Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans. This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. Eight males undergoing prostatectomy under general anesthesia were included. Prior to surgery (baseline), at postoperative days 3 to 4, and after 3 months, patients were examined using [(11) C]PBR28 brain PET imaging to assess brain immune cell activation. Concurrently, systemic inflammatory biomarkers, ex vivo blood tests on immunoreactivity to lipopolysaccharide (LPS) stimulation, and cognitive function were assessed. Patients showed a global downregulation of gray matter [(11) C]PBR28 binding of 26 ± 26% (mean ± standard deviation) at 3 to 4 days postoperatively compared to baseline (p = 0.023), recovering or even increasing after 3 months. LPS-induced release of the proinflammatory marker tumor necrosis factor-α in blood displayed a reduction (41 ± 39%) on the 3rd to 4th postoperative day, corresponding to changes in [(11) C]PBR28 distribution volume. Change in Stroop Color-Word Test performance between postoperative days 3 to 4 and 3 months correlated to change in [(11) C]PBR28 binding (p = 0.027). This study translates preclinical data on changes in the brain immune system after surgery to humans, and suggests an interplay between the human brain and the inflammatory response of the peripheral innate immune system. These findings may be related to postsurgical impairments of cognitive function. Ann Neurol 2017;81:572-582. © 2017 American Neurological Association.

  17. FULLY AUTOMATIC FRAMEWORK FOR SEGMENTATION OF BRAIN MRI IMAGE

    Institute of Scientific and Technical Information of China (English)

    Lin Pan; Zheng Chongxun; Yang Yong; Gu Jianwen

    2005-01-01

    Objective To propose an automatic framework for segmentation of brain image in this paper. Methods The brain MRI image segmentation framework consists of three-step segmentation procedures. First, Non-brain structures removal by level set method. Then, the non-uniformity correction method is based on computing estimates of tissue intensity variation. Finally, it uses a statistical model based on Markov random filed for MRI brain image segmentation. The brain tissue can be classified into cerebrospinal fluid, white matter and gray matter. Results To evaluate the proposed our method, we performed two sets of experiments, one on simulated MR and another on real MR brain data. Conclusion The efficacy of the brain MRI image segmentation framework has been demonstrated by the extensive experiments. In the future, we are also planning on a large-scale clinical evaluation of this segmentation framework.

  18. Simple models of human brain functional networks.

    Science.gov (United States)

    Vértes, Petra E; Alexander-Bloch, Aaron F; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; Bullmore, Edward T

    2012-04-10

    Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas.

  19. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  20. Groupwise registration of MR brain images with tumors

    Science.gov (United States)

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-09-01

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of ‘image registration paths’ to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10-9).

  1. Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution.

    Science.gov (United States)

    Shi, Lei; Hu, Enzhi; Wang, Zhenbo; Liu, Jiewei; Li, Jin; Li, Ming; Chen, Hua; Yu, Chunshui; Jiang, Tianzi; Su, Bing

    2017-02-01

    Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.

  2. Brain activation during human male ejaculation

    NARCIS (Netherlands)

    Holstege, Ger; Georgiadis, Janniko R.; Paans, Anne M.J.; Meiners, Linda C.; Graaf, Ferdinand H.C.E. van der; Reinders, A.A.T.Simone

    2003-01-01

    Brain mechanisms that control human sexual behavior in general, and ejaculation in particular, are poorly understood. We used positron emission tomography to measure increases in regional cerebral blood flow (rCBF) during ejaculation compared with sexual stimulation in heterosexual male volunteers.

  3. Diffusion Tensor Imaging Of the Brain in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Jo Ann V. Antenor-Dorsey

    2014-10-01

    Full Text Available Individuals with Type 1 diabetes mellitus (T1DM are required to carefully manage their insulin dosing, dietary intake, and activity levels in order to maintain optimal blood sugar levels. Over time, exposure to hyperglycaemia is known to cause significant damage to the peripheral nervous system, but its impact on the central nervous system has been less well studied. Researchers have begun to explore the cumulative impact of commonly experienced blood glucose fluctuations on brain structure and function in patient populations. To date, these studies have typically used magnetic resonance imaging to measure regional grey and white matter volumes across the brain. However, newer methods, such as diffusion tensor imaging (DTI can measure the microstructural properties of white matter, which can be more sensitive to neurological effects than standard volumetric measures. Studies are beginning to use DTI to understand the impact of T1DM on white matter structure in the human brain. This work, its implications, future directions, and important caveats, are the focus of this review.

  4. Imaging of amyloid deposition in human brain using positron emission tomography and [{sup 18}F]FACT: comparison with [{sup 11}C]PIB

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [National Institute of Radiological Sciences, Molecular Imaging Center, Chiba (Japan); National Institute of Radiological Sciences, Biophysics Program, Molecular Imaging Center, Chiba (Japan); Shinotoh, Hitoshi; Shimada, Hitoshi; Miyoshi, Michie; Takano, Harumasa; Takahashi, Hidehiko; Arakawa, Ryosuke; Kodaka, Fumitoshi; Ono, Maiko; Eguchi, Yoko; Higuchi, Makoto; Fukumura, Toshimitsu; Suhara, Tetsuya [National Institute of Radiological Sciences, Molecular Imaging Center, Chiba (Japan); Yanai, Kazuhiko; Okamura, Nobuyuki [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan)

    2014-04-15

    The characteristic neuropathological changes in Alzheimer's disease (AD) are deposition of amyloid senile plaques and neurofibrillary tangles. The {sup 18}F-labeled amyloid tracer, [{sup 18}F]2-[(2-{(E)-2-[2-(dimethylamino)-1,3-thiazol-5-yl]vinyl}-1, 3-benzoxazol-6-yl)oxy ]-3-fluoropropan-1-ol (FACT), one of the benzoxazole derivatives, was recently developed. In the present study, deposition of amyloid senile plaques was measured by positron emission tomography (PET) with both [ {sup 11}C ]Pittsburgh compound B (PIB) and [ {sup 18}F ]FACT in the same subjects, and the regional uptakes of both radiotracers were directly compared. Two PET scans, one of each with [ {sup 11}C ]PIB and [ {sup 18}F ]FACT, were performed sequentially on six normal control subjects, two mild cognitive impairment (MCI) patients, and six AD patients. The standardized uptake value ratio of brain regions to the cerebellum was calculated with partial volume correction using magnetic resonance (MR) images to remove the effects of white matter accumulation. No significant differences in the cerebral cortical uptake were observed between normal control subjects and AD patients in [ {sup 18}F ]FACT studies without partial volume correction, while significant differences were observed in [ {sup 11}C ]PIB. After partial volume correction, the cerebral cortical uptake was significantly larger in AD patients than in normal control subjects for [ {sup 18}F ]FACT studies as well as [ {sup 11}C ]PIB. Relatively lower uptakes of [ {sup 11}C ]PIB in distribution were observed in the medial side of the temporal cortex and in the occipital cortex as compared with [ {sup 18}F ]FACT. Relatively higher uptake of [ {sup 11}C ]PIB in distribution was observed in the frontal and parietal cortices. Since [ {sup 18}F ]FACT might bind more preferentially to dense-cored amyloid deposition, regional differences in cerebral cortical uptake between [ {sup 11}C ]PIB and [ {sup 18}F ]FACT might be due to differences

  5. Optical Brain Imaging: A Powerful Tool for Neuroscience.

    Science.gov (United States)

    Zhu, Xinpei; Xia, Yanfang; Wang, Xuecen; Si, Ke; Gong, Wei

    2017-02-01

    As the control center of organisms, the brain remains little understood due to its complexity. Taking advantage of imaging methods, scientists have found an accessible approach to unraveling the mystery of neuroscience. Among these methods, optical imaging techniques are widely used due to their high molecular specificity and single-molecule sensitivity. Here, we overview several optical imaging techniques in neuroscience of recent years, including brain clearing, the micro-optical sectioning tomography system, and deep tissue imaging.

  6. Wearable Brain Imaging with Multi-Modal Physiological Recording.

    Science.gov (United States)

    Strangman, Gary E; Ivkovic, Vladimir; Zhang, Quan

    2017-07-13

    The brain is a central component of cognitive and physical human performance. Measures including functional brain activation, cerebral perfusion, cerebral oxygenation, evoked electrical responses, and resting hemodynamic and electrical activity are all related to, or can predict health status or performance decrements. However, measuring brain physiology typically requires large, stationary machines that are not suitable for mobile or self-monitoring. Moreover, when individuals are ambulatory, systemic physiological fluctuations-e.g., in heart rate, blood pressure, skin perfusion and more-can interfere with non-invasive brain measurements. In efforts to address the physiological monitoring and performance assessment needs for astronauts during spaceflight, we have developed easy-to-use, wearable prototypes- NINscan, for near-infrared scanning-that can collect synchronized multi-modal physiology data, including hemodynamic deep-tissue imaging (including brain and muscles), electroencephalography, electrocardiography, electromyography, electrooculography, accelerometry, gyroscopy, pressure, respiration and temperature measurements. Given their self-contained and portable nature, these devices can be deployed in a much broader range of settings-including austere environments-thereby enabling a wider range of novel medical and research physiology applications. We review these, including high-altitude assessments, self-deployable multi-modal e.g., (polysomnographic) recordings in remote or low-resource environments, fluid shifts in variable-gravity or spaceflight analog environments, intra-cranial brain motion during high-impact sports, and long-duration monitoring for clinical symptom-capture in various clinical conditions. In addition to further enhancing sensitivity and miniaturization, advanced computational algorithms could help support real-time feedback and alerts regarding performance and health. Copyright © 2017, Journal of Applied Physiology.

  7. Reorganization and plastic changes of the human brain associated with skill learning and expertise

    Directory of Open Access Journals (Sweden)

    Yongmin eChang

    2014-02-01

    Full Text Available Novel experience and learning new skills are known as modulators of brain function. Advances in non-invasive brain imaging have provided new insight into structural and functional reorganization associated with skill learning and expertise. Especially, significant imaging evidences come from the domains of sports and music. Data from in vivo imaging studies in sports and music have provided vital information on plausible neural substrates contributing to brain reorganization underlying skill acquisition in humans. This mini review will attempt to take a narrow snapshot of imaging findings demonstrating functional and structural plasticity that mediate skill learning and expertise while identifying converging areas of interest and possible avenues for future research.

  8. Advanced Pediatric Brain Imaging Research and Training Program

    Science.gov (United States)

    2015-10-01

    online learning management system, by creating and implementing methods for converting the existing in- classroom educational BRAIN seminars into self...iii) the necessary skills to apply advanced MRI techniques to study brain injury, and to facilitate the diagnosis, management , and ultimately...Recent advances in pediatric magnetic resonance imaging (MRI) techniques are revolutionizing our understanding of brain injury, its potential for

  9. Evolution and genomics of the human brain.

    Science.gov (United States)

    Rosales-Reynoso, M A; Juárez-Vázquez, C I; Barros-Núñez, P

    2015-08-21

    Most living beings are able to perform actions that can be considered intelligent or, at the very least, the result of an appropriate reaction to changing circumstances in their environment. However, the intelligence or intellectual processes of humans are vastly superior to those achieved by all other species. The adult human brain is a highly complex organ weighing approximately 1500g, which accounts for only 2% of the total body weight but consumes an amount of energy equal to that required by all skeletal muscle at rest. Although the human brain displays a typical primate structure, it can be identified by its specific distinguishing features. The process of evolution and humanisation of the Homo sapiens brain resulted in a unique and distinct organ with the largest relative volume of any animal species. It also permitted structural reorganization of tissues and circuits in specific segments and regions. These steps explain the remarkable cognitive abilities of modern humans compared not only with other species in our genus, but also with older members of our own species. Brain evolution required the coexistence of two adaptation mechanisms. The first involves genetic changes that occur at the species level, and the second occurs at the individual level and involves changes in chromatin organisation or epigenetic changes. The genetic mechanisms include: a) genetic changes in coding regions that lead to changes in the sequence and activity of existing proteins; b) duplication and deletion of previously existing genes; c) changes in gene expression through changes in the regulatory sequences of different genes; and d) synthesis of non-coding RNAs. Lastly, this review describes some of the main documented chromosomal differences between humans and great apes. These differences have also contributed to the evolution and humanisation process of the H. sapiens brain. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights

  10. Magnetite pollution nanoparticles in the human brain

    Science.gov (United States)

    Maher, Barbara A.; Ahmed, Imad A. M.; Karloukovski, Vassil; MacLaren, Donald A.; Foulds, Penelope G.; Allsop, David; Mann, David M. A.; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian

    2016-09-01

    Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.

  11. Whole Mouse Brain Image Reconstruction from Serial Coronal Sections Using FIJI (ImageJ).

    Science.gov (United States)

    Paletzki, Ronald; Gerfen, Charles R

    2015-10-01

    Whole-brain reconstruction of the mouse enables comprehensive analysis of the distribution of neurochemical markers, the distribution of anterogradely labeled axonal projections or retrogradely labeled neurons projecting to a specific brain site, or the distribution of neurons displaying activity-related markers in behavioral paradigms. This unit describes a method to produce whole-brain reconstruction image sets from coronal brain sections with up to four fluorescent markers using the freely available image-processing program FIJI (ImageJ).

  12. [Evolution of human brain and intelligence].

    Science.gov (United States)

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are

  13. Zika virus impairs growth in human neurospheres and brain organoids.

    Science.gov (United States)

    Garcez, Patricia P; Loiola, Erick Correia; Madeiro da Costa, Rodrigo; Higa, Luiza M; Trindade, Pablo; Delvecchio, Rodrigo; Nascimento, Juliana Minardi; Brindeiro, Rodrigo; Tanuri, Amilcar; Rehen, Stevens K

    2016-05-13

    Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased considerably in Brazil; however, causality between the viral epidemic and malformations in fetal brains needs further confirmation. We examined the effects of ZIKV infection in human neural stem cells growing as neurospheres and brain organoids. Using immunocytochemistry and electron microscopy, we showed that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and brain organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development.

  14. Epilepsy: Extreme Events in the Human Brain

    Science.gov (United States)

    Lehnertz, Klaus

    The analysis of Xevents arising in dynamical systems with many degrees of freedom represents a challenge for many scientific fields. This is especially true for the open, dissipative, and adaptive system known as the human brain. Due to its complex structure, its immense functionality, and — as in the case of epilepsy — due to the coexistence of normal and abnormal functions, the brain can be regarded as one of the most complex and fascinating systems in nature. Data gathered so far show that the epileptic process exhibits a high spatial and temporal variability. Small, specific, regions of the brain are responsible for the generation of focal epileptic seizures, and the amount of time a patient spends actually having seizures is only a small fraction of his/her lifetime. In between these Xevents large parts of the brain exhibit normal functioning. Since the occurrence of seizures usually can not be explained by exogenous factors, and since the brain recovers its normal state after a seizure in the majority of cases, this might indicate that endogenous nonlinear (deterministic and/or stochastic) properties are involved in the control of these Xevents. In fact, converging evidence now indicates that (particularly) nonlinear approaches to the analysis of brain activity allow us to define precursors which, provided sufficient sensitivity and specificity can be obtained, might lead to the development of patient-specific seizure anticipation and seizure prevention strategies.

  15. Native Mutant Huntingtin in Human Brain

    Science.gov (United States)

    Sapp, Ellen; Valencia, Antonio; Li, Xueyi; Aronin, Neil; Kegel, Kimberly B.; Vonsattel, Jean-Paul; Young, Anne B.; Wexler, Nancy; DiFiglia, Marian

    2012-01-01

    Huntington disease (HD) is caused by polyglutamine expansion in the N terminus of huntingtin (htt). Analysis of human postmortem brain lysates by SDS-PAGE and Western blot reveals htt as full-length and fragmented. Here we used Blue Native PAGE (BNP) and Western blots to study native htt in human postmortem brain. Antisera against htt detected a single band broadly migrating at 575–850 kDa in control brain and at 650–885 kDa in heterozygous and Venezuelan homozygous HD brains. Anti-polyglutamine antisera detected full-length mutant htt in HD brain. There was little htt cleavage even if lysates were pretreated with trypsin, indicating a property of native htt to resist protease cleavage. A soluble mutant htt fragment of about 180 kDa was detected with anti-htt antibody Ab1 (htt-(1–17)) and increased when lysates were treated with denaturants (SDS, 8 m urea, DTT, or trypsin) before BNP. Wild-type htt was more resistant to denaturants. Based on migration of in vitro translated htt fragments, the 180-kDa segment terminated ≈htt 670–880 amino acids. If second dimension SDS-PAGE followed BNP, the 180-kDa mutant htt was absent, and 43–50 kDa htt fragments appeared. Brain lysates from two HD mouse models expressed native full-length htt; a mutant fragment formed if lysates were pretreated with 8 m urea + DTT. Native full-length mutant htt in embryonic HD140Q/140Q mouse primary neurons was intact during cell death and when cell lysates were exposed to denaturants before BNP. Thus, native mutant htt occurs in brain and primary neurons as a soluble full-length monomer. PMID:22375012

  16. Listening to humans walking together activates the social brain circuitry.

    Science.gov (United States)

    Saarela, Miiamaaria V; Hari, Riitta

    2008-01-01

    Human footsteps carry a vast amount of social information, which is often unconsciously noted. Using functional magnetic resonance imaging, we analyzed brain networks activated by footstep sounds of one or two persons walking. Listening to two persons walking together activated brain areas previously associated with affective states and social interaction, such as the subcallosal gyrus bilaterally, the right temporal pole, and the right amygdala. These areas seem to be involved in the analysis of persons' identity and complex social stimuli on the basis of auditory cues. Single footsteps activated only the biological motion area in the posterior STS region. Thus, hearing two persons walking together involved a more widespread brain network than did hearing footsteps from a single person.

  17. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  18. Direct Electrical Stimulation in the Human Brain Disrupts Melody Processing.

    Science.gov (United States)

    Garcea, Frank E; Chernoff, Benjamin L; Diamond, Bram; Lewis, Wesley; Sims, Maxwell H; Tomlinson, Samuel B; Teghipco, Alexander; Belkhir, Raouf; Gannon, Sarah B; Erickson, Steve; Smith, Susan O; Stone, Jonathan; Liu, Lynn; Tollefson, Trenton; Langfitt, John; Marvin, Elizabeth; Pilcher, Webster H; Mahon, Bradford Z

    2017-09-11

    Prior research using functional magnetic resonance imaging (fMRI) [1-4] and behavioral studies of patients with acquired or congenital amusia [5-8] suggest that the right posterior superior temporal gyrus (STG) in the human brain is specialized for aspects of music processing (for review, see [9-12]). Intracranial electrical brain stimulation in awake neurosurgery patients is a powerful means to determine the computations supported by specific brain regions and networks [13-21] because it provides reversible causal evidence with high spatial resolution (for review, see [22, 23]). Prior intracranial stimulation or cortical cooling studies have investigated musical abilities related to reading music scores [13, 14] and singing familiar songs [24, 25]. However, individuals with amusia (congenitally, or from a brain injury) have difficulty humming melodies but can be spared for singing familiar songs with familiar lyrics [26]. Here we report a detailed study of a musician with a low-grade tumor in the right temporal lobe. Functional MRI was used pre-operatively to localize music processing to the right STG, and the patient subsequently underwent awake intraoperative mapping using direct electrical stimulation during a melody repetition task. Stimulation of the right STG induced "music arrest" and errors in pitch but did not affect language processing. These findings provide causal evidence for the functional segregation of music and language processing in the human brain and confirm a specific role of the right STG in melody processing. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI

    Science.gov (United States)

    Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.

    2016-10-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.

  20. The physiological and biochemical bases of functional brain imaging

    OpenAIRE

    2007-01-01

    Functional brain imaging is based on the display of computer-derived images of changes in physiological and/or biochemical functions altered by activation or depression of local functional activities in the brain. This article reviews the physiological and biochemical mechanisms involved.

  1. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  2. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  3. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  4. Serotonin transporter and dopamine transporter imaging in the canine brain

    Energy Technology Data Exchange (ETDEWEB)

    Peremans, Kathelijne [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Goethals, Ingeborg [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); De Vos, Filip [Laboratory of Radiopharmacy, Pharmaceutical Sciences, Ghent University, B-9000 Ghent (Belgium); Dobbeleir, A. [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Ham, Hamphrey [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium); Van Bree, Henri [Department of Medical Imaging, Faculty of Veterinary Sciences, Ghent University, B-9000 Ghent (Belgium); Heeringen, Cees van [Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium); Audenaert, Kurt [Division of Nuclear Medicine, University Hospital Ghent, B-9000 Ghent (Belgium) and Department of Psychiatry and Medical Psychology, Faculty of Medical and Health Sciences, Ghent University, B-9000, Ghent (Belgium)]. E-mail: kurt.audenaert@ugent.be

    2006-10-15

    The serotonergic and dopaminergic systems are involved in a wide range of emotional and behavioral aspects of animals and humans and are involved in many neuropsychiatric disorders. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are designed to block the 5-HT transporter (SERT), thereby increasing the available 5-HT in the brain. Functional imaging with specific SERT and dopamine transporter (DAT) ligands contributes to the study of the SSRI-transporter interaction. First, we evaluated the feasibility of a canine model in the study of the SERT and DAT with the radioligands [{sup 123}I]-{beta}-CIT and [{sup 123}I]-FP-CIT as well as single-photon emission computed tomography imaging. Second, we studied the effect of SSRIs (sertraline, citalopram and escitalopram) on the SERT and DAT in two dogs. The position of the canine model in the study of the SERT and DAT is discussed and compared with other animal models.

  5. Intracranial Hemorrhage Annotation for CT Brain Images

    Directory of Open Access Journals (Sweden)

    Tong Hau Lee

    2011-01-01

    Full Text Available In this paper, we created a decision-making model to detect intracranial hemorrhage and adopted Expectation Maximization(EM segmentation to segment the Computed Tomography (CT images. In this work, basically intracranial hemorrhage is classified into two main types which are intra-axial hemorrhage and extra-axial hemorrhage. In order to ease classification, contrast enhancement is adopted to finetune the contrast of the hemorrhage. After that, k-means is applied to group the potential and suspicious hemorrhagic regions into one cluster. The decision-making process is to identify whether the suspicious regions are hemorrhagic regions or non-regions of interest. After the hemorrhagic detection, the images are segmented into brain matter and cerebrospinal fluid (CSF by using expectation-maximization (EM segmentation. The acquired experimental results are evaluated in terms of recall and precision. The encouraging results have been attained whereby the proposed system has yielded 0.9333 and 0.8880 precision for extra-axial and intra-axial hemorrhagic detection respectively, whereas recall rate obtained is 0.9245 and 0.8043 for extra-axial and intra-axial hemorrhagic detection respectively.

  6. Predicting human brain activity associated with the meanings of nouns.

    Science.gov (United States)

    Mitchell, Tom M; Shinkareva, Svetlana V; Carlson, Andrew; Chang, Kai-Min; Malave, Vicente L; Mason, Robert A; Just, Marcel Adam

    2008-05-30

    The question of how the human brain represents conceptual knowledge has been debated in many scientific fields. Brain imaging studies have shown that different spatial patterns of neural activation are associated with thinking about different semantic categories of pictures and words (for example, tools, buildings, and animals). We present a computational model that predicts the functional magnetic resonance imaging (fMRI) neural activation associated with words for which fMRI data are not yet available. This model is trained with a combination of data from a trillion-word text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once trained, the model predicts fMRI activation for thousands of other concrete nouns in the text corpus, with highly significant accuracies over the 60 nouns for which we currently have fMRI data.

  7. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  8. Automated segmentation of three-dimensional MR brain images

    Science.gov (United States)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  9. Diffeomorphic registration with self-adaptive spatial regularization for the segmentation of non-human primate brains.

    Science.gov (United States)

    Risser, Laurent; Dolius, Lionel; Fonta, Caroline; Mescam, Muriel

    2014-01-01

    Cerebral aging has been linked to structural and functional changes in the brain throughout life. Here, we study the marmoset, a small non-human primate, in order to get insights into the mechanisms of brain aging in normal and pathological conditions. Imaging the brain of small animals with techniques such as MRI, quickly becomes a challenging task when compared with human brain imaging. Very often, a simple pre-processing step such as brain extraction cannot be achieved with classical tools. In this paper, we propose a diffeomorphic registration algorithm, which makes use of learned constraints to propagate the manual segmentation of a marmoset brain template to other MR images of marmoset brains. The main methological contribution of our paper is to explore a new strategy to automatically tune the spatial regularization of the deformations. Results show that we obtain a robust segmentation of the brain, even for images with a low contrast.

  10. Infrasounds and biorhythms of the human brain

    Science.gov (United States)

    Panuszka, Ryszard; Damijan, Zbigniew; Kasprzak, Cezary; McGlothlin, James

    2002-05-01

    Low Frequency Noise (LFN) and infrasound has begun a new public health hazard. Evaluations of annoyance of (LFN) on human occupational health were based on standards where reactions of human auditory system and vibrations of parts of human body were small. Significant sensitivity has been observed on the central nervous system from infrasonic waves especially below 10 Hz. Observed follow-up effects in the brain gives incentive to study the relationship between parameters of waves and reactions obtained of biorhythms (EEG) and heart action (EKG). New results show the impact of LFN on the electrical potentials of the brain are dependent on the pressure waves on the human body. Electrical activity of circulatory system was also affected. Signals recorded in industrial workplaces were duplicated by loudspeakers and used to record data from a typical LFN spectra with 5 and 7 Hz in a laboratory chamber. External noise, electromagnetic fields, temperature, dust, and other elements were controlled. Results show not only a follow-up effect in the brain but also a result similar to arrhythmia in the heart. Relaxations effects were observed of people impacted by waves generated from natural sources such as streams and waterfalls.

  11. Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review.

    Science.gov (United States)

    Tohka, Jussi

    2014-11-28

    Quantitative analysis of magnetic resonance (MR) brain images are facilitated by the development of automated segmentation algorithms. A single image voxel may contain of several types of tissues due to the finite spatial resolution of the imaging device. This phenomenon, termed partial volume effect (PVE), complicates the segmentation process, and, due to the complexity of human brain anatomy, the PVE is an important factor for accurate brain structure quantification. Partial volume estimation refers to a generalized segmentation task where the amount of each tissue type within each voxel is solved. This review aims to provide a systematic, tutorial-like overview and categorization of methods for partial volume estimation in brain MRI. The review concentrates on the statistically based approaches for partial volume estimation and also explains differences to other, similar image segmentation approaches.

  12. Broadband criticality of human brain network synchronization.

    Directory of Open Access Journals (Sweden)

    Manfred G Kitzbichler

    2009-03-01

    Full Text Available Self-organized criticality is an attractive model for human brain dynamics, but there has been little direct evidence for its existence in large-scale systems measured by neuroimaging. In general, critical systems are associated with fractal or power law scaling, long-range correlations in space and time, and rapid reconfiguration in response to external inputs. Here, we consider two measures of phase synchronization: the phase-lock interval, or duration of coupling between a pair of (neurophysiological processes, and the lability of global synchronization of a (brain functional network. Using computational simulations of two mechanistically distinct systems displaying complex dynamics, the Ising model and the Kuramoto model, we show that both synchronization metrics have power law probability distributions specifically when these systems are in a critical state. We then demonstrate power law scaling of both pairwise and global synchronization metrics in functional MRI and magnetoencephalographic data recorded from normal volunteers under resting conditions. These results strongly suggest that human brain functional systems exist in an endogenous state of dynamical criticality, characterized by a greater than random probability of both prolonged periods of phase-locking and occurrence of large rapid changes in the state of global synchronization, analogous to the neuronal "avalanches" previously described in cellular systems. Moreover, evidence for critical dynamics was identified consistently in neurophysiological systems operating at frequency intervals ranging from 0.05-0.11 to 62.5-125 Hz, confirming that criticality is a property of human brain functional network organization at all frequency intervals in the brain's physiological bandwidth.

  13. Human brain disease recreated in mice

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J.

    1990-12-14

    In the early 1980s, neurologist Stanley Prusiner suggested that scrapie, an apparently infectious degenerative brain disease of sheep, could be transmitted by prions, infectious particles made just of protein - and containing no nucleic acids. But prion research has come a long way since then. In 1985, the cloning of the gene encoding the prion protein proved that it does in fact exist. And the gene turned out to be widely expressed in the brains of higher organisms, a result suggesting that the prion protein has a normal brain function that can somehow be subverted, leading to brain degeneration. Then studies done during the past 2 years suggested that specific mutations in the prion gene might cause two similar human brain diseases, Gerstmann-Straeussler-Scheinker syndrome (GSS) and Creutzfelt-Jakob disease. Now, Prusiner's group at the University of California, San Francisco, has used genetic engineering techniques to recreate GSS by transplanting the mutated prion gene into mice. Not only will the animal model help neurobiologists answer the many remaining questions about prions and how they work, but it may also shed some light on other neurodegenerative diseases as well.

  14. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography.

    Science.gov (United States)

    Xu, Yuan; Wang, Lihong V

    2006-03-01

    Two-dimensional microwave-induced thermoacoustic tomography (TAT) is applied to imaging the Rhesus monkey brain through the intact skull. To reduce the wavefront distortion caused by the skull, only the low-frequency components of the thermoacoustic signals (images. The methods of signal processing and image reconstruction are validated by imaging a lamb kidney. The resolution of the system is found to be 4 mm when we image a 1-month-old monkey head containing inserted needles. We also image the coronal and axial sections of a 7-month-old monkey head. Brain features that are 3 cm deep in the head are imaged clearly. Our results demonstrate that TAT has potential for use in portable, cost-effective imagers for pediatric brains.

  15. Automated in situ brain imaging for mapping the Drosophila connectome.

    Science.gov (United States)

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  16. The role of image registration in brain mapping.

    Science.gov (United States)

    Toga, A W; Thompson, P M

    2001-01-01

    Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain.

  17. Insect brains use image interpolation mechanisms to recognise rotated objects.

    Directory of Open Access Journals (Sweden)

    Adrian G Dyer

    Full Text Available Recognising complex three-dimensional objects presents significant challenges to visual systems when these objects are rotated in depth. The image processing requirements for reliable individual recognition under these circumstances are computationally intensive since local features and their spatial relationships may significantly change as an object is rotated in the horizontal plane. Visual experience is known to be important in primate brains learning to recognise rotated objects, but currently it is unknown how animals with comparatively simple brains deal with the problem of reliably recognising objects when seen from different viewpoints. We show that the miniature brain of honeybees initially demonstrate a low tolerance for novel views of complex shapes (e.g. human faces, but can learn to recognise novel views of stimuli by interpolating between or 'averaging' views they have experienced. The finding that visual experience is also important for bees has important implications for understanding how three dimensional biologically relevant objects like flowers are recognised in complex environments, and for how machine vision might be taught to solve related visual problems.

  18. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    Science.gov (United States)

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  19. Endocasts-the direct evidence and recent advances in the study of human brain evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Brain evolution is one of the most important aspects of human evolution, usually studied through endocasts. Analysis of fossil hominid endocasts allows inferences on functional anatomy, physiology, and phylogeny. In this paper, we describe the general features of endocast studies and review some of the major topics in paleoneurology. These are: absolute and relative brain size evolution; brain shape variation; brain asymmetry and lateralization; middle meningeal vessels and venous sinuses; application of computed tomography and virtual imaging; the history of Chinese brain endocast studies. In particular, this review emphasizes endocast studies on Chinese hominin fossils.

  20. Effect of therapeutic ionizing radiation on the human brain.

    Science.gov (United States)

    Steen, R G; Spence, D; Wu, S; Xiong, X; Kun, L E; Merchant, T E

    2001-12-01

    We test a hypothesis that fractionated radiation therapy within a therapeutic dose range is associated with a dose-related change in normal brain, detectable by quantitative magnetic resonance imaging. A total of 33 patients were examined by quantitative magnetic resonance imaging to measure brain tissue spin-lattice relaxation time (T1) before treatment, and at various times during and after radiation therapy. A T1 map was generated at each time point, and radiation therapy isodose contours were superimposed on the corresponding segmented T1 map. Changes in white matter and gray matter T1 were analyzed as a function of radiation therapy dose and time since treatment, controlling for patient age and tumor site. In white matter, a dose level of more than 20 Gy was associated with a dose-dependent decrease in T1 over time, which became significant 6 months after treatment. There was no significant change in T1 of gray matter over time, at radiation therapy doses of less than 60 Gy. However, GM in close proximity to the tumor had a lower T1 before therapy. Our results represent the first radiation dose-response data derived from pediatric brain in vivo. These findings confirm that white matter is more vulnerable to radiation-induced change than is gray matter, and suggest that T1 mapping is sensitive to radiation-related changes over a broad dose range (20 to 60 Gy). Human white matter T1 is not sensitive to radiation therapy of less than 20 Gy, and gray matter T1 is unchanged over the dose range used to treat human brain tumor. The reduction of gray matter T1 near the tumor could result from compression of cortical parenchyma near the growing tumor mass, or from tumor cell invasion directly into the parenchyma. If brain T1 is a surrogate for radiation effect, reducing the volume of normal white matter receiving more than 20 Gy could be an important treatment planning goal.

  1. Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI.

    Science.gov (United States)

    Akhtari, Massoud; Bragin, Anatol; Moats, Rex; Frew, Andrew; Mandelkern, Mark

    2012-10-01

    This study explored the use of non-radioactive 2-deoxy glucose (2DG)-labeled magnetonanoparticles (MNP) and magnetic resonance imaging (MRI) to detect functional activity during rest, peripheral stimulation, and epileptic seizures, in animal models. Non-radioactive 2DG was covalently attached to magnetonanoparticles composed of iron oxide and dextran and intravenous (tail) injections were performed. 2DG-MNP was injected in resting and stimulated naïve rodents and the subsequent MRI was compared to published (14)C-2DG autoradiography data. Reproducibility and statistical significance was established in one studied model. Negative contrast enhancement (NCE) in acute seizures and chronic models of epilepsy were investigated. MRI NCE due to 2DG-MNP particles was compared to that of plain (unconjugated) MNP in one animal. NCE due to 2DG-MNP particles at 3 T, which is approved for human use, was also investigated. Histology showed presence of MNP (following intravenous injection) in the brain tissues of resting naïve animal. 2DG-MNP intraparenchymal uptake was visible on MRI and histology. The locations of NCE agreed with published results of 2DG autoradiography in resting and stimulated animals and epileptic rats. Localization of epileptogenicity was confirmed by subsequent depth-electrode EEG (iEEG). Non-radioactive 2DG-MNP can cross the blood-brain barrier (BBB) and may accurately localize areas of increased activity. Although, this proof-of-principle study involves only a limited number of animals, and much more research and quantification are necessary to demonstrate that 2DG-MNP, or MNPs conjugated with other ligands, could eventually be used to image localized cerebral function with MRI in humans, this MNP-MRI approach is potentially applicable to the use of many bioactive molecules as ligands for imaging normal and abnormal localized cerebral functions.

  2. The hubs of the human connectome are generally implicated in the anatomy of brain disorders.

    Science.gov (United States)

    Crossley, Nicolas A; Mechelli, Andrea; Scott, Jessica; Carletti, Francesco; Fox, Peter T; McGuire, Philip; Bullmore, Edward T

    2014-08-01

    Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P brain disorders had lesions that were significantly more likely to be located in hubs (P human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. Characterizing the contrast of white matter and grey matter in high-resolution phase difference enhanced imaging of human brain at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li [Fudan University, Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Shanghai (China); Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Wang, Shanshan; Yao, Bin; Li, Lili; Guo, Lingfei; Zhang, Xinjuan; Wang, Guangbin [Shandong University, Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-cerebral Vascular Diseases, Jinan, Shandong (China); Xu, Xiaofei [Erasmus University Rotterdam, Laboratory of Experimental Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Zhao, Lianxin [Shandong University, Department of Radiology, Qilu Hospital, Jinan, Shandong (China); Chen, Weibo; Chan, Queenie [Philips Healthcare, Shanghai (China)

    2015-04-01

    The purpose of this study was to address the feasibility of characterizing the contrast both between and within grey matter and white matter using the phase difference enhanced (PADRE) technique. PADRE imaging was performed in 33 healthy volunteers. Vessel enhancement (VE), tissue enhancement (TE), and PADRE images were reconstructed from source images and were evaluated with regard to differentiation of grey-to-white matter interface, the stria of Gennari, and the two layers, internal sagittal stratum (ISS) and external sagittal stratum (ESS), of optic radiation. White matter regions showed decreased signal intensity compared to grey matter regions. Discrimination was sharper between white matter and cortical grey matter in TE images than in PADRE images, but was poorly displayed in VE images. The stria of Gennari was observed on all three image sets. Low-signal-intensity bands displayed in VE images representing the optic radiation were delineated as two layers of different signal intensities in TE and PADRE images. Statistically significant differences in phase shifts were found between frontal grey and white matter, as well as between ISS and ESS (p < 0.01). The PADRE technique is capable of identifying grey-to-white matter interface, the stria of Gennari, and ISS and ESS, with improved contrast in PADRE and TE images compared to VE images. (orig.)

  4. Parkinson's disease biomarkers program brain imaging repository.

    Science.gov (United States)

    Ofori, Edward; Du, Guangwei; Babcock, Debra; Huang, Xuemei; Vaillancourt, David E

    2016-01-01

    The Parkinson's Disease Biomarkers Program (PDBP) is a multi-site study designed to identify Parkinson's disease (PD) biomarkers that can be used to improve the understanding of PD pathophysiology and to develop tools that provide novel measures to evaluate PD clinical trials. The PDBP consortium comprises numerous individual projects of which two are specifically geared to the development of brain imaging markers for diagnosis, progression, and prognosis of PD or related disorders. All study data from PD patients, atypical Parkinsonian patients, patients with essential tremor, and healthy controls collected from the sites are integrated in the PDBP database and will be publically available. All subjects are asked to submit blood samples, and undergo a battery of clinical evaluations that cover motor, cognitive, and other background information. In addition, a subset of subjects contributed cerebrospinal fluid samples. A restricted access, web-based Data Management Resource facilitates rapid sharing of data and biosamples across the entire PD research community. The PDBP consortium is a useful resource for research and collaboration aimed at the discovery of biomarkers and their use in understanding the pathophysiology of PD.

  5. Pattern recognition on brain magnetic resonance imaging in alpha dystroglycanopathies

    Directory of Open Access Journals (Sweden)

    Bindu Parayil

    2010-01-01

    Full Text Available Alpha dystroglycanopathies are heterogeneous group of disorders both phenotypically and genetically. A subgroup of these patients has characteristic brain imaging findings. Four patients with typical imaging findings of alpha dystroglycanopathy are reported. Phenotypic features included: global developmental delay, contractures, hypotonia and oculomotor abnormalities in all. Other manifestations were consanguinity (3, seizures (3, macrocephaly (1, microcephaly (3, retinal changes (2 and hypogenitalism (2. Magnetic resonance imaging (MRI of the brain revealed polymicrogyria, white matter changes, pontine hypoplasia, and subcortical cerebellar cysts in all the patients, ventriculomegaly, callosal abnormalities, and absent septum pellucidum in two and Dandy -Walker variant malformation in three. Magnetic resonace imaging of the first cousin of one the patient had the same characteristic imaging features. Brain imaging findings were almost identical despite heterogeneity in clinical presentation and histopathological features. Pattern recognition of MR imaging features may serve as a clue to the diagnosis of alpha dystroglycanopathy.

  6. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  7. Imaging plasma docosahexaenoic acid (dha incorporation into the brain in vivo, as a biomarker of brain DHA: Metabolism and neurotransmission

    Directory of Open Access Journals (Sweden)

    Rapoport Stanley I.

    2011-09-01

    Full Text Available Docosahexaenoic acid (DHA is critical for normal brain structure and function, and its brain concentration depends on dietary DHA content and hepatic conversion from its dietary derived n-3 precursor, a-linolenic acid (α-LNA. We developed an in vivo method in rats using quantitative autoradiography to image incorporation into brain of unesterified plasma DHA, and showed that the incorporation rate equals the rate of brain metabolic DHA consumption. Thus, quantitative imaging of DHA incorporation from plasma into brain can be used as a biomarker of brain DHA metabolism and neurotransmission. The method has been extended to humans with the use of positron emission tomography (PET. Furthermore, imaging in unanesthetized rats using DHA incorporation as a biomarker in response to N-methyl-D-aspartate (NMDA administration confirms that regional DHA signaling is independent of extracellular calcium, and likely mediated by a calcium-independent phospholipase A2 (iPLA2. Studies in mice in which iPLA2-VIA (β was knocked out confirmed that this enzyme is critical for baseline and muscarinic cholinergic signaling involving DHA.

  8. Blood-Brain Barrier Breakdown in the Aging Human Hippocampus

    Science.gov (United States)

    Montagne, Axel; Barnes, Samuel R.; Sweeney, Melanie D.; Halliday, Matthew R.; Sagare, Abhay P.; Zhao, Zhen; Toga, Arthur W.; Jacobs, Russell E.; Liu, Collin Y.; Amezcua, Lilyana; Harrington, Michael G.; Chui, Helena C.; Law, Meng; Zlokovic, Berislav V.

    2014-01-01

    Summary The blood-brain barrier (BBB) limits entry of blood-derived products, pathogens and cells into the brain that is essential for normal neuronal functioning and information processing. Post-mortem tissue analysis indicates BBB damage in Alzheimer’s disease (AD). The timing of BBB breakdown remains, however, elusive. Using an advanced dynamic contrast-enhanced magnetic resonance imaging protocol with high spatial and temporal resolutions to quantify regional BBB permeability in the living human brain, we show an age-dependent BBB breakdown in the hippocampus, a region critical for learning and memory that is affected early in AD. The BBB breakdown in the hippocampus and its CA1 and dentate gyrus subdivisions worsened with mild cognitive impairment that correlated with injury to BBB-associated pericytes, as shown by the cerebrospinal fluid analysis. Our data suggest that BBB breakdown is an early event in the aging human brain that begins in the hippocampus and may contribute to cognitive impairment. PMID:25611508

  9. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    Science.gov (United States)

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

  10. Appropriate Contrast Enhancement Measures for Brain and Breast Cancer Images

    Directory of Open Access Journals (Sweden)

    Suneet Gupta

    2016-01-01

    Full Text Available Medical imaging systems often produce images that require enhancement, such as improving the image contrast as they are poor in contrast. Therefore, they must be enhanced before they are examined by medical professionals. This is necessary for proper diagnosis and subsequent treatment. We do have various enhancement algorithms which enhance the medical images to different extents. We also have various quantitative metrics or measures which evaluate the quality of an image. This paper suggests the most appropriate measures for two of the medical images, namely, brain cancer images and breast cancer images.

  11. Adult human brain cell culture for neuroscience research.

    Science.gov (United States)

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging?

    Science.gov (United States)

    Schirrmacher, Ralf; Bernard-Gauthier, Vadim; Reader, Andrew; Soucy, Jean-Paul; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen

    2013-09-01

    The development of brain imaging agents for positron emission tomography and other in vivo imaging modalities mostly relies on small compounds of low MW as a result of the restricted transport of larger molecules, such as peptides and proteins, across the blood-brain barrier. Besides passive transport, only a few active carrier mechanisms, such as glucose transporters and amino acid transporters, have so far been exploited to mediate the accumulation of imaging probes in the brain. An important question for the future is whether some of the abundant active carrier systems located at the blood-brain barrier can be used to shuttle potential, but non-crossing, imaging agents into the brain. What are the biological and chemical constrictions toward such bioconjugates and is it worthwhile to persue such a delivery strategy?

  13. Cluster imaging of multi-brain networks (CIMBN: a general framework for hyperscanning and modeling a group of interacting brains

    Directory of Open Access Journals (Sweden)

    Lian eDuan

    2015-07-01

    Full Text Available Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called Cluster Imaging of Multi-brain Networks (CIMBN. CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network’s properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology.

  14. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI.

    Science.gov (United States)

    He, Yong; Chen, Zhang J; Evans, Alan C

    2007-10-01

    An important issue in neuroscience is the characterization for the underlying architectures of complex brain networks. However, little is known about the network of anatomical connections in the human brain. Here, we investigated large-scale anatomical connection patterns of the human cerebral cortex using cortical thickness measurements from magnetic resonance images. Two areas were considered anatomically connected if they showed statistically significant correlations in cortical thickness and we constructed the network of such connections using 124 brains from the International Consortium for Brain Mapping database. Significant short- and long-range connections were found in both intra- and interhemispheric regions, many of which were consistent with known neuroanatomical pathways measured by human diffusion imaging. More importantly, we showed that the human brain anatomical network had robust small-world properties with cohesive neighborhoods and short mean distances between regions that were insensitive to the selection of correlation thresholds. Additionally, we also found that this network and the probability of finding a connection between 2 regions for a given anatomical distance had both exponentially truncated power-law distributions. Our results demonstrated the basic organizational principles for the anatomical network in the human brain compatible with previous functional networks studies, which provides important implications of how functional brain states originate from their structural underpinnings. To our knowledge, this study provides the first report of small-world properties and degree distribution of anatomical networks in the human brain using cortical thickness measurements.

  15. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses.

    Science.gov (United States)

    Guo, Bing-Bing; Zheng, Xiao-Lin; Lu, Zhen-Gang; Wang, Xing; Yin, Zheng-Qin; Hou, Wen-Sheng; Meng, Ming

    2015-10-01

    Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.

  16. Voice processing in monkey and human brains.

    Science.gov (United States)

    Scott, Sophie K

    2008-09-01

    Studies in humans have indicated that the anterior superior temporal sulcus has an important role in the processing of information about human voices, especially the identification of talkers from their voice. A new study using functional magnetic resonance imaging (fMRI) with macaques provides strong evidence that anterior auditory fields, part of the auditory 'what' pathway, preferentially respond to changes in the identity of conspecifics, rather than specific vocalizations from the same individual.

  17. Adult Human Neurogenesis: from Microscopy to Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Amanda eSierra

    2011-04-01

    Full Text Available Neural stem cells reside in well-defined areas of the adult human brain and are capable of gene-rating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases.

  18. A Hedonism Hub in the Human Brain

    Science.gov (United States)

    Zacharopoulos, G.; Lancaster, T. M.; Bracht, T.; Ihssen, N.; Maio, G. R.; Linden, D. E. J.

    2016-01-01

    Human values are abstract ideals that motivate behavior. The motivational nature of human values raises the possibility that they might be underpinned by brain structures that are particularly involved in motivated behavior and reward processing. We hypothesized that variation in subcortical hubs of the reward system and their main connecting pathway, the superolateral medial forebrain bundle (slMFB) is associated with individual value orientation. We conducted Pearson's correlation between the scores of 10 human values and the volumes of 14 subcortical structures and microstructural properties of the medial forebrain bundle in a sample of 87 participants, correcting for multiple comparisons (i.e.,190). We found a positive association between the value that people attach to hedonism and the volume of the left globus pallidus (GP).We then tested whether microstructural parameters (i.e., fractional anisotropy and myelin volume fraction) of the slMFB, which connects with the GP, are also associated to hedonism and found a significant, albeit in an uncorrected level, positive association between the myelin volume fraction within the left slMFB and hedonism scores. This is the first study to elucidate the relationship between the importance people attach to the human value of hedonism and structural variation in reward-related subcortical brain regions. PMID:27473322

  19. Human microglial cells synthesize albumin in brain.

    Directory of Open Access Journals (Sweden)

    Sung-Min Ahn

    Full Text Available Albumin, an abundant plasma protein with multifunctional properties, is mainly synthesized in the liver. Albumin has been implicated in Alzheimer's disease (AD since it can bind to and transport amyloid beta (Abeta, the causative agent of AD; albumin is also a potent inhibitor of Abeta polymerization. Despite evidence of non-hepatic transcription of albumin in many tissues including kidney and pancreas, non-hepatic synthesis of albumin at the protein level has been rarely confirmed. In a pilot phase study of Human Brain Proteome Project, we found evidence that microglial cells in brain may synthesize albumin. Here we report, for the first time, the de novo synthesis of albumin in human microglial cells in brain. Furthermore, we demonstrate that the synthesis and secretion of albumin from microglial cells is enhanced upon microglial activation by Abeta(1-42- or lipopolysaccharide (LPS-treatment. These data indicate that microglial cells may play a beneficial role in AD by secreting albumin that not only inhibits Abeta polymerization but also increases its clearance.

  20. Evaluating the microstructure of human brain tissues using synchrotron radiation-based micro-computed tomography

    Science.gov (United States)

    Schulz, Georg; Morel, Anne; Imholz, Martha S.; Deyhle, Hans; Weitkamp, Timm; Zanette, Irene; Pfeiffer, Franz; David, Christian; Müller-Gerbl, Magdalena; Müller, Bert

    2010-09-01

    Minimally invasive deep brain neurosurgical interventions require a profound knowledge of the morphology of the human brain. Generic brain atlases are based on histology including multiple preparation steps during the sectioning and staining. In order to correct the distortions induced in the anisotropic, inhomogeneous soft matter and therefore improve the accuracy of brain atlases, a non-destructive 3D imaging technique with the required spatial and density resolution is of great significance. Micro computed tomography provides true micrometer resolution. The application to post mortem human brain, however, is questionable because the differences of the components concerning X-ray absorption are weak. Therefore, magnetic resonance tomography has become the method of choice for three-dimensional imaging of human brain. Because the spatial resolution of this method is limited, an alternative has to be found for the three-dimensional imaging of cellular microstructures within the brain. Therefore, the present study relies on the synchrotron radiationbased micro computed tomography in the recently developed grating-based phase contrast mode. Using data acquired at the beamline ID 19 (ESRF, Grenoble, France) we demonstrate that grating-based tomography yields premium images of human thalamus, which can be used for the correction of histological distortions by 3D non-rigid registration.

  1. MR fluid-attenuated inversion recovery imaging as routine brain T2-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Arakia, Yutaka; Ashikaga, Ryuichiro; Fujii, Koichi; Nishimura, Yasumasa; Ueda, Jun; Fujita, Norihiko

    1999-11-01

    We tried to investigate if magnetic resonance (MR) fluid-attenuated inversion recovery (FLAIR) imaging can be used as a routine brain screening examination instead of spin-echo T2-weighted imaging. Three hundred and ninety-four patients with clinically suspected brain diseases were randomly selected and examined with both brain MR FLAIR and T2-weighted imaging on the axial plane. These two imaging techniques were evaluated by two neuroradiologists as to which imaging was better for routine brain T2-weighted imaging. In 123 of 394 cases (31%), FLAIR imaging was superior to spin-echo T2-weighted imaging. Especially in cases with inflammatory diseases, traumatic diseases and demyelinating diseases, FLAIR imaging was particularly useful. Small lesions bordering cerebrospinal fluid (CSF) are often detected only by FLAIR imaging. In 259 cases (66%), including 147 normal cases (37%), they were equally evaluated. Only in 12 cases (3%) was conventional T2-weighted imaging superior to FLAIR imaging. Cerebrovascular lesions like cerebral aneurysm and Moyamoya disease could not be detected on FLAIR images because these structures were obscured by a low signal from the CSF. Also, because old infarctions tend to appear as low signal intensity on FLAIR images, the condition was sometimes hard to detect. Finally, FLAIR imaging could be used as routine brain T2-weighted imaging instead of conventional spin-echo T2-weighted imaging if these vascular lesions were watched.

  2. Functional brain imaging studies on specificity of meridian and acupoints

    Institute of Scientific and Technical Information of China (English)

    Xuezhi Li; Xuguang Liu; Fanrong Liang

    2008-01-01

    At present,the specificity of meridians and acupoints has been studied using functional brain imaging techniques from many standpoints.including meridians,acupoints,and sham acupoints,as well as different meridians and acupoints,coordination of acupoints,and factors influencing meridian and acupoint specificity.Preliminary experimental data have demonstrated that acupuncture at meridians and acupoints is specific with regard to brain neural information.However,research findings are contradictory,which may be related to brain functional complexity,resolution of functional brain imaging techniques,and experimental design.Future studies should further improve study method,and should strictly control experimental conditions to better analyze experimental data and acquire more beneficial data.Because of its many advantages.the functional brain imaging technique is a promising method for studying meridian and acupoint specificity.

  3. UNC-Emory Infant Atlases for Macaque Brain Image Analysis: Postnatal Brain Development through 12 Months

    Science.gov (United States)

    Shi, Yundi; Budin, Francois; Yapuncich, Eva; Rumple, Ashley; Young, Jeffrey T.; Payne, Christa; Zhang, Xiaodong; Hu, Xiaoping; Godfrey, Jodi; Howell, Brittany; Sanchez, Mar M.; Styner, Martin A.

    2017-01-01

    Computational anatomical atlases have shown to be of immense value in neuroimaging as they provide age appropriate reference spaces alongside ancillary anatomical information for automated analysis such as subcortical structural definitions, cortical parcellations or white fiber tract regions. Standard workflows in neuroimaging necessitate such atlases to be appropriately selected for the subject population of interest. This is especially of importance in early postnatal brain development, where rapid changes in brain shape and appearance render neuroimaging workflows sensitive to the appropriate atlas choice. We present here a set of novel computation atlases for structural MRI and Diffusion Tensor Imaging as crucial resource for the analysis of MRI data from non-human primate rhesus monkey (Macaca mulatta) data in early postnatal brain development. Forty socially-housed infant macaques were scanned longitudinally at ages 2 weeks, 3, 6, and 12 months in order to create cross-sectional structural and DTI atlases via unbiased atlas building at each of these ages. Probabilistic spatial prior definitions for the major tissue classes were trained on each atlas with expert manual segmentations. In this article we present the development and use of these atlases with publicly available tools, as well as the atlases themselves, which are publicly disseminated to the scientific community. PMID:28119564

  4. Advanced Pediatric Brain Imaging Research Program

    Science.gov (United States)

    2016-10-01

    system, by creating and implementing methods for converting the existing in-classroom educational BRAIN seminars into self-directed online learning...confirm that online multimedia learning provides a highly engaging educational method to teaching complex subject matter on brain development, brain injury...modules. In addition to the pre and post assessment data, we gathered participant feedback using a post- run module questionnaire accessible from

  5. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.

    Science.gov (United States)

    Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl

    2014-10-28

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.

  6. Inferring human intentions from the brain data

    DEFF Research Database (Denmark)

    Stanek, Konrad

    The human brain is a massively complex organ composed of approximately a hundred billion densely interconnected, interacting neural cells. The neurons are not wired randomly - instead, they are organized in local functional assemblies. It is believed that the complex patterns of dynamic electric...... discharges across the neural tissue are responsible for emergence of high cognitive function, conscious perception and voluntary action. The brain’s capacity to exercise free will, or internally generated free choice, has long been investigated by philosophers, psychologists and neuroscientists. Rather than...... assuming a causal power of conscious will, the neuroscience of volition is based on the premise that "mental states rest on brain processes”, and hence by measuring spatial and temporal correlates of volition in carefully controlled experiments we can infer about their underlying mind processes, including...

  7. Mathematical logic in the human brain: semantics.

    Directory of Open Access Journals (Sweden)

    Roland M Friedrich

    Full Text Available As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge.

  8. Mathematical logic in the human brain: semantics.

    Science.gov (United States)

    Friedrich, Roland M; Friederici, Angela D

    2013-01-01

    As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge.

  9. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    Science.gov (United States)

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching.

  10. NMR imaging of cell phone radiation absorption in brain tissue

    OpenAIRE

    Gultekin, David H.; Moeller, Lothar

    2012-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance...

  11. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  12. Effects of brain evolution on human nutrition and metabolism.

    Science.gov (United States)

    Leonard, William R; Snodgrass, J Josh; Robertson, Marcia L

    2007-01-01

    The evolution of large human brain size has had important implications for the nutritional biology of our species. Large brains are energetically expensive, and humans expend a larger proportion of their energy budget on brain metabolism than other primates. The high costs of large human brains are supported, in part, by our energy- and nutrient-rich diets. Among primates, relative brain size is positively correlated with dietary quality, and humans fall at the positive end of this relationship. Consistent with an adaptation to a high-quality diet, humans have relatively small gastrointestinal tracts. In addition, humans are relatively "undermuscled" and "over fat" compared with other primates, features that help to offset the high energy demands of our brains. Paleontological evidence indicates that rapid brain evolution occurred with the emergence of Homo erectus 1.8 million years ago and was associated with important changes in diet, body size, and foraging behavior.

  13. Diffusion Based Modeling of Human Brain Response to External Stimuli

    CERN Document Server

    Namazi, Hamidreza

    2012-01-01

    Human brain response is the overall ability of the brain in analyzing internal and external stimuli in the form of transferred energy to the mind/brain phase-space and thus, making the proper decisions. During the last decade scientists discovered about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research there was less effort which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling of human EEG signal, as an alert state of overall human brain activity monitoring, due to receiving external stimuli, based on fractional diffusion equation. The results of this modeling show very good agreement with the real human EEG signal and thus, this model can be used as a strong representative of the human brain activity.

  14. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  15. Functional Imaging of Dolphin Brain Metabolism and Blood Flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    This report documents the first use of magnetic resonance images (MRls) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep...

  16. Functional imaging of dolphin brain metabolism and blood flow

    National Research Council Canada - National Science Library

    Ridgway, Sam; Houser, Dorian; Finneran, James; Carder, Don; Keogh, Mandy; Van Bonn, William; Smith, Cynthia; Scadeng, Miriam; Dubowitz, David; Mattrey, Robert; Hoh, Carl

    2006-01-01

    This report documents the first use of magnetic resonance images (MRIs) of living dolphins to register functional brain scans, allowing for the exploration of potential mechanisms of unihemispheric sleep...

  17. Skull-stripping for Tumor-bearing Brain Images

    CERN Document Server

    Bauer, Stefan; Reyes, Mauricio

    2012-01-01

    Skull-stripping separates the skull region of the head from the soft brain tissues. In many cases of brain image analysis, this is an essential preprocessing step in order to improve the final result. This is true for both registration and segmentation tasks. In fact, skull-stripping of magnetic resonance images (MRI) is a well-studied problem with numerous publications in recent years. Many different algorithms have been proposed, a summary and comparison of which can be found in [Fennema-Notestine, 2006]. Despite the abundance of approaches, we discovered that the algorithms which had been suggested so far, perform poorly when dealing with tumor-bearing brain images. This is mostly due to additional difficulties in separating the brain from the skull in this case, especially when the lesion is located very close to the skull border. Additionally, images acquired according to standard clinical protocols, often exhibit anisotropic resolution and only partial coverage, which further complicates the task. There...

  18. PET/SPECT imaging : From carotid vulnerability to brain viability

    NARCIS (Netherlands)

    Meerwaldt, Robbert; Slart, Riemer H. J. A.; van Dam, Gooitzen M.; Luijckx, Gert-Jan; Tio, Rene A.; Zeebregts, Clark J.

    2010-01-01

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)

  19. Quantitative assessment of brain perfusion with magnetic resonance imaging

    NARCIS (Netherlands)

    Bleeker, Egbert Jan Willem

    2011-01-01

    This thesis focuses on assessing blood supply to brain tissue using MRI. For Dynamic Susceptibility Contrast-MRI a series of images is acquired during the passage of a bolus contrast agent through the brain up to the point that the contrast agent is equally mixed within the total blood pool. The tis

  20. Automated morphometry of transgenic mouse brains in MR images

    NARCIS (Netherlands)

    Scheenstra, Alize Elske Hiltje

    2011-01-01

    Quantitative and local morphometry of mouse brain MRI is a relatively new field of research, where automated methods can be exploited to rapidly provide accurate and repeatable results. In this thesis we reviewed several existing methods and applications of quantitative morphometry to brain MR image

  1. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and b

  2. Imaging Neurodegeneration: Steps Toward Brain Network-Based Pathophysiology and Its Potential for Multi-modal Imaging Diagnostics.

    Science.gov (United States)

    Sorg, C; Göttler, J; Zimmer, C

    2015-10-01

    Multi-modal brain imaging provides different in vivo windows into the human brain and thereby different ways to characterize brain disorders. Particularly, resting-state functional magnetic resonance imaging facilitates the study of macroscopic intrinsic brain networks, which are critical for development and spread of neurodegenerative processes in different neurodegenerative diseases. The aim of the current study is to present and highlight some paradigmatic findings in intrinsic network-based pathophysiology of neurodegenerative diseases and its potential for new network-based multimodal tools in imaging diagnostics. Qualitative review of selected multi-modal imaging studies in neurodegenerative diseases particularly in Alzheimer's disease (AD). Functional connectivity of intrinsic brain networks is selectively and progressively impaired in AD, with changes likely starting before the onset of symptoms in fronto-parietal key networks such as default mode or attention networks. Patterns of distribution and development of both amyloid-β plaques and atrophy are linked with network connectivity changes, suggesting that start and spread of pathology interacts with network connectivity. Qualitatively similar findings have been observed in other neurodegenerative disorders, suggesting shared mechanisms of network-based pathophysiology across diseases. Spread of neurodegeneration is intimately linked with the functional connectivity of intrinsic brain networks. These pathophysiological insights pave the way for new multi-modal network-based tools to detect and characterize neurodegeneration in individual patients.

  3. STEREOLOGICAL EVALUATION OF BRAIN MAGNETIC RESONANCE IMAGES OF SCHIZOPHRENIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amani Abdelrazag Elfaki

    2013-11-01

    Full Text Available Advances in neuroimaging have enabled studies of specific neuroanatomical abnormalities with relevance to schizophrenia. This study quantified structural alterations on brain magnetic resonance (MR images of patients with schizophrenia. MR brain imaging was done on 88 control and 57 schizophrenic subjects and Dicom images were analyzed with ImageJ software. The brain volume was estimated with the planimetric stereological technique. The volume fraction of brain structures was also estimated. The results showed that, the mean volume of right, left, and total hemispheres in controls were 551, 550, and 1101 cm³, respectively. The mean volumes of right, left, and total hemispheres in schizophrenics were 513, 512, and 1026 cm³, respectively. The schizophrenics’ brains were smaller than the controls (p < 0.05. The mean volume of total white matter of controls (516 cm³ was bigger than the schizophrenics’ volume (451 cm³, (p < 0.05. The volume fraction of total white matter was also lower in schizophrenics (p < 0.05. Volume fraction of the lateral ventricles was higher in schizophrenics (p < 0.05. According to the findings, the volumes of schizophrenics’ brain were smaller than the controls and the volume fractional changes in schizophrenics showed sex dependent differences. We conclude that stereological analysis of MR brain images is useful for quantifying schizophrenia related structural changes.

  4. Unsupervised Neural Techniques Applied to MR Brain Image Segmentation

    Directory of Open Access Journals (Sweden)

    A. Ortiz

    2012-01-01

    Full Text Available The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer’s disease (AD. Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the Nuclear Medicine Service of the “Virgen de las Nieves” Hospital (Granada, Spain.

  5. Physical biology of human brain development

    Directory of Open Access Journals (Sweden)

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  6. Physical biology of human brain development.

    Science.gov (United States)

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  7. DATA SYNTHESIS AND METHOD EVALUATION FOR BRAIN IMAGING GENETICS

    OpenAIRE

    Sheng, Jinhua; Kim, Sungeun; Yan, Jingwen; Moore, Jason; Saykin, Andrew; Shen, Li

    2014-01-01

    Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. We present initial efforts on evaluating a few SCCA methods for brain imaging genetics. This includes a data synthesis method to create...

  8. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    Science.gov (United States)

    2012-07-01

    functional imaging of the brain: venous contributions to signal in motor cor- tex studies. NMR Biomed. 7, 54–62. Haacke, E.M., Lai, S., Yablonskiy, D.A., Lin...measurement using flow quantification in the neck (Haacke 2012). Although oxygen saturation can be measured using positron emis- sion tomography, it...Measurements in the Neck and the Poor Man’s Bulk Perfusion Measure Phase-contrast MR images are used for blood flow measurement in the neck and brain

  9. Basal ganglia infarction demonstrated by radionuclide brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.E.; Schacht, R.A.; Domstad, P.A.; DeLand, F.H.

    1982-11-01

    Four cases of basal ganglia infarction demonstrated by radionuclide brain imaging are presented. Bilateral basal ganglia infarctions in two patients were probably related to methanol intoxication and meningoencephalitis, and unilateral basal ganglia infarctions in two other patients were presumably due to cerebral atherosclerosis and/or hypertension. Various causes and mechanisms of basal ganglia infarction as well as positive findings of radionuclide brain imaging are briefly reviewed.

  10. Super-resolution in brain Diffusion Weighted Imaging (DWI)

    OpenAIRE

    Tarquino González, Jonathan Steve

    2014-01-01

    Abstract. Diffusion Weighted (DW) imaging has proven to be useful at analysing brain architecture as well as at establishing brain tract organization and neuronal connectivity. However, an actual clinical use of DW images is currently limited by a series of acquisition artifacts, among them the partial volume effect (PVE) that may completely alter the spatial resolution and therefore the visualization of microanatomical details. In this work, a new superresolution method will be presented, ta...

  11. A template of rat brain based on fMRI T2* imaging

    Institute of Scientific and Technical Information of China (English)

    HU Zhenghui; WU Yigen; WANG Xiaochuan; WANG Jianzhi; CHEN Feiyan; TANG Xiaowei

    2005-01-01

    The development of functional magnetic resonance imaging (fMRI) technology has made it possible to carry out functional brain imaging experiments in small animals. Usually, group data is required to form the assessment of population, which can not only increase the sensitivity of the overall experiment, but also allow the generalization of the conclusion to the whole population. In order to average the signals of functional brain images from different subjects, it is necessary to put all the mapping images into the same standard space (template image). However, up to now, most animal brain templates remain unavailable and it must be done by ourselves. In this study, a template image based on the brains of eight male Wistar rats is obtained, and it is successfully used in our present Alzheimer disease (AD)-like rat model studies as template for spatially normalizing images to the same stereotaxical space. The fMRI results processed with statistical parametric mapping (SPM99) software are in agreement with the results from immunohistochemical experiment, which proves that this method is universally applicable to the pathologic models of other small animals and to human brain lesion studies.

  12. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M. [University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Brain Research Imaging Centre (BRIC), Edinburgh (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom); Poole, Ian [Toshiba Medical Visualisation Systems Europe, Ltd., Edinburgh (United Kingdom); Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D. [University of Aberdeen, Aberdeen Biomedical Imaging Centre, Aberdeen (United Kingdom); Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Edinburgh (United Kingdom)

    2012-07-15

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged {>=}60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged {>=}60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  13. Atypical pyogenic brain abscess evaluation by diffusion-weighted imaging: diagnosis with multimodality MR imaging.

    Science.gov (United States)

    Ozbayrak, Mustafa; Ulus, Ozden Sila; Berkman, Mehmet Zafer; Kocagoz, Sesin; Karaarslan, Ercan

    2015-10-01

    Whether a brain abscess is apparent by imaging depends on the stage of the abscess at the time of imaging, as well as the etiology of the infection. Because conventional magnetic resonance imaging (MRI) is limited in its ability to distinguish brain abscesses from necrotic tumors, advanced techniques are required. The management of these two disease entities differs and can potentially affect the clinical outcome. We report a case having atypical imaging features of a pyogenic brain abscess on advanced MRI, in particular, on diffusion-weighted and perfusion imaging, in a patient with osteosarcoma undergoing chemotherapy.

  14. Methods and considerations for longitudinal structural brain imaging analysis across development

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills

    2014-07-01

    Full Text Available Magnetic resonance imaging (MRI has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns, as well as measurements derived from diffusion tensor imaging (DTI. By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.

  15. SAMPLING INTENSITY WITH FIXED PRECISION WHEN ESTIMATING VOLUME OF HUMAN BRAIN COMPARTMENTS

    Directory of Open Access Journals (Sweden)

    Rhiannon Maudsley

    2011-05-01

    Full Text Available Cavalieri sampling and point counting are frequently applied in combination with magnetic resonance (MR imaging to estimate the volume of human brain compartments. Current practice involves arbitrarily choosing the number of sections and sampling intensity within each section, and subsequently applying error prediction formulae to estimate the precision. The aim of this study is to derive a reference table for researchers who are interested in estimating the volume of brain regions, namely grey matter, white matter, and their union, to a given precision. In particular, this table, which is based on subsampling of a large brain data set obtained from coronal MR images, offers a recommendation for the minimum number of sections and mean number of points per section that are required to achieve a pre-defined coefficient of error of the volume estimator. Further analysis onMR brain data from a second human brain shows that the sampling intensity recommended is appropriate.

  16. Optimizing brain tumor resection. Midfield interventional MR imaging.

    Science.gov (United States)

    Alexander, E

    2001-11-01

    The development of the intraoperative MR imager represents an important example of creative vision and interdisciplinary teamwork. The result is a remarkable tool for neurosurgical applications. MRT allows surgical manipulation under direct visualization of the intracranial contents through the eye of the surgeon and through the volumetric images of the MR imaging system. This technology can be applied to cranial and spinal cases, and forseeably can encompass application to the entire gamut of neurosurgical efforts. The author's experience has been that this device is easy and comfortable for the surgeon to use. Image acquisition, giving views in the plane of choice, lasts no more than 2 to 60 seconds (depending on the imaging method), and does not increase the duration of a given procedure substantially. The author believes that the information received through intraoperative MR imaging scanning ultimately will contribute to decreasing the duration of surgery. Future possibilities include combining the intraoperative MR imager with other technologies, such as the endoscope, focused ultrasound, robotics, and the evaluation of brain function intraoperatively. The development of the intraoperative MR imager marks a significant advance in neurosurgery, an advance that will revolutionize intraoperative visualization as fully as the operating microscope. The combination of intraoperative visualization and precise surgical navigation is unparalleled, and its enhancement of surgical applications will be widespread. Considering the remarkable potential of the intraoperative MR imager for neurosurgical applications, optimal magnet design, image quality, and navigational methods are necessary to capitalize on the advantages of this revolutionary tool. The intraoperative MR imaging system that the author's team has developed and used has combined these features, and allows the performance of open surgical procedures without the need of patient or magnet repositioning. By

  17. Human brain : biochemical lateralization in normal subjects.

    Directory of Open Access Journals (Sweden)

    Jayasundar R

    2002-07-01

    Full Text Available Chemical asymmetries in normal human brain were studied using the non-invasive technique of volume localized proton magnetic resonance spectroscopy (MRS. The technique of STEAM was used to acquire water-suppressed proton spectra from 8 ml voxels placed in bilaterally symmetrical positions in the two hemispheres of the brain. One hundred and sixty eight right-handed male volunteers were studied for six different regions in the brain (n=28, for each region. Parietal, occipital, temporal, frontal, thalamus and cerebellum regions were studied. The focus was on metabolites such as N-acetyl aspartate (NAA, creatine/phosphocreatine (Cr/PCr and choline (Cho containing compounds. Ratios of the peak areas were calculated for them. Quantitation of the metabolites were carried for data on 18 volunteers. Significant interhemispheric differences in the distribution of metabolites were observed for all the regions studied. There were statistically significant differences on right and left side for the metabolite ratios in all the regions studied. The study has shown the existence of significant lateralization in the distribution of proton MR visible metabolites for all the regions studied.

  18. Computed tomographic imaging of the brain of normal neonatal foals

    Directory of Open Access Journals (Sweden)

    L Cabrera

    2015-01-01

    Full Text Available The aim of this study was to provide a more complete description of normal cross-sectional anatomy of the neonatal brain of the foal and associated structures by computed tomography (CT and gross anatomical sections. Using a fourth-generation CT scanner, 2-mm contiguous transverse images were acquired from two neonatal 5-days-old Quarter horse foals. After the study the animals were euthanised for reasons unrelated to head pathology. To assist in the accurate identification of brain and associated structures, transverse CT images were obtained and compared with the corresponding frozen cross-sections of the head. CT images matched well with their corresponding transverse gross sections and provided good differentiation between the bones and the soft tissues of the head. These CT images are intended to be a useful initial anatomic reference in the interpretation for clinical CT imaging studies of the brain and associated structures in live neonatal foals.

  19. In vivo calcium imaging of the aging and diseased brain

    Energy Technology Data Exchange (ETDEWEB)

    Eichhoff, Gerhard; Busche, Marc A.; Garaschuk, Olga [Technical University of Munich, Institute of Neuroscience, Munich (Germany)

    2008-03-15

    Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the ''aging pigment'' lipofuscin. Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease. (orig.)

  20. BrainBank Metadata Specification for the Human Brain Project and Neuroinformatics

    OpenAIRE

    Lianglin, Hu; Yufang, Hou; Jianhui, Li; Ling, Yin; Wenwen, Shi

    2007-01-01

    Many databases and platforms for human brain data have been established in China over the years, and metadata plays an important role in understanding and using them. The BrainBank Metadata Specification for the Human Brain Project and Neuroinformatics provides a structure for describing the context and content information of BrainBank databases and services. It includes six parts: identification, method, data schema, distribution of the database, metadata extension, and metadata reference Th...

  1. BrainBank Metadata Specification for the Human Brain Project and Neuroinformatics

    Directory of Open Access Journals (Sweden)

    Hu Lianglin

    2007-07-01

    Full Text Available Many databases and platforms for human brain data have been established in China over the years, and metadata plays an important role in understanding and using them. The BrainBank Metadata Specification for the Human Brain Project and Neuroinformatics provides a structure for describing the context and content information of BrainBank databases and services. It includes six parts: identification, method, data schema, distribution of the database, metadata extension, and metadata reference The application of the BrainBank Metadata Specification will promote conservation and management of BrainBank databases and platforms. it will also greatly facilitate the retrieval, evaluation, acquisition, and application of the data.

  2. The dynamic human brain : Genetic aspects in schizophrenia and health

    NARCIS (Netherlands)

    Brans, R.G.H.

    2009-01-01

    The general aim of this thesis is to explore the possible mechanisms underlying the individual differences in brain structure and brain structure change in healthy adults and schizophrenia patients. For this purpose, Magnetic Resonance Imaging scans of the brain were acquired in schizophrenia patien

  3. Model human heart or brain signals

    CERN Document Server

    Tuncay, Caglar

    2008-01-01

    A new model is suggested and used to mimic various spatial or temporal designs in biological or non biological formations where the focus is on the normal or irregular electrical signals coming from human heart (ECG) or brain (EEG). The electrical activities in several muscles (EMG) or neurons or other organs of human or various animals, such as lobster pyloric neuron, guinea pig inferior olivary neuron, sepia giant axon and mouse neocortical pyramidal neuron and some spatial formations are also considered (in Appendix). In the biological applications, several elements (cells or tissues) in an organ are taken as various entries in a representative lattice (mesh) where the entries are connected to each other in terms of some molecular diffusions or electrical potential differences. The biological elements evolve in time (with the given tissue or organ) in terms of the mentioned connections (interactions) besides some individual feedings. The anatomical diversity of the species (or organs) is handled in terms o...

  4. Brain tumor classification of microscopy images using deep residual learning

    Science.gov (United States)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  5. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  6. Evolution of the human brain: changing brain size and the fossil record.

    Science.gov (United States)

    Park, Min S; Nguyen, Andrew D; Aryan, Henry E; U, Hoi Sang; Levy, Michael L; Semendeferi, Katerina

    2007-03-01

    Although the study of the human brain is a rapidly developing and expanding science, we must take pause to examine the historical and evolutionary events that helped shape the brain of Homo sapiens. From an examination of the human lineage to a discussion of evolutionary principles, we describe the basic principles and theories behind the evolution of the human brain. Specifically, we examine several theories concerning changes in overall brain size during hominid evolution and relate them to the fossil record. This overview is intended to provide a broad understanding of some of the controversial issues that are currently being debated in the multidisciplinary field of brain evolution research.

  7. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  8. In vivo PET imaging of brain nicotinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bottlaender, M.; Valette, H.; Saba, W.; Schollhorn-Peyronneau, M.A.; Dolle, F.; Syrota, A. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the {alpha}4{beta}2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [{sup 18}F]fluoro-A-85380 (Dolle et al., 1999). The [{sup 18}F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ {sup 18}F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the < 4R2 nAChRs. Competition and pre-blocking studies, using nicotinic agonists, confirm that the radiotracer binds specifically to the heteromeric nAChRs in the brain (Valette et al., 1999). The in vivo, characteristics of the [{sup 18}F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [{sup 18}F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [{sup 18}F

  9. Photoacoustic imaging for transvascular drug delivery to the rat brain

    Science.gov (United States)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  10. A Simulation and Experimental Study on Equivalent Dipole Layer Imaging of Brain Electric Sources

    Science.gov (United States)

    2007-11-02

    to the scalp potentials. Human experiments were further conducted to examine the feasibility of EDLI. Pattern reversal visual evoked potentials ( VEP ...were recorded from 94 electrodes and the brain electric sources at P100 were estimated. The VEP experiments demonstrate that the present EDLI can...Keywords: forward problem, inverse problem, equivalent dipole layer imaging, VEP I. INTRODUCTION Although conventional EEG offers excellent

  11. Imaging brain tumor proliferative activity with [I-124]iododeoxyuridine

    NARCIS (Netherlands)

    Blasberg, RG; Roelcke, U; Weinreich, R; Beattie, B; von Ammon, K; Yonekawa, Y; Landolt, H; Guenther, [No Value; Crompton, NEA; Vontobel, P; Missimer, J; Maguire, RP; Koziorowski, J; Knust, EJ; Finn, RD; Leenders, KL

    2000-01-01

    Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [I-124]IUdR in 20 patients with brain tumors, including meningiomas and gliomas, The PET images were directly compared with gado

  12. Classification of CT brain images based on deep learning networks.

    Science.gov (United States)

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  13. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Guangjun Zhao

    2016-01-01

    Full Text Available Cryosection brain images in Chinese Visible Human (CVH dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel. Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  14. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    Science.gov (United States)

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  15. Metabolic brain imaging correlated with clinical features of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  16. Imaging Findings of Brain Death on 3-Tesla MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Chul Ho [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Hwa Pyung [Dept. of Occupational and Environmental Medicine, CHA Gumi Medical Center, CHA University, Gumi (Korea, Republic of); Park, Jun Beom [Dept. of Radiology, Korean Armed Force Daejeon Hospital, Daejeon (Korea, Republic of); Chang, Hyuk Won; Kim, Easlmaan; Park, Ui Jun; Kim, Hyoung Tae [Keimyung University College of Medicine, Dongsan Medical Center, Daegu (Korea, Republic of); Kim, Eun Hee [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Ku, Jeong Hun [Dept. of Biomedical Engineering, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2012-09-15

    To demonstrate the usefulness of 3-tesla (3T) magnetic resonance imaging (MRI) including T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), time-of-flight (TOF) magnetic resonance angiography (MRA), T2*-weighted gradient recalled echo (GRE), and susceptibility weighted imaging (SWI) in diagnosing brain death. Magnetic resonance imaging findings for 10 patients with clinically verified brain death (group I) and seven patients with comatose or stuporous mentality who did not meet the clinical criteria of brain death (group II) were retrospectively reviewed. Tonsilar herniation and loss of intraarterial flow signal voids (LIFSV) on T2WI were highly sensitive and specific findings for the diagnosis of brain death (p < 0.001 and < 0.001, respectively). DWI, TOF-MRA, and GRE findings were statistically different between the two groups (p = 0.015, 0.029, and 0.003, respectively). However, cortical high signal intensities in T2WI and SWI findings were not statistically different between the two group (p = 0.412 and 1.0, respectively). T2-weighted imaging, DWI, and MRA using 3T MRI may be useful for diagnosing brain death. However, SWI findings are not specific due to high false positive findings.

  17. Fuzzy local Gaussian mixture model for brain MR image segmentation.

    Science.gov (United States)

    Ji, Zexuan; Xia, Yong; Sun, Quansen; Chen, Qiang; Xia, Deshen; Feng, David Dagan

    2012-05-01

    Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited accuracy. In this paper, we assume that the local image data within each voxel's neighborhood satisfy the Gaussian mixture model (GMM), and thus propose the fuzzy local GMM (FLGMM) algorithm for automated brain MR image segmentation. This algorithm estimates the segmentation result that maximizes the posterior probability by minimizing an objective energy function, in which a truncated Gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM. We compared our algorithm to state-of-the-art segmentation approaches in both synthetic and clinical data. Our results show that the proposed algorithm can largely overcome the difficulties raised by noise, low contrast, and bias field, and substantially improve the accuracy of brain MR image segmentation.

  18. [Neuroethics: Ethical Endowments of Human Brain].

    Science.gov (United States)

    López Moratalla, Natalia

    2015-01-01

    The neurobiological processes underlying moral judgement have been the focus of Neuroethics. Neurosciences demonstrate which cerebral areas are active and inactive whilst people decide how to act when facing a moral dilemma; in this way we know the correlation between determined cerebral areas and our human acts. We can explain how the ″ethical endowments″ of each person, common to all human beings, is ″embedded″ in the dynamic of cerebral flows. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion related areas of the brain contribute to moral judgement. The outcome of man's natural inclinations is on one hand linked to instinctive systems of animal survival and to basic emotions, and on the other, to the life of each individual human uninhibited by automatism of the biological laws, because he is governed by the laws of freedom. The capacity to formulate an ethical judgement is an innate asset of the human mind.

  19. Addiction circuitry in the human brain (*).

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

    2011-09-27

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

  20. Mathematical logic in the human brain: syntax.

    Directory of Open Access Journals (Sweden)

    Roland Friedrich

    Full Text Available Theory predicts a close structural relation of formal languages with natural languages. Both share the aspect of an underlying grammar which either generates (hierarchically structured expressions or allows us to decide whether a sentence is syntactically correct or not. The advantage of rule-based communication is commonly believed to be its efficiency and effectiveness. A particularly important class of formal languages are those underlying the mathematical syntax. Here we provide brain-imaging evidence that the syntactic processing of abstract mathematical formulae, written in a first order language, is, indeed efficient and effective as a rule-based generation and decision process. However, it is remarkable, that the neural network involved, consisting of intraparietal and prefrontal regions, only involves Broca's area in a surprisingly selective way. This seems to imply that despite structural analogies of common and current formal languages, at the neural level, mathematics and natural language are processed differently, in principal.

  1. Mathematical logic in the human brain: syntax.

    Science.gov (United States)

    Friedrich, Roland; Friederici, Angela D

    2009-05-28

    Theory predicts a close structural relation of formal languages with natural languages. Both share the aspect of an underlying grammar which either generates (hierarchically) structured expressions or allows us to decide whether a sentence is syntactically correct or not. The advantage of rule-based communication is commonly believed to be its efficiency and effectiveness. A particularly important class of formal languages are those underlying the mathematical syntax. Here we provide brain-imaging evidence that the syntactic processing of abstract mathematical formulae, written in a first order language, is, indeed efficient and effective as a rule-based generation and decision process. However, it is remarkable, that the neural network involved, consisting of intraparietal and prefrontal regions, only involves Broca's area in a surprisingly selective way. This seems to imply that despite structural analogies of common and current formal languages, at the neural level, mathematics and natural language are processed differently, in principal.

  2. Assessing paedophilia based on the haemodynamic brain response to face images

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Van Eimeren, Thilo

    2016-01-01

    that human face processing is tuned to sexual age preferences. This observation prompted us to test whether paedophilia can be inferred based on the haemodynamic brain responses to adult and child faces. METHODS: Twenty-four men sexually attracted to prepubescent boys or girls (paedophiles) and 32 men...... sexually attracted to men or women (teleiophiles) were exposed to images of child and adult, male and female faces during a functional magnetic resonance imaging (fMRI) session. RESULTS: A cross-validated, automatic pattern classification algorithm of brain responses to facial stimuli yielded four...

  3. Look again: effects of brain images and mind-brain dualism on lay evaluations of research.

    Science.gov (United States)

    Hook, Cayce J; Farah, Martha J

    2013-09-01

    Brain scans have frequently been credited with uniquely seductive and persuasive qualities, leading to claims that fMRI research receives a disproportionate share of public attention and funding. It has been suggested that functional brain images are fascinating because they contradict dualist beliefs regarding the relationship between the body and the mind. Although previous research has indicated that brain images can increase judgments of an article's scientific reasoning, the hypotheses that brain scans make research appear more interesting, surprising, or worthy of funding have not been tested. Neither has the relation between the allure of brain imaging and dualism. In the following three studies, laypersons rated both fictional research descriptions and real science news articles accompanied by brain scans, bar charts, or photographs. Across 988 participants, we found little evidence of neuroimaging's seductive allure or of its relation to self-professed dualistic beliefs. These results, taken together with other recent null findings, suggest that brain images are less powerful than has been argued.

  4. Identifying Brain Image Level Endophenotypes in Epilepsy

    CERN Document Server

    Cheng, Wei; Tian, Ge; Feng, Jianfeng; Wang, Zhengge; Zhang, Zhiqiang; Lu, GuangMing

    2012-01-01

    A brain wide association study (BWAS) based on the logistic regression was first developed and applied to a large population of epilepsy patients (168) and healthy controls (136). It was found that the most significant links associated with epilepsy are those bilateral links with regions mainly belonging to the default mode network and subcortex, such as amygdala, fusiform gyrus, inferior temporal gyrus, hippocampus, temporal pole, parahippocampal gyrus, insula, middle occipital gyrus, cuneus. These links were found to have much higher odd ratios than other links, and all of them showed reduced functional couplings in patients compared with controls. Interestingly, with the increasing of the seizure onset frequency or duration of illness, the functional connection between these bilateral regions became further reduced. On the other hand, as a functional compensation and brain plasticity, connections of these bilateral regions to other brain regions were abnormally enhanced and became even much stronger with t...

  5. Magnetic resonance imaging of brain angiogenesis after stroke

    OpenAIRE

    Seevinck, Peter R.; Deddens, Lisette H; Dijkhuizen, Rick M.

    2010-01-01

    Stroke is a major cause of mortality and long-term disability worldwide. The initial changes in local perfusion and tissue status underlying loss of brain function are increasingly investigated with noninvasive imaging methods. In addition, there is a growing interest in imaging of processes that contribute to post-stroke recovery. In this review, we discuss the application of magnetic resonance imaging (MRI) to assess the formation of new vessels by angiogenesis, which is hypothesized to par...

  6. HTLV-I carrier with unusual brain MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Yata, Shinsaku; Ogawa, Toshihide; Sugihara, Shuji; Matsusue, Eiji; Fujii, Shinya; Kinoshita, Toshibumi [Tottori University, Department of Pathophysiological and Therapeutic Science, Yonago (Japan); Faculty of Medicine, Tottori University, Yonago (Japan)

    2004-09-01

    We describe unusual brain MR imaging findings in a patient who is an HTLV-I carrier without myelopathy. T2-weighted MR images showed hyperintense signal abnormalities in the pyramidal tract, superior and middle cerebellar peduncles, and decussation of the superior cerebellar peduncles, in addition to subcortical white matter involvement. Diffusion-weighted images also showed hyperintense signal abnormalities in the same regions by T2 shine-through effect. (orig.)

  7. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography

    OpenAIRE

    Xu, Yuan; Wang, Lihong V.

    2006-01-01

    Two-dimensional microwave-induced thermoacoustic tomography (TAT) is applied to imaging the Rhesus monkey brain through the intact skull. To reduce the wavefront distortion caused by the skull, only the low-frequency components of the thermoacoustic signals (< 1 MHz) are used to reconstruct the TAT images. The methods of signal processing and image reconstruction are validated by imaging a lamb kidney. The resolution of the system is found to be 4 mm when we image a 1-month-old monkey head co...

  8. Evaluation of drug penetration into the brain: a double study by in vivo imaging with positron emission tomography and using an in vitro model of the human blood-brain barrier; Evaluation de la penetration cerebrale: une double etude utilisant un modele in vitro de barriere hemato-encephalique humaine et l'imagerie par tomographie d'emission de positons in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Josserand, V.; Jego, B.; Duconge, F.; Tavitian, B. [CEA Service Hospitalier Frederic Joliot (DSV/DRM/SHFJ), INSERM ERM 0103, 91 - Orsay (France); Pelerin, H.; Ezan, E.; Mabondzo, A. [CEA Saclay (DSV/DRM), Service de Pharmacologie et d' Immunologie, 91 - Gif-sur-Yvette (France); Bruin, B. de; Kuhnast, B.; Dolle, F. [CEA Service Hospitalier Frederic Joliot (DSV/DRM/SHFJ), Groupe de Radiochimie, 91 - Orsay (France)

    2004-08-01

    The blood brain barrier (BBB) passage of a set of radiopharmaceuticals candidates was measured both in vitro using a newly developed co-culture based model of human BBB and in vivo by positron emission tomography (PET). MATERIAL and METHODS: As an in vitro BBB model, a co-culture of primary human brain endothelial cells and primary human astrocytes was used. Dynamic PET studies were performed simultaneously on 4 anesthetized rats with the EXACT HR+ camera. Volumes of interest (VOI) were manually defined on the tomographic images in order to determine the pharmacokinetics of the compounds in various organs, including brain. The in vivo input function was measured by radioactivity counting of arterial blood samples. A two-compartment model analysis was used to compute the exchanging rate constants between blood and brain and to calculate the in vivo permeability coefficient. RESULTS: There was an excellent correlation between the in vitro and in vivo permeability coefficients (r = 0.99; p < 0.001) as well as between the in vivo distribution volume and the in vitro efflux /influx permeability coefficients ratio (r = 0.76). CONCLUSION: This double study evidenced a close relationship between the in vitro and the in vivo approaches for the assessment of the BBB passage. Hence, small animal PET imaging appeared suitable to screen drugs or radiopharmaceuticals candidates aimed at cerebral targets directly in the real-life situation in vivo. (author)

  9. Dynamic analysis of the human brain with complex cerebral sulci.

    Science.gov (United States)

    Tseng, Jung-Ge; Huang, Bo-Wun; Ou, Yi-Wen; Yen, Ke-Tien; Wu, Yi-Te

    2016-07-03

    The brain is one of the most vulnerable organs inside the human body. Head accidents often appear in daily life and are easy to cause different level of brain damage inside the skull. Once the brain suffered intense locomotive impact, external injuries, falls, or other accidents, it will result in different degrees of concussion. This study employs finite element analysis to compare the dynamic characteristics between the geometric models of an assumed simple brain tissue and a brain tissue with complex cerebral sulci. It is aimed to understand the free vibration of the internal brain tissue and then to protect the brain from injury caused by external influences. Reverse engineering method is used for a Classic 5-Part Brain (C18) model produced by 3B Scientific Corporation. 3D optical scanner is employed to scan the human brain structure model with complex cerebral sulci and imported into 3D graphics s