WorldWideScience

Sample records for human brain diffusion

  1. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  2. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-01-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  3. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  4. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation.

    Science.gov (United States)

    Mukherjee, Pratik; Miller, Jeffrey H; Shimony, Joshua S; Philip, Joseph V; Nehra, Deepika; Snyder, Abraham Z; Conturo, Thomas E; Neil, Jeffrey J; McKinstry, Robert C

    2002-10-01

    Conventional MR imaging findings of human brain development are thought to result from decreasing water content, increasing macromolecular concentration, and myelination. We use diffusion-tensor MR imaging to test theoretical models that incorporate hypotheses regarding how these maturational processes influence water diffusion in developing gray and white matter. Experimental data were derived from diffusion-tensor imaging of 167 participants, ages 31 gestational weeks to 11 postnatal years. An isotropic diffusion model was applied to the gray matter of the basal ganglia and thalamus. A model that assumes changes in the magnitude of diffusion while maintaining cylindrically symmetric anisotropy was applied to the white matter of the corpus callosum and internal capsule. Deviations of the diffusion tensor from the ideal model predictions, due to measurement noise, were estimated by using Monte Carlo simulations. Developing gray matter of the basal ganglia and developing white matter of the internal capsule and corpus callosum largely conformed to theory, with only small departures from model predictions in older children. However, data from the thalamus substantially diverged from predicted values, with progressively larger deviations from the model with increasing participant age. Changes in water diffusion during maturation of central gray and white matter structures can largely be explained by theoretical models incorporating simple assumptions regarding the influence of brain water content and myelination, although deviations from theory increase as the brain matures. Diffusion-tensor MR imaging is a powerful method for studying the process of brain development, with both scientific and clinical applications.

  5. Diffusion tractography of the subcortical auditory system in a postmortem human brain

    OpenAIRE

    Sitek, Kevin

    2017-01-01

    The subcortical auditory system is challenging to identify with standard human brain imaging techniques: MRI signal decreases toward the center of the brain as well as at higher resolution, both of which are necessary for imaging small brainstem auditory structures.Using high-resolution diffusion-weighted MRI, we asked:Can we identify auditory structures and connections in high-resolution ex vivo images?Which structures and connections can be mapped in vivo?

  6. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI

    Directory of Open Access Journals (Sweden)

    Matteo eBastiani

    2015-06-01

    Full Text Available The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso- and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these.

  7. Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain

    International Nuclear Information System (INIS)

    Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin; Yu, Tong Gang

    2015-01-01

    To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.

  8. Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin [School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology, Shanghai (China); Yu, Tong Gang [Dept. of Radiology, Huashan Hospital, Fudan University, Shanghai (China)

    2015-04-15

    To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.

  9. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  10. Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images

    International Nuclear Information System (INIS)

    Provata, A.; Katsaloulis, P.; Verganelakis, D.A.

    2012-01-01

    Highlights: ► Calculation of human brain multifractal spectra. ► Calculations are based on Diffusion Tensor MRI Images. ► Spectra are modelled by coupled Ikeda map dynamics. ► Coupled lattice Ikeda maps model well only positive multifractal spectra. ► Appropriately modified coupled lattice Ikeda maps give correct spectra. - Abstract: The multifractal spectra of 3d Diffusion Tensor Images (DTI) obtained by magnetic resonance imaging of the human brain are studied. They are shown to deviate substantially from artificial brain images with the same white matter intensity. All spectra, obtained from 12 healthy subjects, show common characteristics indicating non-trivial moments of the intensity. To model the spectra the dynamics of the chaotic Ikeda map are used. The DTI multifractal spectra for positive q are best approximated by 3d coupled Ikeda maps in the fully developed chaotic regime. The coupling constants are as small as α = 0.01. These results reflect not only the white tissue non-trivial architectural complexity in the human brain, but also demonstrate the presence and importance of coupling between neuron axons. The architectural complexity is also mirrored by the deviations in the negative q-spectra, where the rare events dominate. To obtain a good agreement in the DTI negative q-spectrum of the brain with the Ikeda dynamics, it is enough to slightly modify the most rare events of the coupled Ikeda distributions. The representation of Diffusion Tensor Images with coupled Ikeda maps is not unique: similar conclusions are drawn when other chaotic maps (Tent, Logistic or Henon maps) are employed in the modelling of the neuron axons network.

  11. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    Science.gov (United States)

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  12. Diffusion tensor tractography of language functional areas and fiber pathways in normal human brain

    International Nuclear Information System (INIS)

    Sun Xuejin; Dai Jianping; Chen Hongyan; Gao Peiyi; Ai Lin; Tian Shengyong; Pang Ruilin

    2007-01-01

    Objective: To demonstrate the fiber pathways of Broca area to the other functional brain areas with diffusion tensor imaging and fiber tracking. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and fiber tracking were performed using 3.0 T MRI in 20 healthy person. The fiber bundles and tracts were analyzed in Broca area and contralateral normal area. Results: The left-side fiber bundles were 428 and the right-side were 416 in B45 area, there were no statistically significant differences between both sides (t=0.216, P>0.05). The left-side fiber bundles were 432 and the right-side were 344 in B44 area,there were statistically significant (t=2.314, P 0.05). Differences of the arcuate fascicule between both sides were not statistically significant (t=-0.465, P>0.05), the mean FA on the left was higher than the right (t=1.912, P<0.05). DTI and fiber tracking exhibited that the fiber bundles from Broca area were distributed superoanteriorly to the lateral foreside of the frontal lobe, lateroinferiorly to the occipital lobe through external capsule, and went down through globus pallidus and internal capsule. Conclusion: The fiber tracts bewteen Broca area and other brain areas were the fundamental structures for performing language function of the human brain. (authors)

  13. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain.

    Science.gov (United States)

    Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N

    2016-05-01

    An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK

  14. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    International Nuclear Information System (INIS)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona; Husain, Nuzhat; Srivastava, Savita; Rathore, Ram K.S.; Sarma, Manoj K.; Malik, Gyanendra K.; Das, Vinita; Pradhan, Mandakini; Pandey, Chandra M.; Narayana, Ponnada A.

    2009-01-01

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  15. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  16. Diffusion tensor tractography of the mammillothalamic tract in the human brain using a high spatial resolution DTI technique.

    Science.gov (United States)

    Kamali, Arash; Zhang, Caroline C; Riascos, Roy F; Tandon, Nitin; Bonafante-Mejia, Eliana E; Patel, Rajan; Lincoln, John A; Rabiei, Pejman; Ocasio, Laura; Younes, Kyan; Hasan, Khader M

    2018-03-27

    The mammillary bodies as part of the hypothalamic nuclei are in the central limbic circuitry of the human brain. The mammillary bodies are shown to be directly or indirectly connected to the amygdala, hippocampus, and thalami as the major gray matter structures of the human limbic system. Although it is not primarily considered as part of the human limbic system, the thalamus is shown to be involved in many limbic functions of the human brain. The major direct connection of the thalami with the hypothalamic nuclei is known to be through the mammillothalamic tract. Given the crucial role of the mammillothalamic tracts in memory functions, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the mammillothalamic tract in the human brain. Fifteen healthy adults were studied after obtaining written informed consent. We used high spatial resolution diffusion tensor imaging data at 3.0 T. We delineated, for the first time, the detailed trajectory of the mammillothalamic tract of the human brain using deterministic diffusion tensor tractography.

  17. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... coefficient of water with different temperatures. This phantom study showed that the water self diffusion could be measured accurately and that the inplane deviation was less than +/- 10 per cent. Seven healthy volunteers were studied with a 10 mm thick slice through the lateral ventricles, clear differences...... between grey and white matter as well as regional differences within the white matter were seen. In two patients with infarction, alternations in water self diffusion were seen in the region of the infarct. Likewise, pronounced changes in brain water self diffusion were observed in a patient with benign...

  18. Somatotopic location of corticospinal tract at pons in human brain: a diffusion tensor tractography study.

    Science.gov (United States)

    Hong, Ji Heon; Son, Su Min; Jang, Sung Ho

    2010-07-01

    No diffusion tensor tractography (DTT) study has yet investigated the somatotopic location of the corticospinal tract (CST) at the pons. In the current study, we used DTT to investigate the somatotopic location of the CST at the pons in the human brain. We recruited 25 healthy volunteers for this study. Diffusion tensor images (DTIs) were scanned using 1.5-T; CSTs for the hand and leg were obtained using FMRIB software. Normalized DTT was reconstructed using the Montreal Neurological Institute echo-planar imaging template supplied with the SPM. Individual DTI data were calculated as a pixel unit at the upper and lower pons. Relative average location of the highest probability point of the CST for the hand was 47.70%, with the standard from the midline to the most lateral point of the upper pons, and 35.87% at the lower pons. For the leg, the CST was located at 56.82% at the upper pons and 40.63% at the lower pons. For the anteroposterior direction from the most anterior point of the pons to the most anterior point of the fourth ventricle, the CST for the hand was located at 42.30% at the upper pons and 36.18% at the lower pons. For the leg, the CST was located at 45.68% and 39.01%, respectively. We found that the hand somatotopy of the CST was located at the antero-medial portion at the pons and that the leg somatotopy of the CST was located postero-laterally to the hand somatotopy of the CST. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  19. Intra- and interhemispheric variations of diffusivity in subcortical white matter in normal human brain

    International Nuclear Information System (INIS)

    Yoshiura, Takashi; Noguchi, Tomoyuki; Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Nagao, Eiki; Kamano, Hironori; Honda, Hiroshi

    2010-01-01

    Our purpose was to reveal potential regional variations in water molecular diffusivity within each cerebral hemisphere and across the right and left hemispheres. Diffusion-weighted images of 44 healthy right-handed adult male subjects were obtained using a diffusion tensor imaging sequence. Mean diffusivity (MD) values in subcortical white matter (WM) within 39 regions in each hemisphere were measured using an automated method. Intrahemispheric comparisons of MDs in subcortical WM were performed among six brain regions (frontal, parietal, occipital and temporal lobes and pre- and postcentral gyri). Interhemispheric comparisons of MDs were performed between the right and left counterparts of the 39 regions. In both hemispheres, diffusivity in the precentral gyrus was lower than those in other regions, while diffusivity in the parietal lobe was higher than others. MD asymmetry in which the left was lower than the right was found in the parietal lobe, middle occipital gyrus, and medial and orbital aspects of the frontal lobe. The converse asymmetry was revealed in the frontal operculum, supplementary motor cortex, temporal lobe, limbic cortices, precuneus and cuneus. Our results revealed significant intra- and interhemispheric regional variations in MD in subcortical WM, which may be related to different densities of axons and myelin sheaths. (orig.)

  20. Intra- and interhemispheric variations of diffusivity in subcortical white matter in normal human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Takashi; Noguchi, Tomoyuki; Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Nagao, Eiki; Kamano, Hironori; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2010-01-15

    Our purpose was to reveal potential regional variations in water molecular diffusivity within each cerebral hemisphere and across the right and left hemispheres. Diffusion-weighted images of 44 healthy right-handed adult male subjects were obtained using a diffusion tensor imaging sequence. Mean diffusivity (MD) values in subcortical white matter (WM) within 39 regions in each hemisphere were measured using an automated method. Intrahemispheric comparisons of MDs in subcortical WM were performed among six brain regions (frontal, parietal, occipital and temporal lobes and pre- and postcentral gyri). Interhemispheric comparisons of MDs were performed between the right and left counterparts of the 39 regions. In both hemispheres, diffusivity in the precentral gyrus was lower than those in other regions, while diffusivity in the parietal lobe was higher than others. MD asymmetry in which the left was lower than the right was found in the parietal lobe, middle occipital gyrus, and medial and orbital aspects of the frontal lobe. The converse asymmetry was revealed in the frontal operculum, supplementary motor cortex, temporal lobe, limbic cortices, precuneus and cuneus. Our results revealed significant intra- and interhemispheric regional variations in MD in subcortical WM, which may be related to different densities of axons and myelin sheaths. (orig.)

  1. Spatial Mapping of Structural and Connectional Imaging Data for the Developing Human Brain with Diffusion Tensor Imaging

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao

    2014-01-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302

  2. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Fiber crossing in human brain depicted with diffusion tensor MR imaging

    DEFF Research Database (Denmark)

    Wiegell, M.R.; Larsson, H.B.; Wedeen, V.J.

    2000-01-01

    Human white matter fiber crossings were investigated with use of the full eigenstructure of the magnetic resonance diffusion tensor. Intravoxel fiber dispersions were characterized by the plane spanned by the major and medium eigenvectors and depicted with three-dimensional graphics. This method...

  4. The Safe Area in the Parieto-Occipital Lobe in the Human Brain: Diffusion Tensor Tractography.

    Science.gov (United States)

    Jang, Sung Ho; Kim, Seong Ho; Kwon, Hyeok Gyu

    2015-06-01

    A recent study reported on the relatively safe area in the frontal lobe for performance of neurological interventions; however, no study on the posterior safe area has been reported. In this study, using diffusion tensor tractography, we attempted to identify the safe area in the parieto-occipital lobe in healthy subjects. A total of 47 healthy subjects were recruited for this study. Eleven neural tracts were reconstructed in and around the parieto-occipital area of the brain using diffusion tensor tractography. The safe area, which is free from any trajectory of 10 neural tracts, was measured anteriorly and medially from the line of the most posterior and lateral margin of the brain at 5 axial levels (from the cerebral cortex to the corona radiata). The anterior boundaries of the safe area in the upper cerebral cortex, lower cerebral cortex, centrum semiovale, upper corona radiata, and lower corona radiata levels were located at 31.0, 32.6, 32.7, 35.1, and 35.2 mm anteriorly from the line of the most posterior margin of the brain, respectively, and the medial boundaries were located at an average of 34.7, 38.1, 39.2, 36.1, and 33.6 mm medially from the line of the most lateral margin of the brain, respectively. According to our findings, the safe area was located in the posterolateral portion of the parieto-occipital lobe in the shape of a triangle. However, we found no safe area in the deep white matter around the lateral ventricle. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  6. Quantitative diffusion characteristics of the human brain depend on MRI sequence parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.; Blumhardt, L.D. [University of Nottingham, Department of Neurology, Royal Preston Hospital, Preston (United Kingdom); Morgan, P.S. [Division of Academic Radiology, Queens Medical Centre, Nottingham (United Kingdom)

    2002-07-01

    Quantitative diffusion-weighted MRI has been applied to the study of neurological diseases, including multiple sclerosis, where the molecular self-diffusion coefficient D has been measured in both lesions and normal-appearing white matter. Histograms of D have been used as a novel measure of the ''lesion load'', with potential applications that include the monitoring of efficacy in new treatment trials. However different ways of measuring D may affect its value, making comparison between different centres and research groups impossible. We aimed to assess the effect, if any, of using two different MRI sequences on the value of D. We studied 13 healthy volunteers, using two different quantitative diffusion sequences (including different b{sub max} values and gradient applications). Maps of D were analysed using both regions of interest (ROI) in white matter and ''whole brain'' histograms, and compared between the two sequences. In addition, we studied three standardised test liquids (with known values of D) using both sequences. Histograms from the two sequences had different distributions, with a greater spread and higher peak position from the sequence with lower b{sub max}. This greater spread of D was also evident in the white matter and test liquid ROI. ''Limits of agreement'' analysis demonstrated that the differences could be clinically relevant, despite significant correlations between the sequences obtained using simple rank methods. We conclude that different quantitative diffusion sequences are unlikely to produce directly comparable values of D, particularly if different b{sub max} values are used. In addition, the use of inappropriate statistical tests may give false impressions of close agreement. Standardisation of methods for the measurement of D are required if these techniques are to become useful tools, for example in monitoring changes in the disease burden of multiple sclerosis. (orig.)

  7. Quantitative diffusion characteristics of the human brain depend on MRI sequence parameters

    International Nuclear Information System (INIS)

    Wilson, M.; Blumhardt, L.D.; Morgan, P.S.

    2002-01-01

    Quantitative diffusion-weighted MRI has been applied to the study of neurological diseases, including multiple sclerosis, where the molecular self-diffusion coefficient D has been measured in both lesions and normal-appearing white matter. Histograms of D have been used as a novel measure of the ''lesion load'', with potential applications that include the monitoring of efficacy in new treatment trials. However different ways of measuring D may affect its value, making comparison between different centres and research groups impossible. We aimed to assess the effect, if any, of using two different MRI sequences on the value of D. We studied 13 healthy volunteers, using two different quantitative diffusion sequences (including different b max values and gradient applications). Maps of D were analysed using both regions of interest (ROI) in white matter and ''whole brain'' histograms, and compared between the two sequences. In addition, we studied three standardised test liquids (with known values of D) using both sequences. Histograms from the two sequences had different distributions, with a greater spread and higher peak position from the sequence with lower b max . This greater spread of D was also evident in the white matter and test liquid ROI. ''Limits of agreement'' analysis demonstrated that the differences could be clinically relevant, despite significant correlations between the sequences obtained using simple rank methods. We conclude that different quantitative diffusion sequences are unlikely to produce directly comparable values of D, particularly if different b max values are used. In addition, the use of inappropriate statistical tests may give false impressions of close agreement. Standardisation of methods for the measurement of D are required if these techniques are to become useful tools, for example in monitoring changes in the disease burden of multiple sclerosis. (orig.)

  8. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    NARCIS (Netherlands)

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT

  9. Diffusion tensor spectroscopic imaging of the human brain in children and adults.

    Science.gov (United States)

    Fotso, Kevin; Dager, Stephen R; Landow, Alec; Ackley, Elena; Myers, Orrin; Dixon, Mindy; Shaw, Dennis; Corrigan, Neva M; Posse, Stefan

    2017-10-01

    We developed diffusion tensor spectroscopic imaging (DTSI), based on proton-echo-planar-spectroscopic imaging (PEPSI), and evaluated the feasibility of mapping brain metabolite diffusion in adults and children. PRESS prelocalized DTSI at 3 Tesla (T) was performed using navigator-based correction of movement-related phase errors and cardiac gating with compensation for repetition time (TR) related variability in T 1 saturation. Mean diffusivity (MD) and fractional anisotropy (FA) of total N-acetyl-aspartate (tNAA), total creatine (tCr), and total choline (tCho) were measured in eight adults (17-60 years) and 10 children (3-24 months) using b max  = 1734 s/mm 2 , 1 cc and 4.5 cc voxel sizes, with nominal scan times of 17 min and 8:24 min. Residual movement-related phase encoding ghosting (PEG) was used as a regressor across scans to correct overestimation of MD. After correction for PEG, metabolite slice-averaged MD estimated at 20% PEG were lower (P < 0.042) for adults (0.17/0.20/0.18 × 10 -3 mm 2 /s) than for children (0.26/0.27/0.24 × 10 -3 mm 2 /s). Extrapolated to 0% PEG, the MD estimates decreased further (0.09/0.11/0.11 × 10 -3 mm 2 /s versus 0.15/0.16/0.15 × 10 -3 mm 2 /s). Slice-averaged FA of tNAA (P = 0.049), tCr (P = 0.067), and tCho (P = 0.003) were higher in children. This high-speed DTSI approach with PEG regression allows for estimation of metabolite MD and FA with improved tolerance to movement. Our preliminary data suggesting age-related changes support DTSI as a sensitive technique for investigating intracellular markers of biological processes. Magn Reson Med 78:1246-1256, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Normal development of human brain white matter from infancy to early adulthood: a diffusion tensor imaging study.

    Science.gov (United States)

    Uda, Satoshi; Matsui, Mie; Tanaka, Chiaki; Uematsu, Akiko; Miura, Kayoko; Kawana, Izumi; Noguchi, Kyo

    2015-01-01

    Diffusion tensor imaging (DTI), which measures the magnitude of anisotropy of water diffusion in white matter, has recently been used to visualize and quantify parameters of neural tracts connecting brain regions. In order to investigate the developmental changes and sex and hemispheric differences of neural fibers in normal white matter, we used DTI to examine 52 healthy humans ranging in age from 2 months to 25 years. We extracted the following tracts of interest (TOIs) using the region of interest method: the corpus callosum (CC), cingulum hippocampus (CGH), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). We measured fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD). Approximate values and changes in growth rates of all DTI parameters at each age were calculated and analyzed using LOESS (locally weighted scatterplot smoothing). We found that for all TOIs, FA increased with age, whereas ADC, AD and RD values decreased with age. The turning point of growth rates was at approximately 6 years. FA in the CC was greater than that in the SLF, ILF and CGH. Moreover, FA, ADC and AD of the splenium of the CC (sCC) were greater than in the genu of the CC (gCC), whereas the RD of the sCC was lower than the RD of the gCC. The FA of right-hemisphere TOIs was significantly greater than that of left-hemisphere TOIs. In infants, growth rates of both FA and RD were larger than those of AD. Our data show that developmental patterns differ by TOIs and myelination along with the development of white matter, which can be mainly expressed as an increase in FA together with a decrease in RD. These findings clarify the long-term normal developmental characteristics of white matter microstructure from infancy to early adulthood. © 2015 S. Karger AG, Basel.

  11. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    OpenAIRE

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed. However, it is not clear how accurately these methods reproduce the WM bundle characteristics in real-world conditions, such as in the presence of noise, partial volume...

  12. Functional imaging of the human brain using a modular, fibre-less, high-density diffuse optical tomography system.

    Science.gov (United States)

    Chitnis, Danial; Cooper, Robert J; Dempsey, Laura; Powell, Samuel; Quaggia, Simone; Highton, David; Elwell, Clare; Hebden, Jeremy C; Everdell, Nicholas L

    2016-10-01

    We present the first three-dimensional, functional images of the human brain to be obtained using a fibre-less, high-density diffuse optical tomography system. Our technology consists of independent, miniaturized, silicone-encapsulated DOT modules that can be placed directly on the scalp. Four of these modules were arranged to provide up to 128, dual-wavelength measurement channels over a scalp area of approximately 60 × 65 mm 2 . Using a series of motor-cortex stimulation experiments, we demonstrate that this system can obtain high-quality, continuous-wave measurements at source-detector separations ranging from 14 to 55 mm in adults, in the presence of hair. We identify robust haemodynamic response functions in 5 out of 5 subjects, and present diffuse optical tomography images that depict functional haemodynamic responses that are well-localized in all three dimensions at both the individual and group levels. This prototype modular system paves the way for a new generation of wearable, wireless, high-density optical neuroimaging technologies.

  13. Age-related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural Mri and Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Rishu Rathee

    2016-01-01

    Full Text Available The aim is to investigate the relationship between microstructural white matter (WM diffusivity indices and macrostructural WM volume (WMV among healthy individuals (20–85 years. Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract-based spatial statistics. Our results revealed that mean diffusivity, axial diffusivity, and radial diffusivity had shown good correlation with WMV but not for fractional anisotropy (FA. Voxel-wise tract-based spatial statistics analysis for FA showed a significant decrease in four regions for middle-aged group compared to young-aged group, in 22 regions for old-aged group compared to middle-aged group, and in 26 regions for old-aged group compared to young-aged group ( P < 0.05. We found significantly lower WMV, FA, and mean diffusivity values in females than males and inverted-U trend for FA in males. We conclude differential age- and gender-related changes for structural WMV and WM diffusion indices.

  14. The Superior Fronto-Occipital Fasciculus in the Human Brain Revealed by Diffusion Spectrum Imaging Tractography: An Anatomical Reality or a Methodological Artifact?

    Science.gov (United States)

    Bao, Yue; Wang, Yong; Wang, Wei; Wang, Yibao

    2017-01-01

    The existence of the superior fronto-occipital fasciculus (SFOF) in the human brain remains controversial. The aim of the present study was to clarify the existence, course, and terminations of the SFOF. High angular diffusion spectrum imaging (DSI) analysis was performed on six healthy adults and on a template of 842 subjects from the Human Connectome Project. To verify tractography results, we performed fiber microdissections of four post-mortem human brains. Based on DSI tractography, we reconstructed the SFOF in the subjects and the template from the Human Connectome Project that originated from the rostral and medial parts of the superior and middle frontal gyri. By tractography, we found that the fibers formed a compact fascicle at the level of the anterior horn of the lateral ventricle coursing above the head of caudate nucleus, medial to the corona radiate and under the corpus callosum (CC), and terminated at the parietal region via the lower part of the caudate nucleus. We consider that this fiber bundle observed by tractography is the SFOF, although it terminates mainly at the parietal region, rather than occipital lobe. By contrast, we were unable to identify a fiber bundle corresponding to the SFOF in our fiber dissection study. Although we did not provide definite evidence of the SFOF in the human brain, these findings may be useful for future studies in this field. PMID:29321729

  15. The Superior Fronto-Occipital Fasciculus in the Human Brain Revealed by Diffusion Spectrum Imaging Tractography: An Anatomical Reality or a Methodological Artifact?

    Directory of Open Access Journals (Sweden)

    Yue Bao

    2017-12-01

    Full Text Available The existence of the superior fronto-occipital fasciculus (SFOF in the human brain remains controversial. The aim of the present study was to clarify the existence, course, and terminations of the SFOF. High angular diffusion spectrum imaging (DSI analysis was performed on six healthy adults and on a template of 842 subjects from the Human Connectome Project. To verify tractography results, we performed fiber microdissections of four post-mortem human brains. Based on DSI tractography, we reconstructed the SFOF in the subjects and the template from the Human Connectome Project that originated from the rostral and medial parts of the superior and middle frontal gyri. By tractography, we found that the fibers formed a compact fascicle at the level of the anterior horn of the lateral ventricle coursing above the head of caudate nucleus, medial to the corona radiate and under the corpus callosum (CC, and terminated at the parietal region via the lower part of the caudate nucleus. We consider that this fiber bundle observed by tractography is the SFOF, although it terminates mainly at the parietal region, rather than occipital lobe. By contrast, we were unable to identify a fiber bundle corresponding to the SFOF in our fiber dissection study. Although we did not provide definite evidence of the SFOF in the human brain, these findings may be useful for future studies in this field.

  16. Measurements of brain microstructure and connectivity with diffusion MRI

    Directory of Open Access Journals (Sweden)

    Ching-Po Lin

    2011-12-01

    Full Text Available By probing direction-dependent diffusivity of water molecules, diffusion MRI has shown its capability to reflect the microstructural tissue status and to estimate the neural orientation and pathways in the living brain. This approach has supplied novel insights into in-vivo human brain connections. By detecting the connection patterns, anatomical architecture and structural integrity between cortical regions or subcortical nuclei in the living human brain can be easily identified. It thus opens a new window on brain connectivity studies and disease processes. During the past years, there is a growing interest in exploring the connectivity patterns of the human brain. Specifically, the utilities of noninvasive neuroimaging data and graph theoretical analysis have provided important insights into the anatomical connections and topological pattern of human brain structural networks in vivo. Here, we review the progress of this important technique and the recent methodological and application studies utilizing graph theoretical approaches on brain structural networks with structural MRI and diffusion MRI.

  17. Monitoring of human brain functions in risk decision-making task by diffuse optical tomography using voxel-wise general linear model

    Science.gov (United States)

    Lin, Zi-Jing; Li, Lin; Cazzell, Marry; Liu, Hanli

    2013-03-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique which measures the hemodynamic changes that reflect the brain activity. Diffuse optical tomography (DOT), a variant of fNIRS with multi-channel NIRS measurements, has demonstrated capability of three dimensional (3D) reconstructions of hemodynamic changes due to the brain activity. Conventional method of DOT image analysis to define the brain activation is based upon the paired t-test between two different states, such as resting-state versus task-state. However, it has limitation because the selection of activation and post-activation period is relatively subjective. General linear model (GLM) based analysis can overcome this limitation. In this study, we combine the 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with the risk-decision making process. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The balloon analogue risk task (BART) is a valid experimental model and has been commonly used in behavioral measures to assess human risk taking action and tendency while facing risks. We have utilized the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making. Voxel-wise GLM analysis was performed on 18human participants (10 males and 8females).In this work, we wish to demonstrate the feasibility of using voxel-wise GLM analysis to image and study cognitive functions in response to risk decision making by DOT. Results have shown significant changes in the dorsal lateral prefrontal cortex (DLPFC) during the active choice mode and a different hemodynamic pattern between genders, which are in good agreements with published literatures in functional magnetic resonance imaging (fMRI) and fNIRS studies.

  18. Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection.

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yunjie; Wang, Yibao

    2016-09-01

    The temporo-parieto-occipital (TPO) junction plays a unique role in human high-level neurological functions. Long-range fibers from and to this area have been described in detail but little is known about short TPO tracts mediating local connectivity. In this study, we performed high angular diffusion spectrum imaging (DSI) analyses to visualize the short TPO connections in the human brain. Fiber tracking was conducted on a subject-specific approach (10 subjects) and a template of 90 subjects (NTU-90 Atlas). Three tracts were identified: posterior segment of the superior longitudinal fasciculus (SLF-V), connecting the posterior part of the middle and inferior temporal gyri with the angular gyrus and supramarginal gyrus, vertical occipital fasciculus (VOF), connecting the inferior parietal with the lower temporal and occipital lobe, and a novel temporo-parietal (TP) connection, interconnecting the inferior temporal gyrus, middle temporal gyrus and fusiform gyrus, and inferior occipital lobe with the superior parietal lobe. These studies were complemented by fiber dissection techniques. It is the first study that demonstrated the trajectory and connectivity of the VOF using fiber dissection, as well as displayed the spatial relationship of the SLF-V with the cortex and the adjacent fiber bundles on one dissecting hemisphere. By providing a more accurate and detailed description of the local connectivity of the TPO junction, our findings help to develop new insights into its functional role in the human brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Imaging brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus

    2018-01-01

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging ...

  20. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI

    Science.gov (United States)

    Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel

    2012-01-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696

  1. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI.

    Science.gov (United States)

    Bible, Ellen; Dell'Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter M; Badylak, Stephen F; Ahrens, Eric T; Modo, Michel

    2012-04-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based (1)H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a (19)F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on (1)H-MRI scans. Twenty percent of cells labeled with the (19)F agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T(2)- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The correlation between (1)H MRS choline concentrations and MR diffusion trace values in human brain tumors

    Czech Academy of Sciences Publication Activity Database

    Wagnerová, Dita; Jirů, F.; Dezortová, M.; Vargová, Lýdia; Syková, Eva; Hájek, M.

    2009-01-01

    Roč. 22, č. 1 (2009), s. 19-31 ISSN 0968-5243 R&D Projects: GA MŠk(CZ) LC554 Grant - others:MZd(CZ) MZ0IKEM2005; EC FP6 project Angiotargeting(XE) 504743 Institutional research plan: CEZ:AV0Z50390512 Keywords : spectroscopic imaging * cholines * diffusion trace Subject RIV: FH - Neurology Impact factor: 1.859, year: 2009

  3. Early and progressive microstructural brain changes in mice overexpressing human alpha-Synuclein detected by diffusion kurtosis imaging

    Czech Academy of Sciences Publication Activity Database

    Khairnar, A.; Rudá-Kučerová, J.; Szabó, N.; Dražanová, Eva; Arab, A.; Hutter-Paier, B.; Neddens, J.; Latta, P.; Starčuk jr., Zenon; Rektorová, I.

    2017-01-01

    Roč. 61, MAR (2017), s. 197-208 ISSN 0889-1591 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk(CZ) LM2015062; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : MRI * diffusion kurtosis imaging * substantia nigra * sriatum * thalamus * TNWT-61 * parkinson's disease * transgenic mice * animal model Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: 1.7 Other natural sciences Impact factor: 5.964, year: 2016

  4. 人脑神经心理功能的DTI研究%Diffusion tensor imaging research on some neuropsychological function of human brain

    Institute of Scientific and Technical Information of China (English)

    何冠勇; 刘远健

    2016-01-01

    目的:探讨MR弥散张量成像( DTI)技术在记忆、学习、语言、音乐及思维活动相关脑区白质纤维的研究进展。方法在 Medline 和 Embase 数据库,以“diffusion tensor imaging”与“memory”、“study”、“language”、“music”、“cognition”等为关键词,检索2015年6月之前发表的MR DTI技术研究有关心理神经功能的文章进行分析总结。对检索到100余篇文献进行筛选,以近5年发表在较权威期刊者优先纳入,主要文献32篇。结果人脑白质纤维通过记忆、学习、语言、音乐及认知活动可发生重塑性改变。结论 MR DTI技术作为一种能无创显示活体内脑白质纤维变化的技术,可广泛应用于各种认知训练及神经心理功能研究。%Objective To explore the progress of neuropsychological profile on memory, study, language, music, and cognition with diffusion tensor imaging(DTI). Methods A computer-based online database of Medline and Embase were undertaken to identify all articles about neuropsychological activities and diffusion tensor imaging with the key words of "memory, study, language, music, and cognition"published from January 2004 to June 2015. The search involved in more than 100 articles, as the key 32 of them were issued on authority magazines recently. Results The white matter fiber of human brain can be changed and remodeled through memory, learning, language, music and cognitive activity. Conclusions As a kind of technology to display the changing white matter construction of brain in vivo, magnetic resonance DTI are widely used in research on a variety of neuropsychological function as well as cognitive training.

  5. Symmetrical Location Characteristics of Corticospinal Tract Associated With Hand Movement in the Human Brain: A Probabilistic Diffusion Tensor Tractography.

    Science.gov (United States)

    Lee, Dong-Hoon; Lee, Do-Wan; Han, Bong-Soo

    2016-04-01

    The purpose of this study is to elucidate the symmetrical characteristics of corticospinal tract (CST) related with hand movement in bilateral hemispheres using probabilistic fiber tracking method. Seventeen subjects were participated in this study. Fiber tracking was performed with 2 regions of interest, hand activated functional magnetic resonance imaging (fMRI) results and pontomedullary junction in each cerebral hemisphere. Each subject's extracted fiber tract was normalized with a brain template. To measure the symmetrical distributions of the CST related with hand movement, the laterality and anteriority indices were defined in upper corona radiata (CR), lower CR, and posterior limb of internal capsule. The measured laterality and anteriority indices between the hemispheres in each different brain location showed no significant differences with P the measured indices among 3 different brain locations in each cerebral hemisphere with P the hand CST had symmetric structures in bilateral hemispheres. The probabilistic fiber tracking with fMRI approach demonstrated that the hand CST can be successfully extracted regardless of crossing fiber problem. Our analytical approaches and results seem to be helpful for providing the database of CST somatotopy to neurologists and clinical researches.

  6. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    Science.gov (United States)

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  7. PANDA: a pipeline toolbox for analyzing brain diffusion images.

    Science.gov (United States)

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  8. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  9. PANDA: a pipeline toolbox for analyzing brain diffusion images

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2013-02-01

    Full Text Available Diffusion magnetic resonance imaging (dMRI is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named Pipeline for Analyzing braiN Diffusion imAges (PANDA for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL, Pipeline System for Octave and Matlab (PSOM, Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics (e.g., FA and MD that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI, allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  10. Human brain imaging

    International Nuclear Information System (INIS)

    Kuhar, M.J.

    1987-01-01

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  11. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Coe, Christopher L; Lubach, Gabriele R; Styner, Martin A; Johnson, G Allan

    2014-11-01

    Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results. Copyright © 2014 Wiley Periodicals, Inc.

  12. The imaging diagnosis of diffuse brain swelling due to severe brain trauma

    International Nuclear Information System (INIS)

    Shen Jianqiang; Hu Jiawang

    2008-01-01

    Objective: To discuss the clinical and pathological characteristics and the imaging types of the diffuse brain swelling due to severe brain trauma. Methods: The clinical data and CT and MR images on 48 cases with diffuse brain swelling due to severe brain trauma were analyzed. Results: Among these 48 cases of the diffuse brain swelling due to severe brain trauma, 33 cases were complicated with brain contusions (including 12 cases brain diffuse axonal injury, 1 case infarct of the right basal ganglion), 31 cases were complicated with hematoma (epidural, subdural or intracerebral), 27 cases were complicated with skull base fracture, and 10 cases were complicated with subarachnoid hematoma. The CT and MR imaging of the diffuse brain swelling included as followed: (1) Symmetrically diffuse brain swelling in both cerebral hemispheres with cerebral ventricles decreased or disappeared, without median line shift. (2)Diffuse brain swelling in one side cerebral hemisphere with cerebral ventricles decreased or disappeared at same side, and median line shift to other side. (3) Subarachnoid hematoma or little subcortex intracerebral hematoma were complicated. (4) The CT value of the cerebral could be equal, lower or higher comparing with normal. Conclusion: The pathological reason of diffuse brain swelling was the brain vessel expanding resulting from hypothalamus and brainstem injured in severe brain trauma. There were four CT and MR imaging findings in diffuse brain swelling. The diffuse brain swelling without hematoma may be caused by ischemical reperfusion injury. (authors)

  13. Data of NODDI diffusion metrics in the brain and computer simulation of hybrid diffusion imaging (HYDI acquisition scheme

    Directory of Open Access Journals (Sweden)

    Chandana Kodiweera

    2016-06-01

    Full Text Available This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI, “Hybrid diffusion imaging” [1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI model, “NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain” [2]. HYDI is an extremely versatile diffusion magnetic resonance imaging (dMRI technique that enables various analyzes methods using a single diffusion dataset. One of the diffusion data analysis methods is the NODDI computation, which models the brain tissue with three compartments: fast isotropic diffusion (e.g., cerebrospinal fluid, anisotropic hindered diffusion (e.g., extracellular space, and anisotropic restricted diffusion (e.g., intracellular space. The NODDI model produces microstructural metrics in the developing brain, aging brain or human brain with neurologic disorders. The first dataset provided here are the means and standard deviations of NODDI metrics in 48 white matter region-of-interest (ROI averaging across 52 healthy participants. The second dataset provided here is the computer simulation with initial conditions guided by the first dataset as inputs and gold standard for model fitting. The computer simulation data provide a direct comparison of NODDI indices computed from the HYDI acquisition [1] to the NODDI indices computed from the originally proposed acquisition [2]. These data are related to the accompanying research article “Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study” [3].

  14. Brain microstructure mapping using quantitative and diffusion MRI

    International Nuclear Information System (INIS)

    Lebois, Alice

    2014-01-01

    This thesis is focused on the human brain microstructure mapping using quantitative and diffusion MRI. The T1/T2 quantitative imaging relies on sequences dedicated to the mapping of T1 and T2 relaxation times. Their variations within the tissue are linked to the presence of different water compartments defined by a specific organization of the tissue at the cell scale. Measuring these parameters can help, therefore, to better characterize the brain microstructure. The dMRI, on the other hand, explores the brownian motion of water molecules in the brain tissue, where the water molecules' movement is constrained by natural barriers, such as cell membranes. Thus, the information on their displacement carried by the dMRI signal gives access to the underlying cyto-architecture. Combination of these two modalities is, therefore, a promising way to probe the brain tissue microstructure. The main goal of the present thesis is to set up the methodology to study the microstructure of the white matter of the human brain in vivo. The first part includes the acquisition of a unique MRI database of 79 healthy subjects (the Archi/CONNECT), which includes anatomical high resolution data, relaxometry data, diffusion-weighted data at high spatio-angular resolution and functional data. This database has allowed us to build the first atlas of the anatomical connectivity of the healthy brain through the automatic segmentation of the major white matter bundles, providing an appropriate anatomical reference for the white matter to study individually the quantitative parameters along each fascicle, characterizing its microstructure organization. Emphasis was placed on the construction of the first atlas of the T1/T2 profiles along the major white matter pathways. The profiles of the T1 and T2 relaxation times were then correlated to the quantitative profiles computed from the diffusion MRI data (fractional anisotropy, radial and longitudinal diffusivities, apparent diffusion coefficient

  15. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    Science.gov (United States)

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-04-19

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity

  16. Diffusion imaging and tractography of congenital brain malformations

    International Nuclear Information System (INIS)

    Wahl, Michael; Barkovich, A.J.; Mukherjee, Pratik

    2010-01-01

    Diffusion imaging is an MRI modality that measures the microscopic molecular motion of water in order to investigate white matter microstructure. The modality has been used extensively in recent years to investigate the neuroanatomical basis of congenital brain malformations. We review the basic principles of diffusion imaging and of specific techniques, including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI). We show how DTI and HARDI, and their application to fiber tractography, has elucidated the aberrant connectivity underlying a number of congenital brain malformations. Finally, we discuss potential uses for diffusion imaging of developmental disorders in the clinical and research realms. (orig.)

  17. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  18. Joint brain connectivity estimation from diffusion and functional MRI data

    Science.gov (United States)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  19. Connectome imaging for mapping human brain pathways.

    Science.gov (United States)

    Shi, Y; Toga, A W

    2017-09-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.

  20. New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours

    International Nuclear Information System (INIS)

    Rossi, Andrea; Gandolfo, Carlo; Morana, Giovanni; Severino, Mariasavina; Garre, Maria Luisa; Cama, Armando

    2010-01-01

    While MRI has been instrumental in significantly improving care in children harbouring brain tumours, conventional sequences lack information regarding functional parameters including cellularity, haemodynamics and metabolism. Advanced MR imaging modalities, such as diffusion (including diffusion tensor imaging and fibre tractography), perfusion and spectroscopy have significantly improved our understanding of the physiopathology of brain tumours and have provided invaluable additional information for treatment planning and monitoring of treatment results. The contribution of these methods to the characterization of brain neoplasms in children is the focus of the present manuscript. (orig.)

  1. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  2. MR imaging evidence of anisotropic diffusion in the cat brain

    International Nuclear Information System (INIS)

    Moseley, M.E.; Mintorovich, J.; Cohen, Y.; Chilevitt, L.; Tsuruda, J.; Norman, D.; Weinstein, P.

    1989-01-01

    This paper discusses a study of diffusion behavior of brain water in the cat. Diffusion-weighted images, acquired with large gradient b values of 1,000-2,000 sec/mm 2 , showed no clear evidence of anisotropic water diffusion in either gray matter or basal ganglia. Large directional differences in image intensities and diffusion values were observed in cortical and deep white matter. Faster diffusion was sen when the direction of the applied diffusion gradient was parallel to the orientation of the white matter. Diffusion perpendicular to the gradient direction was significantly lower. This effect was proportional to gradient duration and strength and was seen in both pre- and immediate post-mortem images in all axial, sagittal, and coronal images

  3. Diffusion Weighted Imaging of the Neonatal Brain

    NARCIS (Netherlands)

    J. Dudink (Jeroen)

    2010-01-01

    textabstractAlthough in the last decades advances in fetal and neonatal medicine have reduced mortality in neonatal intensive care units in the Western world, the morbidity due to brain injury remains high. Patterns of neonatal brain injury can be roughly divided in (1) term and (2) preterm

  4. Analysis of the human brain in primary progressive multiple sclerosis with mapping of the spatial distributions using H-1 MR spectroscopy and diffusion tensor imaging

    NARCIS (Netherlands)

    Sijens, PE; Irwan, R; Potze, JH; Mostert, JP; De Keyser, J; Oudkerk, M

    Primary progressive multiple sclerosis (ppMS; n=4) patients and controls (n=4) were examined by 1H magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in order to map choline (Cho), creatine and N-acetylaspartate (NAA), the fractional anisotropy (FA) and the apparent diffusion

  5. Differential diagnostic value of diffusion weighted imaging on brain abscess and necrotic or cystic brain tumors

    International Nuclear Information System (INIS)

    Zhang Xiaoya; Yin Jie; Wang Kunpeng; Zhang Jiandang; Liang Biling

    2009-01-01

    Objective: To investigate the value of diffusion weighted imaging (DWI)on brain abscess and necrotic or cystic brain tumors. Methods: 27 cases with brain abscesses and 33 cases with necrotic or cystic brain tumors (gliomas or metastases) were performed conventional MRI and DWI. Apparent diffusion coefficient (ADC) of region of interest (ROI) was measured and statistically tested. Sensitivity and specificity were calculated and compared with conventional MR and DWI. Results: Hyperintensity signal was seen on most brain abscesses. All necrotic or cystic brain tumors showed hypointensity signal on DWI. There was statistical significance on ADC of them. The sensitivity and specificity of conventional MRI was lower than that of DWI. Conclusion: DWI and ADC were useful in distinguishing brain abscessed from necrotic or cystic brain tumors, which was important in addition to conventional MRI. (authors)

  6. The challenge of mapping the human connectome based on diffusion tractography

    NARCIS (Netherlands)

    Maier-Hein, Klaus H; Neher, Peter F; Houde, Jean-Christophe; Côté, Marc-Alexandre; Garyfallidis, Eleftherios; Zhong, Jidan; Chamberland, Maxime; Yeh, Fang-Cheng; Lin, Ying-Chia; Ji, Qing; Reddick, Wilburn E; Glass, John O; Chen, David Qixiang; Feng, Yuanjing; Gao, Chengfeng; Wu, Ye; Ma, Jieyan; Renjie, H; Li, Qiang; Westin, Carl Fredrik; Deslauriers-Gauthier, Samuel; González, J Omar Ocegueda; Paquette, Michael; St-Jean, Samuel; Girard, Gabriel; Rheault, François; Sidhu, Jasmeen; Tax, Chantal M.W.; Guo, Fenghua; Mesri, Hamed Y.; Dávid, Szabolcs; Froeling, Martijn; Heemskerk, Anneriet M.; Leemans, Alexander; Boré, Arnaud; Pinsard, Basile; Bedetti, Christophe; Desrosiers, Matthieu; Brambati, Simona; Doyon, Julien; Sarica, Alessia; Vasta, Roberta; Cerasa, Antonio; Quattrone, Aldo; Yeatman, Jason; Khan, Ali R.; Hodges, Wes; Alexander, Simon; Romascano, David; Barakovic, Muhamed; Auría, Anna; Esteban, Oscar; Lemkaddem, Alia; Thiran, Jean-Philippe; Cetingul, H Ertan; Odry, Benjamin L; Mailhe, Boris; Nadar, Mariappan S; Pizzagalli, Fabrizio; Prasad, Gautam; Villalon-Reina, Julio E; Galvis, Justin; Thompson, Paul M.; Requejo, Francisco De Santiago; Laguna, Pedro Luque; Lacerda, Luis Miguel; Barrett, Rachel; Dell'Acqua, Flavio; Catani, Marco; Petit, Laurent; Caruyer, Emmanuel; Daducci, Alessandro; Dyrby, Tim B; Holland-Letz, Tim; Hilgetag, Claus C.; Stieltjes, Bram; Descoteaux, Maxime

    2017-01-01

    Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international

  7. The challenge of mapping the human connectome based on diffusion tractography

    DEFF Research Database (Denmark)

    Maier-Hein, Klaus H.; Neher, Peter F.; Houde, Jean-Christophe

    2017-01-01

    Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tra...

  8. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...... cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...

  9. Quantifying brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Novikov, Dmitry S.; Jespersen, Sune N.; Kiselev, Valerij G.

    2016-01-01

    the potential to quantify the relevant length scales for neuronal tissue, such as the packing correlation length for neuronal fibers, the degree of neuronal beading, and compartment sizes. The second avenue corresponds to the long-time limit, when the observed signal can be approximated as a sum of multiple non......-exchanging anisotropic Gaussian components. Here the challenge lies in parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding techniques, able to access information not contained in the conventional diffusion propagator. We conclude with our outlook...... on the future research directions which can open exciting possibilities for developing markers of pathology and development based on methods of studying mesoscopic transport in disordered systems....

  10. Increased self-diffusion of brain water in normal aging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Henriksen, O

    1994-01-01

    With magnetic resonance (MR) imaging, brain water self-diffusion was measured in 17 healthy volunteers 22-76 (mean, 44.6) years old. The calculated values for the apparent diffusion coefficients (ADCs) ranged from 0.58 x 10(-9) to 1.23 x 10(-9) m2/sec in cerebral white matter. A significant...... by an increase in the extracellular volume due to age-dependent neuronal degeneration or to changes in myelination. These findings have implications for future clinical investigations with diffusion MR imaging techniques in patients with neurologic diseases, and stress the importance of having an age...

  11. Diffusion of protein through the human cornea.

    Science.gov (United States)

    Charalel, Resmi A; Engberg, Kristin; Noolandi, Jaan; Cochran, Jennifer R; Frank, Curtis; Ta, Christopher N

    2012-01-01

    To determine the rate of diffusion of myoglobin and bovine serum albumin (BSA) through the human cornea. These small proteins have hydrodynamic diameters of approximately 4.4 and 7.2 nm, and molecular weights of 16.7 and 66 kDa, for myoglobin and BSA, respectively. Diffusion coefficients were measured using a diffusion chamber where the protein of interest and balanced salt solution were in different chambers separated by an ex vivo human cornea. Protein concentrations in the balanced salt solution chamber were measured over time. Diffusion coefficients were calculated using equations derived from Fick's law and conservation of mass in a closed system. Our experiments demonstrate that the diffusion coefficient of myoglobin is 5.5 ± 0.9 × 10(-8) cm(2)/s (n = 8; SD = 1.3 × 10(-8) cm(2)/s; 95% CI: 4.6 × 10(-8) to 6.4 × 10(-8) cm(2)/s) and the diffusion coefficient of BSA is 3.1 ± 1.0 × 10(-8) cm(2)/s (n = 8; SD = 1.4 × 10(-8) cm(2)/s; 95% CI: 2.1 × 10(-8) to 4.1 × 10(-8) cm(2)/s). Our study suggests that molecules as large as 7.2 nm may be able to passively diffuse through the human cornea. With applications in pharmacotherapy and the development of an artificial cornea, further experiments are warranted to fully understand the limits of human corneal diffusion and its clinical relevance. Copyright © 2012 S. Karger AG, Basel.

  12. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  13. Diffusion Tensor Tractography Imaging in a Case of Acute Brain Stem Infarct

    Directory of Open Access Journals (Sweden)

    Nilgül Yardımcı

    2009-03-01

    Full Text Available Diffusion tensor tractography enables graphical reconstruction of the white matter pathways in the brain and quantitative study of white matter integrity. With this method virtual dissection of the living human brain can be performed. This technique has many potential clinical applications in neurological disorders, including the investigation of stroke. We present tractography findings of a patient that had an acute ischemic infarct in the brain stem. We aimed to report the disintegration of the white matter tracts at the infarct location in vivo, as well as the associated clinical symptoms. The current use of tractography in neurological disorders shows that it has the potential to improve our understanding of the damage and recovery process in diseases of the brain and spinal cord. From a clinical point of view tractography might be used to test new hypotheses, and to provide important new insights into the organization of the brain and the effects of brain disorders

  14. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  15. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  16. Why did humans develop a large brain?

    OpenAIRE

    Muscat Baron, Yves

    2012-01-01

    "Of all animals, man has the largest brain in proportion to his size"- Aristotle. Dr Yves Muscat Baron shares his theory on how humans evolved large brains. The theory outlines how gravity could have helped humans develop a large brain- the author has named the theory 'The Gravitational Vascular Theory'. http://www.um.edu.mt/think/why-did-humans-develop-a-large-brain/

  17. Diffusion-weighted MR and apparent diffusion coefficient in the evaluation of severe brain injury

    International Nuclear Information System (INIS)

    Nakahara, M.; Ericson, K.; Bellander, B.M.

    2001-01-01

    Purpose: To study apparent diffusion coefficient (ADC) maps in severely brain-injured patients. Material and Methods: Four deeply comatose patients with severe brain injury were investigated with single-shot, diffusion-weighted, spin-echo echo planar imaging. The tetrahedral diffusion gradient configuration and four iterations of a set of b-values (one time of 0 mm2/s, and four times of 1000 mm2/s) were used to create isotropic ADC maps with high signal-to-noise ratio. ADC values of gray and white matter were compared among patients and 4 reference subjects. Results: one patient was diagnosed as clinically brain dead after the MR examination. The patient's ADC values of gray and white matter were significantly lower than those of 3 other brain-injured patients. In addition the ADC value of white matter was significantly lower than that of gray matter. Conclusion: The patient with fatal outcome shortly after MR examination differed significantly from other patients with severe brain injury but non-fatal outcome, with regard to ADC values in gray and white matter. This might indicate a prognostic value of ADC maps in the evaluation of traumatic brain injury

  18. Phosphatidylserine and the human brain.

    Science.gov (United States)

    Glade, Michael J; Smith, Kyl

    2015-06-01

    The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Iodine 123-antipyrine. A diffusible tracer for brain exploration

    International Nuclear Information System (INIS)

    Dantonel-Mathieu, Evelyne.

    1978-09-01

    Iodine 123-labelled iodoantipyrine is a liposoluble diffusible tracer which crosses the blood-brain barrier intact. Its build-up in brain tissue is proportional to the regional blood flow. Its behavior was studied in undervascularised brain lesions and in cases where research with traditional radioactive tracers (99mTc and its different vectors for example) has proved limited. Because of the great diffusibility of iodoantipyrine a brain parenchyma image is obtained within minutes after its injection, and this by the use of a non-invasive technique and under good gamma-camera exploration conditions. 81 brain explorations including 11 standards have been carried out on subjects averaging 51,2 years old; these examinations took place in three nuclear medicine centres. The 123 I iodoantipyrine used in each nuclear medicine centre is supplied by the CEA. Iodoantipyrine is labelled with a good yield (>98%) checked by chromatography by means of a CEA kit. After intraveinous injection of 4 to 6 mCi iodine-123 iodoantipyrine, a dynamic study (from 0 to 60 seconds) of the tracer passage in the brain tissue may be followed by static images taken in the next minutes according to a standard procedure. The table of results shows the major interest of this tracer for the exploration of vascular accidents with ischemic lesions, especially in the early phase of the accident. The lesion appears as a hypoactive zone and this lack of perfusion lasts for some minutes after the injection [fr

  20. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  1. Analysis of the human brain in primary progressive multiple sclerosis with mapping of the spatial distributions using 1H MR spectroscopy and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Sijens, Paul E.; Irwan, Roy; Potze, Jan Hendrik; Oudkerk, Matthijs; Mostert, Jop P.; Keyser, Jacques de

    2005-01-01

    Primary progressive multiple sclerosis (ppMS; n=4) patients and controls (n=4) were examined by 1H magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in order to map choline (Cho), creatine and N-acetylaspartate (NAA), the fractional anisotropy (FA) and the apparent diffusion constant (ADC). After chemical shift imaging (point-resolved spectroscopy, repetition time/echo time 1,500 ms/135 ms) of a supraventricular volume of interest of 8 x 8 x 2 cm 3 (64 voxels) MRS peak areas were matched to the results of DTI for the corresponding volume elements. Mean FA and NAA values were reduced in the ppMS patients (P<0.01, both) and the ADC increased (P<0.02). The spatial distribution of NAA showed strong correlation to ADC in both ppMS patients and controls (r =-0.74 and r= -0.70; P<0.00001, both), and weaker correlations to FA (r=0.49 and r=0.41; P<0.00001, all). FA and ADC also correlated significantly with Cho in patients and controls (P<0.00001, all). The relationship of Cho and NAA to the ADC and the FA and thus to the content of neuronal structures suggests that these metabolite signals essentially originate from axons (NAA) and the myelin sheath (Cho). This is of interest in view of previous reports in which Cho increases were associated with demyelination and the subsequent breakdown of neurons. (orig.)

  2. Tuberous sclerosis: diffusion MRI findings in the brain

    International Nuclear Information System (INIS)

    Sener, R.N.

    2002-01-01

    Diffusion MRI has mainly been used for detection of acute ischemia, and for distinction of cytotoxic and vasogenic edema. We applied diffusion MRI in patients with tuberous sclerosis in order to evaluate diffusion imaging characteristics of parenchymal changes. Five children with known tuberous sclerosis were included in this study. The MRI examinations were performed on a 1.5-T MR unit. Diffusion MRI was obtained using the echo-planar imaging sequence. Apparent diffusion coefficient (ADC) values from the abnormal brain parenchyma were calculated directly from automatically generated ADC maps. Seven normal children were available for comparison. In this control group the mean ADC value of the normal white matter was 0.84±0.12 x 10 -3 mm 2 /s. In tuberous sclerosis patients the mean ADC value of the white matter hamartomas (n=20) was apparently high (1.52±0.24 x 10 -3 mm 2 /s) compared with that of normal white matter. The ADC value of calcified hamartomas was ''zero''. The ADC value within a giant cell tumor was 0.89 x 10 -3 mm 2 /s, similar to that of normal cerebral white matter. The ADC maps were superior to b=1000 s/mm 2 (true diffusion) images with respect to lesion evaluation, and they provided mathematical information on tissue integrity. With respect to detection of the exact numbers and sizes of the parenchymal hamartomas fluid-attenuated inversion recovery images were superior to ADC maps. It is believed that diffusion MRI can be useful in evaluation of various parenchymal changes associated with tuberous sclerosis. Further studies on tuberous sclerosis, and on various brain lesions, would provide increasing data on this relatively new MRI sequence. (orig.)

  3. Anisotropic diffusion within human white matter

    International Nuclear Information System (INIS)

    Chenevert, T.L.; Brunberg, J.A.; Pipe, J.G.

    1990-01-01

    This paper reports on measurements performed to assess the impact of fiber orientation on the apparent diffusion coefficient of human white matter in vivo. Orthogonal section selection pulses and strong motion sensitization gradient pulses were used for localized diffusion measurement along an anteroposteriorly oriented 1 x 1 cm tissue column in the left cerebral hemisphere. This region was selected since white matter fiber orientations are reasonably well defined. Independent acquisitions with motion sensitivity along anteroposterior and right-left directions allowed study of diffusion anisotropy. Motion artifacts were minimized by magnitude summation after one-dimensional Fourier transform of frequency-encoded echoes; consequently, cardiac gating was not required. Five normal volunteers were studied on a 1.5-T clinical MR system

  4. Novel region of interest interrogation technique for diffusion tensor imaging analysis in the canine brain.

    Science.gov (United States)

    Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M

    2017-08-01

    Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.

  5. Quantifying anisotropy and fiber orientation in human brain histological sections

    Directory of Open Access Journals (Sweden)

    Matthew D Budde

    2013-02-01

    Full Text Available Diffusion weighted imaging (DWI has provided unparalleled insight into the microscopic structure and organization of the central nervous system. Diffusion tensor imaging (DTI and other models of the diffusion MRI signal extract microstructural properties of tissues with relevance to the normal and injured brain. Despite the prevalence of such techniques and applications, accurate and large-scale validation has proven difficult, particularly in the human brain. In this report, human brain sections obtained from a digital public brain bank were employed to quantify anisotropy and fiber orientation using structure tensor analysis. The derived maps depict the intricate complexity of white matter fibers at a resolution not attainable with current DWI experiments. Moreover, the effects of multiple fiber bundles (i.e. crossing fibers and intravoxel fiber dispersion were demonstrated. Examination of the cortex and hippocampal regions validated specific features of previous in vivo and ex vivo DTI studies of the human brain. Despite the limitation to two dimensions, the resulting images provide a unique depiction of white matter organization at resolutions currently unattainable with DWI. The method of analysis may be used to validate tissue properties derived from DTI and alternative models of the diffusion signal.

  6. Love songs, bird brains and diffusion tensor imaging.

    Science.gov (United States)

    De Groof, Geert; Van der Linden, Annemie

    2010-08-01

    The song control system of songbirds displays a remarkable seasonal neuroplasticity in species in which song output also changes seasonally. Thus far, this song control system has been extensively analyzed by histological and electrophysiological methods. However, these approaches do not provide a global view of the brain and/or do not allow repeated measurements, which are necessary to establish causal correlations between alterations in neural substrate and behavior. Research has primarily been focused on the song nuclei themselves, largely neglecting their interconnections and other brain regions involved in seasonally changing behavior. In this review, we introduce and explore the song control system of songbirds as a natural model for brain plasticity. At the same time, we point out the added value of the songbird brain model for in vivo diffusion tensor techniques and its derivatives. A compilation of the diffusion tensor imaging (DTI) data obtained thus far in this system demonstrates the usefulness of this in vivo method for studying brain plasticity. In particular, it is shown to be a perfect tool for long-term studies of morphological and cellular changes of specific brain circuits in different endocrine/photoperiod conditions. The method has been successfully applied to obtain quantitative measurements of seasonal changes of fiber tracts and nuclei from the song control system. In addition, outside the song control system, changes have been discerned in the optic chiasm and in an interhemispheric connection. DTI allows the detection of seasonal changes in a region analogous to the mammalian secondary auditory cortex and in regions of the 'social behavior network', an interconnected group of structures that controls multiple social behaviors, including aggression and courtship. DTI allows the demonstration, for the first time, that the songbird brain in its entirety exhibits an extreme seasonal plasticity which is not merely limited to the song control

  7. Imaging brain microstructure with diffusion MRI: practicality and applications.

    Science.gov (United States)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui

    2017-11-29

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  8. A fractional motion diffusion model for grading pediatric brain tumors.

    Science.gov (United States)

    Karaman, M Muge; Wang, He; Sui, Yi; Engelhard, Herbert H; Li, Yuhua; Zhou, Xiaohong Joe

    2016-01-01

    To demonstrate the feasibility of a novel fractional motion (FM) diffusion model for distinguishing low- versus high-grade pediatric brain tumors; and to investigate its possible advantage over apparent diffusion coefficient (ADC) and/or a previously reported continuous-time random-walk (CTRW) diffusion model. With approval from the institutional review board and written informed consents from the legal guardians of all participating patients, this study involved 70 children with histopathologically-proven brain tumors (30 low-grade and 40 high-grade). Multi- b -value diffusion images were acquired and analyzed using the FM, CTRW, and mono-exponential diffusion models. The FM parameters, D fm , φ , ψ (non-Gaussian diffusion statistical measures), and the CTRW parameters, D m , α , β (non-Gaussian temporal and spatial diffusion heterogeneity measures) were compared between the low- and high-grade tumor groups by using a Mann-Whitney-Wilcoxon U test. The performance of the FM model for differentiating between low- and high-grade tumors was evaluated and compared with that of the CTRW and the mono-exponential models using a receiver operating characteristic (ROC) analysis. The FM parameters were significantly lower ( p  < 0.0001) in the high-grade ( D fm : 0.81 ± 0.26, φ : 1.40 ± 0.10, ψ : 0.42 ± 0.11) than in the low-grade ( D fm : 1.52 ± 0.52, φ : 1.64 ± 0.13, ψ : 0.67 ± 0.13) tumor groups. The ROC analysis showed that the FM parameters offered better specificity (88% versus 73%), sensitivity (90% versus 82%), accuracy (88% versus 78%), and area under the curve (AUC, 93% versus 80%) in discriminating tumor malignancy compared to the conventional ADC. The performance of the FM model was similar to that of the CTRW model. Similar to the CTRW model, the FM model can improve differentiation between low- and high-grade pediatric brain tumors over ADC.

  9. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi; Ishii, Kiyoshi; Onuma, Takehide.

    1997-01-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  10. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  11. Sexual differences of human brain

    Directory of Open Access Journals (Sweden)

    Masoud Pezeshki Rad

    2014-04-01

    Full Text Available During the last decades there has been an increasing interest in studying the differences between males and females. These differences extend from behavioral to cognitive to micro- and macro- neuro-anatomical aspects of human biology. There have been many methods to evaluate these differences and explain their determinants. The most studied cause of this dimorphism is the prenatal sex hormones and their organizational effect on brain and behavior. However, there have been new and recent attentions to hormone's activational influences in puberty and also the effects of genomic imprinting. In this paper, we reviewed the sex differences of brain, the evidences for possible determinants of these differences and also the methods that have been used to discover them. We reviewed the most conspicuous findings with specific attention to macro-anatomical differences based on Magnetic Resonance Imaging (MRI data. We finally reviewed the findings and the many opportunities for future studies.

  12. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    Science.gov (United States)

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both

  13. Human brain lesion-deficit inference remapped.

    Science.gov (United States)

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint; Nachev, Parashkev

    2014-09-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  14. Brain mechanisms underlying human communication

    Directory of Open Access Journals (Sweden)

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  15. Brain mechanisms underlying human communication.

    Science.gov (United States)

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  16. Human movement is both diffusive and directed.

    Directory of Open Access Journals (Sweden)

    Mark Padgham

    Full Text Available Understanding the influence of the built environment on human movement requires quantifying spatial structure in a general sense. Because of the difficulty of this task, studies of movement dynamics often ignore spatial heterogeneity and treat movement through journey lengths or distances alone. This study analyses public bicycle data from central London to reveal that, although journey distances, directions, and frequencies of occurrence are spatially variable, their relative spatial patterns remain largely constant, suggesting the influence of a fixed spatial template. A method is presented to describe this underlying space in terms of the relative orientation of movements toward, away from, and around locations of geographical or cultural significance. This produces two fields: one of convergence and one of divergence, which are able to accurately reconstruct the observed spatial variations in movement. These two fields also reveal categorical distinctions between shorter journeys merely serving diffusion away from significant locations, and longer journeys intentionally serving transport between spatially distinct centres of collective importance. Collective patterns of human movement are thus revealed to arise from a combination of both diffusive and directed movement, with aggregate statistics such as mean travel distances primarily determined by relative numbers of these two kinds of journeys.

  17. Diffusion-weighted imaging in normal fetal brain maturation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F. [University Children' s Hospital UKBB, Department of Pediatric Radiology, Basel (Switzerland); Confort-Gouny, S.; Le Fur, Y.; Viout, P.; Cozzone, P. [UMR-CNRS 6612, Faculte de Medecine, Universite de la Mediterranee, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Bennathan, M.; Chapon, F.; Fogliarini, C.; Girard, N. [Universite de la Mediterranee, Department of Neuroradiology AP-HM Timone, Marseille (France)

    2007-09-15

    Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 {+-} 0.05 mm{sup 2}/s) were higher compared with the cerebellar hemisphere (1.25 {+-} 0.06 mm{sup 2}/s) and lowest in the pons (1.11 {+-} 0.05 mm{sup 2}/s). Thalamus and BG showed intermediate values (1.25 {+-} 0.04 mm{sup 2}/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies. (orig.)

  18. Relationship between CT findings and prognosis in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Akihito; Kuwana, Nobumasa; Mochimatsu, Yasuhiko; Fujino, Hideyo; Tokoro, Kazuhiko [Yokohama Minami Kyosai Hospital, Kanagawa (Japan)

    1984-12-01

    Types of diffuse brain injury (DBI) were classified based on a study of fifty patients with acute, severe head injuries. This study focused on findings of computed tomography (CT) and outcomes of the patients. The level of consciousness was estimated by the Glasgow Coma Scale; greater than 8 in 28 cases; 8 or less in 22 cases. The overall mortality rate was 28%, however the rate ranged from 8 to 67%, depending on the type of DBI. CT findings of DBI within 24 hours after head injury were classified into 5 type: diffuse cerebral swelling (DCS), isodense hemispheric swelling (IHS), deep-seated brain injury (DSI), subarachnoid hemorrhage (SAH) and normal findings. DSI demonstrated the highest mortality rate (67%), and IHS was the second (50%). However, there are many pediatric cases with excellent outcomes. Although both DCS and IHS occurred frequently in children, it was considered that these two conditions should be distinguished, because of the existence of some differences in the clinical course of the two. There were only 7 cases of SAH alone, but SAH was the most frequent associated finding in DBI, existing in 50% of 50 cases. SAH per se could not be regarded as a poor prognostic factor. It is the authors' impression that DBI without coup or contre-coup injuries can be readily diagnosed by CT scan and that DBI is an important clinical factor in the closed head injury cases.

  19. Hemorrhagic brain metastases with high signal intensity on diffusion-weighted MR images. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Mori, H.; Abe, O.; Aoki, S.; Masumoto, T.; Yoshikawa, T.; Kunimatsu, A; Hayashi, N.; Ohtomo, K. [Graduate School of Medicine, Univ. of Tokyo (Japan). Dept. of Radiology

    2002-11-01

    Diffusion-weighted MR imaging has been applicable to the differential diagnosis of abscesses and necrotic or cystic brain tumors. However, restricted water diffusion is not necessarily specific for brain abscess. We describe ring-enhancing metastases of lung carcinoma characterized by high signal intensity on diffusion-weighted MR images. The signal pattern probably reflected intralesional hemorrhage. The present report adds to the growing literature regarding the differential diagnosis of ring-enhancing brain lesions.

  20. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    Science.gov (United States)

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  1. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy.

    Science.gov (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.

  2. Characterizing Brain Structures and Remodeling after TBI Based on Information Content, Diffusion Entropy

    Science.gov (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P.; Zhang, Zheng Gang; Lehman, Norman L.; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    Background To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Methods Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Results Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Conclusions Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease

  3. Lipid transport and human brain development.

    Science.gov (United States)

    Betsholtz, Christer

    2015-07-01

    How the human brain rapidly builds up its lipid content during brain growth and maintains its lipids in adulthood has remained elusive. Two new studies show that inactivating mutations in MFSD2A, known to be expressed specifically at the blood-brain barrier, lead to microcephaly, thereby offering a simple and surprising solution to an old enigma.

  4. The intrinsic geometry of the human brain connectome.

    Science.gov (United States)

    Ye, Allen Q; Ajilore, Olusola A; Conte, Giorgio; GadElkarim, Johnson; Thomas-Ramos, Galen; Zhan, Liang; Yang, Shaolin; Kumar, Anand; Magin, Richard L; G Forbes, Angus; Leow, Alex D

    2015-12-01

    This paper describes novel methods for constructing the intrinsic geometry of the human brain connectome using dimensionality-reduction techniques. We posit that the high-dimensional, complex geometry that represents this intrinsic topology can be mathematically embedded into lower dimensions using coupling patterns encoded in the corresponding brain connectivity graphs. We tested both linear and nonlinear dimensionality-reduction techniques using the diffusion-weighted structural connectome data acquired from a sample of healthy subjects. Results supported the nonlinearity of brain connectivity data, as linear reduction techniques such as the multidimensional scaling yielded inferior lower-dimensional embeddings. To further validate our results, we demonstrated that for tractography-derived structural connectome more influential regions such as rich-club members of the brain are more centrally mapped or embedded. Further, abnormal brain connectivity can be visually understood by inspecting the altered geometry of these three-dimensional (3D) embeddings that represent the topology of the human brain, as illustrated using simulated lesion studies of both targeted and random removal. Last, in order to visualize brain's intrinsic topology we have developed software that is compatible with virtual reality technologies, thus allowing researchers to collaboratively and interactively explore and manipulate brain connectome data.

  5. Brain Activity and Human Unilateral Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  6. Development of human brain structural networks through infancy and childhood.

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Development of Human Brain Structural Networks Through Infancy and Childhood

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  8. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  9. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  10. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis.

    Science.gov (United States)

    Marami, Bahram; Mohseni Salehi, Seyed Sadegh; Afacan, Onur; Scherrer, Benoit; Rollins, Caitlin K; Yang, Edward; Estroff, Judy A; Warfield, Simon K; Gholipour, Ali

    2017-08-01

    Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average

  11. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  12. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  13. Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms

    International Nuclear Information System (INIS)

    Bull, Jonathan G.; Clark, Christopher A.; Saunders, Dawn E.

    2012-01-01

    To determine if histograms of apparent diffusion coefficients (ADC) can be used to differentiate paediatric brain tumours. Imaging of histologically confirmed tumours with pre-operative ADC maps were reviewed (54 cases, 32 male, mean age 6.1 years; range 0.1-15.8 years) comprising 6 groups. Whole tumour ADC histograms were calculated; normalised for volume. Stepwise logistic regression analysis was used to differentiate tumour types using histogram metrics, initially for all groups and then for specific subsets. All 6 groups (5 dysembryoplastic neuroectodermal tumours, 22 primitive neuroectodermal tumours (PNET), 5 ependymomas, 7 choroid plexus papillomas, 4 atypical teratoid rhabdoid tumours (ATRT) and 9 juvenile pilocytic astrocytomas (JPA)) were compared. 74% (40/54) were correctly classified using logistic regression of ADC histogram parameters. In the analysis of posterior fossa tumours, 80% of ependymomas, 100% of astrocytomas and 94% of PNET-medulloblastoma were classified correctly. All PNETs were discriminated from ATRTs (22 PNET and 4 supratentorial ATRTs) (100%). ADC histograms are useful in differentiating paediatric brain tumours, in particular, the common posterior fossa tumours of childhood. PNETs were differentiated from supratentorial ATRTs, in all cases, which has important implications in terms of clinical management. (orig.)

  14. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    Science.gov (United States)

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  15. Diffusion tensor imaging of brain in relapsing neuromyelitis optica

    International Nuclear Information System (INIS)

    Yu Chunshui; Li Kuncheng; Qin Wen; Lin Fuchun; Jiang Tianzi

    2007-01-01

    Objective: To investigate the presence of occult brain tissue damage in patients with relapsing neuromyelitis optica (RNMO) and its possible mechanism by using diffusion tensor imaging (DTI). Methods: DTI scans were performed in 16 patients with RNMO and 16 sex- and age-matched healthy controls. Histogram analysis of mean diffusivity (MD) and fractional anisotropy (FA) was performed in brain tissue (BT), white matter (WM) and gray matter (GM) to detect the presence of occult brain tissue damage in RNMO patients. Region of interest (ROI) analysis of MD and FA was also performed in 6 dedicated regions with or without direct connection with spinal cord or optic nerve to determine the relationship between occult brain tissue damage and the damage of spinal cord and optic nerve. Results Patients with RNMO had a significantly higher average MD of the BT [RNMO (0.95 ± 0.02) x 10 -3 mm 2 /s, controls (0.91 ± 0.03) x 10 -3 mm 2 /s, t=3.940, P -3 mm 2 /s, controls(0.80 ± 0.02) x 10 -3 mm 2 /s, t=3.117, P=0.004] an.d GM [RNMO (1.06 ± 0.04) x 10 -3 mm 2 /s, controls (0.88 ± 0.05) x 10 -3 mm 2 /s, t=4.031, P -3 mm 2 /s, controls (0.81 ± 0.02) x 10 -3 mm 2 /s, t=4.373, P -3 mm 2 /s, controls (1.11 ± 0.10) x 10 -3 mm 2 /s, t=4.260, P -3 mm 2 /s, controls (0.87 ± 0.05) x 10 -3 mm 2 /s, t4.391, P -3 mm 2 /s, controls (0.72 ± O.01) x 10 -3 mm 2 /s, t=4.683, P -3 mm 2 /s, controls (0.82+0.03) x 10-3 mm2/s, t = 4. 619, P -3 mm 2 /s, controls (0.73±0.03) x 10 -3 mm 2 /s, t =2.804, P=0.009 and splenium of corpus callosum: RNMO(0.77 ± 0.05) x 10 -3 mm 2 /s, controls (0.73 ± 0.04) x 10 -3 mm 2 /s, t=2.234, P=0.033] and FA [genu of corpus callosum: RNMO 0.82± 0.03 ,controls 0.82 ± 0.03, t=0.196, P=0.846 and splenium of corpus caltosum: RNMO 0.83±0.03, controls 0.83 ± 0.02, t=0.333, P=0.741] between RNMO patients and controls. Conclusion: RNMO patients have occult brain tissue damage, which might be related to the antegrade and retrograde degeneration secondary to lesions in

  16. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI.

    Science.gov (United States)

    Aggarwal, Manisha; Nauen, David W; Troncoso, Juan C; Mori, Susumu

    2015-01-15

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n=3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers-layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Male microchimerism in the human female brain.

    Directory of Open Access Journals (Sweden)

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  18. Diffusion-weighted MR of the brain: methodology and clinical applications

    International Nuclear Information System (INIS)

    Mascalchi, Mario; Filippi, Massimo; Floris, Roberto; Fonda, Claudio; Gasparotti, Roberto; Villari, Natale

    2005-01-01

    Clinical diffusion magnetic resonance (MR) imaging in humans started in the last decade with the demonstration of the capabilities of this technique of depicting the anatomy of the white matter fibre tracts in the brain. Two main approaches in terms of reconstruction and evaluation of the images obtained with application of diffusion sensitising gradients to an echo planar imaging sequence are possible. The first approach consists of reconstruction of images in which the effect of white matter anisotropy is averaged -know as the isotropic or diffusion weighted images, which are usually evaluated subjectively for possible areas of increased or decreased signal, reflecting restricted and facilitated diffusion, respectively. The second approach implies reconstruction of image maps of the apparent diffusion coefficient (ADC), in which the T2 weighting of the echo planar diffusion sequence is cancelled out, and their objective, i.e. numerical, evaluation with regions of interest or histogram analysis. This second approach enables a quantitative and reproducible assessment of the diffusion changes mot only in areas exhibiting signal abnormality in conventional MR images, but also in areas of normal signal. A further level of image post-processing requires the acquisition of images after application of sensitive gradients along at least 6 different spatial orientations and consists of computation of the diffusion tensor and reconstruction of maps of the mean diffusivity (D) and of the white matter anisotropic properties, usually in terms of fractional anisotropy (FA). Diffusion-weighted imaging is complementary to conventional MR imaging in the evaluation of the acute ischaemic stroke. The combination of diffusion and perfusion MR imaging has the potential of providing all the information necessary for the diagnosis and management of the individual patient with acute ischaemic stroke. Diffusion-weighted MR, in particular quantitative evaluation based on the diffusion

  19. Diffuse Optical Tomography for Brain Imaging: Continuous Wave Instrumentation and Linear Analysis Methods

    Science.gov (United States)

    Giacometti, Paolo; Diamond, Solomon G.

    Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.

  20. Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation.

    Science.gov (United States)

    Abe, Mitsunari; Fukuyama, Hidenao; Mima, Tatsuya

    2014-03-25

    Repetitive brain stimulation protocols induce plasticity in the stimulated site in brain slice models. Recent evidence from network models has indicated that additional plasticity-related changes occur in nonstimulated remote regions. Despite increasing use of brain stimulation protocols in experimental and clinical settings, the neural substrates underlying the additional effects in remote regions are unknown. Diffusion-weighted MRI (DWI) probes water diffusion and can be used to estimate morphological changes in cortical tissue that occur with the induction of plasticity. Using DWI techniques, we estimated morphological changes induced by application of repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1). We found that rTMS altered water diffusion in multiple regions including the left M1. Notably, the change in water diffusion was retained longest in the left M1 and remote regions that had a correlation of baseline fluctuations in water diffusion before rTMS. We conclude that synchronization of water diffusion at rest between stimulated and remote regions ensures retention of rTMS-induced changes in water diffusion in remote regions. Synchronized fluctuations in the morphology of cortical microstructures between stimulated and remote regions might identify networks that allow retention of plasticity-related morphological changes in multiple regions after brain stimulation protocols. These results increase our understanding of the effects of brain stimulation-induced plasticity on multiregional brain networks. DWI techniques could provide a tool to evaluate treatment effects of brain stimulation protocols in patients with brain disorders.

  1. Protein phosphorylation systems in postmortem human brain

    International Nuclear Information System (INIS)

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P.

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders

  2. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  3. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    Science.gov (United States)

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating brain structural changes during this early developmental period provides new insights into the complicated processes of both typical brain development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional gradients of maturation in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018. Published by Elsevier Inc.

  4. An introduction to human brain anatomy

    NARCIS (Netherlands)

    Forstmann, B.U.; Keuken, M.C.; Alkemade, A.; Forstmann, B.U.; Wagenmakers, E.-J.

    2015-01-01

    This tutorial chapter provides an overview of the human brain anatomy. Knowledge of brain anatomy is fundamental to our understanding of cognitive processes in health and disease; moreover, anatomical constraints are vital for neurocomputational models and can be important for psychological

  5. Diffusion tensor analysis with nuclear magnetic resonance in human central nervous system

    International Nuclear Information System (INIS)

    Nakayama, Naoki

    1998-01-01

    Nuclear magnetic resonance has been used to measure the diffusivity of water molecules. In central nervous system, anisotropic diffusion, which is characterized by apparent diffusion tensor D app ξ , is thought to be related to neuronal fiber tract orientation. For precise observation of anisotropic diffusion, it is needed to determine the diagonal and off-diagonal elements of D app ξ . Once D app ξ is estimated from a series of diffusion weighted images, a tissue's orthotropic principal axes and diffusivity of each direction are determined from eigenvalues and eigenvectors of D app ξ . There are several methods to represent anisotropic diffusion with D app ξ . Examples are diffusion ellipsoids constructed in each voxel depicting both these principal axes and the mean diffusion length in these directions, trace invariant values and its mapping image, largest eigenvalue, and ratio of largest eigenvalue to the other eigenvalue. In this study, the author investigated practical procedure to analyze diffusion tensor D app ξ using both of spin-echo end echo-planer diffusion weighted imagings with 3-tesla magnetic resonance machine in human brain. The ellipsoid representation provided particularly useful information about microanatomy including neuronal fiber tract orientation and molecular mobility reflective of microstructure. Furthermore, in the lesion of Wallerian degeneration, the loss of anisotropy of local apparent diffusion was observed. It is suggested that the function of axons can be observed via degree of anisotropy of apparent diffusion. Consequently, diffusion tensor analysis is expected to be a powerful, noninvasive method capable of quantitative and functional evaluation of the central nervous system. (author)

  6. Tolerances of the human brain to concussion.

    Science.gov (United States)

    1971-03-01

    The report reviews the pertinent literature and adds additional evidence indicating that the human brain may be able to tolerate head impact forces in the range of 300 to 400 g's without evidence of concussion or other detectable neurologic sequelae,...

  7. Ionising radiation and the developing human brain

    International Nuclear Information System (INIS)

    Schull, W.J.

    1991-01-01

    This article reviews the effects of radiation exposure of the developing human brain. Much of the evidence has come from the prenatally exposed in Hiroshima and Nagasaki. The effects on development age, mental retardation, head size, neuromuscular performance, intelligence tests, school performance and the occurrence of convulsions are discussed. Other topics covered include the biological nature of the damage to the brain, risk estimates in human and problems in radiation protection. (UK)

  8. Towards real-time diffuse optical tomography for imaging brain functions cooperated with Kalman estimator

    Science.gov (United States)

    Wang, Bingyuan; Zhang, Yao; Liu, Dongyuan; Ding, Xuemei; Dan, Mai; Pan, Tiantian; Wang, Yihan; Li, Jiao; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method to monitor the cerebral hemodynamic through the optical changes measured at the scalp surface. It has played a more and more important role in psychology and medical imaging communities. Real-time imaging of brain function using NIRS makes it possible to explore some sophisticated human brain functions unexplored before. Kalman estimator has been frequently used in combination with modified Beer-Lamber Law (MBLL) based optical topology (OT), for real-time brain function imaging. However, the spatial resolution of the OT is low, hampering the application of OT in exploring some complicated brain functions. In this paper, we develop a real-time imaging method combining diffuse optical tomography (DOT) and Kalman estimator, much improving the spatial resolution. Instead of only presenting one spatially distributed image indicating the changes of the absorption coefficients at each time point during the recording process, one real-time updated image using the Kalman estimator is provided. Its each voxel represents the amplitude of the hemodynamic response function (HRF) associated with this voxel. We evaluate this method using some simulation experiments, demonstrating that this method can obtain more reliable spatial resolution images. Furthermore, a statistical analysis is also conducted to help to decide whether a voxel in the field of view is activated or not.

  9. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  10. Sensitivity analysis of human brain structural network construction

    Directory of Open Access Journals (Sweden)

    Kuang Wei

    2017-12-01

    Full Text Available Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP, we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes. Diffusion tractography has been proven to be a promising noninvasive technique to study the network properties of the human brain. However, how various tractography and network construction parameters affect network properties has not been studied using a large cohort of high-quality data. We utilize data provided by the Human Connectome Project to characterize the changes to network properties induced by varying the brain parcellation atlas scales, the number of reconstructed tractography tracks, and the degree of grey

  11. Diffusion Capillary Phantom vs. Human Data: Outcomes for Reconstruction Methods Depend on Evaluation Medium

    Directory of Open Access Journals (Sweden)

    Sarah D. Lichenstein

    2016-09-01

    Full Text Available Purpose: Diffusion MRI provides a non-invasive way of estimating structural connectivity in the brain. Many studies have used diffusion phantoms as benchmarks to assess the performance of different tractography reconstruction algorithms and assumed that the results can be applied to in vivo studies. Here we examined whether quality metrics derived from a common, publically available, diffusion phantom can reliably predict tractography performance in human white matter tissue. Material and Methods: We compared estimates of fiber length and fiber crossing among a simple tensor model (diffusion tensor imaging, a more complicated model (ball-and-sticks and model-free (diffusion spectrum imaging, generalized q-sampling imaging reconstruction methods using a capillary phantom and in vivo human data (N=14. Results: Our analysis showed that evaluation outcomes differ depending on whether they were obtained from phantom or human data. Specifically, the diffusion phantom favored a more complicated model over a simple tensor model or model-free methods for resolving crossing fibers. On the other hand, the human studies showed the opposite pattern of results, with the model-free methods being more advantageous than model-based methods or simple tensor models. This performance difference was consistent across several metrics, including estimating fiber length and resolving fiber crossings in established white matter pathways. Conclusions: These findings indicate that the construction of current capillary diffusion phantoms tends to favor complicated reconstruction models over a simple tensor model or model-free methods, whereas the in vivo data tends to produce opposite results. This brings into question the previous phantom-based evaluation approaches and suggests that a more realistic phantom or simulation is necessary to accurately predict the relative performance of different tractography reconstruction methods. Acronyms: BSM: ball-and-sticks model; d

  12. Evaluation on therapeutic effect of de-compressive craniectomies for patients with diffuse brain swelling

    International Nuclear Information System (INIS)

    Xiao Sanchao; Zhang Changrong; Zuo Yi; Zhou Xiaowei; Li Jian

    2000-01-01

    Objective: To evaluate the therapeutic effect of de-compressive craniectomies in acute traumatic patients with diffuse brain swelling. Methods: 23 patients with acute posttraumatic diffuse brain swelling admitted and confirmed by X-CT were randomly treated by surgical de-compressive craniectomies (operative group). Their treated results were compared with those of another 11 patients treated conservatively (non-operative group) at the same period. Results: The mortality rate was similar in both operative and nonoperative groups. Conclusion: The de-compressive craniectomy operation has no value and not valid for treatment of acute posttraumatic diffuse brain swelling

  13. Imaging Appearance of Human Immunodeficiency Virus Encephalitis on the Diffusion Weighted Images: A Case Report

    International Nuclear Information System (INIS)

    Lim, Hun Cheol; Yu, In Kyu; Oh, Keon Se

    2011-01-01

    Imaging finding of human immunodeficiency virus (HIV) encephalitis contain bilateral, symmetric, patchy, or diffuse increased T2WI signal intensities in the basal ganglia, cerebellum, brainstem, and centrum semiovale. In particular, the centrum semiovale is most commonly involved. Most of the HIV encephalitis cases are accompanied by brain atrophy. No previous study has reported symmetric increased signal intensity at the bilateral centrum semiovale without brain atrophy on diffusion weighted images in HIV encephalitis patients. Here, we report a case of this. We suggest that radiologists should consider the possibility of HIV encephalitis if there are symmetric increases in signal intensity at the bilateral centrum semiovale on diffusion weighted images of patients with a history of HIV infection.

  14. Diffusion Parameters of the Extracellular Space in Human Gliomas

    Czech Academy of Sciences Publication Activity Database

    Vargová, L.; Homola, A.; Zámečník, J.; Tichý, M.; Beneš, V.; Syková, Eva

    2003-01-01

    Roč. 42, č. 1 (2003), s. 77-88 ISSN 0894-1491 R&D Projects: GA ČR GA309/00/1430 Institutional research plan: CEZ:AV0Z5039906; CEZ:MSM 111300004; CEZ:MZd 00000064203 Keywords : apparent diffusion coefficient * brain tumors Subject RIV: FH - Neurology Impact factor: 4.677, year: 2003

  15. The evolution of modern human brain shape.

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

  16. The evolution of modern human brain shape

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123

  17. Diffusion on Networks and Diffusion Weighted NMR of the Human Lung

    DEFF Research Database (Denmark)

    Buhl, Niels

    2011-01-01

    of the diffusion propagator to general properties of the underlying graph. Diffusion weighted NMR of the human lung with hyperpolarized noble gases, which over the last decade has been demonstrated to be a very promising way of detecting and quantifying lung diseases like emphysema, represent an obvious...... application of the above mentioned theory, given that the human lung consists of a large network of bifurcating tube like airways. 90-95% of the gas in a human lung resides in the ~30000 pulmonary acini, each of these consists of ~500 airways, which are connected as the edges in a binary tree. We model...... diffusion in the pulmonary acini as diffusion on metric graphs with this structure. The metric graph for each individual pulmonary acinus is embedded in three dimensional space via line segments. By considering an isotropic distribution of acini and a symmetric branching geometry for the line segments...

  18. Data quality in diffusion tensor imaging studies of the preterm brain : a systematic review

    NARCIS (Netherlands)

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, A; Lequin, Maarten H.; Dudink, Jeroen

    BACKGROUND: To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. OBJECTIVE: To review the literature to evaluate acquisition and processing

  19. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery

    NARCIS (Netherlands)

    Hoefnagels, Friso W. A.; de Witt Hamer, Philip C.; Pouwels, Petra J. W.; Barkhof, Frederik; Vandertop, W. Peter

    2017-01-01

    To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with

  20. Altered brain microstructure assessed by diffusion tensor imaging in patients with chronic pancreatitis

    DEFF Research Database (Denmark)

    Frøkjær, Jens Brøndum; Olesen, Søren Schou; Gram, Mikkel

    2011-01-01

    Objective In patients with painful chronic pancreatitis (CP) there is increasing evidence of abnormal pain processing in the central nervous system. Using magnetic resonance (MR) diffusion tensor imaging, brain microstructure in areas involved in processing of visceral pain was characterised...

  1. Changes of brain microstructure in patients with painful chronic pancreatitis assessed by diffusion tensor imaging

    DEFF Research Database (Denmark)

    Frøkjær, Jens Brøndum; Olesen, Søren Schou; Gram, Mikkel

    Objective In patients with painful chronic pancreatitis (CP) there is increasing evidence of abnormal pain processing in the central nervous system. Using magnetic resonance (MR) diffusion tensor imaging, brain microstructure in areas involved in processing of visceral pain was characterised...

  2. Anisotropic Diffusion based Brain MRI Segmentation and 3D Reconstruction

    OpenAIRE

    M. Arfan Jaffar; Sultan Zia; Ghaznafar Latif; AnwarM. Mirza; Irfan Mehmood; Naveed Ejaz; Sung Wook Baik

    2012-01-01

    In medical field visualization of the organs is very imperative for accurate diagnosis and treatment of any disease. Brain tumor diagnosis and surgery also required impressive 3D visualization of the brain to the radiologist. Detection and 3D reconstruction of brain tumors from MRI is a computationally time consuming and error-prone task. Proposed system detects and presents a 3D visualization model of the brain and tumor inside which greatly helps the radiologist to effectively diagnose and ...

  3. Actinomycotic brain infection: registered diffusion, perfusion MR imaging and MR spectroscopy

    International Nuclear Information System (INIS)

    Wang, Sumei; Wolf, Ronald L.; Woo, John H.; Melhem, Elias R.; Poptani, Harish; Wang, Jiongjiong; O'Rourke, Donald M.; Roy, Subhojit

    2006-01-01

    Introduction: Actinomycotic brain infection is caused by an organism of the Actinomyces genus. We report here one such case. Methods: The methods used included coregistered diffusion, perfusion and spectroscopic magnetic resonance (MR) imaging. Decreased apparent diffusion coefficient, markedly elevated fractional anisotropy (FA) and reduced cerebral blood flow were observed. MR spectroscopy demonstrated elevated amino acids, acetate and succinate. Elevated FA values may be due to the microstructure of this special brain infection. (orig.)

  4. Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging.

    Science.gov (United States)

    Thomas, Cibu; Sadeghi, Neda; Nayak, Amrita; Trefler, Aaron; Sarlls, Joelle; Baker, Chris I; Pierpaoli, Carlo

    2018-06-01

    Diurnal fluctuations in MRI measures of structural and functional properties of the brain have been reported recently. These fluctuations may have a physiological origin, since they have been detected using different MRI modalities, and cannot be explained by factors that are typically known to confound MRI measures. While preliminary evidence suggests that measures of structural properties of the brain based on diffusion tensor imaging (DTI) fluctuate as a function of time-of-day (TOD), the underlying mechanism has not been investigated. Here, we used a longitudinal within-subjects design to investigate the impact of time-of-day on DTI measures. In addition to using the conventional monoexponential tensor model to assess TOD-related fluctuations, we used a dual compartment tensor model that allowed us to directly assess if any change in DTI measures is due to an increase in CSF/free-water volume fraction or due to an increase in water diffusivity within the parenchyma. Our results show that Trace or mean diffusivity, as measured using the conventional monoexponential tensor model tends to increase systematically from morning to afternoon scans at the interface of grey matter/CSF, most prominently in the major fissures and the sulci of the brain. Interestingly, in a recent study of the glymphatic system, these same regions were found to show late enhancement after intrathecal injection of a CSF contrast agent. The increase in Trace also impacts DTI measures of diffusivity such as radial and axial diffusivity, but does not affect fractional anisotropy. The dual compartment analysis revealed that the increase in diffusivity measures from PM to AM was driven by an increase in the volume fraction of CSF-like free-water. Taken together, our findings provide important insight into the likely physiological origins of diurnal fluctuations in MRI measurements of structural properties of the brain. Published by Elsevier Inc.

  5. Diffusion-weighted MR imaging of the brain. 2. ed.

    International Nuclear Information System (INIS)

    Moritani, Toshio; Ekholm, Sven; Westesson, Per-Lennart

    2009-01-01

    This practical-minded text helps the radiologist and the clinician understand diffusion-weighted MR imaging. The book's 15 chapters range from basic principles to interpretation of diffusion-weighted MR imaging and specific disease. In this second edition, diffusion tensor imaging (fractional anisotropy, color map and fiber tractography) is covered and a new chapter, on ''Diffusion-Weighted Imaging of Scalp and Skull Lesions,'' is included. The volume is updated by newly added cases accompanied by radiological and pathological images along with the most recent references. It is aimed at all those who are involved in neuroimaging, including: residents, fellows, staff, as well as neurologists and neurosurgeons. Diffusion-weighted MR imaging is widely accepted as a means to identify acute infarction but also to differentiate many other pathologic conditions. Understanding diffusion-weighted imaging is important for radiologists, neurologists, neurosurgeons as well as radiology technologists. (orig.)

  6. Microstructural Changes of the Human Brain from Early to Mid-Adulthood

    OpenAIRE

    Tian, Lixia; Ma, Lin

    2017-01-01

    Despite numerous studies on the microstructural changes of the human brain throughout life, we have indeed little direct knowledge about the changes from early to mid-adulthood. The aim of this study was to investigate the microstructural changes of the human brain from early to mid-adulthood. We performed two sets of analyses based on the diffusion tensor imaging (DTI) data of 111 adults aged 18–55 years. Specifically, we first correlated age with skeletonized fractional anisotropy (FA), mea...

  7. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang [University Hospital Leipzig, Department of Pediatric Radiology, Leipzig (Germany); Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred [Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Stepan, Holger [University Leipzig, Department of Obstetrics, Leipzig (Germany)

    2014-10-15

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm{sup 2}. Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R{sup 2} = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  8. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    International Nuclear Information System (INIS)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang; Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred; Stepan, Holger

    2014-01-01

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm 2 . Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R 2 = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  9. Microstructural brain changes in acromegaly: quantitative analysis by diffusion tensor imaging

    Science.gov (United States)

    Ilhan, M M; Alkan, A; Aralasmak, A; Akkoyunlu, M E; Kart, L; Tasan, E

    2014-01-01

    Objective: We examined brain diffusion changes of patients with acromegaly. We searched whether there are differences in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values between remission and non-remission patients with acromegaly and investigated any effect of time of hormone exposure on diffusion metrics. Methods: The values of FA and ADC were calculated in a total of 35 patients with acromegaly and 28 control subjects. Patients were subdivided into remission and non-remission groups. We looked at brain FA and ADC differences among the groups and looked for any relation between the diffusion changes and time of hormone exposure among the patients with acromegaly. Results: We found decreased FA and increased ADC values in some of the growth hormone responsive areas. There were no significant brain diffusion changes between remission and non-remission groups. The most affected areas were the hypothalamus, parietal white matter and pre-motor cortex in patients with acromegaly. In terms of hormone exposure time among the patients with acromegaly, there was no effect of disease duration on brain microstructural changes. Conclusion: All patients with acromegaly showed increased brain diffusion with no relation to disease duration and treatment status. We suggested that in patients with acromegaly, brain damage had already occurred in the subclinical period before symptom onset. Advances in knowledge: This study contributes to the understanding of the mechanisms in acromegaly. PMID:24734977

  10. The Brain Prize 2014: complex human functions.

    Science.gov (United States)

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Lactate fuels the human brain during exercise

    DEFF Research Database (Denmark)

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up......)] from a resting value of 6 to exercise, cerebral activation associated with mental activity, or exposure to a stressful situation. The CMR decrease is prevented with combined beta(1)- and beta(2)-adrenergic receptor...

  12. The role of diffusion tensor imaging in brain tumor surgery : A review of the literature

    NARCIS (Netherlands)

    Potgieser, Adriaan R. E.; Wagemakers, Michiel; van Hulzen, Arjen L. J.; de Jong, Bauke M.; Hoving, Eelco W.; Groen, Rob J. M.

    Diffusion tensor imaging (DTI) is a recent technique that utilizes diffusion of water molecules to make assumptions about white matter tract architecture of the brain. Early on, neurosurgeons recognized its potential value in neurosurgical planning, as it is the only technique that offers the

  13. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

    Science.gov (United States)

    Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil

    2018-03-30

    Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.

  14. Brain mechanisms underlying human communication

    NARCIS (Netherlands)

    Noordzij, Matthijs Leendert; Newman-Norlund, Sarah E.; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C.; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we

  15. Brain mechanisms underlying human communication

    NARCIS (Netherlands)

    Noordzij, M.L.; Newman-Norlund, S.E.; Ruiter, J.P.A. de; Hagoort, P.; Levinson, S.C.; Toni, I.

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we

  16. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: A TBSS study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou, E-mail: asiaeurope80@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Duan, Yunyun, E-mail: xiaoyun81.love@163.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); He, Yong, E-mail: yong.h.he@gmail.com [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China); Yu, Chunshui, E-mail: csyuster@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Wang, Jun, E-mail: jun_wang@bnu.edu.cn [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China); Huang, Jing, E-mail: sainthj@126.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Ye, Jing, E-mail: jingye.2007@yahoo.com.cn [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Parizel, Paul M., E-mail: paul.parizel@ua.ac.be [Department of Radiology, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10, 2650 Edegem, 8 Belgium (Belgium); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shu, Ni, E-mail: nshu55@gmail.com [State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875 (China)

    2012-10-15

    Objective: To investigate whole brain white matter changes in multiple sclerosis (MS) by multiple diffusion indices, we examined patients with diffusion tensor imaging and utilized tract-based spatial statistics (TBSS) method to analyze the data. Methods: Forty-one relapsing-remitting multiple sclerosis (RRMS) patients and 41 age- and gender-matched normal controls were included in this study. Diffusion weighted images were acquired by employing a single-shot echo planar imaging sequence on a 1.5 T MR scanner. Voxel-wise analyses of multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were performed with TBSS. Results: The MS patients had significantly decreased FA (9.11%), increased MD (8.26%), AD (3.48%) and RD (13.17%) in their white matter skeletons compared with the controls. Through TBSS analyses, we found abnormal diffusion changes in widespread white matter regions in MS patients. Specifically, decreased FA, increased MD and increased RD were involved in whole-brain white matter, while several regions exhibited increased AD. Furthermore, white matter regions with significant correlations between the diffusion metrics and the clinical variables (the EDSS scores, disease durations and white matter lesion loads) in MS patients were identified. Conclusion: Widespread white matter abnormalities were observed in MS patients revealed by multiple diffusion metrics. The diffusion changes and correlations with clinical variables were mainly attributed to increased RD, implying the predominant role of RD in reflecting the subtle pathological changes in MS.

  17. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: A TBSS study

    International Nuclear Information System (INIS)

    Liu, Yaou; Duan, Yunyun; He, Yong; Yu, Chunshui; Wang, Jun; Huang, Jing; Ye, Jing; Parizel, Paul M.; Li, Kuncheng; Shu, Ni

    2012-01-01

    Objective: To investigate whole brain white matter changes in multiple sclerosis (MS) by multiple diffusion indices, we examined patients with diffusion tensor imaging and utilized tract-based spatial statistics (TBSS) method to analyze the data. Methods: Forty-one relapsing-remitting multiple sclerosis (RRMS) patients and 41 age- and gender-matched normal controls were included in this study. Diffusion weighted images were acquired by employing a single-shot echo planar imaging sequence on a 1.5 T MR scanner. Voxel-wise analyses of multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were performed with TBSS. Results: The MS patients had significantly decreased FA (9.11%), increased MD (8.26%), AD (3.48%) and RD (13.17%) in their white matter skeletons compared with the controls. Through TBSS analyses, we found abnormal diffusion changes in widespread white matter regions in MS patients. Specifically, decreased FA, increased MD and increased RD were involved in whole-brain white matter, while several regions exhibited increased AD. Furthermore, white matter regions with significant correlations between the diffusion metrics and the clinical variables (the EDSS scores, disease durations and white matter lesion loads) in MS patients were identified. Conclusion: Widespread white matter abnormalities were observed in MS patients revealed by multiple diffusion metrics. The diffusion changes and correlations with clinical variables were mainly attributed to increased RD, implying the predominant role of RD in reflecting the subtle pathological changes in MS

  18. Magnetic susceptibility artifacts in a diffuse brain injury and their pathological significance

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Miyakita, Yasuji; Matsuzawa, Motoshi; Sakakibara, Yohtaro; Takahara, Taro; Yamaguchi, Toshio

    1998-01-01

    In our study, FLAIR images and multishot echo planar imaging T2-weighted images (EPI T2-WI) were used in addition to conventional T1-weighted images, T2-weighted images and T2-weighted sagittal images. In this series we focused our attention on small parenchymatous lesions of a mild or moderate form of diffuse brain injury. These injuries are shown as high intensity areas on T2-weighted images (T2-high intensity lesions) but are not visualized in CT images. This series consisted of 29 patients who were diagnosed with diffuse brain injury and whose CT scans showed a Diffuse Injury I or II. Nineteen patients were studied in an acute or subacute stage. In all but 3 patients, small T2-high intensity lesions were found in the brain parenchyma. In the follow-up study brain edema was suggested because the lesions tended to be absent within 3 months in T2-weighted images and FLAIR. In 10 patients examined during a chronic stage. Small hemorrhages in patients with Diffuse Injury II were shown with variable intensities on the conventional T1- and T2-weighted images, but were visualized with low intensity in an EPI T2-WI. In diffuse brain injuries, small T2-high intensity lesions have been considered to be brain edema or ischemic insults. Our data however, suggested that microhemorrhages associated with brain edema were resent in most of the supratentorial lesions, and in more than a half of the lesions in the corpus callosum and the brain stem. These findings appear similar to contusions, which are defined as traumatic bruises of the neural parenchyma. The use of MRI has increased our understanding of in vivo pathological changes in mild or moderate forms of diffuse brain injury. (K.H.)

  19. The human brain. Prenatal development and structure

    International Nuclear Information System (INIS)

    Marin-Padilla, Miguel

    2011-01-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  20. The human brain. Prenatal development and structure

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  1. Diffusion Tensor Imaging-Based Research on Human White Matter Anatomy

    Directory of Open Access Journals (Sweden)

    Ming-guo Qiu

    2012-01-01

    Full Text Available The aim of this study is to investigate the white matter by the diffusion tensor imaging and the Chinese visible human dataset and to provide the 3D anatomical data of the corticospinal tract for the neurosurgical planning by studying the probabilistic maps and the reproducibility of the corticospinal tract. Diffusion tensor images and high-resolution T1-weighted images of 15 healthy volunteers were acquired; the DTI data were processed using DtiStudio and FSL software. The FA and color FA maps were compared with the sectional images of the Chinese visible human dataset. The probability maps of the corticospinal tract were generated as a quantitative measure of reproducibility for each voxel of the stereotaxic space. The fibers displayed by the diffusion tensor imaging were well consistent with the sectional images of the Chinese visible human dataset and the existing anatomical knowledge. The three-dimensional architecture of the white matter fibers could be clearly visualized on the diffusion tensor tractography. The diffusion tensor tractography can establish the 3D probability maps of the corticospinal tract, in which the degree of intersubject reproducibility of the corticospinal tract is consistent with the previous architectonic report. DTI is a reliable method of studying the fiber connectivity in human brain, but it is difficult to identify the tiny fibers. The probability maps are useful for evaluating and identifying the corticospinal tract in the DTI, providing anatomical information for the preoperative planning and improving the accuracy of surgical risk assessments preoperatively.

  2. Revisiting Glycogen Content in the Human Brain.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  3. Blue-Light Therapy following Mild Traumatic Brain Injury: Effects on White Matter Water Diffusion in the Brain

    Directory of Open Access Journals (Sweden)

    Sahil Bajaj

    2017-11-01

    Full Text Available Mild traumatic brain injury (mTBI is a common and often inconspicuous wound that is frequently associated with chronic low-grade symptoms and cognitive dysfunction. Previous evidence suggests that daily blue wavelength light therapy may be effective at reducing fatigue and improving sleep in patients recovering from mTBI. However, the effects of light therapy on recovering brain structure remain unexplored. In this study, we analyzed white matter diffusion properties, including generalized fractional anisotropy, and the quantity of water diffusion in isotropic (i.e., isotropic diffusion and anisotropic fashion (i.e., quantitative anisotropy, QA for fibers crossing 11 brain areas known to be significantly affected following mTBI. Specifically, we investigated how 6 weeks of daily morning blue light exposure therapy (compared to an amber-light placebo condition impacted changes in white matter diffusion in individuals with mTBI. We observed a significant impact of the blue light treatment (relative to the placebo on the amount of water diffusion (QA for multiple brain areas, including the corpus callosum, anterior corona radiata, and thalamus. Moreover, many of these changes were associated with improvements in sleep latency and delayed memory. These findings suggest that blue wavelength light exposure may serve as one of the potential non-pharmacological treatments for facilitating structural and functional recovery following mTBI; they also support the use of QA as a reliable neuro-biomarker for mTBI therapies.

  4. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  5. Sex differences in the structural connectome of the human brain.

    Science.gov (United States)

    Ingalhalikar, Madhura; Smith, Alex; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2014-01-14

    Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes.

  6. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... white matter, and in one patient reexamined one year after surgery, ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular...... brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable....

  7. In-utero three dimension high resolution fetal brain diffusion tensor imaging.

    Science.gov (United States)

    Jiang, Shuzhou; Xue, Hui; Counsell, Serena; Anjari, Mustafa; Allsop, Joanna; Rutherford, Mary; Rueckert, Daniel; Hajnal, Joseph V

    2007-01-01

    We present a methodology to achieve 3D high resolution in-utero fetal brain DTI that shows excellent ADC as well as promising FA maps. After continuous DTI scanning to acquire a repeated series of parallel slices with 15 diffusion directions, image registration is used to realign the images to correct for fetal motion. Once aligned, the diffusion images are treated as irregularly sampled data where each voxel is associated with an appropriately rotated diffusion direction, and used to estimate the diffusion tensor on a regular grid. The method has been tested successful on eight fetuses and has been validated on adults imaged at 1.5T.

  8. Brain activation during human male ejaculation

    NARCIS (Netherlands)

    Holstege, Ger; Georgiadis, Janniko R.; Paans, Anne M.J.; Meiners, Linda C.; Graaf, Ferdinand H.C.E. van der; Reinders, A.A.T.Simone

    2003-01-01

    Brain mechanisms that control human sexual behavior in general, and ejaculation in particular, are poorly understood. We used positron emission tomography to measure increases in regional cerebral blood flow (rCBF) during ejaculation compared with sexual stimulation in heterosexual male volunteers.

  9. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  10. Recent Developments in Diffusion Tensor Imaging of Brain

    OpenAIRE

    Parekh, Mansi Bharat; Gurjarpadhye, Abhijit Achyut; Manoukian, Martin A.C.; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    2015-01-01

    Magnetic resonance imaging (MRI) has come to be known as a unique radiological imaging modality because of its ability to perform tomographic imaging of body without the use of any harmful ionizing radiation. The radiologists use MRI to gain insight into the anatomy of organs, including the brain, while biomedical researchers explore the modality to gain better understanding of the brain structure and function. However, due to limited resolution and contrast, the conventional MRI fails to sho...

  11. [Evolution of human brain and intelligence].

    Science.gov (United States)

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are

  12. Structural brain alterations in hemifacial spasm: A voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Tu, Ye; Yu, Tian; Wei, Yongxu; Sun, Kun; Zhao, Weiguo; Yu, Buwei

    2016-02-01

    Hemifacial spasm (HFS) is characterized by involuntary, irregular clonic or tonic movement of muscles innervated by the facial nerve. We evaluated structural reorganization in brain gray matter and white matter and whether neuroplasticity is linked to clinical features in HFS patients. High-resolution structural magnetic resonance imaging and diffusion tensor imaging data were acquired by 3.0 T MRI from 42 patients with HFS and 30 healthy subjects. The severity of the spasm was assessed according to Jankovic disability rating scale. Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis were performed to identify regional grey matter volume (GMV) changes and whole-brain microstructural integrity disruption measured by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). The VBM analysis showed that patients with HFS reduced GMV in the right inferior parietal lobule and increased GMV in the cerebellar lobule VIII, when compared with healthy subjects. Furthermore, within the HFS disease group, GMV decreased with the disease duration in the right inferior parietal lobule. TBSS did not identify group differences in diffusivity parameters. While no white matter integrity disruption was detected in the brain of patients with HFS, our study identified evident GMV changes in brain areas which were known to be involved in motor control. Our results suggest that HFS, a chronic neurovascular conflict disease, is related to structural reorganization in the brain. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Anisotropic Diffusion based Brain MRI Segmentation and 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    M. Arfan Jaffar

    2012-06-01

    Full Text Available In medical field visualization of the organs is very imperative for accurate diagnosis and treatment of any disease. Brain tumor diagnosis and surgery also required impressive 3D visualization of the brain to the radiologist. Detection and 3D reconstruction of brain tumors from MRI is a computationally time consuming and error-prone task. Proposed system detects and presents a 3D visualization model of the brain and tumor inside which greatly helps the radiologist to effectively diagnose and analyze the brain tumor. We proposed a multi-phase segmentation and visualization technique which overcomes the many problems of 3D volume segmentation methods like lake of fine details. In this system segmentation is done in three different phases which reduces the error chances. The system finds contours for skull, brain and tumor. These contours are stacked over and two novel methods are used to find the 3D visualization models. The results of these techniques, particularly of interpolation based, are impressive. Proposed system is tested against publically available data set [41] and MRI datasets available from MRI aamp; CT center Rawalpindi, Pakistan [42].

  14. Puberty and structural brain development in humans.

    Science.gov (United States)

    Herting, Megan M; Sowell, Elizabeth R

    2017-01-01

    Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual- based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. Copyright © 2016. Published by Elsevier Inc.

  15. Diffusion tensor imaging of the human calf : Variation of inter- and intramuscle-specific diffusion parameters

    NARCIS (Netherlands)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-01-01

    Purpose: To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Materials and Methods: Whole calf muscles of 18 healthy

  16. Glucocorticoid treatment of brain tumor patients: changes of apparent diffusion coefficient values measured by MR diffusion imaging

    International Nuclear Information System (INIS)

    Minamikawa, Sosuke; Kono, Kinuko; Nakayama, Keiko; Yokote, Hiroyuki; Tashiro, Takahiko; Inoue, Yuichi; Nishio, Akimasa; Hara, Mitsuhiro

    2004-01-01

    Glucocorticoids (GCC) generally are administered to patients with brain tumors to relieve neurological symptoms by decreasing the water content in a peritumoral zone of edema. We hypothesized that diffusion imaging and apparent diffusion coefficient (ADC) values could detect subtle changes of water content in brain tumors and in peritumoral edema after GCC therapy. The study consisted of 13 patients with intra-axial brain tumor, and ADC was measured in the tumor, within peritumoral edema, and in normal white matter remote from the tumor before and after GCC therapy. ADC also was measured in normal white matter in four control patients with no intracranial disease who were treated with GCC for other indications. Conventional MR images showed no visually evident interval change in tumor size or the extent of peritumoral edema in any subject after GCC therapy, which nonetheless resulted in a decrease in mean ADC of 7.0% in tumors (P 0.05, not significant) and 5.8% in normal white matter (P<0.05). In patients with no intracranial disease, GCC therapy decreased mean ADC in white matter by 5.4% (P<0.05). ADC measurement can demonstrate subtle changes in the brain after GCC therapy that cannot be observed by conventional MR imaging. Measurement of ADC proved to be a sensitive means of assessing the effect of GCC therapy, even in the absence of visually discernible changes in conventional MR images. (orig.)

  17. In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J

    1992-01-01

    Measurement of water self-diffusion in the brain in 25 patients with multiple sclerosis was performed by magnetic resonance imaging. Quantitative diffusion measurements were obtained using single spin-echo pulse sequences with pulsed magnetic field gradients of different magnitude. Twenty......-two of these patients also underwent measurement of the transverse relaxation time (T2). Only one plaque was evaluated in each patient. Based on prior knowledge, 12 plaques were classified as being 3 mo or less in age, and 7 plaques were classified as being more than 3 mo old. In all 25 plaques, water self......-diffusion was found to be higher than in apparently normal white matter. Furthermore, water self-diffusion was found to be higher in acute plaques compared with chronic plaques. Finally, a slight tendency toward a relationship between the diffusion capability and T2 was found. We believe that an increased diffusion...

  18. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  19. Diffusion-weighted imaging of the musculoskeletal system in humans

    International Nuclear Information System (INIS)

    Baur, A.; Reiser, M.F.

    2000-01-01

    This article reviews the principles of diffusion-weighted imaging (DWI) and recent results in DWI of the musculoskeletal system. The potential of DWI in the diagnosis of pathology of the musculoskeletal system is discussed. DWI is a relatively new MR imaging technique that has already been established in neuroradiology, especially in the early detection of brain ischemia. The random motion of water protons on a molecular basis can be measured with DWI. To date DWI of the abdomen and of the musculoskeletal system has only been employed in scientific studies, but first results indicate that it may also be beneficial in these fields. Different diffusion characteristics have been found in normal tissues such as muscle, fat and bone marrow. Also, pathologic entities such as neoplasms, post-therapeutic soft tissue changes and inflammatory processes can be differentiated. Normal muscle shows significantly higher diffusion values than subcutaneous fat and bone marrow, due to a higher mobility of water protons within muscle. Soft tissue tumors exhibit a significantly lower diffusion value compared with post-therapeutic soft tissue changes and inflammatory processes. Necrotic tumor tissue can be distinguished from viable tumor due to significantly higher diffusion of water protons within necrotic tissue. (orig.)

  20. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    Science.gov (United States)

    2010-10-01

    organization of the human brain. These techniques are being applied to study brain changes through the lifespan, developmental disorders like autism , and...Individuals with a moderate TBI were over five times as likely. Animal studies suggest that TBI may disrupt brain dopamine pathways (these pathways

  1. Infrasounds and biorhythms of the human brain

    Science.gov (United States)

    Panuszka, Ryszard; Damijan, Zbigniew; Kasprzak, Cezary; McGlothlin, James

    2002-05-01

    Low Frequency Noise (LFN) and infrasound has begun a new public health hazard. Evaluations of annoyance of (LFN) on human occupational health were based on standards where reactions of human auditory system and vibrations of parts of human body were small. Significant sensitivity has been observed on the central nervous system from infrasonic waves especially below 10 Hz. Observed follow-up effects in the brain gives incentive to study the relationship between parameters of waves and reactions obtained of biorhythms (EEG) and heart action (EKG). New results show the impact of LFN on the electrical potentials of the brain are dependent on the pressure waves on the human body. Electrical activity of circulatory system was also affected. Signals recorded in industrial workplaces were duplicated by loudspeakers and used to record data from a typical LFN spectra with 5 and 7 Hz in a laboratory chamber. External noise, electromagnetic fields, temperature, dust, and other elements were controlled. Results show not only a follow-up effect in the brain but also a result similar to arrhythmia in the heart. Relaxations effects were observed of people impacted by waves generated from natural sources such as streams and waterfalls.

  2. Peritumoral edema of meningiomas and metastatic brain tumors: differences in diffusion characteristics evaluated with diffusion-tensor MR imaging

    International Nuclear Information System (INIS)

    Toh, Cheng-Hong; Wong, Alex M.-C; Wong, Ho-Fai; Wan, Yung-Liang; Wei, Kuo-Chen; Ng, Shu-Hang

    2007-01-01

    We prospectively compared the fractional anisotropy (FA) and mean diffusivity (MD) of the peritumoral edema of meningiomas and metastatic brain tumors with diffusion-tensor magnetic resonance (MR) imaging. The study protocol was approved by the local ethics committee, and written informed consent was obtained. Preoperative diffusion-tensor MR imaging was performed in 15 patients with meningiomas and 11 patients with metastatic brain tumors. Regions of interest (ROI) were placed in the peritumoral edema and normal-appearing white matter (NAWM) of the contralateral hemisphere to measure the FA and MD. The FA and MD ratios were calculated for each ROI in relation to the NAWM of the contralateral hemisphere. Changes in peritumoral MD and FA, in terms of primary values and ratios, were compared using a two-sample t-test; P -3 mm 2 /s) of the peritumoral edema for metastases and meningiomas, respectively, were 0.902 ± 0.057 and 0.820 ± 0.094, the mean MD ratios were 220.3 ± 22.6 and 193.1 ± 23.4, the mean FA values were 0.146 ± 0.026 and 0.199 ± 0.052, and the mean FA ratios were 32.3 ± 5.9 and 46.0 ± 12.1. All the values were significantly different between metastases and meningiomas (MD values P 0.016, MD ratios P = 0.006, FA values P = 0.005, FA ratios P = 0.002). The peritumoral edema of metastatic brain tumors and meningiomas show different MD and FA on diffusion-tensor MR imaging. (orig.)

  3. Peritumoral edema of meningiomas and metastatic brain tumors: differences in diffusion characteristics evaluated with diffusion-tensor MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toh, Cheng-Hong; Wong, Alex M.-C; Wong, Ho-Fai; Wan, Yung-Liang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Wei, Kuo-Chen [Chang Gung Memorial Hospital, Department of Neurosurgery, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Ng, Shu-Hang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Chang Gung Memorial Hospital, Molecular Image Center, Tao-Yuan (China)

    2007-06-15

    We prospectively compared the fractional anisotropy (FA) and mean diffusivity (MD) of the peritumoral edema of meningiomas and metastatic brain tumors with diffusion-tensor magnetic resonance (MR) imaging. The study protocol was approved by the local ethics committee, and written informed consent was obtained. Preoperative diffusion-tensor MR imaging was performed in 15 patients with meningiomas and 11 patients with metastatic brain tumors. Regions of interest (ROI) were placed in the peritumoral edema and normal-appearing white matter (NAWM) of the contralateral hemisphere to measure the FA and MD. The FA and MD ratios were calculated for each ROI in relation to the NAWM of the contralateral hemisphere. Changes in peritumoral MD and FA, in terms of primary values and ratios, were compared using a two-sample t-test; P < 0.05 was taken as indicating statistical significance. The mean MD values (x 10{sup -3} mm{sup 2}/s) of the peritumoral edema for metastases and meningiomas, respectively, were 0.902 {+-} 0.057 and 0.820 {+-} 0.094, the mean MD ratios were 220.3 {+-} 22.6 and 193.1 {+-} 23.4, the mean FA values were 0.146 {+-} 0.026 and 0.199 {+-} 0.052, and the mean FA ratios were 32.3 {+-} 5.9 and 46.0 {+-} 12.1. All the values were significantly different between metastases and meningiomas (MD values P = 0.016, MD ratios P = 0.006, FA values P = 0.005, FA ratios P = 0.002). The peritumoral edema of metastatic brain tumors and meningiomas show different MD and FA on diffusion-tensor MR imaging. (orig.)

  4. Studying variability in human brain aging in a population-based German cohort – Rationale and design of 1000BRAINS

    Directory of Open Access Journals (Sweden)

    Svenja eCaspers

    2014-07-01

    Full Text Available The ongoing 1000 brains study (1000BRAINS is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions & language; examination of motor skills; ratings of personality, life quality, mood & daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla of the brain. The latter includes (i 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fibre tracking and for diffusion kurtosis imaging; (iii resting-state and task-based functional MRI; and (iv fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  5. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    OpenAIRE

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H.; Dudink, Jeroen

    2015-01-01

    Background To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. Objective To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. Materials and methods We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 20...

  6. Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Honma, Tsuguo

    2009-01-01

    Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)

  7. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    Science.gov (United States)

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  8. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  9. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-01-01

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  10. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters.

    Science.gov (United States)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-10-01

    To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  12. Increased brain water self-diffusion in patients with idiopathic intracranial hypertension

    DEFF Research Database (Denmark)

    Gideon, P; Sørensen, P S; Thomsen, C

    1995-01-01

    PURPOSE: To investigate changes in brain water diffusion in patients with idiopathic intracranial hypertension. METHODS: A motion-compensated MR pulse sequence was used to create diffusion maps of the apparent diffusion coefficient (ADC) in 12 patients fulfilling conventional diagnostic criteria...... for idiopathic intracranial hypertension and in 12 healthy volunteers. RESULTS: A significantly larger ADC was found within subcortical white matter in the patient group (mean, 1.16 x 10(-9) m2/s) than in the control group (mean, 0.75 x 10(-9) m2/s), whereas no significant differences were found within cortical...

  13. Incidence of postangiographic silent brain infarction detected by diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Mori, Harushi; Hayashi, Naoto; Aoki, Shigeki

    2002-01-01

    We surveyed to assess for the incidence of clinically silent brain infarction after cerebral catheter angiography. Diffusion-weighted images were performed shortly after 33 cerebral catheter angiographies. We found totally 11 abnormally high intensity spots in 5 of 33 patients on diffusion-weighted images and, therefore, the incidence was calculated as 15.2%. This incidence is higher than has been estimated based on the incidence of neurological deficits (about 0.5%) after cerebral angiography. Diffusion-weighted MR imaging is suitable to monitor the safety of angiographic procedures and material. (author)

  14. Radiation effects on the developing human brain

    International Nuclear Information System (INIS)

    1993-01-01

    The developing human brain has been shown to be especially sensitive to ionizing radiation. Mental retardation has been observed in the survivors of the atomic bombings in Japan exposed in utero during sensitive periods, and clinical studies of pelvically irradiated pregnant women have demonstrated damaging effects on the fetus. In this annex the emphasis is on reviewing the results of the study of the survivors of the atomic bombings in Japan, although the results of other human epidemiological investigations and of pertinent experimental studies are also considered. Refs, 3 figs, 10 tabs

  15. Towards Developmental Connectomics of the Human Brain

    Directory of Open Access Journals (Sweden)

    Miao eCao

    2016-03-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and

  16. Toward Developmental Connectomics of the Human Brain.

    Science.gov (United States)

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  17. Toward Developmental Connectomics of the Human Brain

    Science.gov (United States)

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  18. Histogram analysis of noise performance on fractional anisotropy brain MR image with different diffusion gradient numbers

    International Nuclear Information System (INIS)

    Chang, Yong Min; Kim, Yong Sun; Kang, Duk Sik; Lee, Young Joo; Sohn, Chul Ho; Woo, Seung Koo; Suh, Kyung Jin

    2005-01-01

    We wished to analyze, qualitatively and quantitatively, the noise performance of fractional anisotropy brain images along with the different diffusion gradient numbers by using the histogram method. Diffusion tensor images were acquired using a 3.0 T MR scanner from ten normal volunteers who had no neurological symptoms. The single-shot spin-echo EPI with a Stejskal-Tanner type diffusion gradient scheme was employed for the diffusion tensor measurement. With a b-valuee of 1000 s/mm 2 , the diffusion tensor images were obtained for 6, 11, 23, 35 and 47 diffusion gradient directions. FA images were generated for each DTI scheme. The histograms were then obtained at selected ROIs for the anatomical structures on the FA image. At the same ROI location, the mean FA value and the standard deviation of the mean FA value were calculated. The quality of the FA image was improved as the number of diffusion gradient directions increased by showing better contrast between the WM and GM. The histogram showed that the variance of FA values was reduced as the number of diffusion gradient directions increased. This histogram analysis was in good agreement with the result obtained using quantitative analysis. The image quality of the FA map was significantly improved as the number of diffusion gradient directions increased. The histogram analysis well demonstrated that the improvement in the FA images resulted from the reduction in the variance of the FA values included in the ROI

  19. The challenge of mapping the human connectome based on diffusion tractography.

    Science.gov (United States)

    Maier-Hein, Klaus H; Neher, Peter F; Houde, Jean-Christophe; Côté, Marc-Alexandre; Garyfallidis, Eleftherios; Zhong, Jidan; Chamberland, Maxime; Yeh, Fang-Cheng; Lin, Ying-Chia; Ji, Qing; Reddick, Wilburn E; Glass, John O; Chen, David Qixiang; Feng, Yuanjing; Gao, Chengfeng; Wu, Ye; Ma, Jieyan; Renjie, H; Li, Qiang; Westin, Carl-Fredrik; Deslauriers-Gauthier, Samuel; González, J Omar Ocegueda; Paquette, Michael; St-Jean, Samuel; Girard, Gabriel; Rheault, François; Sidhu, Jasmeen; Tax, Chantal M W; Guo, Fenghua; Mesri, Hamed Y; Dávid, Szabolcs; Froeling, Martijn; Heemskerk, Anneriet M; Leemans, Alexander; Boré, Arnaud; Pinsard, Basile; Bedetti, Christophe; Desrosiers, Matthieu; Brambati, Simona; Doyon, Julien; Sarica, Alessia; Vasta, Roberta; Cerasa, Antonio; Quattrone, Aldo; Yeatman, Jason; Khan, Ali R; Hodges, Wes; Alexander, Simon; Romascano, David; Barakovic, Muhamed; Auría, Anna; Esteban, Oscar; Lemkaddem, Alia; Thiran, Jean-Philippe; Cetingul, H Ertan; Odry, Benjamin L; Mailhe, Boris; Nadar, Mariappan S; Pizzagalli, Fabrizio; Prasad, Gautam; Villalon-Reina, Julio E; Galvis, Justin; Thompson, Paul M; Requejo, Francisco De Santiago; Laguna, Pedro Luque; Lacerda, Luis Miguel; Barrett, Rachel; Dell'Acqua, Flavio; Catani, Marco; Petit, Laurent; Caruyer, Emmanuel; Daducci, Alessandro; Dyrby, Tim B; Holland-Letz, Tim; Hilgetag, Claus C; Stieltjes, Bram; Descoteaux, Maxime

    2017-11-07

    Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.

  20. Brain structures in the sciences and humanities.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  1. Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique: A methodological study of the aging brain

    International Nuclear Information System (INIS)

    Chen, Z.G.; Hindmarsh, T.; Li, T.Q.

    2001-01-01

    Purpose: To quantify age-related changes of the average diffusion coefficient value in normal adult brain using orientation-independent diffusion tensor trace mapping and to address the methodological influences on diffusion quantification. Material and Methods: Fifty-four normal subjects (aged 20-79 years) were studied on a 1.5-T whole-body MR medical unit using a diffusion-weighted single-shot echo-planar imaging technique. Orientation-independent diffusion tensor trace maps were constructed for each subject using diffusion-weighted MR measurements in four different directions using a tetrahedral gradient combination pattern. The global average (including cerebral spinal fluid) and the tissue average of diffusion coefficients in adult brains were determined by analyzing the diffusion coefficient distribution histogram for the entire brain. Methodological influences on the measured diffusion coefficient were also investigated by comparing the results obtained using different experimental settings. Results: Both global and tissue averages of the diffusion coefficient are significantly correlated with age (p<0.03). The global average of the diffusion coefficient increases 3% per decade after the age of 40, whereas the increase in the tissue average of diffusion coefficient is about 1% per decade. Experimental settings for self-diffusion measurements, such as data acquisition methods and number of b-values, can slightly influence the statistical distribution histogram of the diffusion tensor trace and its average value. Conclusion: Increased average diffusion coefficient in adult brains with aging are consistent with findings regarding structural changes in the brain that have been associated with aging. The study also demonstrates that it is desirable to use the same experimental parameters for diffusion coefficient quantification when comparing between different subjects and groups of interest

  2. Segmentation and Visualisation of Human Brain Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Roger

    2003-10-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give.

  3. Segmentation and Visualisation of Human Brain Structures

    International Nuclear Information System (INIS)

    Hult, Roger

    2003-01-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give

  4. Alterations of apparent diffusion coefficient (ADC) in the brain of rats chronically exposed to lead acetate.

    Science.gov (United States)

    López-Larrubia, Pilar; Cauli, Omar

    2011-03-15

    Diffusion-weighted imaging (DWI) allows the assessment of the water apparent diffusion coefficient (ADC), a measure of tissue water diffusivity which is altered during different pathological conditions such as cerebral oedema. By means of DWI, we repeatedly measured in the same rats apparent diffusion coefficient ADC in different brain areas (motor cortex (MCx), somato-sensory cortex (SCx), caudate-putamen (CPu), hippocampus (Hip), mesencephalic reticular formation (RF), corpus callosum (CC) and cerebellum (Cb)) after 1 week, 4 and 12 weeks of lead acetate exposure via drinking water (50 or 500 ppm). After 12 weeks of lead exposure rats received albumin-Evans blue complex administration and were sacrificed 1h later. Blood-brain barrier permeability and water tissue content were determined in order to evaluate their relationship with ADC changes. Chronic exposure to lead acetate (500 ppm) for 4 weeks increased ADC values in Hip, RF and Cb but no in other brain areas. After 12 weeks of lead acetate exposure at 500 ppm ADC is significantly increased also in CPu and CC. Brain areas displaying high ADC values after lead exposure showed also an increased water content and increased BBB permeability to Evans blue-albumin complex. Exposure to 50 ppm for 12 weeks increased ADC values and BBB permeability in the RF and Cb. In summary, chronic lead exposure induces cerebral oedema in the adult brain depending on the brain area and the dose of exposure. RF and Cb appeared the most sensitive brain areas whereas cerebral cortex appears resistant to lead-induced cerebral oedema. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Alterations in diffusion and perfusion in the pathogenesis of peritumoral brain edema in meningiomas

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Voigt, K.; Geist-Barth, B.; Schick, F.; Claussen, C.D.; Morgalla, M.

    2002-01-01

    Magnetic resonance perfusion and diffusion studies were undertaken to clarify the significance of ischemia in the pathogenesis of peritumoral brain edema in patients with meningiomas. Included in this study were 26 patients with 27 meningiomas and 5 gliomas. Perfusion-weighted imaging (PWI) was performed using a gradient-echo, echo-planar-imaging (EPI) sequence for calculation of the relative regional cerebral blood volume (rrCBV) and the relative regional cerebral blood flow index (rrCBFi). Furthermore, multi-slice spin-echo EPI sequences were applied in order to obtain anisotropic and isotropic diffusion-weighted imaging (DWI). Apparent diffusion coefficient (ADC) values were then calculated for peritumoral brain parenchyma from tumors, with and without edema, using various diffusion sensitivities. Meningiomas without edema demonstrated a minimal increase of perfusion parameters in the peritumoral brain tissue. In contrast, cases with brain edema had highly significant (p 2 . The DWI showed a significantly larger ADC value within areas of brain edema, compared with the normal white matter (0.74 x 10 -3 vs 1.55 x 10 -3 mm 2 /s; p<0.0001). Increases in EI correlated with increases in ADC values. In 31% of the meningiomas associated with edema, areas with increased signal, probable ischemia, demonstrated significantly lower ADC values, in comparison with the rest of the edematous areas. These areas were confined to tissue immediately adjacent to the tumor. In general, the decrease in rrCBV in brain edema represents a consequence from, rather than a cause of, vasogenic edema. Ischemic alterations can be regarded as secondary, facultative phenomena in the pathogenesis of meningioma-related brain edema. (orig.)

  6. Proposed link rates in the human brain.

    Science.gov (United States)

    van Putten, Michael J A M

    2003-07-15

    There is increasing experimental evidence that neuronal synchronization is necessary for the large-scale integration of distributed neuronal activity to realize various time-dependent coherent neuronal assemblies in the brain. Phase synchronization seems a promising candidate to quantify the time-dependent, frequency specific, synchrony between simultaneously recorded electroencephalogram (EEG) signals that may partially reflect this former process. We introduce a link rate (LR) as a measure of the spatial-temporal incidence of phase synchronization and phase de-synchronization. The concept is exemplified in its application to the analysis of spontaneous phase synchronization. To this end, three scalp EEG recordings are used: a normal control, a patient suffering from epileptic seizures and a patient with diffuse brain damage due to anoxia, showing a burst-suppression EEG. In addition, the method is applied to surrogate data (white noise). We find in the normal control that LR(control)=13.90+/-0.04 (mean+/-S.E.M.), which is different from the surrogate data, where we find that LR(surr)=15.36+/-0.05. In the two pathological conditions, the LR is significantly and strongly reduced to LR(burst)=4.52+/-0.05 and LR(seizure)=5.40+/-0.08. The derived LR seems a sensitive measure to relevant changes in synchronization, as these occur in the dynamic process of generating different spatial-temporal networks, both in physiological and pathological conditions.

  7. Deconstructing Anger in the Human Brain.

    Science.gov (United States)

    Gilam, Gadi; Hendler, Talma

    2017-01-01

    Anger may be caused by a wide variety of triggers, and though it has negative consequences on health and well-being, it is also crucial in motivating to take action and approach rather than avoid a confrontation. While anger is considered a survival response inherent in all living creatures, humans are endowed with the mental flexibility that enables them to control and regulate their anger, and adapt it to socially accepted norms. Indeed, a profound interpersonal nature is apparent in most events which evoke anger among humans. Since anger consists of physiological, cognitive, subjective, and behavioral components, it is a contextualized multidimensional construct that poses theoretical and operational difficulties in defining it as a single psychobiological phenomenon. Although most neuroimaging studies have neglected the multidimensionality of anger and thus resulted in brain activations dispersed across the entire brain, there seems to be several reoccurring neural circuits subserving the subjective experience of human anger. Nevertheless, to capture the large variety in the forms and fashions in which anger is experienced, expressed, and regulated, and thus to better portray the related underlying neural substrates, neurobehavioral investigations of human anger should aim to further embed realistic social interactions within their anger induction paradigms.

  8. Cognitive Impairment and Whole Brain Diffusion in Patients with Neuromyelitis Optica after Acute Relapse

    Science.gov (United States)

    He, Diane; Wu, Qizhu; Chen, Xiuying; Zhao, Daidi; Gong, Qiyong; Zhou, Hongyu

    2011-01-01

    The objective of this study investigated cognitive impairments and their correlations with fractional anisotropy (FA) and mean diffusivity (MD) in patients with neuromyelitis optica (NMO) without visible lesions on conventional brain MRI during acute relapse. Twenty one patients with NMO and 21 normal control subjects received several cognitive…

  9. The structure of creative cognition in the human brain

    Directory of Open Access Journals (Sweden)

    Rex Eugene Jung

    2013-07-01

    Full Text Available Creativity is a vast construct, seemingly intractable to scientific inquiry – perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR. Behaviorally, one can limit the blind variation component to idea generation tests as manifested by measures of divergent thinking. The selective retention component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI, Diffusion Tensor Imaging (DTI, and proton magnetic resonance imaging (1H-MRS. We also review lesion studies, considered to be the gold standard of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981. We provide a perspective, involving aspects of the default mode network, which might provide a first approximation regarding how creative cognition might map on to the human brain.

  10. Value of apparent diffusion coefficients in patients with brain tumors

    International Nuclear Information System (INIS)

    De Luca, Silvina; Stoisa, Daniela; Mondello, Eduardo; Vietti, Julio; Casas, Gabriel; Florenzano, Nestor; Eyheremendy, Eduardo; Martinez Boero, Macarena

    2004-01-01

    Purpose: To determine the utility of ADC values for the diagnosis of encephalic tumors. Material and method: Forty patients with encephalic tumors histopathologically confirmed, have been studied by conventional MR, diffusion and ADC maps. The intensities were measured in the solid tumor portion and the normal white matter, ratios were obtained and correlated in 13 patients with their respective cellularity indexes. Results: Seventeen were glial tumors, with lower ADC values in cases of greater malignancy. In 12 patients the diagnosis was secondary lesions in which the lowest ADC values were obtained. This feature was shared by the epidermoid cyst. The hamartomas, neurinomas, oligodendrogliomas and ependymomas have shown intermediate ADC values. Conclusion: The ADC map is a complement of conventional MR which provides additional information for the diagnosis of encephalic tumors. Low ADC values correlated with high grade malignant tumors. (author)

  11. Visualization of monoamine oxidase in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  12. Mercury Amalgam Diffusion in Human Teeth Probed Using Femtosecond LIBS.

    Science.gov (United States)

    Bello, Liciane Toledo; da Ana, Patricia Aparecida; Santos, Dário; Krug, Francisco José; Zezell, Denise Maria; Vieira, Nilson Dias; Samad, Ricardo Elgul

    2017-04-01

    In this work the diffusion of mercury and other elements from amalgam tooth restorations through the surrounding dental tissue (dentin) was evaluated using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). To achieve this, seven deciduous and eight permanent extracted human molar teeth with occlusal amalgam restorations were half-sectioned and analyzed using pulses from a femtosecond laser. The measurements were performed from the amalgam restoration along the amalgam/dentin interface to the apical direction. It was possible to observe the presence of metallic elements (silver, mercury, copper and tin) emission lines, as well as dental constituent ones, providing fingerprints of each material and comparable data for checking the consistence of the results. It was also shown that the elements penetration depth values in each tooth are usually similar and consistent, for both deciduous and permanent teeth, indicating that all the metals diffuse into the dentin by the same mechanism. We propose that this diffusion mechanism is mainly through liquid dragging inside the dentin tubules. The mercury diffused further in permanent teeth than in deciduous teeth, probably due to the longer diffusion times due to the age of the restorations. It was possible to conclude that the proposed femtosecond-LIBS system can detect the presence of metals in the dental tissue, among the tooth constituent elements, and map the distribution of endogenous and exogenous chemical elements, with a spatial resolution that can be brought under 100 µm.

  13. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    International Nuclear Information System (INIS)

    Gideon, P.; Thomsen, C.; Gjerris, F.; Soerensen, P.S.; Henriksen, O.

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 agematched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients (ADC) of brain water were found within periventricular white matter, in the corpus callosum, in the internal capsule, within cortical gray matter, and in cerebrospinal fluid, whereas normal ADCs were found within the basal ganglia. In 2 patients with HPH elevated ADCs were found most prominently within white matter and in one patient reexamined one year after surgery. ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable. (orig.)

  14. CT manifestation of diffuse brain injury in cases of serious acute subdural hematoma

    Energy Technology Data Exchange (ETDEWEB)

    Nikaido, Yuji; Shimomura, Takahide; Fujita, Toyohisa; Hirabayashi, Hidehiro; Utsumi, Shozaburo

    1987-04-01

    Eighty-two adult cases of serious acute subdural hematoma (SDH) of Glasgow Coma Scale 9 or more severe (50 operated-on and 32 non-operated-on cases) were selected in order to study the relation between CT findings at the acute stage and the prognosis of SDH. The CT findings were analyzed in the following respects: size of SDH, midline shift, manifestation of perimesencephalic cisterns, and presence or absence of diffuse hemispheric swelling, diffuse cerebral swelling, subarachnoid hemorrhage, intraventricular hemorrhage, epidural hematoma, hemorrhagic contusion, and dilatation of the contralateral temporal horn. As a result, the most important prognostic signs were found to be: (1) diffuse hemispheric swelling, (2) diffuse cerebral swelling, (3) subarachnoid hemorrhage of the basal-cistern type, (4) intraventricular hemorrhage, (5) deep-seated contusion, (6) complete effacement of the perimesencephalic cisterns, and (7) dilatation of the contralateral temporal horn. These findings, except for the last item, which indicates the final phase of tentorial herniation, were regarded as various patterns of the CT manifestation of diffuse brain injury; the positively associated diffuse brain injury seemed to determine the prognosis of SDH.

  15. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  16. Physical biology of human brain development

    Directory of Open Access Journals (Sweden)

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  17. Mapping the trajectory of the amygdalothalamic tract in the human brain.

    Science.gov (United States)

    Kamali, Arash; Riascos, Roy F; Pillai, Jay J; Sair, Haris I; Patel, Rajan; Nelson, Flavia M; Lincoln, John A; Tandon, Nitin; Mirbagheri, Saeedeh; Rabiei, Pejman; Keser, Zafer; Hasan, Khader M

    2018-04-01

    Although the thalamus is not considered primarily as a limbic structure, abundant evidence indicates the essential role of the thalamus as a modulator of limbic functions indirectly through the amygdala. The amygdala is a central component of the limbic system and serves an essential role in modulating the core processes including the memory, decision-making, and emotional reactions. The amygdalothalamic pathway is the largest direct amygdalo-diencephalic connection in the primates including the human brain. Given the crucial role of the amygdalothalamic tract (ATT) in memory function and diencephalic amnesia in stroke patients, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. To date, few diffusion-weighted studies have focused on the amygdala, yet the fine neuronal connection of the amygdala and thalamus known as the ATT has yet to be elucidated. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the ATT in the human brain. We studied 15 healthy right-handed human subjects (12 men and 3 women with age range of 24-37 years old). Using a high-resolution diffusion tensor tractography technique, for the first time, we were able to reconstruct and measure the trajectory of the ATT. We further revealed the close relationship of the ATT with the temporopontine tract and the fornix bilaterally in 15 healthy adult human brains. © 2018 Wiley Periodicals, Inc.

  18. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    Science.gov (United States)

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Revealing the cerebello-ponto-hypothalamic pathway in the human brain.

    Science.gov (United States)

    Kamali, Arash; Karbasian, Niloofar; Rabiei, Pejman; Cano, Andres; Riascos, Roy F; Tandon, Nitin; Arevalo, Octavio; Ocasio, Laura; Younes, Kyan; Khayat-Khoei, Mahsa; Mirbagheri, Saeedeh; Hasan, Khader M

    2018-04-16

    The cerebellum is shown to be involved in some limbic functions of the human brain such as emotion and affect. The major connection of the cerebellum with the limbic system is known to be through the cerebello-hypothalamic pathways. The consensus is that the projections from the cerebellar nuclei to the limbic system, and particularly the hypothalamus, or from the hypothalamus to the cerebellar nuclei, are through multisynaptic pathways in the bulbar reticular formation. The detailed anatomy of the pathways responsible for mediating these responses, however, is yet to be determined. Diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of the cerebello-ponto-hypothalamic (CPH) pathway. This study aimed to investigate the utility of high-spatial-resolution diffusion tensor tractography for mapping the trajectory of the CPH tract in the human brain. Fifteen healthy adults were studied. We delineated, for the first time, the detailed trajectory of the CPH tract of the human brain in fifteen normal adult subjects using high-spatial-resolution diffusion tensor tractography. We further revealed the close relationship of the CPH tract with the optic tract, temporo-pontine tract, amygdalofugal tract and the fornix in the human brain. Copyright © 2018. Published by Elsevier B.V.

  20. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI.

    Science.gov (United States)

    Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R A; Van Horn, John D; Drews, Michelle K; Somerville, Leah H; Sheridan, Margaret A; Santillana, Rosario M; Snyder, Jenna; Hedden, Trey; Shaw, Emily E; Hollinshead, Marisa O; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Buckner, Randy L; Wedeen, Van J; Wald, Lawrence L; Toga, Arthur W; Rosen, Bruce R

    2016-01-01

    The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  2. Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma

    Science.gov (United States)

    2018-06-18

    Constitutional Mismatch Repair Deficiency Syndrome; Lynch Syndrome; Malignant Glioma; Progressive Ependymoma; Progressive Medulloblastoma; Recurrent Brain Neoplasm; Recurrent Childhood Ependymoma; Recurrent Diffuse Intrinsic Pontine Glioma; Recurrent Medulloblastoma; Refractory Brain Neoplasm; Refractory Diffuse Intrinsic Pontine Glioma; Refractory Ependymoma; Refractory Medulloblastoma

  3. The Brain Rotation and Brain Diffusion Strategies of Small Islanders: Considering "Movement" in Lieu of "Place"

    Science.gov (United States)

    Baldacchino, Godfrey

    2006-01-01

    The "brain drain" phenomenon is typically seen as a zero-sum game, where one party's gain is presumed to be another's drain. This corresponds to deep-seated assumptions about what is "home" and what is "away". This article challenges the view, driven by much "brain drain" literature, that the dynamic is an…

  4. Brain diffusion tensor MRI in systematic lupus erythematosus: A systematic review.

    Science.gov (United States)

    Costallat, Beatriz Lavras; Ferreira, Daniel Miranda; Lapa, Aline Tamires; Rittner, Letícia; Costallat, Lilian Tereza Lavras; Appenzeller, Simone

    2018-01-01

    Diffusion tensor imaging (DTI) maps the brain's microstructure by measuring fractional anisotropy (FA) and mean diffusivity (MD). This systematic review describes brain diffusion tensor Magnetic resonance imaging (MRI) studies in systemic lupus erythematosus (SLE).The literature was reviewed following the PRISMA guidelines and using the terms "lupus", "systemic lupus erythematosus", "SLE", "diffusion tensor imaging", "DTI", "white matter" (WM), "microstructural damage", "tractography", and "fractional anisotropy"; the search included articles published in English from January 2007 to April 2017. The subjects included in the study were selected according to the ACR criteria and included 195 SLE patients with neuropsychiatric manifestation (NPSLE), 299 without neuropsychiatric manifestation (non-NPSLE), and 423 healthy controls (HC). Most studies identified significantly reduced FA and increased MD values in several WM regions of both NPSLE and non-NPSLE patients compared to HC. Subclinical microstructural changes were observed in either regional areas or the entire brain in both the non-NPSLE and NPSLE groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. [Ege Univ. Hospital, Bornova, Izmir (Turkey). Dept. of Radiology

    2004-08-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm{sup 2} images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm{sup 2} images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated

  6. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    International Nuclear Information System (INIS)

    Sener, R.N.

    2004-01-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm 2 images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm 2 images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated diffusion pattern

  7. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  8. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review.

    Science.gov (United States)

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H; Dudink, Jeroen

    2015-08-01

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards.

  9. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Pieterman, Kay; Plaisier, Annemarie; Dudink, Jeroen [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands); Govaert, Paul [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Pediatrics, Koningin Paola Children' s Hospital, Antwerp (Belgium); Leemans, Alexander [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Lequin, Maarten H. [Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands)

    2015-08-15

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards. (orig.)

  10. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    International Nuclear Information System (INIS)

    Pieterman, Kay; Plaisier, Annemarie; Dudink, Jeroen; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H.

    2015-01-01

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards. (orig.)

  11. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  12. A physical multifield model predicts the development of volume and structure in the human brain

    Science.gov (United States)

    Rooij, Rijk de; Kuhl, Ellen

    2018-03-01

    The prenatal development of the human brain is characterized by a rapid increase in brain volume and a development of a highly folded cortex. At the cellular level, these events are enabled by symmetric and asymmetric cell division in the ventricular regions of the brain followed by an outwards cell migration towards the peripheral regions. The role of mechanics during brain development has been suggested and acknowledged in past decades, but remains insufficiently understood. Here we propose a mechanistic model that couples cell division, cell migration, and brain volume growth to accurately model the developing brain between weeks 10 and 29 of gestation. Our model accurately predicts a 160-fold volume increase from 1.5 cm3 at week 10 to 235 cm3 at week 29 of gestation. In agreement with human brain development, the cortex begins to form around week 22 and accounts for about 30% of the total brain volume at week 29. Our results show that cell division and coupling between cell density and volume growth are essential to accurately model brain volume development, whereas cell migration and diffusion contribute mainly to the development of the cortex. We demonstrate that complex folding patterns, including sinusoidal folds and creases, emerge naturally as the cortex develops, even for low stiffness contrasts between the cortex and subcortex.

  13. [Neuroethics: Ethical Endowments of Human Brain].

    Science.gov (United States)

    López Moratalla, Natalia

    2015-01-01

    The neurobiological processes underlying moral judgement have been the focus of Neuroethics. Neurosciences demonstrate which cerebral areas are active and inactive whilst people decide how to act when facing a moral dilemma; in this way we know the correlation between determined cerebral areas and our human acts. We can explain how the ″ethical endowments″ of each person, common to all human beings, is ″embedded″ in the dynamic of cerebral flows. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion related areas of the brain contribute to moral judgement. The outcome of man's natural inclinations is on one hand linked to instinctive systems of animal survival and to basic emotions, and on the other, to the life of each individual human uninhibited by automatism of the biological laws, because he is governed by the laws of freedom. The capacity to formulate an ethical judgement is an innate asset of the human mind.

  14. Diffusion-weighted imaging of brain metastases: their potential to be misinterpreted as focal ischaemic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, B. [Department of Radiology, University Hospital, Lund (Sweden); Holtaas, S. [Department of Diagnostic Imaging, King Fahd Hospital, Riyadh (Saudi Arabia)

    2002-07-01

    Small focal ischaemic brain lesions are said to be easy to identify in the acute stage and to differentiate from older lesions using diffusion-weighted imaging (DWI). Brain metastases are common and the aim of this study was to evaluate the risk of misinterpretation as ischaemic lesions in a standard MRI protocol for clinical stroke. Of 26 patients investigated with MRI for possible metastases, 12 did have metastatic brain lesions, including most of the common tumours. On a 1.5 tesla imager, we obtained DWI, plus T2- and T1-weighted images, the latter before and after triple-dose contrast medium. Well-circumscribed brain lesions with a decreased apparent diffusion coefficient and a slightly or moderately increased signal on T2-weighted images were found in patients with metastases from a small-cell bronchial carcinoma and a pulmonary adenocarcinoma. The same features were also found in metastases from a breast carcinoma but the lesions were surrounded by oedema. With a standard DWI protocol, the features of common brain metastases may overlap with those of small acute and subacute ischaemic lesions. (orig.)

  15. Diffusion tensor MR imaging in neurofibromatosis type 1: expanding the knowledge of microstructural brain abnormalities

    International Nuclear Information System (INIS)

    Ferraz-Filho, Jose R.L.; Muniz, Marcos P.; Souza, Antonio S.; Rocha, Antonio J. da; Goloni-Bertollo, Eny M.; Pavarino-Bertelli, Erika C.

    2012-01-01

    Neurofibromatosis type 1 (NF1) is a hereditary disease with a dominant autosomal pattern. In children and adolescents, it is frequently associated with the appearance of T2-weighted hyperintensities in the brain's white matter. MRI with diffusion tensor imaging (DTI) is used to detect white matter abnormalities by measuring fractional anisotropy (FA). This study employed DTI to evaluate the relationship between FA patterns and the findings of T2 sequences, with the aim of improving our understanding of anatomical changes and microstructural brain abnormalities in individuals with NF1. Forty-four individuals with NF1 and 20 control subjects were evaluated. The comparative analysis of FA between NF1 and control groups was based on four predetermined anatomical regions of the brain hemispheres (basal ganglia, cerebellum, pons, thalamus) and related the presence or absence of T2-weighted hyperintensities in the brain, which are called unidentified bright objects (UBOs). The FA values between the groups demonstrated statistically significant differences (P ≤ 0.05) for the cerebellum and thalamus in patients with NF1, independent of the occurrence of UBOs. Diffusion tensor MR imaging confirms the influence of UBOs in the decrease of FA values in this series of patients with NF1. Additionally, this technique allows the characterization of microstructural abnormalities even in some brain regions that appear normal in conventional MR sequences. (orig.)

  16. [A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].

    Science.gov (United States)

    Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A

    2015-01-01

    The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (pAK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the contralateral normal appearing white matter in patients with brain gliomas.

  17. Geometry-Driven-Diffusion filtering of MR Brain Images using dissimilarities and optimal relaxation parameter

    Energy Technology Data Exchange (ETDEWEB)

    Bajla, Ivan [Austrian Research Centres Sibersdorf, Department of High Performance Image Processing and Video-Technology, A-2444 Seibersdorf (Austria); Hollander, Igor [Institute of information Processing, Austrian Academy of Sciences, Sonnenfelsgasse 19/2, 1010 Wien (Austria)

    1999-12-31

    A novel method of local adapting of the conductance using a pixel dissimilarity measure is developed. An alternative processing methodology is proposed, which is based on intensity gradient histogram calculated for region interiors and boundaries of a phantom which models real MR brain scans. It involves a specific cost function suitable for the calculation of the optimum relaxation parameter Kopt and for the selection of the optimal exponential conductance. Computer experiments for locally adaptive geometry-driven-diffusion filtering of an MR brain phantom have been performed and evaluated. (authors) 6 refs., 3 figs.2 tabs.

  18. Geometry-Driven-Diffusion filtering of MR Brain Images using dissimilarities and optimal relaxation parameter

    International Nuclear Information System (INIS)

    Bajla, Ivan; Hollander, Igor

    1998-01-01

    A novel method of local adapting of the conductance using a pixel dissimilarity measure is developed. An alternative processing methodology is proposed, which is based on intensity gradient histogram calculated for region interiors and boundaries of a phantom which models real MR brain scans. It involves a specific cost function suitable for the calculation of the optimum relaxation parameter Kopt and for the selection of the optimal exponential conductance. Computer experiments for locally adaptive geometry-driven-diffusion filtering of an MR brain phantom have been performed and evaluated. (authors)

  19. Brain activation and connectivity of social cognition using diffuse optical imaging

    Science.gov (United States)

    Zhu, Banghe; Godavarty, Anuradha

    2009-02-01

    In the current research, diffuse optical imaging (DOI) is used for the first time towards studies related to sociocommunication impairments, which is a characteristic feature of autism. DOI studies were performed on normal adult volunteers to determine the differences in the brain activation (cognitive regions) in terms of the changes in the cerebral blood oxygenation levels in response to joint and non-joint attention based stimulus (i.e. socio-communicative paradigms shown as video clips). Functional connectivity models are employed to assess the extent of synchronization between the left and right pre-frontal regions of the brain in response to the above stimuli.

  20. Airway surface irregularities promote particle diffusion in the human lung

    International Nuclear Information System (INIS)

    Martonen, T.; North Carolina Univ., Chapel Hill, NC; Zhang, Z.; Yang, Y.; Bottei, G.

    1995-01-01

    Current NCRP and ICRP particle deposition models employed in risk assessment analyses treat the airways of the human lung as smooth-walled tubes. However, the upper airways of the tracheobronchial (TB) tree are line with cartilaginous rings. Recent supercomputer simulations of in vivo conditions (cited herein), where cartilaginous ring morphologies were based upon fibre-optic bronchoscope examinations, have clearly demonstrated their profound effects upon fluid dynamics. A physiologically based analytical model of fluid dynamics is presented, focusing upon applications to particle diffusion within the TB tree. The new model is the first to describe particle motion while simultaneously simulating effects of wall irregularities, entrance conditions and tube curvatures. This study may explain the enhanced deposition by particle diffusion detected in replica case experiments and have salient implications for the clinically observed preferential distributions of bronchogenic carcinomas associated with inhaled radionuclides. (author)

  1. Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram

    Science.gov (United States)

    Batra, Marion; Nägele, Thomas

    2015-01-01

    Purpose. The distribution of apparent diffusion coefficient (ADC) values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects. PMID:26609526

  2. Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram

    Directory of Open Access Journals (Sweden)

    Uwe Klose

    2015-01-01

    Full Text Available Purpose. The distribution of apparent diffusion coefficient (ADC values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects.

  3. Diffuse optical systems and methods to image physiological changes of the brain in response to focal TBI (Conference Presentation)

    Science.gov (United States)

    Abookasis, David; Volkov, Boris; Kofman, Itamar

    2017-02-01

    During the last four decades, various optical techniques have been proposed and intensively used for biomedical diagnosis and therapy both in animal model and in human. These techniques have several advantages over the traditional existing methods: simplicity in structure, low-cost, easy to handle, portable, can be used repeatedly over time near the patient bedside for continues monitoring, and offer high spatiotemporal resolution. In this work, we demonstrate the use of two optical imaging modalities namely, spatially modulated illumination and dual-wavelength laser speckle to image the changes in brain tissue chromophores, morphology, and metabolic before, during, and after the onset of focal traumatic brain injury in intact mouse head (n=15). Injury was applied in anesthetized mice by weight-drop apparatus using 50gram metal rod striking the mouse's head. Following data analysis, we show a series of hemodynamic and structural changes over time including higher deoxyhemoglobin, reduction in oxygen saturation and blood flow, cell swelling, etc., in comparison with baseline measurements. In addition, to validate the monitoring of cerebral blood flow by the imaging system, measurements with laser Doppler flowmetry were also performed (n=5), which confirmed reduction in blood flow following injury. Overall, our result demonstrates the capability of diffuse optical modalities to monitor and map brain tissue optical and physiological properties following brain trauma.

  4. Left Brain to Right Brain: Notes from the Human Laboratory.

    Science.gov (United States)

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  5. Diffusion MRI and the Detection of Alterations Following Traumatic Brain Injury

    Science.gov (United States)

    2017-06-13

    vascular injury, disruption of water home- ostasis), changes in tissue composition (e.g., increased or decreased cellu- larity), and alterations in...related alterations Tissue environment Expected diffusion changes Major citations dMRI evidence Neurons cell loss necrosis and apoptosis atrophy...structure and signaling, vascular coupling, and waste removal, among others. Astrocytes are at least as numerous as neurons in the brain (Herculano-Houzel

  6. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  7. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Johannesen, Helle H; Geertsen, Poul

    2017-01-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospect......An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later....... In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point...

  8. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.

    Science.gov (United States)

    Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F

    2006-04-03

    The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.

  9. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males...... and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...

  10. Validation of DWI pre-processing procedures for reliable differentiation between human brain gliomas.

    Science.gov (United States)

    Vellmer, Sebastian; Tonoyan, Aram S; Suter, Dieter; Pronin, Igor N; Maximov, Ivan I

    2018-02-01

    Diffusion magnetic resonance imaging (dMRI) is a powerful tool in clinical applications, in particular, in oncology screening. dMRI demonstrated its benefit and efficiency in the localisation and detection of different types of human brain tumours. Clinical dMRI data suffer from multiple artefacts such as motion and eddy-current distortions, contamination by noise, outliers etc. In order to increase the image quality of the derived diffusion scalar metrics and the accuracy of the subsequent data analysis, various pre-processing approaches are actively developed and used. In the present work we assess the effect of different pre-processing procedures such as a noise correction, different smoothing algorithms and spatial interpolation of raw diffusion data, with respect to the accuracy of brain glioma differentiation. As a set of sensitive biomarkers of the glioma malignancy grades we chose the derived scalar metrics from diffusion and kurtosis tensor imaging as well as the neurite orientation dispersion and density imaging (NODDI) biophysical model. Our results show that the application of noise correction, anisotropic diffusion filtering, and cubic-order spline interpolation resulted in the highest sensitivity and specificity for glioma malignancy grading. Thus, these pre-processing steps are recommended for the statistical analysis in brain tumour studies. Copyright © 2017. Published by Elsevier GmbH.

  11. Comparison of Magnetic Susceptibility Tensor and Diffusion Tensor of the Brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei

    2013-10-01

    Susceptibility tensor imaging (STI) provides a novel approach for noninvasive assessment of the white matter pathways of the brain. Using mouse brain ex vivo , we compared STI with diffusion tensor imaging (DTI), in terms of tensor values, principal tensor values, anisotropy values, and tensor orientations. Despite the completely different biophysical underpinnings, magnetic susceptibility tensors and diffusion tensors show many similarities in the tensor and principal tensor images, for example, the tensors perpendicular to the fiber direction have the highest gray-white matter contrast, and the largest principal tensor is along the fiber direction. Comparison to DTI fractional anisotropy, the susceptibility anisotropy provides much higher sensitivity to the chemical composition of the white matter, especially myelin. The high sensitivity can be further enhanced with the perfusion of ProHance, a gadolinium-based contrast agent. Regarding the tensor orientations, the direction of the largest principal susceptibility tensor agrees with that of diffusion tensors in major white matter fiber bundles. The STI fiber tractography can reconstruct the fiber pathways for the whole corpus callosum and for white matter fiber bundles that are in close contact but in different orientations. There are some differences between susceptibility and diffusion tensor orientations, which are likely due to the limitations in the current STI reconstruction. With the development of more accurate reconstruction methods, STI holds the promise for probing the white matter micro-architectures with more anatomical details and higher chemical sensitivity.

  12. "Messing with the Mind: Evolutionary Challenges to Human Brain Augmentation

    Directory of Open Access Journals (Sweden)

    ARTHUR eSANIOTIS

    2014-09-01

    Full Text Available The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce augmented brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties.

  13. Global diffusion tensor imaging derived metrics differentiate glioblastoma multiforme vs. normal brains by using discriminant analysis: introduction of a novel whole-brain approach.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Cortez-Conradis, David; Favila, Rafael; Moreno-Jimenez, Sergio

    2014-06-01

    Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics. Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed. The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks' λ = 0.324, χ(2) (3) = 38.907, p tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases.

  14. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  15. Connectomic Insights into Topologically Centralized Network Edges and Relevant Motifs in the Human Brain

    Directory of Open Access Journals (Sweden)

    Mingrui eXia

    2016-04-01

    Full Text Available White matter (WM tracts serve as important material substrates for information transfer across brain regions. However, the topological roles of WM tracts in global brain communications and their underlying microstructural basis remain poorly understood. Here, we employed diffusion magnetic resonance imaging and graph-theoretical approaches to identify the pivotal WM connections in human whole-brain networks and further investigated their wiring substrates (including WM microstructural organization and physical consumption and topological contributions to the brain’s network backbone. We found that the pivotal WM connections with highly topological-edge centrality were primarily distributed in several long-range cortico-cortical connections (including the corpus callosum, cingulum and inferior fronto-occipital fasciculus and some projection tracts linking subcortical regions. These pivotal WM connections exhibited high levels of microstructural organization indicated by diffusion measures (the fractional anisotropy, the mean diffusivity and the axial diffusivity and greater physical consumption indicated by streamline lengths, and contributed significantly to the brain’s hubs and the rich-club structure. Network motif analysis further revealed their heavy participations in the organization of communication blocks, especially in routes involving inter-hemispheric heterotopic and extremely remote intra-hemispheric systems. Computational simulation models indicated the sharp decrease of global network integrity when attacking these highly centralized edges. Together, our results demonstrated high building-cost consumption and substantial communication capacity contributions for pivotal WM connections, which deepens our understanding of the topological mechanisms that govern the organization of human connectomes.

  16. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  17. Regional apparent diffusion coefficient values in 3rd trimester fetal brain

    International Nuclear Information System (INIS)

    Hoffmann, Chen; Weisz, Boaz; Lipitz, Shlomo; Katorza, Eldad; Yaniv, Gal; Bergman, Dafi; Biegon, Anat

    2014-01-01

    Apparent diffusion coefficient (ADC) values in the developing fetus can be used in the diagnosis and prognosis of prenatal brain pathologies. To this end, we measured regional ADC in a relatively large cohort of normal fetal brains in utero. Diffusion-weighted imaging (DWI) was performed in 48 non-sedated 3rd trimester fetuses with normal structural MR imaging results. ADC was measured in white matter (frontal, parietal, temporal, and occipital lobes), basal ganglia, thalamus, pons, and cerebellum. Regional ADC values were compared by one-way ANOVA with gestational age as covariate. Regression analysis was used to examine gestational age-related changes in regional ADC. Four other cases of CMV infection were also examined. Median gestational age was 32 weeks (range, 26-33 weeks). There was a highly significant effect of region on ADC, whereby ADC values were highest in white matter, with significantly lower values in basal ganglia and cerebellum and the lowest values in thalamus and pons. ADC did not significantly change with gestational age in any of the regions tested. In the four cases with fetal CMV infection, ADC value was associated with a global decrease. ADC values in normal fetal brain are relatively stable during the third trimester, show consistent regional variation, and can make an important contribution to the early diagnosis and possibly prognosis of fetal brain pathologies. (orig.)

  18. Regional apparent diffusion coefficient values in 3rd trimester fetal brain

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Chen [Tel Aviv University, Department of Radiology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Sheba Medical Center, Diagnostic Imaging, 52621, Tel Hashomer (Israel); Weisz, Boaz; Lipitz, Shlomo; Katorza, Eldad [Tel Aviv University, Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Yaniv, Gal; Bergman, Dafi [Tel Aviv University, Department of Radiology, Sheba Medical Center, Tel Hashomer (affiliated to the Sackler School of Medicine), Tel Aviv (Israel); Biegon, Anat [Stony Brook University School of Medicine, Department of Neurology, Stony Brook, NY (United States)

    2014-07-15

    Apparent diffusion coefficient (ADC) values in the developing fetus can be used in the diagnosis and prognosis of prenatal brain pathologies. To this end, we measured regional ADC in a relatively large cohort of normal fetal brains in utero. Diffusion-weighted imaging (DWI) was performed in 48 non-sedated 3rd trimester fetuses with normal structural MR imaging results. ADC was measured in white matter (frontal, parietal, temporal, and occipital lobes), basal ganglia, thalamus, pons, and cerebellum. Regional ADC values were compared by one-way ANOVA with gestational age as covariate. Regression analysis was used to examine gestational age-related changes in regional ADC. Four other cases of CMV infection were also examined. Median gestational age was 32 weeks (range, 26-33 weeks). There was a highly significant effect of region on ADC, whereby ADC values were highest in white matter, with significantly lower values in basal ganglia and cerebellum and the lowest values in thalamus and pons. ADC did not significantly change with gestational age in any of the regions tested. In the four cases with fetal CMV infection, ADC value was associated with a global decrease. ADC values in normal fetal brain are relatively stable during the third trimester, show consistent regional variation, and can make an important contribution to the early diagnosis and possibly prognosis of fetal brain pathologies. (orig.)

  19. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  20. Relationships of site of impact to CT findings and outcome in diffuse brain injury

    International Nuclear Information System (INIS)

    Saito, Akihito; Kuwana, Nobumasa; Mochimatsu, Yasuhiko; Tanaka, Naoki; Fujino, Hideyo

    1985-01-01

    The relationships of the site of impact to the CT findings and to the severity and outcome of an injury were analysed based on 50 cases of diffuse brain injury (DBI). The CT findings of DBI were classified into 5 types: diffuse cerebral swelling (DCS); isodensity hemispheric swelling (IHS); deep-seated brain injury (DSI); subarachnoid hemorrhage (SAH), and normal finding (N). The sites of the impact were frontal in 19 cases, temporal in 8 cases, parietal in 4 cases, occipital in 12 cases, and multiple or undetermined in 7 cases. Frontal blows resulted in the lowest mortality rate (5.3%); on the other hand, occipital blows resulted in the highest (58%). Additionally, occipital blows caused the highest primary brain-stem injury, i.e., 41.7%. The frontal region was the most common impact area, revealing DCS and N. Temporal blows commonly resulted in DSI. Parietal blows were characteristic causes of IHS cases. However, occipital blows generally demonstrated no specific tendencies with regard to the type of CT finding. Based on this study, it is evident that CT findings and outcomes are influenced by the location of the impact. It is the authors' impression that, in severe head-injury cases, occipital blows, which are usually associated with primary brain-stem injuries, are the most serious. (author)

  1. Relationships of site of impact to CT findings and outcome in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Akihito; Kuwana, Nobumasa; Mochimatsu, Yasuhiko; Tanaka, Naoki; Fujino, Hideyo

    1985-02-01

    The relationships of the site of impact to the CT findings and to the severity and outcome of an injury were analysed based on 50 cases of diffuse brain injury (DBI). The CT findings of DBI were classified into 5 types: diffuse cerebral swelling (DCS); isodensity hemispheric swelling (IHS); deep-seated brain injury (DSI); subarachnoid hemorrhage (SAH), and normal finding (N). The sites of the impact were frontal in 19 cases, temporal in 8 cases, parietal in 4 cases, occipital in 12 cases, and multiple or undetermined in 7 cases. Frontal blows resulted in the lowest mortality rate (5.3%); on the other hand, occipital blows resulted in the highest (58%). Additionally, occipital blows caused the highest primary brain-stem injury, i.e., 41.7%. The frontal region was the most common impact area, revealing DCS and N. Temporal blows commonly resulted in DSI. Parietal blows were characteristic causes of IHS cases. However, occipital blows generally demonstrated no specific tendencies with regard to the type of CT finding. Based on this study, it is evident that CT findings and outcomes are influenced by the location of the impact. It is the authors' impression that, in severe head-injury cases, occipital blows, which are usually associated with primary brain-stem injuries, are the most serious. (author).

  2. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  3. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury

    Directory of Open Access Journals (Sweden)

    Ziebell Jenna M

    2012-10-01

    Full Text Available Abstract Background Since their discovery, the morphology of microglia has been interpreted to mirror their function, with ramified microglia constantly surveying the micro-environment and rapidly activating when changes occur. In 1899, Franz Nissl discovered what we now recognize as a distinct microglial activation state, microglial rod cells (Stäbchenzellen, which he observed adjacent to neurons. These rod-shaped microglia are typically found in human autopsy cases of paralysis of the insane, a disease of the pre-penicillin era, and best known today from HIV-1-infected brains. Microglial rod cells have been implicated in cortical ‘synaptic stripping’ but their exact role has remained unclear. This is due at least in part to a scarcity of experimental models. Now we have noted these rod microglia after experimental diffuse brain injury in brain regions that have an associated sensory sensitivity. Here, we describe the time course, location, and surrounding architecture associated with rod microglia following experimental diffuse traumatic brain injury (TBI. Methods Rats were subjected to a moderate midline fluid percussion injury (mFPI, which resulted in transient suppression of their righting reflex (6 to 10 min. Multiple immunohistochemistry protocols targeting microglia with Iba1 and other known microglia markers were undertaken to identify the morphological activation of microglia. Additionally, labeling with Iba1 and cell markers for neurons and astrocytes identified the architecture that surrounds these rod cells. Results We identified an abundance of Iba1-positive microglia with rod morphology in the primary sensory barrel fields (S1BF. Although present for at least 4 weeks post mFPI, they developed over the first week, peaking at 7 days post-injury. In the absence of contusion, Iba1-positive microglia appear to elongate with their processes extending from the apical and basal ends. These cells then abut one another and lay adjacent

  4. MR diffusion tensor analysis of schizophrenic brain using statistical parametric mapping

    International Nuclear Information System (INIS)

    Yamada, Haruyasu; Abe, Osamu; Kasai, Kiyoto

    2005-01-01

    The purpose of this study is to investigate diffusion anisotropy in the schizophrenic brain by voxel-based analysis of diffusion tensor imaging (DTI), using statistical parametric mapping (SPM). We studied 33 patients with schizophrenia diagnosed by diagnostic and statistical manual of mental disorders (DSM)-IV criteria and 42 matched controls. The data was obtained with a 1.5 T MRI system. We used single-shot spin-echo planar sequences (repetition time/echo time (TR/TE)=5000/102 ms, 5 mm slice thickness and 1.5 mm gap, field of view (FOV)=21 x 21 cm 2 , number of excitation (NEX)=4, 128 x 128 pixel matrix) for diffusion tensor acquisition. Diffusion gradients (b-value of 500 or 1000 s/mm 2 ) were applied on two axes simultaneously. Diffusion properties were measured along 6 non-linear directions. The structural distortion induced by the large diffusion gradients was corrected, based on each T 2 -weighted echo-planar image (b=0 s/mm 2 ). The fractional anisotropy (FA) maps were generated on a voxel-by-voxel basis. T 2 -weighted echo-planar images were then segmented into gray matter, white matter, and cerebrospinal fluid, using SPM (Wellcome Department of Imaging, University College London, UK). All apparent diffusion coefficient (ADC) and FA maps in native space were transformed to the stereotactic space by registering each of the images to the same template image. The normalized data was smoothed and analyzed using SPM. The significant FA decrease in the patient group was found in the uncinate fasciculus, parahippocampal white matter, anterior cingulum and other areas (corrected p<0.05). No significant increased region was noted. Our results may reflect reduced diffusion anisotropy of the white matter pathway of the limbic system as shown by the decreased FA. Manual region-of-interest analysis is usually more sensitive than voxel-based analysis, but it is subjective and difficult to set with anatomical reproducibility. Voxel-based analysis of the diffusion tensor

  5. Mapping remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography

    Science.gov (United States)

    Harsan, Laura-Adela; Dávid, Csaba; Reisert, Marco; Schnell, Susanne; Hennig, Jürgen; von Elverfeldt, Dominik; Staiger, Jochen F.

    2013-01-01

    A major challenge in neuroscience is to accurately decipher in vivo the entire brain circuitry (connectome) at a microscopic level. Currently, the only methodology providing a global noninvasive window into structural brain connectivity is diffusion tractography. The extent to which the reconstructed pathways reflect realistic neuronal networks depends, however, on data acquisition and postprocessing factors. Through a unique combination of approaches, we designed and evaluated herein a framework for reliable fiber tracking and mapping of the living mouse brain connectome. One important wiring scheme, connecting gray matter regions and passing fiber-crossing areas, was closely examined: the lemniscal thalamocortical (TC) pathway. We quantitatively validated the TC projections inferred from in vivo tractography with correlative histological axonal tracing in the same wild-type and reeler mutant mice. We demonstrated noninvasively that changes in patterning of the cortical sheet, such as highly disorganized cortical lamination in reeler, led to spectacular compensatory remodeling of the TC pathway. PMID:23610438

  6. Diffusion tensor imaging detects ventilation-induced brain injury in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Dhafer M Alahmari

    Full Text Available Injurious mechanical ventilation causes white matter (WM injury in preterm infants through inflammatory and haemodynamic pathways. The relative contribution of each of these pathways is not known. We hypothesised that in vivo magnetic resonance imaging (MRI can detect WM brain injury resulting from mechanical ventilation 24 h after preterm delivery. Further we hypothesised that the combination of inflammatory and haemodynamic pathways, induced by umbilical cord occlusion (UCO increases brain injury at 24 h.Fetuses at 124±2 days gestation were exposed, instrumented and either ventilated for 15 min using a high tidal-volume (VT injurious strategy with the umbilical cord intact (INJ; inflammatory pathway only, or occluded (INJ+UCO; inflammatory and haemodynamic pathway. The ventilation groups were compared to lambs that underwent surgery but were not ventilated (Sham, and lambs that did not undergo surgery (unoperated control; Cont. Fetuses were placed back in utero after the 15 min intervention and ewes recovered. Twenty-four hours later, lambs were delivered, placed on a protective ventilation strategy, and underwent MRI of the brain using structural, diffusion tensor imaging (DTI and magnetic resonance spectroscopy (MRS techniques.Absolute MRS concentrations of creatine and choline were significantly decreased in INJ+UCO compared to Cont lambs (P = 0.03, P = 0.009, respectively; no significant differences were detected between the INJ or Sham groups and the Cont group. Axial diffusivities in the internal capsule and frontal WM were lower in INJ and INJ+UCO compared to Cont lambs (P = 0.05, P = 0.04, respectively. Lambs in the INJ and INJ+UCO groups had lower mean diffusivities in the frontal WM compared to Cont group (P = 0.04. DTI colour mapping revealed lower diffusivity in specific WM regions in the Sham, INJ, and INJ+UCO groups compared to the Cont group, but the differences did not reach significance. INJ+UCO lambs more likely to exhibit

  7. Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove

    2016-01-01

    anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d...... microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based...... neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate...

  8. Sex differences in brain organization: implications for human communication.

    Science.gov (United States)

    Hanske-Petitpierre, V; Chen, A C

    1985-12-01

    This article reviews current knowledge in two major research domains: sex differences in neuropsychophysiology, and in human communication. An attempt was made to integrate knowledge from several areas of brain research with human communication and to clarify how such a cooperative effort may be beneficial to both fields of study. By combining findings from the area of brain research, a communication paradigm was developed which contends that brain-related sex differences may reside largely in the area of communication of emotion.

  9. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  10. Neocortical glial cell numbers in human brains.

    Science.gov (United States)

    Pelvig, D P; Pakkenberg, H; Stark, A K; Pakkenberg, B

    2008-11-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex.

  11. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury

    Science.gov (United States)

    Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R

    2013-01-01

    Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence

  12. Assessing human skin with diffuse reflectance spectroscopy and colorimetry

    Science.gov (United States)

    Seo, InSeok; Liu, Yang; Bargo, Paulo R.; Kollias, Nikiforos

    2012-02-01

    Colorimetry has been used as an objective measure of perceived skin color by human eye to document and score physiological responses of the skin from external insults. CIE color space values (L*, a* and b*) are the most commonly used parameters to correlate visually perceived color attributes such as L* for pigment, a* for erythema, and b* for sallowness of the skin. In this study, we investigated the relation of Lab color scale to the amount of major skin chromophores (oxy-, deoxyhemoglobin and melanin) calculated from diffuse reflectance spectroscopy. Thirty two healthy human subjects with ages from 20 to 70 years old, skin types I-VI, were recruited for the study. DRS and colorimetry measurements were taken from the left and right cheeks, and on the right upper inner arm. The melanin content calculated from 630-700 nm range of DRS measurements was shown to correlate with the lightness of skin (L*) for most skin types. For subjects with medium-to-light complexion, melanin measured at the blue part spectrum and hemoglobin interfered on the relation of lightness of the skin color to the melanin content. The sallowness of the skin that is quantified by the melanin contribution at the blue part spectrum of DRS was found to be related to b* scale. This study demonstrates the importance of documenting skin color by assessing individual skin chromophores with diffuse reflectance spectroscopy, in comparison to colorimetry assessment.

  13. Diffusion-weighted MRI of myelination in the rat brain following treatment with gonadal hormones

    International Nuclear Information System (INIS)

    Prayer, D.; Roberts, T.; Barkovich, A.J.; Prayer, L.; Kucharczyk, J.; Moseley, M.; Arieff, A.

    1997-01-01

    Previous studies have demonstrated the ability of high-resolution diffusion-weighted MRI to show maturation of white-matter structures in the developing rat brain. The purpose of this study was to investigate the influence of gonadal steroid hormones on the rate of this development. Starting from their second postnatal day, 16 rat-pups of either sex were repeatedly treated with subcutaneous implants containing 17-beta estradiol or delta-androstene 3,17 dione, respectively. Serial T1-, T2- and diffusion-weighted MRI was performed weekly for 8 weeks using a 4.7 T unit. Maturation of anterior optic pathways and hemisphere commissures was assessed. Diffusion-weighted images were processed to produce ''anisotropy index maps'', previously shown to be sensitive to white-matter maturation. Compared with untreated rat-pups, estrogen-treated animals showed accelerated, and testosterone-treated animals delayed maturation on anisotropy index maps and histological sections. In all animals, maturational changes appeared earlie on anisotropy index maps than on other MRI sequences or on myelin-sensitive stained sections. Diffusion-weighted imaging, and the construction of spatial maps sensitive to diffusion anisotropy, seem to be the most sensitive approach for the detection of maturational white-matter changes, and thus may hold potential for early diagnosis of temporary delay or permanent disturbances of white-matter development. (orig.). With 6 figs., 1 tab

  14. Diffusion-weighted MRI of myelination in the rat brain following treatment with gonadal hormones

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, D. [Department of Radiology, Section of Neuroradiology, University of Vienna (Austria); Roberts, T. [Department of Radiology, Section of Neuroradiology, University of California at San Francisco (UCSF), CA (United States); Barkovich, A.J. [Department of Radiology, Section of Neuroradiology, University of California at San Francisco (UCSF), CA (United States); Prayer, L. [Department of Radiology, Section of Neuroradiology, University of Vienna (Austria); Kucharczyk, J. [Department of Radiology, Section of Neuroradiology, University of California at San Francisco (UCSF), CA (United States); Moseley, M. [Department of Radiology, Section of Neuroradiology, University of California at San Francisco (UCSF), CA (United States); Arieff, A. [Department of Medicine, Geriatrics Section, Veteran`s Affairs Medical Center and University of California at San Francisco (UCSF), CA (United States)

    1997-05-01

    Previous studies have demonstrated the ability of high-resolution diffusion-weighted MRI to show maturation of white-matter structures in the developing rat brain. The purpose of this study was to investigate the influence of gonadal steroid hormones on the rate of this development. Starting from their second postnatal day, 16 rat-pups of either sex were repeatedly treated with subcutaneous implants containing 17-beta estradiol or delta-androstene 3,17 dione, respectively. Serial T1-, T2- and diffusion-weighted MRI was performed weekly for 8 weeks using a 4.7 T unit. Maturation of anterior optic pathways and hemisphere commissures was assessed. Diffusion-weighted images were processed to produce ``anisotropy index maps``, previously shown to be sensitive to white-matter maturation. Compared with untreated rat-pups, estrogen-treated animals showed accelerated, and testosterone-treated animals delayed maturation on anisotropy index maps and histological sections. In all animals, maturational changes appeared earlie on anisotropy index maps than on other MRI sequences or on myelin-sensitive stained sections. Diffusion-weighted imaging, and the construction of spatial maps sensitive to diffusion anisotropy, seem to be the most sensitive approach for the detection of maturational white-matter changes, and thus may hold potential for early diagnosis of temporary delay or permanent disturbances of white-matter development. (orig.). With 6 figs., 1 tab.

  15. The structural, connectomic and network covariance of the human brain.

    Science.gov (United States)

    Irimia, Andrei; Van Horn, John D

    2013-02-01

    Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.

  16. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  17. Diffusion MRI processing for multi-compartment characterization of brain pathology

    International Nuclear Information System (INIS)

    Hedouin, Renaud

    2017-01-01

    Diffusion weighted imaging (DWI) is a specific type of MRI acquisition based on the direction of diffusion of the brain water molecules. It allows, through several acquisitions, to model the brain microstructure, as white matter, which is significantly smaller than the voxel-resolution. To acquire a large number of images in a clinical setting, very-fast acquisition techniques are required as single-shot imaging. However these acquisitions suffer locally large distortions. We propose a block-matching registration method based on the acquisition of images with opposite phase-encoding directions (PED). This technique specially designed for Echo-Planar Images (EPI) robustly correct images and provides a deformation field. This field is applicable to an entire DWI series from only one reversed EPI allowing distortion correction with a minimal acquisition time cost. This registration algorithm has been validated both on phantom and on in vivo data and is available in our source medical image processing toolbox Anima. From these diffusion images, we are able to construct multi-compartments models (MCM) which can represent complex brain microstructure. Doing registration, averaging and atlas creation on these MCM images is required to perform studies and statistic analyses. We propose a general method to interpolate MCM as a simplification problem based on spectral clustering. This technique, which is adaptable for any MCM, has been validated on both synthetic and real data. Then, from a registered dataset, we performed a patient to population analysis at a voxel-level computing statistics on MCM parameters. Specifically designed tractography can also be used to make analysis, following tracks, based on individual anisotropic compartments. All these tools are designed and used on real data and contribute to the search of bio-markers for brain diseases such as multiple sclerosis. (author)

  18. 1H diffusion-weighted, 13C and 17O NMR spectroscopy: methodological developments to study brain structure and function in vivo

    International Nuclear Information System (INIS)

    Najac, Chloe

    2014-01-01

    Magnetic Resonance Spectroscopy is a unique tool that allows acquiring brain biochemical profiles and quantifying many cellular parameters in vivo. During this thesis, three different techniques have been developed: (i) 1 H diffusion-weighted, (ii) carbon-13 ( 13 C) and (iii) oxygen-17 ( 17 O) NMR spectroscopy to study brain structure and function in vivo. Brain metabolites are cell-specific endogenous tracers of the intracellular space whose translational diffusion depends on many cellular properties (e.g.: cytosol viscosity and intracellular restriction). Studying the variation of the diffusion coefficient (ADC) as a function of diffusion time (td) allows untangling and quantifying those parameters. In particular, measuring metabolites ADC at long diffusion times gives information about the metabolites compartmentation in cells. In a first study, we measured neuronal and astrocytic metabolites ADC over a large time window (from 80 ms to 1 s) in a large voxel in the macaque brain. No dependence of all metabolites ADC on td was observed suggesting that metabolites primarily diffuse in neuronal (dendrites and axons) and astrocytic processes and are not confined inside the cell body and organelles (nucleus, mitochondria). The large size of the voxel, due to low detection sensitivity, did not allow us to study metabolites compartmentation in pure white (WM) and grey matters (GM). Therefore, we performed a new study in the human brain. Results showed that in both WM and GM metabolites diffuse in fiber-like cell structure. Finally, using an even larger time window (up to 2 s) in the macaque brain and analytical models mimicking the cell structure, we estimated the length of neuronal (∼110 μm) and astrocytic (∼70 μm) processes. ATP (adenosine triphosphate), the main source of energy in the organism, is produced thanks to glucose oxidation inside the mitochondria. 13 C NMR spectroscopy is a well-known technique to study brain energy metabolism and can be used to

  19. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging.

    Science.gov (United States)

    Brody, David L; Mac Donald, Christine L; Shimony, Joshua S

    2015-01-01

    Brain imaging plays a key role in the assessment of traumatic brain injury. In this review, we present our perspectives on the use of computed tomography (CT), conventional magnetic resonance imaging (MRI), and newer advanced modalities such as diffusion tensor imaging. Specifically, we address assessment for immediately life-threatening intracranial lesions (noncontrast head CT), assessment of progression of intracranial lesions (noncontrast head CT), documenting intracranial abnormalities for medicolegal reasons (conventional MRI with blood-sensitive sequences), presurgical planning for post-traumatic epilepsy (high spatial resolution conventional MRI), early prognostic decision making (conventional MRI with diffusion-weighted imaging), prognostic assessment for rehabilitative planning (conventional MRI and possibly diffusion tensor imaging in the future), stratification of subjects and pharmacodynamic tracking of targeted therapies in clinical trials (specific MRI sequences or positron emission tomography (PET) ligands, e.g., diffusion tensor imaging for traumatic axonal injury). We would like to emphasize that all of these methods, especially the newer research approaches, require careful radiologic-pathologic validation for optimal interpretation. We have taken this approach in a mouse model of pericontusional traumatic axonal injury. We found that the extent of reduction in the diffusion tensor imaging parameter relative anisotropy directly correlated with the number of amyloid precursor protein (APP)-stained axonal varicosities (r(2)=0.81, p<0.0001, n=20 injured mice). Interestingly, however, the least severe contusional injuries did not result in APP-stained axonal varicosities, but did cause reduction in relative anisotropy. Clearly, both the imaging assessments and the pathologic assessments will require iterative refinement. © 2015 Elsevier B.V. All rights reserved.

  20. Diffusion-weighted MRI characteristics of the cerebral metastasis to brain boundary predicts patient outcomes

    International Nuclear Information System (INIS)

    Zakaria, Rasheed; Das, Kumar; Radon, Mark; Bhojak, Maneesh; Rudland, Philip R; Sluming, Vanessa; Jenkinson, Michael D

    2014-01-01

    Diffusion-weighted MRI (DWI) has been used in neurosurgical practice mainly to distinguish cerebral metastases from abscess and glioma. There is evidence from other solid organ cancers and metastases that DWI may be used as a biomarker of prognosis and treatment response. We therefore investigated DWI characteristics of cerebral metastases and their peritumoral region recorded pre-operatively and related these to patient outcomes. Retrospective analysis of 76 cases operated upon at a single institution with DWI performed pre-operatively at 1.5T. Maps of apparent diffusion coefficient (ADC) were generated using standard protocols. Readings were taken from the tumor, peritumoral region and across the brain-tumor interface. Patient outcomes were overall survival and time to local recurrence. A minimum ADC greater than 919.4 × 10 -6 mm 2 /s within a metastasis predicted longer overall survival regardless of adjuvant therapies. This was not simply due to differences between the types of primary cancer because the effect was observed even in a subgroup of 36 patients with the same primary, non-small cell lung cancer. The change in diffusion across the tumor border and into peritumoral brain was measured by the “ADC transition coefficient” or ATC and this was more strongly predictive than ADC readings alone. Metastases with a sharp change in diffusion across their border (ATC >0.279) showed shorter overall survival compared to those with a more diffuse edge. The ATC was the only imaging measurement which independently predicted overall survival in multivariate analysis (hazard ratio 0.54, 95% CI 0.3 – 0.97, p = 0.04). DWI demonstrates changes in the tumor, across the tumor edge and in the peritumoral region which may not be visible on conventional MRI and this may be useful in predicting patient outcomes for operated cerebral metastases

  1. Brain metastasis of Wilms tumor with diffuse anaplasia and complex cytogenetic phenotype in a child with neurofibromatosis Type 1.

    Science.gov (United States)

    Shvartsbeyn, Marianna; Bassani, Luigi; Mikolaenko, Irina; Wisoff, Jeffrey H

    2011-10-01

    The authors report the first case of a Wilms tumor (WT) with diffuse anaplasia metastatic to the brain in a 13-year-old girl with a history of neurofibromatosis Type 1. At presentation, the metastatic tumor had radiological features that suggested a meningioma. Histologically it was characterized by striking anaplasia and features similar to the patient's previously resected WT with diffuse anaplasia.

  2. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. New insights into the developing rabbit brain using diffusion tensor tractography and generalized q-sampling MRI.

    Directory of Open Access Journals (Sweden)

    Seong Yong Lim

    Full Text Available The use of modern neuroimaging methods to characterize the complex anatomy of brain development at different stages reveals an enormous wealth of information in understanding this highly ordered process and provides clues to detect neurological and neurobehavioral disorders that have their origin in early structural and functional cerebral maturation. Non-invasive diffusion tensor magnetic resonance imaging (DTI is able to distinguish cerebral microscopic structures, especially in the white matter regions. However, DTI is unable to resolve the complicated neural structure, i.e., the fiber crossing that is frequently observed during the maturation process. To overcome this limitation, several methods have been proposed. One such method, generalized q-sampling imaging (GQI, can be applied to a variety of datasets, including the single shell, multi-shell or grid sampling schemes that are believed to be able to resolve the complicated crossing fibers. Rabbits have been widely used for neurodevelopment research because they exhibit human-like timing of perinatal brain white matter maturation. Here, we present a longitudinal study using both DTI and GQI to demonstrate the changes in cerebral maturation of in vivo developing rabbit brains over a period of 40 weeks. Fractional anisotropy (FA of DTI and generalized fractional anisotropy (GFA of GQI indices demonstrated that the white matter anisotropy increased with age, with GFA exhibiting an increase in the hippocampus as well. Normalized quantitative anisotropy (NQA of GQI also revealed an increase in the hippocampus, allowing us to observe the changes in gray matter as well. Regional and whole brain DTI tractography also demonstrated refinement in fiber pathway architecture with maturation. We concluded that DTI and GQI results were able to characterize the white matter anisotropy changes, whereas GQI provided further information about the gray matter hippocampus area. This developing rabbit brain

  4. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography.

    Science.gov (United States)

    Reid, Lee B; Sale, Martin V; Cunnington, Ross; Mattingley, Jason B; Rose, Stephen E

    2017-09-01

    We have reported reliable changes in behavior, brain structure, and function in 24 healthy right-handed adults who practiced a finger-thumb opposition sequence task with their left hand for 10 min daily, over 4 weeks. Here, we extend these findings by using diffusion MRI to investigate white-matter changes in the corticospinal tract, basal-ganglia, and connections of the dorsolateral prefrontal cortex. Twenty-three participant datasets were available with pre-training and post-training scans. Task performance improved in all participants (mean: 52.8%, SD: 20.0%; group P right caudate nucleus (4.9%; P left nucleus accumbens (-1.3%; P right corticospinal tract (mean 3.28%; P left corticospinal tract did not show any changes. FA also increased in white matter connections between the right middle frontal gyrus and both right caudate nucleus (17/22 participants; P right supplementary motor area (18/22 participants; P left (non-trained) hemisphere. In combination with our functional and structural findings, this study provides detailed, multifocal evidence for widespread neuroplastic changes in the human brain resulting from motor training. Hum Brain Mapp 38:4302-4312, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Morphological and functional MRI, MRS, perfusion and diffusion changes after radiosurgery of brain metastasis

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Kim, Sung Tae; Byun, Hong Sik; Jeon, Pyoung; Kim, Keonha; Kim, Hyungjin; Lee, Jung II

    2009-01-01

    Radiosurgery is a noninvasive procedure where spatially accurate and highly conformal doses of radiation are targeted at brain lesions with an ablative intent. Recently, radiosurgery has been established as an effective technique for local treatment of brain metastasis. After radiosurgery, magnetic resonance (MR) imaging plays an important role in the assessment of the therapeutic response and of any complications. The therapeutic approach depends on the imaging findings obtained after radiosurgery, which have a role in the decision making to perform additional invasive modalities (repeat resection, biopsy) to obtain a definite diagnosis and to improve the survival of patients. Conventional MR imaging findings are mainly based on morphological alterations of tumors. However, there are variable imaging findings of radiation-induced changes including radiation necrosis in the brain. Radiologists are sometimes confused by radiation-induced injuries, including radiation necrosis, that are seen on conventional MR imaging. The pattern of abnormal enhancement on follow-up conventional MR imaging closely mimics that of a recurrent brain metastasis. So, classifying newly developed abnormal enhancing lesions in follow-up of treated brain metastasis with correct diagnosis is one of the key goals in neuro-oncologic imaging. To overcome limitations of the use of morphology-based conventional MR imaging, several physiological-based functional MR imaging methods have been used, namely diffusion-weighted imaging, perfusion MR imaging, and proton MR spectroscopy, for the detection of hemodynamic, metabolic, and cellular alterations. These imaging modalities provide additional information to allow clinicians to make proper decisions regarding patient treatment.

  6. A new model for diffuse brain injury by rotational acceleration: I model, gross appearance, and astrocytosis.

    Science.gov (United States)

    Gutierrez, E; Huang, Y; Haglid, K; Bao, F; Hansson, H A; Hamberger, A; Viano, D

    2001-03-01

    Rapid head rotation is a major cause of brain damage in automobile crashes and falls. This report details a new model for rotational acceleration about the center of mass of the rabbit head. This allows the study of brain injury without translational acceleration of the head. Impact from a pneumatic cylinder was transferred to the skull surface to cause a half-sine peak acceleration of 2.1 x 10(5) rad/s2 and 0.96-ms pulse duration. Extensive subarachnoid hemorrhages and small focal bleedings were observed in the brain tissue. A pronounced reactive astrogliosis was found 8-14 days after trauma, both as networks around the focal hemorrhages and more diffusely in several brain regions. Astrocytosis was prominent in the gray matter of the cerebral cortex, layers II-V, and in the granule cell layer and around the axons of the pyramidal neurons in the hippocampus. The nuclei of cranial nerves, such as the hypoglossal and facial nerves, also showed intense astrocytosis. The new model allows study of brain injuries from head rotation in the absence of translational influences.

  7. Patterns of accentuated grey-white differentiation on diffusion-weighted imaging or the apparent diffusion coefficient maps in comatose survivors after global brain injury

    International Nuclear Information System (INIS)

    Kim, E.; Sohn, C.-H.; Chang, K.-H.; Chang, H.-W.; Lee, D.H.

    2011-01-01

    Aim: To determine what disease entities show accentuated grey-white differentiation of the cerebral hemisphere on diffusion-weighted images (DWI) or apparent diffusion coefficient (ADC) maps, and whether there is a correlation between the different patterns and the cause of the brain injury. Methods and materials: The DWI and ADC maps of 19 patients with global brain injury were reviewed and evaluated to investigate whether there was a correlation between the different patterns seen on the DWI and ADC maps and the cause of global brain injury. The ADC values were measured for quantitative analysis. Results: There were three different patterns of ADC decrease: a predominant ADC decrease in only the cerebral cortex (n = 8; pattern I); an ADC decrease in both the cerebral cortex and white matter (WM) and a predominant decrease in the WM (n = 9; pattern II); and a predominant ADC decrease in only the WM (n = 3; pattern III). Conclusion: Pattern I is cerebral cortical injury, suggesting cortical laminar necrosis in hypoxic brain injury. Pattern II is cerebral cortical and WM injury, frequently seen in brain death, while pattern 3 is mainly WM injury, especially found in hypoglycaemic brain injury. It is likely that pattern I is decorticate injury and pattern II is decerebrate injury in hypoxic ischaemic encephalopathy.Patterns I and II are found in severe hypoxic brain injury, and pattern II is frequently shown in brain death, whereas pattern III was found in severe hypoglycaemic injury.

  8. Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pannek, Kerstin [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, School of Medicine, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); Guzzetta, Andrea [IRCCS Stella Maris, Department of Developmental Neuroscience, Calambrone Pisa (Italy); Colditz, Paul B. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Perinatal Research Centre, Brisbane (Australia); Rose, Stephen E. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); University of Queensland Centre for Clinical Research, Royal Brisbane and Women' s Hospital, Brisbane (Australia)

    2012-10-15

    Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)

  9. A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging.

    Science.gov (United States)

    Wu, Zhanxiong; Liu, Yang; Hong, Ming; Yu, Xiaohui

    2018-06-01

    The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity. Graphical abstract ᅟ.

  10. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  11. Disruption of brain anatomical networks in schizophrenia: A longitudinal, diffusion tensor imaging based study.

    Science.gov (United States)

    Sun, Yu; Chen, Yu; Lee, Renick; Bezerianos, Anastasios; Collinson, Simon L; Sim, Kang

    2016-03-01

    Despite convergent neuroimaging evidence indicating a wide range of brain abnormalities in schizophrenia, our understanding of alterations in the topological architecture of brain anatomical networks and how they are modulated over time, is still rudimentary. Here, we employed graph theoretical analysis of longitudinal diffusion tensor imaging data (DTI) over a 5-year period to investigate brain network topology in schizophrenia and its relationship with clinical manifestations of the illness. Using deterministic tractography, weighted brain anatomical networks were constructed from 31 patients experiencing schizophrenia and 28 age- and gender-matched healthy control subjects. Although the overall small-world characteristics were observed at both baseline and follow-up, a scan-point independent significant deficit of global integration was found in patients compared to controls, suggesting dysfunctional integration of the brain and supporting the notion of schizophrenia as a disconnection syndrome. Specifically, several brain regions (e.g., the inferior frontal gyrus and the bilateral insula) that are crucial for cognitive and emotional integration were aberrant. Furthermore, a significant group-by-longitudinal scan interaction was revealed in the characteristic path length and global efficiency, attributing to a progressive aberration of global integration in patients compared to healthy controls. Moreover, the progressive disruptions of the brain anatomical network topology were associated with the clinical symptoms of the patients. Together, our findings provide insights into the substrates of anatomical dysconnectivity patterns for schizophrenia and highlight the potential for connectome-based metrics as neural markers of illness progression and clinical change with treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yu Sun

    Full Text Available Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical "small-world" architecture (high local clustering and short paths between nodes. Additional analysis revealed a more economical "small-world" architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.

  13. Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study.

    Science.gov (United States)

    Sun, Yu; Lee, Renick; Chen, Yu; Collinson, Simon; Thakor, Nitish; Bezerianos, Anastasios; Sim, Kang

    2015-01-01

    Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical "small-world" architecture (high local clustering and short paths between nodes). Additional analysis revealed a more economical "small-world" architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus) exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.

  14. Somatotopic arrangement and location of the corticospinal tract in the brainstem of the human brain.

    Science.gov (United States)

    Jang, Sung Ho

    2011-07-01

    The corticospinal tract (CST) is the most important motor pathway in the human brain. Detailed knowledge of CST somatotopy is important in terms of rehabilitative management and invasive procedures for patients with brain injuries. In this study, I conducted a review of nine previous studies of the somatotopical location and arrangement at the brainstem in the human brain. The results of this review indicated that the hand and leg somatotopies of the CST are arranged medio-laterally in the mid to lateral portion of the cerebral peduncle, ventromedial-dorsolaterally in the pontine basis, and medio-laterally in the medullary pyramid. However, few diffusion tensor imaging (DTI) studies have been conducted on this topic, and only nine have been reported: midbrain (2 studies), pons (4 studies), and medulla (1 study). Therefore, further DTI studies should be conducted in order to expand the literature on this topic. In particular, research on midbrain and medulla should be encouraged.

  15. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma.

    Science.gov (United States)

    Smith, Alex J; Yao, Xiaoming; Dix, James A; Jin, Byung-Ju; Verkman, Alan S

    2017-08-21

    Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.

  16. Analysis of brain CT on 120 patients of human cysticercosis

    International Nuclear Information System (INIS)

    Ma, J.; To, R.; Ri, T.; Ra, S.; Inomata, Taiten; Ogawa, Yasuhiro; Maeda, Tomoo.

    1990-01-01

    A study on brain CT was made in 120 patients of human cysticercosis, which is a rare disease in Japan and clinical symptoms and laboratory data for the diagnosis were also discussed. From the point of therapeutic view, we proposed a new differentiation on brain CT of human cysticercosis, which is divided into two groups according to the alve or dead parasite. Furthermore, we proposed a new type named multiple large and small cysts type on brain CT. The idea of diagnostic standard was made integrating brain CT image, clinical symptoms and labolatory data. (author)

  17. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  18. The progress of radiosensitive genes of human brain glioma

    International Nuclear Information System (INIS)

    Wang Xi; Liu Qiang

    2008-01-01

    Human gliomas are one of the most aggressive tumors in brain which grow infiltrativly. Surgery is the mainstay of treatment. But as the tumor could not be entirely cut off, it is easy to relapse. Radiotherapy plays an important role for patients with gliomas after surgery. The efficacy of radiotherapy is associated with radio sensitivity of human gliomas. This paper makes a summary of current situation and progress for radiosensitive genes of human brain gliomas. (authors)

  19. Diffusion properties of band 3 in human erythrocytes

    Science.gov (United States)

    Spector, Jeffrey O.

    The plasma membrane of the human erythrocyte (RBC) is a six fold symmetric network held together at various pinning points by several multi-protein complexes. This unique architecture is what gives the RBC its remarkable material properties and any disruptions to the network can have severe consequences for the cell. Band 3 is a major transmembrane protein that plays the role of linking the fluid lipid bilayer to the cytoskeletal network. To interrogate the structural integrity of the RBC membrane we have tracked individual band 3 molecules in RBCs displaying a variety of pathologies that are all a consequence of membrane or network related defects. These diseases are spherocytosis, elliptocytosis, and pyropokilocytosis. We have also investigated the protein related diseases sickle cell, and south east asian ovalocytosis. To assess the impact that the network has on the dynamic organization of the cell we have also studied the mobility of band 3 in RBC progenitor cells. Individual band 3 molecules were imaged at 120 frames/second and their diffusion coefficients and compartment sizes recorded. The distributions of the compartment sizes combined with the information about the short and long time diffusion of band 3 has given us insight into the architecture of the membrane in normal and diseased cells. The observation that different membrane pathologies can be distinguished, even to the point of different molecular origins of the same disease, implies that the mobility of transmembrane proteins may be a useful tool for characterizing the "health" of the membrane.

  20. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Oh, Tong In; Kim, Hyung Joong, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr; Woo, Eung Je, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Seoul 02447 (Korea, Republic of); Kyung, Eun Jung [Department of Pharmacology, Chung-Ang University, Seoul 06974 (Korea, Republic of); Kim, Hyun Bum [Department of East-West Medical Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Kwon, Oh In [Department of Mathematics, Konkuk University, Seoul 05029 (Korea, Republic of)

    2016-06-15

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  2. Diffusion-weighted MR imaging in animal modil with acute ischemic brain infarction : evaluation of reversible brain injury

    International Nuclear Information System (INIS)

    Byun, Woo Mok; Chang, Han Won; Cho, Inn Ho; Hah, Jung Sang; Sung, Eon Gi

    2001-01-01

    To determine whether the analysis of abnormally high signal intensities in ischemic tissue, as revealed by diffusion-weighted MR imaging (DWI) can be used to evaluate reversible brain lesions in a cat model of acute ischemia. Ten cats were divided into two groups of five (Group I and Group II), and in all animals the middle cerebral artery was temporarily occluded. Group I underwent T2-DWI 30 minutes after occlusion, and Group II 120 minutes after occlusion. In both groups, DWI was performed one hour and 24 hours after reperfusion (at one hour, non-T2-weighted; at 24 hours, T2-weighted). Both occlusion and reperfusion were monitored by 99m TC-ECD brain perfusion SPECT. All animals were sacrificed 24 hours later and their brain tissue was stained with TTC. Signal intensity ratios (SIR, signifying average signal intensity within the region of interest divided by that in the contralateral, nonischemic, homologous region) of the two groups, as seen on DWI were compared. The percentage of hemispheric lesions occurring in the two groups was also compared. SIR after occlusion of the middle cerebral artery was 1.29 in Group I and 1.59 in Group II. Twenty-four hours after reperfusion, SIR in Group I was higher than in Group II (p<0.01). After occlusion and reperfusion, the percentage of hemispheric lesions in Group I was less than in Group II. For the latter, the percentage of these lesions revealed by TTC staining and T2-weighted imaging was 48% and 59%, respectively, findings distinctly different from those for Group I. In addition, in group I, infarction was revealed by neither TTC staining nor T2-weighted imaging (p<0.01). The use of DWI to evaluate signal intensity ratios can help determine whether or not brain injury after temporary cerebral ischemia is reversible

  3. Diffusion weighted MR imaging in non-infarct lesions of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Karaarslan, E. [Department of Radiology, American Hospital, Sisli, Istanbul (Turkey)], E-mail: ercankaraarslan@yahoo.com; Arslan, A. [Department of Radiology, Kocaeli University Medical School, Kocaeli (Turkey)], E-mail: arzuarslan@netscape.net

    2008-03-15

    Diffusion weighted imaging (DWI) is a relatively new method in which the images are formed by the contrast produced by the random microscopic motion of water molecules in different tissues. Although DWI has been tried for different organ systems, it has been found its primary use in the central nervous system. The most widely used clinical application is in the detection of hyperacute infarcts and the differentiation of acute or subacute infarction from chronic infarction. Recently DWI has been applied to various other cerebral diseases. In this pictorial paper the authors demonstrated different DWI patterns of non-infarct lesions of the brain which are hyperintense in the diffusion trace image, such as infectious, neoplastic and demyelinating diseases, encephalopathies - including hypoxic-ischemic, hypertensive, eclamptic, toxic, metabolic and mitochondrial encephalopathies - leukodystrophies, vasculitis and vasculopathies, hemorrhage and trauma.

  4. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.

    Science.gov (United States)

    Bastiani, Matteo; Andersson, Jesper L R; Cordero-Grande, Lucilio; Murgasova, Maria; Hutter, Jana; Price, Anthony N; Makropoulos, Antonios; Fitzgibbon, Sean P; Hughes, Emer; Rueckert, Daniel; Victor, Suresh; Rutherford, Mary; Edwards, A David; Smith, Stephen M; Tournier, Jacques-Donald; Hajnal, Joseph V; Jbabdi, Saad; Sotiropoulos, Stamatios N

    2018-05-28

    The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints...... individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships...... in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/....

  6. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  7. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  8. Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review.

    Science.gov (United States)

    Asken, Breton Michael; DeKosky, Steven T; Clugston, James R; Jaffee, Michael S; Bauer, Russell M

    2018-04-01

    This review seeks to summarize diffusion tensor imaging (DTI) studies that have evaluated structural changes attributed to the mechanisms of mild traumatic brain injury (mTBI) in adult civilian, military, and athlete populations. Articles from 2002 to 2016 were retrieved from PubMed/MEDLINE, EBSCOhost, and Google Scholar, using a Boolean search string containing the following terms: "diffusion tensor imaging", "diffusion imaging", "DTI", "white matter", "concussion", "mild traumatic brain injury", "mTBI", "traumatic brain injury", and "TBI". We added studies not identified by this method that were found via manually-searched reference lists. We identified 86 eligible studies from English-language journals using, adult, human samples. Studies were evaluated based on duration between injury and DTI assessment, categorized as acute, subacute/chronic, remote mTBI, and repetitive brain trauma considerations. Since changes in brain structure after mTBI can also be affected by other co-occurring medical and demographic factors, we also briefly review DTI studies that have addressed socioeconomic status factors (SES), major depressive disorder (MDD), and attention-deficit hyperactivity disorder (ADHD). The review describes population-specific risks and the complications of clinical versus pathophysiological outcomes of mTBI. We had anticipated that the distinct population groups (civilian, military, and athlete) would require separate consideration, and various aspects of the study characteristics supported this. In general, study results suggested widespread but inconsistent differences in white matter diffusion metrics (primarily fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) following mTBI/concussion. Inspection of study designs and results revealed potential explanations for discrepant DTI findings, such as control group variability, analytic techniques, the manner in which regional differences were reported, and

  9. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression

    DEFF Research Database (Denmark)

    Jørgensen, A.; Magnusson, P.; Hanson, Lars G.

    2016-01-01

    , and metabolite changes in 19 patients receiving ECT for severe depression. Other regions of interest included the amygdala, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex, and hypothalamus. Patients received a 3T MR scan before ECT (TP1), 1 week (TP2), and 4 weeks (TP3) after ECT. Results......: Hippocampal and amygdala volume increased significantly at TP2 and continued to be increased at TP3. DLPFC exhibited a transient volume reduction at TP2. DTI revealed a reduced anisotropy and diffusivity of the hippocampus at TP2. We found no significant post-ECT changes in brain metabolite concentrations...

  10. Diffusion tensor imaging and three-dimensional brain fiber tracking for the diagnosis of multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Bing, Hu; Hong, Shan; Mingyue, Luo; Shaoqiong, Chen; Wang, Kang; Bingjun, He; Yan, Zou [Department of Radiology, the 3rd Affiliated Hospital of Sun Yat-sen Univ., Guangzhou (China); Binbin, Ye

    2007-02-15

    Objective: To demonstrate the diffusion tensor imaging (DTI) characteristics of multiple sclerosis (MS) plaques, periplaque white matter regions and normal appearing white matter (NAWM) regions in patients with MS, and to evaluate the clinical values of DTI and three-dimensional brain fiber tracking for the diagnosis of MS. Methods: Conventional MRI and DTI were performed in 32 patients with MS and 32 age-matched control subjects. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated and coregistered with T{sub 2}-weighted MR images. FA and ADC values were calculated in regions of interest in plaques, periplaque white matter regions, NAWM regions and white matter regions in control subjects. And three-dimensional brain fiber tracking maps were generated by using the DTI. Results: The ADC was (1.233 {+-} 0.119) x 10{sup -3} mm{sup 2}/s in MS plaques, (0.973 {+-} 0.098) x 10{sup -3} mm{sup 2}/s in periplaque white matter regions, (0.748 {+-} 0.089) x 10{sup -3} mm{sup 2}/s in NAWM, and (0.620 {+-} 0.094) x 10{sup -3} mm{sup 2}/s in control subjects. The FA was 0.225 {+-} 0.052 in MS plaques, 0.311 {+-} 0.050 in periplaque white matter regions, 0.421 {+-} 0.070 in NAWM, and 0.476 {+-} 0.069 in control subjects. Significant differences in FA and ADC values were observed among all white matter regions (P<0.01). MS plaques were demonstrated in three-dimensional brain fiber tracking maps. Conclusion: FA and ADC maps are helpful for the evaluation of all white matter changes of MS. The abnormalities of white matter fiber tracts in MS plaques could be demonstrated in three-dimensional brain fiber tracking maps. (authors)

  11. Diffusion tensor imaging and three-dimensional brain fiber tracking for the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Hu Bing; Shan Hong; Luo Mingyue; Chen Shaoqiong; Kang Wang; He Bingjun; Zou Yan; Ye Binbin

    2007-01-01

    Objective: To demonstrate the diffusion tensor imaging (DTI) characteristics of multiple sclerosis (MS) plaques, periplaque white matter regions and normal appearing white matter (NAWM) regions in patients with MS, and to evaluate the clinical values of DTI and three-dimensional brain fiber tracking for the diagnosis of MS. Methods: Conventional MRI and DTI were performed in 32 patients with MS and 32 age-matched control subjects. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated and coregistered with T 2 -weighted MR images. FA and ADC values were calculated in regions of interest in plaques, periplaque white matter regions, NAWM regions and white matter regions in control subjects. And three-dimensional brain fiber tracking maps were generated by using the DTI. Results: The ADC was (1.233 ± 0.119) x 10 -3 mm 2 /s in MS plaques, (0.973 ± 0.098) x 10 -3 mm 2 /s in periplaque white matter regions, (0.748 ± 0.089) x 10 -3 mm 2 /s in NAWM, and (0.620 ± 0.094) x 10 -3 mm 2 /s in control subjects. The FA was 0.225 ± 0.052 in MS plaques, 0.311 ± 0.050 in periplaque white matter regions, 0.421 ± 0.070 in NAWM, and 0.476 ± 0.069 in control subjects. Significant differences in FA and ADC values were observed among all white matter regions (P<0.01). MS plaques were demonstrated in three-dimensional brain fiber tracking maps. Conclusion: FA and ADC maps are helpful for the evaluation of all white matter changes of MS. The abnormalities of white matter fiber tracts in MS plaques could be demonstrated in three-dimensional brain fiber tracking maps. (authors)

  12. Discrimination of different brain metastases and primary CNS lymphomas using morphologic criteria and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bette, S.; Wiestler, B.; Huber, T.; Boeckh-Behrens, T.; Zimmer, C.; Kirschke, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuroradiology; Delbridge, C. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuropathology; Meyer, B.; Gempt, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neurosurgery

    2016-12-15

    Brain metastases are a common complication of cancer and occur in about 15-40% of patients with malignancies. The aim of this retrospective study was to differentiate between metastases from different primary tumors/CNS lymphyomas using morphologic criteria, fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Morphologic criteria such as hemorrhage, cysts, pattern of contrast enhancement and location were reported in 200 consecutive patients with brain metastases/primary CNS lymphomas. FA and ADC values were measured in regions of interest (ROIs) placed in the contrast-enhancing tumor part, the necrosis and the non-enhancing peritumoral region (NEPTR). Differences between histopathological subtypes of metastases were analyzed using non-parametric tests, decision trees and hierarchical clustering analysis. Significant differences were found in morphologic criteria such as hemorrhage or pattern of contrast enhancement. In diffusion measurements, significant differences between the different tumor entities were only found in ADC analyzed in the contrast-enhancing tumor part. Among single tumor entities, primary CNS lymphomas showed significantly lower median ADC values in the contrast-enhancing tumor part (ADC{sub lymphoma} 0.92 [0.83-1.07] vs. ADC{sub no} {sub lymphoma} 1.35 [1.10-1.64] P=0.001). Further differentiation between types of metastases was not possible using FA and ADC. There were morphologic differences among the main subtypes of brain metastases/CNS lymphomas. However, due to a high variability of common types of metastases and low specificity, prospective differentiation remained challenging. DTI including FA and ADC was not a reliable tool for differentiation between different histopathological subtypes of brain metastases except for CNS lymphomas showing lower ADC values. Biopsy, surgery and staging remain essential for diagnosis.

  13. Toward Developmental Connectomics of the Human Brain

    OpenAIRE

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorder...

  14. Towards Developmental Connectomics of the Human Brain

    OpenAIRE

    Miao eCao; Hao eHuang; Hao eHuang; Yun ePeng; Qi eDong; Yong eHe

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders...

  15. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis.

    Science.gov (United States)

    Yang, Xu; Cao, Ding; Liang, Xiumei; Zhao, Jiannong

    2017-07-01

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on précised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p ˂ 0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p ˂ 0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients.

  16. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis

    International Nuclear Information System (INIS)

    Yang, Xu; Cao, Ding; Liang, Xiumei; Zhao, Jiannong

    2017-01-01

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on precised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p %<0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p %<0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients. (orig.)

  17. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China); Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Cao, Ding [Chongqing Medical University, Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing (China); Liang, Xiumei [Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Zhao, Jiannong [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China)

    2017-07-15

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on precised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p %<0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p %<0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients. (orig.)

  18. Diffusion-weighted magnetic resonance imaging (MRI) in acute brain stem infarction

    International Nuclear Information System (INIS)

    Narisawa, Aya; Shamoto, Hiroshi; Shimizu, Hiroaki; Tominaga, Teiji; Yoshimoto, Takashi

    2001-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) provides one of the earliest demonstrations of ischemic lesions. However some lesions may be missed in the acute stage due to technical limitation of DWI. We therefore conducted the study to clarify the sensitivity of DWI to acute brain stem infarctions. Twenty-eight patients with the final diagnosis of brain stem infarction (midbrain 2, pons 9, medulla oblongata 17) who had been examined by DWI within 24 hours of onset were retrospectively analyzed for how sensitively the initial DWI demonstrated the final ischemic lesion. Only obvious (distinguishable with DWI alone without referring clinical symptoms and other informations) hyperintensity on DWI was regarded to show an ischemic lesion. Sixteen (57.1%) out of 28 patients had brain stem infarctions demonstrated by initial DWI. In the remaining 12 cases, no obvious ischemic lesion was evident on initial DWI. Subsequent MRI studies obtained 127 hours, on average after the onset showed infarction in the medulla oblongate in 11 cases and in the pons in one case. Negative findings of DWI in the acute stage does not exclude possibility of the brain stem infarction, in particularly medulla oblongata infarction. (author)

  19. Preliminary study of normal changes in brain white matter during childhood with diffusion tensor imaging

    International Nuclear Information System (INIS)

    Xiao Jiangxi; Guo Xuemei; Xie Sheng; Wang Xiaoying; Jiang Xuexiang

    2005-01-01

    Objective: To study the normal changes in brain white matter during childhood by analyzing the anisotropy of different regions and different age groups with diffusion tensor imaging (DTI). Methods: DTI was performed in 89 children (age range from 2 days to 18 years) without brain abnormalities, and the data measured in fractional anisotropy (FA) maps were analyzed statistically. Children less than 6 months were ranged to group 1, 6-12 months to group 2, 1-3 years to group 3, 3-5 years to group 4, 5-8 years to group 5, 8-12 years to group 6, 12-18 years to group 7. Results: (1) There were significant differences in anisotropy (FA values) among different regions of white matter in brain. In group 7, the FA value of corpus callosum was 0.826 ± 0.039, middle cerebellar peduncle 0.678 ± 0.043, frontal white matter 0.489 ± 0.033. (2) The anisotropy among different age group was statistically different, P<0.05. (3) The anisotropy of white matter increased with the increasing of age, and FA values showed positively exponentially correlations with age. Conclusion: DTI shows the structure of white matters in vivo, with which normal changes in brain during childhood can be evaluated. (authors)

  20. Persistent lesion hyperintensity on brain diffusion-weighted MRI is an early sign of intravascular lymphoma.

    Science.gov (United States)

    Kageyama, Takashi; Yamanaka, Haruo; Nakamura, Fumihiko; Suenaga, Toshihiko

    2017-06-08

    A 63-year-old man presented with right-sided hemianopia and unsteady gait. Brain MRI revealed multiple hyperintense infarct-like lesions on diffusion-weighted images (DWI). Hyperintensity persisted in some of these lesions even after 6 weeks, although his symptoms were ameliorated then. The patient developed episodic dizziness and a transient event of apraxia at 18 weeks after the first episode. Brain MRI revealed additional hyperintense lesions on DWI, which persisted even after 7 weeks. Eventually, the patient manifested cauda equina syndrome 39 weeks after the first episode. Brain MRI showed the presence of new lesions in addition to the persistent hyperintense lesions on DWI over 21 weeks in the right frontal lobe. Based on laboratory findings and the pathological assessment of bone marrow and random skin biopsies, the patient was diagnosed with intravascular lymphoma (IVL). Persistent hyperintense lesions on DWI of brain MRI may precede the clinical exacerbation of IVL. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. The Complex Functioning of the Human Brain: The Two Hemispheres

    Directory of Open Access Journals (Sweden)

    Iulia Cristina Timofti

    2010-04-01

    Full Text Available The present study reveals just a glimpse of the possible functions and reactions that the human brain can have. I considered as good examples different situations characteristic both of a normal person and a split-brain one. These situations prove that the brain, although divided in two, works as a unit, as an amazing computer that has data processing as a main goal.

  2. Neuroglobin and Cytoglobin expression in the human brain

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Hay-Schmidt, Anders

    2013-01-01

    Neuroglobin and Cytoglobin are new members of the heme-globin family. Both globins are primarily expressed in neurons of the brain and retina. Neuroglobin and Cytoglobin have been suggested as novel therapeutic targets in various neurodegenerative diseases based on their oxygen binding and cell...... protecting properties. However, findings in Neuroglobin-deficient mice question the endogenous neuroprotective properties. The expression pattern of Neuroglobin and Cytoglobin in the rodent brain is also in contradiction to a major role of neuronal protection. In a recent study, Neuroglobin was ubiquitously...... expressed and up-regulated following stroke in the human brain. The present study aimed at confirming our previous observations in rodents using two post-mortem human brains. The anatomical localization of Neuroglobin and Cytoglobin in the human brain is much like what has been described for the rodent...

  3. Human Thalamic-Prefrontal Peduncle Connectivity Revealed by Diffusion Spectrum Imaging Fiber Tracking

    Directory of Open Access Journals (Sweden)

    Chuanqi Sun

    2018-04-01

    Full Text Available The thalamic-prefrontal peduncle (TPP is a large bundle connecting the thalamus and prefrontal cortex. The definitive structure and function of the TPP are still controversial. To investigate the connectivity and segmentation patterns of the TPP, we employed diffusion spectrum imaging with generalized q-sampling reconstruction to perform both subject-specific and template-based analyses. Our results confirmed the trajectory and spatial relationship of the TPP in the human brain and identified the connection areas in the prefrontal cortex. The TPP-connecting areas identified based on Brodmann areas (BAs were BAs 8–11 and 45–47. Based on the automated anatomical atlas, these areas were the medial superior frontal gyrus, superior frontal gyrus, middle frontal gyrus, pars triangularis, pars orbitalis, anterior orbital gyrus, and lateral orbital gyrus. In addition, we identified the TPP connection areas in the thalamus, including the anterior and medial nuclei, and the lateral dorsal/lateral posterior nuclei. TPP fibers connected the thalamus with the ipsilateral prefrontal BAs 11, 47, 10, 46, 45, 9, and 8 seriatim from medial to lateral, layer by layer. Our results provide further details of the thalamic-prefrontal peduncle structure, and may aid future studies and a better understanding of the functional roles of the TPP in the human brain.

  4. Traumatic brain injury and the post-concussion syndrome: A diffusion tensor tractography study

    International Nuclear Information System (INIS)

    D’souza, Maria M; Trivedi, Richa; Singh, Kavita; Grover, Hemal; Choudhury, Ajay; Kaur, Prabhjot; Kumar, Pawan; Tripathi, Rajendra Prashad

    2015-01-01

    The aim of the present study is to evaluate diffusion tensor tractography (DTT) as a tool for detecting diffuse axonal injury in patients of acute, mild, and moderate traumatic brain injury (TBI), using two diffusion variables: Fractional anisotropy (FA) and mean diffusivity (MD). The correlation of these indices with the severity of post-concussive symptoms was also assessed. Nineteen patients with acute, mild, or moderate TBI and twelve age- and sex-matched healthy controls were recruited. Following Magnetic Resonance Imaging (MRI) on a 3.0-T scanner, DTT was performed using the ‘fiber assignment by continuous tracking’ (FACT) algorithm for fiber reconstruction. Appropriate statistical tools were used to see the difference in FA and MD values between the control and patient groups. In the latter group, the severity of post-concussive symptoms was assessed six months following trauma, using the Rivermead Postconcussion Symptoms Questionnaire (RPSQ). The patients displayed significant reduction in FA compared to the controls (P < 0.05) in several tracts, notably the corpus callosum, fornix, bilateral uncinate fasciculus, and bilateral superior thalamic radiations. Changes in MD were statistically significant in the left uncinate, inferior longitudinal fasciculus, and left posterior thalamic radiation. A strong correlation between these indices and the RPSQ scores was observed in several white matter tracts. Diffusion tensor imaging (DTI)-based quantitative analysis in acute, mild, and moderate TBI can identify axonal injury neuropathology, over and above that visualized on conventional MRI scans. Furthermore, the significant correlation observed between FA and MD indices and the severity of post-concussive symptoms could make it a useful predictor of the long-term outcome

  5. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy.

    Science.gov (United States)

    Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong

    2012-01-01

    The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

  6. Measurement of P-31 MR relaxation times and concentrations in human brain and brain tumors

    International Nuclear Information System (INIS)

    Roth, K.; Naruse, S.; Hubesch, B.; Gober, I.; Lawry, T.; Boska, M.; Matson, G.B.; Weiner, M.W.

    1987-01-01

    Measurements of high-energy phosphates and pH were made in human brain and brain tumors using P-31 MR imaging. Using a Philips Gyroscan 1.5-T MRMRS, MR images were used to select a cuboidal volume of interest and P-31 MR spectra were obtained from that volume using the ISIS technique. An external quantitation standard was used. T 1 s were measured by inversion recovery. Quantitative values for metabolites were calculated using B 1 field plot of the head coil. The results for normal brain phosphates are as follows; adenosine triphosphate, 2.2 mM; phosphocreatin, 5.3 mM; inorganic phosphate, 1.6 mM. Preliminary studies with human brain tumors show a decrease of all phosphate compounds. These experiments are the first to quantitate metabolites in human brain

  7. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  8. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  9. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  10. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  11. Neuronal substrates of sensory gating within the human brain.

    NARCIS (Netherlands)

    Grunwald, T.; Boutros, N.N.; Pezer, N.; Oertzen, J. von; Fernandez, G.S.E.; Schaller, C.; Elger, C.E.

    2003-01-01

    BACKGROUND: For the human brain, habituation to irrelevant sensory input is an important function whose failure is associated with behavioral disturbances. Sensory gating can be studied by recording the brain's electrical responses to repeated clicks: the P50 potential is normally reduced to the

  12. Evidence for Functional Networks within the Human Brain's White Matter.

    Science.gov (United States)

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry. SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human

  13. Different methods of measuring ADC values in normal human brain

    International Nuclear Information System (INIS)

    Wei Youping; Sheng Junkang; Zhang Caiyuan

    2009-01-01

    Objective: To investigate better method of measuring ADC values of normal brain, and provide reference for further research. Methods: Twenty healthy people's MR imaging were reviewed. All of them underwent routine MRI scans and echo-planar diffusion-weighted imaging (DWI), and ADC maps were reconstructed on work station. Six regions of interest (ROI) were selected for each object, the mean ADC values were obtained for each position on DWI and ADC maps respectively. Results: On the anisotropic DWI map calculated in the hypothalamus, ADC M , ADC P , ADC S values were no significant difference (P>0.05), in the frontal white matter and internal capsule hindlimb, there was a significant difference (P ave value exist significant difference to direct measurement on the anisotropic (isotropic) ADC map (P<0.001). Conclusion: Diffusion of water in the frontal white matter and internal capsule are anisotropic, but it is isotropic in the hypothalamus; different quantitative methods of diffusion measurement of 4ADC values have significant difference, but ADC values calculated through the DWI map is more accurate, quantitative diffusion study of brain tissue should also consider the diffusion measurement method. (authors)

  14. Diffusion Tensor Imaging of Incentive Effects in Prospective Memory after Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Wilde, Elisabeth A.; Bigler, Erin D.; Chu, Zili; Yallampalli, Ragini; Oni, Margaret B.; Wu, Trevor C.; Ramos, Marco A.; Pedroza, Claudia; Vásquez, Ana C.; Hunter, Jill V.; Levin, Harvey S.

    2011-01-01

    Abstract Few studies exist investigating the brain-behavior relations of event-based prospective memory (EB-PM) impairments following traumatic brain injury (TBI). To address this, children with moderate-to-severe TBI performed an EB-PM test with two motivational enhancement conditions and underwent concurrent diffusion tensor imaging (DTI) at 3 months post-injury. Children with orthopedic injuries (OI; n = 37) or moderate-to-severe TBI (n = 40) were contrasted. Significant group differences were found for fractional anisotropy (FA) and apparent diffusion coefficient for orbitofrontal white matter (WM), cingulum bundles, and uncinate fasciculi. The FA of these WM structures in children with TBI significantly correlated with EB-PM performance in the high, but not the low motivation condition. Regression analyses within the TBI group indicated that the FA of the left cingulum bundle (p = 0.003), left orbitofrontal WM (p motivation condition. We infer that the cingulum bundles, orbitofrontal WM, and uncinate fasciculi are important WM structures mediating motivation-based EB-PM responses following moderate-to-severe TBI in children. PMID:21250917

  15. The apparent diffusion coefficient of water in gray and white matter of the infant brain

    DEFF Research Database (Denmark)

    Toft, P B; Leth, H; Peitersen, Birgit

    1996-01-01

    PURPOSE: The purpose was to obtain normal values of the apparent diffusion coefficient (ADC) in the infant brain and to compare ADC maps with T1- and T2-weighted images. METHOD: Diffusion was measured in nine infants with an ECG-gated SE sequence compensated for first-order motion. One axial slice...... it appeared on T1- or T2-weighted images. In gray and white matter, the mean ADC ranged from 0.95 x 10(-9) to 1.76 x 10(-9) m2/s. In the frontal and occipital white matter, in the genu corporis callosi, and in the lentiform nucleus, the ADC decreased with increasing age. The cortex/white matter ratio...... of the ADC increased with age and approached 1 at the age of 30 weeks. CONCLUSION: ADC maps add information to the T1 and T2 images about the size and course of unmyelinated as well as myelinated tracts in the immature brain....

  16. Water diffusion closely reveals neural activity status in rat brain loci affected by anesthesia.

    Directory of Open Access Journals (Sweden)

    Yoshifumi Abe

    2017-04-01

    Full Text Available Diffusion functional MRI (DfMRI reveals neuronal activation even when neurovascular coupling is abolished, contrary to blood oxygenation level-dependent (BOLD functional MRI (fMRI. Here, we show that the water apparent diffusion coefficient (ADC derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity observed with local field potentials (LFPs, especially in regions involved in wakefulness. In contrast, BOLD signals showed nonspecific changes, reflecting systemic effects of the anesthesia on overall brain hemodynamics status. Electrical stimulation of the central medial thalamus nucleus (CM exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion in the CM of furosemide, a specific neuronal swelling blocker, led the ADC to increase further locally, although LFP activity remained unchanged, and increased the current threshold awakening the animals under CM electrical stimulation. Oppositely, induction of cell swelling in the CM through infusion of a hypotonic solution (-80 milliosmole [mOsm] artificial cerebrospinal fluid [aCSF] led to a local ADC decrease and a lower current threshold to wake up the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Together, those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI.

  17. Region-specific changes in brain diffusivity in fetal isolated mild ventriculomegaly

    International Nuclear Information System (INIS)

    Yaniv, Gal; Katorza, Eldad; Bercovitz, Ronen; Bergman, Dafi; Greenberg, Gahl; Hoffmann, Chen; Biegon, Anat

    2016-01-01

    To evaluate the impact of symmetric and asymmetric isolated mild ventriculomegaly (IMVM, atrial width 10-15 mm) on apparent diffusion coefficient (ADC) values in fetal brain areas. Sixty-seven sequential fetal head magnetic resonance imaging scans (feMRI) of VM cases performed between 2009 and 2014 were compared to 38 normal feMRI scans matched for gestational age (controls). Ultrasound- and MRI-proven IMVM cases were divided into asymmetrical (AVM, ≥2 mm difference in atrial width), symmetrical (SVM, <2 mm difference in atrial width), and asymmetrical IMVM with one normal-sized ventricle (AV1norm). ADC values were significantly elevated in the basal ganglia (BG) of the SVM and AV1norm groups compared to controls (p < 0.004 and p < 0.013, respectively). High diffusivity was constantly detected in the BG ipsilateral to the enlarged atria relative to the normal-sized atria in the AV1norm group (p < 0.03). Frontal lobe ADC values were significantly reduced in the AVM and SVM groups (p < 0.003 and p < 0.003 vs. controls). Temporal lobe ADC values were significantly reduced in the AVM group (p < 0.001 vs. controls). Isolated mild ventriculomegaly is associated with distinct ADC value changes in different brain regions. This phenomenon could reflect the pathophysiology associated with different IMVM patterns. (orig.)

  18. Region-specific changes in brain diffusivity in fetal isolated mild ventriculomegaly

    Energy Technology Data Exchange (ETDEWEB)

    Yaniv, Gal [Sheba Medical Center, Department of Diagnostic Imaging, Tel Aviv (Israel); The Hebrew University of Jerusalem, The Institute for Research in Military Medicine, The Faculty of Medicine, Jerusalem (Israel); Sheba Medical Center, The Dr. Pinchas Bornstein Talpiot Medical Leadership Program, Tel Aviv (Israel); Katorza, Eldad [Sheba Medical Center, Obstetrics and Gynecology Department, Tel Aviv (Israel); Bercovitz, Ronen; Bergman, Dafi; Greenberg, Gahl; Hoffmann, Chen [Sheba Medical Center, Department of Diagnostic Imaging, Tel Aviv (Israel); Biegon, Anat [Stony Brook University School of Medicine, Department of Neurology, Stony Brook, NY (United States)

    2016-03-15

    To evaluate the impact of symmetric and asymmetric isolated mild ventriculomegaly (IMVM, atrial width 10-15 mm) on apparent diffusion coefficient (ADC) values in fetal brain areas. Sixty-seven sequential fetal head magnetic resonance imaging scans (feMRI) of VM cases performed between 2009 and 2014 were compared to 38 normal feMRI scans matched for gestational age (controls). Ultrasound- and MRI-proven IMVM cases were divided into asymmetrical (AVM, ≥2 mm difference in atrial width), symmetrical (SVM, <2 mm difference in atrial width), and asymmetrical IMVM with one normal-sized ventricle (AV1norm). ADC values were significantly elevated in the basal ganglia (BG) of the SVM and AV1norm groups compared to controls (p < 0.004 and p < 0.013, respectively). High diffusivity was constantly detected in the BG ipsilateral to the enlarged atria relative to the normal-sized atria in the AV1norm group (p < 0.03). Frontal lobe ADC values were significantly reduced in the AVM and SVM groups (p < 0.003 and p < 0.003 vs. controls). Temporal lobe ADC values were significantly reduced in the AVM group (p < 0.001 vs. controls). Isolated mild ventriculomegaly is associated with distinct ADC value changes in different brain regions. This phenomenon could reflect the pathophysiology associated with different IMVM patterns. (orig.)

  19. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...

  20. Effect of naloxone hydrochloride on c-fos protein expression in brain and plasma beta-endorphin level in rats with diffuse brain injury and secondary brain insult

    Directory of Open Access Journals (Sweden)

    Jun-jie JING

    2012-09-01

    Full Text Available Objective To observe the changes of c-fos protein expression in brain and beta-endorphin (β-EP level in blood plasma in rats with diffuse brain injury (DBI and secondary brain insult (SBI after intraperitoneal injection of naloxone hydrochloride, and explore the role of c-fos andβ-EP in development of SBI in rats. Methods Seventy health male SD rats were enrolled in the present study and randomly divided into group A (intraperitoneally injected with 0.9% saline after DBI and SBI model was reproduced, group B (injected intraperitoneally with 1.0mg/kg naloxone hydrochloride after DBI and SBI model was reproduced, and group C (intraperitoneally injected with 1.0mg/kg naloxone hydrochloride after DBI and before SBI model was reproduced. The animals were sacrificed 3, 24 and 48 hours after injury, and the number of c-fos positive cells in brain and content of β-EP in blood plasma were determined by immunohistochemistry and radioimmunoassay respectively, the water content and number of injured neurons in brain tissue were measured by pathomorphological observation of the brain tissue. Results No significant difference was observed between group B and C for all the detection parameters. In group B and C, the water content in brain tissue at 3h and 24h was found to be decreased, while the number of injured neurons at 24h and 48h increased, number of c-fos positive cells in brain at 3h, 24h and 48h decreased, and content of β-EP in blood plasma at 3h and 24h decreased when compared with group A(P < 0.05. Conclusion Naloxone hydrochloride could decrease the c-fos expression in brain and β-EP level in blood plasma, alleviate the nerve injury, and protect neural function. The therapeutic effect of naloxone administered either after DBI and SBI or after DBI and before SBI was similar.

  1. Sex beyond the genitalia: The human brain mosaic

    Science.gov (United States)

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains (“female brain” or “male brain”). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only “male” or only “female” features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the “maleness-femaleness” continuum are rare. Rather, most brains are comprised of unique “mosaics” of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  2. Diffuse pachymeningeal enhancement on brain MRI: spontaneous intracranial hypotension and head trauma

    International Nuclear Information System (INIS)

    Ryu, Chang Woo; Lee, Byung Hee; Lee, Seung Ik; Kim, Young A; Kim, Hee Jin; Ko, Young Sik

    1998-01-01

    We evaluated the MRI finding of pachymeningeal enhancement in patients with intracranial hypotension and head trauma with particular attention to differential findings and change in follow-up study, and in order to support the knowledge about the pathophysiology of dural enhancement. The findings of enhanced brain MRI of fifteen patients who showed diffuse pachymeningeal enhancement were retrospectively examined. Seven of fifteen patients were finally diagnosed as spontaneous intracranial hypotension (SIH). Eight of fifteen patients had a recent history of head trauma. We analyzed the shape, thickness, continuity and extent of dural enhancement, and the others concerned with positive MR findings. We also analyzed findings suggested displacement of brain parenchyma-displacement of the iter and cerebellar tonsil, and flattening of the anterior aspect of the pons-. Four of seven patients with SIH and four of eight patients with head trauma, underwent follow-up MRI. In the follow-up study, the presence of resolving pachymeningeal enhancement and symptom improvement was investigated. In all cases of SIH, the dura showed diffuse, even 3(1mm thick, global and contiguous enhancement along both cerebral convexities, both tentoria, and the falx. Displacement of the iter was noted in six cases and flattening of the anterior aspect of the pons in five. Displacement of the cerebellar tonsil was noted in one case. Five of seven cases showed small amount of subdural fluid collection. In all cases of head trauma, the dura was enhanced diffusely and asymmetrically, and showed no contiguity. Its distribution was consistent with the locations of traumatic lesions. Displacement of the iter was noted in one case. In four cases of SIH, clinical symptoms had improved, and three showed complete resolution of dural enhancement, in one patient continuously showed partial dural enhancement. Four cases of head trauma showed complete resolution of dural enhancement. Reversible diffuse

  3. Noninvasive Stimulation of the Human Brain

    DEFF Research Database (Denmark)

    Di Lazzaro, Vincenzo; Rothwell, John; Capogna, Marco

    2017-01-01

    Noninvasive brain stimulation methods, such as transcranial electric stimulation and transcranial magnetic stimulation are widely used tools for both basic research and clinical applications. However, the cortical circuits underlying their effects are poorly defined. Here we review the current...

  4. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  5. Optogenetic control of human neurons in organotypic brain cultures

    DEFF Research Database (Denmark)

    Andersson, My; Avaliani, Natalia; Svensson, Andreas

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof......-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies....

  6. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military

  7. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  8. Centrality of Social Interaction in Human Brain Function.

    Science.gov (United States)

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. White matter and reading deficits after pediatric traumatic brain injury: A diffusion tensor imaging study

    Directory of Open Access Journals (Sweden)

    Chad Parker Johnson

    2015-01-01

    Full Text Available Pediatric traumatic brain injury often results in significant long-term deficits in mastery of reading ability. This study aimed to identify white matter pathways that, when damaged, predicted reading deficits in children. Based on the dual-route model of word reading, we predicted that integrity of the inferior fronto-occipital fasciculus would be related to performance in sight word identification while integrity of the superior longitudinal fasciculus would be related to performance in phonemic decoding. Reading fluency and comprehension were hypothesized to relate to the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and cingulum bundle. The connectivity of white matter pathways was used to predict reading deficits in children aged 6 to 16 years with traumatic brain injury (n = 29 and those with orthopedic injury (n = 27 using tract-based spatial statistics. Results showed that children with traumatic brain injury and reduced microstructural integrity of the superior longitudinal fasciculus demonstrated reduced word-reading ability on sight word and phonemic decoding tasks. Additionally, children with traumatic brain injury and microstructural changes involving the cingulum bundle demonstrated reduced reading fluency. Results support the association of a dorsal pathway via the superior longitudinal fasciculus with both sight word reading and phonemic decoding. No association was identified between the inferior fronto-occipital fasciculus and sight word reading or phonemic decoding. Reading fluency was associated with the integrity of the cingulum bundle. These findings support dissociable pathways predicting word reading and fluency using Diffusion Tensor Imaging and provide additional information for developing models of acquired reading deficits by specifying areas of brain damage which may predict reading deficits following recovery from the acute phase of TBI.

  10. Intracranial pressure monitoring in diffuse brain injury-why the developing world needs it more?

    Science.gov (United States)

    Vora, Tarang K; Karunakaran, Sudish; Kumar, Ajay; Chiluka, Anil; Srinivasan, Harish; Parmar, Kanishk; Vasu, Srivatsan Thirumalai; Srinivasan, Rahul; Chandan, H A; Vishnu, P S; Raheja, Lakshay

    2018-06-01

    Use of ICP monitoring is considered to be part of "standard of care" in management of severe traumatic brain injury, but it is rarely used in developing countries. The authors present a study which evaluates the efficacy and outcomes of ICP monitoring at a high-volume trauma center in India. Data on management and outcomes for 126 patients who were admitted with diffuse traumatic brain injury (GCS 3-8) were studied prospectively over an 18-month period. These patients were treated by one of the two specific protocols: ICP monitoring-based or non-ICP monitoring-based. The primary outcome was measured based on 2 weeks mortality and GOS-E at 1, 3, and 6 months. Secondary outcome was measured based on need for brain-specific treatment, length of ICU stay, and radiation exposure. Mortality in a subset of patients who underwent surgical intervention later due to increased ICP values, drop in GCS, or radiological deterioration was noted to be significantly lower in the ICP monitoring group (p = 0.03), in spite of statistically insignificant difference in overall mortality rates between groups. GOS-E scores at 1 month were significantly better (p = 0.033) in ICP monitoring group, even though they equalized at 3 and 6 months. The need for brain-specific treatment (p < 0.001), radiation exposure (p < 0.001), and length of ICU stay (p = 0.013) was significantly lower in the ICP monitoring group. ICP monitoring-based treatment protocol helps in achieving faster recovery; lowers mortality rates in operated patients; and reduces ICU stay, radiation exposure, and the need for brain-specific treatment.

  11. What lies beneath? Diffusion EAP-based study of brain tissue microstructure.

    Science.gov (United States)

    Zucchelli, Mauro; Brusini, Lorenza; Andrés Méndez, C; Daducci, Alessandro; Granziera, Cristina; Menegaz, Gloria

    2016-08-01

    Diffusion weighted magnetic resonance signals convey information about tissue microstructure and cytoarchitecture. In the last years, many models have been proposed for recovering the diffusion signal and extracting information to constitute new families of numerical indices. Two main categories of reconstruction models can be identified in diffusion magnetic resonance imaging (DMRI): ensemble average propagator (EAP) models and compartmental models. From both, descriptors can be derived for elucidating the underlying microstructural architecture. While compartmental models indices directly quantify the fraction of different cell compartments in each voxel, EAP-derived indices are only a derivative measure and the effect of the different microstructural configurations on the indices is still unclear. In this paper, we analyze three EAP indices calculated using the 3D Simple Harmonic Oscillator based Reconstruction and Estimation (3D-SHORE) model and estimate their changes with respect to the principal microstructural configurations. We take advantage of the state of the art simulations to quantify the variations of the indices with the simulation parameters. Analysis of in-vivo data correlates the EAP indices with the microstructural parameters obtained from the Neurite Orientation Dispersion and Density Imaging (NODDI) model as a pseudo ground truth for brain data. Results show that the EAP derived indices convey information on the tissue microstructure and that their combined values directly reflect the configuration of the different compartments in each voxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Whole-brain diffusion-tensor changes in parkinsonian patients with impulse control disorders.

    Science.gov (United States)

    Yoo, Hye Bin; Lee, Jee-Young; Lee, Jae Sung; Kang, Hyejin; Kim, Yu Kyeong; Song, In Chan; Lee, Dong Soo; Jeon, Beom Seok

    2015-01-01

    The aim of this study was to determine the changes in diffusion-tensor images associated with medication-related impulse control disorder (ICD) in Parkinson's disease (PD) patients undergoing chronic dopamine-replacement therapy. Nineteen PD patients, comprising 10 with ICD (PD-ICD) and 9 without ICD (PD-nonICD), and 18 age-matched healthy controls (HCs) with no cognitive or other psychiatric disorders were analyzed. All subjects underwent 3-T magnetic resonance diffusion-tensor imaging. For all PD patients, clinical data on PD duration, antiparkinsonian medication dosages, Unified Parkinson's Disease Rating Scale and Mini-Mental State Examination were collected. Whole-brain voxel-based measures of fractional anisotropy (FA) and mean diffusivity (MD) were analyzed. In comparison with HCs, the PD-nonICD subjects had low FA at the bilateral orbitofrontal areas. While the PD-ICD subjects exhibited no such difference, their FA was significantly elevated at the anterior corpus callosum. Analysis of FA between the two PD groups revealed that FA in the anterior corpus callosum, right internal capsule posterior limbs, right posterior cingulum, and right thalamic radiations were significantly higher (corrected p<0.05) in the PD-ICD than in the PD-nonICD patients. MD did not differ between the PD-ICD and PD-nonICD groups in any brain regions. The PD-ICD patients appear to have relatively preserved white-matter integrity in the regions involved in reward-related behaviors compared to PD-nonICD patients. Further investigation is required to determine whether the difference in FA between PD-ICD and PD-nonICD patients reflects microstructural differences in the pathological progression of PD or is secondary to ICD.

  13. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.

    Science.gov (United States)

    Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L

    2017-01-01

    The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.

  14. Radiological study of the brain at various stages of human immunodeficiency virus infection: early development of brain atrophy

    International Nuclear Information System (INIS)

    Raininko, R.; Elovaara, I.; Virta, A.; Valanne, L.; Haltia, M.; Valle, S.L.

    1992-01-01

    One hundred and one persons infected with human immunodeficiency virus (HIV-1), in whom other central nervous system infections or diseases were excluded, underwent brain CT and/or MRI at various stages of HIV-1 infection: 29 were asymptomatic (ASX), 35 had lymphadenopathy syndrome (LAS), 17 had AIDS-related complex (ARC), and 20 had AIDS. A control group of 32 HIV-1-seronegative healthy persons underwent brain MRI. The most common finding was brain atrophy. The changes were bilateral and symmetrical, and they were more severe at later stages of infection. Non-specific small hyperintense foci were found on MRI in 13% of controls and 6-15% of the infected groups. Larger, diffuse, bilateral white matter infiltrates were detected in 4 demented patients with AIDS. Four patients with AIDS and 1 with LAS had focal hyperintense lesions in the internal capsules, lentiform nuclei or thalamus, often bilateral on MRI. One patient with AIDS examined with CT only, had low density in the lentiform nucleus. Loss of brain parenchyma can occur at an early stage of HIV-1 infection, and the atrophic process becomes more intense at later stages (ARC and AIDS). (orig./GDG)

  15. Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.

    Science.gov (United States)

    Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar

    2007-11-01

    In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.

  16. Thin-Section Diffusion-Weighted Magnetic Resonance Imaging of the Brain with Parallel Imaging

    International Nuclear Information System (INIS)

    Oner, A.Y.; Celik, H.; Tali, T.; Akpek, S.; Tokgoz, N.

    2007-01-01

    Background: Thin-section diffusion-weighted imaging (DWI) is known to improve lesion detectability, with long imaging time as a drawback. Parallel imaging (PI) is a technique that takes advantage of spatial sensitivity information inherent in an array of multiple-receiver surface coils to partially replace time-consuming spatial encoding and reduce imaging time. Purpose: To prospectively evaluate a 3-mm-thin-section DWI technique combined with PI by means of qualitative and quantitative measurements. Material and Methods: 30 patients underwent conventional echo-planar (EPI) DWI (5-mm section thickness, 1-mm intersection gap) without parallel imaging, and thin-section EPI-DWI with PI (3-mm section thickness, 0-mm intersection gap) for a b value of 1000 s/mm 2 , with an imaging time of 40 and 80 s, respectively. Signal-to-noise ratio (SNR), relative signal intensity (rSI), and apparent diffusion coefficient (ADC) values were measured over a lesion-free cerebral region on both series by two radiologists. A quality score was assigned for each set of images to assess the image quality. When a brain lesion was present, contrast-to-noise ratio (CNR) and corresponding ADC were also measured. Student t-tests were used for statistical analysis. Results: Mean SNR values of the normal brain were 33.61±4.35 and 32.98±7.19 for conventional and thin-slice DWI (P>0.05), respectively. Relative signal intensities were significantly higher on thin-section DWI (P 0.05). Quality scores and overall lesion CNR were found to be higher in thin-section DWI with parallel imaging. Conclusion: A thin-section technique combined with PI improves rSI, CNR, and image quality without compromising SNR and ADC measurements in an acceptable imaging time. Keywords: Brain; DWI; parallel imaging; thin section

  17. The immune response of the human brain to abdominal surgery

    DEFF Research Database (Denmark)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin

    2017-01-01

    OBJECTIVE: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans....... This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. METHODS: Eight males undergoing prostatectomy under general...... anesthesia were included. Prior to surgery (baseline), at postoperative days 3 to 4, and after 3 months, patients were examined using [11C]PBR28 brain PET imaging to assess brain immune cell activation. Concurrently, systemic inflammatory biomarkers, ex vivo blood tests on immunoreactivity...

  18. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    Science.gov (United States)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  19. Altered brain structural connectivity in post-traumatic stress disorder: a diffusion tensor imaging tractography study.

    Science.gov (United States)

    Long, Zhiliang; Duan, Xujun; Xie, Bing; Du, Handan; Li, Rong; Xu, Qiang; Wei, Luqing; Zhang, Shao-xiang; Wu, Yi; Gao, Qing; Chen, Huafu

    2013-09-25

    Post-traumatic stress disorder (PTSD) is characterized by dysfunction of several discrete brain regions such as medial prefrontal gyrus with hypoactivation and amygdala with hyperactivation. However, alterations of large-scale whole brain topological organization of structural networks remain unclear. Seventeen patients with PTSD in motor vehicle accident survivors and 15 normal controls were enrolled in our study. Large-scale structural connectivity network (SCN) was constructed using diffusion tensor tractography, followed by thresholding the mean factional anisotropy matrix of 90 brain regions. Graph theory analysis was then employed to investigate their aberrant topological properties. Both patient and control group showed small-world topology in their SCNs. However, patients with PTSD exhibited abnormal global properties characterized by significantly decreased characteristic shortest path length and normalized characteristic shortest path length. Furthermore, the patient group showed enhanced nodal centralities predominately in salience network including bilateral anterior cingulate and pallidum, and hippocampus/parahippocamus gyrus, and decreased nodal centralities mainly in medial orbital part of superior frontal gyrus. The main limitation of this study is the small sample of PTSD patients, which may lead to decrease the statistic power. Consequently, this study should be considered an exploratory analysis. These results are consistent with the notion that PTSD can be understood by investigating the dysfunction of large-scale, spatially distributed neural networks, and also provide structural evidences for further exploration of neurocircuitry models in PTSD. © 2013 Elsevier B.V. All rights reserved.

  20. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods.

    Science.gov (United States)

    Bucci, Monica; Mandelli, Maria Luisa; Berman, Jeffrey I; Amirbekian, Bagrat; Nguyen, Christopher; Berger, Mitchel S; Henry, Roland G

    2013-01-01

    Diffusion MRI tractography has been increasingly used to delineate white matter pathways in vivo for which the leading clinical application is presurgical mapping of eloquent regions. However, there is rare opportunity to quantify the accuracy or sensitivity of these approaches to delineate white matter fiber pathways in vivo due to the lack of a gold standard. Intraoperative electrical stimulation (IES) provides a gold standard for the location and existence of functional motor pathways that can be used to determine the accuracy and sensitivity of fiber tracking algorithms. In this study we used intraoperative stimulation from brain tumor patients as a gold standard to estimate the sensitivity and accuracy of diffusion tensor MRI (DTI) and q-ball models of diffusion with deterministic and probabilistic fiber tracking algorithms for delineation of motor pathways. We used preoperative high angular resolution diffusion MRI (HARDI) data (55 directions, b = 2000 s/mm(2)) acquired in a clinically feasible time frame from 12 patients who underwent a craniotomy for resection of a cerebral glioma. The corticospinal fiber tracts were delineated with DTI and q-ball models using deterministic and probabilistic algorithms. We used cortical and white matter IES sites as a gold standard for the presence and location of functional motor pathways. Sensitivity was defined as the true positive rate of delineating fiber pathways based on cortical IES stimulation sites. For accuracy and precision of the course of the fiber tracts, we measured the distance between the subcortical stimulation sites and the tractography result. Positive predictive rate of the delineated tracts was assessed by comparison of subcortical IES motor function (upper extremity, lower extremity, face) with the connection of the tractography pathway in the motor cortex. We obtained 21 cortical and 8 subcortical IES sites from intraoperative mapping of motor pathways. Probabilistic q-ball had the best

  2. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sorenson Donna J

    2009-12-01

    Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

  3. Preoperative diffusion-weighted imaging of single brain metastases correlates with patient survival times.

    Directory of Open Access Journals (Sweden)

    Anna Sophie Berghoff

    Full Text Available BACKGROUND: MRI-based diffusion-weighted imaging (DWI visualizes the local differences in water diffusion in vivo. The prognostic value of DWI signal intensities on the source images and apparent diffusion coefficient (ADC maps respectively has not yet been studied in brain metastases (BM. METHODS: We included into this retrospective analysis all patients operated for single BM at our institution between 2002 and 2010, in whom presurgical DWI and BM tissue samples were available. We recorded relevant clinical data, assessed DWI signal intensity and apparent diffusion coefficient (ADC values and performed histopathological analysis of BM tissues. Statistical analyses including uni- and multivariate survival analyses were performed. RESULTS: 65 patients (34 female, 31 male with a median overall survival time (OS of 15 months (range 0-99 months were available for this study. 19 (29.2% patients presented with hyper-, 3 (4.6% with iso-, and 43 (66.2% with hypointense DWI. ADCmean values could be determined in 32 (49.2% patients, ranged from 456.4 to 1691.8*10⁻⁶ mm²/s (median 969.5 and showed a highly significant correlation with DWI signal intensity. DWI hyperintensity correlated significantly with high amount of interstitial reticulin deposition. In univariate analysis, patients with hyperintense DWI (5 months and low ADCmean values (7 months had significantly worse OS than patients with iso/hypointense DWI (16 months and high ADCmean values (30 months, respectively. In multivariate survival analysis, high ADCmean values retained independent statistical significance. CONCLUSIONS: Preoperative DWI findings strongly and independently correlate with OS in patients operated for single BM and are related to interstitial fibrosis. Inclusion of DWI parameters into established risk stratification scores for BM patients should be considered.

  4. Effects of Sex Steroids in the Human Brain.

    Science.gov (United States)

    Nguyen, Tuong-Vi; Ducharme, Simon; Karama, Sherif

    2017-11-01

    Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

  5. Cortical hypoxic-ischemic brain damage in shaken-baby (shaken impact) syndrome: value of diffusion-weighted MRI

    International Nuclear Information System (INIS)

    Parizel, Paul M.; Oezsarlak, Oezkan; Goethem, Johan W. van; Ceulemans, Berten; Laridon, Annick; Jorens, Philippe G.

    2003-01-01

    Shaken-baby syndrome (SBS) is a type of child abuse caused by violent shaking of an infant, with or without impact, and characterized by subdural hematomas, retinal hemorrhages, and occult bone fractures. Parenchymal brain lesions in SBS may be missed or underestimated on CT scans, but can be detected at an earlier stage with diffusion-weighted MRI (DW-MRI) as areas of restricted diffusion. We demonstrate the value of DW-MRI in a 2-month-old baby boy with suspected SBS. The pattern of diffusion abnormalities indicates that the neuropathology of parenchymal lesions in SBS is due to hypoxic-ischemic brain injuries, and not to diffuse axonal injury. (orig.)

  6. Cortical hypoxic-ischemic brain damage in shaken-baby (shaken impact) syndrome: value of diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Parizel, Paul M.; Oezsarlak, Oezkan; Goethem, Johan W. van [Department of Radiology, University of Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Ceulemans, Berten; Laridon, Annick [Department of Pediatric Neurology, University of Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Jorens, Philippe G. [Department of Pediatric Intensive Care Medicine, University of Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium)

    2003-12-01

    Shaken-baby syndrome (SBS) is a type of child abuse caused by violent shaking of an infant, with or without impact, and characterized by subdural hematomas, retinal hemorrhages, and occult bone fractures. Parenchymal brain lesions in SBS may be missed or underestimated on CT scans, but can be detected at an earlier stage with diffusion-weighted MRI (DW-MRI) as areas of restricted diffusion. We demonstrate the value of DW-MRI in a 2-month-old baby boy with suspected SBS. The pattern of diffusion abnormalities indicates that the neuropathology of parenchymal lesions in SBS is due to hypoxic-ischemic brain injuries, and not to diffuse axonal injury. (orig.)

  7. National Human Trafficking Initiatives: Dimensions of Policy Diffusion1

    Science.gov (United States)

    Yoo, Eun-hye; Boyle, Elizabeth Heger

    2014-01-01

    The implementation of criminal law involves formal law enforcement, education and public outreach aimed at preventing criminal activity, and providing services for victims. Historically, quantitative research on global trends has tended to focus on a single policy dimension, potentially masking the unique factors that affect the diffusion of each policy dimension independently. Using an ordered-probit model to analyze new human trafficking policy data on national prosecution, prevention, and victim-protection efforts, we find that global ties and domestic interest groups matter more in areas where international law is less defined. While prosecution, officially mandated by the Trafficking Protocol, was relatively impervious to global ties and domestic interest groups, both trafficking prevention and victim protection were associated with these factors. Our findings also suggest that fear of repercussions is not a major driver of state actions to combat trafficking—neither ratification of the Trafficking Protocol nor levels of United States aid were associated with greater implementation of anti-trafficking measures. PMID:26538806

  8. National Human Trafficking Initiatives: Dimensions of Policy Diffusion.

    Science.gov (United States)

    Yoo, Eun-Hye; Boyle, Elizabeth Heger

    2015-01-01

    The implementation of criminal law involves formal law enforcement, education and public outreach aimed at preventing criminal activity, and providing services for victims. Historically, quantitative research on global trends has tended to focus on a single policy dimension, potentially masking the unique factors that affect the diffusion of each policy dimension independently. Using an ordered-probit model to analyze new human trafficking policy data on national prosecution, prevention, and victim-protection efforts, we find that global ties and domestic interest groups matter more in areas where international law is less defined. While prosecution, officially mandated by the Trafficking Protocol, was relatively impervious to global ties and domestic interest groups, both trafficking prevention and victim protection were associated with these factors. Our findings also suggest that fear of repercussions is not a major driver of state actions to combat trafficking-neither ratification of the Trafficking Protocol nor levels of United States aid were associated with greater implementation of anti-trafficking measures.

  9. Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image (T2 and FLAIR) Sequence

    International Nuclear Information System (INIS)

    Oh, Jong Kap; Im, Jung Yeol

    2009-01-01

    Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in T 2 -DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  10. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Science.gov (United States)

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  11. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  12. Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study

    Science.gov (United States)

    Kim, Junghoon; Avants, Brian; Patel, Sunil; Whyte, John; Coslett, H. Branch; Pluta, John; Detre, John A.; Gee, James C.

    2008-01-01

    Traumatic brain injury (TBI) is one of the most common causes of long-term disability. Despite the importance of identifying neuropathology in individuals with chronic TBI, methodological challenges posed at the stage of inter-subject image registration have hampered previous voxel-based MRI studies from providing a clear pattern of structural atrophy after TBI. We used a novel symmetric diffeomorphic image normalization method to conduct a tensor-based morphometry (TBM) study of TBI. The key advantage of this method is that it simultaneously estimates an optimal template brain and topology preserving deformations between this template and individual subject brains. Detailed patterns of atrophies are then revealed by statistically contrasting control and subject deformations to the template space. Participants were 29 survivors of TBI and 20 control subjects who were matched in terms of age, gender, education, and ethnicity. Localized volume losses were found most prominently in white matter regions and the subcortical nuclei including the thalamus, the midbrain, the corpus callosum, the mid- and posterior cingulate cortices, and the caudate. Significant voxel-wise volume loss clusters were also detected in the cerebellum and the frontal/temporal neocortices. Volume enlargements were identified largely in ventricular regions. A similar pattern of results was observed in a subgroup analysis where we restricted our analysis to the 17 TBI participants who had no macroscopic focal lesions (total lesion volume> 1.5 cm 3). The current study confirms, extends, and partly challenges previous structural MRI studies in chronic TBI. By demonstrating that a large deformation image registration technique can be successfully combined with TBM to identify TBI-induced diffuse structural changes with greater precision, our approach is expected to increase the sensitivity of future studies examining brain-behavior relationships in the TBI population. PMID:17999940

  13. Cyto- and receptor architectonic mapping of the human brain.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl

    2018-01-01

    Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Ecology of the aging human brain.

    Science.gov (United States)

    Sonnen, Joshua A; Santa Cruz, Karen; Hemmy, Laura S; Woltjer, Randall; Leverenz, James B; Montine, Kathleen S; Jack, Clifford R; Kaye, Jeffrey; Lim, Kelvin; Larson, Eric B; White, Lon; Montine, Thomas J

    2011-08-01

    Alzheimer disease, cerebral vascular brain injury, and isocortical Lewy body disease (LBD) are the major contributors to dementia in community- and population-based studies. To estimate the prevalence of clinically silent forms of these diseases in cognitively normal (CN) adults. Autopsy study. Community- and population based. A total of 1672 brain autopsies from the Adult Changes in Thought study, Honolulu-Asia Aging Study, Nun Study, and Oregon Brain Aging Study, of which 424 met the criteria for CN. Of these, 336 cases had a comprehensive neuropathologic examination of neuritic plaque density, Braak stage for neurofibrillary tangles, LB distribution, and number of cerebral microinfarcts. Forty-seven percent of CN cases had moderate or frequent neuritic plaque density; of these, 6% also had Braak stage V or VI for neurofibrillary tangles. Fifteen percent of CN cases had medullary LBD; 8% also had nigral and 4% isocortical LBD. The presence of any cerebral microinfarcts was identified in 33% and of high-level cerebral microinfarcts in 10% of CN individuals. Overall, the burden of lesions in each individual and their comorbidity varied widely within each study but were similar across studies. These data show an individually varying complex convergence of subclinical diseases in the brain of older CN adults. Appreciating this ecology should help guide future biomarker and neuroimaging studies and clinical trials that focus on community- and population-based cohorts.

  15. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  16. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  17. Quantitative Apparent Diffusion Coefficients in the Characterization of Brain Tumors and Associated Peritumoral Edema

    International Nuclear Information System (INIS)

    Server, A.; Schellhorn, T.; Nakstad, P.H.; Kulle, B.; Maehlen, J.; Kumar, T.; Josefsen, R.; Langberg, C.W.

    2009-01-01

    Background: Conventional magnetic resonance (MR) imaging has a number of limitations in the diagnosis of the most common intracranial brain tumors, including tumor specification and the detection of tumoral infiltration in regions of peritumoral edema. Purpose: To prospectively assess if diffusion-weighted MR imaging (DWI) could be used to differentiate between different types of brain tumors and to distinguish between peritumoral infiltration in high-grade gliomas, lymphomas, and pure vasogenic edema in metastases and meningiomas. Material and Methods: MR imaging and DWI was performed on 93 patients with newly diagnosed brain tumors: 59 patients had histologically verified high-grade gliomas (37 glioblastomas multiforme, 22 anaplastic astrocytomas), 23 patients had metastatic brain tumors, five patients had primary cerebral lymphomas, and six patients had meningiomas. Apparent diffusion coefficient (ADC) values of tumor (enhancing regions or the solid portion of tumor) and peritumoral edema, and ADC ratios (ADC of tumor or peritumoral edema to ADC of contralateral white matter, ADC of tumor to ADC of peritumoral edema) were compared with the histologic diagnosis. ADC values and ratios of high-grade gliomas, primary cerebral lymphomas, metastases, and meningiomas were compared by using ANOVA and multiple comparisons. Optimal thresholds of ADC values and ADC ratios for distinguishing high-grade gliomas from metastases were determined by receiver operating characteristic (ROC) curve analysis. Results: Statistically significant differences were found for minimum and mean of ADC tumor and ADC tumor ratio values between metastases and high-grade gliomas when including only one factor at a time. Including a combination of in total four parameters (mean ADC tumor, and minimum, maximum and mean ADC tumor ratio) resulted in sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of 72.9, 82.6, 91.5, and 54.3% respectively. In the ROC curve analysis

  18. Measuring Connectivity in the Primary Visual Pathway in Human Albinism Using Diffusion Tensor Imaging and Tractography.

    Science.gov (United States)

    Grigorian, Anahit; McKetton, Larissa; Schneider, Keith A

    2016-08-11

    In albinism, the number of ipsilaterally projecting retinal ganglion cells (RGCs) is significantly reduced. The retina and optic chiasm have been proposed as candidate sites for misrouting. Since a correlation between the number of lateral geniculate nucleus (LGN) relay neurons and LGN size has been shown, and based on previously reported reductions in LGN volumes in human albinism, we suggest that fiber projections from LGN to the primary visual cortex (V1) are also reduced. Studying structural differences in the visual system of albinism can improve the understanding of the mechanism of misrouting and subsequent clinical applications. Diffusion data and tractography are useful for mapping the OR (optic radiation). This manuscript describes two algorithms for OR reconstruction in order to compare brain connectivity in albinism and controls.An MRI scanner with a 32-channel head coil was used to acquire structural scans. A T1-weighted 3D-MPRAGE sequence with 1 mm(3) isotropic voxel size was used to generate high-resolution images for V1 segmentation. Multiple proton density (PD) weighted images were acquired coronally for right and left LGN localization. Diffusion tensor imaging (DTI) scans were acquired with 64 diffusion directions. Both deterministic and probabilistic tracking methods were run and compared, with LGN as the seed mask and V1 as the target mask. Though DTI provides relatively poor spatial resolution, and accurate delineation of OR may be challenging due to its low fiber density, tractography has been shown to be advantageous both in research and clinically. Tract based spatial statistics (TBSS) revealed areas of significantly reduced white matter integrity within the OR in patients with albinism compared to controls. Pairwise comparisons revealed a significant reduction in LGN to V1 connectivity in albinism compared to controls. Comparing both tracking algorithms revealed common findings, strengthening the reliability of the technique.

  19. Sibling rivalry among paralogs promotes evolution of the human brain.

    Science.gov (United States)

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Shortcomings of the Human Brain and Remedial Action by Religion

    Science.gov (United States)

    Reich, K. Helmut

    2010-01-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial…

  1. Effect of Simulated Microgravity on Human Brain Gray Matter and White Matter--Evidence from MRI.

    Directory of Open Access Journals (Sweden)

    Ke Li

    Full Text Available There is limited and inconclusive evidence that space environment, especially microgravity condition, may affect microstructure of human brain. This experiment hypothesized that there would be modifications in gray matter (GM and white matter (WM of the brain due to microgravity.Eighteen male volunteers were recruited and fourteen volunteers underwent -6° head-down bed rest (HDBR for 30 days simulated microgravity. High-resolution brain anatomical imaging data and diffusion tensor imaging images were collected on a 3T MR system before and after HDBR. We applied voxel-based morphometry and tract-based spatial statistics analysis to investigate the structural changes in GM and WM of brain.We observed significant decreases of GM volume in the bilateral frontal lobes, temporal poles, parahippocampal gyrus, insula and right hippocampus, and increases of GM volume in the vermis, bilateral paracentral lobule, right precuneus gyrus, left precentral gyrus and left postcentral gyrus after HDBR. Fractional anisotropy (FA changes were also observed in multiple WM tracts.These regions showing GM changes are closely associated with the functional domains of performance, locomotion, learning, memory and coordination. Regional WM alterations may be related to brain function decline and adaption. Our findings provide the neuroanatomical evidence of brain dysfunction or plasticity in microgravity condition and a deeper insight into the cerebral mechanisms in microgravity condition.

  2. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  3. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  4. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  5. CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI

    Directory of Open Access Journals (Sweden)

    Matthew S. Brown

    2009-11-01

    Full Text Available The goal of this study was to develop a computer-aided therapeutic response (CADrx system for early prediction of drug treatment response for glioblastoma multiforme (GBM brain tumors with diffusion weighted (DW MR images. In conventional Macdonald assessment, tumor response is assessed nine weeks or more post-treatment. However, we will investigate the ability of DW-MRI to assess response earlier, at five weeks post treatment. The apparent diffusion coefficient (ADC map, calculated from DW images, has been shown to reveal changes in the tumor’s microenvironment preceding morphologic tumor changes. ADC values in treated brain tumors could theoretically both increase due to the cell kill (and thus reduced cell density and decrease due to inhibition of edema. In this study, we investigated the effectiveness of features that quantify changes from pre- and post-treatment tumor ADC histograms to detect treatment response. There are three parts to this study: first, tumor regions were segmented on T1w contrast enhanced images by Otsu’s thresholding method, and mapped from T1w images onto ADC images by a 3D region of interest (ROI mapping tool using DICOM header information; second, ADC histograms of the tumor region were extracted from both pre- and five weeks post-treatment scans, and fitted by a two-component Gaussian mixture model (GMM. The GMM features as well as standard histogram-based features were extracted. Finally, supervised machine learning techniques were applied for classification of responders or non-responders. The approach was evaluated with a dataset of 85 patients with GBM under chemotherapy, in which 39 responded and 46 did not, based on tumor volume reduction. We compared adaBoost, random forest and support vector machine classification algorithms, using ten-fold cross validation, resulting in the best accuracy of 69.41% and the corresponding area under the curve (Az of 0.70.

  6. Optimal factors of diffusion tensor imaging predicting cortico spinal tract injury in patients with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Min, Zhi Gang; Niu, Chen; Zhang, Qiu Li; Zhang, Ming [Dept. of Radiology, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an (China); Qian, Yu Cheng [Dept. of Medical Imaging, School of Medicine, Jiangsu University, Zhenjiang (China)

    2017-09-15

    To identify the optimal factors in diffusion tensor imaging for predicting corticospinal tract (CST) injury caused by brain tumors. This prospective study included 33 patients with motor weakness and 64 patients with normal motor function. The movement of the CST, minimum distance between the CST and the tumor, and relative fractional anisotropy (rFA) of the CST on diffusion tensor imaging, were compared between patients with motor weakness and normal function. Logistic regression analysis was used to obtain the optimal factor predicting motor weakness. In patients with motor weakness, the displacement (8.44 ± 6.64 mm) of the CST (p = 0.009), minimum distance (3.98 ± 7.49 mm) between the CST and tumor (p < 0.001), and rFA (0.83 ± 0.11) of the CST (p < 0.001) were significantly different from those of the normal group (4.64 ± 6.65 mm, 14.87 ± 12.04 mm, and 0.98 ± 0.05, respectively) (p = 0.009, p < 0.001, and p < 0.001). The frequencies of patients with the CST passing through the tumor (6%, p = 0.002), CST close to the tumor (23%, p < 0.001), CST close to a malignant tumor (high grade glioma, metastasis, or lymphoma) (19%, p < 0.001), and CST passing through infiltrating edema (19%, p < 0.001) in the motor weakness group, were significantly different from those of the patients with normal motor function (0, 8, 1, and 10%, respectively). Logistic regression analysis showed that decreased rFA and CST close to a malignant tumor were effective variables related to motor weakness. Decreased fractional anisotropy, combined with closeness of a malignant tumor to the CST, is the optimal factor in predicting CST injury caused by a brain tumor.

  7. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery.

    Science.gov (United States)

    Hoefnagels, Friso W A; de Witt Hamer, Philip C; Pouwels, Petra J W; Barkhof, Frederik; Vandertop, W Peter

    2017-09-01

    To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with intracerebral lesions who had 2 different DTI scans, 3 DTI series were reconstructed to compare the effects of NGD and SR. Tractographies for 4 clinically relevant tracts (corticospinal tract, superior longitudinal fasciculus, optic radiation, and inferior fronto-occipital fasciculus) were constructed with a probabilistic tracking algorithm and automated region of interest placement and compared for 3 quantitative measurements: tract volume, median fiber density, and mean fractional anisotropy, using linear mixed-effects models. The mean tractography volume and intersubject reliability were visually compared across scanning protocols, to assess the clinical relevance of the quantitative differences. Both NGD and SR significantly influenced tract volume, median fiber density, and mean fractional anisotropy, but not to the same extent. In particular, higher NGD increased tract volume and median fiber density. More importantly, these effects further increased when tracts were affected by disease. The effects were tract specific, but not dependent on threshold. The superior longitudinal fasciculus and inferior fronto-occipital fasciculus showed the most significant differences. Qualitative assessment showed larger tract volumes given a fixed confidence level, and better intersubject reliability for the higher NGD protocol. SR in the range we considered seemed less relevant than NGD. This study indicates that, under time constraints of clinical imaging, a higher number of diffusion gradients is more important than spatial resolution for superior DTI probabilistic tractography in patients undergoing brain tumor surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  9. Age-associated changes in rich-club organisation in autistic and neurotypical human brains.

    Science.gov (United States)

    Watanabe, Takamitsu; Rees, Geraint

    2015-11-05

    Macroscopic structural networks in the human brain have a rich-club architecture comprising both highly inter-connected central regions and sparsely connected peripheral regions. Recent studies show that disruption of this functionally efficient organisation is associated with several psychiatric disorders. However, despite increasing attention to this network property, whether age-associated changes in rich-club organisation occur during human adolescence remains unclear. Here, analysing a publicly shared diffusion tensor imaging dataset, we found that, during adolescence, brains of typically developing (TD) individuals showed increases in rich-club organisation and inferred network functionality, whereas individuals with autism spectrum disorders (ASD) did not. These differences between TD and ASD groups were statistically significant for both structural and functional properties. Moreover, this typical age-related changes in rich-club organisation were characterised by progressive involvement of the right anterior insula. In contrast, in ASD individuals, did not show typical increases in grey matter volume, and this relative anatomical immaturity was correlated with the severity of ASD social symptoms. These results provide evidence that rich-club architecture is one of the bases of functionally efficient brain networks underpinning complex cognitive functions in adult human brains. Furthermore, our findings suggest that immature rich-club organisation might be associated with some neurodevelopmental disorders.

  10. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  11. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  12. The maternal brain and its plasticity in humans

    Science.gov (United States)

    Kim, Pilyoung; Strathearn, Lane; Swain, James E.

    2015-01-01

    Early mother-infant relationships play important roles in infants’ optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers’ brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  13. The bilingual brain: Flexibility and control in the human cortex

    Science.gov (United States)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  14. Addiction Circuitry in the Human Brain*

    OpenAIRE

    Volkow, Nora D.; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo

    2011-01-01

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person’s risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circ...

  15. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  16. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    Science.gov (United States)

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Decade of the Brain 1990--2000: Maximizing human potential

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  18. Fundamental Dynamical Modes Underlying Human Brain Synchronization

    Directory of Open Access Journals (Sweden)

    Catalina Alvarado-Rojas

    2012-01-01

    Full Text Available Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle. Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively activated across wake-sleep states.

  19. Functional organization of the transcriptome in human brain

    Science.gov (United States)

    Oldham, Michael C; Konopka, Genevieve; Iwamoto, Kazuya; Langfelder, Peter; Kato, Tadafumi; Horvath, Steve; Geschwind, Daniel H

    2009-01-01

    The enormous complexity of the human brain ultimately derives from a finite set of molecular instructions encoded in the human genome. These instructions can be directly studied by exploring the organization of the brain’s transcriptome through systematic analysis of gene coexpression relationships. We analyzed gene coexpression relationships in microarray data generated from specific human brain regions and identified modules of coexpressed genes that correspond to neurons, oligodendrocytes, astrocytes and microglia. These modules provide an initial description of the transcriptional programs that distinguish the major cell classes of the human brain and indicate that cell type–specific information can be obtained from whole brain tissue without isolating homogeneous populations of cells. Other modules corresponded to additional cell types, organelles, synaptic function, gender differences and the subventricular neurogenic niche. We found that subventricular zone astrocytes, which are thought to function as neural stem cells in adults, have a distinct gene expression pattern relative to protoplasmic astrocytes. Our findings provide a new foundation for neurogenetic inquiries by revealing a robust and previously unrecognized organization to the human brain transcriptome. PMID:18849986

  20. Small-world human brain networks: Perspectives and challenges.

    Science.gov (United States)

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of antenatal growth and prematurity on brain white matter: diffusion tensor study

    Energy Technology Data Exchange (ETDEWEB)

    Lepomaeki, V. [Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Turku University Central Hospital, Turku PET-Centre, PO Box 52, Turku (Finland); Paavilainen, T.; Komu, M. [Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Matomaeki, J.; Lapinleimu, H.; Liisa Lehtonen, L. [Turku University Central Hospital and University of Turku, Department of Pediatrics, Turku (Finland); Hurme, S. [University of Turku, Department of Biostatistics, Turku (Finland); Haataja, L. [Turku University Central Hospital and University of Turku, Department of Pediatric Neurology, Turku (Finland); Parkkola, R. [Turku University Central Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Turku University Central Hospital, Turku PET-Centre, PO Box 52, Turku (Finland); University of Turku, Department of Diagnostic Radiology, Turku (Finland)

    2012-06-15

    White matter maturation is characterised by increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD). Contradictory results have been published on the effect of premature birth on white matter maturation at term-equivalent age. To assess the association of gestational age and low birth-weight-for-gestational-age (z-score) with white matter maturation. Infants (n = 76, 53 males) born at different gestational ages were imaged at term-equivalent age. Gestational age and birth weight z-score were used as continuous variables and the effect on diffusion parameters was assessed. Brain maturation was studied using regions-of-interest analysis in several white matter areas. Gestational age showed no significant effect on white matter maturation at term-equivalent age. Children with low birth weight z-score had lower FA in the genu and splenium of the corpus callosum (regression, P = 0.012 and P = 0.032; correlation, P = 0.009 and P = 0.006, respectively), and higher MD in the splenium of the corpus callosum (regression, P = 0.002; correlation, P = 0.0004) compared to children whose birth weight was appropriate for gestational age. Children with low birth weight relative to gestational age show delay and/or anomaly in white matter maturation at term-equivalent age. (orig.)

  2. Effect of antenatal growth and prematurity on brain white matter: diffusion tensor study

    International Nuclear Information System (INIS)

    Lepomaeki, V.; Paavilainen, T.; Komu, M.; Matomaeki, J.; Lapinleimu, H.; Liisa Lehtonen, L.; Hurme, S.; Haataja, L.; Parkkola, R.

    2012-01-01

    White matter maturation is characterised by increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD). Contradictory results have been published on the effect of premature birth on white matter maturation at term-equivalent age. To assess the association of gestational age and low birth-weight-for-gestational-age (z-score) with white matter maturation. Infants (n = 76, 53 males) born at different gestational ages were imaged at term-equivalent age. Gestational age and birth weight z-score were used as continuous variables and the effect on diffusion parameters was assessed. Brain maturation was studied using regions-of-interest analysis in several white matter areas. Gestational age showed no significant effect on white matter maturation at term-equivalent age. Children with low birth weight z-score had lower FA in the genu and splenium of the corpus callosum (regression, P = 0.012 and P = 0.032; correlation, P = 0.009 and P = 0.006, respectively), and higher MD in the splenium of the corpus callosum (regression, P = 0.002; correlation, P = 0.0004) compared to children whose birth weight was appropriate for gestational age. Children with low birth weight relative to gestational age show delay and/or anomaly in white matter maturation at term-equivalent age. (orig.)

  3. In utero diffusion tensor imaging of the fetal brain: A reproducibility study.

    Science.gov (United States)

    Jakab, András; Tuura, Ruth; Kellenberger, Christian; Scheer, Ianina

    2017-01-01

    Our purpose was to evaluate the within-subject reproducibility of in utero diffusion tensor imaging (DTI) metrics and the visibility of major white matter structures. Images for 30 fetuses (20-33. postmenstrual weeks, normal neurodevelopment: 6 cases, cerebral pathology: 24 cases) were acquired on 1.5 T or 3.0 T MRI. DTI with 15 diffusion-weighting directions was repeated three times for each case, TR/TE: 2200/63 ms, voxel size: 1 ∗ 1 mm, slice thickness: 3-5 mm, b-factor: 700 s/mm 2 . Reproducibility was evaluated from structure detectability, variability of DTI measures using the coefficient of variation (CV), image correlation and structural similarity across repeated scans for six selected structures. The effect of age, scanner type, presence of pathology was determined using Wilcoxon rank sum test. White matter structures were detectable in the following percentage of fetuses in at least two of the three repeated scans: corpus callosum genu 76%, splenium 64%, internal capsule, posterior limb 60%, brainstem fibers 40% and temporooccipital association pathways 60%. The mean CV of DTI metrics ranged between 3% and 14.6% and we measured higher reproducibility in fetuses with normal brain development. Head motion was negatively correlated with reproducibility, this effect was partially ameliorated by motion-correction algorithm using image registration. Structures on 3.0 T had higher variability both with- and without motion correction. Fetal DTI is reproducible for projection and commissural bundles during mid-gestation, however, in 16-30% of the cases, data were corrupted by artifacts, resulting in impaired detection of white matter structures. To achieve robust results for the quantitative analysis of diffusivity and anisotropy values, fetal-specific image processing is recommended and repeated DTI is needed to ensure the detectability of fiber pathways.

  4. Computing the blood brain barrier (BBB) diffusion coefficient: A molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Shamloo, Amir, E-mail: shamloo@sharif.edu; Pedram, Maysam Z.; Heidari, Hossein; Alasty, Aria, E-mail: aalasti@sharif.edu

    2016-07-15

    Various physical and biological aspects of the Blood Brain Barrier (BBB) structure still remain unfolded. Therefore, among the several mechanisms of drug delivery, only a few have succeeded in breaching this barrier, one of which is the use of Magnetic Nanoparticles (MNPs). However, a quantitative characterization of the BBB permeability is desirable to find an optimal magnetic force-field. In the present study, a molecular model of the BBB is introduced that precisely represents the interactions between MNPs and the membranes of Endothelial Cells (ECs) that form the BBB. Steered Molecular Dynamics (SMD) simulations of the BBB crossing phenomenon have been carried out. Mathematical modeling of the BBB as an input-output system has been considered from a system dynamics modeling viewpoint, enabling us to analyze the BBB behavior based on a robust model. From this model, the force profile required to overcome the barrier has been extracted for a single NP from the SMD simulations at a range of velocities. Using this data a transfer function model has been obtained and the diffusion coefficient is evaluated. This study is a novel approach to bridge the gap between nanoscale models and microscale models of the BBB. The characteristic diffusion coefficient has the nano-scale molecular effects inherent, furthermore reducing the computational costs of a nano-scale simulation model and enabling much more complex studies to be conducted. - Highlights: • Molecular dynamics simulation of crossing nano-particles through the BBB membrane at different velocities. • Recording the position of nano-particle and the membrane-NP interaction force profile. • Identification of a frequency domain model for the membrane. • Calculating the diffusion coefficient based on MD simulation and identified model. • Obtaining a relation between continuum medium and discrete medium.

  5. NMR relaxation times in human brain tumors (preliminary results)

    International Nuclear Information System (INIS)

    Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.

    1981-01-01

    Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr

  6. Longitudinal, transcranial measurement of functional activation in the rat brain by diffuse correlation spectroscopy.

    Science.gov (United States)

    Blanco, Igor; Zirak, Peyman; Dragojević, Tanja; Castellvi, Clara; Durduran, Turgut; Justicia, Carles

    2017-10-01

    Neural activity is an important biomarker for the presence of neurodegenerative diseases, cerebrovascular alterations, and brain trauma; furthermore, it is a surrogate marker for treatment effects. These pathologies may occur and evolve in a long time-period, thus, noninvasive, transcutaneous techniques are necessary to allow a longitudinal follow-up. In the present work, we have customized noninvasive, transcutaneous, diffuse correlation spectroscopy (DCS) to localize changes in cerebral blood flow (CBF) induced by neural activity. We were able to detect changes in CBF in the somatosensory cortex by using a model of electrical forepaw stimulation in rats. The suitability of DCS measurements for longitudinal monitoring was demonstrated by performing multiple sessions with the same animals at different ages (from 6 to 18 months). In addition, functional DCS has been cross-validated by comparison with functional magnetic resonance imaging (fMRI) in the same animals in a subset of the time-points. The overall results obtained with transcutaneous DCS demonstrates that it can be utilized in longitudinal studies safely and reproducibly to locate changes in CBF induced by neural activity in the small animal brain.

  7. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI.

    Science.gov (United States)

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2014-06-10

    In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain regions. Here, current DT-MRI analysis techniques are discussed and the available evidence from DT-MRI studies into differences in white matter architecture between musicians and non-musicians is reviewed. Collectively, the existing literature tends to support the hypothesis that musical training can induce changes in cross-hemispheric connections, with significant differences frequently reported in various regions of the corpus callosum of musicians compared with non-musicians. However, differences found in intra-hemispheric fibres have not always been replicated, while findings regarding the internal capsule and corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that variances in white matter structure in non-musicians may correlate with their ability to learn musical skills, offering an alternative explanation for the structural differences observed between musicians and non-musicians. Considering the inconsistencies in the current literature, possible reasons for conflicting results are offered, along with suggestions for future research in this area.

  8. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation.

    Science.gov (United States)

    Coenen, Volker Arnd; Schlaepfer, Thomas E; Allert, Niels; Mädler, Burkhard

    2012-01-01

    Diffusion tensor imaging (DTI) is more than just a useful adjunct to invasive techniques like optogenetics which recently have tremendously influenced our understanding of the mechanisms of deep brain stimulation (DBS). In combination with other technologies, DTI helps us to understand which parts of the brain tissue are connected to others and which ones are truly influenced with neuromodulation. The complex interaction of DBS with the surrounding tissues-scrutinized with DTI-allows to create testable hypotheses that can explain network interactions. Those interactions are vital for our understanding of the net effects of neuromodulation. This work naturally was first done in the field of movement disorder surgery, where a lot of experience regarding therapeutic effects and only a short latency between initiation of neuromodulation and alleviation of symptoms exist. This chapter shows the journey over the past 10 years with first applications in DBS toward current research in affect regulating network balances and their therapeutic alterations with the neuromodulation technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Functional MRI procedures in the diagnosis of brain tumors. Perfusion- and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Hartmann, M.; Heiland, S.; Sartor, K.

    2002-01-01

    Despite the increased diagnostic accuracy of contrast material enhanced MR imaging, specification and grading of brain tumors are still only approximate at best: neither morphology, nor relaxation times or contrast material enhancement reliably predict tumor histology or tumor grade. As histology and tumor grade strongly influence which therapy concept is chosen, a more precise diagnosis is mandatory. With diffusion- and perfusion-weighted MR imaging (DWI, PWI) it is now possible to obtain important information regarding the cellular matrix and the relative regional cerebral blood volume (rrCBV) of brain tumors, which cannot be obtained with standard MR techniques. These dynamic-functional imaging techniques are very useful in the preoperative diagnosis of gliomas, lymphomas, and metastases, as well as in the differentiation of these neoplastic lesions from abscesses, atypical ischemic infarctions, and tumor-like manifestations of demyelinating disease. Additionally, they appear suitable for determining glioma grade and regions of active tumor growth which should be the target of stereotactic biopsy and therapy. After therapy these techniques are helpful to better assess the tumor response to therapy, possible therapy failure and therapy complications such as radiation necrosis. (orig.) [de

  10. Global and regional brain mean diffusivity changes in patients with heart failure.

    Science.gov (United States)

    Woo, Mary A; Palomares, Jose A; Macey, Paul M; Fonarow, Gregg C; Harper, Ronald M; Kumar, Rajesh

    2015-04-01

    Heart failure (HF) patients show gray and white matter changes in multiple brain sites, including autonomic and motor coordination areas. It is unclear whether the changes represent acute or chronic tissue pathology, a distinction necessary for understanding pathological processes that can be resolved with diffusion tensor imaging (DTI)-based mean diffusivity (MD) procedures. We collected four DTI series from 16 HF (age 55.1 ± 7.8 years, 12 male) and 26 control (49.7 ± 10.8 years, 17 male) subjects with a 3.0-Tesla magnetic resonance imaging scanner. MD maps were realigned, averaged, normalized, and smoothed. Global and regional MD values from autonomic and motor coordination sites were calculated by using normalized MD maps and brain masks; group MD values and whole-brain smoothed MD maps were compared by analysis of covariance (covariates; age and gender). Global brain MD (HF vs. controls, units × 10(-6) mm(2) /sec, 1103.8 ± 76.6 vs. 1035.9 ± 69.4, P = 0.038) and regional autonomic and motor control site values (left insula, 1,085.4 ± 95.7 vs. 975.7 ± 65.4, P = 0.001; right insula, 1,050.2 ± 100.6 vs. 965.7 ± 58.4, P = 0.004; left hypothalamus, 1,419.6 ± 165.2 vs. 1,234.9 ± 136.3, P = 0.002; right hypothalamus, 1,446.5 ± 178.8 vs. 1,273.3 ± 136.9, P = 0.004; left cerebellar cortex, 889.1 ± 81.9 vs. 796.6 ± 46.8, P right cerebellar cortex, 797.8 ± 50.8 vs. 750.3 ± 27.5, P = 0.001; cerebellar deep nuclei, 1,236.1 ± 193.8 vs. 1,071.7 ± 107.1, P = 0.002) were significantly higher in HF vs. control subjects, indicating chronic tissue changes. Whole-brain comparisons showed increased MD values in HF subjects, including limbic, basal-ganglia, thalamic, solitary tract nucleus, frontal, and cerebellar regions. Brain injury occurs in autonomic and motor control areas, which may contribute to deficient function in HF patients. The chronic tissue changes likely

  11. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  12. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  13. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  14. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Kish, Stephen J.; Furukawa, Yoshiaki; Chang Lijan; Tong Junchao; Ginovart, Nathalie; Wilson, Alan; Houle, Sylvain; Meyer, Jeffrey H.

    2005-01-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  15. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  16. [Assessment of motor and sensory pathways of the brain using diffusion-tensor tractography in children with cerebral palsy].

    Science.gov (United States)

    Memedyarov, A M; Namazova-Baranova, L S; Ermolina, Y V; Anikin, A V; Maslova, O I; Karkashadze, M Z; Klochkova, O A

    2014-01-01

    Diffusion tensor tractography--a new method of magnetic resonance imaging, that allows to visualize the pathways of the brain and to study their structural-functional state. The authors investigated the changes in motor and sensory pathways of brain in children with cerebral palsy using routine magnetic resonance imaging and diffusion-tensor tractography. The main group consisted of 26 patients with various forms of cerebral palsy and the comparison group was 25 people with normal psychomotor development (aged 2 to 6 years) and MR-picture of the brain. Magnetic resonance imaging was performed on the scanner with the induction of a magnetic field of 1,5 Tesla. Coefficients of fractional anisotropy and average diffusion coefficient estimated in regions of the brain containing the motor and sensory pathways: precentral gyrus, posterior limb of the internal capsule, thalamus, posterior thalamic radiation and corpus callosum. Statistically significant differences (p cerebral palsy in relation to the comparison group. All investigated regions, the coefficients of fractional anisotropy in children with cerebral palsy were significantly lower, and the average diffusion coefficient, respectively, higher. These changes indicate a lower degree of ordering of the white matter tracts associated with damage and subsequent development of gliosis of varying severity in children with cerebral palsy. It is shown that microstructural damage localized in both motor and sensory tracts that plays a leading role in the development of the clinical picture of cerebral palsy.

  17. Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumour: a preliminary report

    International Nuclear Information System (INIS)

    Noguchi, K.; Watanabe, N.; Nagayoshi, T.; Kanazawa, T.; Toyoshima, S.; Shimizu, M.; Seto, H.

    1999-01-01

    Our purpose was to evaluate diffusion-weighted (DW) echo-planar MRI in differentiating between brain abscess and tumour. We examined two patients with surgically confirmed pyogenic brain abscess and 18 with metastatic brain tumours or high-grade glioma, using a 1.5 T system. The apparent diffusion coefficient (ADC) of each necrotic or solid contrast-enhancing lesion was measured with two different b values (20 and 1200 s/mm 2 ). All capsule-stage brain abscesses (4 lesions) and zones of cerebritis (2 lesions) were identified on high-b-value DWI as markedly high-signal areas of decreased ADC (range, 0.58-0.70 [(10-3 mm 2 /s; mean, 0.63)]). All cystic or necrotic portions of brain tumours (14 lesions) were identified on high-b-value DWI as low-signal areas of increased ADC (range, 2.20-3.20 [(10-3 mm 2 /s; mean, 2.70)]). Solid, contrast-enhancing portions of brain tumours (19 lesions) were identified on high-b-value DWI as high-signal areas of sightly decreased or increased ADC (range, 0.77-1.29 [(10-3 mm 2 /s; mean, 0.94)]). Our preliminary results indicate that DW echo-planar MRI be used for distinguishing between brain abscess and tumour. (orig.) (orig.)

  18. Multilayer modeling and analysis of human brain networks

    Science.gov (United States)

    2017-01-01

    Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916

  19. Human-like brain hemispheric dominance in birdsong learning.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  20. Data integration through brain atlasing: Human Brain Project tools and strategies.

    Science.gov (United States)

    Bjerke, Ingvild E; Øvsthus, Martin; Papp, Eszter A; Yates, Sharon C; Silvestri, Ludovico; Fiorilli, Julien; Pennartz, Cyriel M A; Pavone, Francesco S; Puchades, Maja A; Leergaard, Trygve B; Bjaalie, Jan G

    2018-04-01

    The Human Brain Project (HBP), an EU Flagship Initiative, is currently building an infrastructure that will allow integration of large amounts of heterogeneous neuroscience data. The ultimate goal of the project is to develop a unified multi-level understanding of the brain and its diseases, and beyond this to emulate the computational capabilities of the brain. Reference atlases of the brain are one of the key components in this infrastructure. Based on a new generation of three-dimensional (3D) reference atlases, new solutions for analyzing and integrating brain data are being developed. HBP will build services for spatial query and analysis of brain data comparable to current online services for geospatial data. The services will provide interactive access to a wide range of data types that have information about anatomical location tied to them. The 3D volumetric nature of the brain, however, introduces a new level of complexity that requires a range of tools for making use of and interacting with the atlases. With such new tools, neuroscience research groups will be able to connect their data to atlas space, share their data through online data systems, and search and find other relevant data through the same systems. This new approach partly replaces earlier attempts to organize research data based only on a set of semantic terminologies describing the brain and its subdivisions. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  1. Brain shape in human microcephalics and Homo floresiensis.

    Science.gov (United States)

    Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M J; Sutikna, Thomas; Jatmiko; Saptomo, E Wayhu; Imhof, Herwig; Seidler, Horst; Prior, Fred

    2007-02-13

    Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm(3), some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an approximately 3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species.

  2. Message processing in the human brain. III

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, P

    1983-10-07

    For pt.II see ibid., no.19, p.95-100 (1983). The general problem of the possibly achievable super brain is discussed, and subtle differences between various linkages leading to selective processes, creativity decision making and speculative assessments are pointed out and translated into possible approaches to the making of machine intelligence. Generally, associative sequences for processing of large data flows cannot be attempted without the provision of generally valid linkage rules. Such coordination steps are considered first, the brain-machine simulation being built-up vertically on 6 levels and horizontally as recognition stages in an event. These six levels are: repertoire (i.e. vocabulary); definition; scene; happenings; spatial linkages; temporal linkages. Event simulation proceeds from the descriptive to the cognitive situation. Speculative discussions continue with the gradual introduction of computer hardware and software concepts to be adapted for intelligence simulation; thus, the simplest associative process could start with an adder network and proceed to a virtual expert system, which would include teaching by example, autonomous control, non-procedural language, all these governed by schedules.

  3. Optimizing full-brain coverage in human brain MRI through population distributions of brain size

    NARCIS (Netherlands)

    Mennes, M.; Jenkinson, M.; Valabregue, R.; Buitelaar, J.K.; Beckmann, C.F.; Smith, S.

    2014-01-01

    When defining an MRI protocol, brain researchers need to set multiple interdependent parameters that define repetition time (TR), voxel size, field-of-view (FOV), etc. Typically, researchers aim to image the full brain, making the expected FOV an important parameter to consider. Especially in 2D-EPI

  4. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  5. Mapping White Matter Microstructure in the One Month Human Brain.

    Science.gov (United States)

    Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L

    2017-08-29

    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.

  6. Effect of intravenous gadolinium-DTPA on diffusion-weighted imaging of brain tumors: a short temporal interval assessment.

    Science.gov (United States)

    Li, Xiang; Qu, Jin-Rong; Luo, Jun-Peng; Li, Jing; Zhang, Hong-Kai; Shao, Nan-Nan; Kwok, Keith; Zhang, Shou-Ning; Li, Yan-le; Liu, Cui-Cui; Zee, Chi-Shing; Li, Hai-Liang

    2014-09-01

    To determine the effect of intravenous administration of gadolinium (Gd) contrast medium (Gd-DTPA) on diffusion-weighted imaging (DWI) for the evaluation of normal brain parenchyma vs. brain tumor following a short temporal interval. Forty-four DWI studies using b values of 0 and 1000 s/mm(2) were performed before, immediately after, 1 min after, 3 min after, and 5 min after the administration of Gd-DTPA on 62 separate lesions including 15 meningioma, 17 glioma and 30 metastatic lesions. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values of the brain tumor lesions and normal brain tissues were measured on pre- and postcontrast images. Statistical analysis using paired t-test between precontrast and postcontrast data were obtained on three brain tumors and normal brain tissue. The SNR and CNR of brain tumors and the SNR of normal brain tissue showed no statistical differences between pre- and postcontrast (P > 0.05). The ADC values on the three cases of brain tumors demonstrated significant initial increase on the immediate time point (P < 0.01) and decrease on following the 1 min time point (P < 0.01) after contrast. Significant decrease of ADC value was still found at 3min and 5min time point in the meningioma group (P < 0.01) with gradual normalization over time. The ADC values of normal brain tissues demonstrated significant initial elevation on the immediately postcontrast DWI sequence (P < 0.01). Contrast medium can cause a slight but statistically significant change on the ADC value within a short temporal interval after the contrast administration. The effect is both time and lesion-type dependent. © 2013 Wiley Periodicals, Inc.

  7. Gender development and the human brain.

    Science.gov (United States)

    Hines, Melissa

    2011-01-01

    Convincing evidence indicates that prenatal exposure to the gonadal hormone, testosterone, influences the development of children's sex-typical toy and activity interests. In addition, growing evidence shows that testosterone exposure contributes similarly to the development of other human behaviors that show sex differences, including sexual orientation, core gender identity, and some, though not all, sex-related cognitive and personality characteristics. In addition to these prenatal hormonal influences, early infancy and puberty may provide additional critical periods when hormones influence human neurobehavioral organization. Sex-linked genes could also contribute to human gender development, and most sex-related characteristics are influenced by socialization and other aspects of postnatal experience, as well. Neural mechanisms underlying the influences of gonadal hormones on human behavior are beginning to be identified. Although the neural mechanisms underlying experiential influences remain largely uninvestigated, they could involve the same neural circuitry as that affected by hormones.

  8. Thrombin binding to human brain and spinal cord

    International Nuclear Information System (INIS)

    McKinney, M.; Snider, R.M.; Richelson, E.

    1983-01-01

    Thrombin, a serine protease that regulates hemostasis, has been shown to stimulate the formation of cGMP in murine neuroblastoma cells. The nervous system in vivo thus may be postulated to respond to this blood-borne factor after it breaches the blood-brain barrier, as in trauma. Human alpha-thrombin was radiolabeled with 125I and shown to bind rapidly, reversibly, and with high affinity to human brain and spinal cord. These findings indicate the presence of specific thrombin-binding sites in nervous tissue and may have important clinical implications

  9. Simplified detection system for neuroreceptor studies in the human brain

    International Nuclear Information System (INIS)

    Bice, A.N.; Wagner, H.N. Jr.; Frost, J.J.

    1986-01-01

    A simple, inexpensive dual-detector system has been developed for measurement of positronemitting receptor-binding drugs in the human brain. This high efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of [11C]carfentanil, a high affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist indicates the potential utility of this system for estimating different degrees of receptor occupation in the human brain

  10. Mu opioid receptor binding sites in human brain

    International Nuclear Information System (INIS)

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand [ 3 H]DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of [ 3 H]DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas

  11. Diffusion of [2-14C]diazepam across hairless mouse skin and human skin

    International Nuclear Information System (INIS)

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-01-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. [ 14 C]Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the 14 C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber

  12. Glucose transporter of the human brain and blood-brain barrier

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-01-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species

  13. USE OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING FOR REVEALING HYPOXIC-ISCHEMIC BRAIN LESIONS IN NEONATES

    Directory of Open Access Journals (Sweden)

    E. V. Shimchenko

    2014-01-01

    Full Text Available The article presents advantages of use of diffusion-weighted magnetic resonance imaging (DW MRI for revealing hypoxic-ischemic brain lesions in neonates. The trial included 97 neonates with perinatal brain lesion who had been undergoing treatment at a resuscitation department or neonatal pathology department in the first month of life. The article shows high information value of diffusion-weighted images (DWI for diagnostics of hypoxic-ischemic lesions in comparison with regular standard modes. In the event of no structural brain lesions of neonates, pronounced increase in signal characteristics revealed by DWI indicated considerable pathophysiological alterations. Subsequently, children developed structural alterations in the form of cystic encephalomalacia with expansion of cerebrospinal fluid spaces manifested with pronounced neurological deficit. DW MRI has been offered as a method of prognosticating further neurological development of children on early stages. 

  14. Magnetic resonance elastography in normal human brain: preliminary study

    International Nuclear Information System (INIS)

    Xu Lei; Gao Peiyi; Lin Yan; Han Jiancheng; Xi Zhinong; Shen Hao

    2007-01-01

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  15. Measuring and Reconstructing the Brain at the Synaptic Scale: Towards a Biofidelic Human Brain in silico

    OpenAIRE

    NeuroData; CE, Priebe; Burns, R.; RJ, Vogelstein

    2015-01-01

    Vogelstein JT, Priebe CE, Burns R, Vogelstein RJ, Lichtman J. Measuring and Reconstructing the Brain at the Synaptic Scale: Towards a Biofidelic Human Brain in silico. DARPA Neural Engineering, Science and Technology Forum, 2010

  16. Neurospin Seminar: From the Proton to the Human Brain

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    From the Proton to the Human Brain Speaker: Prof Denis Le Bihan Abstract: The understanding of the human brain is one of the main scientific challenges of the 21st century. In the early 2000s the French Atomic Energy Commission (CEA) launched a program to conceive and build a “human brain explorer”, the first human MRI scanner operating at 11.7T. This scanner was envisioned to be part of the ambitious Iseult project, bridging together industrial and academic partners to push the limits of molecular neuroimaging, from mouse to man, using Ultra-High Field (UHF) MRI. In this seminar a summary of the main features of this magnet, and the neuroscience and medical targets of NeuroSpin where this outstanding instrument will be installed in 2017 will be surveyed. The unprecedented resolution and the new contrasts allowed by such UHF magnets, in combination with innovative concepts in physics and neurobiology, will allow to explore the human brain at a mesoscale at which everything remains to d...

  17. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  18. Mathematical logic in the human brain: syntax.

    Directory of Open Access Journals (Sweden)

    Roland Friedrich

    Full Text Available Theory predicts a close structural relation of formal languages with natural languages. Both share the aspect of an underlying grammar which either generates (hierarchically structured expressions or allows us to decide whether a sentence is syntactically correct or not. The advantage of rule-based communication is commonly believed to be its efficiency and effectiveness. A particularly important class of formal languages are those underlying the mathematical syntax. Here we provide brain-imaging evidence that the syntactic processing of abstract mathematical formulae, written in a first order language, is, indeed efficient and effective as a rule-based generation and decision process. However, it is remarkable, that the neural network involved, consisting of intraparietal and prefrontal regions, only involves Broca's area in a surprisingly selective way. This seems to imply that despite structural analogies of common and current formal languages, at the neural level, mathematics and natural language are processed differently, in principal.

  19. Addiction circuitry in the human brain (*).

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

    2011-09-27

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

  20. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    International Nuclear Information System (INIS)

    Aristovich, K Y; Khan, S H

    2010-01-01

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  1. Diffusion-weighted MR of the brain: methodology and clinical applications; Diffusione in RM dell'encefalo: metodologia e applicazioni cliniche

    Energy Technology Data Exchange (ETDEWEB)

    Mascalchi, Mario [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia clinica, Sezione di Radiodiagnostica; Filippi, Massimo [Istituto Scientifico Ospedale S. Raffaele, Milano (Italy)Unita di Neuroimaging Quantitativo; Floris, Roberto [Tor Vergata Univ., Roma (Italy). Dipartimento di Diagnostica per immagini e radiologia interventistica; Fonda, Claudio [Ospedale Meyer, Firenze (Italy). Servizio di radiologia; Gasparotti, Roberto [Brescia Univ., Brescia (Italy). Neuroradiologia; Villari, Natale

    2005-03-01

    Clinical diffusion magnetic resonance (MR) imaging in humans started in the last decade with the demonstration of the capabilities of this technique of depicting the anatomy of the white matter fibre tracts in the brain. Two main approaches in terms of reconstruction and evaluation of the images obtained with application of diffusion sensitising gradients to an echo planar imaging sequence are possible. The first approach consists of reconstruction of images in which the effect of white matter anisotropy is averaged -know as the isotropic or diffusion weighted images, which are usually evaluated subjectively for possible areas of increased or decreased signal, reflecting restricted and facilitated diffusion, respectively. The second approach implies reconstruction of image maps of the apparent diffusion coefficient (ADC), in which the T2 weighting of the echo planar diffusion sequence is cancelled out, and their objective, i.e. numerical, evaluation with regions of interest or histogram analysis. This second approach enables a quantitative and reproducible assessment of the diffusion changes mot only in areas exhibiting signal abnormality in conventional MR images, but also in areas of normal signal. A further level of image post-processing requires the acquisition of images after application of sensitive gradients along at least 6 different spatial orientations and consists of computation of the diffusion tensor and reconstruction of maps of the mean diffusivity (D) and of the white matter anisotropic properties, usually in terms of fractional anisotropy (FA). Diffusion-weighted imaging is complementary to conventional MR imaging in the evaluation of the acute ischaemic stroke. The combination of diffusion and perfusion MR imaging has the potential of providing all the information necessary for the diagnosis and management of the individual patient with acute ischaemic stroke. Diffusion-weighted MR, in particular quantitative evaluation based on the diffusion

  2. Kisspeptin modulates sexual and emotional brain processing in humans.

    Science.gov (United States)

    Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S

    2017-02-01

    Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

  3. Unveiling the mystery of visual information processing in human brain.

    Science.gov (United States)

    Diamant, Emanuel

    2008-08-15

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. Why was it overlooked in brain information processing research remains a conundrum. In this paper, I am trying to find a remedy for this bizarre situation. I propose an uncommon definition of "information", which can be derived from Kolmogorov's Complexity Theory and Chaitin's notion of Algorithmic Information. Embracing this new definition leads to an inevitable revision of traditional dogmas that shape the state of the art of brain information processing research. I hope this revision would better serve the challenging goal of human visual information processing modeling.

  4. Main-, minor- and trace elements distribution in human brain

    International Nuclear Information System (INIS)

    Zoeger, N.; Streli, C.; Wobrauschek, P.; Jokubonis, C.; Pepponi, G.; Roschger, P.; Bohic, S.; Osterode, W.

    2004-01-01

    Lead (Pb) is known to induce adverse health effects in humans. In fact, cognitive deficits are repeatedly described with Pb exposure, but little is known about the distribution of lead in brain. Measurements of the distribution of Pb in human brain and to study if Pb is associated with the distribution of other chemical elements such as zinc (Zn), iron (Fe) is of great interest and could reveal some hints about the metabolism of Pb in brain. To determine the local distribution of lead (Pb) and other trace elements x-ray fluorescence spectroscopy (XRF) measurements have been performed, using a microbeam setup and highest flux synchrotron radiation. Experiments have been carried out at ID-22, ESRF, Grenoble, France. The installed microprobe setup provides a monochromatic beam (17 keV) from an undulator station focused by Kirkpatrick-Baez x-ray optics to a spot size of 5 μm x 3μm. Brain slices (20 μm thickness, imbedded in paraffin and mounted on Kapton foils) from areas of the frontal cortex, thalamus and hippocampus have been investigated. Generally no significant increase in fluorescence intensities could be detected in one of the investigated brain compartments. However Pb and other (trace) elements (e.g. S, Ca, Fe, Cu, Zn, Br) could be detected in all samples and showed strong inhomogeneities across the analyzed areas. While S, Ca, Fe, Cu, Zn and Br could be clearly assigned to the investigated brain structures (vessels, etc.) Pb showed a very different behavior. In some cases (e.g. plexus choroidei) Pb was located at the walls of the vessel, whereas with other structures (e.g. blood vessel) this correlation was not found. Moreover, the detected Pb in different brain areas was individually correlated with various elements. The local distribution of the detected elements in various brain structures will be discussed in this work. (author)

  5. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz, spontaneous fluctuations of the blood oxygen level dependent (BOLD signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the "default" system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in

  6. Consumption of seaweeds and the human brain

    DEFF Research Database (Denmark)

    Cornish, M. Lynn; Critchley, Alan T.; Mouritsen, Ole G.

    2017-01-01

    , and the impacts of anti-oxidant activities in neuroprotection. These elements have the capacity to help in the defense of human cognitive disorders, such as dementia, Alzheimer’s disease, depression, bipolar diseases, and adverse conditions characterized by progressive neurodegeneration. Psychological benefits...

  7. Visual dictionaries as intermediate features in the human brain

    Directory of Open Access Journals (Sweden)

    Kandan eRamakrishnan

    2015-01-01

    Full Text Available The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2 and V3. However BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.

  8. Intraparenchymal epidermoid cysts in the brain: diagnostic value of MR diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hu, X.-Y. [Medical Imaging Center, The First Affiliated Hospital of Suzhou, Jiangsu Province (China); Hu, C.-H. [Imaging Center, Soochow University (China)], E-mail: wpdrhxy@hotmail.com; Fang, X.-M.; Cui, L.; Zhang, Q.-H. [Medical Imaging Center, The First Affiliated Hospital of Suzhou, Jiangsu Province (China)

    2008-07-15

    Aim: To evaluate the value of magnetic resonance (MR) diffusion-weighted imaging (DWI) and apparent diffusion coefficients (ADC) maps in the diagnosis of intraparenchymal epidermoid cysts (ECs). Materials and methods: Six cases of histopathologically proven intraparenchymal ECs were studied. All patients were examined with conventional MR (T1WI, T2WI, contrast-enhanced T1WI) and DWI sequences. Along with the mean ADC values (mADC) of the ECs, the cerebrospinal fluid (CSF) and grey matter (GM) were measured. Qualitative and quantitative assessments, as well as MRI findings, were retrospectively analysed using a double blind method by three radiologists in consensus. Results: Four lesions were located in the cerebellum, among them, one was accompanied by an arachnoid cyst; one huge lesion crossed the parenchyma of the frontal and temporal lobes; the other was located in the left temporal lobe. Two lesions had a homogeneous CSF-like intensity on both T1WI and T2WI. The other four were of mixed-intensity on both T1WI and T2WI. All lesions were strikingly hyperintense on DWI, and iso- or slightly hypointense on ADC (relative to the brain). The mADCs of the ECs were significantly higher than that of GM, but significantly lower than that of CSF. Three cases (3/6) were accurately diagnosed using conventional MR sequences without DWI, but in the remaining three cases, correct diagnosis could only be made with help of DWI. Conclusion: DWI sequences can facilitate the diagnosis of intraparenchymal ECs, thus alerting surgeons of the risk of chemical meningitis at surgery. The MR findings of intraparenchymal ECs are basically as the same as those of extracerebral ECs, but the former is likely to have a mixed signal. The hyperintense signal of ECs on DWI is probably caused by the T2 shine-through effect in tumour tissue.

  9. High b-value diffusion-weighted MR imaging of normal brain at 3 T

    International Nuclear Information System (INIS)

    Cihangiroglu, Mutlu; Ulug, Aziz Muefit; Firat, Zeynep; Bayram, Ali; Kovanlikaya, Arzu; Kovanlikaya, Ilhami

    2009-01-01

    Introduction: The purpose of this study was to determine the normative apparent diffusion coefficient (ADC) values at 3 T using high b-value (3000 s/mm 2 ) diffusion-weighted images (DWI) and compare the signal characteristics of the high b value with standard b-value (1000 s/mm 2 ) DWI. Methods: Institutional review board approval was obtained for this