WorldWideScience

Sample records for human brain areas

  1. A Novel Human Body Area Network for Brain Diseases Analysis.

    Science.gov (United States)

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system.

  2. [Brodmann Areas 17, 18, and 19 in the Human Brain: An Overview].

    Science.gov (United States)

    Kawachi, Juro

    2017-04-01

    Brodmann areas 17, 18, and 19 in the human brain are visual cortices of the occipital lobe. Each area has its own retinotopic representations, particulary area 19, which has many small retinotopic areas representing half or all of the contralateral visual field, several functional areas, and nine cytoarchitectonic areas. Several fasciculi are known as occipital fiber connections, but their precise endpoints are not clear. Lesions in the visual cortices cause several visual disorders including visual field defect, visual hallucinations, metamorphopsia, and different kinds of visual agnosia.

  3. Inter-species activity correlations reveal functional correspondences between monkey and human brain areas

    Science.gov (United States)

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G.; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A.; Vanduffel, Wim

    2012-01-01

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. In cases where functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assess similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by means of temporal correlation. Using natural vision data, we reveal regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This novel framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models. PMID:22306809

  4. Diffusion tensor tractography of language functional areas and fiber pathways in normal human brain

    International Nuclear Information System (INIS)

    Sun Xuejin; Dai Jianping; Chen Hongyan; Gao Peiyi; Ai Lin; Tian Shengyong; Pang Ruilin

    2007-01-01

    Objective: To demonstrate the fiber pathways of Broca area to the other functional brain areas with diffusion tensor imaging and fiber tracking. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and fiber tracking were performed using 3.0 T MRI in 20 healthy person. The fiber bundles and tracts were analyzed in Broca area and contralateral normal area. Results: The left-side fiber bundles were 428 and the right-side were 416 in B45 area, there were no statistically significant differences between both sides (t=0.216, P>0.05). The left-side fiber bundles were 432 and the right-side were 344 in B44 area,there were statistically significant (t=2.314, P 0.05). Differences of the arcuate fascicule between both sides were not statistically significant (t=-0.465, P>0.05), the mean FA on the left was higher than the right (t=1.912, P<0.05). DTI and fiber tracking exhibited that the fiber bundles from Broca area were distributed superoanteriorly to the lateral foreside of the frontal lobe, lateroinferiorly to the occipital lobe through external capsule, and went down through globus pallidus and internal capsule. Conclusion: The fiber tracts bewteen Broca area and other brain areas were the fundamental structures for performing language function of the human brain. (authors)

  5. Optimal staining methods for delineation of cortical areas and neuron counts in human brains.

    Science.gov (United States)

    Uylings, H B; Zilles, K; Rajkowska, G

    1999-04-01

    For cytoarchitectonic delineation of cortical areas in human brain, the Gallyas staining for somata with its sharp contrast between cell bodies and neuropil is preferable to the classical Nissl staining, the more so when an image analysis system is used. This Gallyas staining, however, does not appear to be appropriate for counting neuron numbers in pertinent brain areas, due to the lack of distinct cytological features between small neurons and glial cells. For cell counting Nissl is preferable. In an optimal design for cell counting at least both the Gallyas and the Nissl staining must be applied, the former staining for cytoarchitectural delineaton of cortical areas and the latter for counting the number of neurons in the pertinent cortical areas. Copyright 1999 Academic Press.

  6. Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures.

    Science.gov (United States)

    Chaminade, Thierry; Zecca, Massimiliano; Blakemore, Sarah-Jayne; Takanishi, Atsuo; Frith, Chris D; Micera, Silvestro; Dario, Paolo; Rizzolatti, Giacomo; Gallese, Vittorio; Umiltà, Maria Alessandra

    2010-07-21

    The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents. Here, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust) and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted. Increased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca's area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance. Motor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions. Artificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions.

  7. Cyto- and receptor architecture of area 32 in human and macaque brains.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl; Schleicher, Axel; Vogt, Brent A

    2013-10-01

    Human area 32 plays crucial roles in emotion and memory consolidation. It has subgenual (s32), pregenual (p32), dorsal, and midcingulate components. We seek to determine whether macaque area 32 has subgenual and pregenual subdivisions and the extent to which they are comparable to those in humans by means of NeuN immunohistochemistry and multireceptor analysis of laminar profiles. The macaque has areas s32 and p32. In s32, layer IIIa/b neurons are larger than those of layer IIIc. This relationship is reversed in p32. Layer Va is thicker and Vb thinner in s32. Area p32 contains higher kainate, benzodiazepine (BZ), and serotonin (5-HT)1A but lower N-methyl-D-aspartate (NMDA) and α2 receptor densities. Most differences were found in layers I, II, and VI. Together, these differences support the dual nature of macaque area 32. Comparative analysis of human and macaque s32 and p32 supports equivalences in cyto- and receptor architecture. Although there are differences in mean areal receptor densities, there are considerable similarities at the layer level. Laminar receptor distribution patterns in each area are comparable in the two species in layers III-Va for kainate, NMDA, γ-aminobutyric acid (GABA)B , BZ, and 5-HT1A receptors. Multivariate statistical analysis of laminar receptor densities revealed that human s32 is more similar to macaque s32 and p32 than to human p32. Thus, macaque 32 is more complex than hitherto known. Our data suggest a homologous neural architecture in anterior cingulate s32 and p32 in human and macaque brains. © 2013 Wiley Periodicals, Inc.

  8. Defining Face Perception Areas in the Human Brain: A Large-Scale Factorial fMRI Face Localizer Analysis

    Science.gov (United States)

    Rossion, Bruno; Hanseeuw, Bernard; Dricot, Laurence

    2012-01-01

    A number of human brain areas showing a larger response to faces than to objects from different categories, or to scrambled faces, have been identified in neuroimaging studies. Depending on the statistical criteria used, the set of areas can be overextended or minimized, both at the local (size of areas) and global (number of areas) levels. Here…

  9. Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures.

    Directory of Open Access Journals (Sweden)

    Thierry Chaminade

    2010-07-01

    Full Text Available The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents.Here, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted.Increased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca's area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance.Motor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions.Artificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions.

  10. Sensory competition in the face processing areas of the human brain.

    Directory of Open Access Journals (Sweden)

    Krisztina Nagy

    Full Text Available The concurrent presentation of multiple stimuli in the visual field may trigger mutually suppressive interactions throughout the ventral visual stream. While several studies have been performed on sensory competition effects among non-face stimuli relatively little is known about the interactions in the human brain for multiple face stimuli. In the present study we analyzed the neuronal basis of sensory competition in an event-related functional magnetic resonance imaging (fMRI study using multiple face stimuli. We varied the ratio of faces and phase-noise images within a composite display with a constant number of peripheral stimuli, thereby manipulating the competitive interactions between faces. For contralaterally presented stimuli we observed strong competition effects in the fusiform face area (FFA bilaterally and in the right lateral occipital area (LOC, but not in the occipital face area (OFA, suggesting their different roles in sensory competition. When we increased the spatial distance among pairs of faces the magnitude of suppressive interactions was reduced in the FFA. Surprisingly, the magnitude of competition depended on the visual hemifield of the stimuli: ipsilateral stimulation reduced the competition effects somewhat in the right LOC while it increased them in the left LOC. This suggests a left hemifield dominance of sensory competition. Our results support the sensory competition theory in the processing of multiple faces and suggests that sensory competition occurs in several cortical areas in both cerebral hemispheres.

  11. The Safe Area in the Parieto-Occipital Lobe in the Human Brain: Diffusion Tensor Tractography.

    Science.gov (United States)

    Jang, Sung Ho; Kim, Seong Ho; Kwon, Hyeok Gyu

    2015-06-01

    A recent study reported on the relatively safe area in the frontal lobe for performance of neurological interventions; however, no study on the posterior safe area has been reported. In this study, using diffusion tensor tractography, we attempted to identify the safe area in the parieto-occipital lobe in healthy subjects. A total of 47 healthy subjects were recruited for this study. Eleven neural tracts were reconstructed in and around the parieto-occipital area of the brain using diffusion tensor tractography. The safe area, which is free from any trajectory of 10 neural tracts, was measured anteriorly and medially from the line of the most posterior and lateral margin of the brain at 5 axial levels (from the cerebral cortex to the corona radiata). The anterior boundaries of the safe area in the upper cerebral cortex, lower cerebral cortex, centrum semiovale, upper corona radiata, and lower corona radiata levels were located at 31.0, 32.6, 32.7, 35.1, and 35.2 mm anteriorly from the line of the most posterior margin of the brain, respectively, and the medial boundaries were located at an average of 34.7, 38.1, 39.2, 36.1, and 33.6 mm medially from the line of the most lateral margin of the brain, respectively. According to our findings, the safe area was located in the posterolateral portion of the parieto-occipital lobe in the shape of a triangle. However, we found no safe area in the deep white matter around the lateral ventricle. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  13. Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas

    Science.gov (United States)

    Chestek, Cynthia A.; Gilja, Vikash; Blabe, Christine H.; Foster, Brett L.; Shenoy, Krishna V.; Parvizi, Josef; Henderson, Jaimie M.

    2013-04-01

    Objective. Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system.Approach. We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. Main results. Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. Significance. These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training

  14. GLP-1 Receptor Activation Modulates Appetite- and Reward-Related Brain Areas in Humans

    NARCIS (Netherlands)

    van Bloemendaal, L.; IJzerman, R.G.; ten Kulve, J.S.; Barkhof, F.; Konrad, R.J.; Drent, M.L.; Veltman, D.J.; Diamant, M.

    2014-01-01

    Gut-derived hormones, such as GLP-1, have been proposed to relay information to the brain to regulate appetite. GLP-1 receptor agonists, currently used for the treatment of type 2 diabetes (T2DM), improve glycemic control and stimulate satiety, leading to decreases in food intake and body weight. We

  15. Human brain imaging

    International Nuclear Information System (INIS)

    Kuhar, M.J.

    1987-01-01

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  16. The cooperation of the functional activation areas in human brain: an application of event-related fMRI study of the voluntary motor function

    International Nuclear Information System (INIS)

    Li Enzhong; Tian Jie; Dai Ruwei

    2002-01-01

    Objective: To detect the cooperation of the functional activation areas in human brain using event-related fMRI technique developed in recent years. Methods: Forty-four subjects were selected in this experiment and scanned by GE Signa Horizon 1.5 Tesla superconductive MR system. A CUE-GO paradigm was used in this experiment. The data were analyzed in SUN and SGI workstation. Results: The activation areas were found in contralateral primary motor area (Ml), bilateral supplementary motor areas (SMA), pre-motor areas (PMA), basal ganglia, and cerebellar cortices. The time-signal curve of Ml was a typical single-peak curve, but the curves in PMA, basal ganglia, and cerebellar cortices were double-peak curves. SMA had 2 parts, one was Pre-SMA, and another was SMA Proper. The curve was double-peak type in Pre-SMA and single-peak type in SMA Proper. There was difference between the time-signal intensity curves in above-mentioned areas. Conclusion: (1) Ml is mainly associated with motor execution, while others with both motor preparation and execution. There are differences in the function at the variant areas in the brain. (2) The fact that bilateral SMA, PMA, basal ganglia, and cerebellar cortices were activated, is different from what the classical theories told. (3) Event-related fMRI technique has higher temporary and spatial resolutions. (4) There is cooperation among different cortical areas, basal ganglia, and cerebellum

  17. Brain Activity and Human Unilateral Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  18. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.

    Science.gov (United States)

    Sarfeld, Anna-Sophia; Diekhoff, Svenja; Wang, Ling E; Liuzzi, Gianpiero; Uludağ, Kamil; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2012-05-01

    Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system. Copyright © 2011 Wiley-Liss, Inc.

  19. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  20. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas.

    Science.gov (United States)

    Gallivan, Jason P; McLean, D Adam; Flanagan, J Randall; Culham, Jody C

    2013-01-30

    Planning object-directed hand actions requires successful integration of the movement goal with the acting limb. Exactly where and how this sensorimotor integration occurs in the brain has been studied extensively with neurophysiological recordings in nonhuman primates, yet to date, because of limitations of non-invasive methodologies, the ability to examine the same types of planning-related signals in humans has been challenging. Here we show, using a multivoxel pattern analysis of functional MRI (fMRI) data, that the preparatory activity patterns in several frontoparietal brain regions can be used to predict both the limb used and hand action performed in an upcoming movement. Participants performed an event-related delayed movement task whereby they planned and executed grasp or reach actions with either their left or right hand toward a single target object. We found that, although the majority of frontoparietal areas represented hand actions (grasping vs reaching) for the contralateral limb, several areas additionally coded hand actions for the ipsilateral limb. Notable among these were subregions within the posterior parietal cortex (PPC), dorsal premotor cortex (PMd), ventral premotor cortex, dorsolateral prefrontal cortex, presupplementary motor area, and motor cortex, a region more traditionally implicated in contralateral movement generation. Additional analyses suggest that hand actions are represented independently of the intended limb in PPC and PMd. In addition to providing a unique mapping of limb-specific and action-dependent intention-related signals across the human cortical motor system, these findings uncover a much stronger representation of the ipsilateral limb than expected from previous fMRI findings.

  1. Sex differences in brain organization: implications for human communication.

    Science.gov (United States)

    Hanske-Petitpierre, V; Chen, A C

    1985-12-01

    This article reviews current knowledge in two major research domains: sex differences in neuropsychophysiology, and in human communication. An attempt was made to integrate knowledge from several areas of brain research with human communication and to clarify how such a cooperative effort may be beneficial to both fields of study. By combining findings from the area of brain research, a communication paradigm was developed which contends that brain-related sex differences may reside largely in the area of communication of emotion.

  2. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Ioannis N. Mavridis

    2017-12-01

    Full Text Available The concept of stereotactically standard areas (SSAs within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  3. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation.

    Science.gov (United States)

    Mavridis, Ioannis N

    2017-12-11

    The concept of stereotactically standard areas (SSAs) within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  4. Why did humans develop a large brain?

    OpenAIRE

    Muscat Baron, Yves

    2012-01-01

    "Of all animals, man has the largest brain in proportion to his size"- Aristotle. Dr Yves Muscat Baron shares his theory on how humans evolved large brains. The theory outlines how gravity could have helped humans develop a large brain- the author has named the theory 'The Gravitational Vascular Theory'. http://www.um.edu.mt/think/why-did-humans-develop-a-large-brain/

  5. Phosphatidylserine and the human brain.

    Science.gov (United States)

    Glade, Michael J; Smith, Kyl

    2015-06-01

    The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Sexual differences of human brain

    Directory of Open Access Journals (Sweden)

    Masoud Pezeshki Rad

    2014-04-01

    Full Text Available During the last decades there has been an increasing interest in studying the differences between males and females. These differences extend from behavioral to cognitive to micro- and macro- neuro-anatomical aspects of human biology. There have been many methods to evaluate these differences and explain their determinants. The most studied cause of this dimorphism is the prenatal sex hormones and their organizational effect on brain and behavior. However, there have been new and recent attentions to hormone's activational influences in puberty and also the effects of genomic imprinting. In this paper, we reviewed the sex differences of brain, the evidences for possible determinants of these differences and also the methods that have been used to discover them. We reviewed the most conspicuous findings with specific attention to macro-anatomical differences based on Magnetic Resonance Imaging (MRI data. We finally reviewed the findings and the many opportunities for future studies.

  7. Brain structures in the sciences and humanities.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  8. Brain mechanisms underlying human communication

    Directory of Open Access Journals (Sweden)

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  9. Brain mechanisms underlying human communication.

    Science.gov (United States)

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  10. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  11. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  12. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  13. Decade of the Brain 1990--2000: Maximizing human potential

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  14. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    Science.gov (United States)

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  15. Lipid transport and human brain development.

    Science.gov (United States)

    Betsholtz, Christer

    2015-07-01

    How the human brain rapidly builds up its lipid content during brain growth and maintains its lipids in adulthood has remained elusive. Two new studies show that inactivating mutations in MFSD2A, known to be expressed specifically at the blood-brain barrier, lead to microcephaly, thereby offering a simple and surprising solution to an old enigma.

  16. [Neuroethics: Ethical Endowments of Human Brain].

    Science.gov (United States)

    López Moratalla, Natalia

    2015-01-01

    The neurobiological processes underlying moral judgement have been the focus of Neuroethics. Neurosciences demonstrate which cerebral areas are active and inactive whilst people decide how to act when facing a moral dilemma; in this way we know the correlation between determined cerebral areas and our human acts. We can explain how the ″ethical endowments″ of each person, common to all human beings, is ″embedded″ in the dynamic of cerebral flows. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion related areas of the brain contribute to moral judgement. The outcome of man's natural inclinations is on one hand linked to instinctive systems of animal survival and to basic emotions, and on the other, to the life of each individual human uninhibited by automatism of the biological laws, because he is governed by the laws of freedom. The capacity to formulate an ethical judgement is an innate asset of the human mind.

  17. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  18. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  19. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  20. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  1. Male microchimerism in the human female brain.

    Directory of Open Access Journals (Sweden)

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  2. Protein phosphorylation systems in postmortem human brain

    International Nuclear Information System (INIS)

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P.

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders

  3. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  4. An introduction to human brain anatomy

    NARCIS (Netherlands)

    Forstmann, B.U.; Keuken, M.C.; Alkemade, A.; Forstmann, B.U.; Wagenmakers, E.-J.

    2015-01-01

    This tutorial chapter provides an overview of the human brain anatomy. Knowledge of brain anatomy is fundamental to our understanding of cognitive processes in health and disease; moreover, anatomical constraints are vital for neurocomputational models and can be important for psychological

  5. Mu opioid receptor binding sites in human brain

    International Nuclear Information System (INIS)

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand [ 3 H]DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of [ 3 H]DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas

  6. Tolerances of the human brain to concussion.

    Science.gov (United States)

    1971-03-01

    The report reviews the pertinent literature and adds additional evidence indicating that the human brain may be able to tolerate head impact forces in the range of 300 to 400 g's without evidence of concussion or other detectable neurologic sequelae,...

  7. Ionising radiation and the developing human brain

    International Nuclear Information System (INIS)

    Schull, W.J.

    1991-01-01

    This article reviews the effects of radiation exposure of the developing human brain. Much of the evidence has come from the prenatally exposed in Hiroshima and Nagasaki. The effects on development age, mental retardation, head size, neuromuscular performance, intelligence tests, school performance and the occurrence of convulsions are discussed. Other topics covered include the biological nature of the damage to the brain, risk estimates in human and problems in radiation protection. (UK)

  8. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  9. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  10. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Kish, Stephen J.; Furukawa, Yoshiaki; Chang Lijan; Tong Junchao; Ginovart, Nathalie; Wilson, Alan; Houle, Sylvain; Meyer, Jeffrey H.

    2005-01-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  11. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  12. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  13. The evolution of modern human brain shape.

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

  14. The evolution of modern human brain shape

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123

  15. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  16. Human-like brain hemispheric dominance in birdsong learning.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  17. The Brain Prize 2014: complex human functions.

    Science.gov (United States)

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Lactate fuels the human brain during exercise

    DEFF Research Database (Denmark)

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up......)] from a resting value of 6 to exercise, cerebral activation associated with mental activity, or exposure to a stressful situation. The CMR decrease is prevented with combined beta(1)- and beta(2)-adrenergic receptor...

  19. Brain mechanisms underlying human communication

    NARCIS (Netherlands)

    Noordzij, Matthijs Leendert; Newman-Norlund, Sarah E.; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C.; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we

  20. Brain mechanisms underlying human communication

    NARCIS (Netherlands)

    Noordzij, M.L.; Newman-Norlund, S.E.; Ruiter, J.P.A. de; Hagoort, P.; Levinson, S.C.; Toni, I.

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we

  1. Small-world human brain networks: Perspectives and challenges.

    Science.gov (United States)

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Listening to humans walking together activates the social brain circuitry.

    Science.gov (United States)

    Saarela, Miiamaaria V; Hari, Riitta

    2008-01-01

    Human footsteps carry a vast amount of social information, which is often unconsciously noted. Using functional magnetic resonance imaging, we analyzed brain networks activated by footstep sounds of one or two persons walking. Listening to two persons walking together activated brain areas previously associated with affective states and social interaction, such as the subcallosal gyrus bilaterally, the right temporal pole, and the right amygdala. These areas seem to be involved in the analysis of persons' identity and complex social stimuli on the basis of auditory cues. Single footsteps activated only the biological motion area in the posterior STS region. Thus, hearing two persons walking together involved a more widespread brain network than did hearing footsteps from a single person.

  3. The human brain. Prenatal development and structure

    International Nuclear Information System (INIS)

    Marin-Padilla, Miguel

    2011-01-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  4. The human brain. Prenatal development and structure

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  5. Revisiting Glycogen Content in the Human Brain.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  6. Main-, minor- and trace elements distribution in human brain

    International Nuclear Information System (INIS)

    Zoeger, N.; Streli, C.; Wobrauschek, P.; Jokubonis, C.; Pepponi, G.; Roschger, P.; Bohic, S.; Osterode, W.

    2004-01-01

    Lead (Pb) is known to induce adverse health effects in humans. In fact, cognitive deficits are repeatedly described with Pb exposure, but little is known about the distribution of lead in brain. Measurements of the distribution of Pb in human brain and to study if Pb is associated with the distribution of other chemical elements such as zinc (Zn), iron (Fe) is of great interest and could reveal some hints about the metabolism of Pb in brain. To determine the local distribution of lead (Pb) and other trace elements x-ray fluorescence spectroscopy (XRF) measurements have been performed, using a microbeam setup and highest flux synchrotron radiation. Experiments have been carried out at ID-22, ESRF, Grenoble, France. The installed microprobe setup provides a monochromatic beam (17 keV) from an undulator station focused by Kirkpatrick-Baez x-ray optics to a spot size of 5 μm x 3μm. Brain slices (20 μm thickness, imbedded in paraffin and mounted on Kapton foils) from areas of the frontal cortex, thalamus and hippocampus have been investigated. Generally no significant increase in fluorescence intensities could be detected in one of the investigated brain compartments. However Pb and other (trace) elements (e.g. S, Ca, Fe, Cu, Zn, Br) could be detected in all samples and showed strong inhomogeneities across the analyzed areas. While S, Ca, Fe, Cu, Zn and Br could be clearly assigned to the investigated brain structures (vessels, etc.) Pb showed a very different behavior. In some cases (e.g. plexus choroidei) Pb was located at the walls of the vessel, whereas with other structures (e.g. blood vessel) this correlation was not found. Moreover, the detected Pb in different brain areas was individually correlated with various elements. The local distribution of the detected elements in various brain structures will be discussed in this work. (author)

  7. Multiscale neural connectivity during human sensory processing in the brain

    Science.gov (United States)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  8. A network of genes, genetic disorders, and brain areas.

    Directory of Open Access Journals (Sweden)

    Satoru Hayasaka

    Full Text Available The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  9. Brain activation during human male ejaculation

    NARCIS (Netherlands)

    Holstege, Ger; Georgiadis, Janniko R.; Paans, Anne M.J.; Meiners, Linda C.; Graaf, Ferdinand H.C.E. van der; Reinders, A.A.T.Simone

    2003-01-01

    Brain mechanisms that control human sexual behavior in general, and ejaculation in particular, are poorly understood. We used positron emission tomography to measure increases in regional cerebral blood flow (rCBF) during ejaculation compared with sexual stimulation in heterosexual male volunteers.

  10. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    Dorn, A.; Bernstein, H.G.; Rinne, A.; Hahn, H.J.; Ziegler, M.

    1983-01-01

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  11. Visual dictionaries as intermediate features in the human brain

    Directory of Open Access Journals (Sweden)

    Kandan eRamakrishnan

    2015-01-01

    Full Text Available The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2 and V3. However BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.

  12. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  13. [Evolution of human brain and intelligence].

    Science.gov (United States)

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are

  14. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  15. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  16. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  17. Puberty and structural brain development in humans.

    Science.gov (United States)

    Herting, Megan M; Sowell, Elizabeth R

    2017-01-01

    Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual- based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. Copyright © 2016. Published by Elsevier Inc.

  18. Connectome imaging for mapping human brain pathways.

    Science.gov (United States)

    Shi, Y; Toga, A W

    2017-09-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.

  19. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  20. Infrasounds and biorhythms of the human brain

    Science.gov (United States)

    Panuszka, Ryszard; Damijan, Zbigniew; Kasprzak, Cezary; McGlothlin, James

    2002-05-01

    Low Frequency Noise (LFN) and infrasound has begun a new public health hazard. Evaluations of annoyance of (LFN) on human occupational health were based on standards where reactions of human auditory system and vibrations of parts of human body were small. Significant sensitivity has been observed on the central nervous system from infrasonic waves especially below 10 Hz. Observed follow-up effects in the brain gives incentive to study the relationship between parameters of waves and reactions obtained of biorhythms (EEG) and heart action (EKG). New results show the impact of LFN on the electrical potentials of the brain are dependent on the pressure waves on the human body. Electrical activity of circulatory system was also affected. Signals recorded in industrial workplaces were duplicated by loudspeakers and used to record data from a typical LFN spectra with 5 and 7 Hz in a laboratory chamber. External noise, electromagnetic fields, temperature, dust, and other elements were controlled. Results show not only a follow-up effect in the brain but also a result similar to arrhythmia in the heart. Relaxations effects were observed of people impacted by waves generated from natural sources such as streams and waterfalls.

  1. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz, spontaneous fluctuations of the blood oxygen level dependent (BOLD signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the "default" system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in

  2. Imaging Monoamine Oxidase in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  3. Imaging Monoamine Oxidase in the Human Brain

    International Nuclear Information System (INIS)

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-01-01

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  4. Food-Related Odors Activate Dopaminergic Brain Areas

    OpenAIRE

    Agnieszka Sorokowska; Agnieszka Sorokowska; Katherina Schoen; Cornelia Hummel; Pengfei Han; Jonathan Warr; Thomas Hummel

    2017-01-01

    Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving careful...

  5. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  6. Radiation effects on the developing human brain

    International Nuclear Information System (INIS)

    1993-01-01

    The developing human brain has been shown to be especially sensitive to ionizing radiation. Mental retardation has been observed in the survivors of the atomic bombings in Japan exposed in utero during sensitive periods, and clinical studies of pelvically irradiated pregnant women have demonstrated damaging effects on the fetus. In this annex the emphasis is on reviewing the results of the study of the survivors of the atomic bombings in Japan, although the results of other human epidemiological investigations and of pertinent experimental studies are also considered. Refs, 3 figs, 10 tabs

  7. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  8. Towards Developmental Connectomics of the Human Brain

    Directory of Open Access Journals (Sweden)

    Miao eCao

    2016-03-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and

  9. Toward Developmental Connectomics of the Human Brain.

    Science.gov (United States)

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  10. Toward Developmental Connectomics of the Human Brain

    Science.gov (United States)

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  11. Cross-hemispheric functional connectivity in the human fetal brain.

    Science.gov (United States)

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  12. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  13. Segmentation and Visualisation of Human Brain Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Roger

    2003-10-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give.

  14. Segmentation and Visualisation of Human Brain Structures

    International Nuclear Information System (INIS)

    Hult, Roger

    2003-01-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give

  15. Deconstructing Anger in the Human Brain.

    Science.gov (United States)

    Gilam, Gadi; Hendler, Talma

    2017-01-01

    Anger may be caused by a wide variety of triggers, and though it has negative consequences on health and well-being, it is also crucial in motivating to take action and approach rather than avoid a confrontation. While anger is considered a survival response inherent in all living creatures, humans are endowed with the mental flexibility that enables them to control and regulate their anger, and adapt it to socially accepted norms. Indeed, a profound interpersonal nature is apparent in most events which evoke anger among humans. Since anger consists of physiological, cognitive, subjective, and behavioral components, it is a contextualized multidimensional construct that poses theoretical and operational difficulties in defining it as a single psychobiological phenomenon. Although most neuroimaging studies have neglected the multidimensionality of anger and thus resulted in brain activations dispersed across the entire brain, there seems to be several reoccurring neural circuits subserving the subjective experience of human anger. Nevertheless, to capture the large variety in the forms and fashions in which anger is experienced, expressed, and regulated, and thus to better portray the related underlying neural substrates, neurobehavioral investigations of human anger should aim to further embed realistic social interactions within their anger induction paradigms.

  16. Human midsagittal brain shape variation: patterns, allometry and integration

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Colom, Roberto

    2010-01-01

    Midsagittal cerebral morphology provides a homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships. In this study, midsagittal brain shape variation is investigated in a sample of 102 humans, in order to describe and quantify the major patterns of correlation between morphological features, the effect of size and sex on general anatomy, and the degree of integration between different cortical and subcortical areas. The only evident pattern of covariation was associated with fronto-parietal cortical bulging. The allometric component was weak for the cortical profile, but more robust for the posterior subcortical areas. Apparent sex differences were evidenced in size but not in brain shape. Cortical and subcortical elements displayed scarcely integrated changes, suggesting a modular separation between these two areas. However, a certain correlation was found between posterior subcortical and parietal cortical variations. These results should be directly integrated with information ranging from functional craniology to wiring organization, and with hypotheses linking brain shape and the mechanical properties of neurons during morphogenesis. PMID:20345859

  17. Visualization of monoamine oxidase in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  18. Human brain lesion-deficit inference remapped.

    Science.gov (United States)

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint; Nachev, Parashkev

    2014-09-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  19. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  20. Physical biology of human brain development

    Directory of Open Access Journals (Sweden)

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  1. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    Science.gov (United States)

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Drug delivery to the human brain via the cerebrospinal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Howden, L.; Aroussi, A. [Univ. of Nottingham, School of Mechanical, Material, Manufacturing Engineering and Managements, Nottingham (United Kingdom)]. E-mail: eaxljh@nottingham.ac.uk; Vloeberghs, M. [Queens Medical Centre, Dept. of Child Health, Nottingham (United Kingdom)

    2003-07-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  3. Drug delivery to the human brain via the cerebrospinal fluid

    International Nuclear Information System (INIS)

    Howden, L.; Aroussi, A.; Vloeberghs, M.

    2003-01-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  4. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  5. Combining Functional Neuroimaging with Off-Line Brain Stimulation: Modulation of Task-Related Activity in Language Areas

    Science.gov (United States)

    Andoh, Jamila; Paus, Tomas

    2011-01-01

    Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word…

  6. Left Brain to Right Brain: Notes from the Human Laboratory.

    Science.gov (United States)

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  7. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  8. Food-Related Odors Activate Dopaminergic Brain Areas

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    2017-12-01

    Full Text Available Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving carefully preselected odors of edible and non-edible substances. We compared activations generated by three food and three non-food odorants matching in terms of intensity, pleasantness and trigeminal qualities. We observed that for our mixed sample of 30 hungry and satiated participants, food odors generated significantly higher activation in the anterior cingulate cortex (right and left, insula (right, and putamen (right than non-food odors. Among hungry subjects, regardless of the odor type, we found significant activation in the ventral tegmental area in response to olfactory stimulation. As our stimuli were matched in terms of various perceptual qualities, this result suggests that edibility of an odor source indeed generates specific activation in dopaminergic brain areas.

  9. Impaired insulin action in the human brain: causes and metabolic consequences.

    Science.gov (United States)

    Heni, Martin; Kullmann, Stephanie; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich

    2015-12-01

    Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined.

  10. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males...... and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...

  11. Strong Functional Connectivity among Homotopic Brain Areas Is Vital for Motor Control in Unilateral Limb Movement

    Directory of Open Access Journals (Sweden)

    Pengxu Wei

    2017-07-01

    Full Text Available The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top–down and bottom–up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.

  12. Strong Functional Connectivity among Homotopic Brain Areas Is Vital for Motor Control in Unilateral Limb Movement.

    Science.gov (United States)

    Wei, Pengxu; Zhang, Zuting; Lv, Zeping; Jing, Bin

    2017-01-01

    The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI) study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR) scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top-down and bottom-up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.

  13. "Messing with the Mind: Evolutionary Challenges to Human Brain Augmentation

    Directory of Open Access Journals (Sweden)

    ARTHUR eSANIOTIS

    2014-09-01

    Full Text Available The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce augmented brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties.

  14. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  15. Mathematical logic in the human brain: syntax.

    Directory of Open Access Journals (Sweden)

    Roland Friedrich

    Full Text Available Theory predicts a close structural relation of formal languages with natural languages. Both share the aspect of an underlying grammar which either generates (hierarchically structured expressions or allows us to decide whether a sentence is syntactically correct or not. The advantage of rule-based communication is commonly believed to be its efficiency and effectiveness. A particularly important class of formal languages are those underlying the mathematical syntax. Here we provide brain-imaging evidence that the syntactic processing of abstract mathematical formulae, written in a first order language, is, indeed efficient and effective as a rule-based generation and decision process. However, it is remarkable, that the neural network involved, consisting of intraparietal and prefrontal regions, only involves Broca's area in a surprisingly selective way. This seems to imply that despite structural analogies of common and current formal languages, at the neural level, mathematics and natural language are processed differently, in principal.

  16. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  17. Neocortical glial cell numbers in human brains.

    Science.gov (United States)

    Pelvig, D P; Pakkenberg, H; Stark, A K; Pakkenberg, B

    2008-11-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex.

  18. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  19. Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction

    Directory of Open Access Journals (Sweden)

    Shishkin S. L.

    2017-09-01

    Full Text Available Background. Human-machine interaction technology has greatly evolved during the last decades, but manual and speech modalities remain single output channels with their typical constraints imposed by the motor system’s information transfer limits. Will brain-computer interfaces (BCIs and gaze-based control be able to convey human commands or even intentions to machines in the near future? We provide an overview of basic approaches in this new area of applied cognitive research. Objective. We test the hypothesis that the use of communication paradigms and a combination of eye tracking with unobtrusive forms of registering brain activity can improve human-machine interaction. Methods and Results. Three groups of ongoing experiments at the Kurchatov Institute are reported. First, we discuss the communicative nature of human-robot interaction, and approaches to building a more e cient technology. Specifically, “communicative” patterns of interaction can be based on joint attention paradigms from developmental psychology, including a mutual “eye-to-eye” exchange of looks between human and robot. Further, we provide an example of “eye mouse” superiority over the computer mouse, here in emulating the task of selecting a moving robot from a swarm. Finally, we demonstrate a passive, noninvasive BCI that uses EEG correlates of expectation. This may become an important lter to separate intentional gaze dwells from non-intentional ones. Conclusion. The current noninvasive BCIs are not well suited for human-robot interaction, and their performance, when they are employed by healthy users, is critically dependent on the impact of the gaze on selection of spatial locations. The new approaches discussed show a high potential for creating alternative output pathways for the human brain. When support from passive BCIs becomes mature, the hybrid technology of the eye-brain-computer (EBCI interface will have a chance to enable natural, fluent, and the

  20. Endogenous neurogenesis in the human brain following cerebral infarction.

    Science.gov (United States)

    Minger, Stephen L; Ekonomou, Antigoni; Carta, Eloisa M; Chinoy, Amish; Perry, Robert H; Ballard, Clive G

    2007-01-01

    Increased endogenous neurogenesis has a significant regenerative role in many experimental models of cerebrovascular diseases, but there have been very few studies in humans. We therefore examined whether there was evidence of altered endogenous neurogenesis in an 84-year-old patient who suffered a cerebrovascular accident 1 week prior to death. Using antibodies that specifically label neural stem/neural progenitor cells, we examined the presence of immunopositive cells around and distant from the infarcted area, and compared this with a control, age-matched individual. Interestingly, a large number of neural stem cells, vascular endothelial growth factor-immunopositive cells and new blood vessels were observed only around the region of infarction, and none in the corresponding brain areas of the healthy control. In addition, an increased number of neural stem cells was observed in the neurogenic region of the lateral ventricle wall. Our results suggest increased endogenous neurogenesis associated with neovascularization and migration of newly-formed cells towards a region of cerebrovascular damage in the adult human brain and highlight possible mechanisms underlying this process.

  1. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  2. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Activated and deactivated functional brain areas in the Deqi state

    OpenAIRE

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-01-01

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, th...

  4. Not single brain areas but a network is involved in language: Applications in presurgical planning.

    Science.gov (United States)

    Alemi, Razieh; Batouli, Seyed Amir Hossein; Behzad, Ebrahim; Ebrahimpoor, Mitra; Oghabian, Mohammad Ali

    2018-02-01

    Language is an important human function, and is a determinant of the quality of life. In conditions such as brain lesions, disruption of the language function may occur, and lesion resection is a solution for that. Presurgical planning to determine the language-related brain areas would enhance the chances of language preservation after the operation; however, availability of a normative language template is essential. In this study, using data from 60 young individuals who were meticulously checked for mental and physical health, and using fMRI and robust imaging and data analysis methods, functional brain maps for the language production, perception and semantic were produced. The obtained templates showed that the language function should be considered as the product of the collaboration of a network of brain regions, instead of considering only few brain areas to be involved in that. This study has important clinical applications, and extends our knowledge on the neuroanatomy of the language function. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  6. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  7. Analysis of brain CT on 120 patients of human cysticercosis

    International Nuclear Information System (INIS)

    Ma, J.; To, R.; Ri, T.; Ra, S.; Inomata, Taiten; Ogawa, Yasuhiro; Maeda, Tomoo.

    1990-01-01

    A study on brain CT was made in 120 patients of human cysticercosis, which is a rare disease in Japan and clinical symptoms and laboratory data for the diagnosis were also discussed. From the point of therapeutic view, we proposed a new differentiation on brain CT of human cysticercosis, which is divided into two groups according to the alve or dead parasite. Furthermore, we proposed a new type named multiple large and small cysts type on brain CT. The idea of diagnostic standard was made integrating brain CT image, clinical symptoms and labolatory data. (author)

  8. Information flow between interacting human brains: Identification, validation, and relationship to social expertise.

    Science.gov (United States)

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-04-21

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions.

  9. The progress of radiosensitive genes of human brain glioma

    International Nuclear Information System (INIS)

    Wang Xi; Liu Qiang

    2008-01-01

    Human gliomas are one of the most aggressive tumors in brain which grow infiltrativly. Surgery is the mainstay of treatment. But as the tumor could not be entirely cut off, it is easy to relapse. Radiotherapy plays an important role for patients with gliomas after surgery. The efficacy of radiotherapy is associated with radio sensitivity of human gliomas. This paper makes a summary of current situation and progress for radiosensitive genes of human brain gliomas. (authors)

  10. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. How Localized are Language Brain Areas? A Review of Brodmann Areas Involvement in Oral Language.

    Science.gov (United States)

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2016-02-01

    The interest in understanding how language is "localized" in the brain has existed for centuries. Departing from seven meta-analytic studies of functional magnetic resonance imaging activity during the performance of different language activities, it is proposed here that there are two different language networks in the brain: first, a language reception/understanding system, including a "core Wernicke's area" involved in word recognition (BA21, BA22, BA41, and BA42), and a fringe or peripheral area ("extended Wernicke's area:" BA20, BA37, BA38, BA39, and BA40) involved in language associations (associating words with other information); second, a language production system ("Broca's complex:" BA44, BA45, and also BA46, BA47, partially BA6-mainly its mesial supplementary motor area-and extending toward the basal ganglia and the thalamus). This paper additionally proposes that the insula (BA13) plays a certain coordinating role in interconnecting these two brain language systems. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints...... individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships...... in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/....

  13. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  14. Sodium MR imaging of human brain neoplasms

    International Nuclear Information System (INIS)

    Kobayashi, Shu; Yoshikawa, Kohki; Takakura, Kintomo; Iio, Masahiro

    1988-01-01

    We reported the experience of the sodium magnetic resonance imaging of 5 patients with brain tumors (4 astrocytomas and 1 craniopharyngioma), using a Siemens 1.5 Tesla superconductive magnet. We used two-dimensional Fourier imaging with a spin-echo scanning sequence (and with the repetition time of 140 msec and the echo time of 11 - 14 msec). The radiofrequency was maintained at 17 MHz. Sodium MR imaging was achieved with a 64 x 64 data acquisition (30 mm slice thickness) in 19.1 min. On the sodium MRI, all four astrocytomas, along with the eye balls and the cerebrospinal fluid spaces, appeared as high-intensity areas. Peritumoral edema is also visualized as highly intense, so that it is difficult to discriminate tumor extent from the surrounding edema. Our comparative studies with malignant glioma cases using the same equipment are needed to clarify the relationship between sodium signal intensities and the malignancy of gliomas, and to evaluate the potential clinical utility of sodium MRI. A craniopharyngioma than contained a yellowish cystic fluid with a sodium concentration as high as CSF was shown on sodium MRI as a mass with highly intense signals. The ability to differentiate extracellular from intracellular sodium, that has been studied by several investigators, would greatly augment the clinical specificity of MR imaging. (author)

  15. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  16. Driving and driven architectures of directed small-world human brain functional networks.

    Directory of Open Access Journals (Sweden)

    Chaogan Yan

    Full Text Available Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86 to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule. Further split-half analyses indicated that our results were highly reproducible between two

  17. Toward Developmental Connectomics of the Human Brain

    OpenAIRE

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorder...

  18. Towards Developmental Connectomics of the Human Brain

    OpenAIRE

    Miao eCao; Hao eHuang; Hao eHuang; Yun ePeng; Qi eDong; Yong eHe

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders...

  19. The Complex Functioning of the Human Brain: The Two Hemispheres

    Directory of Open Access Journals (Sweden)

    Iulia Cristina Timofti

    2010-04-01

    Full Text Available The present study reveals just a glimpse of the possible functions and reactions that the human brain can have. I considered as good examples different situations characteristic both of a normal person and a split-brain one. These situations prove that the brain, although divided in two, works as a unit, as an amazing computer that has data processing as a main goal.

  20. Neuroglobin and Cytoglobin expression in the human brain

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Hay-Schmidt, Anders

    2013-01-01

    Neuroglobin and Cytoglobin are new members of the heme-globin family. Both globins are primarily expressed in neurons of the brain and retina. Neuroglobin and Cytoglobin have been suggested as novel therapeutic targets in various neurodegenerative diseases based on their oxygen binding and cell...... protecting properties. However, findings in Neuroglobin-deficient mice question the endogenous neuroprotective properties. The expression pattern of Neuroglobin and Cytoglobin in the rodent brain is also in contradiction to a major role of neuronal protection. In a recent study, Neuroglobin was ubiquitously...... expressed and up-regulated following stroke in the human brain. The present study aimed at confirming our previous observations in rodents using two post-mortem human brains. The anatomical localization of Neuroglobin and Cytoglobin in the human brain is much like what has been described for the rodent...

  1. Protected areas as frontiers for human migration.

    Science.gov (United States)

    Zommers, Zinta; MacDonald, David W

    2012-06-01

    Causes of human population growth near protected areas have been much debated. We conducted 821 interviews in 16 villages around Budongo Forest Reserve, Masindi district, Uganda, to explore the causes of human migration to protected areas and to identify differences in forest use between migrant and nonmigrant communities. We asked subjects for information about birthplace, migration, household assets, household activities, and forest use. Interview subjects were categorized as nonmigrants (born in one of the interview villages), socioeconomic migrants (chose to emigrate for economic or social reasons) from within Masindi district (i.e., local migrants) and from outside the Masindi district (i.e., regional migrants), or forced migrants (i.e., refugees or internally displaced individuals who emigrated as a result of conflict, human rights abuses, or natural disaster). Only 198 respondents were born in interview villages, indicating high rates of migration between 1998 and 2008. Migrants were drawn to Budongo Forest because they thought land was available (268 individuals) or had family in the area (161 individuals). A greater number of regional migrants settled in villages near Lake Albert than did forced and local migrants. Migration category was also associated with differences in sources of livelihood. Of forced migrants 40.5% earned wages through labor, whereas 25.5% of local and 14.5% of regional migrants engaged in wage labor. Migrant groups appeared to have different effects on the environment. Of respondents that hunted, 72.7% were regional migrants. Principal component analyses indicated households of regional migrants were more likely to be associated with deforestation. Our results revealed gaps in current models of human population growth around protected areas. By highlighting the importance of social networks and livelihood choices, our results contribute to a more nuanced understanding of causes of migration and of the environmental effects of

  2. Disrupted modular organization of primary sensory brain areas in schizophrenia

    Directory of Open Access Journals (Sweden)

    Cécile Bordier

    Full Text Available Abnormal brain resting-state functional connectivity has been consistently observed in patients affected by schizophrenia (SCZ using functional MRI and other neuroimaging techniques. Graph theoretical methods provide a framework to investigate these defective functional interactions and their effects on the organization of brain connectivity networks. A few studies have shown altered distribution of connectivity within and between functional modules in SCZ patients, an indication of imbalanced functional segregation ad integration. However, no major alterations of modular organization have been reported in patients, and unambiguous identification of the neural substrates affected remains elusive. Recently, it has been demonstrated that current modularity analysis methods suffer from a fundamental and severe resolution limit, as they fail to detect features that are smaller than a scale determined by the size of the entire connectivity network. This resolution limit is likely to have hampered the ability to resolve differences between patients and controls in previous studies. Here, we apply Surprise, a novel resolution limit-free approach, to study the modular organization of resting state functional connectivity networks in a large cohort of SCZ patients and in matched healthy controls. Leveraging these important methodological advances we find new evidence of substantial fragmentation and reorganization involving primary sensory, auditory and visual areas in SCZ patients. Conversely, frontal and prefrontal areas, typically associated with higher cognitive functions, appear to be largely unaffected, with changes selectively involving language and speech processing areas. Our findings support the hypothesis that cognitive dysfunction in SCZ may involve deficits occurring already at early stages of sensory processing. Keywords: Schizophrenia, Surprise, Asymptotical surprise, Functional connectivity, Community detection, Modularity, Graph theory

  3. Measurement of P-31 MR relaxation times and concentrations in human brain and brain tumors

    International Nuclear Information System (INIS)

    Roth, K.; Naruse, S.; Hubesch, B.; Gober, I.; Lawry, T.; Boska, M.; Matson, G.B.; Weiner, M.W.

    1987-01-01

    Measurements of high-energy phosphates and pH were made in human brain and brain tumors using P-31 MR imaging. Using a Philips Gyroscan 1.5-T MRMRS, MR images were used to select a cuboidal volume of interest and P-31 MR spectra were obtained from that volume using the ISIS technique. An external quantitation standard was used. T 1 s were measured by inversion recovery. Quantitative values for metabolites were calculated using B 1 field plot of the head coil. The results for normal brain phosphates are as follows; adenosine triphosphate, 2.2 mM; phosphocreatin, 5.3 mM; inorganic phosphate, 1.6 mM. Preliminary studies with human brain tumors show a decrease of all phosphate compounds. These experiments are the first to quantitate metabolites in human brain

  4. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  5. Neuronal substrates of sensory gating within the human brain.

    NARCIS (Netherlands)

    Grunwald, T.; Boutros, N.N.; Pezer, N.; Oertzen, J. von; Fernandez, G.S.E.; Schaller, C.; Elger, C.E.

    2003-01-01

    BACKGROUND: For the human brain, habituation to irrelevant sensory input is an important function whose failure is associated with behavioral disturbances. Sensory gating can be studied by recording the brain's electrical responses to repeated clicks: the P50 potential is normally reduced to the

  6. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...

  7. Sex beyond the genitalia: The human brain mosaic

    Science.gov (United States)

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains (“female brain” or “male brain”). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only “male” or only “female” features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the “maleness-femaleness” continuum are rare. Rather, most brains are comprised of unique “mosaics” of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  8. Encoding of Physics Concepts: Concreteness and Presentation Modality Reflected by Human Brain Dynamics

    OpenAIRE

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentati...

  9. Energy landscape and dynamics of brain activity during human bistable perception.

    Science.gov (United States)

    Watanabe, Takamitsu; Masuda, Naoki; Megumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-08-28

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception.

  10. Noninvasive Stimulation of the Human Brain

    DEFF Research Database (Denmark)

    Di Lazzaro, Vincenzo; Rothwell, John; Capogna, Marco

    2017-01-01

    Noninvasive brain stimulation methods, such as transcranial electric stimulation and transcranial magnetic stimulation are widely used tools for both basic research and clinical applications. However, the cortical circuits underlying their effects are poorly defined. Here we review the current...

  11. Role of synchronized oscillatory brain activity for human pain perception.

    Science.gov (United States)

    Hauck, Michael; Lorenz, Jürgen; Engel, Andreas K

    2008-01-01

    The understanding of cortical pain processing in humans has significantly improved since the development of modern neuroimaging techniques. Non-invasive electrophysiological approaches such as electro- and magnetoencephalography have proven to be helpful tools for the real-time investigation of neuronal signals and synchronous communication between cortical areas. In particular, time-frequency decomposition of signals recorded with these techniques seems to be a promising approach because different pain-related oscillatory changes can be observed within different frequency bands, which are likely to be linked to specific sensory and motor functions. In this review we discuss the latest evidence on pain-induced time-frequency signals and propose that changes in oscillatory activity reflect an essential communication mechanism in the brain that is modulated during pain processing. The importance of synchronization processes for normal and pathological pain processing, such as chronic pain states, is discussed.

  12. Optogenetic control of human neurons in organotypic brain cultures

    DEFF Research Database (Denmark)

    Andersson, My; Avaliani, Natalia; Svensson, Andreas

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof......-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies....

  13. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military

  14. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  15. Centrality of Social Interaction in Human Brain Function.

    Science.gov (United States)

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-01-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  17. Implicit false-belief processing in the human brain.

    Science.gov (United States)

    Schneider, Dana; Slaughter, Virginia P; Becker, Stefanie I; Dux, Paul E

    2014-11-01

    Eye-movement patterns in 'Sally-Anne' tasks reflect humans' ability to implicitly process the mental states of others, particularly false-beliefs - a key theory of mind (ToM) operation. It has recently been proposed that an efficient ToM system, which operates in the absence of awareness (implicit ToM, iToM), subserves the analysis of belief-like states. This contrasts to consciously available belief processing, performed by the explicit ToM system (eToM). The frontal, temporal and parietal cortices are engaged when humans explicitly 'mentalize' about others' beliefs. However, the neural underpinnings of implicit false-belief processing and the extent to which they draw on networks involved in explicit general-belief processing are unknown. Here, participants watched 'Sally-Anne' movies while fMRI and eye-tracking measures were acquired simultaneously. Participants displayed eye-movements consistent with implicit false-belief processing. After independently localizing the brain areas involved in explicit general-belief processing, only the left anterior superior temporal sulcus and precuneus revealed greater blood-oxygen-level-dependent activity for false- relative to true-belief trials in our iToM paradigm. No such difference was found for the right temporal-parietal junction despite significant activity in this area. These findings fractionate brain regions that are associated with explicit general ToM reasoning and false-belief processing in the absence of awareness. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The immune response of the human brain to abdominal surgery

    DEFF Research Database (Denmark)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin

    2017-01-01

    OBJECTIVE: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans....... This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. METHODS: Eight males undergoing prostatectomy under general...... anesthesia were included. Prior to surgery (baseline), at postoperative days 3 to 4, and after 3 months, patients were examined using [11C]PBR28 brain PET imaging to assess brain immune cell activation. Concurrently, systemic inflammatory biomarkers, ex vivo blood tests on immunoreactivity...

  19. Motor areas of the frontal cortex in patients with motor eloquent brain lesions.

    Science.gov (United States)

    Bulubas, Lucia; Sabih, Jamil; Wohlschlaeger, Afra; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-12-01

    OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.

  20. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of Sex Steroids in the Human Brain.

    Science.gov (United States)

    Nguyen, Tuong-Vi; Ducharme, Simon; Karama, Sherif

    2017-11-01

    Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

  2. The functional connectivity landscape of the human brain.

    Directory of Open Access Journals (Sweden)

    Bratislav Mišić

    Full Text Available Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment.

  3. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Science.gov (United States)

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  4. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  5. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  6. Cyto- and receptor architectonic mapping of the human brain.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl

    2018-01-01

    Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The intrinsic geometry of the human brain connectome.

    Science.gov (United States)

    Ye, Allen Q; Ajilore, Olusola A; Conte, Giorgio; GadElkarim, Johnson; Thomas-Ramos, Galen; Zhan, Liang; Yang, Shaolin; Kumar, Anand; Magin, Richard L; G Forbes, Angus; Leow, Alex D

    2015-12-01

    This paper describes novel methods for constructing the intrinsic geometry of the human brain connectome using dimensionality-reduction techniques. We posit that the high-dimensional, complex geometry that represents this intrinsic topology can be mathematically embedded into lower dimensions using coupling patterns encoded in the corresponding brain connectivity graphs. We tested both linear and nonlinear dimensionality-reduction techniques using the diffusion-weighted structural connectome data acquired from a sample of healthy subjects. Results supported the nonlinearity of brain connectivity data, as linear reduction techniques such as the multidimensional scaling yielded inferior lower-dimensional embeddings. To further validate our results, we demonstrated that for tractography-derived structural connectome more influential regions such as rich-club members of the brain are more centrally mapped or embedded. Further, abnormal brain connectivity can be visually understood by inspecting the altered geometry of these three-dimensional (3D) embeddings that represent the topology of the human brain, as illustrated using simulated lesion studies of both targeted and random removal. Last, in order to visualize brain's intrinsic topology we have developed software that is compatible with virtual reality technologies, thus allowing researchers to collaboratively and interactively explore and manipulate brain connectome data.

  8. Ecology of the aging human brain.

    Science.gov (United States)

    Sonnen, Joshua A; Santa Cruz, Karen; Hemmy, Laura S; Woltjer, Randall; Leverenz, James B; Montine, Kathleen S; Jack, Clifford R; Kaye, Jeffrey; Lim, Kelvin; Larson, Eric B; White, Lon; Montine, Thomas J

    2011-08-01

    Alzheimer disease, cerebral vascular brain injury, and isocortical Lewy body disease (LBD) are the major contributors to dementia in community- and population-based studies. To estimate the prevalence of clinically silent forms of these diseases in cognitively normal (CN) adults. Autopsy study. Community- and population based. A total of 1672 brain autopsies from the Adult Changes in Thought study, Honolulu-Asia Aging Study, Nun Study, and Oregon Brain Aging Study, of which 424 met the criteria for CN. Of these, 336 cases had a comprehensive neuropathologic examination of neuritic plaque density, Braak stage for neurofibrillary tangles, LB distribution, and number of cerebral microinfarcts. Forty-seven percent of CN cases had moderate or frequent neuritic plaque density; of these, 6% also had Braak stage V or VI for neurofibrillary tangles. Fifteen percent of CN cases had medullary LBD; 8% also had nigral and 4% isocortical LBD. The presence of any cerebral microinfarcts was identified in 33% and of high-level cerebral microinfarcts in 10% of CN individuals. Overall, the burden of lesions in each individual and their comorbidity varied widely within each study but were similar across studies. These data show an individually varying complex convergence of subclinical diseases in the brain of older CN adults. Appreciating this ecology should help guide future biomarker and neuroimaging studies and clinical trials that focus on community- and population-based cohorts.

  9. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  10. Sibling rivalry among paralogs promotes evolution of the human brain.

    Science.gov (United States)

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Shortcomings of the Human Brain and Remedial Action by Religion

    Science.gov (United States)

    Reich, K. Helmut

    2010-01-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial…

  12. Organization and hierarchy of the human functional brain network lead to a chain-like core.

    Science.gov (United States)

    Mastrandrea, Rossana; Gabrielli, Andrea; Piras, Fabrizio; Spalletta, Gianfranco; Caldarelli, Guido; Gili, Tommaso

    2017-07-07

    The brain is a paradigmatic example of a complex system: its functionality emerges as a global property of local mesoscopic and microscopic interactions. Complex network theory allows to elicit the functional architecture of the brain in terms of links (correlations) between nodes (grey matter regions) and to extract information out of the noise. Here we present the analysis of functional magnetic resonance imaging data from forty healthy humans at rest for the investigation of the basal scaffold of the functional brain network organization. We show how brain regions tend to coordinate by forming a highly hierarchical chain-like structure of homogeneously clustered anatomical areas. A maximum spanning tree approach revealed the centrality of the occipital cortex and the peculiar aggregation of cerebellar regions to form a closed core. We also report the hierarchy of network segregation and the level of clusters integration as a function of the connectivity strength between brain regions.

  13. Brain entropy and human intelligence: A resting-state fMRI study.

    Science.gov (United States)

    Saxe, Glenn N; Calderone, Daniel; Morales, Leah J

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.

  14. Brain entropy and human intelligence: A resting-state fMRI study

    Science.gov (United States)

    Calderone, Daniel; Morales, Leah J.

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427

  15. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  16. Development of human brain structural networks through infancy and childhood.

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Development of Human Brain Structural Networks Through Infancy and Childhood

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  18. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  19. The structural, connectomic and network covariance of the human brain.

    Science.gov (United States)

    Irimia, Andrei; Van Horn, John D

    2013-02-01

    Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.

  20. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  1. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  2. Naturalizing aesthetics: brain areas for aesthetic appraisal across sensory modalities.

    Science.gov (United States)

    Brown, Steven; Gao, Xiaoqing; Tisdelle, Loren; Eickhoff, Simon B; Liotti, Mario

    2011-09-01

    We present here the most comprehensive analysis to date of neuroaesthetic processing by reporting the results of voxel-based meta-analyses of 93 neuroimaging studies of positive-valence aesthetic appraisal across four sensory modalities. The results demonstrate that the most concordant area of activation across all four modalities is the right anterior insula, an area typically associated with visceral perception, especially of negative valence (disgust, pain, etc.). We argue that aesthetic processing is, at its core, the appraisal of the valence of perceived objects. This appraisal is in no way limited to artworks but is instead applicable to all types of perceived objects. Therefore, one way to naturalize aesthetics is to argue that such a system evolved first for the appraisal of objects of survival advantage, such as food sources, and was later co-opted in humans for the experience of artworks for the satisfaction of social needs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Regional growth and atlasing of the developing human brain.

    Science.gov (United States)

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by

  4. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  5. Metabolism of [14C] testosterone by human foetal and brain tissue

    International Nuclear Information System (INIS)

    Jenkins, J.S.; Hall, C.J.

    1977-01-01

    The metabolism of [ 14 C] testosterone in vitro by various areas of the human foetal brain has been studied and compared with that of an adult brain. The predominant metabolites were 5α-dihydrotestosterone and 5α-androstane-3α,17β-diol, and also androstenedione, and all areas of the foetal brain showed similar activity. In the foetal pituitary gland, the activity of 5α-reductase was less prominent than that of 17β-hydroxysteroid-dehydrogenase. Small quantities of oestradiol-17 β were produced from testosterone by the hypothalamus, temporal lobe and amygdala only, and no aromatization could be detected in the pituitary gland. 5α-Reductase activity was much lower in adult brain tissues and no oestradiol was identified in adult temporal lobe tissue. (author)

  6. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  7. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  8. The maternal brain and its plasticity in humans

    Science.gov (United States)

    Kim, Pilyoung; Strathearn, Lane; Swain, James E.

    2015-01-01

    Early mother-infant relationships play important roles in infants’ optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers’ brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  9. The bilingual brain: Flexibility and control in the human cortex

    Science.gov (United States)

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  10. Addiction Circuitry in the Human Brain*

    OpenAIRE

    Volkow, Nora D.; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo

    2011-01-01

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person’s risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circ...

  11. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  12. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    Science.gov (United States)

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fundamental Dynamical Modes Underlying Human Brain Synchronization

    Directory of Open Access Journals (Sweden)

    Catalina Alvarado-Rojas

    2012-01-01

    Full Text Available Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle. Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively activated across wake-sleep states.

  14. Functional organization of the transcriptome in human brain

    Science.gov (United States)

    Oldham, Michael C; Konopka, Genevieve; Iwamoto, Kazuya; Langfelder, Peter; Kato, Tadafumi; Horvath, Steve; Geschwind, Daniel H

    2009-01-01

    The enormous complexity of the human brain ultimately derives from a finite set of molecular instructions encoded in the human genome. These instructions can be directly studied by exploring the organization of the brain’s transcriptome through systematic analysis of gene coexpression relationships. We analyzed gene coexpression relationships in microarray data generated from specific human brain regions and identified modules of coexpressed genes that correspond to neurons, oligodendrocytes, astrocytes and microglia. These modules provide an initial description of the transcriptional programs that distinguish the major cell classes of the human brain and indicate that cell type–specific information can be obtained from whole brain tissue without isolating homogeneous populations of cells. Other modules corresponded to additional cell types, organelles, synaptic function, gender differences and the subventricular neurogenic niche. We found that subventricular zone astrocytes, which are thought to function as neural stem cells in adults, have a distinct gene expression pattern relative to protoplasmic astrocytes. Our findings provide a new foundation for neurogenetic inquiries by revealing a robust and previously unrecognized organization to the human brain transcriptome. PMID:18849986

  15. NMR relaxation times in human brain tumors (preliminary results)

    International Nuclear Information System (INIS)

    Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.

    1981-01-01

    Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr

  16. Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role.

    Science.gov (United States)

    Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David

    2018-03-01

    A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients.

  17. A PET study on brain control of micturition in humans

    NARCIS (Netherlands)

    Blok, BFM; Willemsen, ATM; Holstege, G

    Although the brain plays a crucial role in the control of micturition, little is known about the structures involved. Identification of these areas is important because their dysfunction is thought to cause urge incontinence, a major problem in the elderly. In the cat, three areas in the brainstem

  18. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  19. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  20. Blood-brain transfer of Pittsburgh compound B in humans

    DEFF Research Database (Denmark)

    Gjedde, Albert; Aanerud, Joel; Braendgaard, Hans

    2013-01-01

    -brain barrier is held to be high but the permeability-surface area product and extraction fractions in patients or healthy volunteers are not known. We used PET to determine the clearance associated with the unidrectional blood-brain transfer of [(11)C]PiB and the corresponding cerebral blood flow rates...... with the observation that numerically, but insignificantly, unidirectional blood-brain clearances are lower and extraction fractions higher in the patients. The evidence of unchanged permeability-surface area products in the patients implies that blood flow changes can be deduced from the unidirectional blood......In the labeled form, the Pittsburgh compound B (2-(4'-{N-methyl-[(11)C]}methyl-aminophenyl)-6-hydroxy-benzothiazole, [(11)C]PiB), is used as a biomarker for positron emission tomography (PET) of brain β-amyloid deposition in Alzheimer's disease (AD). The permeability of [(11)C]PiB in the blood...

  1. Pathological Area Detection in MR Images of Brain

    Czech Academy of Sciences Publication Activity Database

    Dvořák, P.; Kropatsch, W.G.; Bartušek, Karel

    2013-01-01

    Roč. 4, č. 1 (2013), s. 17-21 ISSN 1213-1539 R&D Projects: GA ČR GAP102/12/1104; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Brain * Brain tumor detection * MR * Symmetry analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. [Geomagnetic storm decreases coherence of electric oscillations of human brain while working at the computer].

    Science.gov (United States)

    Novik, O B; Smirnov, F A

    2013-01-01

    The effect of geomagnetic storms at the latitude of Moscow on the electric oscillations of the human brain cerebral cortex was studied. In course of electroencephalogram measurements it was shown that when the voluntary persons at the age of 18-23 years old were performing tasks using a computer during moderate magnetic storm or no later than 24 hrs after it, the value of the coherence function of electric oscillations of the human brain in the frontal and occipital areas in a range of 4.0-7.9 Hz (so-called the theta rhythm oscillations of the human brain) decreased by a factor of two or more, sometimes reaching zero, although arterial blood pressure, respiratory rate and the electrocardiogram registered during electroencephalogram measurements remained within the standard values.

  3. Multilayer modeling and analysis of human brain networks

    Science.gov (United States)

    2017-01-01

    Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916

  4. Data integration through brain atlasing: Human Brain Project tools and strategies.

    Science.gov (United States)

    Bjerke, Ingvild E; Øvsthus, Martin; Papp, Eszter A; Yates, Sharon C; Silvestri, Ludovico; Fiorilli, Julien; Pennartz, Cyriel M A; Pavone, Francesco S; Puchades, Maja A; Leergaard, Trygve B; Bjaalie, Jan G

    2018-04-01

    The Human Brain Project (HBP), an EU Flagship Initiative, is currently building an infrastructure that will allow integration of large amounts of heterogeneous neuroscience data. The ultimate goal of the project is to develop a unified multi-level understanding of the brain and its diseases, and beyond this to emulate the computational capabilities of the brain. Reference atlases of the brain are one of the key components in this infrastructure. Based on a new generation of three-dimensional (3D) reference atlases, new solutions for analyzing and integrating brain data are being developed. HBP will build services for spatial query and analysis of brain data comparable to current online services for geospatial data. The services will provide interactive access to a wide range of data types that have information about anatomical location tied to them. The 3D volumetric nature of the brain, however, introduces a new level of complexity that requires a range of tools for making use of and interacting with the atlases. With such new tools, neuroscience research groups will be able to connect their data to atlas space, share their data through online data systems, and search and find other relevant data through the same systems. This new approach partly replaces earlier attempts to organize research data based only on a set of semantic terminologies describing the brain and its subdivisions. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  5. Brain shape in human microcephalics and Homo floresiensis.

    Science.gov (United States)

    Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M J; Sutikna, Thomas; Jatmiko; Saptomo, E Wayhu; Imhof, Herwig; Seidler, Horst; Prior, Fred

    2007-02-13

    Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm(3), some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an approximately 3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species.

  6. fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation.

    Science.gov (United States)

    Kurth, R; Villringer, K; Mackert, B M; Schwiemann, J; Braun, J; Curio, G; Villringer, A; Wolf, K J

    1998-01-26

    Functional magnetic resonance imaging (fMRI) is capable of detecting focal brain activation induced by electrical stimulation of single fingers in human subjects. In eight subjects somatotopic arrangement of the second and fifth finger was found in Brodmann area 3b of the primary somatosensory cortex. In four subjects the representation area of the second finger was located lateral and inferior to the fifth finger; in one subject the somatotopy was reversed. In three subjects representation areas of the two fingers in Brodmann area 3b were found overlapping. Additional activated areas were found on the crown of ipsilateral and contralateral postcentral gyrus (Brodmann areas 1 and 2) and posterior parietal cortex.

  7. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    OpenAIRE

    Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Langs, Georg; Jakab, András; Schöpf, Veronika

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable mor...

  8. Proposed link rates in the human brain.

    Science.gov (United States)

    van Putten, Michael J A M

    2003-07-15

    There is increasing experimental evidence that neuronal synchronization is necessary for the large-scale integration of distributed neuronal activity to realize various time-dependent coherent neuronal assemblies in the brain. Phase synchronization seems a promising candidate to quantify the time-dependent, frequency specific, synchrony between simultaneously recorded electroencephalogram (EEG) signals that may partially reflect this former process. We introduce a link rate (LR) as a measure of the spatial-temporal incidence of phase synchronization and phase de-synchronization. The concept is exemplified in its application to the analysis of spontaneous phase synchronization. To this end, three scalp EEG recordings are used: a normal control, a patient suffering from epileptic seizures and a patient with diffuse brain damage due to anoxia, showing a burst-suppression EEG. In addition, the method is applied to surrogate data (white noise). We find in the normal control that LR(control)=13.90+/-0.04 (mean+/-S.E.M.), which is different from the surrogate data, where we find that LR(surr)=15.36+/-0.05. In the two pathological conditions, the LR is significantly and strongly reduced to LR(burst)=4.52+/-0.05 and LR(seizure)=5.40+/-0.08. The derived LR seems a sensitive measure to relevant changes in synchronization, as these occur in the dynamic process of generating different spatial-temporal networks, both in physiological and pathological conditions.

  9. Message processing in the human brain. III

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, P

    1983-10-07

    For pt.II see ibid., no.19, p.95-100 (1983). The general problem of the possibly achievable super brain is discussed, and subtle differences between various linkages leading to selective processes, creativity decision making and speculative assessments are pointed out and translated into possible approaches to the making of machine intelligence. Generally, associative sequences for processing of large data flows cannot be attempted without the provision of generally valid linkage rules. Such coordination steps are considered first, the brain-machine simulation being built-up vertically on 6 levels and horizontally as recognition stages in an event. These six levels are: repertoire (i.e. vocabulary); definition; scene; happenings; spatial linkages; temporal linkages. Event simulation proceeds from the descriptive to the cognitive situation. Speculative discussions continue with the gradual introduction of computer hardware and software concepts to be adapted for intelligence simulation; thus, the simplest associative process could start with an adder network and proceed to a virtual expert system, which would include teaching by example, autonomous control, non-procedural language, all these governed by schedules.

  10. Optimizing full-brain coverage in human brain MRI through population distributions of brain size

    NARCIS (Netherlands)

    Mennes, M.; Jenkinson, M.; Valabregue, R.; Buitelaar, J.K.; Beckmann, C.F.; Smith, S.

    2014-01-01

    When defining an MRI protocol, brain researchers need to set multiple interdependent parameters that define repetition time (TR), voxel size, field-of-view (FOV), etc. Typically, researchers aim to image the full brain, making the expected FOV an important parameter to consider. Especially in 2D-EPI

  11. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  12. Gender development and the human brain.

    Science.gov (United States)

    Hines, Melissa

    2011-01-01

    Convincing evidence indicates that prenatal exposure to the gonadal hormone, testosterone, influences the development of children's sex-typical toy and activity interests. In addition, growing evidence shows that testosterone exposure contributes similarly to the development of other human behaviors that show sex differences, including sexual orientation, core gender identity, and some, though not all, sex-related cognitive and personality characteristics. In addition to these prenatal hormonal influences, early infancy and puberty may provide additional critical periods when hormones influence human neurobehavioral organization. Sex-linked genes could also contribute to human gender development, and most sex-related characteristics are influenced by socialization and other aspects of postnatal experience, as well. Neural mechanisms underlying the influences of gonadal hormones on human behavior are beginning to be identified. Although the neural mechanisms underlying experiential influences remain largely uninvestigated, they could involve the same neural circuitry as that affected by hormones.

  13. Thrombin binding to human brain and spinal cord

    International Nuclear Information System (INIS)

    McKinney, M.; Snider, R.M.; Richelson, E.

    1983-01-01

    Thrombin, a serine protease that regulates hemostasis, has been shown to stimulate the formation of cGMP in murine neuroblastoma cells. The nervous system in vivo thus may be postulated to respond to this blood-borne factor after it breaches the blood-brain barrier, as in trauma. Human alpha-thrombin was radiolabeled with 125I and shown to bind rapidly, reversibly, and with high affinity to human brain and spinal cord. These findings indicate the presence of specific thrombin-binding sites in nervous tissue and may have important clinical implications

  14. Simplified detection system for neuroreceptor studies in the human brain

    International Nuclear Information System (INIS)

    Bice, A.N.; Wagner, H.N. Jr.; Frost, J.J.

    1986-01-01

    A simple, inexpensive dual-detector system has been developed for measurement of positronemitting receptor-binding drugs in the human brain. This high efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of [11C]carfentanil, a high affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist indicates the potential utility of this system for estimating different degrees of receptor occupation in the human brain

  15. Glucose transporter of the human brain and blood-brain barrier

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-01-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species

  16. Magnetic resonance elastography in normal human brain: preliminary study

    International Nuclear Information System (INIS)

    Xu Lei; Gao Peiyi; Lin Yan; Han Jiancheng; Xi Zhinong; Shen Hao

    2007-01-01

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  17. Measuring and Reconstructing the Brain at the Synaptic Scale: Towards a Biofidelic Human Brain in silico

    OpenAIRE

    NeuroData; CE, Priebe; Burns, R.; RJ, Vogelstein

    2015-01-01

    Vogelstein JT, Priebe CE, Burns R, Vogelstein RJ, Lichtman J. Measuring and Reconstructing the Brain at the Synaptic Scale: Towards a Biofidelic Human Brain in silico. DARPA Neural Engineering, Science and Technology Forum, 2010

  18. Neurospin Seminar: From the Proton to the Human Brain

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    From the Proton to the Human Brain Speaker: Prof Denis Le Bihan Abstract: The understanding of the human brain is one of the main scientific challenges of the 21st century. In the early 2000s the French Atomic Energy Commission (CEA) launched a program to conceive and build a “human brain explorer”, the first human MRI scanner operating at 11.7T. This scanner was envisioned to be part of the ambitious Iseult project, bridging together industrial and academic partners to push the limits of molecular neuroimaging, from mouse to man, using Ultra-High Field (UHF) MRI. In this seminar a summary of the main features of this magnet, and the neuroscience and medical targets of NeuroSpin where this outstanding instrument will be installed in 2017 will be surveyed. The unprecedented resolution and the new contrasts allowed by such UHF magnets, in combination with innovative concepts in physics and neurobiology, will allow to explore the human brain at a mesoscale at which everything remains to d...

  19. Addiction circuitry in the human brain (*).

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

    2011-09-27

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

  20. SPECT assessment of brain activation induced by caffeine: no effect on areas involved in dependence.

    Science.gov (United States)

    Nehlig, Astrid; Armspach, Jean-Paul; Namer, Izzie J

    2010-01-01

    Caffeine is not considered addictive, and in animals it does not trigger metabolic increases or dopamine release in brain areas involved in reinforcement and reward. Our objective was to measure caffeine effects on cerebral perfusion in humans using single photon emission computed tomography with a specific focus on areas of reinforcement and reward. Two groups of nonsmoking subjects were studied, one with a low (8 subjects) and one with a high (6 subjects) daily coffee consumption. The subjects ingested 3 mg/kg caffeine or placebo in a raspberry-tasting drink, and scans were performed 45 min after ingestion. A control group of 12 healthy volunteers receiving no drink was also studied. Caffeine consumption led to a generalized, statistically nonsignificant perfusion decrease of 6% to 8%, comparable in low and high consumers. Compared with controls, low consumers displayed neuronal activation bilaterally in inferior frontal gyrus-anterior insular cortex and uncus, left internal parietal cortex, right lingual gyrus, and cerebellum. In high consumers, brain activation occurred bilaterally only in hypothalamus. Thus, on a background of widespread low-amplitude perfusion decrease, caffeine activates a few regions mainly involved in the control of vigilance, anxiety, and cardiovascular regulation, but does not affect areas involved in reinforcing and reward.

  1. Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference.

    Directory of Open Access Journals (Sweden)

    Moritz Lehne

    Full Text Available Stories can elicit powerful emotions. A key emotional response to narrative plots (e.g., novels, movies, etc. is suspense. Suspense appears to build on basic aspects of human cognition such as processes of expectation, anticipation, and prediction. However, the neural processes underlying emotional experiences of suspense have not been previously investigated. We acquired functional magnetic resonance imaging (fMRI data while participants read a suspenseful literary text (E.T.A. Hoffmann's "The Sandman" subdivided into short text passages. Individual ratings of experienced suspense obtained after each text passage were found to be related to activation in the medial frontal cortex, bilateral frontal regions (along the inferior frontal sulcus, lateral premotor cortex, as well as posterior temporal and temporo-parietal areas. The results indicate that the emotional experience of suspense depends on brain areas associated with social cognition and predictive inference.

  2. Quantifying anisotropy and fiber orientation in human brain histological sections

    Directory of Open Access Journals (Sweden)

    Matthew D Budde

    2013-02-01

    Full Text Available Diffusion weighted imaging (DWI has provided unparalleled insight into the microscopic structure and organization of the central nervous system. Diffusion tensor imaging (DTI and other models of the diffusion MRI signal extract microstructural properties of tissues with relevance to the normal and injured brain. Despite the prevalence of such techniques and applications, accurate and large-scale validation has proven difficult, particularly in the human brain. In this report, human brain sections obtained from a digital public brain bank were employed to quantify anisotropy and fiber orientation using structure tensor analysis. The derived maps depict the intricate complexity of white matter fibers at a resolution not attainable with current DWI experiments. Moreover, the effects of multiple fiber bundles (i.e. crossing fibers and intravoxel fiber dispersion were demonstrated. Examination of the cortex and hippocampal regions validated specific features of previous in vivo and ex vivo DTI studies of the human brain. Despite the limitation to two dimensions, the resulting images provide a unique depiction of white matter organization at resolutions currently unattainable with DWI. The method of analysis may be used to validate tissue properties derived from DTI and alternative models of the diffusion signal.

  3. Kisspeptin modulates sexual and emotional brain processing in humans.

    Science.gov (United States)

    Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S

    2017-02-01

    Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

  4. Unveiling the mystery of visual information processing in human brain.

    Science.gov (United States)

    Diamant, Emanuel

    2008-08-15

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. Why was it overlooked in brain information processing research remains a conundrum. In this paper, I am trying to find a remedy for this bizarre situation. I propose an uncommon definition of "information", which can be derived from Kolmogorov's Complexity Theory and Chaitin's notion of Algorithmic Information. Embracing this new definition leads to an inevitable revision of traditional dogmas that shape the state of the art of brain information processing research. I hope this revision would better serve the challenging goal of human visual information processing modeling.

  5. Consumption of seaweeds and the human brain

    DEFF Research Database (Denmark)

    Cornish, M. Lynn; Critchley, Alan T.; Mouritsen, Ole G.

    2017-01-01

    , and the impacts of anti-oxidant activities in neuroprotection. These elements have the capacity to help in the defense of human cognitive disorders, such as dementia, Alzheimer’s disease, depression, bipolar diseases, and adverse conditions characterized by progressive neurodegeneration. Psychological benefits...

  6. Characterization of the melanoma brain metastatic niche in mice and humans

    International Nuclear Information System (INIS)

    Amit, Moran; Laider-Trejo, Leonor; Shalom, Vardit; Shabtay-Orbach, Ayelet; Krelin, Yakov; Gil, Ziv

    2013-01-01

    Brain metastases occur in 15% of patients with melanoma and are associated with a dismal prognosis. Here, we investigate the architectural phenotype and stromal reaction of melanoma brain metastasis in mice and humans. A syngeneic, green fluorescence protein (GFP)-expressing murine B16-F1 melanoma clone was introduced via intracardiac injection, and was examined in vivo in comparison with human specimens. Immunofluorescence analyses of the brain metastases revealed that F4/80 + macrophages/microglia were most abundant at the tumor front, but rare in its core, where they were found only around blood vessels (P = 0.01). Similar pattern of infiltration was found in CD3 + T cells (P < 0.01). Infiltrating T cells were prominently CD4 + compared with CD8 + T cells (P < 0.001). Blood vessels (CD31 + ) were less abundant at the tumor front than in its center (12 ± 1 vs. 4 ± 0.6 vessels per high-power field [HPF], P < 0.001). In contrast, there were few vessels at the tumor front, but their diameter was significantly larger at the front (8236 μm 2 vs. 4617 μm 2 average cross-sectional area, P < 0.005). This is the first comparative analysis of melanoma brain metastases showing similar stromal reaction in murine models and human specimens. Our results validate the utility of this murine model of melanoma brain metastases for investigating the mechanism of the human disease

  7. Simple instrument for biochemical studies of the living human brain

    International Nuclear Information System (INIS)

    Bice, A.N.; Wagner, H.N. Jr.; Lee, M.C.; Frost, J.J.

    1986-01-01

    A simple, relatively inexpensive radiation detection system was developed for measurement of positron-emitting receptor-binding drugs in the human brain. This high-efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of [ 11 C]-carfentanil, a high-affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist exemplifies the use of this system for estimating different degrees of receptor binding of drugs in the human brain. The instrument has also been used for measurement of the transport into the brain of other positron-emitting radiotracers, such as large neutral amino acids

  8. Measurement of human advanced brain function in calculation processing using functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    Hashida, Masahiro; Yamauchi, Syuichi; Wu, Jing-Long

    2001-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated the activated areas of the human brain related with calculation processing as an advanced function of the human brain. Furthermore, we investigated differences in activation between visual and auditory calculation processing. The eight subjects (all healthy men) were examined on a clinical MR unit (1.5 tesla) with a gradient echo-type EPI sequence. SPM99 software was used for data processing. Arithmetic problems were used for the visual stimulus (visual image) as well as for the auditory stimulus (audible voice). The stimuli were presented to the subjects as follows: no stimulation, presentation of random figures, and presentation of arithmetic problems. Activated areas of the human brain related with calculation processing were the inferior parietal lobule, middle frontal gyrus, and inferior frontal gyrus. Comparing the arithmetic problems with the presentation of random figures, we found that the activated areas of the human brain were not differently affected by visual and auditory systems. The areas activated in the visual and auditory experiments were observed at nearly the same place in the brain. It is possible to study advanced functions of the human brain such as calculation processing in a general clinical hospital when adequate tasks and methods of presentation are used. (author)

  9. Patient specific 3D visualisation of human brain | Baichoo ...

    African Journals Online (AJOL)

    University of Mauritius Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Patient specific 3D visualisation of human brain.

  10. Development of BOLD signal hemodynamic responses in the human brain

    NARCIS (Netherlands)

    Arichi, T.; Varela, M.; Melendez-Calderon, A.; Allievi, A.; Merchant, N.; Tusor, N.; Counsell, S.J.; Burdet, E.; Beckmann, Christian; Edwards, A.D.

    2012-01-01

    In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing

  11. Using human brain activity to guide machine learning.

    Science.gov (United States)

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  12. Human brain evolution, theories of innovation, and lessons from the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 29; Issue 3. Human brain evolution, theories of innovation, and lessons from the history of technology. Alfred Gierer. Perspectives Volume 29 Issue 3 September 2004 pp 235-244. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    Science.gov (United States)

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Human astrocytes: structure and functions in the healthy brain.

    Science.gov (United States)

    Vasile, Flora; Dossi, Elena; Rouach, Nathalie

    2017-07-01

    Data collected on astrocytes' physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.

  15. Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus.

    Science.gov (United States)

    Caspers, Julian; Zilles, Karl; Eickhoff, Simon B; Schleicher, Axel; Mohlberg, Hartmut; Amunts, Katrin

    2013-03-01

    The human extrastriate visual cortex comprises numerous functionally defined areas, which are not identified in the widely used cytoarchitectonical map of Brodmann. The ventral part of the extrastriate cortex is particularly devoted to the identification of visual objects, faces and word forms. We analyzed the region immediately antero-lateral to hOc4v in serially sectioned (20 μm) and cell body-stained human brains using a quantitative observer-independent cytoarchitectonical approach to further identify the anatomical organization of the extrastriate cortex. Two novel cytoarchitectonical areas, FG1 and FG2, were identified on the posterior fusiform gyrus. The results of ten postmortem brains were then registered to their MRI volumes (acquired before histological processing), 3D reconstructed, and spatially normalized to the Montreal Neurological Institute reference brain. Finally, probabilistic maps were generated for each cytoarchitectonical area by superimposing the areas of the individual brains in the reference space. Comparison with recent functional imaging studies yielded that both areas are located within the object-related visual cortex. FG1 fills the gap between the retinotopically mapped area VO-1 and a posterior fusiform face patch. FG2 is probably the correlate of this face patch.

  16. A reproducible brain tumour model established from human glioblastoma biopsies

    International Nuclear Information System (INIS)

    Wang, Jian; Chekenya, Martha; Bjerkvig, Rolf; Enger, Per Ø; Miletic, Hrvoje; Sakariassen, Per Ø; Huszthy, Peter C; Jacobsen, Hege; Brekkå, Narve; Li, Xingang; Zhao, Peng; Mørk, Sverre

    2009-01-01

    Establishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression

  17. Visualization of specific binding sites of benzodiazepine in human brain

    International Nuclear Information System (INIS)

    Shinotoh, H.; Yamasaki, T.; Inoue, O.; Itoh, T.; Suzuki, K.; Hashimoto, K.; Tateno, Y.; Ikehira, H.

    1986-01-01

    Using 11C-labeled Ro15-1788 and positron emission tomography, studies of benzodiazepine binding sites in the human brain were performed on four normal volunteers. Rapid and high accumulation of 11C activity was observed in the brain after i.v. injection of [11C]Ro15-1788, the maximum of which was within 12 min. Initial distribution of 11C activity in the brain was similar to the distribution of the normal cerebral blood flow. Ten minutes after injection, however, a high uptake of 11C activity was observed in the cerebral cortex and moderate uptake was seen in the cerebellar cortex, the basal ganglia, and the thalamus. The accumulation of 11C activity was low in the brain stem. This distribution of 11C activity was approximately parallel to the known distribution of benzodiazepine receptors. Saturation experiments were performed on four volunteers with oral administration of 0.3-1.8 mg/kg of cold Ro15-1788 prior to injection. Initial distribution of 11C activity following injection peaked within 2 min and then the accumulation of 11C activity decreased rapidly and remarkably throughout the brain. The results indicated that [11C] Ro15-1788 associates and dissociates to specific and nonspecific binding sites rapidly and has a high ratio of specific receptor binding to nonspecific binding in vivo. Carbon-11 Ro15-1788 is a suitable radioligand for the study of benzodiazepine receptors in vivo in humans

  18. Complex Trajectories of Brain Development in the Healthy Human Fetus.

    Science.gov (United States)

    Andescavage, Nickie N; du Plessis, Adre; McCarter, Robert; Serag, Ahmed; Evangelou, Iordanis; Vezina, Gilbert; Robertson, Richard; Limperopoulos, Catherine

    2017-11-01

    This study characterizes global and hemispheric brain growth in healthy human fetuses during the second half of pregnancy using three-dimensional MRI techniques. We studied 166 healthy fetuses that underwent MRI between 18 and 39 completed weeks gestation. We created three-dimensional high-resolution reconstructions of the brain and calculated volumes for left and right cortical gray matter (CGM), fetal white matter (FWM), deep subcortical structures (DSS), and the cerebellum. We calculated the rate of growth for each tissue class according to gestational age and described patterns of hemispheric growth. Each brain region demonstrated major increases in volume during the second half of gestation, the most pronounced being the cerebellum (34-fold), followed by FWM (22-fold), CGM (21-fold), and DSS (10-fold). The left cerebellar hemisphere, CGM, and DSS had larger volumes early in gestation, but these equalized by term. It has been increasingly recognized that brain asymmetry evolves throughout the human life span. Advanced quantitative MRI provides noninvasive measurements of early structural asymmetry between the left and right fetal brain that may inform functional and behavioral laterality differences seen in children and young adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Direct Electrical Stimulation in the Human Brain Disrupts Melody Processing.

    Science.gov (United States)

    Garcea, Frank E; Chernoff, Benjamin L; Diamond, Bram; Lewis, Wesley; Sims, Maxwell H; Tomlinson, Samuel B; Teghipco, Alexander; Belkhir, Raouf; Gannon, Sarah B; Erickson, Steve; Smith, Susan O; Stone, Jonathan; Liu, Lynn; Tollefson, Trenton; Langfitt, John; Marvin, Elizabeth; Pilcher, Webster H; Mahon, Bradford Z

    2017-09-11

    Prior research using functional magnetic resonance imaging (fMRI) [1-4] and behavioral studies of patients with acquired or congenital amusia [5-8] suggest that the right posterior superior temporal gyrus (STG) in the human brain is specialized for aspects of music processing (for review, see [9-12]). Intracranial electrical brain stimulation in awake neurosurgery patients is a powerful means to determine the computations supported by specific brain regions and networks [13-21] because it provides reversible causal evidence with high spatial resolution (for review, see [22, 23]). Prior intracranial stimulation or cortical cooling studies have investigated musical abilities related to reading music scores [13, 14] and singing familiar songs [24, 25]. However, individuals with amusia (congenitally, or from a brain injury) have difficulty humming melodies but can be spared for singing familiar songs with familiar lyrics [26]. Here we report a detailed study of a musician with a low-grade tumor in the right temporal lobe. Functional MRI was used pre-operatively to localize music processing to the right STG, and the patient subsequently underwent awake intraoperative mapping using direct electrical stimulation during a melody repetition task. Stimulation of the right STG induced "music arrest" and errors in pitch but did not affect language processing. These findings provide causal evidence for the functional segregation of music and language processing in the human brain and confirm a specific role of the right STG in melody processing. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Ex-vivo MR Volumetry of Human Brain Hemispheres

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos

    2013-01-01

    Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751

  1. Ex vivo MR volumetry of human brain hemispheres.

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A; Schneider, Julie A; Dawe, Robert J; Golak, Tom; Leurgans, Sue E; Yu, Lei; Arfanakis, Konstantinos

    2014-01-01

    The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics. Copyright © 2013 Wiley Periodicals, Inc.

  2. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5.

    OpenAIRE

    Walsh, V; Ellison, A; Battelli, L; Cowey, A

    1998-01-01

    Transcranial magnetic stimulation (TMS) can be used to simulate the effects of highly circumscribed brain damage permanently present in some neuropsychological patients, by reversibly disrupting the normal functioning of the cortical area to which it is applied. By using TMS we attempted to recreate deficits similar to those reported in a motion-blind patient and to assess the specificity of deficits when TMS is applied over human area V5. We used six visual search tasks and showed that subje...

  3. Topographical Distribution of Arsenic, Manganese, and Selenium in the Normal Human Brain

    DEFF Research Database (Denmark)

    Larsen, Niels Agersnap; Pakkenberg, H.; Damsgaard, Else

    1979-01-01

    The concentrations of arsenic, manganese and selenium per gram wet tissue weight were determined in samples from 24 areas of normal human brains from 5 persons with ages ranging from 15 to 81 years of age. The concentrations of the 3 elements were determined for each sample by means of neutron...... activation analysis with radiochemical separation. Distinct patterns of distribution were shown for each of the 3 elements. Variations between individuals were found for some but not all brain areas, resulting in coefficients of variation between individuals of about 30% for arsenic, 10% for manganese and 20......% for selenium. The results seem to indicate that arsenic is associated with the lipid phase, manganese with the dry matter and selenium with the aqueous phase of brain tissue....

  4. Topological isomorphisms of human brain and financial market networks

    Directory of Open Access Journals (Sweden)

    Petra E Vértes

    2011-09-01

    Full Text Available Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the timeseries of 90 stocks from the New York Stock Exchange over a three-year period, and the fMRI-derived timeseries acquired from 90 brain regions over the course of a 10 min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimised for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph theoretically-mediated interface between systems neuroscience and the statistical physics of financial markets.

  5. Topological isomorphisms of human brain and financial market networks.

    Science.gov (United States)

    Vértes, Petra E; Nicol, Ruth M; Chapman, Sandra C; Watkins, Nicholas W; Robertson, Duncan A; Bullmore, Edward T

    2011-01-01

    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimized for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets.

  6. Brain areas and pathways in the regulation of glucose metabolism

    NARCIS (Netherlands)

    Diepenbroek, Charlene; Serlie, Mireille J.; Fliers, Eric; Kalsbeek, Andries; la Fleur, Susanne E.

    2013-01-01

    Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes

  7. Brain lactate metabolism in humans with subarachnoid hemorrhage.

    Science.gov (United States)

    Oddo, Mauro; Levine, Joshua M; Frangos, Suzanne; Maloney-Wilensky, Eileen; Carrera, Emmanuel; Daniel, Roy T; Levivier, Marc; Magistretti, Pierre J; LeRoux, Peter D

    2012-05-01

    Lactate is central for the regulation of brain metabolism and is an alternative substrate to glucose after injury. Brain lactate metabolism in patients with subarachnoid hemorrhage has not been fully elucidated. Thirty-one subarachnoid hemorrhage patients monitored with cerebral microdialysis (CMD) and brain oxygen (PbtO(2)) were studied. Samples with elevated CMD lactate (>4 mmol/L) were matched to PbtO(2) and CMD pyruvate and categorized as hypoxic (PbtO(2) 119 μmol/L) versus nonhyperglycolytic. Median per patient samples with elevated CMD lactate was 54% (interquartile range, 11%-80%). Lactate elevations were more often attributable to cerebral hyperglycolysis (78%; interquartile range, 5%-98%) than brain hypoxia (11%; interquartile range, 4%-75%). Mortality was associated with increased percentage of samples with elevated lactate and brain hypoxia (28% [interquartile range 9%-95%] in nonsurvivors versus 9% [interquartile range 3%-17%] in survivors; P=0.02) and lower percentage of elevated lactate and cerebral hyperglycolysis (13% [interquartile range, 1%-87%] versus 88% [interquartile range, 27%-99%]; P=0.07). Cerebral hyperglycolytic lactate production predicted good 6-month outcome (odds ratio for modified Rankin Scale score, 0-3 1.49; CI, 1.08-2.05; P=0.016), whereas increased lactate with brain hypoxia was associated with a reduced likelihood of good outcome (OR, 0.78; CI, 0.59-1.03; P=0.08). Brain lactate is frequently elevated in subarachnoid hemorrhage patients, predominantly because of hyperglycolysis rather than hypoxia. A pattern of increased cerebral hyperglycolytic lactate was associated with good long-term recovery. Our data suggest that lactate may be used as an aerobic substrate by the injured human brain.

  8. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  9. Morphometric variability of precuneus in relation to gender and the hemisphere of human brain

    Directory of Open Access Journals (Sweden)

    Spasojević Goran

    2004-01-01

    Full Text Available Precuneus, a quadrangular gyrus of the medial surface of the human parietal lobe, is bound by three primary brain sulci and by superior hemispheric border. Precise encephalometric data about precuneus are important in the studies of brain lateralization, sex dimorphism, and brain functions in general. In this study, total and visible (exstrasulcal surface area of the precuneus were measured on 50 brains of the adult persons (31 male, and 29 female, together with the investigation of its relationship to the side (left/right and gender (sex dimorphism. The average total surface area of the precuneus was 16.07 cm2 on the right (males 16.44 cm2, females 15.27 cm2, and 15.44 cm2 on the left (males 15.67 cm2, females 14.62 cm2. The average visible (extrasulcal surface area of cortex of precuneus was 9.97 cm2 on the left (males 10.75 cm2, females 8.91 cm2, and 9.38 cm2 on the right (males 10.25 cm2, females 8.19 cm2. Exstrasulcal surface area of the left precuneus was larger, by 0.59 cm on the average, which was not statistically significant. Total surface area of precuneus of males was significantly larger on the right (16.44 cm2 (p<0.01 than on the left (15.67 cm2. In females it was also larger on the right (15.27 cm2 than on the left (14.62 cm2, but with no statistical significance. Visible (exstrasulcal surface area of both, (left and right precuneus of males was highly significantly larger in comparison with the females (p<0.001. The obtained results and other facts suggested that sex dimorphism of human brain, including precuneus, was present, but not always easily observable studied or proven in all the details.

  10. Dystrophic microglia in the aging human brain.

    Science.gov (United States)

    Streit, Wolfgang J; Sammons, Nicole W; Kuhns, Amanda J; Sparks, D Larry

    2004-01-15

    We have studied microglial morphology in the human cerebral cortex of two nondemented subjects using high-resolution LN-3 immunohistochemistry. Several abnormalities in microglial cytoplasmic structure, including deramification, spheroid formation, gnarling, and fragmentation of processes, were identified. These changes were determined to be different from the morphological changes that occur during microglial activation and they were designated collectively as microglial dystrophy. Quantitative evaluation of dystrophic changes in microglia revealed that these were much more prevalent in the older subject (68-year-old) than in the younger one (38-year-old). Thus, we conclude that microglial dystrophy is a sign of microglial cell senescence. We hypothesize that microglial senescence could be important for understanding age-related declines in cognitive function. Copyright 2003 Wiley-Liss, Inc.

  11. Mapping the calcitonin receptor in human brain stem

    DEFF Research Database (Denmark)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J

    2016-01-01

    understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract...... receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our...

  12. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies.

    Science.gov (United States)

    Molenberghs, Pascal; Cunnington, Ross; Mattingley, Jason B

    2012-01-01

    Mirror neurons in macaque area F5 fire when an animal performs an action, such as a mouth or limb movement, and also when the animal passively observes an identical or similar action performed by another individual. Brain-imaging studies in humans conducted over the last 20 years have repeatedly attempted to reveal analogous brain regions with mirror properties in humans, with broad and often speculative claims about their functional significance across a range of cognitive domains, from language to social cognition. Despite such concerted efforts, the likely neural substrates of these mirror regions have remained controversial, and indeed the very existence of a distinct subcategory of human neurons with mirroring properties has been questioned. Here we used activation likelihood estimation (ALE), to provide a quantitative index of the consistency of patterns of fMRI activity measured in human studies of action observation and action execution. From an initial sample of more than 300 published works, data from 125 papers met our strict inclusion and exclusion criteria. The analysis revealed 14 separate clusters in which activation has been consistently attributed to brain regions with mirror properties, encompassing 9 different Brodmann areas. These clusters were located in areas purported to show mirroring properties in the macaque, such as the inferior parietal lobule, inferior frontal gyrus and the adjacent ventral premotor cortex, but surprisingly also in regions such as the primary visual cortex, cerebellum and parts of the limbic system. Our findings suggest a core network of human brain regions that possess mirror properties associated with action observation and execution, with additional areas recruited during tasks that engage non-motor functions, such as auditory, somatosensory and affective components. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    International Nuclear Information System (INIS)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon; Seo, Hyung Suk

    2009-01-01

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p 2 , 715.4 ± 107 cm3) were significantly smaller than in MCI patients (595.9 ± 108, 844.1 ± 85) and the HCs (563.2 ± 75, 818.9 ± 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  14. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  15. Cells in human postmortem brain tissue slices remain alive for several weeks in culture

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Hermens, Wim T. J. M. C.; Dijkhuizen, PaulaA; ter Brake, Olivier; Baker, Robert E.; Salehi, Ahmad; Sluiter, Arja A.; Kok, Marloes J. M.; Muller, Linda J.; Verhaagen, Joost; Swaab, Dick F.

    2002-01-01

    Animal models for human neurological and psychiatric diseases only partially mimic the underlying pathogenic processes. Therefore, we investigated the potential use of cultured postmortem brain tissue from adult neurological patients and controls. The present study shows that human brain tissue

  16. The neural encoding of guesses in the human brain.

    Science.gov (United States)

    Bode, Stefan; Bogler, Carsten; Soon, Chun Siong; Haynes, John-Dylan

    2012-01-16

    Human perception depends heavily on the quality of sensory information. When objects are hard to see we often believe ourselves to be purely guessing. Here we investigated whether such guesses use brain networks involved in perceptual decision making or independent networks. We used a combination of fMRI and pattern classification to test how visibility affects the signals, which determine choices. We found that decisions regarding clearly visible objects are predicted by signals in sensory brain regions, whereas different regions in parietal cortex became predictive when subjects were shown invisible objects and believed themselves to be purely guessing. This parietal network was highly overlapping with regions, which have previously been shown to encode free decisions. Thus, the brain might use a dedicated network for determining choices when insufficient sensory information is available. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  18. Interleukin-6 release from the human brain during prolonged exercise

    DEFF Research Database (Denmark)

    Nybo, Lars; Nielsen, Bodil; Pedersen, Bente Klarlund

    2002-01-01

    Interleukin (IL)-6 is a pleiotropic cytokine, which has a variety of physiological roles including functions within the central nervous system. Circulating IL-6 increases markedly during exercise, partly due to the release of IL-6 from the contracting skeletal muscles, and exercise-induced IL-6 m...... influence of hyperthermia. In conclusion, IL-6 is released from the brain during prolonged exercise in humans and it appears that the duration of the exercise rather than the increase in body temperature dictates the cerebral IL-6 response....... in the brain at rest or after 15 min of exercise, but a small release of IL-6 was observed after 60 min of exercise in the first bout (0.06 +/- 0.03 ng min(-1)). This release of IL-6 from the brain was five-fold greater at the end of the second bout (0.30 +/- 0.08 ng min(-1); P

  19. Endurance training enhances BDNF release from the human brain

    DEFF Research Database (Denmark)

    Seifert, Thomas; Brassard, Patrice; Wissenberg, Mads

    2010-01-01

    The circulating level of brain-derived neurotrophic factor (BDNF) is reduced in patients with major depression and type-2 diabetes. Because acute exercise increases BDNF production in the hippocampus and cerebral cortex, we hypothesized that endurance training would enhance the release of BDNF from...... the human brain as detected from arterial and internal jugular venous blood samples. In a randomized controlled study, 12 healthy sedentary males carried out 3 mo of endurance training (n = 7) or served as controls (n = 5). Before and after the intervention, blood samples were obtained at rest and during...... exercise. At baseline, the training group (58 + or - 106 ng x 100 g(-1) x min(-1), means + or - SD) and the control group (12 + or - 17 ng x 100 g(-1) x min(-1)) had a similar release of BDNF from the brain at rest. Three months of endurance training enhanced the resting release of BDNF to 206 + or - 108...

  20. Architectonic Mapping of the Human Brain beyond Brodmann.

    Science.gov (United States)

    Amunts, Katrin; Zilles, Karl

    2015-12-16

    Brodmann has pioneered structural brain mapping. He considered functional and pathological criteria for defining cortical areas in addition to cytoarchitecture. Starting from this idea of structural-functional relationships at the level of cortical areas, we will argue that the cortical architecture is more heterogeneous than Brodmann's map suggests. A triple-scale concept is proposed that includes repetitive modular-like structures and micro- and meso-maps. Criteria for defining a cortical area will be discussed, considering novel preparations, imaging and optical methods, 2D and 3D quantitative architectonics, as well as high-performance computing including analyses of big data. These new approaches contribute to an understanding of the brain on multiple levels and challenge the traditional, mosaic-like segregation of the cerebral cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus.

    Science.gov (United States)

    Pereira-Pedro, Ana Sofia; Rilling, James K; Chen, Xu; Preuss, Todd M; Bruner, Emiliano

    2017-01-01

    The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage. © 2017 S. Karger AG, Basel.

  2. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Christina; Arsic, Milan; Boucard, Christine C.; Biberacher, Viola; Nunnemann, Sabine; Muehlau, Mark [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center, Klinikum rechts der Isar, Munich (Germany); Schmidt, Paul [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Ludwig-Maximilians-University Muenchen, Department of Statistics, Munich (Germany); Roettinger, Michael [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Muenchner Institut fuer Neuroradiologie, Munich (Germany); Etgen, Thorleif [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Klinikum Traunstein, Department of Neurology, Traunstein (Germany); Koutsouleris, Nikolaos; Meisenzahl, Eva M. [Ludwig-Maximilians-Universitaet Muenchen, Department of Psychiatry and Psychotherapy, Munich (Germany); Reiser, Maximilian [Ludwig-Maximilians-Universitaet, Department of Radiology, Munich (Germany)

    2013-08-15

    Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts. (orig.)

  3. Sigma and opioid receptors in human brain tumors

    International Nuclear Information System (INIS)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J.

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using [ 3 H] 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: μ, [D-ala 2 , mePhe 4 , gly-ol 5 ] enkephalin (DAMGE); κ, ethylketocyclazocine (EKC) or U69,593; δ, [D-pen 2 , D-pen 5 ] enkephalin (DPDPE) or [D-ala 2 , D-leu 5 ] enkephalin (DADLE) with μ suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. κ opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed

  4. Sigma and opioid receptors in human brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. (St. Louis Univ. School of Medicine, MO (USA))

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  5. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    Science.gov (United States)

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  6. Sensitivity analysis of human brain structural network construction

    Directory of Open Access Journals (Sweden)

    Kuang Wei

    2017-12-01

    Full Text Available Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP, we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes. Diffusion tractography has been proven to be a promising noninvasive technique to study the network properties of the human brain. However, how various tractography and network construction parameters affect network properties has not been studied using a large cohort of high-quality data. We utilize data provided by the Human Connectome Project to characterize the changes to network properties induced by varying the brain parcellation atlas scales, the number of reconstructed tractography tracks, and the degree of grey

  7. Study of cerebral metabolism of glucose in normal human brain correlated with age

    International Nuclear Information System (INIS)

    Si, M.

    2007-01-01

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and

  8. Sex differences in the structural connectome of the human brain.

    Science.gov (United States)

    Ingalhalikar, Madhura; Smith, Alex; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2014-01-14

    Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes.

  9. In Vivo H MR spectroscopic imaging of human brain

    International Nuclear Information System (INIS)

    Choe, Bo Young; Suh, Tae Suk; Choi, Kyo Ho; Bahk, Yong Whee; Shinn, Kyung Sub

    1994-01-01

    To evaluate the spatial distribution of various proton metabolites in the human brain with use of water-suppressed in vivo H MR spectroscopic imaging (MRSI) technique. All of water-suppressed in vivo H MRSI were performed on 1.5 T whole-body MRI/MRS system using Stimulated Echo Acquisition Method (STEAM) Chemical Shift Imaging (CSI) pulse sequence. T1-weighted MR images were used for CSI field of view (FOV; 24 cm). Voxel size of 1.5 cm 3 was designated from the periphery of the brain which was divided by 1024 X 16 X 16 data points. Metabolite images of N-acetylaspartate (NAA), creatine/ phosphocreatine (Cr) + choline/phosphocholine (Cho), and complex of γ-aminobutyric acid (GABA) + glutamate (Glu) were obtained on the human brain. Our preliminary study suggests that in vivo H MRSI could provide the metabolite imaging to compensate for hypermetabolism on Positron Emission Tomography (PET) scans on the basis of the metabolic informations on brain tissues. The unique ability of in vivo H MRSI to offer noninvasive information about tissue biochemistry in disease states will stimulate on clinical research and disease diagnosis

  10. The Speculative Neuroscience of the Future Human Brain

    Directory of Open Access Journals (Sweden)

    Robert A. Dielenberg

    2013-05-01

    Full Text Available The hallmark of our species is our ability to hybridize symbolic thinking with behavioral output. We began with the symmetrical hand axe around 1.7 mya and have progressed, slowly at first, then with greater rapidity, to producing increasingly more complex hybridized products. We now live in the age where our drive to hybridize has pushed us to the brink of a neuroscientific revolution, where for the first time we are in a position to willfully alter the brain and hence, our behavior and evolution. Nootropics, transcranial direct current stimulation (tDCS, transcranial magnetic stimulation (TMS, deep brain stimulation (DBS and invasive brain mind interface (BMI technology are allowing humans to treat previously inaccessible diseases as well as open up potential vistas for cognitive enhancement. In the future, the possibility exists for humans to hybridize with BMIs and mobile architectures. The notion of self is becoming increasingly extended. All of this to say: are we in control of our brains, or are they in control of us?

  11. Two distinct forms of functional lateralization in the human brain

    OpenAIRE

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    This study alters our fundamental understanding of the functional interactions between the cerebral hemispheres of the human brain by establishing that the left and right hemispheres have qualitatively different biases in how they dynamically interact with one another. Left-hemisphere regions are biased to interact more strongly within the same hemisphere, whereas right-hemisphere regions interact more strongly with both hemispheres. These two different patterns of interaction are associated ...

  12. Investigation of G72 (DAOA expression in the human brain

    Directory of Open Access Journals (Sweden)

    Hirsch Steven

    2008-12-01

    Full Text Available Abstract Background Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO, supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions. Methods The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth in silico analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability. Results Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala, spinal cord or testis. A detailed in silico analysis provides several lines of evidence that support the apparent low or absent expression of G72. Conclusion Our results suggest that native G72 protein is not normally present in the tissues that we analysed

  13. A reproducible brain tumour model established from human glioblastoma biopsies

    Directory of Open Access Journals (Sweden)

    Li Xingang

    2009-12-01

    Full Text Available Abstract Background Establishing clinically relevant animal models of glioblastoma multiforme (GBM remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. Methods In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. Results The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. Conclusions In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression.

  14. Nonspatial intermodal selective attention is mediated by sensory brain brain areas: Evidence from event-related potential.

    NARCIS (Netherlands)

    Talsma, D.; Kok, A.

    2001-01-01

    Focuses on the question of whether inter-and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while Ss (aged 18-41 yrs) were presented a random sequence of visual and auditory stimuli. They were instructed to attend to nonspatial

  15. “Messing with the mind”: evolutionary challenges to human brain augmentation

    OpenAIRE

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P.

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understa...

  16. Cholinergic Modulation of Cortical Microcircuits Is Layer-Specific: Evidence from Rodent, Monkey and Human Brain

    Directory of Open Access Journals (Sweden)

    Joshua Obermayer

    2017-12-01

    Full Text Available Acetylcholine (ACh signaling shapes neuronal circuit development and underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. During behavior, activation of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs by ACh alters the activation state of neurons, and neuronal circuits most likely process information differently with elevated levels of ACh. In several brain regions, ACh has been shown to alter synaptic strength as well. By changing the rules for synaptic plasticity, ACh can have prolonged effects on and rearrange connectivity between neurons that outlasts its presence. From recent discoveries in the mouse, rat, monkey and human brain, a picture emerges in which the basal forebrain (BF cholinergic system targets the neocortex with much more spatial and temporal detail than previously considered. Fast cholinergic synapses acting on a millisecond time scale are abundant in the mammalian cerebral cortex, and provide BF cholinergic neurons with the possibility to rapidly alter information flow in cortical microcircuits. Finally, recent studies have outlined novel mechanisms of how cholinergic projections from the BF affect synaptic strength in several brain areas of the rodent brain, with behavioral consequences. This review highlights these exciting developments and discusses how these findings translate to human brain circuitries.

  17. Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice.

    Science.gov (United States)

    Hu, Yang; Ding, Wenting; Zhu, Xiaonan; Chen, Ruzhu; Wang, Xuelan

    2016-04-01

    Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.

  18. The research of morphological variations and sexual dimorphism of primary grooves on the medial side of brain hemispheres in humans

    Directory of Open Access Journals (Sweden)

    Spasojević Goran

    2012-01-01

    Full Text Available Morphological studies of the various parts of the brain show certain morphological and morphometric differences in correlation with sex, so-called sexual dimorphism of the brain. Our research has been done on the cerebral hemispheres, taken from cadavers of both sexes and different age without pathological processes in the brain. The sample comprised 26 male brains and 16 female brains. We studied three primary grooves (sulcus cinguli, sulcus parietooccipitalis and sulcus calcarinus of the medial surface of the human cerebral hemispheres. We conducted morphological typology of grooves and morphometric measurements of primary brain grooves length in relation to sex and side of hemisphere. The results showed a statistically significant sex difference in the cingulate sulcus length (p0,05. Determined morphometric sexual dimorphism in cingulate sulcus length is significant because it implies the correlation between morphology and function of the explored areas of the cerebral cortex.

  19. Functional MRI studies of acupuncture analgesia modulating within the human brain

    International Nuclear Information System (INIS)

    Hou Jinwen; Huang Weihao; Wang Qing; Feng Jingwei; Pu Yonglin; Gao Jiahong

    2002-01-01

    Objective: To evaluate the correlation between acupuncture analgesia and specific functional areas of the brain using functional magnetic resonance imaging (fMRI). Methods: Acupuncture stimulation was induced by manipulating acupuncture needle at the acupuncture point, large intestine 4 (LI 4, Hegu) on the right (dominant) hand of 8 healthy subjects. Functional MRI data were obtained from scanning the whole brain. A block-design paradigm was applied. Functional responses were established by students' group t-test analysis. Results: The data sets from 6 of 8 subjects were used in the study. Signal increases and signal decreases elicited by acupuncture stimulating were demonstrated in multiple brain regions. Signal increases in periaqueductal gray matter and ventral posterior nucleus of the left thalamus, and signal decreases in bilateral anterior cingulate cortex and bilateral occipital lobes were considered as the response to the acupuncture modulating within the human brain. Conclusion: The therapeutic effect of acupuncture analgesia was probably produced by the interaction of multiple brain structures of functional connectivity rather than through the activation of a single brain region

  20. A meta-analysis of sex differences in human brain structure.

    Science.gov (United States)

    Ruigrok, Amber N V; Salimi-Khorshidi, Gholamreza; Lai, Meng-Chuan; Baron-Cohen, Simon; Lombardo, Michael V; Tait, Roger J; Suckling, John

    2014-02-01

    The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18-59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. A meta-analysis of sex differences in human brain structure☆

    Science.gov (United States)

    Ruigrok, Amber N.V.; Salimi-Khorshidi, Gholamreza; Lai, Meng-Chuan; Baron-Cohen, Simon; Lombardo, Michael V.; Tait, Roger J.; Suckling, John

    2014-01-01

    The prevalence, age of onset, and symptomatology of many neuropsychiatric conditions differ between males and females. To understand the causes and consequences of sex differences it is important to establish where they occur in the human brain. We report the first meta-analysis of typical sex differences on global brain volume, a descriptive account of the breakdown of studies of each compartmental volume by six age categories, and whole-brain voxel-wise meta-analyses on brain volume and density. Gaussian-process regression coordinate-based meta-analysis was used to examine sex differences in voxel-based regional volume and density. On average, males have larger total brain volumes than females. Examination of the breakdown of studies providing total volumes by age categories indicated a bias towards the 18–59 year-old category. Regional sex differences in volume and tissue density include the amygdala, hippocampus and insula, areas known to be implicated in sex-biased neuropsychiatric conditions. Together, these results suggest candidate regions for investigating the asymmetric effect that sex has on the developing brain, and for understanding sex-biased neurological and psychiatric conditions. PMID:24374381

  2. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2015-06-01

    Impaired brain insulin action has been linked to obesity, type 2 diabetes, and neurodegenerative diseases. To date, the central nervous effects of insulin in obese humans still remain ill defined, and no study thus far has evaluated the specific brain areas affected by insulin resistance. In 25 healthy lean and 23 overweight/obese participants, we performed magnetic resonance imaging to measure cerebral blood flow (CBF) before and 15 and 30 min after application of intranasal insulin or placebo. Additionally, participants explicitly rated pictures of high-caloric savory and sweet food 60 min after the spray for wanting and liking. In response to insulin compared with placebo, we found a significant CBF decrease in the hypothalamus in both lean and overweight/obese participants. The magnitude of this response correlated with visceral adipose tissue independent of other fat compartments. Furthermore, we observed a differential response in the lean compared with the overweight/obese group in the prefrontal cortex, resulting in an insulin-induced CBF reduction in lean participants only. This prefrontal cortex response significantly correlated with peripheral insulin sensitivity and eating behavior measures such as disinhibition and food craving. Behaviorally, we were able to observe a significant reduction for the wanting of sweet foods after insulin application in lean men only. Brain insulin action was selectively impaired in the prefrontal cortex in overweight and obese adults and in the hypothalamus in participants with high visceral adipose tissue, potentially promoting an altered homeostatic set point and reduced inhibitory control contributing to overeating behavior. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage.

    Directory of Open Access Journals (Sweden)

    Anna Rosell

    Full Text Available BACKGROUND: Spontaneous intracerebral hemorrhage (ICH represents about 15% of all strokes and is associated with high mortality rates. Our aim was to identify the gene expression changes and biological pathways altered in the brain following ICH. METHODOLOGY/PRINCIPAL FINDINGS: Twelve brain samples were obtained from four deceased patients who suffered an ICH including perihematomal tissue (PH and the corresponding contralateral white (CW and grey (CG matter. Affymetrix GeneChip platform for analysis of over 47,000 transcripts was conducted. Microarray Analysis Suite 5.0 was used to process array images and the Ingenuity Pathway Analysis System was used to analyze biological mechanisms and functions of the genes. We identified 468 genes in the PH areas displaying a different expression pattern with a fold change between -3.74 and +5.16 when compared to the contralateral areas (291 overexpressed and 177 underexpressed. The top genes which appeared most significantly overexpressed in the PH areas codify for cytokines, chemokines, coagulation factors, cell growth and proliferation factors while the underexpressed codify for proteins involved in cell cycle or neurotrophins. Validation and replication studies at gene and protein level in brain samples confirmed microarray results. CONCLUSIONS: The genomic responses identified in this study provide valuable information about potential biomarkers and target molecules altered in the perihematomal regions.

  4. Mapping a2 Adrenoceptors of the Human Brain with 11C-Yohimbine

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Jakobsen, Steen; Munk, Ole

    2015-01-01

    A previous study from this laboratory suggested that 11C-yohimbine, a selective α2-adrenoceptor antagonist, is an appropriate ligand for PET of α2 adrenoceptors that passes readily from blood to brain tissue in pigs but not in rodents. To test usefulness in humans, we determined blood–brain...... values of VT ranged from 0.82 mL cm−3 in the right frontal cortex to 0.46 mL cm−3 in the corpus callosum, with intermediate VT values in subcortical structures. Binding potentials averaged 0.6–0.8 in the cortex and 0.2–0.5 in subcortical regions. Conclusion: The maps of 11C-yohimbine binding to α2...... adrenoceptors in human brain had the highest values in cortical areas and hippocampus, with moderate values in subcortical structures, as found also in vitro. The results confirm the usefulness of the tracer 11C-yohimbine for mapping α2 adrenoceptors in human brain in vivo....

  5. A new microcontroller-based human brain hypothermia system.

    Science.gov (United States)

    Kapidere, Metin; Ahiska, Raşit; Güler, Inan

    2005-10-01

    Many studies show that artificial hypothermia of brain in conditions of anesthesia with the rectal temperature lowered down to 33 degrees C produces pronounced prophylactic effect protecting the brain from anoxia. Out of the methods employed now in clinical practice for reducing the oxygen consumption by the cerebral tissue, the most efficacious is craniocerebral hypothermia (CCH). It is finding even more extensive application in cardiovascular surgery, neurosurgery, neurorenimatology and many other fields of medical practice. In this study, a microcontroller-based designed human brain hypothermia system (HBHS) is designed and constructed. The system is intended for cooling and heating the brain. HBHS consists of a thermoelectric hypothermic helmet, a control and a power unit. Helmet temperature is controlled by 8-bit PIC16F877 microcontroller which is programmed using MPLAB editor. Temperature is converted to 10-bit digital and is controlled automatically by the preset values which have been already entered in the microcontroller. Calibration is controlled and the working range is tested. Temperature of helmet is controlled between -5 and +46 degrees C by microcontroller, with the accuracy of +/-0.5 degrees C.

  6. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas

    NARCIS (Netherlands)

    van Dijk, A.; Klanker, M.; van Oorschot, N.; Post, R.; Hamelink, R.; Feenstra, M. G. P.; Denys, D.

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) has proven to be an effective treatment for therapy refractory obsessive compulsive disorder. Clinical observations show that anxiety symptoms decrease rapidly following DBS. As in clinical studies different regions are targeted, it is of

  7. Human bioclimatology analysis of Ankara urban area

    OpenAIRE

    Onur Çalışkan; Necla Türkoğlu

    2011-01-01

    In this study, the Physiological Equivalent Temperatures (PET) of different land patterns in the Ankara urban area has been analyzed. The spatial distribution and temporal variation of the thermal perceptions and the grades of thermal stress caused by the thermal conditions have been determined for 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00 and 21:00 hours during the December and July of 2010. The effects of physiographic features such as elevation, aspect, slope, and especially land use...

  8. A study of perifocal low-density area in metastatic brain tumor

    International Nuclear Information System (INIS)

    Suzuki, Ryuta; Okada, Kodai; Hiratsuka, Hideo; Inaba, Yutaka; Tsuyumu, Matsutaira.

    1980-01-01

    It is well known that vasogenic brain edema often develops in brain tumors, head injuries, and inflammatory brain lesions. In order to investigate the development and resolution of vasogenic brain edema, some CT findings of metastatic brain tumors were studied in detail. 20 cases of metastatic brain tumors of the past three years were examined by means of a CT scan. In almost all the cases there was a perifocal low-density area (PFL) in the CT findings. In the tumors which were cystic and/or located in the infratentorial space, PFL was not present or, if present, only slightly so. On the contrary, in the tumors which were nodular and/or in the supratentorial space, PFL was present extensively. In the supratentorial metastasis, PFL seemed to be restricted within the white matter and not to involve the gray matter nor such midline structures as basal ganglia and corpus callosum. Besides, PFL was always in contact with the lateral ventricular wall. These results show that PFL in the metastatic tumors resembles in shape the experimental cold-induced brain edema in cats. PFL is presumed to represent vasogenic brain edema; these findings support the hypothesis that the main mechanism of the resolution of vasogenic brain edema is the drainage of the edema fluid into the ventricular CSF. (author)

  9. Study of perifocal low-density area in metastatic brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R; Okada, K; Hiratsuka, H; Inaba, Y [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Tsuyumu, M

    1980-04-01

    It is well known that vasogenic brain edema often develops in brain tumors, head injuries, and inflammatory brain lesions. In order to investigate the development and resolution of vasogenic brain edema, some CT findings of metastatic brain tumors were studied in detail. 20 cases of metastatic brain tumors of the past three years were examined by means of a CT scan. In almost all the cases there was a perifocal low-density area (PFL) in the CT findings. In the tumors which were cystic and/or located in the infratentorial space, PFL was not present or, if present, only slightly so. On the contrary, in the tumors which were nodular and/or in the supratentorial space, PFL was present extensively. In the supratentorial metastasis, PFL seemed to be restricted within the white matter and not to involve the gray matter nor such midline structures as basal ganglia and corpus callosum. Besides, PFL was always in contact with the lateral ventricular wall. These results show that PFL in the metastatic tumors resembles in shape the experimental cold-induced brain edema in cats. PFL is presumed to represent vasogenic brain edema; these findings support the hypothesis that the main mechanism of the resolution of vasogenic brain edema is the drainage of the edema fluid into the ventricular CSF.

  10. Memory-related brain lateralisation in birds and humans.

    Science.gov (United States)

    Moorman, Sanne; Nicol, Alister U

    2015-03-01

    Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation. Copyright © 2014. Published by Elsevier Ltd.

  11. Two distinct forms of functional lateralization in the human brain

    Science.gov (United States)

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability. PMID:23959883

  12. One century of brain mapping using Brodmann areas.

    Science.gov (United States)

    Strotzer, Michael

    2009-08-01

    100 years after their publication, Brodmann's maps of the cerebral cortex are universally used to locate neuropsychological functions. On the occasion of this jubilee the life and work of Korbinian Brodmann are reported. The core functions of each single Brodmann area are described and Brodmann's views on neuropsychological processes are depicted.

  13. "Brain drain, brain gain. . . Brain sustain?" : Challenges in building Portuguese human research capacity

    NARCIS (Netherlands)

    Hasanefendic, Sandra

    2017-01-01

    This paper presents a systematic but essentially descriptive account of the policy measure of stimulating human research capacity development under the policy program "Commitment to Science" in Portugal in the period 2006-2009. It explores the conditions that contributed to the development of the

  14. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  15. Social Rewards and Social Networks in the Human Brain.

    Science.gov (United States)

    Fareri, Dominic S; Delgado, Mauricio R

    2014-08-01

    The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations. © The Author(s) 2014.

  16. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alcendor Donald J

    2012-05-01

    Full Text Available Abstract Background Congenital human cytomegalovirus (HCMV infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV, microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC. However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha, interleukin-1 beta (IL-1beta, and interleukin-6 (IL-6. Pericytes exposed to SBCMV elicited

  17. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain

    Science.gov (United States)

    Benítez-Burraco, Antonio; Lattanzi, Wanda; Murphy, Elliot

    2016-01-01

    Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest. PMID:27621700

  18. Why our brains cherish humanity: Mirror neurons and colamus humanitatem

    Directory of Open Access Journals (Sweden)

    John R. Skoyles

    2008-06-01

    Full Text Available Commonsense says we are isolated. After all, our bodies are physically separate. But Seneca’s colamus humanitatem, and John Donne’s observation that “no man is an island” suggests we are neither entirely isolated nor separate. A recent discovery in neuroscience—that of mirror neurons—argues that the brain and the mind is neither built nor functions remote from what happens in other individuals. What are mirror neurons? They are brain cells that process both what happens to or is done by an individual, and, as it were, its perceived “refl ection,” when that same thing happens or is done by another individual. Thus, mirror neurons are both activated when an individual does a particular action, and when that individual perceives that same action done by another. The discovery of mirror neurons suggests we need to radically revise our notions of human nature since they offer a means by which we may not be so separated as we think. Humans unlike other apes are adapted to mirror interact nonverbally when together. Notably, our faces have been evolved to display agile and nimble movements. While this is usually explained as enabling nonverbal communication, a better description would be nonverbal commune based upon mirror neurons. I argue we cherish humanity, colamus humanitatem, because mirror neurons and our adapted mirror interpersonal interface blur the physical boundaries that separate us.

  19. Imaging neuroreceptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.; Dannals, R.F.; Frost, J.J.

    1985-01-01

    For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human brain in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, and glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On 25 May 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 N-methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine-2 receptors than in serotonin-2 receptors. Preliminary studies of patients with neuropsychiatric disorders suggest that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits a quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. (author)

  20. Brain cDNA clone for human cholinesterase

    International Nuclear Information System (INIS)

    McTiernan, C.; Adkins, S.; Chatonnet, A.; Vaughan, T.A.; Bartels, C.F.; Kott, M.; Rosenberry, T.L.; La Du, B.N.; Lockridge, O.

    1987-01-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum. The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase

  1. The Lifespan and Turnover of Microglia in the Human Brain

    Directory of Open Access Journals (Sweden)

    Pedro Réu

    2017-07-01

    Full Text Available The hematopoietic system seeds the CNS with microglial progenitor cells during the fetal period, but the subsequent cell generation dynamics and maintenance of this population have been poorly understood. We report that microglia, unlike most other hematopoietic lineages, renew slowly at a median rate of 28% per year, and some microglia last for more than two decades. Furthermore, we find no evidence for the existence of a substantial population of quiescent long-lived cells, meaning that the microglia population in the human brain is sustained by continuous slow turnover throughout adult life.

  2. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI.

    Science.gov (United States)

    Aggarwal, Manisha; Nauen, David W; Troncoso, Juan C; Mori, Susumu

    2015-01-15

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n=3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers-layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. 101 labeled brain images and a consistent human cortical labeling protocol

    Directory of Open Access Journals (Sweden)

    Arno eKlein

    2012-12-01

    Full Text Available We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The Desikan-Killiany-Tourville (DKT protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://www.mindboggle.info/data/ website.

  4. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    Science.gov (United States)

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  5. Neurological impressions on the organization of language networks in the human brain.

    Science.gov (United States)

    Oliveira, Fabricio Ferreira de; Marin, Sheilla de Medeiros Correia; Bertolucci, Paulo Henrique Ferreira

    2017-01-01

    More than 95% of right-handed individuals, as well as almost 80% of left-handed individuals, have left hemisphere dominance for language. The perisylvian networks of the dominant hemisphere tend to be the most important language systems in human brains, usually connected by bidirectional fibres originated from the superior longitudinal fascicle/arcuate fascicle system and potentially modifiable by learning. Neuroplasticity mechanisms take place to preserve neural functions after brain injuries. Language is dependent on a hierarchical interlinkage of serial and parallel processing areas in distinct brain regions considered to be elementary processing units. Whereas aphasic syndromes typically result from injuries to the dominant hemisphere, the extent of the distribution of language functions seems to be variable for each individual. Review of the literature Results: Several theories try to explain the organization of language networks in the human brain from a point of view that involves either modular or distributed processing or sometimes both. The most important evidence for each approach is discussed under the light of modern theories of organization of neural networks. Understanding the connectivity patterns of language networks may provide deeper insights into language functions, supporting evidence-based rehabilitation strategies that focus on the enhancement of language organization for patients with aphasic syndromes.

  6. Brain imaging and human nutrition: which measures to use in intervention studies?

    Science.gov (United States)

    Sizonenko, Stéphane V; Babiloni, Claudio; Sijben, John W; Walhovd, Kristine B

    2013-09-01

    Throughout the life span, the brain is a metabolically highly active organ that uses a large proportion of total nutrient and energy intake. Furthermore, the development and repair of neural tissue depend on the proper intake of essential structural nutrients, minerals, and vitamins. Therefore, what we eat, or refrain from eating, may have an important impact on our cognitive ability and mental performance. Two of the key areas in which diet is thought to play an important role are in optimizing neurodevelopment in children and in preventing neurodegeneration and cognitive decline during aging. From early development to aging, brain imaging can detect structural, functional, and metabolic changes in humans and modifications due to altered nutrition or to additional nutritional supplementation. Inclusion of imaging measures in clinical studies can increase understanding with regard to the modification of brain structure, metabolism, and functional endpoints and may provide early sensitive measures of long-term effects. In this symposium, the utility of existing brain imaging technologies to assess the effects of nutritional intervention in humans is described. Examples of current research showing the utility of these markers are reviewed.

  7. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Science.gov (United States)

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  8. Methods of measuring metabolism during surgery in humans: focus on the liver-brain relationship.

    Science.gov (United States)

    Battezzati, Alberto; Bertoli, Simona

    2004-09-01

    The purpose of this work is to review recent advances in setting methods and models for measuring metabolism during surgery in humans. Surgery, especially solid organ transplantation, may offer unique experimental models in which it is ethically acceptable to gain information on difficult problems of amino acid and protein metabolism. Two areas are reviewed: the metabolic study of the anhepatic phase during liver transplantation and brain microdialysis during cerebral surgery. The first model offers an innovative approach to understand the relative role of liver and extrahepatic organs in gluconeogenesis, and to evaluate whether other organs can perform functions believed to be exclusively or almost exclusively performed by the liver. The second model offers an insight to intracerebral metabolism that is closely bound to that of the liver. The recent advances in metabolic research during surgery provide knowledge immediately useful for perioperative patient management and for a better control of surgical stress. The studies during the anhepatic phase of liver transplantation have showed that gluconeogenesis and glutamine metabolism are very active processes outside the liver. One of the critical organs for extrahepatic glutamine metabolism is the brain. Microdialysis studies helped to prove that in humans there is an intense trafficking of glutamine, glutamate and alanine among neurons and astrocytes. This delicate network is influenced by systemic amino acid metabolism. The metabolic dialogue between the liver and the brain is beginning to be understood in this light in order to explain the metabolic events of brain damage during liver failure.

  9. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  10. Age-related changes of MAO-A and -B distribution in human and mouse brain.

    Science.gov (United States)

    Mahy, N; Andrés, N; Andrade, C; Saura, J

    2000-01-01

    Age-related changes of MAO-A and -B were studied in human and BL/C57 mouse brain areas (substantia nigra, putamen and cerebellum). [3H]Ro41-1049 and [3H]lazabemide were used as selective radioligands to image and quantify MAO-A and MAO-B respectively by enzyme autoradiography. MAO-A binding was higher in mouse, whereas MAO-B binding was higher in human. With aging, mouse MAO-A was significantly reduced between 4 and 8 weeks and remained unchanged until 19 months followed by a slight increase between 19 and 25 months. In contrast, no clear variation was observed in humans between the age of 17-93 years. In most of the structures studied a clear age-related increase in MAO-B was observed beginning in mouse brain at 4 weeks, whereas in human tissue this increase started at the age of 50-60 years. These results show marked differences in the levels and variations of mouse and human MAO-A and -B associated with aging and should be taken into account when extrapolating experimental data from mouse to human.

  11. Unmasking Language Lateralization in Human Brain Intrinsic Activity

    Science.gov (United States)

    McAvoy, Mark; Mitra, Anish; Coalson, Rebecca S.; d'Avossa, Giovanni; Keidel, James L.; Petersen, Steven E.; Raichle, Marcus E.

    2016-01-01

    Lateralization of function is a fundamental feature of the human brain as exemplified by the left hemisphere dominance of language. Despite the prominence of lateralization in the lesion, split-brain and task-based fMRI literature, surprisingly little asymmetry has been revealed in the increasingly popular functional imaging studies of spontaneous fluctuations in the fMRI BOLD signal (so-called resting-state fMRI). Here, we show the global signal, an often discarded component of the BOLD signal in resting-state studies, reveals a leftward asymmetry that maps onto regions preferential for semantic processing in left frontal and temporal cortex and the right cerebellum and a rightward asymmetry that maps onto putative attention-related regions in right frontal, temporoparietal, and parietal cortex. Hemispheric asymmetries in the global signal resulted from amplitude modulation of the spontaneous fluctuations. To confirm these findings obtained from normal, healthy, right-handed subjects in the resting-state, we had them perform 2 semantic processing tasks: synonym and numerical magnitude judgment and sentence comprehension. In addition to establishing a new technique for studying lateralization through functional imaging of the resting-state, our findings shed new light on the physiology of the global brain signal. PMID:25636911

  12. The structure of creative cognition in the human brain

    Directory of Open Access Journals (Sweden)

    Rex Eugene Jung

    2013-07-01

    Full Text Available Creativity is a vast construct, seemingly intractable to scientific inquiry – perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR. Behaviorally, one can limit the blind variation component to idea generation tests as manifested by measures of divergent thinking. The selective retention component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI, Diffusion Tensor Imaging (DTI, and proton magnetic resonance imaging (1H-MRS. We also review lesion studies, considered to be the gold standard of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981. We provide a perspective, involving aspects of the default mode network, which might provide a first approximation regarding how creative cognition might map on to the human brain.

  13. Mobile phone types and SAR characteristics of the human brain

    Science.gov (United States)

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-04-01

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  14. Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Li, Chuanming; Wang, Jian; Gui, Li; Zheng, Jian; Liu, Chen; Du, Hanjian

    2011-01-01

    Gray matter volume and density of several brain regions, determined by magnetic resonance imaging (MRI), are decreased in Alzheimer's disease (AD). Animal studies have indicated that changes in cortical area size is relevant to thinking and behavior, but alterations of cortical area and thickness in the brains of individuals with AD or its likely precursor, mild cognitive impairment (MCI), have not been reported. In this study, 25 MCI subjects, 30 AD subjects, and 30 age-matched normal controls were recruited for brain MRI scans and Functional Activities Questionnaire (FAQ) assessments. Based on the model using FreeSurfer software, two brain lobes were divided into various regions according to the Desikan-Killiany atlas and the cortical area and thickness of every region was compared and analyzed. We found a significant increase in cortical area of several regions in the frontal and temporal cortices, which correlated negatively with MMSE scores, and a significant decrease in cortical area of several regions in the parietal cortex and the cingulate gyrus in AD subjects. Increased cortical area was also seen in some regions of the frontal and temporal cortices in MCI subjects, whereas the cortical thickness of the same regions was decreased. Our observations suggest characteristic differences of the cortical area and thickness in MCI, AD, and normal control subjects, and these changes may help diagnose both MCI and AD.

  15. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness

    DEFF Research Database (Denmark)

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees,...

  16. Mathematical modeling of human glioma growth based on brain topological structures: study of two clinical cases.

    Directory of Open Access Journals (Sweden)

    Cecilia Suarez

    Full Text Available Gliomas are the most common primary brain tumors and yet almost incurable due mainly to their great invasion capability. This represents a challenge to present clinical oncology. Here, we introduce a mathematical model aiming to improve tumor spreading capability definition. The model consists in a time dependent reaction-diffusion equation in a three-dimensional spatial domain that distinguishes between different brain topological structures. The model uses a series of digitized images from brain slices covering the whole human brain. The Talairach atlas included in the model describes brain structures at different levels. Also, the inclusion of the Brodmann areas allows prediction of the brain functions affected during tumor evolution and the estimation of correlated symptoms. The model is solved numerically using patient-specific parametrization and finite differences. Simulations consider an initial state with cellular proliferation alone (benign tumor, and an advanced state when infiltration starts (malign tumor. Survival time is estimated on the basis of tumor size and location. The model is used to predict tumor evolution in two clinical cases. In the first case, predictions show that real infiltrative areas are underestimated by current diagnostic imaging. In the second case, tumor spreading predictions were shown to be more accurate than those derived from previous models in the literature. Our results suggest that the inclusion of differential migration in glioma growth models constitutes another step towards a better prediction of tumor infiltration at the moment of surgical or radiosurgical target definition. Also, the addition of physiological/psychological considerations to classical anatomical models will provide a better and integral understanding of the patient disease at the moment of deciding therapeutic options, taking into account not only survival but also life quality.

  17. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  18. The brain's silent messenger: using selective attention to decode human thought for brain-based communication.

    Science.gov (United States)

    Naci, Lorina; Cusack, Rhodri; Jia, Vivian Z; Owen, Adrian M

    2013-05-29

    The interpretation of human thought from brain activity, without recourse to speech or action, is one of the most provoking and challenging frontiers of modern neuroscience. In particular, patients who are fully conscious and awake, yet, due to brain damage, are unable to show any behavioral responsivity, expose the limits of the neuromuscular system and the necessity for alternate forms of communication. Although it is well established that selective attention can significantly enhance the neural representation of attended sounds, it remains, thus far, untested as a response modality for brain-based communication. We asked whether its effect could be reliably used to decode answers to binary (yes/no) questions. Fifteen healthy volunteers answered questions (e.g., "Do you have brothers or sisters?") in the fMRI scanner, by selectively attending to the appropriate word ("yes" or "no"). Ninety percent of the answers were decoded correctly based on activity changes within the attention network. The majority of volunteers conveyed their answers with less than 3 min of scanning, suggesting that this technique is suited for communication in a reasonable amount of time. Formal comparison with the current best-established fMRI technique for binary communication revealed improved individual success rates and scanning times required to detect responses. This novel fMRI technique is intuitive, easy to use in untrained participants, and reliably robust within brief scanning times. Possible applications include communication with behaviorally nonresponsive patients.

  19. Selectively altering belief formation in the human brain

    Science.gov (United States)

    Sharot, Tali; Kanai, Ryota; Marston, David; Korn, Christoph W.; Rees, Geraint; Dolan, Raymond J.

    2012-01-01

    Humans form beliefs asymmetrically; we tend to discount bad news but embrace good news. This reduced impact of unfavorable information on belief updating may have important societal implications, including the generation of financial market bubbles, ill preparedness in the face of natural disasters, and overly aggressive medical decisions. Here, we selectively improved people’s tendency to incorporate bad news into their beliefs by disrupting the function of the left (but not right) inferior frontal gyrus using transcranial magnetic stimulation, thereby eliminating the engrained “good news/bad news effect.” Our results provide an instance of how selective disruption of regional human brain function paradoxically enhances the ability to incorporate unfavorable information into beliefs of vulnerability. PMID:23011798

  20. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    Directory of Open Access Journals (Sweden)

    Kevin Lai

    Full Text Available Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal or concreteness (abstract vs. concrete of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  1. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    Science.gov (United States)

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  2. Hypnosis and imaging of the living human brain.

    Science.gov (United States)

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  3. Mapping human brain networks with cortico-cortical evoked potentials

    Science.gov (United States)

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  4. Flow distributions and spatial correlations in human brain capillary networks

    Science.gov (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  5. Determination of hyperactive areas of Cortex Cerebri with using brain SPECT study

    International Nuclear Information System (INIS)

    Stepien, A.; Pawlus, J.; Wasilewska-Radwanska, M.

    2004-01-01

    The aim of this study was the assessment of the ability to apply of SPECT technique to determination of hyperactive areas of cortex cerebri. Analysis included 50 patients (mean aged 44 - 58). Brain SPECT scanning was performed after 1 hour after the intravenous injection of 740 MBq of ethylcisteinate dimmer labeled 99m Technetium (99mTc-ECD) with the use one-head gamma camera with a low-energy, ultra-high resolution collimator. Qualitative and quantitative analysis was performed using specialised software. In 20 cases normal biodistribution of the radiotracer was observed (hyperactive areas in cerebellum and occiput). In patients with psychiatric and neurological disturbances hyperactive areas were visualized in 25 cases in temporal lobes, in 4 cases in parietal lobes and in 1 patient in frontal area and basal ganglia. It is concluded that a number of factors limit the wide-scale use of SPECT, including the sophistication of imaging equipment (single-head cameras are inferior to the newer multihead units) and the experience of the physicians interpreting the scans and utilizing the data. In many diseases physicians do not know which areas of the patient's brain according disorders. Brain SPECT study can be a very useful tool to evaluation of hyperactive areas of cortex cerebri. This technique visualization of cortex cerebri completes standard analysis of disorders of brain activity

  6. [Study on corresponding areas the liver and lung channels in brain with fMRI].

    Science.gov (United States)

    Xu, Fang-Ming; Xie, Peng; Lü, Fa-Jin; Mou, Jun; Li, Yong-Mei; Zhao, Jian-Nong; Chen, Wei-Juan; Gong, Qi-Yong; Zhao, Li-Bo; Liu, Qing-Jun; Shen, Lin; Zhai, Hong; Yang, De-Yu

    2007-10-01

    To explore distribution of the Liver and Lung Channels in the brain so as to provide imaging basis for construction of channel theory in the brain. Sixty healthy student volunteers were randomly divided into a Liver Channel group (I) and a Lung Channel group (II), and the each group was further divided into five subgroups with 6 volunteers in each subgroup, based on five-shu-point principles which, were Dadun (LR 1, I 1), Xingjian (LR 2, I 2), Taichong (LR 3, I 3), Zhongfeng (LR 4, I 4), Ququan (LR 8, I 5), Shaoshang (LU 11, II 1), Yuji (LU 10, II 2), Taiyuan (LU 9, II 3), Jingqu (LU 8, II 4), and Chize (LU 5, II 5), respectively. In order to observe the brain activating patterns during acupuncture at the different acupoints, functional magnetic resonance imaging (fMRI) technique was adopted. All image data were then analyzed with SPM 2 software. The statistical parameter gram was composed of the pixel P areas, and the commonly activated area of five-shu-point of each channel was considered as the brain distribution of the Liver and Lung Channels. The common areas activated by the five-shu-points of the Liver Channel were homolateral Brodmann area (BA) 34, BA 47, red nucleus, contralateral BA 19, BA 30, BA 39, the superior parietal lobule, cerebellum decline, and bilateral BA 3 and culmen. The common areas activated by the five-shu-points of the Lung Channels included homolateral BA 2, BA 18, BA 35, and contralateral BA 9 and substania nigra. There are relatively specific corresponding brain areas for the Liver and Lung Channels, indicating that there is possible relatively specific connection between channels and the brain.

  7. Long distance communication in the human brain: timing constraints for inter-hemispheric synchrony and the origin of brain lateralization

    Directory of Open Access Journals (Sweden)

    FRANCISCO ABOITIZ

    2003-01-01

    Full Text Available Analysis of corpus callosum fiber composition reveals that inter-hemispheric transmission time may put constraints on the development of inter-hemispheric synchronic ensembles, especially in species with large brains like humans. In order to overcome this limitation, a subset of large-diameter callosal fibers are specialized for fast inter-hemispheric transmission, particularly in large-brained species. Nevertheless, the constraints on fast inter-hemispheric communication in large-brained species can somehow contribute to the development of ipsilateral, intrahemispheric networks, which might promote the development of brain lateralization.

  8. The role of positron emission tomography in neuropharmacology in the living human brain and drug development

    International Nuclear Information System (INIS)

    Yanai, Kazuhiko

    1999-01-01

    Neuroimaging is a powerful and innovative tool for studying the pathology of psychiatric and neurological diseases and, more recently, for studying the drugs used in their treatment. Technological advances in imaging have made it possible to noninvasively extract information from the human brain regarding a drug's mechanism and site of action. Until now, our understanding of human brain pharmacology has depended primarily on indirect assessments or models derived from animal studies. However, the advent of multiple techniques for human brain imaging allows researchers to focus directly on human pharmacology and brain function. In this review article, our PET studies on the histaminergic neuron system were presented as an example. We have developed and used the PET techniques for 10 years in order to examine the H 1 receptors in the living human brain. This review outlines available PET techniques and examine how these various methods have already been applied to the drug development process and neuropharmacology in the living human brain. (author)

  9. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain

    DEFF Research Database (Denmark)

    Skjolding, Anders Daehli; Holst, Anders Vedel; Broholm, Helle

    2013-01-01

    findings to human pathophysiology. This study compares expression of aquaporin-4 in hydrocephalic human brain with human controls and hydrocephalic rat brain. Methods:  Cortical biopsies from patients with chronic hydrocephalus (n=29) were sampled secondary to planned surgical intervention. Aquaporin-4...

  10. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    Science.gov (United States)

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching.

  11. Human Development XII: A Theory for the Structure and Function of the Human Brain

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2008-01-01

    Full Text Available The human brain is probably the most complicated single structure in the biological universe. The cerebral cortex that is traditionally connected with consciousness is extremely complex. The brain contains approximately 1,000,000 km of nerve fibers, indicating its enormous complexity and which makes it difficult for scientists to reveal the function of the brain. In this paper, we propose a new model for brain functions, i.e., information-guided self-organization of neural patterns, where information is provided from the abstract wholeness of the biophysical system of an organism (often called the true self, or the “soul””. We present a number of arguments in favor of this model that provide self-conscious control over the thought process or cognition. Our arguments arise from analyzing experimental data from different research fields: histology, anatomy, electroencephalography (EEG, cerebral blood flow, neuropsychology, evolutionary studies, and mathematics. We criticize the popular network theories as the consequence of a simplistic, mechanical interpretation of reality (philosophical materialism applied to the brain. We demonstrate how viewing brain functions as information-guided self-organization of neural patterns can explain the structure of conscious mentation; we seem to have a dual hierarchical representation in the cerebral cortex: one for sensation-perception and one for will-action. The model explains many of our unique mental abilities to think, memorize, associate, discriminate, and make abstractions. The presented model of the conscious brain also seems to be able to explain the function of the simpler brains, such as those of insects and hydra.

  12. The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity.

    Science.gov (United States)

    Başar, Erol; Düzgün, Aysel

    2016-05-01

    Since the beginning of the last century, the localization of brain function has been represented by Brodmann areas, maps of the anatomic organization of the brain. They are used to broadly represent cortical structures with their given sensory-cognitive functions. In recent decades, the analysis of brain oscillations has become important in the correlation of brain functions. Moreover, spectral connectivity can provide further information on the dynamic connectivity between various structures. In addition, brain responses are dynamic in nature and structural localization is almost impossible, according to Luria (1966). Therefore, brain functions are very difficult to localize; hence, a combined analysis of oscillation and event-related coherences is required. In this study, a model termed as "CLAIR" is described to enrich and possibly replace the concept of the Brodmann areas. A CLAIR model with optimum function may take several years to develop, but this study sets out to lay its foundation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

    Science.gov (United States)

    Kujala, Miiamaaria V; Kujala, Jan; Carlson, Synnöve; Hari, Riitta

    2012-01-01

    We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facing toward each other from humans facing away, and in dog experts, a distinction also occurred for dogs facing toward vs. away in a bilateral area extending from the pSTS to the inferior temporo-occipital cortex: the dissociation of dog behavior was significantly stronger in expert than control group. Furthermore, the control group had stronger pSTS responses to humans than dogs facing toward a conspecific, whereas in dog experts, the responses were of similar magnitude. These findings suggest that dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

  14. The working memory networks of the human brain.

    Science.gov (United States)

    Linden, David E J

    2007-06-01

    Working memory and short-term memory are closely related in their cognitive architecture, capacity limitations, and functional neuroanatomy, which only partly overlap with those of long-term memory. The author reviews the functional neuroimaging literature on the commonalities and differences between working memory and short-term memory and the interplay of areas with modality-specific and supramodal representations in the brain networks supporting these fundamental cognitive processes. Sensory stores in the visual, auditory, and somatosensory cortex play a role in short-term memory, but supramodal parietal and frontal areas are often recruited as well. Classical working memory operations such as manipulation, protection against interference, or updating almost certainly require at least some degree of prefrontal support, but many pure maintenance tasks involve these areas as well. Although it seems that activity shifts from more posterior regions during encoding to more anterior regions during delay, some studies reported sustained delay activity in sensory areas as well. This spatiotemporal complexity of the short-term memory/working memory networks is mirrored in the activation patterns that may explain capacity constraints, which, although most prominent in the parietal cortex, seem to be pervasive across sensory and premotor areas. Finally, the author highlights open questions for cognitive neuroscience research of working memory, such as that of the mechanisms for integrating different types of content (binding) or those providing the link to long-term memory.

  15. Activation analysis study on subcellular distribution of trace elements in human brain tumor

    International Nuclear Information System (INIS)

    Zheng Jian; Zhuan Guisun; Wang Yongji; Dong Mo; Zhang Fulin

    1992-01-01

    The concentrations of up to 11 elements in subcellular fractions of human brain (normal and malignant tumor) have been determined by a combination of gradient centrifugation and INAA methods. Samples of human brain were homogenized in a glass homogenizer tube, the homogenate was separated into nuclei, mitochondrial, myelin, synaptosome fractions, and these fractions were then analyzed using the INAA method. The discussions of elemental subcelleular distributions in human brain malignant tumor are presented in this paper. (author) 11 refs.; 2 figs.; 4 tabs

  16. Network dynamics with BrainX(3): a large-scale simulation of the human brain network with real-time interaction.

    Science.gov (United States)

    Arsiwalla, Xerxes D; Zucca, Riccardo; Betella, Alberto; Martinez, Enrique; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F M J

    2015-01-01

    BrainX(3) is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX(3) in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX(3) can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  17. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    Science.gov (United States)

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martinez, Enrique; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas. PMID:25759649

  18. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    Directory of Open Access Journals (Sweden)

    Xerxes D. Arsiwalla

    2015-02-01

    Full Text Available BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for real-time exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably, due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  19. Sex differences in the brain response to affective scenes with or without humans.

    Science.gov (United States)

    Proverbio, Alice Mado; Adorni, Roberta; Zani, Alberto; Trestianu, Laura

    2009-10-01

    Recent findings have demonstrated that women might be more reactive than men to viewing painful stimuli (vicarious response to pain), and therefore more empathic [Han, S., Fan, Y., & Mao, L. (2008). Gender difference in empathy for pain: An electrophysiological investigation. Brain Research, 1196, 85-93]. We investigated whether the two sexes differed in their cerebral responses to affective pictures portraying humans in different positive or negative contexts compared to natural or urban scenarios. 440 IAPS slides were presented to 24 Italian students (12 women and 12 men). Half the pictures displayed humans while the remaining scenes lacked visible persons. ERPs were recorded from 128 electrodes and swLORETA (standardized weighted Low-Resolution Electromagnetic Tomography) source reconstruction was performed. Occipital P115 was greater in response to persons than to scenes and was affected by the emotional valence of the human pictures. This suggests that processing of biologically relevant stimuli is prioritized. Orbitofrontal N2 was greater in response to positive than negative human pictures in women but not in men, and not to scenes. A late positivity (LP) to suffering humans far exceeded the response to negative scenes in women but not in men. In both sexes, the contrast suffering-minus-happy humans revealed a difference in the activation of the occipito/temporal, right occipital (BA19), bilateral parahippocampal, left dorsal prefrontal cortex (DPFC) and left amygdala. However, increased right amygdala and right frontal area activities were observed only in women. The humans-minus-scenes contrast revealed a difference in the activation of the middle occipital gyrus (MOG) in men, and of the left inferior parietal (BA40), left superior temporal gyrus (STG, BA38) and right cingulate (BA31) in women (270-290 ms). These data indicate a sex-related difference in the brain response to humans, possibly supporting human empathy.

  20. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.

    Science.gov (United States)

    Fins, Joseph J; Shapiro, Zachary E

    2014-01-01

    Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine.

  1. Area-specific migration and recruitment of new neurons in the adult songbird brain

    DEFF Research Database (Denmark)

    Vellema, Michiel; Van der Linden, Annemie; Gahr, Manfred

    2010-01-01

    sensitive to plastic changes, such as nucleus higher vocal center (HVC) and area X, recruited similar numbers of new neurons as their surrounding brain tissues, employing no specific directional mechanisms. The distribution pattern in and around HVC could best be described by a random displacement model......Neuron recruitment has been implicated in morphological and functional plasticity in the adult brain. Whereas mammals restrict neuron recruitment specifically to two regions of known plasticity, the hippocampus and olfactory bulb, newborn neurons are found throughout the forebrain of adult...... songbirds. In order to study the area-specificity of the widespread proliferation and recruitment in the songbird brain, six adult male canaries received repetitive intraperitoneal injections of the mitotic marker BrdU (5-bromo-2-deoxyuridine) and were sacrificed after 24 hours to study proliferation...

  2. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    Science.gov (United States)

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  3. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  4. Magneto encephalography (MEG: perspectives of speech areas functional mapping in human subjects

    Directory of Open Access Journals (Sweden)

    Butorina A. V.

    2012-06-01

    Full Text Available One of the main problems in clinical practice and academic research is how to localize speech zones in the human brain. Two speech areas (Broca and Wernicke areas that are responsible for language production and for understanding of written and spoken language have been known since the past century. Their location and even hemispheric lateralization have a substantial inter-individual variability, especially in neurosurgery patients. Wada test is one of the most frequently used invasive methodology for speech hemispheric lateralization in neurosurgery patients. However, besides relatively high-risk of Wada test for patient's health, it has its own limitation, e. g. low reliability of Wada-based evidence of verbal memory brain lateralization. Therefore, there is an urgent need for non-invasive, reliable methods of speech zones mapping.The current review summarizes the recent experimental evidence from magnitoencephalographic (MEG research suggesting that speech areas are included in the speech processing within the first 200 ms after the word onset. The electro-magnetic response to deviant word, mismatch negativity wave with latency of 100—200 ms, can be recorded from auditory cortex within the oddball-paradigm. We provide the arguments that basic features of this brain response, such as its automatic, pre-attentive nature, high signal to noise ratio, source localization at superior temporal sulcus, make it a promising vehicle for non-invasive MEG-based speech areas mapping in neurosurgery.

  5. Abstract representations of associated emotions in the human brain.

    Science.gov (United States)

    Kim, Junsuk; Schultz, Johannes; Rohe, Tim; Wallraven, Christian; Lee, Seong-Whan; Bülthoff, Heinrich H

    2015-04-08

    Emotions can be aroused by various kinds of stimulus modalities. Recent neuroimaging studies indicate that several brain regions represent emotions at an abstract level, i.e., independently from the sensory cues from which they are perceived (e.g., face, body, or voice stimuli). If emotions are indeed represented at such an abstract level, then these abstract representations should also be activated by the memory of an emotional event. We tested this hypothesis by asking human participants to learn associations between emotional stimuli (videos of faces or bodies) and non-emotional stimuli (fractals). After successful learning, fMRI signals were recorded during the presentations of emotional stimuli and emotion-associated fractals. We tested whether emotions could be decoded from fMRI signals evoked by the fractal stimuli using a classifier trained on the responses to the emotional stimuli (and vice versa). This was implemented as a whole-brain searchlight, multivoxel activation pattern analysis, which revealed successful emotion decoding in four brain regions: posterior cingulate cortex (PCC), precuneus, MPFC, and angular gyrus. The same analysis run only on responses to emotional stimuli revealed clusters in PCC, precuneus, and MPFC. Multidimensional scaling analysis of the activation patterns revealed clear clustering of responses by emotion across stimulus types. Our results suggest that PCC, precuneus, and MPFC contain representations of emotions that can be evoked by stimuli that carry emotional information themselves or by stimuli that evoke memories of emotional stimuli, while angular gyrus is more likely to take part in emotional memory retrieval. Copyright © 2015 the authors 0270-6474/15/355655-09$15.00/0.

  6. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Giovanni Aldini: from animal electricity to human brain stimulation.

    Science.gov (United States)

    Parent, André

    2004-11-01

    Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834.

  8. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.......79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0......Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...

  9. Brain Imaging of Human Sexual Response : Recent Developments and Future Directions

    NARCIS (Netherlands)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for

  10. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    NARCIS (Netherlands)

    Guadalupe, Tulio; Mathias, Samuel R.; vanErp, Theo G.M.; Whelan, Christopher D.; Zwiers, Marcel P.; Abe, Yoshinari; Abramovic, Lucija; Agartz, Ingrid; Andreassen, Ole A.; Arias-Vásquez, Alejandro; Aribisala, Benjamin S.; Armstrong, Nicola J.; Arolt, Volker; Artiges, Eric; Ayesa-Arriola, Rosa; Baboyan, Vatche G.; Banaschewski, Tobias; Barker, Gareth; Bastin, Mark E.; Baune, Bernhard T.; Blangero, John; Bokde, Arun L.W.; Boedhoe, Premika S.W.; Bose, Anushree; Brem, Silvia; Brodaty, Henry; Bromberg, Uli; Brooks, Samantha; Büchel, Christian; Buitelaar, Jan; Calhoun, Vince D.; Cannon, Dara M.; Cattrell, Anna; Cheng, Yuqi; Conrod, Patricia J.; Conzelmann, Annette; Corvin, Aiden; Crespo-Facorro, Benedicto; Crivello, Fabrice; Dannlowski, Udo; de Zubicaray, Greig I.; de Zwarte, Sonja M.C.; Deary, Ian J.; Desrivières, Sylvane; Doan, Nhat Trung; Donohoe, Gary; Dørum, Erlend S.; Ehrlich, Stefan; Espeseth, Thomas; Fernández, Guillén; Flor, Herta; Fouche, Jean Paul; Frouin, Vincent; Fukunaga, Masaki; Gallinat, Jürgen; Garavan, Hugh; Gill, Michael; Suarez, Andrea Gonzalez; Gowland, Penny; Grabe, Hans J.; Grotegerd, Dominik; Gruber, Oliver; Hagenaars, Saskia; Hashimoto, Ryota; Hauser, Tobias U.; Heinz, Andreas; Hibar, Derrek P.; Hoekstra, Pieter J.; Hoogman, Martine; Howells, Fleur M.; Hu, Hao; Hulshoff Pol, Hilleke E.; Huyser, Chaim; Ittermann, Bernd; Jahanshad, Neda; Jönsson, Erik G.; Jurk, Sarah; Kahn, Rene S.; Kelly, Sinead; Kraemer, Bernd; Kugel, Harald; Kwon, Jun Soo; Lemaitre, Herve; Lesch, Klaus Peter; Lochner, Christine; Luciano, Michelle; Marquand, Andre F.; Martin, Nicholas G.; Martínez-Zalacaín, Ignacio; Martinot, Jean Luc; Mataix-Cols, David; Mather, Karen; McDonald, Colm; McMahon, Katie L.; Medland, Sarah E.; Menchón, José M.; Morris, Derek W.; Mothersill, Omar; Maniega, Susana Munoz; Mwangi, Benson; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswaamy, Janardhanan C.; Nees, Frauke; Nordvik, Jan E.; Onnink, A. Marten H.; Opel, Nils; Ophoff, Roel; Paillère Martinot, Marie Laure; Papadopoulos Orfanos, Dimitri; Pauli, Paul; Paus, Tomáš; Poustka, Luise; Reddy, Janardhan Yc; Renteria, Miguel E.; Roiz-Santiáñez, Roberto; Roos, Annerine; Royle, Natalie A.; Sachdev, Perminder; Sánchez-Juan, Pascual; Schmaal, Lianne; Schumann, Gunter; Shumskaya, Elena; Smolka, Michael N.; Soares, Jair C.; Soriano-Mas, Carles; Stein, Dan J.; Strike, Lachlan T.; Toro, Roberto; Turner, Jessica A.; Tzourio-Mazoyer, Nathalie; Uhlmann, Anne; Hernández, Maria Valdés; van den Heuvel, Odile A.; van der Meer, Dennis; van Haren, Neeltje E.M.; Veltman, Dick J.; Venkatasubramanian, Ganesan; Vetter, Nora C.; Vuletic, Daniella; Walitza, Susanne; Walter, Henrik; Walton, Esther; Wang, Zhen; Wardlaw, Joanna; Wen, Wei; Westlye, Lars T.; Whelan, Robert; Wittfeld, Katharina; Wolfers, Thomas; Wright, Margaret J.; Xu, Jian; Xu, Xiufeng; Yun, Je Yeon; Zhao, Jing Jing; Franke, Barbara; Thompson, Paul M.; Glahn, David C.; Mazoyer, Bernard; Fisher, Simon E.; Francks, Clyde

    2017-01-01

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain

  11. Nonspatial intermodal selective attention is mediated by sensory brain areas: Evidence from event-related potential.

    NARCIS (Netherlands)

    Talsma, D.; Kok, A.

    2001-01-01

    Focuses on the question of whether inter-and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while Ss (aged 18-41 yrs) were presented a random sequence of visual and auditory stimuli. They were instructed to attend to nonspatial

  12. Nonspatial intermodal selective attention is mediated by sensory brain areas: Evidence from event-related potentials

    NARCIS (Netherlands)

    Talsma, D.; Kok, Albert

    2001-01-01

    The present study focuses on the question of whether inter- and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while subjects were presented a random sequence of visual and auditory stimuli. They were instructed to attend to

  13. Short- and long-term modulation of synaptic inputs to brain reward areas by nicotine

    NARCIS (Netherlands)

    Fagen, Z.M.; Mansvelder, H.D.; Keath, R.; McGehee, D.S.

    2003-01-01

    Dopamine signaling in brain reward areas is a key element in the development of drug abuse and dependence. Recent anatomical and electrophysiological research has begun to elucidate both complexity and specificity In synaptic connections between ventral tegmental neurons and their inputs.

  14. The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies.

    Science.gov (United States)

    Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack

    2004-01-01

    Imaging studies have provided evidence of how the human brain changes as an individual becomes addicted. Here, we integrate the findings from imaging studies to propose a model of drug addiction. The process of addiction is initiated in part by the fast and high increases in DA induced by drugs of abuse. We hypothesize that this supraphysiological effect of drugs trigger a series of adaptations in neuronal circuits involved in saliency/reward, motivation/drive, memory/conditioning, and control/disinhibition, resulting in an enhanced (and long lasting) saliency value for the drug and its associated cues at the expense of decreased sensitivity for salient events of everyday life (including natural reinforcers). Although acute drug intake increases DA neurotransmission, chronic drug consumption results in a marked decrease in DA activity, associated with, among others, dysregulation of the orbitofrontal cortex (region involved with salience attribution) and cingulate gyrus (region involved with inhibitory control). The ensuing increase in motivational drive for the drug, strengthened by conditioned responses and the decrease in inhibitory control favors emergence of compulsive drug taking. This view of how drugs of abuse affect the brain suggests strategies for intervention, which might include: (a) those that will decrease the reward value of the drug of choice; (b) interventions to increase the saliency value of non-drug reinforcers; (c) approaches to weaken conditioned drug behaviors; and (d) methods to strengthen frontal inhibitory and executive control. Though this model focuses mostly on findings from PET studies of the brain DA system it is evident that other neurotransmitters are involved and that a better understanding of their roles in addiction would expand the options for therapeutic targets.

  15. Brain-to-brain hyperclassification reveals action-specific motor mapping of observed actions in humans.

    Science.gov (United States)

    Smirnov, Dmitry; Lachat, Fanny; Peltola, Tomi; Lahnakoski, Juha M; Koistinen, Olli-Pekka; Glerean, Enrico; Vehtari, Aki; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2017-01-01

    Seeing an action may activate the corresponding action motor code in the observer. It remains unresolved whether seeing and performing an action activates similar action-specific motor codes in the observer and the actor. We used novel hyperclassification approach to reveal shared brain activation signatures of action execution and observation in interacting human subjects. In the first experiment, two "actors" performed four types of hand actions while their haemodynamic brain activations were measured with 3-T functional magnetic resonance imaging (fMRI). The actions were videotaped and shown to 15 "observers" during a second fMRI experiment. Eleven observers saw the videos of one actor, and the remaining four observers saw the videos of the other actor. In a control fMRI experiment, one of the actors performed actions with closed eyes, and five new observers viewed these actions. Bayesian canonical correlation analysis was applied to functionally realign observers' and actors' fMRI data. Hyperclassification of the seen actions was performed with Bayesian logistic regression trained on actors' data and tested with observers' data. Without the functional realignment, between-subjects accuracy was at chance level. With the realignment, the accuracy increased on average by 15 percentage points, exceeding both the chance level and the accuracy without functional realignment. The highest accuracies were observed in occipital, parietal and premotor cortices. Hyperclassification exceeded chance level also when the actor did not see her own actions. We conclude that the functional brain activation signatures underlying action execution and observation are partly shared, yet these activation signatures may be anatomically misaligned across individuals.

  16. The power of love on the human brain.

    Science.gov (United States)

    Bianchi-Demicheli, Francesco; Grafton, Scott T; Ortigue, Stephanie

    2006-01-01

    Romantic love has been the source for some of the greatest achievements of mankind throughout the ages. The recent localization of romantic love within subcortico-cortical reward, motivation and emotion systems in the human brain has suggested that love is a goal-directed drive with predictable facilitation effects on cognitive behavior, rather than a pure emotion. Here we show that the subliminal exposure of a beloved's name (romantic prime) during a lexical decision task dramatically improves performance in women in love (Experiment 1), as the subliminal presentation of a passion's descriptive noun does (Experiment 2). The parallel between love and passion allows us to interpret these facilitation effects as corresponding to cognitive top-down processes within a motivation-enhanced neural network.

  17. Adrenergic receptors in frontal cortex in human brain.

    Science.gov (United States)

    Cash, R; Raisman, R; Ruberg, M; Agid, Y

    1985-02-05

    The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.

  18. Exclusive neuronal expression of SUCLA2 in the human brain

    DEFF Research Database (Denmark)

    Dobolyi, Arpád; Ostergaard, Elsebet; Bagó, Attila G

    2015-01-01

    associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here, we show that immunoreactivity of A-SUCL-β in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling...... was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming β subunit (G......-SUCL-β) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL-β immunoreactivity that was, however, not upregulated in samples obtained from diabetic versus non...

  19. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals.

    NARCIS (Netherlands)

    Lansink, C.S.; Bakker, M.; Buster, W.; Lankelma, J.; van der Blom, R.; Westdorp, R.; Joosten, R.N.J.M.A.; Mc.Naughton, B.L.; Pennartz, C.M.A.

    2007-01-01

    Complex cognitive operations such as memory formation and decision-making are thought to be mediated not by single, isolated brain structures but by multiple, connected brain areas. To facilitate studies on the neural communication between connected brain structures, we developed a multi-electrode

  20. A collaborative brain-computer interface for improving human performance.

    Directory of Open Access Journals (Sweden)

    Yijun Wang

    Full Text Available Electroencephalogram (EEG based brain-computer interfaces (BCI have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1 Event-related potentials (ERP averaging, (2 Feature concatenating, and (3 Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100-250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC, which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior.

  1. Low-grade astrocytoma: surgical outcomes in eloquent versus non-eloquent brain areas

    Directory of Open Access Journals (Sweden)

    André de Macedo Bianco

    2013-01-01

    Full Text Available A retrospective study of 81 patients with low-grade astrocytoma (LGA comparing the efficacy of aggressive versus less aggressive surgery in eloquent and non-eloquent brain areas was conducted. Extent of surgical resection was analyzed to assess overall survival (OS and progression- free survival (PFS. Degree of tumor resection was classified as gross total resection (GTR, subtotal resection (STR or biopsy. GTR, STR and biopsy in patients with tumors in non-eloquent areas were performed in 31, 48 and 21% subjects, whereas in patients with tumors in eloquent areas resections were 22.5, 35 and 42.5%. Overall survival was 4.7 and 1.9 years in patients with tumors in non-eloquent brain areas submitted to GTR/STR and biopsy (p=0.013, whereas overall survival among patients with tumors in eloquent area was 4.5 and 2.1 years (p=0.33. Improved outcome for adult patients with LGA is predicted by more aggressive surgery in both eloquent and non-eloquent brain areas.

  2. Eloquent area in the gamma knife treatment of arteriovenous malformations of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuya; Kida, Yoshihisa; Tanaka, Takayuki; Yoshida, Kazuo; Mori, Yoshimasa; Ohsuga, Koji; Hasegawa, Toshinori; Kondo, Toshiki [Komaki City Hospital, Aichi (Japan)

    1999-06-01

    It has been long since cerebral arteriovenous malformation (AVM) could be cured by gamma radiosurgery. In this study, it has been found that the complete obliteration of AVM by radiosurgery is depended on the factors such as the size of the nidus, the marginal dose, the location and the age of patients. It is also true that higher the marginal dose, higher the obliteration rate and also higher the risk of radiation injury. Therefore the marginal dose has to be limited by the radiosensitivity (tolerance) of surrounding brain, which means the obliteration rate is largely depended on the location of AVM. The definition of the eloquent area of AVM by microsurgery is based upon the anatomical and functional importance of the brain. However, the eloquency in radiosurgery is different in that it depends upon radiosensitivity of the surrounding brain around AVM. From this definition, the most eloquent area by radiosurgery is brain around the optic pathway, followed by cochlear nerve, other cranial nerves, brain stem and basal ganglia-thalamus. (author)

  3. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    International Nuclear Information System (INIS)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona; Husain, Nuzhat; Srivastava, Savita; Rathore, Ram K.S.; Sarma, Manoj K.; Malik, Gyanendra K.; Das, Vinita; Pradhan, Mandakini; Pandey, Chandra M.; Narayana, Ponnada A.

    2009-01-01

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  4. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  5. Sex-related variation in human behavior and the brain

    Science.gov (United States)

    Hines, Melissa

    2010-01-01

    Male and female fetuses differ in testosterone concentrations beginning as early as week 8 of gestation. This early hormone difference exerts permanent influences on brain development and behavior. Contemporary research shows that hormones are particularly important for the development of sex-typical childhood behavior, including toy choices, which until recently were thought to result solely from sociocultural influences. Prenatal testosterone exposure also appears to influence sexual orientation and gender identity, as well as some, but not all, sex-related cognitive, motor and personality characteristics. Neural mechanisms responsible for these hormone-induced behavioral outcomes are beginning to be identified, and current evidence suggests involvement of the hypothalamus and amygdala, as well as interhemispheric connectivity, and cortical areas involved in visual processing. PMID:20724210

  6. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B

    1999-01-01

    CBF) SPECT-scanning using 99mTc-HMPAO as flow tracer was performed in the patients. Mean water content (SD) in the infarct area was 37.7 (5.1); 41.8 (4.8); 35.2 (5.4); and 39.3 (5.1) mol x [kg wet weight](-1) at 0-3; 4-7; 8-21; and >180 days after stroke, respectively. Water content increased between Day 0......CBF from Day 0-3 to Day 4-7 (p = 0.050) and from Day 0-3 to Day 8-21 (p = 0.028). No correlation between rCBF and water content was found. Water content in ischemic brain tissue increased significantly between Day 4-7 after stroke. This should be considered when performing quantitative 1H-MRS using water...... as an internal standard in stroke patients....

  7. Human area MT+ shows load-dependent activation during working memory maintenance with continuously morphing stimulation.

    Science.gov (United States)

    Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred

    2014-07-11

    Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.

  8. Detection of Normal Aging Effects on Human Brain Metabolite Concentrations and Microstructure with Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging.

    Science.gov (United States)

    Eylers, V V; Maudsley, A A; Bronzlik, P; Dellani, P R; Lanfermann, H; Ding, X-Q

    2016-03-01

    Knowledge of age-related physiological changes in the human brain is a prerequisite to identify neurodegenerative diseases. Therefore, in this study whole-brain (1)H-MRS was used in combination with quantitative MR imaging to study the effects of normal aging on healthy human brain metabolites and microstructure. Sixty healthy volunteers, 21-70 years of age, were studied. Brain maps of the metabolites NAA, creatine and phosphocreatine, and Cho and the tissue irreversible and reversible transverse relaxation times T2 and T2' were derived from the datasets. The relative metabolite concentrations and the values of relaxation times were measured with ROIs placed within the frontal and parietal WM, centrum semiovale, splenium of the corpus callosum, hand motor area, occipital GM, putamen, thalamus, pons ventral/dorsal, and cerebellar white matter and posterior lobe. Linear regression analysis and Pearson correlation tests were used to analyze the data. Aging resulted in decreased NAA concentrations in the occipital GM, putamen, splenium of the corpus callosum, and pons ventral and decreased creatine and phosphocreatine concentrations in the pons dorsal and putamen. Cho concentrations did not change significantly in selected brain regions. T2 increased in the cerebellar white matter and decreased in the splenium of the corpus callosum with aging, while the T2' decreased in the occipital GM, hand motor area, and putamen, and increased in the splenium of the corpus callosum. Correlations were found between NAA concentrations and T2' in the occipital GM and putamen and between creatine and phosphocreatine concentrations and T2' in the putamen. The effects of normal aging on brain metabolites and microstructure are region-dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients. © 2016 by American Journal of Neuroradiology.

  9. Steady-state cerebral glucose concentrations and transport in the human brain

    OpenAIRE

    Gruetter, R.; Ugurbil, K.; Seaquist, E. R.

    1998-01-01

    Understanding the mechanism of brain glucose transport across the blood- brain barrier is of importance to understanding brain energy metabolism. The specific kinetics of glucose transport nave been generally described using standard Michaelis-Menten kinetics. These models predict that the steady- state glucose concentration approaches an upper limit in the human brain when the plasma glucose level is well above the Michaelis-Menten constant for half-maximal transport, K(t). In experiments wh...

  10. Functional MR imaging of working memory in the human brain

    International Nuclear Information System (INIS)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung; Choi, Dae Seob

    2000-01-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory

  11. Functional MR imaging of working memory in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choi, Dae Seob [Dongguk University College of Medicine, Seoul (Korea, Republic of)

    2000-03-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory.

  12. Variable ATP yields and uncoupling of oxygen consumption in human brain

    DEFF Research Database (Denmark)

    Gjedde, Albert; Aanerud, Joel; Peterson, Ericka

    2011-01-01

    normalized the metabolic rate to the population average of that region. Coefficients of variation ranged from 10 to 15% in the different regions of the human brain and the normalized regional metabolic rates ranged from 70% to 140% of the population average for each region, equal to a two-fold variation......The distribution of brain oxidative metabolism values among healthy humans is astoundingly wide for a measure that reflects normal brain function and is known to change very little with most changes of brain function. It is possible that the part of the oxygen consumption rate that is coupled...... to ATP turnover is the same in all healthy human brains, with different degrees of uncoupling explaining the variability of total oxygen consumption among people. To test the hypothesis that about 75% of the average total oxygen consumption of human brains is common to all individuals, we determined...

  13. Automatic extraction analysis of the anatomical functional area for normal brain 18F-FDG PET imaging

    International Nuclear Information System (INIS)

    Guo Wanhua; Jiang Xufeng; Zhang Liying; Lu Zhongwei; Li Peiyong; Zhu Chengmo; Zhang Jiange; Pan Jiapu

    2003-01-01

    Using self-designed automatic extraction software of brain functional area, the grey scale distribution of 18 F-FDG imaging and the relationship between the 18 F-FDG accumulation of brain anatomic function area and the 18 F-FDG injected dose, the level of glucose, the age, etc., were studied. According to the Talairach coordinate system, after rotation, drift and plastic deformation, the 18 F-FDG PET imaging was registered into the Talairach coordinate atlas, and then the average gray value scale ratios between individual brain anatomic functional area and whole brain area was calculated. Further more the statistics of the relationship between the 18 F-FDG accumulation of every brain anatomic function area and the 18 F-FDG injected dose, the level of glucose and the age were tested by using multiple stepwise regression model. After images' registration, smoothing and extraction, main cerebral cortex of the 18 F-FDG PET brain imaging can be successfully localized and extracted, such as frontal lobe, parietal lobe, occipital lobe, temporal lobe, cerebellum, brain ventricle, thalamus and hippocampus. The average ratios to the inner reference of every brain anatomic functional area were 1.01 ± 0.15. By multiple stepwise regression with the exception of thalamus and hippocampus, the grey scale of all the brain functional area was negatively correlated to the ages, but with no correlation to blood sugar and dose in all areas. To the 18 F-FDG PET imaging, the brain functional area extraction program could automatically delineate most of the cerebral cortical area, and also successfully reflect the brain blood and metabolic study, but extraction of the more detailed area needs further investigation

  14. Tactile interactions activate mirror system regions in the human brain.

    Science.gov (United States)

    McKyton, Ayelet

    2011-12-07

    Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.

  15. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    2014-05-01

    Full Text Available Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.

  16. Evidence of native α-synuclein conformers in the human brain.

    Science.gov (United States)

    Gould, Neal; Mor, Danielle E; Lightfoot, Richard; Malkus, Kristen; Giasson, Benoit; Ischiropoulos, Harry

    2014-03-14

    α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.

  17. Somatotopic Arrangement and Location of the Corticospinal Tract in the Brainstem of the Human Brain

    OpenAIRE

    Jang, Sung Ho

    2011-01-01

    The corticospinal tract (CST) is the most important motor pathway in the human brain. Detailed knowledge of CST somatotopy is important in terms of rehabilitative management and invasive procedures for patients with brain injuries. In this study, I conducted a review of nine previous studies of the somatotopical location and arrangement at the brainstem in the human brain. The results of this review indicated that the hand and leg somatotopies of the CST are arranged medio-laterally in the mi...

  18. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    Science.gov (United States)

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  19. Noninvasive quantification of human brain antioxidant concentrations after an intravenous bolus of vitamin C

    Science.gov (United States)

    Background: Until now, antioxidant based initiatives for preventing dementia have lacked a means to detect deficiency or measure pharmacologic effect in the human brain in situ. Objective: Our objective was to apply a novel method to measure key human brain antioxidant concentrations throughout the ...

  20. The human sexual response cycle : Brain imaging evidence linking sex to other pleasures

    NARCIS (Netherlands)

    Georgiadis, J. R.; Kringelbach, M. L.

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable

  1. The future of neuroepigenetics in the human brain.

    Science.gov (United States)

    Mitchell, Amanda; Roussos, Panos; Peter, Cyril; Tsankova, Nadejda; Akbarian, Schahram

    2014-01-01

    Complex mechanisms shape the genome of brain cells into transcriptional units, clusters of condensed chromatin, and many other features that distinguish between various cell types and developmental stages sharing the same genetic material. Only a few years ago, the field's focus was almost entirely on a single mark, CpG methylation; the emerging complexity of neuronal and glial epigenomes now includes multiple types of DNA cytosine methylation, more than 100 residue-specific posttranslational histone modifications and histone variants, all of which superimposed by a dynamic and highly regulated three-dimensional organization of the chromosomal material inside the cell nucleus. Here, we provide an update on the most innovative approaches in neuroepigenetics and their potential contributions to approach cognitive functions and disorders unique to human. We propose that comprehensive, cell type-specific mappings of DNA and histone modifications, chromatin-associated RNAs, and chromosomal "loopings" and other determinants of three-dimensional genome organization will critically advance insight into the pathophysiology of the disease. For example, superimposing the epigenetic landscapes of neuronal and glial genomes onto genetic maps for complex disorders, ranging from Alzheimer's disease to schizophrenia, could provide important clues about neurological function for some of the risk-associated noncoding sequences in the human genome.

  2. Morphometry of medial gaps of human brain artery branches.

    Science.gov (United States)

    Canham, Peter B; Finlay, Helen M

    2004-05-01

    The bifurcation regions of the major human cerebral arteries are vulnerable to the formation of saccular aneurysms. A consistent feature of these bifurcations is a discontinuity of the tunica media at the apex of the flow divider. The objective was to measure the 3-dimensional geometry of these medial gaps or "medial defects." Nineteen bifurcations and 2 junctions of human cerebral arteries branches (from 4 male and 2 female subjects) were formalin-fixed at physiological pressure and processed for longitudinal serial sectioning. The apex and adjacent regions were examined and measurements were made from high-magnification photomicrographs, or projection microscope images, of the gap dimensions at multiple levels through the bifurcation. Plots were made of the width of the media as a function of distance from the apex. The media at each edge of the medial gap widened over a short distance, reaching the full width of the media of the contiguous daughter vessel. Medial gap dimensions were compared with the planar angle of the bifurcation, and a strong negative correlation was found, ie, the acute angled branches have the more prominent medial gaps. A discontinuity of the media at the apex was seen in all the bifurcations examined and was also found in the junction regions of brain arteries. We determined that the gap width is continuous with well-defined dimensions throughout its length and average length-to-width ratio of 6.9. The gaps were generally centered on the prominence of the apical ridge.

  3. Evidence for Functional Networks within the Human Brain's White Matter.

    Science.gov (United States)

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    brain. However, most fMRI studies ignored a major part of the brain, the white-matter, discarding signals from it as arising from noise. Here we use resting-state fMRI data from 176 subjects to show that signals from the human white-matter contain meaningful information. We identify 12 functional networks composed of interacting long-distance white-matter tracts. Moreover, we show that these networks are highly correlated to resting-state gray-matter networks, highlighting their functional role. Our findings enable reinterpretation of many existing fMRI datasets, and suggest a new way to explore the white-matter role in cognition and its disturbances in neuropsychiatric disorders. Copyright © 2017 the authors 0270-6474/17/376394-14$15.00/0.

  4. Multimodal communication in animals, humans and robots: an introduction to perspectives in brain-inspired informatics.

    Science.gov (United States)

    Wermter, S; Page, M; Knowles, M; Gallese, V; Pulvermüller, F; Taylor, J

    2009-03-01

    Recent years have seen convergence in research on brain mechanisms and neurocomputational approaches, culminating in the creation of a new generation of robots whose artificial "brains" respect neuroscience principles and whose "cognitive" systems venture into higher cognitive domains such as planning and action sequencing, complex object and concept processing, and language. The present article gives an overview of selected projects in this general multidisciplinary field. The work reviewed centres on research funded by the EU in the context of the New and Emergent Science and Technology, NEST, funding scheme highlighting the topic "What it means to be human". Examples of such projects include learning by imitation (Edici project), examining the origin of human rule-based reasoning (Far), studying the neural origins of language (Neurocom), exploring the evolutionary origins of the human mind (Pkb140404), researching into verbal and non-verbal communication (Refcom), using and interpreting signs (Sedsu), characterising human language by structural complexity (Chlasc), and representing abstract concepts (Abstract). Each of the communication-centred research projects revealed individual insights; however, there had been little overall analysis of results and hypotheses. In the Specific Support Action Nestcom, we proposed to analyse some NEST projects focusing on the central question "What it means to communicate" and to review, understand and integrate the results of previous communication-related research, in order to develop and communicate multimodal experimental hypotheses for investigation by future projects. The present special issue includes a range of papers on the interplay between neuroinformatics, brain science and robotics in the general area of higher cognitive functions and multimodal communication. These papers extend talks given at the NESTCOM workshops, at ICANN (http://www.his.sunderland.ac.uk/nestcom/workshop/icann.html) in Porto and at the first

  5. Temperament, character and serotonin activity in the human brain

    DEFF Research Database (Denmark)

    Tuominen, L; Salo, J; Hirvonen, J

    2013-01-01

    The psychobiological model of personality by Cloninger and colleagues originally hypothesized that interindividual variability in the temperament dimension 'harm avoidance' (HA) is explained by differences in the activity of the brain serotonin system. We assessed brain serotonin transporter (5-HTT...

  6. Brain pattern of histone H3 phosphorylation after acute amphetamine administration: its relationship to brain c-fos induction is strongly dependent on the particular brain area.

    Science.gov (United States)

    Rotllant, David; Armario, Antonio

    2012-02-01

    Recent evidence strongly suggests a critical role of chromatin remodelling in the acute and chronic effects of addictive drugs. We reasoned that Immunohistochemical detection of certain histone modifications may be a more specific tool than induction of immediate early genes (i.e. c-fos) to detect brain areas and neurons that are critical for the action of addictive drugs. Thus, in the present work we studied in adult male rats the effects of a high dose of amphetamine on brain pattern of histone H3 phosphorylation in serine 10 (pH3S(10)) and c-fos expression. We firstly observed that amphetamine-induced an increase in the number of pH3S(10) positive neurons in a restricted number of brain areas, with maximum levels at 30 min after the drug administration that declined at 90 min in most areas. In a second experiment we studied colocalization of pH3S(10) immunoreactivity (pH3S(10)-IR) and c-fos expression. Amphetamine increased c-fos expression in medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens (Acb), major Island of Calleja (ICjM), central amygdala (CeA), bed nucleus of stria terminalis lateral dorsal (BSTld) and paraventricular nucleus of the hypothalamus (PVN). Whereas no evidence for increase in pH3S(10) positive neurons was found in the mPFC and the PVN, in the striatum and the Acb basically all pH3S(10) positive neurons showed colocalization with c-fos. In ICjM, CeA and BSTld a notable degree of colocalization was found, but an important number of neurons expressing c-fos were negative for pH3S(10). The present results give support to the hypothesis that amphetamine-induced pH3S(10)-IR showed a more restricted pattern than brain c-fos induction, being this difference strongly dependent on the particular brain area studied. It is likely that those nuclei and neurons showing pH3S(10)-IR are more specifically associated to important effects of the drug, including neural plasticity. This article is part of a Special Issue entitled 'Post

  7. On the calculation of brain area shifts due to cerebral tumors

    International Nuclear Information System (INIS)

    Labudde, D.; Hartmann, S.; Synowitz, M.

    2002-01-01

    A precise knowledge of the localization of an intracerebral mass is a basic requirement for the planning of neurosurgical operations. Stereotactic atlases offer the possibility to adapt pre-operative imaging data onto normal anatomical conditions in the CNS. These atlases, however, reflect the standard variants of the CNS and do not allow to draw conclusions on local and secondary changes of the anatomy caused by the presence of pathological processes. The physical model proposed in this paper provides an estimate of the displacement of brain areas by an intracerebral mass. The modeling of brain parenchyma deformation is based on the mechanics of deformed media. The implementation of the model is successful in the group of primary brain tumors and meningiomas, and uses empirically-obtained data of a prospectively-selected patient population. The aim of the proposed model is, as further step, the integration and adaptation in apposite software solutions for the stereotactic orientation in the CNS. (orig.) [de

  8. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  9. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon [Dongguk University Medical Center, Goyang (Korea, Republic of); Seo, Hyung Suk [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2009-07-15

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p < 0.01). The CC area and brain volume in AD patients (498.7 +- 72 mm{sup 2}, 715.4 +- 107 cm3) were significantly smaller than in MCI patients (595.9 +- 108, 844.1 +- 85) and the HCs (563.2 +- 75, 818.9 +- 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  10. Segmentation of the Cingulum Bundle in the Human Brain: A New Perspective Based on DSI Tractography and Fiber Dissection Study.

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao; Ou, Shaowu

    2016-01-01

    The cingulum bundle (CB) is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT) technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488). Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum (CC). CB-II arched around the splenium and extended anteriorly above the CC to the medial aspect of the superior frontal gyrus (SFG). CB-III connected the superior parietal lobule (SPL) and precuneus with the medial aspect of the SFG. CB-IV was a relatively minor subcomponent from the SPL and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  11. Segmentation of the cingulum bundle in the human brain: a new perspective based on DSI tractography and fiber dissection study

    Directory of Open Access Journals (Sweden)

    Yupeng Wu

    2016-09-01

    Full Text Available The cingulum bundle (CB is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe, and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488. Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum. CB-II arched around the splenium and extended anteriorly above the corpus callosum to the medial aspect of the superior frontal gyrus. CB-III connected the superior parietal lobule and precuneus with the medial aspect of the superior frontal gyrus. CB-IV was a relatively minor subcomponent from the superior parietal lobule and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  12. The Brain Functional Networks Associated to Human and Animal Suffering Differ among Omnivores, Vegetarians and Vegans

    Science.gov (United States)

    Filippi, Massimo; Riccitelli, Gianna; Falini, Andrea; Di Salle, Francesco; Vuilleumier, Patrik; Comi, Giancarlo; Rocca, Maria A.

    2010-01-01

    Empathy and affective appraisals for conspecifics are among the hallmarks of social interaction. Using functional MRI, we hypothesized that vegetarians and vegans, who made their feeding choice for ethical reasons, might show brain responses to conditions of suffering involving humans or animals different from omnivores. We recruited 20 omnivore subjects, 19 vegetarians, and 21 vegans. The groups were matched for sex and age. Brain activation was investigated using fMRI and an event-related design during observation of negative affective pictures of human beings and animals (showing mutilations, murdered people, human/animal threat, tortures, wounds, etc.). Participants saw negative-valence scenes related to humans and animals, alternating with natural landscapes. During human negative valence scenes, compared with omnivores, vegetarians and vegans had an increased recruitment of the anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG). More critically, during animal negative valence scenes, they had decreased amygdala activation and increased activation of the lingual gyri, the left cuneus, the posterior cingulate cortex and several areas mainly located in the frontal lobes, including the ACC, the IFG and the middle frontal gyrus. Nonetheless, also substantial differences between vegetarians and vegans have been found responding to negative scenes. Vegetarians showed a selective recruitment of the right inferior parietal lobule during human negative scenes, and a prevailing activation of the ACC during animal negative scenes. Conversely, during animal negative scenes an increased activation of the inferior prefrontal cortex was observed in vegans. These results suggest that empathy toward non conspecifics has different neural representation among individuals with different feeding habits, perhaps reflecting different motivational factors and beliefs. PMID:20520767

  13. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions.

    Science.gov (United States)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From this solid basis, connectivity studies of the human sexual response have begun to add a deeper understanding of the brain network function and structure involved. The study of "sexual" brain connectivity is still very young. Yet, by approaching the brain as a connected organ, the essence of brain function is captured much more accurately, increasing the likelihood of finding useful biomarkers and targets for intervention in sexual dysfunction.

  14. Dynamic reconfiguration of human brain functional networks through neurofeedback.

    Science.gov (United States)

    Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

    2013-11-01

    Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. AC Electric Field Communication for Human-Area Networking

    Science.gov (United States)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  16. Impacts of human recreation on carnivores in protected areas.

    Science.gov (United States)

    Baker, Angela Darnell; Leberg, Paul L

    2018-01-01

    Mammalian carnivores can be particularly sensitive to human disturbance, even within protected areas (PAs). Our objective was to understand how human disturbance affects carnivore communities in southern Arizona, USA by studying habitat occupancy based on data collected using non-invasive methods in three PAs with different levels of human disturbance. Carnivore occupancy varied based on human disturbance variables (i.e., roads, trails, etc.). Common carnivore species (coyotes, gray foxes, and bobcats) had high occupancy probability in highly disturbed sites, while all other carnivore species had a higher probability of occupancy in low disturbance protected areas. Additionally, overall carnivore diversity was higher in PAs with low human disturbance. Edges of PAs appeared to negatively impact occupancy of nearly all carnivore species. We also found the presence of roads and trails, and not necessarily how much they are used, had a significant negative impact on the occupancy of most carnivore species. Furthermore, the overall level of disturbance within a PA influenced how sensitive carnivores were to human disturbance variables. Carnivores were more sensitive in PAs with higher levels of disturbance and were relatively unaffected by disturbance variables in a PA with low base levels of disturbance. Increased visitation to PAs, expected with the region's high level of population growth, is likely to cause shifts in the carnivore communities favoring species that are less sensitive to disturbance.

  17. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species

    Science.gov (United States)

    Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.

    2013-01-01

    Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307

  18. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  19. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development

    DEFF Research Database (Denmark)

    Møllgård, Kjeld; Dziegielewska, Katarzyna M.; Holst, Camilla B.

    2017-01-01

    Adult brain is protected from entry of drugs and toxins by specific mechanisms such as ABC (ATP-binding Cassette) efflux transporters. Little is known when these appear in human brain during development. Cellular distribution of three main ABC transporters (ABCC1, ABCG2, ABCB1) was determined...... at blood-brain barriers and interfaces in human embryos and fetuses in first half of gestation. Antibodies against claudin-5 and-11 and antibodies to α-fetoprotein were used to describe morphological and functional aspects of brain barriers. First exchange interfaces to be established, probably at 4...... three transporters. Results provide evidence for sequential establishment of brain exchange interfaces and spatial and temporal timetable for three main ABC transporters in early human brain....

  20. Human brain mass: similar body composition associations as observed across mammals.

    Science.gov (United States)

    Heymsfield, Steven B; Müller, Manfred J; Bosy-Westphal, Anja; Thomas, Diana; Shen, Wei

    2012-01-01

    A classic association is the link between brain mass and body mass across mammals that has now been shown to derive from fat-free mass (FFM) and not fat mass (FM). This study aimed to establish for the first time the associations between human brain mass and body composition and to compare these relations with those established for liver as a reference organ. Subjects were 112 men and 148 women who had brain and liver mass measured by magnetic resonance imaging with FM and FFM measured by dual-energy X-ray absorptiometry. Brain mass scaled to height (H) with powers of ≤0.6 in men and women; liver mass and FFM both scaled similarly as H(~2) . The fraction of FFM as brain thus scaled inversely to height (P FFM was independent of height. After controlling for age, brain, and liver mass were associated with FFM while liver was additionally associated with FM (all models P ≤ 0.01). After controlling for age and sex, FFM accounted for ~5% of the variance in brain mass while levels were substantially higher for liver mass (~60%). Brain mass was significantly larger (P FFM. As across mammals, human brain mass associates significantly, although weakly, with FFM and not FM; the fraction of FFM as brain relates inversely to height; brain differs in these relations from liver, another small high metabolic rate organ; and the sexual dimorphism in brain mass persists even after adjusting for age and FFM. Copyright © 2012 Wiley Periodicals, Inc.

  1. Molecular mechanisms of aluminium ions neurotoxicity in brain cells of fish from various pelagic areas

    Directory of Open Access Journals (Sweden)

    E. V. Sukharenko

    2017-07-01

    Full Text Available Neurotoxic effects of aluminum chloride in higher than usual environment concentration (10 mg/L were studied in brains of fishes from various pelagic areas, especially in sunfish (Lepomis macrochirus Rafinesque, 1819, roach (Rutilus rutilus Linnaeus, 1758, crucian carp (Carasius carasius Linnaeus, 1758, goby (Neogobius fluviatilis Pallas, 1811. The intensity of oxidative stress and the content of both cytoskeleton protein GFAP and cytosol Ca-binding protein S100β were determined. The differences in oxidative stress data were observed in the liver and brain of fish during 45 days of treatment with aluminum chloride. The data indicated that in the modeling of aluminum intoxication in mature adult fishes the level of oxidative stress was noticeably higher in the brain than in the liver. This index was lower by1.5–2.0 times on average in the liver cells than in the brain. The obtained data evidently demonstrate high sensitivity to aluminum ions in neural tissue cells of fish from various pelagic areas. Chronic intoxication with aluminum ions induced intense astrogliosis in the fish brain. Astrogliosis was determined as result of overexpression of both cytoskeleton and cytosole markers of astrocytes – GFAP and protein S100β (on 75–112% and 67–105% accordingly. Moreover, it was shown that the neurotixic effect of aluminum ions is closely related to metabolism of astroglial intermediate filaments. The results of western blotting showed a considerable increase in the content of the lysis protein products of GFAP with a range of molecular weight from 40–49 kDa. A similar metabolic disturbance was determined for the upregulation protein S100β expression and particularly in the increase in the content of polypeptide fragments of this protein with molecular weight 24–37 kDa. Thus, the obtained results allow one to presume that aluminum ions activate in the fish brain intracellular proteases which have a capacity to destroy the proteins of

  2. Brain stimulation used as biofeedback in neuronal activation of the temporal lobe area in autistic children

    Directory of Open Access Journals (Sweden)

    Vernon Furtado da Silva

    2016-08-01

    Full Text Available ABSTRACT This study focused upon the functional capacity of mirror neurons in autistic children. 30 individuals, 10 carriers of the autistic syndrome (GCA, 10 with intellectual impairments (GDI, and 10 non-autistics (GCN had registered eletroencephalogram from the brain area theoretically related to mirror neurons. Data collection procedure occurred prior to brain stimulation and after the stimulation session. During the second session, participants had to alternately process figures evoking neutral, happy, and/or sorrowful feelings. Results proved that, for all groups, the stimulation process in fact produced additional activation in the neural area under study. The level of activation was related to the format of emotional stimuli and the likelihood of boosting such stimuli. Since the increase of activation occurred in a model similar to the one observed for the control group, we may suggest that the difficulty people with autism have at expressing emotions is not due to nonexistence of mirror neurons.

  3. Brain stimulation used as biofeedback in neuronal activation of the temporal lobe area in autistic children.

    Science.gov (United States)

    Silva, Vernon Furtado da; Calomeni, Mauricio Rocha; Nunes, Rodolfo Alkmim Moreira; Pimentel, Carlos Elias; Martins, Gabriela Paes; Oliveira, Patrícia da Cruz Araruna; Silva, Patrícia Bagno; Silva, Alair Pedro Ribeiro de Souza E

    2016-08-01

    This study focused upon the functional capacity of mirror neurons in autistic children. 30 individuals, 10 carriers of the autistic syndrome (GCA), 10 with intellectual impairments (GDI), and 10 non-autistics (GCN) had registered eletroencephalogram from the brain area theoretically related to mirror neurons. Data collection procedure occurred prior to brain stimulation and after the stimulation session. During the second session, participants had to alternately process figures evoking neutral, happy, and/or sorrowful feelings. Results proved that, for all groups, the stimulation process in fact produced additional activation in the neural area under study. The level of activation was related to the format of emotional stimuli and the likelihood of boosting such stimuli. Since the increase of activation occurred in a model similar to the one observed for the control group, we may suggest that the difficulty people with autism have at expressing emotions is not due to nonexistence of mirror neurons.

  4. The effect of spaceflight and microgravity on the human brain.

    Science.gov (United States)

    Van Ombergen, Angelique; Demertzi, Athena; Tomilovskaya, Elena; Jeurissen, Ben; Sijbers, Jan; Kozlovskaya, Inessa B; Parizel, Paul M; Van de Heyning, Paul H; Sunaert, Stefan; Laureys, Steven; Wuyts, Floris L

    2017-10-01

    Microgravity, confinement, isolation, and immobilization are just some of the features astronauts have to cope with during space missions. Consequently, long-duration space travel can have detrimental effects on human physiology. Although research has focused on the cardiovascular and musculoskeletal system in particular, the exact impact of spaceflight on the human central nervous system remains to be determined. Previous studies have reported psychological problems, cephalic fluid shifts, neurovestibular problems, and cognitive alterations, but there is paucity in the knowledge of the underlying neural substrates. Previous space analogue studies and preliminary spaceflight studies have shown an involvement of the cerebellum, cortical sensorimotor, and somatosensory areas and the vestibular pathways. Extending this knowledge is crucial, especially in view of long-duration interplanetary missions (e.g., Mars missions) and space tourism. In addition, the acquired insight could be relevant for vestibular patients, patients with neurodegenerative disorders, as well as the elderly population, coping with multisensory deficit syndromes, immobilization, and inactivity.

  5. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    International Nuclear Information System (INIS)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-01-01

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife

  6. Endocasts-the direct evidence and recent advances in the study of human brain evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Brain evolution is one of the most important aspects of human evolution, usually studied through endocasts. Analysis of fossil hominid endocasts allows inferences on functional anatomy, physiology, and phylogeny. In this paper, we describe the general features of endocast studies and review some of the major topics in paleoneurology. These are: absolute and relative brain size evolution; brain shape variation; brain asymmetry and lateralization; middle meningeal vessels and venous sinuses; application of computed tomography and virtual imaging; the history of Chinese brain endocast studies. In particular, this review emphasizes endocast studies on Chinese hominin fossils.

  7. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System

    DEFF Research Database (Denmark)

    Beliveau, Vincent; Ganz-Benjaminsen, Melanie; Feng, Ling

    2017-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4...... with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human...... brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system...

  8. Intrinsic and task-evoked network architectures of the human brain

    Science.gov (United States)

    Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.

    2014-01-01

    Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964

  9. John Bingham Roberts and the first American monograph on human brain surgery.

    Science.gov (United States)

    Stone, J L

    2001-10-01

    JOHN BINGHAM ROBERTS (1852-1924) of Philadelphia was an active general surgeon in the latter 19th and early 20th centuries. He made pioneering contributions to a number of areas of surgery. From 1880 until the end of his career, he was one of the few American surgeons to advocate an aggressive exploratory approach to cranial fractures in an effort to avoid consequences such as infection, delayed seizures, and insanity. In his 1885 article in the Transactions of the American Surgical Association titled "The Field and Limitation of the Operative Surgery of the Human Brain," he predicted that with antiseptic precautions and the growing knowledge of cerebral localization, operations on the brain would become commonplace. This work predated that of Horsley, Keen, and many others. Roberts had a continuing interest in head injuries, cranial fractures, and the development of trephines and burrs for reconstructive cranial work, but his active enthusiasm for brain surgery diminished in the 1890s. Nevertheless, Roberts was a very prolific teacher and leader in American surgery who is perhaps best remembered for his monographs and textbooks on general, orthopedic, plastic, and reconstructive surgery.

  10. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  11. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  12. Targeting the ecology within: The role of the gut-brain axis and human microbiota in drug addiction.

    Science.gov (United States)

    Skosnik, Patrick D; Cortes-Briones, Jose A

    2016-08-01

    Despite major advances in our understanding of the brain using traditional neuroscience, reliable and efficacious treatments for drug addiction have remained elusive. Hence, the time has come to utilize novel approaches, particularly those drawing upon contemporary advances in fields outside of established neuroscience and psychiatry. Put another way, the time has come for a paradigm shift in the addiction sciences. Apropos, a revolution in the area of human health is underway, which is occurring at the nexus between enteric microbiology and neuroscience. It has become increasingly clear that the human microbiota (the vast ecology of bacteria residing within the human organism), plays an important role in health and disease. This is not surprising, as it has been estimated that bacteria living in the human body (approximately 1kg of mass, roughly equivalent to that of the human brain) outnumber human cells 10 to 1. While advances in the understanding of the role of microbiota in other areas of human health have yielded intriguing results (e.g., Clostridium difficile, irritable bowel syndrome, autism, etc.), to date, no systematic programs of research have examined the role of microbiota in drug addiction. The current hypothesis, therefore, is that gut dysbiosis plays a key role in addictive disorders. In the context of this hypothesis, this paper provides a rationale for future research to target the "gut-brain axis" in addiction. A brief background of the gut-brain axis is provided, along with a series of hypothesis-driven ideas outlining potential treatments for addiction via manipulations of the "ecology within." Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Uni- and Multisensory Brain Areas are Synchronised across Spectators When Watching Unedited Dance Recordings

    Directory of Open Access Journals (Sweden)

    Corinne Jola

    2013-06-01

    Full Text Available The superior temporal sulcus (STS and gyrus (STG are commonly identified to be functionally relevant for multisensory integration of audiovisual (AV stimuli. However, most neuroimaging studies on AV integration used stimuli of short duration in explicit evaluative tasks. Importantly though, many of our AV experiences are of a long duration and ambiguous. It is unclear if the enhanced activity in audio, visual, and AV brain areas would also be synchronised over time across subjects when they are exposed to such multisensory stimuli. We used intersubject correlation to investigate which brain areas are synchronised across novices for uni- and multisensory versions of a 6-min 26-s recording of an unfamiliar, unedited Indian dance recording (Bharatanatyam. In Bharatanatyam, music and dance are choreographed together in a highly intermodal-dependent manner. Activity in the middle and posterior STG was significantly correlated between subjects and showed also significant enhancement for AV integration when the functional magnetic resonance signals were contrasted against each other using a general linear model conjunction analysis. These results extend previous studies by showing an intermediate step of synchronisation for novices: while there was a consensus across subjects' brain activity in areas relevant for unisensory processing and AV integration of related audio and visual stimuli, we found no evidence for synchronisation of higher level cognitive processes, suggesting these were idiosyncratic.

  14. Activated and deactivated functional brain areas in the Deqi state: A functional MRI study.

    Science.gov (United States)

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-10-25

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, thalamus and red nucleus. True needling also deactivated Brodmann areas 1, 2, 3, 4, 5, 6, 7, 9, 10, 18, 24, 31, 40 and 46.

  15. Brain Lactate Metabolism in Humans With Subarachnoid Hemorrhage

    OpenAIRE

    Oddo M; Levine JM; Frangos S; Maloney-Wilensky E; Carrera E; Daniel RT; Levivier M; Magistretti PJ; LeRoux PD

    2012-01-01

    Abstract BACKGROUND AND PURPOSE: Lactate is central for the regulation of brain metabolism and is an alternative substrate to glucose after injury. Brain lactate metabolism in patients with subarachnoid hemorrhage has not been fully elucidated. METHODS: Thirty one subarachnoid hemorrhage patients monitored with cerebral microdialysis (CMD) and brain oxygen (PbtO(2)) were studied. Samples with elevated CMD lactate (>4 mmol/L) were matched to PbtO(2) and CMD pyruvate and categorized as hypoxi...

  16. Sodium MR imaging of human brain neoplasms. A preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Shu; Yoshikawa, Kohki; Takakura, Kintomo; Iio, Masahiro

    1988-08-01

    We reported the experience of the sodium magnetic resonance imaging of 5 patients with brain tumors (4 astrocytomas and 1 craniopharyngioma), using a Siemens 1.5 Tesla superconductive magnet. We used two-dimensional Fourier imaging with a spin-echo scanning sequence (and with the repetition time of 140 msec and the echo time of 11 - 14 msec). The radiofrequency was maintained at 17 MHz. Sodium MR imaging was achieved with a 64 x 64 data acquisition (30 mm slice thickness) in 19.1 min. On the sodium MRI, all four astrocytomas, along with the eye balls and the cerebrospinal fluid spaces, appeared as high-intensity areas. Peritumoral edema is also visualized as highly intense, so that it is difficult to discriminate tumor extent from the surrounding edema. Our comparative studies with malignant glioma cases using the same equipment are needed to clarify the relationship between sodium signal intensities and the malignancy of gliomas, and to evaluate the potential clinical utility of sodium MRI. A craniopharyngioma than contained a yellowish cystic fluid with a sodium concentration as high as CSF was shown on sodium MRI as a mass with highly intense signals. The ability to differentiate extracellular from intracellular sodium, that has been studied by several investigators, would greatly augment the clinical specificity of MR imaging.

  17. Investigating structure and function in the healthy human brain: validity of acute versus chronic lesion-symptom mapping.

    Science.gov (United States)

    Karnath, Hans-Otto; Rennig, Johannes

    2017-07-01

    Modern voxel-based lesion-symptom mapping (VLSM) analyses techniques provide powerful tools to examine the relationship between structure and function of the healthy human brain. However, there is still uncertainty on the type of and the appropriate time point of imaging and of behavioral testing for such analyses. Here we tested the validity of the three most common combinations of structural imaging data and behavioral scores used in VLSM analyses. Given the established knowledge about the neural substrate of the primary motor system in humans, we asked the mundane question of where the motor system is represented in the normal human brain, analyzing individual arm motor function of 60 unselected stroke patients. Only the combination of acute behavioral scores and acute structural imaging precisely identified the principal brain area for the emergence of hemiparesis after stroke, i.e., the corticospinal tract (CST). In contrast, VLSM analyses based on chronic behavior-in combination with either chronic or acute imaging-required the exclusion of patients who had recovered from an initial paresis to reveal valid anatomical results. Thus, if the primary research aim of a VLSM lesion analysis is to uncover the neural substrates of a certain function in the healthy human brain and if no longitudinal designs with repeated evaluations are planned, the combination of acute imaging and behavior represents the ideal dataset.

  18. Altered intraoperative cerebrovascular reactivity in brain areas of high-grade glioma recurrence.

    Science.gov (United States)

    Fierstra, Jorn; van Niftrik, Bas; Piccirelli, Marco; Burkhardt, Jan Karl; Pangalu, Athina; Kocian, Roman; Valavanis, Antonios; Weller, Michael; Regli, Luca; Bozinov, Oliver

    2016-07-01

    Current MRI sequences are limited in identifying brain areas at risk for high grade glioma recurrence. We employed intraoperative 3-Tesla functional MRI to assess cerebrovascular reactivity (CVR) after high-grade glioma resection and analyzed regional CVR responses in areas of tumor recurrence on clinical follow-up imaging. Five subjects with high-grade glioma that underwent an intraoperative Blood Oxygen-Level Dependent (BOLD) MRI CVR examination and had a clinical follow-up of at least 18months were selected from a prospective database. For this study, location of tumor recurrence was spatially matched to the intraoperative imaging to assess CVR response in that particular area. CVR is defined as the percent BOLD signal change during repeated cycles of apnea. Of the 5 subjects (mean age 44, 2 females), 4 were diagnosed with a WHO grade III and 1 subject with a WHO grade IV glioma. Three subjects exhibited a tumor recurrence on clinical follow-up MRI (mean: 15months). BOLD CVR measured in the spatially matched area of tumor recurrence was on average 94% increased (range-32% to 183%) as compared to contralateral hemisphere CVR response, 1.50±0.81 versus 1.03±0.46 respectively (p=0.31). For this first analysis in a small cohort, we found altered intraoperative CVR in brain areas exhibiting high grade glioma recurrence on clinical follow-up imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Brain connectivity reflects human aesthetic responses to music.

    Science.gov (United States)

    Sachs, Matthew E; Ellis, Robert J; Schlaug, Gottfried; Loui, Psyche

    2016-06-01

    Humans uniquely appreciate aesthetics, experiencing pleasurable responses to complex stimuli that confer no clear intrinsic value for survival. However, substantial variability exists in the frequency and specificity of aesthetic responses. While pleasure from aesthetics is attributed to the neural circuitry for reward, what accounts for individual differences in aesthetic reward sensitivity remains unclear. Using a combination of survey data, behavioral and psychophysiological measures and diffusion tensor imaging, we found that white matter connectivity between sensory processing areas in the superior temporal gyrus and emotional and social processing areas in the insula and medial prefrontal cortex explains individual differences in reward sensitivity to music. Our findings provide the first evidence for a neural basis of individual differences in sensory access to the reward system, and suggest that social-emotional communication through the auditory channel may offer an evolutionary basis for music making as an aesthetically rewarding function in humans. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. [Surgical treatment of eloquent brain area tumors using neurophysiological mapping of the speech and motor areas and conduction tracts].

    Science.gov (United States)

    Zuev, A A; Korotchenko, E N; Ivanova, D S; Pedyash, N V; Teplykh, B A

    To evaluate the efficacy of intraoperative neurophysiological mapping in removing eloquent brain area tumors (EBATs). Sixty five EBAT patients underwent surgical treatment using intraoperative neurophysiological mapping at the Pirogov National Medical and Surgical Center in the period from 2014 to 2015. On primary neurological examination, 46 (71%) patients were detected with motor deficits of varying severity. Speech disorders were diagnosed in 17 (26%) patients. Sixteen patients with concomitant or isolated lesions of the speech centers underwent awake surgery using the asleep-awake-asleep protocol. Standard neurophysiological monitoring included transcranial stimulation as well as motor and, if necessary, speech mapping. The motor and speech areas were mapped with allowance for the preoperative planning data (obtained with a navigation station) synchronized with functional MRI. In this case, a broader representation of the motor and speech centers was revealed in 12 (19%) patients. During speech mapping, no speech disorders were detected in 7 patients; in 9 patients, stimulation of the cerebral cortex in the intended surgical area induced motor (3 patients), sensory (4), and amnesic (2) aphasia. In the total group, we identified 11 patients in whom the tumor was located near the internal capsule. Upon mapping of the conduction tracts in the internal capsule area, the stimulus strength during tumor resection was gradually decreased from 10 mA to 5 mA. Tumor resection was stopped when responses retained at a stimulus strength of 5 mA, which, when compared to the navigation data, corresponded to a distance of about 5 mm to the internal capsule. Completeness of tumor resection was evaluated (contrast-enhanced MRI) in all patients on the first postoperative day. According to the control MRI data, the tumor was resected totally in 60% of patients, subtotally in 24% of patients, and partially in 16% of patients. In the early postoperative period, the development or

  1. Multivariate representation of food preferences in the human brain.

    Science.gov (United States)

    Pogoda, Luca; Holzer, Matthias; Mormann, Florian; Weber, Bernd

    2016-12-01

    preference processing in the human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence.

    Science.gov (United States)

    Levitin, Daniel J; Menon, Vinod

    2003-12-01

    The neuroanatomical correlates of musical structure were investigated using functional magnetic neuroimaging (fMRI) and a unique stimulus manipulation involving scrambled music. The experiment compared brain responses while participants listened to classical music and scrambled versions of that same music. Specifically, the scrambled versions disrupted musical structure while holding low-level musical attributes constant, including the psychoacoustic features of the music such as pitch, loudness, and timbre. Comparing music to its scrambled counterpart, we found focal activation in the pars orbitalis region (Brodmann Area 47) of the left inferior frontal cortex, a region that has been previously closely associated with the processing of linguistic structure in spoken and signed language, and its right hemisphere homologue. We speculate that this particular region of inferior frontal cortex may be more generally responsible for processing fine-structured stimuli that evolve over time, not merely those that are linguistic.

  3. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  4. [Influence of mastication on the amount of hemoglobin in human brain tissue].

    Science.gov (United States)

    Sasaki, A

    2001-03-01

    The purpose of this study was to investigate the influence of mastication on the amount of hemoglobin in human brain tissue. Nine healthy volunteers (6 males and 3 females) participated in this study. They underwent two tasks: 1) at rest, 2) gum-chewing. In seven of the nine (4 males and 3 females), experimental occlusal interference was applied to the first molar of the mandibule on the habitual masticatory side. They underwent the gum-chewing task. To evaluate the amount of hemoglobin, both the hemoglobin oxygenation state and blood volume during gum-chewing were measured in the frontal region, using near-infrared spectroscopy. The amount of total-hemoglobin (blood volume) and oxyhemoglobin of subjects significantly increased during gum-chewing (p experimental occlusal interference was imposed on the subject, the amount of them significantly decreased compared with subjects without experimental occlusal interference (p < 0.05). The results suggested that increases of cerebral blood flow in the frontal region were not due to the mandibular movement, and that human brain activity caused by mastication was not only in the cortical masticatory area but also in the frontal region.

  5. Validation of In Vitro Cell-Based Human Blood-Brain Barrier Model Using Clinical Positron Emission Tomography Radioligands To Predict In Vivo Human Brain Penetration

    International Nuclear Information System (INIS)

    Mabondzo, A.; Guyot, A.C.; Bottlaender, M.; Deverre, J.R.; Tsaouin, K.; Balimane, P.V.

    2010-01-01

    We have evaluated a novel in vitro cell-based human blood-brain barrier (BBB) model that could predict in vivo human brain penetration for compounds with different BBB permeabilities using the clinical positron emission tomography (PET) data. Comparison studies were also performed to demonstrate that the in vitro cell-based human BBB model resulted in better predictivity over the traditional permeability model in discovery organizations, Caco-2 cells. We evaluated the in vivo BBB permeability of [ 18 F] and [ 11 C]-compounds in humans by PET imaging. The in vivo plasma-brain exchange parameters used for comparison were determined in humans by PET using a kinetic analysis of the radiotracer binding. For each radiotracer, the parameters were determined by fitting the brain kinetics of the radiotracer using a two-tissue compartment model of the ligand-receptor interaction. Bidirectional transport studies with the same compounds as in in vivo studies were carried out using the in vitro cell-based human BBB model as well as Caco-2 cells. The in vitro cell-based human BBB model has important features of the BBB in vivo and is suitable for discriminating between CNS and non-CNS marketed drugs. A very good correlation (r 2 =0.90; P≤0.001) was demonstrated between in vitro BBB permeability and in vivo permeability coefficient. In contrast, a poor correlation (r 2 = 0.17) was obtained between Caco-2 data and in vivo human brain penetration. This study highlights the potential of this in vitro cell-based human BBB model in drug discovery and shows that it can be an extremely effective screening tool for CNS programs. (authors)

  6. A human-driven decline in global burned area

    Science.gov (United States)

    Andela, N.

    2017-12-01

    Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.

  7. Evolution of the human brain: design without a designer.

    NARCIS (Netherlands)

    Hofman, M.A.; Kaas, John

    2017-01-01

    The evolutionary expansion of the brain is among the most distinctive morphological features of mammals. During the past decades, considerable progress has been made in explaining brain evolution in terms of physical and adaptive principles. The objective of this chapter is to present current

  8. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a

  9. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, L.; Veer, I.M.; Baerends, E.; van Tol, M.J.; Renken, R.J.; van der Wee, N.J.A.; Veltman, D.J.; Aleman, A.; Zitman, F.G.; Penninx, B.W.J.H.; van Buchem, M.A.; Reiber, J.H.C.; Rombouts, S.A.R.B.; Milles, J.

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a

  10. Human Behavior, Learning, and the Developing Brain: Typical Development

    Science.gov (United States)

    Coch, Donna, Ed.; Fischer, Kurt W., Ed.; Dawson, Geraldine, Ed.

    2010-01-01

    This volume brings together leading authorities from multiple disciplines to examine the relationship between brain development and behavior in typically developing children. Presented are innovative cross-sectional and longitudinal studies that shed light on brain-behavior connections in infancy and toddlerhood through adolescence. Chapters…

  11. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2016-12-01

    Full Text Available Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies.Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization (ISH and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype’s spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most

  12. Higher cortical modulation of pain perception in the human brain: Psychological determinant.

    Science.gov (United States)

    Chen, Andrew Cn

    2009-10-01

    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed determination, (b) distraction, (c) placebo, (d) hypnosis, (e) meditation, (f) qi-gong, (g) belief, and (h) emotions, respectively, in the brain function for pain modulation. In each, the operational definition, cortical processing, neuroimaging, and pain modulation were systematically deliberated. However, not all studies had featured the brain modulation processing but rather demonstrated potential effects on human pain. In our own studies on the emotional modulation on human pain, we observed that emotions could be induced from music melodies or pictures perception for reduction of tonic human pain, mainly in potentiation of the posterior alpha EEG fields, likely resulted from underneath activities of precuneous in regulation of consciousness, including pain perception. To sum, higher brain functions become the leading edge research in all sciences. How to solve the information bit of thinking and feeling in the brain can be the greatest challenge of human intelligence. Application of higher cortical modulation of human pain and suffering can lead to the progress of social humanity and civilization.

  13. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    Science.gov (United States)

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Using human brain imaging studies as a guide towards animal models of schizophrenia

    Science.gov (United States)

    BOLKAN, Scott S.; DE CARVALHO, Fernanda D.; KELLENDONK, Christoph

    2015-01-01

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points towards the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients. PMID:26037801

  15. Mechanistic Insights into Human Brain Impact Dynamics through Modal Analysis

    Science.gov (United States)

    Laksari, Kaveh; Kurt, Mehmet; Babaee, Hessam; Kleiven, Svein; Camarillo, David

    2018-03-01

    Although concussion is one of the greatest health challenges today, our physical understanding of the cause of injury is limited. In this Letter, we simulated football head impacts in a finite element model and extracted the most dominant modal behavior of the brain's deformation. We showed that the brain's deformation is most sensitive in low frequency regimes close to 30 Hz, and discovered that for most subconcussive head impacts, the dynamics of brain deformation is dominated by a single global mode. In this Letter, we show the existence of localized modes and multimodal behavior in the brain as a hyperviscoelastic medium. This dynamical phenomenon leads to strain concentration patterns, particularly in deep brain regions, which is consistent with reported concussion pathology.

  16. Patterns of differences in brain morphology in humans as compared to extant apes.

    Science.gov (United States)

    Aldridge, Kristina

    2011-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD.

    Science.gov (United States)

    Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L

    2017-12-15

    Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.

  18. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions

    OpenAIRE

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From ...

  19. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors

    OpenAIRE

    Liu, Hesheng; Stufflebeam, Steven M.; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L.

    2009-01-01

    Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each ac...

  20. Differing levels of excision repair in human fetal dermis and brain cells

    International Nuclear Information System (INIS)

    Gibson, R.E.; D'Ambrosio, S.M.; Ohio State Univ., Columbus

    1982-01-01

    The levels of DNA excision repair, as measured by unscheduled DNA synthesis (UDS) and the UV-endonuclease sensitive site assay, were compared in cells derived from human fetal brain and dermal tissues. The level of UDS induced following ultraviolet (UV) irradiation was found to be lower (approx. 60%) in the fetal brain cells than in fetal dermal cells. It was determined, using the UV-endonuclease sensitive site assay to confirm the UDS observation, that 50% of the dimers induced by UV in fetal dermal cells were repaired in 8 h. while only 15% were removed in the fetal brain cells during the same period of time. Even after 24 h. only 44% of the dimers induced by UV in the fetal brain cells were repaired, while 65% were removed in the dermal cells. These data suggest that cultured human fetal brain cells exhibit lower levels of excision repair compared to cultured human fetal dermal cells. (author)

  1. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    Science.gov (United States)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near

  2. Staphylococcus massiliensis sp. nov., isolated from a human brain abscess.

    Science.gov (United States)

    Al Masalma, Mouhamad; Raoult, Didier; Roux, Véronique

    2010-05-01

    Gram-positive, catalase-positive, coagulase-negative, non-motile, non-fermentative and novobiocin-susceptible cocci were isolated from a human brain abscess sample (strain 5402776(T)). This novel strain was analysed by a polyphasic taxonomic approach. The respiratory quinones detected were MK-7 (93 %) and MK-6 (7 %) and the major fatty acids were C(15 : 0) iso (60.5 %), C(17 : 0) iso (8.96 %) C(15 : 0) anteiso (7.93 %) and C(19 : 0) iso (6.78 %). The peptidoglycan type was A3alpha l-Lys-Gly(2-3)-l-Ser-Gly. Based on cellular morphology and biochemical criteria, the new isolate was assigned to the genus Staphylococcus, although it did not correspond to any recognized species. The G+C content of the DNA was 36.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that the new isolate was most closely related to Staphylococcus piscifermentans, Staphylococcus condimenti, Staphylococcus carnosus subsp. carnosus, S. carnosus subsp. utilis and Staphylococcus simulans (97.7 %, 97.6 %, 97.6 %, 97.6 % and 96.5 % sequence similarity, respectively). Comparison of tuf, hsp60, rpoB, dnaJ and sodA gene sequences was also performed. In phylogenetic analysis inferred from tuf, dnaJ and rpoB gene sequence comparisons, strain 5402776(T) clustered with Staphylococcus pettenkoferi (93.7 %, 82.5 % and 89 % sequence similarity, respectively) and on phylogenetic analysis inferred from sodA gene sequence comparisons, it clustered with Staphylococcus chromogenes (82.8 %). On the basis of phenotypic and genotypic data, this isolate represents a novel species for which the name Staphylococcus massiliensis sp. nov. is proposed (type strain 5402776(T)=CCUG 55927(T)=CSUR P23(T)).

  3. Human capital in European peripheral regions: brain - drain and brain - gain

    NARCIS (Netherlands)

    Coenen, Franciscus H.J.M.

    2004-01-01

    Project goal - The overall goal of the project is to build a legitimate transnational network to transfer ideas and experiences and implement measures to reduce brain drain and foster brain gain while reinforcing the economical and spatial development of peripheral regions in NWE. This means a

  4. Changes of brain and cerebrospinal fluid area with development in childhood on CT

    International Nuclear Information System (INIS)

    Nonaka, Chizuru; Hiraiwa, Mikio; Abe, Toshiaki; Fujii, Ryochi; Ohmi, Kazuhiko

    1980-01-01

    There have been reported about changes of the brain CT (Computed Tomography) findings with development in childhood. These reports have been applied with one dimensional measurement, and we previously reported that one dimensional measurement was insufficient for objective judgement of CT findings, compared with our two dimensional measurement. Brain CT were performed in sixty-six children (thirty-four males and thirty-two females, aged from ten-day-old to twelve-year-old). Two dimensional measurement were played on the slice through foramen of Monro. We measured intracranial area (IC), brain area (BA), ventricular area (VA), and bifrontal fluid collection area (BFC). IC and BA were increased with development, but VA had no obvious change. Increase of IC and BA were disclosed significantly in infancy and toddling period. BFC was decreased with development on the average, and invisible in many cases over three-year-old. Thus, in the cases under three-year-old there lay massive variation of BFC in size. About the relationship between large BFC and central coordination difficulty in infancy, we reported in the last number of this journal. Variation of BFC in the cases under three-year-old might be due to selection of our subjects, those including eighteen infants with central coordination difficulty. Index of BA (BA x 100/IC), VA (VA x 100/IC), and BFC (BFC x 100/IC) were well matched to changes of BA, VA, and BFC with development. This is the first report for application of two dimensional measurement in CT findings of children with development. (author)

  5. Common genetic variation near MC4R has a sex-specific impact on human brain structure and eating behavior.

    Directory of Open Access Journals (Sweden)

    Annette Horstmann

    Full Text Available Obesity is associated with genetic and environmental factors but the underlying mechanisms remain poorly understood. Recent genome-wide association studies (GWAS identified obesity- and type 2 diabetes-associated genetic variants located within or near genes that modulate brain activity and development. Among the top hits is rs17782313 near MC4R, encoding for the melanocortin-4-receptor, which is expressed in brain regions that regulate eating. Here, we hypothesized rs17782313-associated changes in human brain regions that regulate eating behavior. Therefore, we examined effects of common variants at rs17782313 near MC4R on brain structure and eating behavior. Only in female homozygous carriers of the risk allele we found significant increases of gray matter volume (GMV in the right amygdala, a region known to influence eating behavior, and the right hippocampus, a structure crucial for memory formation and learning. Further, we found bilateral increases in medial orbitofrontal cortex, a multimodal brain structure encoding the subjective value of reinforcers, and bilateral prefrontal cortex, a higher order regulation area. There was no association between rs17782313 and brain structure in men. Moreover, among female subjects only, we observed a significant increase of 'disinhibition', and, more specifically, on 'emotional eating' scores of the Three Factor Eating Questionnaire in carriers of the variant rs17782313's risk allele. These findings suggest that rs17782313's effect on eating behavior is mediated by central mechanisms and that these effects are sex-specific.

  6. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. Copyright © 2016 the American Physiological Society.

  7. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy.

    Science.gov (United States)

    Amlien, Inge K; Fjell, Anders M; Tamnes, Christian K; Grydeland, Håkon; Krogsrud, Stine K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2016-01-01

    The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders.

    Science.gov (United States)

    Tong, Junchao; Rathitharan, Gausiha; Meyer, Jeffrey H; Furukawa, Yoshiaki; Ang, Lee-Cyn; Boileau, Isabelle; Guttman, Mark; Hornykiewicz, Oleh; Kish, Stephen J

    2017-09-01

    enzyme in the parkinsonian substantia nigra; instead, increased nigral levels of a MAOA fragment and 'turnover' of the enzyme were observed in the conditions. Our findings provide support that MAOB might serve as a biochemical imaging marker, albeit not entirely specific, for astrocyte activation in human brain. The observation that MAOB protein concentration is generally increased in degenerating brain areas in multiple system atrophy (especially putamen) and in progressive supranuclear palsy, but not in the nigra in Parkinson's disease, also distinguishes astrocyte behaviour in Parkinson's disease from that in the two 'Parkinson-plus' conditions. The question remains whether suppression of either MAOB in astrocytes or MAOA in dopamine neurons might influence progression of the parkinsonian disorders. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The glucocorticoid receptor in the limbic system of the human brain

    NARCIS (Netherlands)

    Wang, Qian

    2016-01-01

    Glucocorticoid hormones (GCs) are important mediators of the stress response in mammals including humans. GCs are released from the adrenal in response to stress and affect numerous processes in the body and brain. Their levels are controlled via negative feedback exerted by GC binding to brain

  10. Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain

    NARCIS (Netherlands)

    van der Meer, Thomas P; Artacho-Cordón, Francisco; Swaab, Dick F; Struik, Dicky; Makris, Konstantinos C; Wolffenbuttel, Bruce H R; Frederiksen, Hanne; van Vliet-Ostaptchouk, Jana V

    2017-01-01

    Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain

  11. Brain, nutrition and metabolism : Studies in lean, obese and insulin resistant humans

    NARCIS (Netherlands)

    Versteeg, R.I.

    2017-01-01

    This thesis describes studies on the effects of obesity, weight loss and meal timing on the human brain and glucose metabolism. We investigated effects of meal timing during a hypocaloric diet and weight loss on brain serotonin transporters (SERT) and dopamine transporters (DAT), neuronal activity

  12. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  13. Associating transcription factors and conserved RNA structures with gene regulation in the human brain

    DEFF Research Database (Denmark)

    Hecker, Nikolai; Seemann, Stefan E.; Silahtaroglu, Asli

    2017-01-01

    Anatomical subdivisions of the human brain can be associated with different neuronal functions. This functional diversification is reflected by differences in gene expression. By analyzing post-mortem gene expression data from the Allen Brain Atlas, we investigated the impact of transcription fac...

  14. The Human Nervous System: A Framework for Teaching and the Teaching Brain

    Science.gov (United States)

    Rodriguez, Vanessa

    2013-01-01

    The teaching brain is a new concept that mirrors the complex, dynamic, and context-dependent nature of the learning brain. In this article, I use the structure of the human nervous system and its sensing, processing, and responding components as a framework for a re-conceptualized teaching system. This teaching system is capable of responses on an…

  15. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    OpenAIRE

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment.

  16. Human brain as the model of a new computer system. II

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, K; Langheld, E

    1981-12-09

    For Pt. I see IBID., Vol. 29, No. 22, P. 13 (1981). The authors describe the self-generating system of connections of a self-teaching no-program associative computer. The self-generating systems of connections are regarded as simulation models of the human brain and compared with the brain structure. The system hardware comprises microprocessor, PROM, memory, VDU, keyboard unit.

  17. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  18. Natural Learning for a Connected World: Education, Technology, and the Human Brain

    Science.gov (United States)

    Caine, Renate N.; Caine, Geoffrey

    2011-01-01

    Why do video games fascinate kids so much that they will spend hours pursuing a difficult skill? Why don't they apply this kind of intensity to their schoolwork? These questions are answered by the authors who pioneered brain/mind learning with the publication of "Making Connections: Teaching and the Human Brain". In their new book, "Natural…

  19. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  20. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    Directory of Open Access Journals (Sweden)

    Andras eJakab

    2014-10-01

    Full Text Available The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st – 38th gestational weeks (GW with a network-based statistical inference approach. The overall connectivity network, short range and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29. GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW, temporal (peak: 26 GW, frontal (peak: 26.4 GW and parietal expansion (peak: 27.5 GW. We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macroconnectivity.

  1. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    Science.gov (United States)

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  2. Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus.

    Directory of Open Access Journals (Sweden)

    Moriah E Thomason

    Full Text Available The human brain undergoes dramatic maturational changes during late stages of fetal and early postnatal life. The importance of this period to the establishment of healthy neural connectivity is apparent in the high incidence of neural injury in preterm infants, in whom untimely exposure to ex-uterine factors interrupts neural connectivity. Though the relevance of this period to human neuroscience is apparent, little is known about functional neural networks in human fetal life. Here, we apply graph theoretical analysis to examine human fetal brain connectivity. Utilizing resting state functional magnetic resonance imaging (fMRI data from 33 healthy human fetuses, 19 to 39 weeks gestational age (GA, our analyses reveal that the human fetal brain has modular organization and modules overlap functional systems observed postnatally. Age-related differences between younger (GA <31 weeks and older (GA≥31 weeks fetuses demonstrate that brain modularity decreases, and connectivity of the posterior cingulate to other brain networks becomes more negative, with advancing GA. By mimicking functional principles observed postnatally, these results support early emerging capacity for information processing in the human fetal brain. Current technical limitations, as well as the potential for fetal fMRI to one day produce major discoveries about fetal origins or antecedents of neural injury or disease are discussed.

  3. Bovine brain ribonuclease is the functional homolog of human ribonuclease 1.

    Science.gov (United States)

    Eller, Chelcie H; Lomax, Jo E; Raines, Ronald T

    2014-09-19

    Mounting evidence suggests that human pancreatic ribonuclease (RNase 1) plays important roles in vivo, ranging from regulating blood clotting and inflammation to directly counteracting tumorigenic cells. Understanding these putative roles has been pursued with continual comparisons of human RNase 1 to bovine RNase A, an enzyme that appears to function primarily in the ruminant gut. Our results imply a different physiology for human RNase 1. We demonstrate distinct functional differences between human RNase 1 and bovine RNase A. Moreover, we characterize another RNase 1 homolog, bovine brain ribonuclease, and find pronounced similarities between that enzyme and human RNase 1. We report that human RNase 1 and bovine brain ribonuclease share high catalytic activity against double-stranded RNA substrates, a rare quality among ribonucleases. Both human RNase 1 and bovine brain RNase are readily endocytosed by mammalian cells, aided by tight interactions with cell surface glycans. Finally, we show that both human RNase 1 and bovine brain RNase are secreted from endothelial cells in a regulated manner, implying a potential role in vascular homeostasis. Our results suggest that brain ribonuclease, not RNase A, is the true bovine homolog of human RNase 1, and provide fundamental insight into the ancestral roles and functional adaptations of RNase 1 in mammals. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).

    Science.gov (United States)

    DeStefano, Jackson G; Xu, Zinnia S; Williams, Ashley J; Yimam, Nahom; Searson, Peter C

    2017-08-04

    The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm -2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation

  5. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size.

    Directory of Open Access Journals (Sweden)

    Rotem Kadir

    2016-03-01

    Full Text Available Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.

  6. Convergent transcriptional specializations in the brains of humans and song-learning birds

    DEFF Research Database (Denmark)

    Pfenning, Andreas R.; Hara, Erina; Whitney, Osceola

    2014-01-01

    Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified...... convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production...... and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes....

  7. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.; Rizzu, Patrizia; Francescatto, Margherita; Vitezic, Morana; Leday, Gwenaë l G.R.; Sanchez, Javier Simon; Khamis, Abdullah M.; Takahashi, Hazuki; van de Berg, Wilma D.J.; Medvedeva, Yulia A.; van de Wiel, Mark A.; Daub, Carsten O.; Carninci, Piero; Heutink, Peter

    2013-01-01

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites

  8. Medical Imaging and the Human Brain: Being Warped is Not Always a Bad Thing

    International Nuclear Information System (INIS)

    Patterson, James C. II

    2005-01-01

    The capacity to look inside the living human brain and image its function has been present since the early 1980s. There are some clinicians who use functional brain imaging for diagnostic or prognostic purposes, but much of the work done still relates to research evaluation of brain function. There is a striking dichotomy in the use of functional brain imaging between these two fields. Clinical evaluation of a brain PET or SPECT scan is subjective; that is, a Nuclear Medicine physician examines the brain image, and states whether the brain image looks normal or abnormal. On the other hand, modern research evaluation of functional brain images is almost always objective. Brain images are processed and analyzed with advanced software tools, and a mathematical result that relates to regional changes in brain activity is provided. The potential for this research methodology to provide a more accurate and reliable answer to clinical questions about brain function and pathology are immense, but there are still obstacles to overcome. Foremost in this regard is the use of a standardized normal control database for comparison of patient scan data. The tools and methods used in objective analysis of functional imaging data, as well as potential clinical applications will be the focus of my presentation

  9. A synergy-based hand control is encoded in human motor cortical areas

    Science.gov (United States)

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  10. Hierarchical functional modularity in the resting-state human brain.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  11. A Mind of Three Minds: Evolution of the Human Brain

    Science.gov (United States)

    MacLean, Paul D.

    1978-01-01

    The author examines the evolutionary and neural roots of a triune intelligence comprised of a primal mind, an emotional mind, and a rational mind. A simple brain model and some definitions of unfamiliar behavioral terms are included. (Author/MA)

  12. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models.

    Directory of Open Access Journals (Sweden)

    Eduard Urich

    Full Text Available Brain microvascular endothelial cells (BEC constitute the blood-brain barrier (BBB which forms a dynamic interface between the blood and the central nervous system (CNS. This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local

  13. Higher cortical modulation of pain perception in the human brain: Psychological determinant

    OpenAIRE

    Chen, Andrew Cn

    2009-01-01

    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed d...

  14. Microstructural Changes of the Human Brain from Early to Mid-Adulthood

    OpenAIRE

    Tian, Lixia; Ma, Lin

    2017-01-01

    Despite numerous studies on the microstructural changes of the human brain throughout life, we have indeed little direct knowledge about the changes from early to mid-adulthood. The aim of this study was to investigate the microstructural changes of the human brain from early to mid-adulthood. We performed two sets of analyses based on the diffusion tensor imaging (DTI) data of 111 adults aged 18–55 years. Specifically, we first correlated age with skeletonized fractional anisotropy (FA), mea...

  15. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging

    OpenAIRE

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R.; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-01

    Summary Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in?age from 16 to 106 years. We show that astrocyte-?and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional express...

  16. The 5-HT2A receptor binding pattern in the human brain is strongly genetically determined

    DEFF Research Database (Denmark)

    Pinborg, Lars H; Arfan, Haroon; Haugbol, Steven

    2007-01-01

    With the appropriate radiolabeled tracers, positron emission tomography (PET) enables in vivo human brain imaging of markers for neurotransmission, including neurotransmitter synthesis, receptors, and transporters. Whereas structural imaging studies have provided compelling evidence that the human...... brain anatomy is largely genetically determined, it is currently unknown to what degree neuromodulatory markers are subjected to genetic and environmental influence. Changes in serotonin 2A (5-HT(2A)) receptors have been reported to occur in various neuropsychiatric disorders and an association between...

  17. An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States

    Science.gov (United States)

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a.  CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a

  18. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking

    OpenAIRE

    Corn?lio, Alianda M.; de Bittencourt-Navarrete, Ruben E.; de Bittencourt Brum, Ricardo; Queiroz, Claudio M.; Costa, Marcos R.

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appeal...

  19. How cortical neurons help us see: visual recognition in the human brain

    OpenAIRE

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us under...

  20. Microwave reflection, transmission, and absorption by human brain tissue

    Science.gov (United States)

    Ansari, M. A.; Akhlaghipour, N.; Zarei, M.; Niknam, A. R.

    2018-04-01

    These days, the biological effects of electromagnetic (EM) radiations on the brain, especially in the frequency range of mobile communications, have caught the attention of many scientists. Therefore, in this paper, the propagation of mobile phone electromagnetic waves in the brain tissues is investigated analytically and numerically. The brain is modeled by three layers consisting of skull, grey and white matter. First, we have analytically calculated the microwave reflection, transmission, and absorption coefficients using signal flow graph technique. The effect of microwave frequency and variations in the thickness of layers on the propagation of microwave through brain are studied. Then, the penetration of microwave in the layers is numerically investigated by Monte Carlo method. It is shown that the analytical results are in good agreement with those obtained by Monte Carlo method. Our results indicate the absorbed microwave energy depends on microwave frequency and thickness of brain layers, and the absorption coefficient is optimized at a number of frequencies. These findings can be used for comparing the microwave absorbed energy in a child's and adult's brain.