WorldWideScience

Sample records for human brain anatomy

  1. An introduction to human brain anatomy

    NARCIS (Netherlands)

    Forstmann, B.U.; Keuken, M.C.; Alkemade, A.; Forstmann, B.U.; Wagenmakers, E.-J.

    2015-01-01

    This tutorial chapter provides an overview of the human brain anatomy. Knowledge of brain anatomy is fundamental to our understanding of cognitive processes in health and disease; moreover, anatomical constraints are vital for neurocomputational models and can be important for psychological

  2. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    Science.gov (United States)

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching.

  3. Atlas of regional anatomy of the brain using MRI. With functional correlations

    International Nuclear Information System (INIS)

    Tamraz, J.C.

    2006-01-01

    The volume provides a unique review of the essential topographical anatomy of the brain from an MRI perspective, correlating high-quality anatomical plates with the corresponding high-resolution MRI images. The book includes a historical review of brain mapping and an analysis of the essential reference planes used for the study of the human brain. Subsequent chapters provide a detailed review of the sulcal and the gyral anatomy of the human cortex, guiding the reader through an interpretation of the individual brain atlas provided by high-resolution MRI. The relationship between brain structure and function is approached in a topographical fashion with analysis of the necessary imaging methodology and displayed anatomy. The central, perisylvian, mesial temporal and occipital areas receive special attention. Imaging of the core brain structures is included. An extensive coronal atlas concludes the book. (orig.)

  4. MR imaging of brain surface structures: Surface anatomy scanning

    International Nuclear Information System (INIS)

    Katada, K.; Koga, S.; Asahina, M.; Kanno, T.; Asahina, K.

    1987-01-01

    Preoperative evaluation of brain surface anatomy, including cortical sulci and veins, relative to cerebral and cerebellar lesions is an important subject for surgeons. Until now, no imaging modality existed that allowed direct visualization of brain surface anatomy. A new MR imaging technique (surface anatomy scanning) was developed to visualize brain surface structures. The technique uses a spin-echo pulse sequence with long repetition and echo times, thick sections and a surface coil. Cortical sulci, fissures, veins, and intracranial lesions were clearly identified with this technique. Initial clinical results indicate that surface anatomy scanning is useful for lesion localization and for detailed evaluation of cortical and subcortical lesions

  5. Exploring Deep Space - Uncovering the Anatomy of Periventricular Structures to Reveal the Lateral Ventricles of the Human Brain.

    Science.gov (United States)

    Colibaba, Alexandru S; Calma, Aicee Dawn B; Webb, Alexandra L; Valter, Krisztina

    2017-10-22

    Anatomy students are typically provided with two-dimensional (2D) sections and images when studying cerebral ventricular anatomy and students find this challenging. Because the ventricles are negative spaces located deep within the brain, the only way to understand their anatomy is by appreciating their boundaries formed by related structures. Looking at a 2D representation of these spaces, in any of the cardinal planes, will not enable visualisation of all of the structures that form the boundaries of the ventricles. Thus, using 2D sections alone requires students to compute their own mental image of the 3D ventricular spaces. The aim of this study was to develop a reproducible method for dissecting the human brain to create an educational resource to enhance student understanding of the intricate relationships between the ventricles and periventricular structures. To achieve this, we created a video resource that features a step-by-step guide using a fiber dissection method to reveal the lateral and third ventricles together with the closely related limbic system and basal ganglia structures. One of the advantages of this method is that it enables delineation of the white matter tracts that are difficult to distinguish using other dissection techniques. This video is accompanied by a written protocol that provides a systematic description of the process to aid in the reproduction of the brain dissection. This package offers a valuable anatomy teaching resource for educators and students alike. By following these instructions educators can create teaching resources and students can be guided to produce their own brain dissection as a hands-on practical activity. We recommend that this video guide be incorporated into neuroanatomy teaching to enhance student understanding of the morphology and clinical relevance of the ventricles.

  6. Human brain imaging

    International Nuclear Information System (INIS)

    Kuhar, M.J.

    1987-01-01

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  7. Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla

    International Nuclear Information System (INIS)

    Bottomley, P.A.; Hart, H.R. Jr.; Edelstein, W.A.; Schenck, J.F.; Smith, L.S.; Leue, W.M.; Mueller, O.M.; Redington, R.W.

    1984-01-01

    Proton magnetic resonance (MR) images were obtained of the human head in magnetic fields as high as 1.5 Tesla (T) using slotted resonator high radio-frequency (RF) detection coils. The images showed no RF field penetration problems and exhibited an 11 (+/-1)-fold improvement in signal-to-noise ratio over a .12-T imaging system. The first localized phosphorus 31, carbon 13, and proton MR chemical shift spectra recorded with surface coils from the head and body in the same instrument showed relative concentrations of phosphorus metabolites, triglycerides, and, when correlated with proton images, negligible lipid (-CH 2 -) signal from brain tissue on the time scale of the imaging experiment. Sugar phosphate and phosphodiester concentrations were significantly elevated in the head compared with muscle. This method should allow the combined assessment of anatomy, metabolism, and biochemistry in both the normal and diseased brain

  8. In vitro delineation of human brain-stem anatomy using a small resonator: correlation with macroscopic and histological findings

    International Nuclear Information System (INIS)

    Maeurer, J.; Mitrovic, T.; Knollmann, F.D.; Luedtke, E.; Requardt

    1996-01-01

    Our purpose was to investigate the potential of an experimental animal coil using a commercial MRI unit to delineate the anatomical structure of the human brain stem. Three formaldehyde-fixed brain-stem specimens were examined by MRI and sectioned perpendicular to their longitudinal axis. The images were compared with gross anatomy and myelin-stained histological sections. Fibre tracts and nuclei which were not evident on examination of the unstained specimen were readily identified by MRI. Due to its inherent grey/white matter contrast, MRI with a high-resolution coil delineates anatomical structures in a way comparable to the myelin-stained histological sections. However, pigmented structures, readily visible on examination of the unstained specimen were discernible on neither MRI nor on myelin-stained sections. The excellent anatomical detail and grey/white matter contrast provided by these images could make MRI a useful adjunct to the pathologist investigating brain disease. (orig.)

  9. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  10. SnapAnatomy, a computer-based interactive tool for independent learning of human anatomy.

    Science.gov (United States)

    Yip, George W; Rajendran, Kanagasuntheram

    2008-06-01

    Computer-aided instruction materials are becoming increasing popular in medical education and particularly in the teaching of human anatomy. This paper describes SnapAnatomy, a new interactive program that the authors designed for independent learning of anatomy. SnapAnatomy is primarily tailored for the beginner student to encourage the learning of anatomy by developing a three-dimensional visualization of human structure that is essential to applications in clinical practice and the understanding of function. The program allows the student to take apart and to accurately put together body components in an interactive, self-paced and variable manner to achieve the learning outcome.

  11. The mouse-human anatomy ontology mapping project.

    Science.gov (United States)

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  12. Design Projects in Human Anatomy & Physiology

    Science.gov (United States)

    Polizzotto, Kristin; Ortiz, Mary T.

    2008-01-01

    Very often, some type of writing assignment is required in college entry-level Human Anatomy and Physiology courses. This assignment can be anything from an essay to a research paper on the literature, focusing on a faculty-approved topic of interest to the student. As educators who teach Human Anatomy and Physiology at an urban community college,…

  13. Revealing the cerebello-ponto-hypothalamic pathway in the human brain.

    Science.gov (United States)

    Kamali, Arash; Karbasian, Niloofar; Rabiei, Pejman; Cano, Andres; Riascos, Roy F; Tandon, Nitin; Arevalo, Octavio; Ocasio, Laura; Younes, Kyan; Khayat-Khoei, Mahsa; Mirbagheri, Saeedeh; Hasan, Khader M

    2018-04-16

    The cerebellum is shown to be involved in some limbic functions of the human brain such as emotion and affect. The major connection of the cerebellum with the limbic system is known to be through the cerebello-hypothalamic pathways. The consensus is that the projections from the cerebellar nuclei to the limbic system, and particularly the hypothalamus, or from the hypothalamus to the cerebellar nuclei, are through multisynaptic pathways in the bulbar reticular formation. The detailed anatomy of the pathways responsible for mediating these responses, however, is yet to be determined. Diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of the cerebello-ponto-hypothalamic (CPH) pathway. This study aimed to investigate the utility of high-spatial-resolution diffusion tensor tractography for mapping the trajectory of the CPH tract in the human brain. Fifteen healthy adults were studied. We delineated, for the first time, the detailed trajectory of the CPH tract of the human brain in fifteen normal adult subjects using high-spatial-resolution diffusion tensor tractography. We further revealed the close relationship of the CPH tract with the optic tract, temporo-pontine tract, amygdalofugal tract and the fornix in the human brain. Copyright © 2018. Published by Elsevier B.V.

  14. Towards an elastographic atlas of brain anatomy.

    Directory of Open Access Journals (Sweden)

    Jing Guo

    Full Text Available Cerebral viscoelastic constants can be measured in a noninvasive, image-based way by magnetic resonance elastography (MRE for the detection of neurological disorders. However, MRE brain maps of viscoelastic constants are still limited by low spatial resolution. Here we introduce three-dimensional multifrequency MRE of the brain combined with a novel reconstruction algorithm based on a model-free multifrequency inversion for calculating spatially resolved viscoelastic parameter maps of the human brain corresponding to the dynamic range of shear oscillations between 30 and 60 Hz. Maps of two viscoelastic parameters, the magnitude and the phase angle of the complex shear modulus, |G*| and φ, were obtained and normalized to group templates of 23 healthy volunteers in the age range of 22 to 72 years. This atlas of the anatomy of brain mechanics reveals a significant contrast in the stiffness parameter |G*| between different anatomical regions such as white matter (WM; 1.252±0.260 kPa, the corpus callosum genu (CCG; 1.104±0.280 kPa, the thalamus (TH; 1.058±0.208 kPa and the head of the caudate nucleus (HCN; 0.649±0.101 kPa. φ, which is sensitive to the lossy behavior of the tissue, was in the order of CCG (1.011±0.172, TH (1.037±0.173, CN (0.906±0.257 and WM (0.854±0.169. The proposed method provides the first normalized maps of brain viscoelasticity with anatomical details in subcortical regions and provides useful background data for clinical applications of cerebral MRE.

  15. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  16. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  17. Use of human cadavers in teaching of human anatomy in brazilian medical faculties

    Directory of Open Access Journals (Sweden)

    Isabela de Sousa Leal Lopes

    2017-05-01

    Full Text Available The Human Anatomy is the study of human body structure and it has been related to the use of cadavers through the history. The aim of this research was to investigate the use of human cadavers in practical classes of human anatomy in Brazilian medical schools, and it was also made the identification of alternative methodologies and new technologies applied to the teaching of Anatomy. The research was conducted at the Faculdade Integral Diferencial from January to December of 2015. The population studied was composed by professors responsible for the Human Anatomy sector of the Brazilian medical faculties. It was addressed all the 242 medical colleges of the Brazil. It was obtained 81 answers. 96% of respondents reported make use of human corpses in its practical lessons of anatomy. It can be observed that 42% of the surveyed medical schools make use of only formaldehyde. 81% of faculties reported to face some difficulties to acquire human cadavers. 84% of medical schools make use of artificial models. 46% of faculties make use of diagnostic images. It can be concluded that human bodies, artificial models and new technologies are widely used in practical classes of anatomy in Brazil, since there is a difficulty to obtain cadavers.

  18. Anatomy of Memory

    OpenAIRE

    J Gordon Millichap

    1991-01-01

    Studies of the anatomy and function of the brain system for memory in humans and animal models are reviewed from the Veterans Affairs Medical Center, San Diego and the Department of Psychiatry, University of California, San Diego, La Jolla, CA.

  19. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    Science.gov (United States)

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  20. Cerebral Anatomy of the Spider Monkey Ateles Geoffroyi Studied Using Magnetic Resonance Imaging. First Report: a Comparative Study with the Human Brain Homo Sapiens

    OpenAIRE

    Chico-Ponce de León, Fernando; Platas-Neri, Diana; Muñoz-Delgado, Jairo; Santillán-Doherty, Ana María; Arenas-Rosas, Rita; Trejo, David; Conde, Rubén; Ojeda-Flores, Rafael; Campos-Romo, Aurelio; Castro-Sierra, Eduardo; Cervantes, Juan José; Braun, Marc

    2009-01-01

    The objective of the present qualitative study was to analyze the morphological aspects of the inner cerebral anatomy of two species of primates, using magnetic resonance images (MRI): spider monkey (A. geoffroyi) and human (H. sapiens), on the basis of a comparative study of the cerebral structures of the two species, focusing upon the brain of the spider monkey and, primarily, its limbic system. In spite of being an endemic Western hemisphere species, a fact which is by its own right intere...

  1. Human ocular anatomy.

    Science.gov (United States)

    Kels, Barry D; Grzybowski, Andrzej; Grant-Kels, Jane M

    2015-01-01

    We review the normal anatomy of the human globe, eyelids, and lacrimal system. This contribution explores both the form and function of numerous anatomic features of the human ocular system, which are vital to a comprehensive understanding of the pathophysiology of many oculocutaneous diseases. The review concludes with a reference glossary of selective ophthalmologic terms that are relevant to a thorough understanding of many oculocutaneous disease processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    Valentino, D.J.; Huang, H.K.; Mazziotta, J.C.

    1988-01-01

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  3. [The physical therapy undergraduate students' responses to the gross human anatomy subjects].

    Science.gov (United States)

    Anahara, Reiko; Kawashiro, Yukiko; Matsuno, Yoshiharu; Mori, Chisato; Kohno, Toshihiko

    2008-09-01

    Instruction in gross human anatomy is one of the important items in the subject for co-medical students of the physical therapist course. The physical therapy undergraduate students are required to have a solid understanding of the structure and formation of the human body. Therefore, their good-understanding of the course on the gross human anatomy and their experience of the gross human anatomy laboratory (observation practice) are acquired to improve their knowledge of the human body. To clarify the student responses to the gross human anatomy course including the gross human anatomy laboratory, several questionnaires were administered to the freshman physical therapy undergraduate student for two years. We found that more than 80% of the students, who felt a negative attitude for gross human anatomy before the course started, had a positive attitude about the gross human anatomy after going through the course. The experience of the gross human anatomy laboratory increased the students' activity of learning and they thought more about the dignity of being human after the course than before viewing. In addition, the results suggested that the multiple experiences of the gross human anatomy course are useful for the physical therapy undergraduate students to improve the quality of their understanding of the human body.

  4. Imaging method of brain surface anatomy structures using conventional T2-weighted MR images

    International Nuclear Information System (INIS)

    Hatanaka, Masahiko; Machida, Yoshio; Yoshida, Tadatoki; Katada, Kazuhiro.

    1992-01-01

    As a non-invasive technique for visualizing the brain surface structure by MRI, surface anatomy scanning (SAS) and the multislice SAS methods have been developed. Both techniques require additional MRI scanning to obtain images for the brain surface. In this paper, we report an alternative method to obtain the brain surface image using conventional T2-weighted multislice images without any additional scanning. The power calculation of the image pixel values, which is incorporated in the routine processing, has been applied in order to enhance the cerebrospinal fluid (CSF) contrast. We think that this method is one of practical approaches for imaging the surface anatomy of the brain. (author)

  5. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  6. Anatomy and Histology of the Human and Murine Prostate.

    Science.gov (United States)

    Ittmann, Michael

    2018-05-01

    The human and murine prostate glands have similar functional roles in the generation of seminal fluid to assist in reproduction. There are significant differences in the anatomy and histology of murine and human prostate and knowledge of the normal anatomy and histology of the murine prostate is essential to interpreting changes in genetically engineered mouse models. In this review, the normal anatomy and histology of both human and mouse prostate will be described. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Relevance of human anatomy in daily clinical practice.

    Science.gov (United States)

    Arráez-Aybar, Luis-Alfonso; Sánchez-Montesinos, Indalecio; Mirapeix, Rosa-M; Mompeo-Corredera, Blanca; Sañudo-Tejero, Jose-Ramón

    2010-12-20

    the aim of this study has been to evaluate the relevance of gross human anatomy in daily clinical practice and to compare it to that of other basic sciences (biochemistry, bioethics, cytohistology, microbiology, pharmacology, physiology, psychology). a total of 1250 questionnaires were distributed among 38 different medical speciality professionals. Answers were analyzed taking into account speciality (medical, surgery and others), professional status (training physician or staff member) and professional experience. the response rate was 42.9% (n=536). Gross human anatomy was considered the most relevant basic discipline for surgical specialists, while pharmacology and physiology were most relevant for medical specialists. Knowledge of anatomy was also considered fundamental for understanding neurological or musculoskeletal disorders. In undergraduate programmes, the most important focuses in teaching anatomy were radiological, topographical and functional anatomy followed by systematic anatomy. In daily medical practice anatomy was considered basic for physical examination, symptom interpretation and interpretation of radiological images. When professional status or professional experience was considered, small variations were shown and there were no significant differences related to gender or community. our results underline the relevance of basic sciences (gross anatomy, physiology, and pharmacology) in daily professional activity. Evidence-based studies such as ours, lend greater credibility and objectivity to the role of gross anatomy in the undergraduate training of health professionals and should help to establish a more appropriate curriculum for future professionals. 2010 Elsevier GmbH. All rights reserved.

  8. Porcine Tricuspid Valve Anatomy and Human Compatibility

    DEFF Research Database (Denmark)

    Waziri, Farhad; Lyager Nielsen, Sten; Hasenkam, J. Michael

    2016-01-01

    before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. METHODS: The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin...

  9. Innovative taught MSc in Medical Visualisation and Human Anatomy.

    Science.gov (United States)

    Clunie, Lauren; Livingstone, Daniel; Rea, Paul M

    2015-06-01

    A relatively new, fully accredited MSc in Medical Visualisation and Human Anatomy, is now offered through a joint collaboration with the Laboratory of Human Anatomy, University of Glasgow and the Digital Design Studio, Glasgow School of Art. This degree combines training in digital technologies and intensive human anatomy training as a result of a long-standing successful partnership between these two esteemed institutes. The student also has to complete a research dissertation which encompasses both the digital perspective and a related medical, dental, surgical, veterinary (comparative anatomy) or life science specialty to enhance development in the digital field for a variety of specialties. This article discusses the background in development of this degree, the course structure and the career prospects and destinations for graduates of this unique degree programme.

  10. The art of human anatomy: Renaissance to 21st century.

    Science.gov (United States)

    Van Hee, Robrecht; Wells, F C; Ballestriero, Roberta; Richardson, Ruth; Mazzarello, Paolo; Cani, Valentina; Catani, Marco

    2014-01-01

    This session examines the relationship between the art and science of anatomy from the time of Vesalius to the present with particular emphasis on the role of the medical artist and the changing nature of anatomical illustration over the last five centuries. Pivotal changes in the art of anatomy will be examined including the evolution of media and brain imaging from Golgi to Geschwind.

  11. Anatomy, technology, art, and culture: toward a realistic perspective of the brain.

    Science.gov (United States)

    Cavalcanti, Daniel D; Feindel, William; Goodrich, James T; Dagi, T Forcht; Prestigiacomo, Charles J; Preul, Mark C

    2009-09-01

    In the 15th century, brain illustration began to change from a schematic system that involved scant objective rendering of the brain, to accurate depictions based on anatomical dissections that demanded significant artistic talent. Notable examples of this innovation are the drawings of Leonardo da Vinci (1498-1504), Andreas Vesalius' association with the bottega of Titian to produce the drawings of Vesalius' De humani corporis fabrica (1543), and Christopher Wren's illustrations for Thomas Willis' Cerebri Anatome (1664). These works appeared during the Renaissance and Age of Enlightenment, when advances in brain imaging, or really brain rendering, reflected not only the abilities and dedications of the artists, but also the influences of important cultural and scientific factors. Anatomy and human dissection became popular social phenomena as well as scholarly pursuits, linked with the world of the fine arts. The working philosophy of these artists involved active participation in both anatomical study and illustration, and the belief that their discoveries of the natural world could best be communicated by rendering them in objective form (that is, with realistic perspective). From their studies emerged the beginning of contemporary brain imaging. In this article, the authors examine how the brain began to be imaged in realism within a cultural and scientific milieu that witnessed the emergence of anatomical dissection, the geometry of linear perspective, and the closer confluence of art and science.

  12. The brain's default network: anatomy, function, and relevance to disease.

    Science.gov (United States)

    Buckner, Randy L; Andrews-Hanna, Jessica R; Schacter, Daniel L

    2008-03-01

    Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.

  13. Socioeconomic status moderates age-related differences in the brain's functional network organization and anatomy across the adult lifespan.

    Science.gov (United States)

    Chan, Micaela Y; Na, Jinkyung; Agres, Phillip F; Savalia, Neil K; Park, Denise C; Wig, Gagan S

    2018-05-14

    An individual's environmental surroundings interact with the development and maturation of their brain. An important aspect of an individual's environment is his or her socioeconomic status (SES), which estimates access to material resources and social prestige. Previous characterizations of the relation between SES and the brain have primarily focused on earlier or later epochs of the lifespan (i.e., childhood, older age). We broaden this work to examine the relationship between SES and the brain across a wide range of human adulthood (20-89 years), including individuals from the less studied middle-age range. SES, defined by education attainment and occupational socioeconomic characteristics, moderates previously reported age-related differences in the brain's functional network organization and whole-brain cortical structure. Across middle age (35-64 years), lower SES is associated with reduced resting-state system segregation (a measure of effective functional network organization). A similar but less robust relationship exists between SES and age with respect to brain anatomy: Lower SES is associated with reduced cortical gray matter thickness in middle age. Conversely, younger and older adulthood do not exhibit consistent SES-related difference in the brain measures. The SES-brain relationships persist after controlling for measures of physical and mental health, cognitive ability, and participant demographics. Critically, an individual's childhood SES cannot account for the relationship between their current SES and functional network organization. These findings provide evidence that SES relates to the brain's functional network organization and anatomy across adult middle age, and that higher SES may be a protective factor against age-related brain decline. Copyright © 2018 the Author(s). Published by PNAS.

  14. Two-Year Community: Human Anatomy Software Use in Traditional and Online Anatomy Laboratory Classes: Student-Perceived Learning Benefits

    Science.gov (United States)

    Kuyatt, Brian L.; Baker, Jason D.

    2014-01-01

    This study evaluates the effectiveness of human anatomy software in face-to-face and online anatomy laboratory classes. Cognitive, affective, and psychomotor perceived learning was measured for students using Pearson Education's Practice Anatomy Laboratory 2.0 software. This study determined that student-perceived learning was significantly…

  15. Design and implementation of an online systemic human anatomy course with laboratory.

    Science.gov (United States)

    Attardi, Stefanie M; Rogers, Kem A

    2015-01-01

    Systemic Human Anatomy is a full credit, upper year undergraduate course with a (prosection) laboratory component at Western University Canada. To meet enrollment demands beyond the physical space of the laboratory facility, a fully online section was developed to run concurrently with the traditional face to face (F2F) course. Lectures given to F2F students are simultaneously broadcasted to online students using collaborative software (Blackboard Collaborate). The same collaborative software is used by a teaching assistant to deliver laboratory demonstrations in which three-dimensional (3D) virtual anatomical models are manipulated. Ten commercial software programs were reviewed to determine their suitability for demonstrating the virtual models, resulting in the selection of Netter's 3D Interactive Anatomy. Supplementary online materials for the central nervous system were developed by creating 360° images of plastinated prosected brain specimens and a website through which they could be accessed. This is the first description of a fully online undergraduate anatomy course with a live, interactive laboratory component. Preliminary data comparing the online and F2F student grades suggest that previous student academic performance, and not course delivery format, predicts performance in anatomy. Future qualitative studies will reveal student perceptions about their learning experiences in both of the course delivery formats. © 2014 American Association of Anatomists.

  16. Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels.

    Directory of Open Access Journals (Sweden)

    Andrzej W Vorbrodt

    2004-07-01

    Full Text Available Immunogold cytochemical procedure was used to study the localization at the ultrastructural level of interendothelial junction-associated protein molecules in the human brain blood microvessels, representing the anatomic site of the blood-brain barrier (BBB. Ultrathin sections of Lowicryl K4M-embedded biopsy specimens of human cerebral cortex obtained during surgical procedures were exposed to specific antibodies, followed by colloidal gold-labeled secondary antibodies. All tight junction-specific integral membrane (transmembrane proteins--occludin, junctional adhesion molecule (JAM-1, and claudin-5--as well as peripheral zonula occludens protein (ZO-1 were highly expressed. Immunoreactivity of the adherens junction-specific transmembrane protein VE-cadherin was of almost similar intensity. Immunolabeling of the adherens junction-associated peripheral proteins--alpha-catenin, beta-catenin, and p120 catenin--although positive, was evidently less intense. The expression of gamma-catenin (plakoglobin was considered questionable because solitary immunosignals (gold particles appeared in only a few microvascular profiles. Double labeling of some sections made possible to observe strict colocalization of the junctional molecules, such as occludin and ZO-1 or JAM-1 and VE-cadherin, in the interendothelial junctions. We found that in human brain microvessels, the interendothelial junctional complexes contain molecular components specific for both tight and adherens junctions. It is assumed that the data obtained can help us find the immunodetectable junctional molecules that can serve as sensitive markers of normal or abnormal function of the BBB.

  17. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  18. Endocasts-the direct evidence and recent advances in the study of human brain evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Brain evolution is one of the most important aspects of human evolution, usually studied through endocasts. Analysis of fossil hominid endocasts allows inferences on functional anatomy, physiology, and phylogeny. In this paper, we describe the general features of endocast studies and review some of the major topics in paleoneurology. These are: absolute and relative brain size evolution; brain shape variation; brain asymmetry and lateralization; middle meningeal vessels and venous sinuses; application of computed tomography and virtual imaging; the history of Chinese brain endocast studies. In particular, this review emphasizes endocast studies on Chinese hominin fossils.

  19. Symbolic modeling of human anatomy for visualization and simulation

    Science.gov (United States)

    Pommert, Andreas; Schubert, Rainer; Riemer, Martin; Schiemann, Thomas; Tiede, Ulf; Hoehne, Karl H.

    1994-09-01

    Visualization of human anatomy in a 3D atlas requires both spatial and more abstract symbolic knowledge. Within our 'intelligent volume' model which integrates these two levels, we developed and implemented a semantic network model for describing human anatomy. Concepts for structuring (abstraction levels, domains, views, generic and case-specific modeling, inheritance) are introduced. Model, tools for generation and exploration and applications in our 3D anatomical atlas are presented and discussed.

  20. Anatomy, Medical Education, and Human Ancestral Variation

    Science.gov (United States)

    Strkalj, Goran; Spocter, Muhammad A.; Wilkinson, A. Tracey

    2011-01-01

    It is argued in this article that the human body both in health and disease cannot be fully understood without adequately accounting for the different levels of human variation. The article focuses on variation due to ancestry, arguing that the inclusion of information pertaining to ancestry in human anatomy teaching materials and courses should…

  1. The assessment of virtual reality for human anatomy instruction

    Science.gov (United States)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  2. Cat dissection and human cadaver prosection versus sculpting human structures from clay: A comparison of alternate approaches to human anatomy laboratory education

    Science.gov (United States)

    Waters, John R.

    Dissection and vivisection are traditional approaches to biology laboratory education. In the case of human anatomy teaching laboratories, there is a long tradition of using human and animal cadaver specimens in the classroom. In a review of the literature comparing traditional dissection and vivisection lessons to alternative lessons designed to reduce the time spent dissecting or the numbers of animals used, we conclude that it is difficult to come to any conclusion regarding the efficacy of different approaches. An analysis of the literature is confounded because many studies have very low statistical power or other methodological weaknesses, and investigators rely on a wide variety of testing instruments to measure an equally varied number of course objectives. Additional well designed studies are necessary before educators can reach any informed conclusions about the efficacy of traditional versus alternative approaches to laboratory education. In our experiments, we compared a traditional cat dissection based undergraduate human anatomy lesson to an alternative where students sculpted human muscles onto plastic human skeletons. Students in the alternative treatment performed significantly better than their peers in the traditional treatment when answering both lower and higher order human anatomy questions. In a subsequent experiment with a similar design, we concluded that the superior performance of the students in the alternative treatment on anatomy exams was likely due to the similarity between the human anatomy representation studied in lab, and the human anatomy questions asked on the exams. When the anatomy questions were presented in the context of a cat specimen, students in the traditional cat dissection treatment outperformed their peers in the alternative treatment. In a final experiment where student performance on a human anatomy exam was compared between a traditional prosected human cadaver treatment and the alternative clay sculpting

  3. Reliability of the Bony Anatomy in Image-Guided Stereotactic Radiotherapy of Brain Metastases

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Baier, Kurt; Guenther, Iris; Richter, Anne; Wilbert, Juergen; Sauer, Otto; Vordermark, Dirk; Flentje, Michael

    2007-01-01

    Purpose: To evaluate whether the position of brain metastases remains stable between planning and treatment in cranial stereotactic radiotherapy (SRT). Methods and Materials: Eighteen patients with 20 brain metastases were treated with single-fraction (17 lesions) or hypofractionated (3 lesions) image-guided SRT. Median time interval between planning and treatment was 8 days. Before treatment a cone-beam CT (CBCT) and a conventional CT after application of i.v. contrast were acquired. Setup errors using automatic bone registration (CBCT) and manual soft-tissue registration of the brain metastases (conventional CT) were compared. Results: Tumor size was not significantly different between planning and treatment. The three-dimensional setup error (mean ± SD) was 4.0 ± 2.1 mm and 3.5 ± 2.2 mm according to the bony anatomy and the lesion itself, respectively. A highly significant correlation between automatic bone match and soft-tissue registration was seen in all three directions (r ≥ 0.88). The three-dimensional distance between the isocenter according to bone match and soft-tissue registration was 1.7 ± 0.7 mm, maximum 2.8 mm. Treatment of intracranial pressure with steroids did not influence the position of the lesion relative to the bony anatomy. Conclusion: With a time interval of approximately 1 week between planning and treatment, the bony anatomy of the skull proved to be an excellent surrogate for the target position in image-guided SRT

  4. PAL(TM) 2.0 Human Anatomy Software Tool Use in Community College Traditional and Online Anatomy Laboratory Classes: Student-Perceived Learning Benefits

    Science.gov (United States)

    Kuyatt, Brian Lee

    2012-01-01

    Human anatomy courses, with laboratory, are curricular requirements in graduate medical, undergraduate nursing, and all allied health science programs. Anatomy laboratory courses engage students in hands-on activities, including human cadaver or mammalian dissection, supported by photos from textbooks, detailed plastic models or human anatomical…

  5. The development, assessment and validation of virtual reality for human anatomy instruction

    Science.gov (United States)

    Marshall, Karen Benn

    1996-01-01

    This research project seeks to meet the objective of science training by developing, assessing, validating and utilizing VR as a human anatomy training medium. Current anatomy instruction is primarily in the form of lectures and usage of textbooks. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three-dimensional, unlike the one-dimensional depiction found in textbooks and the two-dimensional depiction found on the computer. Virtual reality allows one to step through the computer screen into a 3-D artificial world. The primary objective of this project is to produce a virtual reality application of the abdominopelvic region of a human cadaver that can be taken back to the classroom. The hypothesis is that an immersive learning environment affords quicker anatomic recognition and orientation and a greater level of retention in human anatomy instruction. The goal is to augment not replace traditional modes of instruction.

  6. The 5-HT2A receptor binding pattern in the human brain is strongly genetically determined

    DEFF Research Database (Denmark)

    Pinborg, Lars H; Arfan, Haroon; Haugbol, Steven

    2007-01-01

    With the appropriate radiolabeled tracers, positron emission tomography (PET) enables in vivo human brain imaging of markers for neurotransmission, including neurotransmitter synthesis, receptors, and transporters. Whereas structural imaging studies have provided compelling evidence that the human...... brain anatomy is largely genetically determined, it is currently unknown to what degree neuromodulatory markers are subjected to genetic and environmental influence. Changes in serotonin 2A (5-HT(2A)) receptors have been reported to occur in various neuropsychiatric disorders and an association between...

  7. Anatomy of the cerebellopontine angle; Anatomie des Kleinhirnbrueckenwinkels

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, I.Q.; Papanagiotou, P.; Politi, M.; Reith, W. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Diagnostische und Interventionelle Neuroradiologie; Nabhan, A. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Neurochirurgische Klinik

    2006-03-15

    The cerebellopontine angle (CPA) is an anatomically complex region of the brain. In this article we describe the anatomy of the CPA cisterns, of the internal auditory canal, the topography of the cerebellum and brainstem, and the neurovascular structures of this area. (orig.) [German] Der Kleinhirnbrueckenwinkel ist eine umschriebene anatomische Region. Im diesem Artikel werden die Subarachnoidalraeume im Kleinhirnbrueckenwinkel, die Anatomie der Felsenbeinflaeche, Anatomie und Topographie des Kleinhirns und des Hirnstamms, die arteriellen Beziehungen und venoese Drainage des Kleinhirnbrueckenwinkels besprochen. (orig.)

  8. Alternative uses of didactics scripts and anatomy models in the teaching-learning in practical human anatomy

    Directory of Open Access Journals (Sweden)

    Gleidially Nayara Bezerra Moraes

    2016-04-01

    Full Text Available The teaching and learning process is complex and difficult presented with respect to the human anatomy. Thus, the improvement of teaching resources applied to the teaching of this discipline, shows up as a satisfactory trend and encourages student participation as an active subject in the search for new informations, giving essential support teaching-learning process. The aim of the study was to verify the existence and utilization of teaching scripts and anatomical models in practicals classes of Human Anatomy. The study was a descriptive systematic review, developed with scientific production indexed in electronic databases LILACS, MEDLINE, GOOGLE ACADEMICO and SciELO; as well as Brazilian proceedings. Among the 17 articles found, 9 showed the use of anatomical models, 7 showed other methods used, and only 1 on the use of didactic manual on classroom practice of this discipline. From the study, it can be observed that the use of teaching scripts for teaching in practical classes of Human Anatomy is an innovative method and the use of anatomical models alternative has shown positive results in the teaching-learning process. However, these methods, ever can replace the use of the corpse in the teaching of this discipline.

  9. Brain without anatomy: construction and comparison of fully network-driven structural MRI connectomes.

    Directory of Open Access Journals (Sweden)

    Olga Tymofiyeva

    Full Text Available MRI connectomics methods treat the brain as a network and provide new information about its organization, efficiency, and mechanisms of disruption. The most commonly used method of defining network nodes is to register the brain to a standardized anatomical atlas based on the Brodmann areas. This approach is limited by inter-subject variability and can be especially problematic in the context of brain maturation or neuroplasticity (cerebral reorganization after brain damage. In this study, we combined different image processing and network theory methods and created a novel approach that enables atlas-free construction and connection-wise comparison of diffusion MRI-based brain networks. We illustrated the proposed approach in three age groups: neonates, 6-month-old infants, and adults. First, we explored a data-driven method of determining the optimal number of equal-area nodes based on the assumption that all cortical areas of the brain are connected and, thus, no part of the brain is structurally isolated. Second, to enable a connection-wise comparison, alignment to a "reference brain" was performed in the network domain within each group using a matrix alignment algorithm with simulated annealing. The correlation coefficients after pair-wise network alignment ranged from 0.6102 to 0.6673. To test the method's reproducibility, one subject from the 6-month-old group and one from the adult group were scanned twice, resulting in correlation coefficients of 0.7443 and 0.7037, respectively. While being less than 1 due to parcellation and noise, statistically, these values were significantly higher than inter-subject values. Rotation of the parcellation largely explained the variability. Through the abstraction from anatomy, the developed framework allows for a fully network-driven analysis of structural MRI connectomes and can be applied to subjects at any stage of development and with substantial differences in cortical anatomy.

  10. Lecture classes in human anatomy: the students' perceptions.

    Science.gov (United States)

    Kar, Maitreyee; Roy, Hironmoy; Ghosh, Anasuya; Tapadar, Arunabha; Chowdhury, Subhramoy; Mukherjee, Pranab; Jana, Tapan Kumar

    2013-06-01

    The human anatomy, or in brief, the body structure has fascinated man for ages. Due to the information explosion and the increase in specializations, this knowledge is available in a very sketchy manner in high school biology courses. The first comprehensive course on the human anatomy is taught to the first year medical students in medical colleges. This is in keeping with the regulations of the Medical Council of India. The anatomy lecture classes occupy a considerable time of the course, to provide the students with an effective knowledge of the gross anatomy, histology, embryology and the clinical anatomy. On the other hand, the students' feedback regarding the lecture methods and the teaching environment is crucial in judging the efficacy of the present curriculum. To obtain the students' feedback about the environment of the lecture classes, as regards the venue, the teaching and learning aids which are used, the lecture class schedule of the university (the number of classes per week, the durations of the lecture classes, etc.) and the existing departmental practices (display of the class routine in advance, synchronization between the lecture and the practical classes), so that their suggestions could help the faculty in planning the most effective teaching procedures. A semi structured questionnaire was supplied to the students to get their feedback. Most of the students found the air conditioned seminar room's environment to be more comfortable and they supported the existing durations of the lecture hours with the combined use of chalk and a board and overhead projectors (OHPs). The perceptions of the learners helped in modifying the departmental practice in the desired way.

  11. Effectiveness of human anatomy education for pharmacy students via the Internet.

    Science.gov (United States)

    Limpach, Aimee L; Bazrafshan, Parham; Turner, Paul D; Monaghan, Michael S

    2008-12-15

    To evaluate the overall effectiveness of a human anatomy course taught to distance-based and campus-based pharmacy students. A retrospective analysis of students' grades and course evaluations from 2003 through 2006 was conducted. No significant differences in student performance by pathway were found for the 2003-2005 academic years (p > 0.05). However, distance-based students' percentage and letter grades were significantly higher in 2006 (p = 0.013 and p = 0.004 respectively). Comparison of course and instructor evaluations showed that students in the distance course held similar or more positive perceptions of the course than their campus peers. Similar performance by campus and distance students enrolled in a human anatomy suggests that a distance-based course can be used successfully to teach human anatomy to pharmacy students.

  12. Human fetal anatomy: MR imaging.

    Science.gov (United States)

    Weinreb, J C; Lowe, T; Cohen, J M; Kutler, M

    1985-12-01

    Twenty-four pregnant women carrying 26 fetuses (two sets of twins) were imaged with magnetic resonance (MR) imaging at 0.35 T following sonographic evaluation. Each study was retrospectively evaluated to determine which of 33 normal fetal structures were visible on the images and which imaging parameters were most useful for depicting fetal anatomy. Fetal motion degraded fetal images in all but two cases, both with oligohydramnios and in the third trimester of gestation. Nevertheless, many fetal structures were identifiable, particularly in the third trimester. Visualization of fetal anatomy improved with intravenous maternal sedation in five cases. Relatively T1-weighted images occasionally offered the advantage of less image degradation owing to fetal motion and improved contrast between different fetal structures. More T2 weighting was believed to be advantageous in one case for outlining the fetal head and in one case for delineation of the brain. In many cases, structures were similarly identifiable (though with different signal intensities) regardless of the parameters selected. The authors conclude that MR imaging of many fetal structures is currently unsatisfactory and is probably of limited value, particularly in the first and second trimesters. However, the relative frequency and detail with which the fetal head and liver can be depicted indicate that these may be areas for further investigation, and the potential utility of imaging fetal fat warrants further investigation.

  13. Idea of integrating fitness concepts and methods into human anatomy teaching

    Directory of Open Access Journals (Sweden)

    PAN Guojian

    2013-08-01

    Full Text Available According to the author′s many years of experience and practice in teaching human anatomy,it is summed up that an idea of integrating fitness concepts and methods into teaching of human anatomy is envisaged.It is beneficial to the cultivation of undergraduates majoring in sports about thoughts of lifelong physical education,enable students to master the basic structure based on human body and learn and master physical fitness related basic theory and practical operation skills in order to be social competitive sports workers with practical skills.

  14. An imaging atlas of human anatomy

    International Nuclear Information System (INIS)

    Weir, J.; Abrahams, P.H.

    1993-01-01

    The atlas presents pictures obtained by the various imaging techniques, showing the normal anatomy of the various body regions in healthy adults. The pictures are the major information given, accompanying texts are reduced to captions giving the Latin names of important anatomic details or a brief introduction each to the fundamental characteristics of the imaging methods used, as e.g. angiography, computerized tomography, magnetic resonance imaging, and ultrasonography. The atlas is a key source of reference and a guide in interpreting radiographs. The material is arranged in chapters according to the body regions of interest: Head, neck, brain; spine and spinal cord; upper extremities; thorax; abdomen; pelvis; lower extremities. (UWA) [de

  15. Student Perceptions of an Upper-Level, Undergraduate Human Anatomy Laboratory Course without Cadavers

    Science.gov (United States)

    Wright, Shirley J.

    2012-01-01

    Several programs in health professional education require or are considering requiring upper-level human anatomy as prerequisite for their applicants. Undergraduate students are confronted with few institutions offering such a course, in part because of the expense and logistical issues associated with a cadaver-based human anatomy course. This…

  16. A plea for the use of drawing in human anatomy teaching.

    Science.gov (United States)

    Clavert, Philippe; Bouchaïb, J; Duparc, F; Kahn, J L

    2012-10-01

    Descriptive human anatomy constitutes one of the main parts of the educational program of the first part of the medical studies. Professors of anatomy have to take into account the exponential evolution of the techniques of morphological and functional exploration of the patients, and the trend to open more and more the contents of the lectures of anatomy to clinical considerations. Basically, teaching requires a series of descriptive and educational media to set up, in front of the student, the studied structures and so to build the human body. More generally, lectures in morphological sciences try to develop three types of knowledge: declarative, procedural, and conditional. Traditionally in France "basic or first" anatomy is taught in amphitheater and in big groups by building each structure or region on a blackboard with colored chalk that allows a relief stake of certain structures and builds in two dimensions a three-dimensional organization. Actually, the blackboard is and stays for us an excellent media of non-verbal expression.

  17. Subtle alterations in brain anatomy may change an individual's personality in chronic pain.

    Directory of Open Access Journals (Sweden)

    Sylvia M Gustin

    Full Text Available It is well established that gross prefrontal cortex damage can affect an individual's personality. It is also possible that subtle prefrontal cortex changes associated with conditions such as chronic pain, and not detectable until recent advances in human brain imaging, may also result in subtle changes in an individual's personality. In an animal model of chronic neuropathic pain, subtle prefrontal cortex changes including altered basal dendritic length, resulted in altered decision making ability. Using multiple magnetic resonance imaging techniques, we found in humans, although gray matter volume and on-going activity were unaltered, chronic neuropathic pain was associated with reduced free and bound proton movement, indicators of subtle anatomical changes, in the medial prefrontal cortex, anterior cingulate cortex and mediodorsal thalamus. Furthermore, proton spectroscopy revealed an increase in neural integrity in the medial prefrontal cortex in neuropathic pain patients, the degree of which was significantly correlated to the personality temperament of novelty seeking. These data reveal that even subtle changes in prefrontal cortex anatomy may result in a significant change in an individual's personality.

  18. [Chinese books on human anatomy published in the late Qing dynasty].

    Science.gov (United States)

    Matsumoto, Hideshi

    2007-12-01

    Quanti-chanwei (1881) is the first technical book on human anatomy written in Chinese and brought to Modern China. It was compiled and translated on the basis of Anatomy, Descriptive and Surgical (first edition in 1858) by Henry Gray. Quanti-chanwei was published with intent to establish Chinese translations for terms referring to anatomy, and it gained broad support from medical missionaries who mainly served in Guangdong, Shanghai, and Fuzhou at that time. Quanti-tongkao (1886) was also complied and translated on the basis of Gray' Anatomy, Descriptive and Surgical. It was published from Jingshi Tongwen Guan, The Academy of Foreign Languages in the Qing dynasty, and they selected different words for the translation into Chinese from Quanti-chanwei. Thus, although Gray' Anatomy, Descriptive and Surgical played a great role in the introduction of Western Medicine into Modern China, there was no accordance between the national government and the provinces regarding Chinese translations for terms referring to anatomy.

  19. Padua: the renaissance of human anatomy and medicine.

    Science.gov (United States)

    Andrioli, Giancarlo; Trincia, Giuseppe

    2004-10-01

    The city and University of Padua have a long tradition and a great reputation in anatomic studies, dating from the founding of the university in the year 1222. We present a historical review of the study of human anatomy, for which Padua was a most important center. The background for the development of this culture was represented by the scientific freedom and political wisdom of the Serenissima Republic of Venice, a liberal and tolerant state in the midst of a feudal, imperial, and pontifical Europe. During the second half of the 15th century, the flourishing trade and cultural, social, and political life of Venice attracted a great number of scientists and students from all over Europe who contributed to the establishment of Padua as an international center for culture and the sciences. Vesalio, Fabrizio d'Acquapendente, and Giovanni Battista Morgagni represent milestones in the history of anatomy as well as in medicine and surgery. History shows that anatomy and surgery evolved together, just as anatomy of the nervous system and neurosurgery developed in tandem. The tradition of neurosurgery in Padua is considered one the most important schools in Italy.

  20. ZBrush Digital Sculpting Human Anatomy

    CERN Document Server

    Spencer, Scott

    2010-01-01

    Taking into account that many of today?s digital artists?particularly 3D character animators?lack foundational artistic instruction, this book teaches anatomy in a coherent and succinct style. A clear writing style explains how to sculpt an accurate human figure, starting with the skeleton and working out to muscle, fat, and skin. Insightful explanations enable you to quickly and easily create and design characters that can be used in film, game, or print, and allows you to gain a strong understanding of the foundational artistic concepts.

  1. Effects of a functional COMT polymorphism on brain anatomy and cognitive function in adults with velo-cardio-facial syndrome

    NARCIS (Netherlands)

    van Amelsvoort, T.; Zinkstok, J.; Figee, M.; Daly, E.; Morris, R.; Owen, M. J.; Murphy, K. C.; de Haan, L.; Linszen, D. H.; Glaser, B.; Murphy, D. G. M.

    2008-01-01

    BACKGROUND: Velo-cardio-facial syndrome (VCFS) is associated with deletions at chromosome 22q11, abnormalities in brain anatomy and function, and schizophrenia-like psychosis. Thus it is assumed that one or more genes within the deleted region are crucial to brain development. However, relatively

  2. Magnetic resonance elastography of the brain: A comparison between pigs and humans.

    Science.gov (United States)

    Weickenmeier, Johannes; Kurt, Mehmet; Ozkaya, Efe; Wintermark, Max; Pauly, Kim Butts; Kuhl, Ellen

    2018-01-01

    Magnetic resonance elastography holds promise as a non-invasive, easy-to-use, in vivo biomarker for neurodegenerative diseases. Throughout the past decade, pigs have gained increased popularity as large animal models for human neurodegeneration. However, the volume of a pig brain is an order of magnitude smaller than the human brain, its skull is 40% thicker, and its head is about twice as big. This raises the question to which extent established vibration devices, actuation frequencies, and analysis tools for humans translate to large animal studies in pigs. Here we explored the feasibility of using human brain magnetic resonance elastography to characterize the dynamic properties of the porcine brain. In contrast to humans, where vibration devices induce an anterior-posterior displacement recorded in transverse sections, the porcine anatomy requires a dorsal-ventral displacement recorded in coronal sections. Within these settings, we applied a wide range of actuation frequencies, from 40Hz to 90Hz, and recorded the storage and loss moduli for human and porcine brains. Strikingly, we found that optimal actuation frequencies for humans translate one-to-one to pigs and reliably generate shear waves for elastographic post-processing. In a direct comparison, human and porcine storage and loss moduli followed similar trends and increased with increasing frequency. When translating these frequency-dependent storage and loss moduli into the frequency-independent stiffnesses and viscosities of a standard linear solid model, we found human values of μ 1 =1.3kPa, μ 2 =2.1kPa, and η=0.025kPas and porcine values of μ 1 =2.0kPa, μ 2 =4.9kPa, and η=0.046kPas. These results suggest that living human brain is softer and less viscous than dead porcine brain. Our study compares, for the first time, magnetic resonance elastography in human and porcine brains, and paves the way towards systematic interspecies comparison studies and ex vivo validation of magnetic resonance

  3. Human midsagittal brain shape variation: patterns, allometry and integration

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Colom, Roberto

    2010-01-01

    Midsagittal cerebral morphology provides a homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships. In this study, midsagittal brain shape variation is investigated in a sample of 102 humans, in order to describe and quantify the major patterns of correlation between morphological features, the effect of size and sex on general anatomy, and the degree of integration between different cortical and subcortical areas. The only evident pattern of covariation was associated with fronto-parietal cortical bulging. The allometric component was weak for the cortical profile, but more robust for the posterior subcortical areas. Apparent sex differences were evidenced in size but not in brain shape. Cortical and subcortical elements displayed scarcely integrated changes, suggesting a modular separation between these two areas. However, a certain correlation was found between posterior subcortical and parietal cortical variations. These results should be directly integrated with information ranging from functional craniology to wiring organization, and with hypotheses linking brain shape and the mechanical properties of neurons during morphogenesis. PMID:20345859

  4. Three-dimensional reconstruction of brain surface anatomy: technique comparison between flash and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Sun Jianzhong; Wang Zhikang; Gong Xiangyang

    2006-01-01

    Objective: To compare two methods 3D flash and diffusion-weighted images (DWI) in reconstructing the brain surface anatomy, and to evaluate their displaying ability, advantages, limitations and clinical application. Methods: Thrity normal cases were prospectively examined with 3D flash sequence and echo-planar DWI. Three-dimensional images were acquired with volume-rendering on workstation. Brain surface structures were evaluated and scored by a group of doctors. Results: Main structures of brain surface were clearly displayed on three-dimensional images based on 3D flash sequence. Average scores were all above 2.50. For images based on DWI, precentral gyrus, postcentral gyrus, superior parietal lobule, superior frontal gyrus, precentral sulcus, central sulcus, postcentral sulcus, intraparietal sulcus and superior frontal sulcus were best shown with average scores between 2.60-2.75, However, supramarginal gyrus, angular gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, lateral sulcus, inferior frontal sulcus could not be well shown, with average scores between 1.67-2.48. Middle temporal gyrus, inferior temporal gyrus, superior temporal sulcus and inferior temporal sulcus can only get scores from 0.88 to 1.27. Scores of images based on 3D flash were much higher than that based on DWI with distinct differentiations, P values were all below 0.01. Conclusion: Three-dimensional images based on 3D flash can really display brain surface structures. It is very useful for anatomic researches. Three-dimensional reconstruction of brain surface based on DWI is a worthy technique to display brain surface anatomy, especially for frontal and parietal structures. (authors)

  5. Human Cadavers vs. Multimedia Simulation: A Study of Student Learning in Anatomy

    Science.gov (United States)

    Saltarelli, Andrew J.; Roseth, Cary J.; Saltarelli, William A.

    2014-01-01

    Multimedia and simulation programs are increasingly being used for anatomy instruction, yet it remains unclear how learning with these technologies compares with learning with actual human cadavers. Using a multilevel, quasi-experimental-control design, this study compared the effects of "Anatomy and Physiology Revealed" (APR) multimedia…

  6. Testing to Enhance Retention in Human Anatomy

    Science.gov (United States)

    Logan, Jessica M.; Thompson, Andrew J.; Marshak, David W.

    2011-01-01

    Recent work in cognitive psychology has shown that repeatedly testing one's knowledge is a powerful learning aid and provides substantial benefits for retention of the material. To apply this in a human anatomy course for medical students, 39 fill-in-the-blank quizzes of about 50 questions each, one for each region of the body, and four about the…

  7. Subtle Alterations in Brain Anatomy May Change an Individual’s Personality in Chronic Pain

    Science.gov (United States)

    Gustin, Sylvia M.; McKay, Jamie G.; Petersen, Esben T.; Peck, Chris C.; Murray, Greg M.; Henderson, Luke A.

    2014-01-01

    It is well established that gross prefrontal cortex damage can affect an individual’s personality. It is also possible that subtle prefrontal cortex changes associated with conditions such as chronic pain, and not detectable until recent advances in human brain imaging, may also result in subtle changes in an individual’s personality. In an animal model of chronic neuropathic pain, subtle prefrontal cortex changes including altered basal dendritic length, resulted in altered decision making ability. Using multiple magnetic resonance imaging techniques, we found in humans, although gray matter volume and on-going activity were unaltered, chronic neuropathic pain was associated with reduced free and bound proton movement, indicators of subtle anatomical changes, in the medial prefrontal cortex, anterior cingulate cortex and mediodorsal thalamus. Furthermore, proton spectroscopy revealed an increase in neural integrity in the medial prefrontal cortex in neuropathic pain patients, the degree of which was significantly correlated to the personality temperament of novelty seeking. These data reveal that even subtle changes in prefrontal cortex anatomy may result in a significant change in an individual’s personality. PMID:25291361

  8. «Fantastic Voyage» (1966: an attractive approach to the study of anatomy through a tour inside the human body

    Directory of Open Access Journals (Sweden)

    Juan A. JUANES MÉNDEZ

    2016-04-01

    Full Text Available Fantastic Voyage is a science-fiction film that develops its action inside the human body, standing halfway between scientific documentary and fantasy. In its plot, a scientific possessing a valuable information for the State security suffers from a terrorist attack which leaves him in comma at death’s door. To save his life, it is necessary to carry out an operation in a part of his brain to which there is no access through conventional surgery. Thanks to scientific advances achieved, a nuclear submarine is miniaturized with a crew of neurosurgeons inside, who will be incorporated into the patient’s bloodstream intravenously. Its mission will be that of reaching the brain, through the circulatory system, and try to cure the lesion. A real amazing journey. Destination: the brain.The originality of its plot makes this film be an outstanding title among those of its genre. This film also constitutes a very useful resource for critical value and analysis of concepts on human anatomy.

  9. 101 labeled brain images and a consistent human cortical labeling protocol

    Directory of Open Access Journals (Sweden)

    Arno eKlein

    2012-12-01

    Full Text Available We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The Desikan-Killiany-Tourville (DKT protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://www.mindboggle.info/data/ website.

  10. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    Science.gov (United States)

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  11. Three-dimensional morphologic description and visualization of brain anatomy from MR images

    International Nuclear Information System (INIS)

    Kraske, W.; George, F.W.; Zee, C.S.; Colletti, P.M.; Halls, J.M.; Boswell, W.O.

    1989-01-01

    The USC VOXAR-MRI system incorporates MR tissue classification algorithms to provide dynamic three- dimensional volumetric visualization and discrimination of brain anatomy and pathology for precision diagnosis, staging, and treatment planning. The VOXAR-MRI approach to tissue classification employs the three-dimensional reconstruction of various intracranial features from gray-scale morphologic erosion and dilation (GMED)-derived skeleton representation of the MR acquisition. Case presentations include an array of VOXAR-MRI-demonstrated tumors, abscesses, hematomas, and other lesions

  12. Normal cranial CT anatomy

    International Nuclear Information System (INIS)

    Gado, M.H.; Rao, K.C.V.G.

    1987-01-01

    The human brain consists of well-known anatomical components. Some parts of these components have been shown to be concerned with certain functions. A complete cranial CT examination consists of a series of several slices obtained in a sequence usually from the base to the vertex of the cranial vault, in the axial mode. The ultimate goal of this chapter is to pinpoint those slices that depict a given anatomical structure or several structures that deal with a given function. To achieve this goal, the discussion of CT cranial anatomy is presented in three sections

  13. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study.

    Science.gov (United States)

    Hallahan, Brian P; Craig, Michael C; Toal, Fiona; Daly, Eileen M; Moore, Caroline J; Ambikapathy, Anita; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M

    2011-01-01

    Fragile X Syndrome (FraX) is caused by the expansion of a single trinucleotide gene sequence (CGG) on the X chromosome, and is a leading cause of learning disability (mental retardation) worldwide. Relatively few studies, however, have examined the neuroanatomical abnormalities associated with FraX. Of those that are available many included mixed gender populations, combined FraX children and adults into one sample, and employed manual tracing techniques which measures bulk volume of particular regions. Hence, there is relatively little information on differences in grey and white matter content across whole brain. We employed magnetic resonance imaging to investigate brain anatomy in 17 adult males with FraX and 18 healthy controls that did not differ significantly in age. Data were analysed using stereology and VBM to compare (respectively) regional brain bulk volume, and localised grey/white matter content. Using stereology we found that FraX males had a significant increase in bulk volume bilaterally of the caudate nucleus and parietal lobes and of the right brainstem, but a significant decrease in volume of the left frontal lobe. Our complimentary VBM analysis revealed an increased volume of grey matter in fronto-striatal regions (including bilaterally in the caudate nucleus), and increased white matter in regions extending from the brainstem to the parahippocampal gyrus, and from the left cingulate cortex extending into the corpus callosum. People with FraX have regionally specific differences in brain anatomy from healthy controls with enlargement of the caudate nuclei that persists into adulthood. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study.

    LENUS (Irish Health Repository)

    Hallahan, Brian P

    2011-01-01

    Fragile X Syndrome (FraX) is caused by the expansion of a single trinucleotide gene sequence (CGG) on the X chromosome, and is a leading cause of learning disability (mental retardation) worldwide. Relatively few studies, however, have examined the neuroanatomical abnormalities associated with FraX. Of those that are available many included mixed gender populations, combined FraX children and adults into one sample, and employed manual tracing techniques which measures bulk volume of particular regions. Hence, there is relatively little information on differences in grey and white matter content across whole brain. We employed magnetic resonance imaging to investigate brain anatomy in 17 adult males with FraX and 18 healthy controls that did not differ significantly in age. Data were analysed using stereology and VBM to compare (respectively) regional brain bulk volume, and localised grey\\/white matter content. Using stereology we found that FraX males had a significant increase in bulk volume bilaterally of the caudate nucleus and parietal lobes and of the right brainstem, but a significant decrease in volume of the left frontal lobe. Our complimentary VBM analysis revealed an increased volume of grey matter in fronto-striatal regions (including bilaterally in the caudate nucleus), and increased white matter in regions extending from the brainstem to the parahippocampal gyrus, and from the left cingulate cortex extending into the corpus callosum. People with FraX have regionally specific differences in brain anatomy from healthy controls with enlargement of the caudate nuclei that persists into adulthood.

  15. Anatomy, Physiology and Function of the Auditory System

    Science.gov (United States)

    Kollmeier, Birger

    The human ear consists of the outer ear (pinna or concha, outer ear canal, tympanic membrane), the middle ear (middle ear cavity with the three ossicles malleus, incus and stapes) and the inner ear (cochlea which is connected to the three semicircular canals by the vestibule, which provides the sense of balance). The cochlea is connected to the brain stem via the eighth brain nerve, i.e. the vestibular cochlear nerve or nervus statoacusticus. Subsequently, the acoustical information is processed by the brain at various levels of the auditory system. An overview about the anatomy of the auditory system is provided by Figure 1.

  16. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, Elke R. [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Maderwald, Stefan [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Linn, Jennifer; Bochmann, Katja [LMU Munich, Department of Neuroradiology, Munich (Germany); Dassinger, Benjamin [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Justus-Liebig-University Giessen, Department of Neuroradiology, Giessen (Germany); Forsting, Michael [University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Ladd, Mark E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2014-03-15

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  17. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    International Nuclear Information System (INIS)

    Gizewski, Elke R.; Maderwald, Stefan; Linn, Jennifer; Bochmann, Katja; Dassinger, Benjamin; Forsting, Michael; Ladd, Mark E.

    2014-01-01

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  18. Anatomy and imaging of the normal meninges.

    Science.gov (United States)

    Patel, Neel; Kirmi, Olga

    2009-12-01

    The meninges are an important connective tissue envelope investing the brain. Their function is to provide a protective coating to the brain and also participate in the formation of blood-brain barrier. Understanding their anatomy is fundamental to understanding the location and spread of pathologies in relation to the layers. It also provides an insight into the characteristics of such pathologies when imaging them. This review aims to describe the anatomy of the meninges, and to demonstrate the imaging findings of specific features.

  19. Image processing techniques for quantification and assessment of brain MRI

    NARCIS (Netherlands)

    Kuijf, H.J.

    2013-01-01

    Magnetic resonance imaging (MRI) is a widely used technique to acquire digital images of the human brain. A variety of acquisition protocols is available to generate images in vivo and noninvasively, giving great opportunities to study the anatomy and physiology of the human brain. In my thesis,

  20. [Analysis of anatomical pieces preservation with polyester resin for human anatomy study].

    Science.gov (United States)

    de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro

    2013-01-01

    To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.

  1. The Visible Heart® project and free-access website 'Atlas of Human Cardiac Anatomy'.

    Science.gov (United States)

    Iaizzo, Paul A

    2016-12-01

    Pre- and post-evaluations of implantable cardiac devices require innovative and critical testing in all phases of the design process. The Visible Heart ® Project was successfully launched in 1997 and 3 years later the Atlas of Human Cardiac Anatomy website was online. The Visible Heart ® methodologies and Atlas website can be used to better understand human cardiac anatomy, disease states and/or to improve cardiac device design throughout the development process. To date, Visible ® Heart methodologies have been used to reanimate 75 human hearts, all considered non-viable for transplantation. The Atlas is a unique free-access website featuring novel images of functional and fixed human cardiac anatomies from >400 human heart specimens. Furthermore, this website includes education tutorials on anatomy, physiology, congenital heart disease and various imaging modalities. For instance, the Device Tutorial provides examples of commonly deployed devices that were present at the time of in vitro reanimation or were subsequently delivered, including: leads, catheters, valves, annuloplasty rings, leadless pacemakers and stents. Another section of the website displays 3D models of vasculature, blood volumes, and/or tissue volumes reconstructed from computed tomography (CT) and magnetic resonance images (MRI) of various heart specimens. A new section allows the user to interact with various heart models. Visible Heart ® methodologies have enabled our laboratory to reanimate 75 human hearts and visualize functional cardiac anatomies and device/tissue interfaces. The website freely shares all images, video clips and CT/MRI DICOM files in honour of the generous gifts received from donors and their families. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  2. An atlas of radiological anatomy

    International Nuclear Information System (INIS)

    Weir, J.; Abrahams, P.

    1986-01-01

    This book contains a wealth of radiologic images of normal human anatomy; plain radiographs, contrast-enhanced radiographs, and computed tomography (CT) scans. There are 18 pages of magnetic resonance (MR) images, most on the brain and spinal cord, so that there are only two pages on MR imaging of the heart and two pages on abdominal and pelvic MR imaging. Twelve pages of ultrasound (US) images are included. This book has the radiologic image paired with an explanatory drawing; the image is on the left with a paragraph or two of text, and the drawing is on the right with legends. This book includes images of the brain and spinal cord obtained with arteriography, venography, myelography, encephalography, CT, and MR imaging

  3. Human brain lesion-deficit inference remapped.

    Science.gov (United States)

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint; Nachev, Parashkev

    2014-09-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  4. Maintaining excellence in teaching of human anatomy: University of ...

    African Journals Online (AJOL)

    Measures to address these challenges have resulted in wide disparities in curriculum design teaching methods, number and composition of instructors. Inspite of the challenges, the Department of Human Anatomy of the University of Nairobi (UON) maintained excellence of teaching for over 40yrs. This article describes the ...

  5. Diffusion tensor tractography of the mammillothalamic tract in the human brain using a high spatial resolution DTI technique.

    Science.gov (United States)

    Kamali, Arash; Zhang, Caroline C; Riascos, Roy F; Tandon, Nitin; Bonafante-Mejia, Eliana E; Patel, Rajan; Lincoln, John A; Rabiei, Pejman; Ocasio, Laura; Younes, Kyan; Hasan, Khader M

    2018-03-27

    The mammillary bodies as part of the hypothalamic nuclei are in the central limbic circuitry of the human brain. The mammillary bodies are shown to be directly or indirectly connected to the amygdala, hippocampus, and thalami as the major gray matter structures of the human limbic system. Although it is not primarily considered as part of the human limbic system, the thalamus is shown to be involved in many limbic functions of the human brain. The major direct connection of the thalami with the hypothalamic nuclei is known to be through the mammillothalamic tract. Given the crucial role of the mammillothalamic tracts in memory functions, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the mammillothalamic tract in the human brain. Fifteen healthy adults were studied after obtaining written informed consent. We used high spatial resolution diffusion tensor imaging data at 3.0 T. We delineated, for the first time, the detailed trajectory of the mammillothalamic tract of the human brain using deterministic diffusion tensor tractography.

  6. Anatomy and Humanity: Examining the Effects of a Short Documentary Film and First Anatomy Laboratory Experience on Medical Students

    Science.gov (United States)

    Dosani, Farah; Neuberger, Lindsay

    2016-01-01

    Medical students begin their education inside a laboratory dissecting cadavers to learn human gross anatomy. Many schools use the course experience as a way to instill empathy and some have begun integrating video and recorded interviews with body donors to humanize the experience, but their impact has yet to be measured. This study examines the…

  7. Brain, calvarium, cladistics: A new approach to an old question, who are modern humans and Neandertals?

    Science.gov (United States)

    Mounier, Aurélien; Balzeau, Antoine; Caparros, Miguel; Grimaud-Hervé, Dominique

    2016-03-01

    The evolutionary history of the genus Homo is the focus of major research efforts in palaeoanthropology. However, the use of palaeoneurology to infer phylogenies of our genus is rare. Here we use cladistics to test the importance of the brain in differentiating and defining Neandertals and modern humans. The analysis is based on morphological data from the calvarium and endocast of Pleistocene fossils and results in a single most parsimonious cladogram. We demonstrate that the joint use of endocranial and calvarial features with cladistics provides a unique means to understand the evolution of the genus Homo. The main results of this study indicate that: (i) the endocranial features are more phylogenetically informative than the characters from the calvarium; (ii) the specific differentiation of Neandertals and modern humans is mostly supported by well-known calvarial autapomorphies; (iii) the endocranial anatomy of modern humans and Neandertals show strong similarities, which appeared in the fossil record with the last common ancestor of both species; and (iv) apart from encephalisation, human endocranial anatomy changed tremendously during the end of the Middle Pleistocene. This may be linked to major cultural and technological novelties that had happened by the end of the Middle Pleistocene (e.g., expansion of the Middle Stone Age (MSA) in Africa and Mousterian in Europe). The combined study of endocranial and exocranial anatomy offers opportunities to further understand human evolution and the implication for the phylogeny of our genus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Virtual Reality Educational Tool for Human Anatomy.

    Science.gov (United States)

    Izard, Santiago González; Juanes Méndez, Juan A; Palomera, Pablo Ruisoto

    2017-05-01

    Virtual Reality is becoming widespread in our society within very different areas, from industry to entertainment. It has many advantages in education as well, since it allows visualizing almost any object or going anywhere in a unique way. We will be focusing on medical education, and more specifically anatomy, where its use is especially interesting because it allows studying any structure of the human body by placing the user inside each one. By allowing virtual immersion in a body structure such as the interior of the cranium, stereoscopic vision goggles make these innovative teaching technologies a powerful tool for training in all areas of health sciences. The aim of this study is to illustrate the teaching potential of applying Virtual Reality in the field of human anatomy, where it can be used as a tool for education in medicine. A Virtual Reality Software was developed as an educational tool. This technological procedure is based entirely on software which will run in stereoscopic goggles to give users the sensation of being in a virtual environment, clearly showing the different bones and foramina which make up the cranium, and accompanied by audio explanations. Throughout the results the structure of the cranium is described in detailed from both inside and out. Importance of an exhaustive morphological knowledge of cranial fossae is further discussed. Application for the design of microsurgery is also commented.

  9. An emerging paradigm for teaching human anatomy and physiology

    African Journals Online (AJOL)

    Rabab El-Sayed Hassan El-Sayed

    2013-03-15

    Mar 15, 2013 ... information about the anatomy and physiology of human ... tional curriculum in a range of teaching fields that are based ..... et al.,47 who were studying the acceptance and benefits of vi- .... Foreign language teaching methods: Culture lesson 3: the case for .... vations in integrating ICT in education, vol. 3.

  10. An improved FSL-FIRST pipeline for subcortical gray matter segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM).

    Science.gov (United States)

    Feng, Xiang; Deistung, Andreas; Dwyer, Michael G; Hagemeier, Jesper; Polak, Paul; Lebenberg, Jessica; Frouin, Frédérique; Zivadinov, Robert; Reichenbach, Jürgen R; Schweser, Ferdinand

    2017-06-01

    Accurate and robust segmentation of subcortical gray matter (SGM) nuclei is required in many neuroimaging applications. FMRIB's Integrated Registration and Segmentation Tool (FIRST) is one of the most popular software tools for automated subcortical segmentation based on T 1 -weighted (T1w) images. In this work, we demonstrate that FIRST tends to produce inaccurate SGM segmentation results in the case of abnormal brain anatomy, such as present in atrophied brains, due to a poor spatial match of the subcortical structures with the training data in the MNI space as well as due to insufficient contrast of SGM structures on T1w images. Consequently, such deviations from the average brain anatomy may introduce analysis bias in clinical studies, which may not always be obvious and potentially remain unidentified. To improve the segmentation of subcortical nuclei, we propose to use FIRST in combination with a special Hybrid image Contrast (HC) and Non-Linear (nl) registration module (HC-nlFIRST), where the hybrid image contrast is derived from T1w images and magnetic susceptibility maps to create subcortical contrast that is similar to that in the Montreal Neurological Institute (MNI) template. In our approach, a nonlinear registration replaces FIRST's default linear registration, yielding a more accurate alignment of the input data to the MNI template. We evaluated our method on 82 subjects with particularly abnormal brain anatomy, selected from a database of >2000 clinical cases. Qualitative and quantitative analyses revealed that HC-nlFIRST provides improved segmentation compared to the default FIRST method. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mapping the trajectory of the amygdalothalamic tract in the human brain.

    Science.gov (United States)

    Kamali, Arash; Riascos, Roy F; Pillai, Jay J; Sair, Haris I; Patel, Rajan; Nelson, Flavia M; Lincoln, John A; Tandon, Nitin; Mirbagheri, Saeedeh; Rabiei, Pejman; Keser, Zafer; Hasan, Khader M

    2018-04-01

    Although the thalamus is not considered primarily as a limbic structure, abundant evidence indicates the essential role of the thalamus as a modulator of limbic functions indirectly through the amygdala. The amygdala is a central component of the limbic system and serves an essential role in modulating the core processes including the memory, decision-making, and emotional reactions. The amygdalothalamic pathway is the largest direct amygdalo-diencephalic connection in the primates including the human brain. Given the crucial role of the amygdalothalamic tract (ATT) in memory function and diencephalic amnesia in stroke patients, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. To date, few diffusion-weighted studies have focused on the amygdala, yet the fine neuronal connection of the amygdala and thalamus known as the ATT has yet to be elucidated. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the ATT in the human brain. We studied 15 healthy right-handed human subjects (12 men and 3 women with age range of 24-37 years old). Using a high-resolution diffusion tensor tractography technique, for the first time, we were able to reconstruct and measure the trajectory of the ATT. We further revealed the close relationship of the ATT with the temporopontine tract and the fornix bilaterally in 15 healthy adult human brains. © 2018 Wiley Periodicals, Inc.

  12. Virtual Reality Anatomy: Is It Comparable with Traditional Methods in the Teaching of Human Forearm Musculoskeletal Anatomy?

    Science.gov (United States)

    Codd, Anthony M.; Choudhury, Bipasha

    2011-01-01

    The use of cadavers to teach anatomy is well established, but limitations with this approach have led to the introduction of alternative teaching methods. One such method is the use of three-dimensional virtual reality computer models. An interactive, three-dimensional computer model of human forearm anterior compartment musculoskeletal anatomy…

  13. Human tooth pulp anatomy visualization by 3D magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Sustercic, Dusan; Sersa, Igor

    2012-01-01

    Precise assessment of dental pulp anatomy is of an extreme importance for a successful endodontic treatment. As standard radiographs of teeth provide very limited information on dental pulp anatomy, more capable methods are highly appreciated. One of these is 3D magnetic resonance (MR) microscopy of which diagnostic capabilities in terms of a better dental pulp anatomy assessment were evaluated in the study. Twenty extracted human teeth were scanned on a 2.35 T MRI system for MR microscopy using the 3D spin-echo method that enabled image acquisition with isotropic resolution of 100 μm. The 3D images were then post processed by ImageJ program (NIH) to obtain advanced volume rendered views of dental pulps. MR microscopy at 2.35 T provided accurate data on dental pulp anatomy in vitro. The data were presented as a sequence of thin 2D slices through the pulp in various orientations or as volume rendered 3D images reconstructed form arbitrary view-points. Sequential 2D images enabled only an approximate assessment of the pulp, while volume rendered 3D images were more precise in visualization of pulp anatomy and clearly showed pulp diverticles, number of pulp canals and root canal anastomosis. This in vitro study demonstrated that MR microscopy could provide very accurate 3D visualization of dental pulp anatomy. A possible future application of the method in vivo may be of a great importance for the endodontic treatment

  14. Human Development XII: A Theory for the Structure and Function of the Human Brain

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2008-01-01

    Full Text Available The human brain is probably the most complicated single structure in the biological universe. The cerebral cortex that is traditionally connected with consciousness is extremely complex. The brain contains approximately 1,000,000 km of nerve fibers, indicating its enormous complexity and which makes it difficult for scientists to reveal the function of the brain. In this paper, we propose a new model for brain functions, i.e., information-guided self-organization of neural patterns, where information is provided from the abstract wholeness of the biophysical system of an organism (often called the true self, or the “soul””. We present a number of arguments in favor of this model that provide self-conscious control over the thought process or cognition. Our arguments arise from analyzing experimental data from different research fields: histology, anatomy, electroencephalography (EEG, cerebral blood flow, neuropsychology, evolutionary studies, and mathematics. We criticize the popular network theories as the consequence of a simplistic, mechanical interpretation of reality (philosophical materialism applied to the brain. We demonstrate how viewing brain functions as information-guided self-organization of neural patterns can explain the structure of conscious mentation; we seem to have a dual hierarchical representation in the cerebral cortex: one for sensation-perception and one for will-action. The model explains many of our unique mental abilities to think, memorize, associate, discriminate, and make abstractions. The presented model of the conscious brain also seems to be able to explain the function of the simpler brains, such as those of insects and hydra.

  15. Exercises in Anatomy, Connectivity, and Morphology using Neuromorpho.org and the Allen Brain Atlas.

    Science.gov (United States)

    Chu, Philip; Peck, Joshua; Brumberg, Joshua C

    2015-01-01

    Laboratory instruction of neuroscience is often limited by the lack of physical resources and supplies (e.g., brains specimens, dissection kits, physiological equipment). Online databases can serve as supplements to material labs by providing professionally collected images of brain specimens and their underlying cellular populations with resolution and quality that is extremely difficult to access for strictly pedagogical purposes. We describe a method using two online databases, the Neuromorpho.org and the Allen Brain Atlas (ABA), that freely provide access to data from working brain scientists that can be modified for laboratory instruction/exercises. Neuromorpho.org is the first neuronal morphology database that provides qualitative and quantitative data from reconstructed cells analyzed in published scientific reports. The Neuromorpho.org database contains cross species and multiple neuronal phenotype datasets which allows for comparative examinations. The ABA provides modules that allow students to study the anatomy of the rodent brain, as well as observe the different cellular phenotypes that exist using histochemical labeling. Using these tools in conjunction, advanced students can ask questions about qualitative and quantitative neuronal morphology, then examine the distribution of the same cell types across the entire brain to gain a full appreciation of the magnitude of the brain's complexity.

  16. Effectiveness of using blended learning strategies for teaching and learning human anatomy.

    Science.gov (United States)

    Pereira, José A; Pleguezuelos, Eulogio; Merí, Alex; Molina-Ros, Antoni; Molina-Tomás, M Carmen; Masdeu, Carlos

    2007-02-01

    This study aimed to implement innovative teaching methods--blended learning strategies--that include the use of new information technologies in the teaching of human anatomy and to analyse both the impact of these strategies on academic performance, and the degree of user satisfaction. The study was carried out among students in Year 1 of the biology degree curriculum (human biology profile) at Pompeu Fabra University, Barcelona. Two groups of students were tested on knowledge of the anatomy of the locomotor system and results compared between groups. Blended learning strategies were employed in 1 group (BL group, n = 69); the other (TT group; n = 65) received traditional teaching aided by complementary material that could be accessed on the Internet. Both groups were evaluated using the same types of examination. The average marks presented statistically significant differences (BL 6.3 versus TT 5.0; P < 0.0001). The percentage pass rate for the subject in the first call was higher in the BL group (87.9% versus 71.4%; P = 0.02), reflecting a lower incidence of students who failed to sit the examination (BL 4.3% versus TT 13.8%; P = 0.05). There were no differences regarding overall satisfaction with the teaching received. Blended learning was more effective than traditional teaching for teaching human anatomy.

  17. Remediation Trends in an Undergraduate Anatomy Course and Assessment of an Anatomy Supplemental Study Skills Course

    Science.gov (United States)

    Schutte, Audra Faye

    2013-01-01

    Anatomy A215: Basic Human Anatomy (Anat A215) is an undergraduate human anatomy course at Indiana University Bloomington (IUB) that serves as a requirement for many degree programs at IUB. The difficulty of the course, coupled with pressure to achieve grades for admittance into specific programs, has resulted in high remediation rates. In an…

  18. An untold story: The important contributions of Muslim scholars for the understanding of human anatomy.

    Science.gov (United States)

    Alghamdi, Malak A; Ziermann, Janine M; Diogo, Rui

    2017-06-01

    It is usually assumed that Galen is one of the fathers of anatomy and that between the Corpus Galenicum and the Renaissance there was no major advance in anatomical knowledge. However, it is also consensually accepted that Muslim scholars had the intellectual leadership from the 8th/9th to 13th centuries, and that they made remarkable progresses in numerous scientific fields including medicine. So, how is it possible that they did not contribute to advance human anatomy during that period? According to the dominant view, Muslim scholars exclusively had a passive role: their transmission of knowledge from the Greeks to the West. Here, we summarize, for the first time in a single paper, the studies of major Muslim scholars that published on human anatomy before Vesalius. This summary is based on analyses of original Arabic texts and of more recent publications by anatomists and historians, and on comparisons between the descriptions provided by Galen and by these Muslim scholars. We show that Arabic speakers and Persians made important advances in human anatomy well before Vesalius. The most notable exception concerns the muscular system: strikingly, there were apparently neither advances made by Muslims nor by Westerners for more than 1000 years. Unbiased discussions of these and other related issues, and particularly of the mainly untold story about the major contributions of Muslim scholars to anatomy, are crucial to our knowledge of the history of anatomy, biology and sciences, and also of our way of thinking, biases, and prejudices. Anat Rec, 300:986-1008, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Learning Outcomes and Student-Perceived Value of Clay Modeling and Cat Dissection in Undergraduate Human Anatomy and Physiology

    Science.gov (United States)

    DeHoff, Mary Ellen; Clark, Krista L.; Meganathan, Karthikeyan

    2011-01-01

    Alternatives and/or supplements to animal dissection are being explored by educators of human anatomy at different academic levels. Clay modeling is one such alternative that provides a kinesthetic, three-dimensional, constructive, and sensory approach to learning human anatomy. The present study compared two laboratory techniques, clay modeling…

  20. Atlas of fetal sectional anatomy with ultrasound and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Isaacson, G.; Mintz, M.C.; Crelin, E.S.

    1986-01-01

    Here is an atlas of sectional anatomy for the fetus featuring correlated anatomy and imaging, transverse coronal and sagittal views, a guide to development of the brain, cardiac anatomy in standard plans of study and, over 280 illustrations

  1. Improved understanding of human anatomy through self-guided radiological anatomy modules.

    Science.gov (United States)

    Phillips, Andrew W; Smith, Sandy G; Ross, Callum F; Straus, Christopher M

    2012-07-01

    To quantifiably measure the impact of self-instructed radiological anatomy modules on anatomy comprehension, demonstrated by radiology, gross, and written exams. Study guides for independent use that emphasized structural relationships were created for use with two online radiology atlases. A guide was created for each module of the first year medical anatomy course and incorporated as an optional course component. A total of 93 of 96 eligible students participated. All exams were normalized to control for variances in exam difficulty and body region tested. An independent t-test was used to compare overall exam scores with respect to guide completion or incompletion. To account for aptitude differences between students, a paired t-test of each student's exam scores with and without completion of the associated guide was performed, thus allowing students to serve as their own controls. Twenty-one students completed no study guides; 22 completed all six guides; and 50 students completed between one and five guides. Aggregate comparisons of all students' exam scores showed significantly improved mean performance when guides were used (radiology, 57.8% [percentile] vs. 45.1%, P < .001; gross, 56.9% vs. 46.5%, P = .001; written, 57.8% vs. 50.2%, P = .011). Paired comparisons among students who completed between one and five guides demonstrated significantly higher mean practical exam scores when guides were used (radiology, 49.3% [percentile] vs. 36.0%, P = .001; gross, 51.5% vs. 40.4%, P = .005), but not higher written scores. Radiological anatomy study guides significantly improved anatomy comprehension on radiology, gross, and written exams. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  2. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum.

    Science.gov (United States)

    Luders, Eileen; Toga, Arthur W; Thompson, Paul M

    2014-01-01

    Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum. © 2013.

  3. Human developmental anatomy: microscopic magnetic resonance imaging (μMRI) of four human embryos (from Carnegie Stage 10 to 20).

    Science.gov (United States)

    Lhuaire, Martin; Martinez, Agathe; Kaplan, Hervé; Nuzillard, Jean-Marc; Renard, Yohann; Tonnelet, Romain; Braun, Marc; Avisse, Claude; Labrousse, Marc

    2014-12-01

    Technological advances in the field of biological imaging now allow multi-modal studies of human embryo anatomy. The aim of this study was to assess the high magnetic field μMRI feasibility in the study of small human embryos (less than 21mm crown-rump) as a new tool for the study of human descriptive embryology and to determine better sequence characteristics to obtain higher spatial resolution and higher signal/noise ratio. Morphological study of four human embryos belonging to the historical collection of the Department of Anatomy in the Faculty of Medicine of Reims was undertaken by μMRI. These embryos had, successively, crown-rump lengths of 3mm (Carnegie Stage, CS 10), 12mm (CS 16), 17mm (CS 18) and 21mm (CS 20). Acquisition of images was performed using a vertical nuclear magnetic resonance spectrometer, a Bruker Avance III, 500MHz, 11.7T equipped for imaging. All images were acquired using 2D (transverse, sagittal and coronal) and 3D sequences, either T1-weighted or T2-weighted. Spatial resolution between 24 and 70μm/pixel allowed clear visualization of all anatomical structures of the embryos. The study of human embryos μMRI has already been reported in the literature and a few atlases exist for educational purposes. However, to our knowledge, descriptive or morphological studies of human developmental anatomy based on data collected these few μMRI studies of human embryos are rare. This morphological noninvasive imaging method coupled with other techniques already reported seems to offer new perspectives to descriptive studies of human embryology.

  4. The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies

    International Nuclear Information System (INIS)

    Berg, Cornelis A T van den; Bartels, Lambertus W; Bergen, Bob van den; Kroeze, Hugo; Leeuw, Astrid A C de; Kamer, Jeroen B van de; Lagendijk, Jan J W

    2006-01-01

    In this study, MR B + 1 imaging is employed to experimentally verify the validity of FDTD simulations of electromagnetic field patterns in human anatomies. Measurements and FDTD simulations of the B + 1 field induced by a 3 T MR body coil in a human corpse were performed. It was found that MR B + 1 imaging is a sensitive method to measure the radiofrequency (RF) magnetic field inside a human anatomy with a precision of approximately 3.5%. A good correlation was found between the B + 1 measurements and FDTD simulations. The measured B + 1 pattern for a human pelvis consisted of a global, diagonal modulation pattern plus local B + 1 heterogeneties. It is believed that these local B + 1 field variations are the result of peaks in the induced electric currents, which could not be resolved by the FDTD simulations on a 5 mm 3 simulation grid. The findings from this study demonstrate that B + 1 imaging is a valuable experimental technique to gain more knowledge about the dielectric interaction of RF fields with the human anatomy

  5. Reasonable classical concepts in human lower limb anatomy from the viewpoint of the primitive persistent sciatic artery and twisting human lower limb.

    Science.gov (United States)

    Kawashima, Tomokazu; Sasaki, Hiroshi

    2010-11-01

    The main aim of this review is (1) to introduce the two previous studies we published human lower limb anatomy based on the conventional macroscopic anatomical [corrected] criteria with hazardous recognition of this description, (2) to activate the discussion whether the limb homology exists, and (3) to contribute to future study filling the gap between the gross anatomy and embryology. One of the topics we discussed was the human persistent sciatic artery. To date, numerous human cases of persistent sciatic artery have been reported in which the anomalous artery was present in the posterior compartment of the thigh alongside the sciatic nerve. As one of the important criteria for assessing the human primitive sciatic artery, its ventral arterial position with respect to the sciatic nerve is reasonable based on the initial positional relationship between ventral arterial and dorsal nervous systems and comparative anatomical findings. We also discuss ways of considering the topography of muscles of the lower limb and their innervations compared to those of the upper limb. We propose a schema of the complex anatomical characteristics of the lower limb based on the vertebrate body plan. According to this reasonable schema, the twisted anatomy of the lower limb can be understood more easily. These two main ideas discussed in this paper will be useful for further understanding of the anatomy of the lower limb and as a first step for future. We hope that the future study in lower limb will be further developed by both viewpoints of the classical gross anatomy and recent embryology.

  6. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions

    Directory of Open Access Journals (Sweden)

    Volker Arnd Coenen

    cortical prefrontal regions - but not to emotion-related regions on the medial cortical surface - realized via the superolateral branch of the MFB. Local tractography approaches appear to be inferior in showing these far-reaching projections. Since these local approaches are typically used for surgical targeting of DBS procedures, the here established detailed map might - as a normative template - guide future efforts to target deep brain stimulation of the slMFB in depression and other disorders related to dysfunction of reward and reward-associated learning. Keywords: Brain, Deep brain stimulation, Depression, Human, Medial forebrain bundle, Normal anatomy, Obsessive compulsive disorder, TMS

  7. 3D virtual table in anatomy education

    DEFF Research Database (Denmark)

    Dahl, Mads Ronald; Simonsen, Eivind Ortind

    The ‘Anatomage’ is a 3D virtual human anatomy table, with touchscreen functionality, where it is possible to upload CT-scans and digital. Learning the human anatomy terminology requires time, a very good memory, anatomy atlas, books and lectures. Learning the 3 dimensional structure, connections...

  8. The benefits of the Atlas of Human Cardiac Anatomy website for the design of cardiac devices.

    Science.gov (United States)

    Spencer, Julianne H; Quill, Jason L; Bateman, Michael G; Eggen, Michael D; Howard, Stephen A; Goff, Ryan P; Howard, Brian T; Quallich, Stephen G; Iaizzo, Paul A

    2013-11-01

    This paper describes how the Atlas of Human Cardiac Anatomy website can be used to improve cardiac device design throughout the process of development. The Atlas is a free-access website featuring novel images of both functional and fixed human cardiac anatomy from over 250 human heart specimens. This website provides numerous educational tutorials on anatomy, physiology and various imaging modalities. For instance, the 'device tutorial' provides examples of devices that were either present at the time of in vitro reanimation or were subsequently delivered, including leads, catheters, valves, annuloplasty rings and stents. Another section of the website displays 3D models of the vasculature, blood volumes and/or tissue volumes reconstructed from computed tomography and magnetic resonance images of various heart specimens. The website shares library images, video clips and computed tomography and MRI DICOM files in honor of the generous gifts received from donors and their families.

  9. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation.

    Science.gov (United States)

    De Benedictis, Alessandro; Sarubbo, Silvio; Duffau, Hugues

    2012-12-01

    Recent neuroimaging and surgical results support the crucial role of white matter in mediating motor and higher-level processing within the frontal lobe, while suggesting the limited compensatory capacity after damage to subcortical structures. Consequently, an accurate knowledge of the anatomofunctional organization of the pathways running within this region is mandatory for planning safe and effective surgical approaches to different diseases. The aim of this dissection study was to improve the neurosurgeon's awareness of the subcortical anatomofunctional architecture for a lateral approach to the frontal region, to optimize both resection and postoperative outcome. Ten human hemispheres (5 left, 5 right) were dissected according to the Klingler technique. Proceeding lateromedially, the main association and projection tracts as well as the deeper basal structures were identified. The authors describe the anatomy and the relationships among the exposed structures in both a systematic and topographical surgical perspective. Structural results were also correlated to the functional responses obtained during resections of infiltrative frontal tumors guided by direct cortico-subcortical electrostimulation with patients in the awake condition. The eloquent boundaries crucial for a safe frontal lobectomy or an extensive lesionectomy are as follows: 1) the motor cortex; 2) the pyramidal tract and premotor fibers in the posterior and posteromedial part of the surgical field; 3) the inferior frontooccipital fascicle and the superior longitudinal fascicle posterolaterally; and 4) underneath the inferior frontal gyrus, the head of the caudate nucleus, and the tip of the frontal horn of the lateral ventricle in the depth. Optimization of results following brain surgery, especially within the frontal lobe, requires a perfect knowledge of functional anatomy, not only at the cortical level but also with regard to subcortical white matter connectivity.

  10. Anatomy of the Human Subthalamic Nucleus: A Combined Morphometric Study

    Directory of Open Access Journals (Sweden)

    Ioannis Mavridis

    2013-01-01

    Full Text Available Purpose. Our purpose was to provide a combined clinically oriented study focused on the detailed anatomy of the human STN, with great respect to its targeting. Methods. For our imaging study, we used cerebral magnetic resonance images (MRIs from 26 neurosurgical patients and for our anatomic study 32 cerebral hemispheres from 18 normal brains from cadaver donors. We measured and analyzed the STN dimensions (based on its stereotactic coordinates. Results. At stereotactic level Z=-4, the STN length was 7.7 mm on MRIs and 8.1 mm in anatomic specimens. Its width was 6 mm on MRIs and 6.3 mm in anatomic specimens. The STN was averagely visible in 3.2 transverse MRI slices and its maximum dimension was 8.5 mm. The intercommissural distance was 26.3 mm on MRIs and 27.3 mm in anatomic specimens. We found statistically significant difference of the STN width and length between individuals <60 and ≥60 years old. Conclusion. The identification of the STN limits was easier in anatomic specimens than on MRIs and easier on T2 compared to T1-weighted MRIs sections. STN dimensions appear slightly smaller on MRIs. Younger people have wider and longer STN.

  11. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  12. Human anatomy nomenclature rules for the computer age.

    Science.gov (United States)

    Neumann, Paul E; Baud, Robert; Sprumont, Pierre

    2017-04-01

    Information systems are increasing in importance in biomedical sciences and medical practice. The nomenclature rules of human anatomy were reviewed for adequacy with respect to modern needs. New rules are proposed here to ensure that each Latin term is uniquely associated with an anatomical entity, as short and simple as possible, and machine-interpretable. Observance of these recommendations will also benefit students and translators of the Latin terms into other languages. Clin. Anat. 30:300-302, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Out of the dissecting room: news media portrayal of human anatomy teaching and research.

    Science.gov (United States)

    Regan de Bere, Sam; Petersen, Alan

    2006-07-01

    Radical changes in medical research and education have recently led to a number of innovative developments in terms of how human anatomy is represented and understood. New ways of introducing medical students to anatomy (including living anatomies and virtual simulations) have provoked widespread debate, with discussion of their relative merits compared to more traditional approaches that use cadaveric dissection. Outside the field of medicine, in the wider public sphere, the practice of anatomical study may often seem mysterious. The dissemination of news on anatomy, we contend, is central to the question of how medical researchers and educators engage with the public. Our analysis of news media coverage in the UK demonstrates that news-making, by giving prominence to certain facts, themes and images, serves to mask issues about anatomy and its practices that need debate. We examine the ways in which news media, through processes of selection and the 'framing' of issues, may perform an agenda-setting role. We draw attention to the use of positive 'awe and amazement' frames including 'miracles of modern science', 'medical heroes', and 'gifts of life', alongside more negative 'guts and gore' coverage including 'Frankenstein', 'Brave New World' and 'Rape of the Body' frames that concentrate on high profile scandals associated with the use and misuse of human bodies, tissues and parts. We also highlight the selective use of commentaries from members of the medical profession, which are more prevalent in positive 'awe and amazement' stories than in stories with negative coverage. We conclude by arguing for greater collaboration between journalists on the one hand, and medical educators and researchers on the other, in the making of news in order to provide portrayals of anatomy which bear a closer relationship to the everyday reality of professional work.

  14. Alternative uses of didactics scripts and anatomy models in the teaching-learning in practical human anatomy

    OpenAIRE

    Gleidially Nayara Bezerra Moraes; Paulo Adriano Schwingel; Edivaldo Xavier Silva Júnior

    2016-01-01

    The teaching and learning process is complex and difficult presented with respect to the human anatomy. Thus, the improvement of teaching resources applied to the teaching of this discipline, shows up as a satisfactory trend and encourages student participation as an active subject in the search for new informations, giving essential support teaching-learning process. The aim of the study was to verify the existence and utilization of teaching scripts and anatomical models in practicals class...

  15. Simulation of radiofrequency ablation in real human anatomy.

    Science.gov (United States)

    Zorbas, George; Samaras, Theodoros

    2014-12-01

    The objective of the current work was to simulate radiofrequency ablation treatment in computational models with realistic human anatomy, in order to investigate the effect of realistic geometry in the treatment outcome. The body sites considered in the study were liver, lung and kidney. One numerical model for each body site was obtained from Duke, member of the IT'IS Virtual Family. A spherical tumour was embedded in each model and a single electrode was inserted into the tumour. The same excitation voltage was used in all cases to underline the differences in the resulting temperature rise, due to different anatomy at each body site investigated. The same numerical calculations were performed for a two-compartment model of the tissue geometry, as well as with the use of an analytical approximation for a single tissue compartment. Radiofrequency ablation (RFA) therapy appears efficient for tumours in liver and lung, but less efficient in kidney. Moreover, the time evolution of temperature for a realistic geometry differs from that for a two-compartment model, but even more for an infinite homogenous tissue model. However, it appears that the most critical parameters of computational models for RFA treatment planning are tissue properties rather than tissue geometry. Computational simulations of realistic anatomy models show that the conventional technique of a single electrode inside the tumour volume requires a careful choice of both the excitation voltage and treatment time in order to achieve effective treatment, since the ablation zone differs considerably for various body sites.

  16. Georg N. Koskinas (1885-1975) and his scientific contributions to the normal and pathological anatomy of the human brain.

    Science.gov (United States)

    Triarhou, Lazaros C

    2005-12-30

    Georg N. Koskinas is invariably recognised by neuroanatomists as Constantin von Economo's co-author on the celebrated Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen, published 80 years ago in Vienna and Berlin. That text and Atlas are generally accepted as a monumental landmark in the evolution of morphological brain research. A number of neuroanatomists and neurophysiologists continue to use to this day the parcellation scheme of the cerebral cortex into 107 areas, proposed by von Economo and Koskinas (and logically denoted by alphabetical characters from the initials of the respective lobes), despite the commoner adoption of Brodmann's scheme of 52, randomly numbered, areas. Several works have been written about the life and work of von Economo; on the other hand, virtually nothing can be found in the biomedical literature about Koskinas. This study aims at posthumously restoring part of the fame due this illustrious man of 20th century science -- and giant figure of brain anatomy -- whom history has not treated in the fairest of ways. We present newly gathered biographical data, as well as lesser known aspects of his scientific productivity. Koskinas' neuropathological studies, in collaboration with Ernst Sträussler -- of Gerstmann-Sträussler-Scheinker disease fame -- include findings from patients inoculated with malaria as a form of therapy for progressive general paresis (research related to psychiatrist Wagner von Jauregg's 1927 Nobel Prize), colloid degeneration, and the laminar distribution of status spongiosus lesions. Koskinas' neuropsychiatric activities in Greece upon his return from Vienna in 1927, and until his parting in 1975, are further related, including his successful -- and "Hippocratic" -- practice in the suburbs of Athens, his association with the Vogt Institute for Brain Research at Neustadt, and lesser known neuroanatomical works.

  17. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    Science.gov (United States)

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  18. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature

    Directory of Open Access Journals (Sweden)

    Aslihan Selimbeyoglu

    2010-05-01

    Full Text Available In this review, we summarize the subjective experiential phenomena and behavioral changes that are caused by electrical stimulation of the cerebral cortex or subcortical nuclei in awake and conscious human subjects. Our comprehensive review contains a detailed summary of the data obtained from electrical brain stimulation (EBS in humans in the last 100 years. Findings from the EBS studies may provide an additional layer of information about the neural correlates of cognition and behavior in healthy human subjects, or the neuroanatomy of illusions and hallucinations in patients with psychosis, and the anatomy of seizure signs and symptoms in patients with epilepsy. In addition to a comprehensive overview of published reports in the last hundred years, we discuss some of the fundamental concepts, issues, and remaining questions that have defined the field of EBS. We also review the current state of knowledge about the mechanism of action of EBS suggesting that the modulation of activity within a localized, but distributed, neuroanatomical network might explain the perceptual and behavioral phenomena that are reported during focal electrical stimulation of the human brain.

  19. The place of surface anatomy in the medical literature and undergraduate anatomy textbooks.

    Science.gov (United States)

    Azer, Samy A

    2013-01-01

    The aims of this review were to examine the place of surface anatomy in the medical literature, particularly the methods and approaches used in teaching surface and living anatomy and assess commonly used anatomy textbooks in regard to their surface anatomy contents. PubMed and MEDLINE databases were searched using the following keywords "surface anatomy," "living anatomy," "teaching surface anatomy," "bony landmarks," "peer examination" and "dermatomes". The percentage of pages covering surface anatomy in each textbook was calculated as well as the number of images covering surface anatomy. Clarity, quality and adequacy of surface anatomy contents was also examined. The search identified 22 research papers addressing methods used in teaching surface anatomy, 31 papers that can help in the improvement of surface anatomy curriculum, and 12 anatomy textbooks. These teaching methods included: body painting, peer volunteer surface anatomy, use of a living anatomy model, real time ultrasound, virtual (visible) human dissector (VHD), full body digital x-ray of cadavers (Lodox(®) Statscan(®) images) combined with palpating landmarks on peers and the cadaver, as well as the use of collaborative, contextual and self-directed learning. Nineteen of these studies were published in the period from 2006 to 2013. The 31 papers covered evidence-based and clinically-applied surface anatomy. The percentage of surface anatomy in textbooks' contents ranged from 0 to 6.2 with an average of 3.4%. The number of medical illustrations on surface anatomy varied from 0 to 135. In conclusion, although there has been a progressive increase in publications addressing methods used in teaching surface anatomy over the last six to seven years, most anatomy textbooks do not provide students with adequate information about surface anatomy. Only three textbooks provided a solid explanation and foundation of understanding surface anatomy. © 2013 American Association of Anatomists.

  20. An Interactive Method for Teaching Anatomy of the Human Eye for Medical Students in Ophthalmology Clinical Rotations

    Science.gov (United States)

    Kivell, Tracy L.; Doyle, Sara K.; Madden, Richard H.; Mitchell, Terry L.; Sims, Ershela L.

    2009-01-01

    Much research has shown the benefits of additional anatomical learning and dissection beyond the first year of medical school human gross anatomy, all the way through postgraduate medical training. We have developed an interactive method for teaching eye and orbit anatomy to medical students in their ophthalmology rotation at Duke University…

  1. Transforming Anatomy

    OpenAIRE

    Hall, Anndee

    2017-01-01

    Abstract: Transforming Anatomy Studying historic books allows people to witness the transformation of the world right before their very eyes. The Bruxellensis Icones Anatomicae[1] by Andreas Vesalius is a vital piece of evidence in the movement from a more rudimentary understanding of the human body into the more complex and accurate development of modern anatomy. Vesalius’ research worked to both refute and confirm findings of his predecessor, the great historical Greek philosopher, Galen...

  2. The effectiveness and user perception of 3-dimensional digital human anatomy in an online undergraduate anatomy laboratory

    Science.gov (United States)

    Hilbelink, Amy Joanne

    2007-12-01

    The primary purpose of this study was to determine the effectiveness of implementing desktop 3-dimensional (3D) stereo images of human anatomy into an undergraduate human anatomy distance laboratory. User perceptions of 2D and 3D images were gathered via questionnaire in order to determine ease of use and level of satisfaction associated with the 3D software in the online learning environment. Mayer's (2001, p. 184) principles of design were used to develop the study materials that consisted of PowerPoint presentations and AVI files accessed via Blackboard. The research design employed a mixed-methods approach. Volunteers each were administered a demographic survey and were then stratified into groups based upon pre-test scores. A total sample size of 62 pairs was available for combined data analysis. Quantitative research questions regarding the effectiveness of 2D versus the 3D treatment were analyzed using a doubly-multivariate repeated measures (Doubly-MANOVA) design. Paired test scores achieved by undergraduates on a laboratory practical of identification and spatial relationships of the bones and features of a human skull were used in the analysis. The questionnaire designed to gather user perceptions consisted of quantitative and qualitative questions. Response frequencies were analyzed for the two groups and common themes were noted. Results revealed a statistically significant difference in group means for the main effect of the treatment groups 2D and 3D and for the variables of identification and relationship with the 3D group outperforming the 2D group on both dependent variables. Effect sizes were determined to be small, 0.215 for the identification variable and 0.359 for the relationship variable. Overall, all students liked the convenience of using PowerPoint and AVI files online. The 3D group felt their PowerPoint was more realistic than did the 2D group and both groups appreciated the detailed labeling of the online images. One third of the

  3. The Utility of Cadaver-Based Approaches for the Teaching of Human Anatomy: A Survey of British and Irish Anatomy Teachers

    Science.gov (United States)

    Balta, Joy Y.; Cronin, Michael; Cryan, John F.; O'Mahony, Siobhain M.

    2017-01-01

    Utilizing reality anatomy such as dissection and demonstrating using cadavers has been described as a superior way to create meaning. The chemicals used to embalm cadavers differentially alter the tissue of the human body, which has led to the usage of different processes along the hard to soft-fixed spectrum of preserved cadavers. A questionnaire…

  4. Tracheobronchial Cast Production and Use in an Undergraduate Human Anatomy Course

    Science.gov (United States)

    Cope, Lee Anne

    2008-01-01

    Silastic E RTV silicone was used to produce tracheobronchial cast for use in an undergraduate human anatomy course. Following air-drying, the trachea and lungs were injected with E RTV silicone and allowed to cure for 24 hr. The parenchyma was then removed from the tracheobronchial cast by maceration and boiling and then whitened in a 10% solution…

  5. Development of the Young Brain

    Medline Plus

    Full Text Available ... 3 items) Mental Health Services Research (4 items) Genetics (3 items) Brain Anatomy and Physiology (13 items) ... 3 items) Mental Health Services Research (4 items) Genetics (3 items) Brain Anatomy and Physiology (13 items) ...

  6. Quantitative Susceptibility Mapping of Human Brain Reflects Spatial Variation in Tissue Composition

    Science.gov (United States)

    Li, Wei; Wu, Bing; Liu, Chunlei

    2011-01-01

    Image phase from gradient echo MRI provides a unique contrast that reflects brain tissue composition variations, such as iron and myelin distribution. Phase imaging is emerging as a powerful tool for the investigation of functional brain anatomy and disease diagnosis. However, the quantitative value of phase is compromised by its nonlocal and orientation dependent properties. There is an increasing need for reliable quantification of magnetic susceptibility, the intrinsic property of tissue. In this study, we developed a novel and accurate susceptibility mapping method that is also phase-wrap insensitive. The proposed susceptibility mapping method utilized two complementary equations: (1) the Fourier relationship of phase and magnetic susceptibility; and (2) the first-order partial derivative of the first equation in the spatial frequency domain. In numerical simulation, this method reconstructed the susceptibility map almost free of streaking artifact. Further, the iterative implementation of this method allowed for high quality reconstruction of susceptibility maps of human brain in vivo. The reconstructed susceptibility map provided excellent contrast of iron-rich deep nuclei and white matter bundles from surrounding tissues. Further, it also revealed anisotropic magnetic susceptibility in brain white matter. Hence, the proposed susceptibility mapping method may provide a powerful tool for the study of brain physiology and pathophysiology. Further elucidation of anisotropic magnetic susceptibility in vivo may allow us to gain more insight into the white matter microarchitectures. PMID:21224002

  7. Changing undergraduate human anatomy and physiology laboratories: perspectives from a large-enrollment course.

    Science.gov (United States)

    Griff, Edwin R

    2016-09-01

    In the present article, a veteran lecturer of human anatomy and physiology taught several sections of the laboratory component for the first time and shares his observations and analysis from this unique perspective. The article discusses a large-enrollment, content-heavy anatomy and physiology course in relationship to published studies on learning and student self-efficacy. Changes in the laboratory component that could increase student learning are proposed. The author also points out the need for research to assess whether selective curricular changes could increase the depth of understanding and retention of learned material. Copyright © 2016 The American Physiological Society.

  8. The Cerefy registered clinical brain atlas on CD-ROM. Based on the classic Talairach-Tournoux and Schaltenbrand-Wahren brain atlases. 2. ed.

    International Nuclear Information System (INIS)

    Nowinski, W.L.; Thirunavuukarasuu, A.

    2001-01-01

    This remarkable CD-ROM provides enhanced and extended versions of three world-famous Thieme atlases, (Schaltenbrand and Wahren's Atlas for Stereotaxy of the Human Brain, Talairach and Tournoux's Co-Planar Stereotaxis Atlas of the Human Brain and Referentially Oriented Cerebral MRI Anatomy). It contains the electronic atlases as well as an easy navigation system to facilitate searching for and displaying more than 525 anatomical structures. Revolutionizing the field of brain anatomy, the authors have segmented, labeled, and cross referenced all the information contained in the books, and created contours for all three atlases. The Cerefy registered Clinical Brain Atlas now allows you to electronically navigate these atlases simultaneously on axial, coronal, and sagittal planes, and enjoy the ability to: 1. Access 210 high-quality, fully segmented, and labeled atlas images with corresponding contours, 2. Display and manipulate spatially co-registered atlases, 3. Dynamically label images with structure names and descriptions, and then highlight selected structures in the atlas image, 4. Image zoom in five different levels, mensurate, search, set triplanar, get coordinates, save, and print, 5. Access on-line help, glossary, and supportive atlas materials. (orig.)

  9. Development of the Young Brain

    Medline Plus

    Full Text Available ... Services Research (4 items) Genetics (3 items) Brain Anatomy and Physiology (13 items) RDoC (5 items) Research ... Services Research (4 items) Genetics (3 items) Brain Anatomy and Physiology (13 items) RDoC (5 items) Research ...

  10. Development of the Young Brain

    Medline Plus

    Full Text Available ... 4 items) Genetics (3 items) Brain Anatomy and Physiology (13 items) RDoC (5 items) Research Funding (2 ... 4 items) Genetics (3 items) Brain Anatomy and Physiology (13 items) RDoC (5 items) Research Funding (2 ...

  11. Soul Anatomy: A virtual cadaver

    Directory of Open Access Journals (Sweden)

    Moaz Bambi

    2014-01-01

    Full Text Available In the traditional science of medicine and medical education, teaching human anatomy in the class has always been done using human cadavers. Not only does this violate human sanctity, but according to our research, it is not adequate to provide students with the alleged educational value that it is supposed to deliver. It is very cumbersome to organise all the aspects of cadaver care. Cadavers are also very limited when it comes to controlling their structures and any benefit is almost completely altered the first time the cadaver is used (dissected, and ironically, it is very weak at delivering actual real-life scenarios of a human body to students. Virtual anatomy has been a promising solution that many are counting on. But even today, we have not found a complete solution that combines all the benefits of using human cadavers and those introduced by its technical counterparts. "Soul Anatomy" aims to do just that. It brings the best of all worlds, from a natural intuitive control system, life-like feel of organs, precise accuracy in moving and controlling bodily structures, to the smallest details of being able to show medical information overlays from various medical databases connected to the internet; thus making use of technology in teaching human anatomy by providing a modern learning experience.

  12. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    Science.gov (United States)

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  13. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.

    Science.gov (United States)

    Fins, Joseph J; Shapiro, Zachary E

    2014-01-01

    Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine.

  14. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI

    Directory of Open Access Journals (Sweden)

    Matteo eBastiani

    2015-06-01

    Full Text Available The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso- and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these.

  15. Organization of educational process at the department of human anatomy of Saratov State Medical University n.a. V. I. Razumovsky

    Directory of Open Access Journals (Sweden)

    Bugaeva I0

    2017-06-01

    Full Text Available Human anatomy is one of the basic disciplines in the system of medical education. Knowledge in this area is necessary for the development of related theoretical subjects and constitutes a basis for studying clinical disciplines. Therefore the priority task of department of human anatomy is qualitative training of students at the modern level using classical and innovative pedagogical and computer technologies, being based on competence-based approach to training. In the article the features of organization of educational process at department of Human Anatomy of Saratov State Medical University n.a. V. I. Razumovsky, within the Federal state educational standard of the 3rd generation which key differences are considered: acquisition by students of cultural and professional competences.

  16. Development of the Young Brain

    Medline Plus

    Full Text Available ... Services Research (4 items) Genetics (3 items) Brain Anatomy and Physiology (13 items) RDoC (5 items) Research Funding (2 ... Services Research (4 items) Genetics (3 items) Brain Anatomy and Physiology (13 items) RDoC (5 items) Research Funding (2 ...

  17. The effect of pre-mutation of X chromosome CGG trinucleotide repeats on brain anatomy.

    Science.gov (United States)

    Moore, Caroline J; Daly, Eileen M; Tassone, Flora; Tysoe, Carolyn; Schmitz, Nicole; Ng, Virginia; Chitnis, Xavier; McGuire, Philip; Suckling, John; Davies, Kay E; Hagerman, Randi J; Hagerman, Paul J; Murphy, Kieran C; Murphy, Declan G M

    2004-12-01

    Expanded trinucleotide repeats are associated with several neuropsychiatric disorders, including fragile X syndrome (FraX) which is the most common inherited form of mental retardation. It is currently thought that FraX results from having >200 CGG trinucleotide repeats, with consequent methylation of the fragile X mental retardation gene (FMR1) and loss of FMR1 protein (FMRP). Pre-mutation carriers of FraX (with 55-200 CGG trinucleotide repeats) were originally considered unaffected, although recent studies challenge this view. However, there are few studies on the effect of pre-mutation trinucleotide repeat expansion on the male human brain using quantitative MRI. Also the results of prior investigations may be confounded because people were selected on the basis of clinical and neurological features, and not genetic phenotype. We compared the brain anatomy of 20 adult male pre-mutation members of known FraX families with 20 healthy male controls. The two groups did not differ significantly in age, intelligence quotient (IQ) or handedness. We also investigated whether any observed effects were associated with: (i) ageing; (ii) expansion of pre-mutation CGG trinucleotide repeats; (iii) reduction in the percentage of lymphocytes staining with anti-FMRP antibodies [%FMRP(+) lymphocytes]; and (iv) elevation of FMR1 mRNA levels. Male pre-mutation carriers of FraX, compared with matched controls, had significantly less voxel density in several brain regions, including the cerebellum, amygdalo-hippocampal complex and thalamus. Within pre-mutation carriers of FraX, ageing, increases in the number of CGG trinucleotide repeats and decreases in %FMRP(+) lymphocytes were associated with decreasing voxel density of regions previously identified as decreased relative to controls. Regional grey and white matter density is significantly affected in male pre-mutation carriers of FraX recruited on the basis of genetic, not clinical, phenotype. The association of voxel density

  18. Near-peer teaching strategy in a large human anatomy course: perceptions of near-peer instructors.

    Science.gov (United States)

    Reyes-Hernández, Cynthia Guadalupe; Carmona Pulido, Juan Manuel; De la Garza Chapa, Roberto Isaac; Serna Vázquez, Ruth Patricia; Alcalá Briones, Ricardo Daniel; Plasencia Banda, Perla Marina; Villarreal Silva, Eliud Enrique; Jacobo Baca, Guillermo; de la Garza Castro, Oscar; Elizondo Omaña, Rodrigo Enrique; Guzmán López, Santos

    2015-01-01

    Near-peer teaching (NPT) is a strategy in which senior students assume the instructor role with junior peers (mentees). Senior students develop unique skills and knowledge through NPT, an experience which extends their learning beyond content mastery. Different teaching modules featuring NPT were utilized in the human anatomy course at the School of Medicine, Autonomous University of Nuevo Leon in Monterrey, Mexico. Modules included: Theory, Clinical Hour, Imaging Anatomy, and Laboratory. The aim of this study was to assess instructor participants' perceptions on the benefits of the NPT strategy in the anatomy classroom. A survey was administered to anatomy course instructors who utilized NPT strategies during winter, fall, and spring semesters of the 2012-2013 school year. A total of 120 instructors were enrolled in the study. There were different perceptions of instructors' roles. Theory and Imaging Anatomy instructors considered themselves to be information providers and resource developers, whereas Clinical Hour and Laboratory instructors saw themselves more as facilitators, role models, and planners. All instructors' opinions on the benefits of NPT were positive. Thus, in this article, the authors find NPT to be a strategy that promotes self-learning, a vital skill. © 2014 American Association of Anatomists.

  19. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  20. The use of MR B{sup +}{sub 1} imaging for validation of FDTD electromagnetic simulations of human anatomies

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Cornelis A T van den [Department of Radiotherapy, University Medical Center Utrecht, PO Box 85500, HP Q.00.118 3508 GA Utrecht (Netherlands); Bartels, Lambertus W [Department of Radiology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht (Netherlands); Bergen, Bob van den [Department of Radiotherapy, University Medical Center Utrecht, PO Box 85500, HP Q.00.118 3508 GA Utrecht (Netherlands); Kroeze, Hugo [Department of Radiotherapy, University Medical Center Utrecht, PO Box 85500, HP Q.00.118 3508 GA Utrecht (Netherlands); Leeuw, Astrid A C de [Department of Radiotherapy, University Medical Center Utrecht, PO Box 85500, HP Q.00.118 3508 GA Utrecht (Netherlands); Kamer, Jeroen B van de [Department of Radiotherapy, Amsterdam Medical Center, Amsterdam, PO Box 22660, 1100 DD Amsterdam (Netherlands); Lagendijk, Jan J W [Department of Radiotherapy, University Medical Center Utrecht, PO Box 85500, HP Q.00.118 3508 GA Utrecht (Netherlands)

    2006-10-07

    In this study, MR B{sup +}{sub 1} imaging is employed to experimentally verify the validity of FDTD simulations of electromagnetic field patterns in human anatomies. Measurements and FDTD simulations of the B{sup +}{sub 1} field induced by a 3 T MR body coil in a human corpse were performed. It was found that MR B{sup +}{sub 1} imaging is a sensitive method to measure the radiofrequency (RF) magnetic field inside a human anatomy with a precision of approximately 3.5%. A good correlation was found between the B{sup +}{sub 1} measurements and FDTD simulations. The measured B{sup +}{sub 1} pattern for a human pelvis consisted of a global, diagonal modulation pattern plus local B{sup +}{sub 1} heterogeneties. It is believed that these local B{sup +}{sub 1} field variations are the result of peaks in the induced electric currents, which could not be resolved by the FDTD simulations on a 5 mm{sup 3} simulation grid. The findings from this study demonstrate that B{sup +}{sub 1} imaging is a valuable experimental technique to gain more knowledge about the dielectric interaction of RF fields with the human anatomy.

  1. Is the decline of human anatomy hazardous to medical education/profession?--A review.

    Science.gov (United States)

    Singh, Rajani; Shane Tubbs, R; Gupta, Kavita; Singh, Man; Jones, D Gareth; Kumar, Raj

    2015-12-01

    The continuous decrease in teaching time, the artificially created scarcity of competent anatomical faculties and a reduced allocation of resources have brought about the decline of anatomy in medical education. As a result of this, anatomical knowledge and the standard of medical education have fallen with consequences including safety in clinical practice. The aim of the present study is to analyze this declining phase of anatomy and its impact on medical education and to consider corrective measures. This article expresses comparative viewpoints based on a review of the literature. Anatomy enables doctors to master the language of medical science so they can communicate with patients, the public and fellow doctors and diagnose and treat diseases successfully in all medical fields. No medical specialist or expert can master their field without adequate knowledge of human anatomy. The shrinkage of anatomical schedules, inadequate faculties and declining allocation of resources is therefore unfortunate. These factors produce stress in both student and faculty creating gaps in anatomical knowledge that means insufficient skill is developed to practice medicine safely. This decline is hazardous not only to the medical profession but also to society. Reforms consisting of balanced rescheduling of medical curricula and optimum resource allocation have been proposed to improve the standard of education of doctors.

  2. Locomotion and basicranial anatomy in primates and marsupials.

    Science.gov (United States)

    Villamil, Catalina I

    2017-10-01

    There is ongoing debate in paleoanthropology about whether and how the anatomy of the cranium, and especially the cranial base, is evolving in response to locomotor and postural changes. However, the majority of studies focus on two-dimensional data, which fails to capture the complexity of cranial anatomy. This study tests whether three-dimensional cranial base anatomy is linked to locomotion or to other factors in primates (n = 473) and marsupials (n = 231). Results indicate that although there is a small effect of locomotion on cranial base anatomy in primates, this is not the case in marsupials. Instead, facial anatomy likely drives variation in cranial base anatomy in both primates and marsupials, with additional roles for body size and brain size. Although some changes to foramen magnum position and orientation are phylogenetically useful among the hominoids, they do not necessarily reflect locomotion or positional behavior. The interplay between locomotion, posture, and facial anatomy in primates requires further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Felix Vicq d'Azyr: anatomy, medicine and revolution.

    Science.gov (United States)

    Parent, André

    2007-02-01

    Félix Vicq d'Azyr was born in 1748 in the small town of Valognes, Normandy. He studied medicine in Paris but he was particularly impressed by the lectures given at the Jardin du Roi by the comparative anatomist Louis Daubenton and the surgeon Antoine Petit. In 1773, Vicq d'Azyr initiated a series of successful lectures on human and animal anatomy at the Paris Medical School, from which he received his medical degree in 1774. He was elected the same year at the Academy of Sciences at age 26, thanks to his outstanding contributions to comparative anatomy. Vicq d'Azyr became widely known after his successful management of a severe cattle plague that occurred in the southern part of France in 1774, an event that led to the foundation of the Royal Society of Medicine in 1778. As Permanent Secretary of this society, Vicq d'Azyr wrote several eulogies that were models of eloquence and erudition and worth him a seat at the French Academy in 1788. Vicq d'Azyr published in 1786 a remarkable anatomy and physiology treatise: a large in-folio that contained original descriptions illustrated by means of nature-sized, colored, human brain figures of a quality and exactitude never attained before. In 1789, Vicq d'Azyr was appointed physician to the Queen Marie-Antoinette and, in 1790, he presented to the Constituent Assembly a decisive plan to reform the teaching of medicine in France. Unfortunately, Vicq d'Azyr did not survive the turmoil of the French Revolution; he died at age 46 on June 20, 1794.

  4. Practical session assessments in human anatomy: Weightings and performance.

    Science.gov (United States)

    McDonald, Aaron C; Chan, Siew-Pang; Schuijers, Johannes A

    2016-07-08

    Assessment weighting within a given module can be a motivating factor for students when deciding on their commitment level and time given to study a specific topic. In this study, an analysis of assessment performances of second year anatomy students was performed over four years to determine if (1) students performed better when a higher weighting was given to a set of practical session assessments and (2) whether an improved performance in the practical session assessments had a carry-over effect on other assessment tasks within that anatomy module and/or other anatomy modules that follow. Results showed that increasing the weighting of practical session assessments improved the average mark in that assessment and also improved the percentage of students passing that assessment. Further, it significantly improved performance in the written end-semester examination within the same module and had a carry-over effect on the anatomy module taught in the next teaching period, as students performed better in subsequent practical session assessments as well as subsequent end-semester examinations. It was concluded that the weighting of assessments had significant influences on a student's performance in that, and subsequent, assessments. It is postulated that practical session assessments, designed to develop deep learning skills in anatomy, improved efficacy in student performance in assessments undertaken in that and subsequent anatomy modules when the weighting of these assessments was greater. These deep learning skills were also transferable to other methods of assessing anatomy. Anat Sci Educ 9: 330-336. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.

  5. Audio-Tutorial Project: An Audio-Tutorial Approach to Human Anatomy and Physiology.

    Science.gov (United States)

    Muzio, Joseph N.; And Others

    A two course sequence on human anatomy and physiology using the audiotutorial method of instruction was developed for use by nursing students and other students in the health or medical fields at the Kingsborough Community College in New York. The project was motivated by the problems of often underprepared students coming to learn a new field and…

  6. Quantification of human upper extremity nerves and fascicular anatomy.

    Science.gov (United States)

    Brill, Natalie A; Tyler, Dustin J

    2017-09-01

    In this study we provide detailed quantification of upper extremity nerve and fascicular anatomy. The purpose is to provide values and trends in neural features useful for clinical applications and neural interface device design. Nerve cross-sections were taken from 4 ulnar, 4 median, and 3 radial nerves from 5 arms of 3 human cadavers. Quantified nerve features included cross-sectional area, minor diameter, and major diameter. Fascicular features analyzed included count, perimeter, area, and position. Mean fascicular diameters were 0.57 ± 0.39, 0.6 ± 0.3, 0.5 ± 0.26 mm in the upper arm and 0.38 ± 0.18, 0.47 ± 0.18, 0.4 ± 0.27 mm in the forearm of ulnar, median, and radial nerves, respectively. Mean fascicular diameters were inversely proportional to fascicle count. Detailed quantitative anatomy of upper extremity nerves is a resource for design of neural electrodes, guidance in extraneural procedures, and improved neurosurgical planning. Muscle Nerve 56: 463-471, 2017. © 2016 Wiley Periodicals, Inc.

  7. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    Science.gov (United States)

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  8. Audiovisual Material as Educational Innovation Strategy to Reduce Anxiety Response in Students of Human Anatomy

    Science.gov (United States)

    Casado, Maria Isabel; Castano, Gloria; Arraez-Aybar, Luis Alfonso

    2012-01-01

    This study presents the design, effect and utility of using audiovisual material containing real images of dissected human cadavers as an innovative educational strategy (IES) in the teaching of Human Anatomy. The goal is to familiarize students with the practice of dissection and to transmit the importance and necessity of this discipline, while…

  9. The Cerefy Atlas of brain anatomy. An interactive reference tool for students, teachers and researchers

    International Nuclear Information System (INIS)

    Nowinski, W.L.; Thirunavuukarasuu, A.; Bryan, R.N.

    2002-01-01

    The Cerefy registered Atlas of Brain Anatomy is a remarkable accomplishment combining the best of current neuroanatomical methodology with the amazing capability of the modern personal computer. This CD-ROM not only demonstrates the power of digital technology, but also provides a view of the future of medical education. Through the use of magnetic resonance images (MRI) combined with interactive image labeling it is possible to use this CD-ROM to rapidly name any structure within the brain in three planes of section presented simultaneously. With the simple click of a mouse of most intricate of brain structures can be identified in sagittal, axial, and coronal planes. By selecting the ''label'' function, whatever brain structure the cursor is placed upon is named in real time. It is possible to literally browse across the brain and watch every structure that is touched be named on the screen as fast as you can move the cursor. This incredible functionality is further enhanced by the ability to select the test mode and provide a self-guided quiz of neuroanatomy. This atlas is perfect for preparing teaching materials as it also contains a ''save'' function to preserve labeled images. This low-cost CD-ROM will no doubt be used by those who study and/or teach neuroanatomy, neurology, neurosurgery, neuroradiology, neuroscience, neuropsychology, and psychiatry. This unique contribution to the field of neuroanatomy is a most impressive accomplishment. (orig.)

  10. Premutation female carriers of fragile X syndrome: a pilot study on brain anatomy and metabolism.

    Science.gov (United States)

    Murphy, D G; Mentis, M J; Pietrini, P; Grady, C L; Moore, C J; Horwitz, B; Hinton, V; Dobkin, C S; Schapiro, M B; Rapoport, S I

    1999-10-01

    It was thought that premutation carriers of fragile X syndrome (FraX) have no neurobiological abnormalities, but there have been no quantitative studies of brain morphometry and metabolism. Thus the authors investigated brain structure and metabolism in premutation carriers of FraX. Eight normal IQ, healthy female permutation FraX carriers aged 39 +/- 9 years (mean +/- SD) and 32 age-sex-handedness-matched controls (39 +/- 10 years) were studied; in vivo brain morphometry was measured using volumetric magnetic resonances imaging, and regional cerebral metabolic rates for glucose were measured using positron emission tomography and (18F)-2-fluoro-2-deoxy-D-glucose. Compared with controls, FraX premutation carriers had a significant (1) decrease in volume of whole brain, and caudate and thalamic nuclei bilaterally; (2) increase in volume of hippocampus and peripheral CSF bilaterally, and third ventricle; (3) relative hypometabolism of right parietal, temporal, and occipital association areas; (4) bilateral relative hypermetabolism of hippocampus; (5) relative hypermetabolism of left cerebellum; and (6) difference in right-left asymmetry of the Wernicke and Broca language areas. Premutation carriers of FraX, as defined by analysis of peripheral lymphocytes, have abnormalities in brain anatomy and metabolism. The biological basis for this is unknown, but most likely it includes tissue heterogeneity for mutation status. The findings may be of relevance to people counseling families with FraX and to understanding other neuropsychiatric disorders which are associated with expansion of triplet repeats and genetic anticipation.

  11. The Cerefy Atlas of brain anatomy. An interactive reference tool for students, teachers and researchers

    Energy Technology Data Exchange (ETDEWEB)

    Nowinski, W.L.; Thirunavuukarasuu, A.; Bryan, R.N.

    2002-07-01

    The Cerefy {sup registered} Atlas of Brain Anatomy is a remarkable accomplishment combining the best of current neuroanatomical methodology with the amazing capability of the modern personal computer. This CD-ROM not only demonstrates the power of digital technology, but also provides a view of the future of medical education. Through the use of magnetic resonance images (MRI) combined with interactive image labeling it is possible to use this CD-ROM to rapidly name any structure within the brain in three planes of section presented simultaneously. With the simple click of a mouse of most intricate of brain structures can be identified in sagittal, axial, and coronal planes. By selecting the ''label'' function, whatever brain structure the cursor is placed upon is named in real time. It is possible to literally browse across the brain and watch every structure that is touched be named on the screen as fast as you can move the cursor. This incredible functionality is further enhanced by the ability to select the test mode and provide a self-guided quiz of neuroanatomy. This atlas is perfect for preparing teaching materials as it also contains a ''save'' function to preserve labeled images. This low-cost CD-ROM will no doubt be used by those who study and/or teach neuroanatomy, neurology, neurosurgery, neuroradiology, neuroscience, neuropsychology, and psychiatry. This unique contribution to the field of neuroanatomy is a most impressive accomplishment. (orig.)

  12. Dancers' Perceived and Actual Knowledge of Anatomy.

    Science.gov (United States)

    Kotler, Dana H; Lynch, Meaghan; Cushman, Daniel; Hu, Jason; Garner, Jocelyn

    2017-06-15

    Dancers are highly susceptible to musculoskeletal injuries and frequently require interaction with medical professionals. While many dancers have a finely tuned awareness of their bodies, their knowledge of the fundamentals of human anatomy is not uniform. There is a paucity of literature on the benefits of human anatomy education in dancers, though it seems intuitive that there should be a relationship. The purpose of this study was to assess dancers' perceived and actual knowledge of basic musculoskeletal anatomy and its relationship to function. Adult dancers at the undergraduate, pre-professional, and professional levels were surveyed through an anonymous online questionnaire. Questions included demographic information, dance techniques studied, anatomy training, and injury history. Subjects rated their perceived knowledge of anatomy and were tested with 15 multiple-choice questions on basic musculoskeletal anatomy. Four hundred seventy-five surveys were completed. Ordinal regression showed a correlation of perceived to actual knowledge of anatomy (p < 0.001). Factors that correlated with increases in both perceived and actual knowledge of anatomy included having taken an anatomy course of any type (p < 0.001) and increased age (p ≤ 0.001). Years of dance training and professional dancer status both significantly correlated with increased knowledge of anatomy (p < 0.001) but not perceived knowledge. Chi-square analysis showed that dancers with training in either modern or jazz dance had a significantly higher perceived, but not actual, knowledge when compared to those without training in those styles of dance (p < 0.001 and p = 0.011, respectively). In conclusion, dancers generally scored well on questions pertaining to basic musculoskeletal anatomy, and their perception correlated with their actual knowledge of anatomy. Factors that contribute to dancers' knowledge of anatomy include age, years of experience, professional dancer status, and anatomy training.

  13. Student Performance in and Perceptions of a High Structure Undergraduate Human Anatomy Course

    Science.gov (United States)

    Shaffer, Justin F.

    2016-01-01

    Human anatomy has usually been taught in a didactic fashion in colleges and universities. However, recent calls from United States governmental agencies have called for the transformation of undergraduate life sciences education to include active learning in the classroom. In addition, high structure courses have been shown to increase student…

  14. Diffeomorphometry and geodesic positioning systems for human anatomy.

    Science.gov (United States)

    Miller, Michael I; Younes, Laurent; Trouvé, Alain

    2014-03-01

    The Computational Anatomy project has largely been a study of large deformations within a Riemannian framework as an efficient point of view for generating metrics between anatomical configurations. This approach turns D'Arcy Thompson's comparative morphology of human biological shape and form into a metrizable space. Since the metric is constructed based on the geodesic length of the flows of diffeomorphisms connecting the forms, we call it diffeomorphometry . Just as importantly, since the flows describe algebraic group action on anatomical submanifolds and associated functional measurements, they become the basis for positioning information, which we term geodesic positioning . As well the geodesic connections provide Riemannian coordinates for locating forms in the anatomical orbit, which we call geodesic coordinates . These three components taken together - the metric, geodesic positioning of information, and geodesic coordinates - we term the geodesic positioning system . We illustrate via several examples in human and biological coordinate systems and machine learning of the statistical representation of shape and form.

  15. A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease.

    Science.gov (United States)

    Bardinet, Eric; Bhattacharjee, Manik; Dormont, Didier; Pidoux, Bernard; Malandain, Grégoire; Schüpbach, Michael; Ayache, Nicholas; Cornu, Philippe; Agid, Yves; Yelnik, Jérôme

    2009-02-01

    The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

  16. "No interest in human anatomy as such": Frederic Wood Jones dissects anatomical investigation in the United States in the 1920s.

    Science.gov (United States)

    Jones, Ross L

    2014-03-01

    In 1926, Frederic Wood Jones, professor of Anatomy at the University of Adelaide and a leading figure in the British anatomical world, took a Rockefeller Foundation funded trip to the United States in order to inspect anatomy programmes and medical museums and to meet leading figures in the anatomical and anthropological world. His later reflections paint a picture of a discipline in transition. Physical anthropology and gross anatomy were coming to a crisis point in the United States, increasingly displaced by research in histology, embryology and radiological anatomy. Meanwhile, in Britain and its colonial outposts, anatomists such as Wood Jones were attempting to re-invigorate the discipline in the field, studying biological specimens as functional and active agents in their particular milieus, but with human dissection at the core. Thus, an examination of this trip allows us to see how the interaction between two traditions in anatomy informed the process of the development of human biology in this critical period. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Brain Activity and Human Unilateral Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  18. What Do the Public Know about Anatomy? Anatomy Education to the Public and the Implications

    Science.gov (United States)

    Taylor, Adam M.; Diggle, Peter; Wessels, Quenton

    2018-01-01

    Public knowledge of the anatomical "self" is lacking and evidence points towards a growing need for anatomy education to the wider public. The public were offered the opportunity to learn human anatomy and complete an anatomical knowledge survey afterwards. Sixty-three participants volunteered to attempt to place 20 anatomical structures…

  19. Why did humans develop a large brain?

    OpenAIRE

    Muscat Baron, Yves

    2012-01-01

    "Of all animals, man has the largest brain in proportion to his size"- Aristotle. Dr Yves Muscat Baron shares his theory on how humans evolved large brains. The theory outlines how gravity could have helped humans develop a large brain- the author has named the theory 'The Gravitational Vascular Theory'. http://www.um.edu.mt/think/why-did-humans-develop-a-large-brain/

  20. Orbita - Anatomy, development and deformities

    International Nuclear Information System (INIS)

    Hartmann, K.M.; Reith, W.; Golinski, M.; Schroeder, A.C.

    2008-01-01

    The development of the structures of the human orbita is very complex, but understanding the development makes it easier to understand normal anatomy and dysplasia. The following article first discusses the embryonic development of the eye structures and then presents the ''normal'' radiological anatomy using different investigation techniques and the most common deformities. (orig.) [de

  1. Nasal Anatomy

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Size + - Home > ANATOMY > Nasal Anatomy Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ...

  2. Sinus Anatomy

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Size + - Home > ANATOMY > Sinus Anatomy Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ...

  3. Magnetic resonance imaging (MRI) in obstetrics. II. Fetal anatomy.

    Science.gov (United States)

    Powell, M C; Worthington, B S; Buckley, J M; Symonds, E M

    1988-01-01

    Magnetic resonance imaging (MRI) was performed in 36 patients at between 10 and 38 weeks gestation to determine the fetal anatomy that could be identified at different gestations. Fetal motion significantly degraded the image quality in the first and second trimesters, but in the final trimester fetal anatomy was clearly demonstrated. T2 weighted sequences showed the fetal brain and lungs to have a high signal intensity. Shorter TR leading to a T1 weighting gave better resolution of the overall anatomy. MRI has revealed the potential for assessment of lung maturity and the growth-retarded fetus.

  4. Journal of Experimental and Clinical Anatomy

    African Journals Online (AJOL)

    The Journal of Experimental and Clinical Anatomy accepts for publication manuscripts of high standard containing reports of original scientific research in the morphology, mechanical functioning and development of man and animals. The scope the journal embraces articles of human and comparative anatomy, embryology ...

  5. Relevant radiological anatomy of the pig as a training model in interventional radiology

    International Nuclear Information System (INIS)

    Dondelinger, R.F.; Ghysels, M.P.; Brisbois, D.; Donkers, E.; Snaps, F.R.; Saunders, J.; Deviere, J.

    1998-01-01

    The use of swine for teaching purposes in medicine and surgery has largely increased in recent years. Detailed knowledge of the porcine anatomy and physiology is a prerequisite for proper use of pigs as a teaching or an experimental model in interventional radiology. A systematic study of the radiological anatomy was undertaken in more than 100 female pigs aged 6-8 weeks. All studies were performed under general anesthesia in a single session. Animals were sacrificed at the end of the study. Selective angiographies were systematically obtained in all anatomical territories. In other animals CT and MRI examinations were performed and were correlated to anatomical sections and acrylic casts of the vascular structures. Endoscopical examinations of the upper gastrointestinal tract, including retrograde opacification of the biliary and pancreatic ducts, were added in selected animals. The main angiographic aspects of the brain, head and neck, thorax, abdomen, and pelvis were recorded. Similarities and differences in comparison with human anatomy are stressed. Potential applications in interventional radiology are indicated. (orig.)

  6. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain.

    Science.gov (United States)

    Coles, Jonathan A; Myburgh, Elmarie; Brewer, James M; McMenamin, Paul G

    2017-09-01

    Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Human anatomy: let the students tell us how to teach.

    Science.gov (United States)

    Davis, Christopher R; Bates, Anthony S; Ellis, Harold; Roberts, Alice M

    2014-01-01

    Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e-learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small-group teaching with medically qualified demonstrators. Other teaching methods, including e-learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. © 2013 American Association of Anatomists.

  8. Porcine Tricuspid Valve Anatomy and Human Compatibility: Relevance for Preclinical Validation of Novel Valve Interventions.

    Science.gov (United States)

    Waziri, Farhad; Lyager Nielsen, Sten; Michael Hasenkam, John

    2016-09-01

    Tricuspid regurgitation may be a precursor for heart failure, reduced functional capacity, and poor survival. A human compatible experimental model is required to understand the pathophysiology of the tricuspid valve disease as a basis for validating novel tricuspid valve interventions before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin-fixed porcine hearts obtained from Danish Landrace pigs (body weight 80 kg). All valvular dimensions were compared with human data acquired from literature sources. No difference was seen in the tricuspid annulus circumference between porcine and human hearts (13.0 ± 1.2 cm versus 13.5 ± 1.5 cm; p = NS), or in valve area (5.7 ± 1.6 cm2 versus 5.6 ± 1.0 cm2; p = NS). The majority of chordae types exhibited a larger chordal length and thickness in human hearts compared to porcine hearts. In both species, the anterior papillary muscle (PM) was larger than other PMs in the right ventricle, but muscle length varied greatly (range: 5.2-40.3 mm) and was significantly different in pigs and in humans (12.2 ± 3.2 mm versus 19.2 mm; p human hearts.

  9. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    Science.gov (United States)

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  10. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  11. Drawing on student knowledge in human anatomy and physiology

    Science.gov (United States)

    Slominski, Tara Nicole

    Prior to instruction, students may have developed alternative conceptions about the mechanics behind human physiology. To help students re-shape these ideas into correct reasoning, the faulty characteristics reinforcing the alternative conceptions need to made explicit. This study used student-generated drawings to expose alternative conceptions Human Anatomy and Physiology students had prior to instruction on neuron physiology. Specifically, we investigated how students thought about neuron communication across a synapse (n=355) and how neuron activity can be modified (n=311). When asked to depict basic communication between two neurons, at least 80% of students demonstrated incorrect ideas about synaptic transmission. When targeting spatial and temporal summation, only eleven students (3.5%) were able to accurately depict at least one form of summation. In response to both drawing questions, student drawings revealed multiple alternative conceptions that resulted in a deeper analysis and characterization of the wide variation of student ideas.

  12. The use of porcine corrosion casts for teaching human anatomy.

    Science.gov (United States)

    Eberlova, Lada; Liska, Vaclav; Mirka, Hynek; Tonar, Zbynek; Haviar, Stanislav; Svoboda, Milos; Benes, Jan; Palek, Richard; Emingr, Michal; Rosendorf, Jachym; Mik, Patrik; Leupen, Sarah; Lametschwandtner, Alois

    2017-09-01

    In teaching and learning human anatomy, anatomical autopsy and prosected specimens have always been indispensable. However, alternative methods must often be used to demonstrate particularly delicate structures. Corrosion casting of porcine organs with Biodur E20 ® Plus is valuable for teaching and learning both gross anatomy and, uniquely, the micromorphology of cardiovascular, respiratory, digestive, and urogenital systems. Assessments of casts with a stereomicroscope and/or scanning electron microscope as well as highlighting cast structures using color coding help students to better understand how the structures that they have observed as two-dimensional images actually exist in three dimensions, and students found using the casts to be highly effective in their learning. Reconstructions of cast hollow structures from (micro-)computed tomography scans and videos facilitate detailed analyses of branching patterns and spatial arrangements in cast structures, aid in the understanding of clinically relevant structures and provide innovative visual aids. The casting protocol and teaching manual we offer can be adjusted to different technical capabilities and might also be found useful for veterinary or other biological science classes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Improving gross anatomy learning using reciprocal peer teaching

    OpenAIRE

    Manyama, Mange; Stafford, Renae; Mazyala, Erick; Lukanima, Anthony; Magele, Ndulu; Kidenya, Benson R.; Kimwaga, Emmanuel; Msuya, Sifael; Kauki, Julius

    2016-01-01

    Background The use of cadavers in human anatomy teaching requires adequate number of anatomy instructors who can provide close supervision of the students. Most medical schools are facing challenges of lack of trained individuals to teach anatomy. Innovative techniques are therefore needed to impart adequate and relevant anatomical knowledge and skills. This study was conducted in order to evaluate the traditional teaching method and reciprocal peer teaching (RPT) method during anatomy dissec...

  14. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    Science.gov (United States)

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  15. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy

    Directory of Open Access Journals (Sweden)

    Giedd Jay N

    2012-08-01

    Full Text Available Abstract Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI literature of male/female brain differences with emphasis on studies encompassing adolescence – a time of divergence in physical and behavioral characteristics. Across all ages total brain size is consistently reported to be about 10% larger in males. Structures commonly reported to be different between sexes include the caudate nucleus, amygdala, hippocampus, and cerebellum – all noted to have a relatively high density of sex steroid receptors. The direction and magnitude of reported brain differences depends on the methodology of data acquisition and analysis, whether and how the subcomponents are adjusted for the total brain volume difference, and the age of the participants in the studies. Longitudinal studies indicate regional cortical gray matter volumes follow inverted U shaped developmental trajectories with peak size occurring one to three years earlier in females. Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones. White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

  16. Microsurgical and Tractographic Anatomy of the Supplementary Motor Area Complex in Humans.

    Science.gov (United States)

    Bozkurt, Baran; Yagmurlu, Kaan; Middlebrooks, Erik H; Karadag, Ali; Ovalioglu, Talat Cem; Jagadeesan, Bharathi; Sandhu, Gauravjot; Tanriover, Necmettin; Grande, Andrew W

    2016-11-01

    To evaluate the microsurgical anatomy of the fiber tract connections of the supplementary motor area (SMA) and pre-SMA, and examine its potential functional role with reference to clinical trials in the literature. Ten postmortem formalin-fixed human brains (20 sides) and 1 cadaveric head were prepared following Klingler's method. The fiber dissection was performed in a stepwise fashion, from lateral to medial and also from medial to lateral, under an operating microscope, with 3D images captured at each stage. Our findings were supported by in vivo magnetic resonance imaging tractography in 2 healthy subjects. The connections of the SMA complex, composed of the pre-SMA and the SMA proper, are composed of short "U" association fibers and the superior longitudinal fasciculus I, cingulum, claustrocortical fibers, callosal fibers, corticospinal tract, frontal aslant tract, and frontostriatal tract. The claustrocortical fibers may play an important role in the integration of motor, language, and limbic functions of the SMA complex. The frontostriatal tract connects the pre-SMA to the putamen and caudate nucleus, and also forms parts of both the internal capsule and the dorsal external capsule. The SMA complex has numerous connections throughout the cerebrum. An understanding of these connections is important for presurgical planning for lesions in the frontal lobe and helps explain symptoms related to SMA injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Microstructural analysis of human white matter architecture using Polarized Light Imaging (PLI: Views from neuroanatomy

    Directory of Open Access Journals (Sweden)

    Hubertus eAxer

    2011-11-01

    Full Text Available To date, there are several methods for mapping connectivity, ranging from the macroscopic to molecular scales. However, it is difficult to integrate this multiply-scaled data into one concept. Polarized light imaging (PLI is a method to quantify fiber orientation in gross histological brain sections based on the birefringent properties of the myelin sheaths. The method is capable of imaging fiber orientation of larger-scale architectural patterns with higher detail than diffusion MRI of the human brain. PLI analyses light transmission through a gross histological section of a human brain under rotation of a polarization filter combination. Estimates of the angle of fiber direction and the angle of fiber inclination are automatically calculated at every point of the imaged section. Multiple sections can be assembled into a 3D volume. We describe the principles of PLI and present several studies of fiber anatomy in the human brain: 6 brainstems were serially sectioned, imaged with PLI, and 3D reconstructed. Pyramidal tract and lemniscus medialis were segmented in the PLI datasets. PLI data from the internal capsule was related to results from confocal laser scanning microscopy, which is a method of smaller scale fiber anatomy. PLI fiber architecture of the extreme capsule was compared to macroscopical dissection, which represents a method of larger scale anatomy. The microstructure of the anterior human cingulum bundle was analyzed in serial sections of 6 human brains. PLI can generate highly-resolved 3D datsets of fiber orientation of the human brain and has, therefore, a high comparability to diffusion MR. To get additional information regarding axon structure and density, PLI can also be combined with classical histological stains. It brings the directional aspects of diffusion MRI into the range of histology and may represent a promising tool to close the gap between larger scale diffusion orientation and microstructural histological analysis

  18. Three-dimensional stereotactic atlas of the adult human skull correlated with the brain, cranial nerves, and intracranial vasculature.

    Science.gov (United States)

    Nowinski, Wieslaw L; Thaung, Thant Shoon Let; Chua, Beng Choon; Yi, Su Hnin Wut; Ngai, Vincent; Yang, Yili; Chrzan, Robert; Urbanik, Andrzej

    2015-05-15

    Although the adult human skull is a complex and multifunctional structure, its 3D, complete, realistic, and stereotactic atlas has not yet been created. This work addresses the construction of a 3D interactive atlas of the adult human skull spatially correlated with the brain, cranial nerves, and intracranial vasculature. The process of atlas construction included computed tomography (CT) high-resolution scan acquisition, skull extraction, skull parcellation, 3D disarticulated bone surface modeling, 3D model simplification, brain-skull registration, 3D surface editing, 3D surface naming and color-coding, integration of the CT-derived 3D bony models with the existing brain atlas, and validation. The virtual skull model created is complete with all 29 bones, including the auditory ossicles (being among the smallest bones). It contains all typical bony features and landmarks. The created skull model is superior to the existing skull models in terms of completeness, realism, and integration with the brain along with blood vessels and cranial nerves. This skull atlas is valuable for medical students and residents to easily get familiarized with the skull and surrounding anatomy with a few clicks. The atlas is also useful for educators to prepare teaching materials. It may potentially serve as a reference aid in the reading and operating rooms. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  20. Protein phosphorylation systems in postmortem human brain

    International Nuclear Information System (INIS)

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P.

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders

  1. Mixed Methods Student Evaluation of an Online Systemic Human Anatomy Course with Laboratory

    Science.gov (United States)

    Attardi, Stefanie M.; Choi, Suwhan; Barnett, John; Rogers, Kem A.

    2016-01-01

    A fully online section of an existing face-to-face (F2F) systemic human anatomy course with a prosection laboratory was offered for the first time in 2012-2013. Lectures for F2F students (N = 365) were broadcast in both live and archived format to online students (N = 40) using virtual classroom software. Laboratories were delivered online by a…

  2. Male microchimerism in the human female brain.

    Directory of Open Access Journals (Sweden)

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  3. The Human Anatomy Teacher-Scholar: Meeting the Expectations of Educational Outcomes Research, Course Content Innovation, and Textbook Innovation for Educational Scholarship

    Science.gov (United States)

    Eckel, Christine Marie

    2009-01-01

    A human anatomy teacher-scholar is a scholar whose area of expertise includes content knowledge of the anatomical sciences (gross anatomy, histology, embryology, and/or neuroanatomy) and whose research interests and focus are centered in medical educational outcomes. The projects described in this dissertation represent endeavors I engaged in to…

  4. The Anatomy of Human Trafficking: Learning About the Blues: A Healthcare Provider's Guide.

    Science.gov (United States)

    Stevens, Meriam; Berishaj, Kelly

    2016-01-01

    Human trafficking is a major global public health concern. It is a grave crime that violates human rights. Contrary to healthcare providers' perceptions, victims of human trafficking come in contact with the healthcare system while being trafficked, with the emergency department being the most frequented setting for medical treatment. In this article, we explore the anatomy of human trafficking, including the scope of the problem, definitions, and types and elements of human trafficking. The roles of clinicians, particularly emergency department nurses and advanced practice nurses, in screening and identifying those at risk are examined. Clinical practice tools and guidelines that may be used by clinicians to guide the treatment of human trafficking victims are reviewed. Finally, current strategies and resources that address human trafficking are presented. For the purpose of this article, the terms "human trafficking" or "trafficking" will be used throughout.

  5. [The beginnings of physiology of the human brain, from antiquity to the Renaissance].

    Science.gov (United States)

    Saban, R

    1999-06-01

    For more than 3,000 years in Western civilizations, the knowledge of the human body gained very little ground at first, due to taboos. The body was regarded as sacred and Medicine only resorted to plants in order to heal. Hippocrates was not familiar with anatomy as the human body could not be dissected. He developed a theory of humors connected with the primary elements and opposing the dry and the moist. Even though he did not know the nervous system, he nonetheless pointed out that emotions stemmed from the brain and were caused ty particles (pneuma) emitted by the objects around us. Galien was one of the first to mention physiology but could only dissect animals to understand Man. He took up the theory of humors but did not reach any concrete results as he considered the brain as made up of faeces. Only in 1000 AD did Avicenne try to shape the cell theory with its three cells (the ventricles in today's parlance) in direct relation to the nerves, which he described but did not represent. Representation of the nerves was only be given in the mid-13th century by Khalifah in his ophtalmology treaty. Finally, during the Renaissance, when books started conveying both text and pictures, brain physiology emerged; Albert le Grand was its first expounder and his work was then taken up in a 1475 inculabulum in which 5 cells instead of 3 are described and represented. Leonardo da Vinci was the second one; at the end of the 15th century he dissected may corpses to understand human morphology. Unfortunately his work, which was conducted very rigorously from an anatomical point of view only surfaced at the end of the 19th century. He was the first to conduct the anatomical cross-dissection of the brain. Last came Magnus Hundt and Georg Reisch; in the early 16th century they still represented the three cells of Avicenne even though Reisch described more sophisticated connections between the organs of the senses.

  6. The caecocolonic junction in humans has a sphincteric anatomy and function.

    Science.gov (United States)

    Faussone Pellegrini, M S; Manneschi, L I; Manneschi, L

    1995-01-01

    Sphincteric anatomy and function are present at the caecocolonic junction in several mammals. In humans, radiologists and endoscopists have respectively reported a circumferential contraction and a prominent ileocaecal fold at the border area between the caecum and the ascending colon. Anatomical findings on necropsy material failed to confirm its presence. Microscopic studies on surgical specimens showed the existence of muscular and innervational patterns different from those of adjacent areas. The aim of this work was to confirm the existence of a specialised fold at the caecocolonic junction in humans and to ascertain its role by carrying out a study of functional anatomy. Pancolonoscopies were performed on 100 patients and ileocaecal fold behaviour was observed before and after mechanical stimulation. Isolated ileocaecocolonic regions, surgically obtained, were filled with a fixative solution to study their macro and microscopic morphology after stimulation. Endoscopically, the ileocaecal fold was semilunar or circular in shape and spontaneous or evoked spasms occurred in 52 patients. A prominent circular fold could be seen in surgical specimens after stimulation. The entire muscle coat deeply penetrated this fold, showing the features characteristic of the ileocaecal junction. In particular, the inner portion of the circular muscle showed a peculiar arrangement and was thicker than elsewhere. These results show that in humans the caecocolonic junction is provided with a sphincter morphology and function. Little is known about its physiological relevance in ileal flow accommodation and caecal filling and emptying but it should not be underestimated with regard to some colonic motility disorders. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7489934

  7. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  8. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  9. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Science.gov (United States)

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  10. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  11. Testing knowledge of human gross anatomy in medical school: an applied contextual-learning theory method.

    Science.gov (United States)

    Clough, R W; Lehr, R P

    1996-01-01

    The traditional gross anatomy laboratory experience, with modifications in evaluations that we outline later, meets the criteria of contextual-learning theory, expands the repertoire of core objectives we identify for our students, and may increase the likelihood of cognitive permanence of anatomical data. Our subjects included approximately 54 first-year medical students from each of three sequential class years (1996, 1997, 1998). As an alternative to more typical written and practical exams, examinations in a major portion of our gross anatomy program consist of two approximately 30 minute oral expositions by each student to his or her peers and a faculty member. Students demonstrate specific detail on cadaver, x-ray, cross sections, or a model. Clinical applications, spatial relationships, nomenclature, and functions are strongly emphasized. The results of this teaching approach to the utilization of anatomical knowledge in clinical situations requires further assessment: however, new attributes have been afforded our students with implementation of the present program: First, students learn anatomical detail equally well as the students of the more traditional system (based on board exam results). Second, students who completed the program indicate that this approach provides a useful simulation of what is expected later in their training. Third, students gradually gain confidence in verbal presentation, they demonstrate cognitive synthesis of separate conceptual issues, they retain information, and they are quite visibly more enthusiastic about anatomy and its importance in medicine. Our program demonstrates that the learning of applicable human anatomy is facilitated in a contextual-learning environment. Moreover, by learning anatomy in this way, other equally beneficial attributes are afforded the medical student, including, but not limited to, increases in communication skills, confidence in verbal presentation, synthesis of anatomical concepts

  12. Looking inside the brain the power of neuroimaging

    CERN Document Server

    Le Bihan, Denis

    2014-01-01

    It is now possible to witness human brain activity while we are talking, reading, or thinking, thanks to revolutionary neuroimaging techniques like magnetic resonance imaging (MRI). These groundbreaking advances have opened infinite fields of investigation—into such areas as musical perception, brain development in utero, and faulty brain connections leading to psychiatric disorders—and have raised unprecedented ethical issues. In Looking Inside the Brain, one of the leading pioneers of the field, Denis Le Bihan, offers an engaging account of the sophisticated interdisciplinary research in physics, neuroscience, and medicine that have led to the remarkable neuroimaging methods that give us a detailed look into the human brain. Introducing neurological anatomy and physiology, Le Bihan walks readers through the historical evolution of imaging technology—from the x-ray and CT scan to the PET scan and MRI—and he explains how neuroimaging uncovers afflictions like stroke or cancer and the workings of high...

  13. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  14. Phosphatidylserine and the human brain.

    Science.gov (United States)

    Glade, Michael J; Smith, Kyl

    2015-06-01

    The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    Science.gov (United States)

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  16. Comparison of a gross anatomy laboratory to online anatomy software for teaching anatomy.

    Science.gov (United States)

    Mathiowetz, Virgil; Yu, Chih-Huang; Quake-Rapp, Cindee

    2016-01-01

    This study was designed to assess the grades, self-perceived learning, and satisfaction between occupational therapy students who used a gross anatomy laboratory versus online anatomy software (AnatomyTV) as tools to learn anatomy at a large public university and a satellite campus in the mid-western United States. The goal was to determine if equivalent learning outcomes could be achieved regardless of learning tool used. In addition, it was important to determine why students chose the gross anatomy laboratory over online AnatomyTV. A two group, post-test only design was used with data gathered at the end of the course. Primary outcomes were students' grades, self-perceived learning, and satisfaction. In addition, a survey was used to collect descriptive data. One cadaver prosection was available for every four students in the gross anatomy laboratory. AnatomyTV was available online through the university library. At the conclusion of the course, the gross anatomy laboratory group had significantly higher grade percentage, self-perceived learning, and satisfaction than the AnatomyTV group. However, the practical significance of the difference is debatable. The significantly greater time spent in gross anatomy laboratory during the laboratory portion of the course may have affected the study outcomes. In addition, some students may find the difference in (B+) versus (A-) grade as not practically significant. Further research needs to be conducted to identify what specific anatomy teaching resources are most effective beyond prosection for students without access to a gross anatomy laboratory. © 2015 American Association of Anatomists.

  17. Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet

    Directory of Open Access Journals (Sweden)

    Liying eZhang

    2013-08-01

    Full Text Available Blast-induced traumatic brain injury has emerged as a signature injury in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH, a finite element (FE study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27-0.66 MPa from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP in the head ranged from 0.68-1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10-35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44% was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%. The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence "iso-damage" curves for brain injury are likely different than the Bowen curves

  18. Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation.

    Science.gov (United States)

    Malinsky, Milos; Peter, Roman; Hodneland, Erlend; Lundervold, Astri J; Lundervold, Arvid; Jan, Jiri

    2013-08-01

    In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.

  19. Human Anatomy: Let the Students Tell Us How to Teach

    Science.gov (United States)

    Davis, Christopher R.; Bates, Anthony S.; Ellis, Harold; Roberts, Alice M.

    2014-01-01

    Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e-learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and…

  20. Niels Stensen: a 17th century scientist with a modern view of brain organization.

    Science.gov (United States)

    Parent, André

    2013-07-01

    In 1665 the Danish scholar Niels Stensen (1638-1686) reached Paris, where he pronounced a discourse on brain anatomy that was to orient neuroscientists for years to come. In his lecture, Stensen rejected ancient speculations about animal spirits and criticized René Descartes and his followers who, despite a poor knowledge of brain anatomy, elaborated complex models to explain the multifaceted function of what he considered the principal organ of the human mind. He advocated the need for studying the brain through a comparative, developmental and pathological convergent approach and called for appropriate dissection methods and accurate illustrations. His own careful anatomical studies permitted him to precisely depict many brain structures. After pioneering works in paleontology and geology, he devoted himself to theology. In 1677 Stensen converted from Lutheranism to Catholicism and, while working relentlessly as a bishop and apostolic vicar in Northern Europe, he died in self-imposed poverty at age 48.

  1. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  2. Distribution of melatonin receptor in human fetal brain

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  3. Practical training on porcine hearts enhances students' knowledge of human cardiac anatomy.

    Science.gov (United States)

    Musumeci, Giuseppe; Loreto, Carla; Mazzone, Venera; Szychlinska, Marta Anna; Castrogiovanni, Paola; Castorina, Sergio

    2014-05-01

    Historically, cadavers have been used for the study of anatomy. Nowadays, the territorial and legal limitations of this approach have led to the introduction of alternative teaching methods such as the use of practical exercise consisting of dissection and observation of animal organs. The aim of this study was to evaluate the use of practical training on animal organs compared with the traditional method of anatomy teaching, based on the dissection of human cadavers. In this study, we seek to demonstrate the usefulness of practical exercise on animal organs. This practical training was held a week after the series of lectures, thus leaving time for the students to learn and understand the topics discussed. Immediately after the lecture, all of the students completed a preliminary test to assess the immediate effect of the lecture. Immediately before the practical exercise, both control and experimental groups completed a second test to assess the effectiveness of personal study. Immediately after practical training, a third test was completed by the experimental group and the control group (no practical activity on animal organs) to highlight the added value of hands-on practice in addition to the lecture. Data obtained from statistical analysis showed a panatomy learning between control and experimental groups. Thus, the results of this study emphasize the utility of practical training on animal organs in learning and understanding anatomy, considering the limitations of the use of cadavers. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  5. Simultaneous anatomical sketching as learning by doing method of teaching human anatomy.

    Science.gov (United States)

    Noorafshan, Ali; Hoseini, Leila; Amini, Mitra; Dehghani, Mohammad-Reza; Kojuri, Javad; Bazrafkan, Leila

    2014-01-01

    Learning by lecture is a passive experience. Many innovative techniques have been presented to stimulate students to assume a more active attitude toward learning. In this study, simultaneous sketch drawing, as an interactive learning technique was applied to teach anatomy to the medical students. We reconstructed a fun interactive model of teaching anatomy as simultaneous anatomic sketching. To test the model's instruction effectiveness, we conducted a quasi- experimental study and then the students were asked to write their learning experiences in their portfolio, also their view was evaluated by a questionnaire. The results of portfolio evaluation revealed that students believed that this method leads to deep learning and understanding anatomical subjects better. Evaluation of the students' views on this teaching approach was showed that, more than 80% of the students were agreed or completely agreed with this statement that leaning anatomy concepts are easier and the class is less boring with this method. More than 60% of the students were agreed or completely agreed to sketch anatomical figures with professor simultaneously. They also found the sketching make anatomy more attractive and it reduced the time for learning anatomy. These number of students were agree or completely agree that the method help them learning anatomical concept in anatomy laboratory. More than 80% of the students found the simultaneous sketching is a good method for learning anatomy overall. Sketch drawing, as an interactive learning technique, is an attractive for students to learn anatomy.

  6. Near-Peer Teaching Strategy in a Large Human Anatomy Course: Perceptions of Near-Peer Instructors

    Science.gov (United States)

    Reyes-Hernández, Cynthia Guadalupe; Carmona Pulido, Juan Manuel; De la Garza Chapa, Roberto Isaac; Serna Vázquez, Ruth Patricia; Alcalá Briones, Ricardo Daniel; Plasencia Banda, Perla Marina; Villarreal Silva, Eliud Enrique; Jacobo Baca, Guillermo; de la Garza Castro, Oscar; Elizondo Omaña, Rodrigo Enrique; Guzmán López, Santos

    2015-01-01

    Near-peer teaching (NPT) is a strategy in which senior students assume the instructor role with junior peers (mentees). Senior students develop unique skills and knowledge through NPT, an experience which extends their learning beyond content mastery. Different teaching modules featuring NPT were utilized in the human anatomy course at the School…

  7. Effectiveness of Three-Dimensional Digital Animation in Teaching Human Anatomy in an Authentic Classroom Context

    Science.gov (United States)

    Hoyek, Nady; Collet, Christian; Di Rienzo, Franck; De Almeida, Mickael; Guillot, Aymeric

    2014-01-01

    Three-dimensional (3D) digital animations were used to teach the human musculoskeletal system to first year kinesiology students. The purpose of this study was to assess the effectiveness of this method by comparing two groups from two different academic years during two of their official required anatomy examinations (trunk and upper limb…

  8. The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study.

    Science.gov (United States)

    Gehricke, Jean-G; Kruggel, Frithjof; Thampipop, Tanyaporn; Alejo, Sharina Dyan; Tatos, Erik; Fallon, James; Muftuler, L Tugan

    2017-01-01

    This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD. Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms. Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases. An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker.

  9. The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Jean-G Gehricke

    Full Text Available This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD.Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD in relation to diagnosis and the number of self-reported child and adult symptoms.Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases.An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker.

  10. Regulatory Anatomy

    DEFF Research Database (Denmark)

    Hoeyer, Klaus

    2015-01-01

    This article proposes the term “safety logics” to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, le...... they arise. In short, I expose the regulatory anatomy of the policy landscape....

  11. Experiences with dissection courses in human anatomy: a comparison between Germany and Ethiopia.

    Science.gov (United States)

    Bekele, Assegedech; Reissig, Dieter; Löffler, Sabine; Hinz, Andreas

    2011-03-01

    Dissection courses in human anatomy are laborious, and new teaching tools have become available. Therefore, some universities intend to reduce the dissection course. Furthermore, little is known about dissection courses in African universities. The aim of this study is to compare the students' experiences with and evaluations of the dissection courses in two universities: Leipzig (Germany) and Gondar (Ethiopia). Since the Gondar Medical College was founded in cooperation with the Leipzig University in 1978, the anatomy courses in both universities follow roughly the same rules. A structured questionnaire was used to assess the dissection courses from the students' point of view. The sample of students consisted of 109 German and 124 Ethiopian first year undergraduate medical students. Most students in both countries (94% in Germany and 82% in Ethiopia) judge the dissection course to be highly relevant compared to other courses. Perceived health hazards associated with dissection of the cadaver show significant differences between Germany (14%) and Ethiopia (44%). Most students had normal feelings again at the end of the dissection course. Further similarities and differences between the courses in Germany and Ethiopia are described. Dissection courses are highly appreciated also in Africa. The high degree of affirmation of the dissection courses should be taken into consideration when discussing modifications of gross anatomy curriculum or changes in the teacher to student ratio. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Glucose transporter of the human brain and blood-brain barrier

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-01-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species

  13. Mapping directionality specific volume changes using tensor based morphometry: an application to the study of gyrogenesis and lateralization of the human fetal brain.

    Science.gov (United States)

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A; Kim, Kio; Rousseau, Francois; Glenn, Orit A; Barkovich, A James; Studholme, Colin

    2012-11-01

    Tensor based morphometry (TBM) is a powerful approach to analyze local structural changes in brain anatomy. However, conventional scalar TBM methods do not completely capture all direction specific volume changes required to model complex changes such as those during brain growth. In this paper, we describe novel TBM descriptors for studying direction-specific changes in a subject population which can be used in conjunction with scalar TBM to analyze local patterns in directionality of volume change during brain development. We also extend the methodology to provide a new approach to mapping directional asymmetry in deformation tensors associated with the emergence of structural asymmetry in the developing brain. We illustrate the use of these methods by studying developmental patterns in the human fetal brain, in vivo. Results show that fetal brain development exhibits a distinct spatial pattern of anisotropic growth. The most significant changes in the directionality of growth occur in the cortical plate at major sulci. Our analysis also detected directional growth asymmetry in the peri-Sylvian region and the medial frontal lobe of the fetal brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Understanding Protein Synthesis: A Role-Play Approach in Large Undergraduate Human Anatomy and Physiology Classes

    Science.gov (United States)

    Sturges, Diana; Maurer, Trent W.; Cole, Oladipo

    2009-01-01

    This study investigated the effectiveness of role play in a large undergraduate science class. The targeted population consisted of 298 students enrolled in 2 sections of an undergraduate Human Anatomy and Physiology course taught by the same instructor. The section engaged in the role-play activity served as the study group, whereas the section…

  15. Biomechanics of the brain

    CERN Document Server

    Miller, Karol

    2011-01-01

    With contributions from scientists at major institutions, this book presents an introduction to brain anatomy for engineers and scientists. It provides, for the first time, a comprehensive resource in the field of brain biomechanics.

  16. Links between Evolution, Development, Human Anatomy, Pathology, and Medicine, with A Proposition of A Re-defined Anatomical Position and Notes on Constraints and Morphological "Imperfections".

    Science.gov (United States)

    Diogo, Rui; Molnar, Julia

    2016-06-01

    Surprisingly the oldest formal discipline in medicine (anatomy) has not yet felt the full impact of evolutionary developmental biology. In medical anatomy courses and textbooks, the human body is still too often described as though it is a "perfect machine." In fact, the study of human anatomy predates evolutionary theory; therefore, many of its conventions continue to be outdated, making it difficult to study, understand, and treat the human body, and to compare it with that of other, nonbipedal animals, including other primates. Moreover, such an erroneous view of our anatomy as "perfect" can be used to fuel nonevolutionary ideologies such as intelligent design. In the section An Evolutionary and Developmental Approach to Human Anatomical Position of this paper, we propose the redefinition of the "human standard anatomical position" used in textbooks to be consistent with human evolutionary and developmental history. This redefined position also simplifies, for students and practitioners of the health professions, the study and learning of embryonic muscle groups (each group including muscles derived from the same/ontogenetically closely related primordium/primordia) and joint movements and highlights the topological correspondence between the upper and lower limbs. Section Evolutionary and Developmental Constraints, "Imperfections" and Sports Pathologies continues the theme by describing examples of apparently "illogical" characteristics of the human body that only make sense when one understands the developmental and evolutionary constraints that have accumulated over millions of years. We focus, in particular, on musculoskeletal functional problems and sports pathologies to emphasize the links with pathology and medicine. These examples demonstrate how incorporating evolutionary theory into anatomy education can be helpful for medical students, teachers, researchers, and physicians, as well as for anatomists, functional morphologists, and evolutionary and

  17. Video-based lectures: An emerging paradigm for teaching human anatomy and physiology to student nurses

    Directory of Open Access Journals (Sweden)

    Rabab El-Sayed Hassan El-Sayed

    2013-09-01

    Full Text Available Video-based teaching material is a rich and powerful medium being used in computer assisted learning. This paper aimed to assess the learning outcomes and student nurses’ acceptance and satisfaction with the video-based lectures versus the traditional method of teaching human anatomy and physiology courses. Data were collected from 27 students in a Bachelor of Nursing program and experimental control was achieved using an alternating-treatments design. Overall, students experienced 10 lectures, which delivered by the teacher as either video-based or PowerPoint-based lectures. Results revealed that video-based lectures offer more successes and reduce failures in the immediate and follow-up measures as compared with the traditional method of teaching human anatomy and physiology that was based on printout illustrations, but these differences were not statistically significant. Moreover, nurse students appeared positive about their learning experiences, as they rated highly all the items assessing their acceptance and satisfaction with the video-based lectures. KEYWORDS: Video-based lecture, Traditional, Print-based illustration

  18. Baby brain atlases.

    Science.gov (United States)

    Oishi, Kenichi; Chang, Linda; Huang, Hao

    2018-04-03

    The baby brain is constantly changing due to its active neurodevelopment, and research into the baby brain is one of the frontiers in neuroscience. To help guide neuroscientists and clinicians in their investigation of this frontier, maps of the baby brain, which contain a priori knowledge about neurodevelopment and anatomy, are essential. "Brain atlas" in this review refers to a 3D-brain image with a set of reference labels, such as a parcellation map, as the anatomical reference that guides the mapping of the brain. Recent advancements in scanners, sequences, and motion control methodologies enable the creation of various types of high-resolution baby brain atlases. What is becoming clear is that one atlas is not sufficient to characterize the existing knowledge about the anatomical variations, disease-related anatomical alterations, and the variations in time-dependent changes. In this review, the types and roles of the human baby brain MRI atlases that are currently available are described and discussed, and future directions in the field of developmental neuroscience and its clinical applications are proposed. The potential use of disease-based atlases to characterize clinically relevant information, such as clinical labels, in addition to conventional anatomical labels, is also discussed. Copyright © 2018. Published by Elsevier Inc.

  19. Comparison of a Gross Anatomy Laboratory to Online Anatomy Software for Teaching Anatomy

    Science.gov (United States)

    Mathiowetz, Virgil; Yu, Chih-Huang; Quake-Rapp, Cindee

    2016-01-01

    This study was designed to assess the grades, self-perceived learning, and satisfaction between occupational therapy students who used a gross anatomy laboratory versus online anatomy software (AnatomyTV) as tools to learn anatomy at a large public university and a satellite campus in the mid-western United States. The goal was to determine if…

  20. [Evolution of human brain and intelligence].

    Science.gov (United States)

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are

  1. The history and the art of anatomy: a source of inspiration even nowadays.

    Science.gov (United States)

    Mavrodi, Alexandra; Paraskevas, George; Kitsoulis, Panagiotis

    2013-01-01

    Ever since man started to study systematically medicine for the first time he recognized the value of the knowledge of Anatomy in order to safely cut and treat the human body. However, over the centuries it has been proved that Anatomy is more than just a scientific field of medicine. The fact that Anatomy requires the use of human cadavers as an object to study brought to the surface many moral issues, which adumbrated its turbulent past. Additionally, Anatomy and its inextricable element, illustration, has many times been a source of inspiration for both the anatomists and the artists. This paper aims on the one hand to provide a condensed overview of the history of Anatomy and on the other hand to investigate the way Anatomy penetrates Art and, conversely, Art penetrates Anatomy.

  2. Anatomy of the infant head

    International Nuclear Information System (INIS)

    Bosma, J.F.

    1986-01-01

    This text is mainly an atlas of illustration representing the dissection of the head and upper neck of the infant. It was prepared by the author over a 20-year period. The commentary compares the anatomy of the near-term infant with that of a younger fetus, child, and adult. As the author indicates, the dearth of anatomic information about postnatal anatomic changes represents a considerable handicap to those imaging infants. In part 1 of the book, anatomy is related to physiologic performance involving the pharynx, larynx, and mouth. Sequential topics involve the regional anatomy of the head (excluding the brain), the skeleton of the cranium, the nose, orbit, mouth, larynx, pharynx, and ear. To facilitate use of this text as a reference, the illustrations and text on individual organs are considered separately (i.e., the nose, the orbit, the eye, the mouth, the larynx, the pharynx, and the ear). Each part concerned with a separate organ includes materials from the regional illustrations contained in part 2 and from the skeleton, which is treated in part 3. Also included in a summary of the embryologic and fetal development of the organ

  3. Brain Basics: Understanding Sleep

    Science.gov (United States)

    ... You are here Home » Disorders » Patient & Caregiver Education Brain Basics: Understanding Sleep Anatomy of Sleep Sleep Stages ... t form or maintain the pathways in your brain that let you learn and create new memories, ...

  4. Neuro-anatomy enters the age of information technology

    International Nuclear Information System (INIS)

    Evans, A.C.

    1996-01-01

    By usual neuro-anatomy, it has been observed for a long time that considerable anatomical disparities exist from one brain to another one. How to explain this variability? How is it interpreted at a functional level? It is indispensable to deal with these questions before intending to pick, with a view to doing clinical diagnosis, the informations given by a patient brain imagery (NMR imaging, positron computed tomography). The image processing tends to bring some answers elements. (O.M.)

  5. The evolution of modern human brain shape

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123

  6. The evolution of modern human brain shape.

    Science.gov (United States)

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

  7. Anatomy Ontology Matching Using Markov Logic Networks

    Directory of Open Access Journals (Sweden)

    Chunhua Li

    2016-01-01

    Full Text Available The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing different species. Ontology matching is a kind of solutions to find semantic correspondences between entities of different ontologies. Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. We combine several different matching strategies through first-order logic formulas according to the structure of anatomy ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.

  8. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  9. Teaching medical anatomy: what is the role of imaging today?

    Science.gov (United States)

    Grignon, Bruno; Oldrini, Guillaume; Walter, Frédéric

    2016-03-01

    Medical anatomy instruction has been an important issue of debate for many years and imaging anatomy has become an increasingly important component in the field, the role of which has not yet been clearly defined. The aim of the paper was to assess the current deployment of medical imaging in the teaching of anatomy by means of a review of the literature. A systematic search was performed using the electronic database PubMed, ScienceDirect and various publisher databases, with combinations of the relevant MeSH terms. A manual research was added. In most academic curricula, imaging anatomy has been integrated as a part of anatomical education, taught using a very wide variety of strategies. Considerable variation in the time allocation, content and delivery of medical imaging in teaching human anatomy was identified. Given this considerable variation, an objective assessment remains quite difficult. In most publications, students' perceptions regarding anatomical courses including imaging anatomy were investigated by means of questionnaires and, regardless of the method of teaching, it was globally concluded that imaging anatomy enhanced the quality and efficiency of instruction in human anatomy. More objective evaluation based on an increase in students' performance on course examinations or on specific tests performed before and after teaching sessions showed positive results in numerous cases, while mixed results were also indicated by other studies. A relative standardization could be useful in improving the teaching of imaging anatomy, to facilitate its assessment and reinforce its effectiveness.

  10. BOLD Granger causality reflects vascular anatomy.

    Directory of Open Access Journals (Sweden)

    J Taylor Webb

    Full Text Available A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7-40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain's functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group, as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.

  11. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  12. Improving learning of anatomy with reusable learning objects

    Directory of Open Access Journals (Sweden)

    P Rad

    2015-12-01

    Full Text Available Introduction: The use of modern educational technologies is useful for learning, durability, sociability, and upgrading professionalism. The aim of this study was evaluating the effect of reusable learning objects on improving learning of anatomy. Methods: This was a quasi-experimental study. Fourteen (reusable learning objects RLO from different parts of anatomy of human body including thorax, abdomen, and pelvis were prepared for medical student in Yasuj University of Medical Sciences in 2009. The length of the time for RLO was between 11-22 min. Because their capacities were low, so they were easy to use with cell phone or MP4. These materials were available to the students before the classes. The mean scores of students in anatomy of human body group were compared to the medical students who were not used this method and entered the university in 2008. A questionnaire was designed by the researcher to evaluate the effect of RLO and on, content, interest and motivation, participation, preparation and attitude. Result: The mean scores of anatomy of human body of medical student who were entered the university in 2009 have been increased compare to the students in 2008, but this difference was not significant. Based on the questionnaire data, it was shown that the RLO had a positive effect on improving learning anatomy of human body (75.5% and the effective relationship (60.6%. The students were interested in using RLO (74.6%, some students (54.2% believed that this method should be replaced by lecture. Conclusion: The use of RLO could promote interests and effective communication among the students and led to increasing self-learning motivation.

  13. Functional organization of the transcriptome in human brain

    Science.gov (United States)

    Oldham, Michael C; Konopka, Genevieve; Iwamoto, Kazuya; Langfelder, Peter; Kato, Tadafumi; Horvath, Steve; Geschwind, Daniel H

    2009-01-01

    The enormous complexity of the human brain ultimately derives from a finite set of molecular instructions encoded in the human genome. These instructions can be directly studied by exploring the organization of the brain’s transcriptome through systematic analysis of gene coexpression relationships. We analyzed gene coexpression relationships in microarray data generated from specific human brain regions and identified modules of coexpressed genes that correspond to neurons, oligodendrocytes, astrocytes and microglia. These modules provide an initial description of the transcriptional programs that distinguish the major cell classes of the human brain and indicate that cell type–specific information can be obtained from whole brain tissue without isolating homogeneous populations of cells. Other modules corresponded to additional cell types, organelles, synaptic function, gender differences and the subventricular neurogenic niche. We found that subventricular zone astrocytes, which are thought to function as neural stem cells in adults, have a distinct gene expression pattern relative to protoplasmic astrocytes. Our findings provide a new foundation for neurogenetic inquiries by revealing a robust and previously unrecognized organization to the human brain transcriptome. PMID:18849986

  14. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  15. Learning of Musculoskeletal Ligament Stress Testing in a Gross Anatomy Laboratory

    Science.gov (United States)

    Krause, David A.; Youdas, James W.; Hollman, John H.

    2011-01-01

    Human anatomy in physical therapy programs is a basic science course serving as a foundation for subsequent clinical courses. Integration of anatomy with a clinical emphasis throughout a curriculum provides opportunities for reinforcement of previously learned material. Considering the human cadaver laboratory as a fixed cost to our program, we…

  16. Lipid transport and human brain development.

    Science.gov (United States)

    Betsholtz, Christer

    2015-07-01

    How the human brain rapidly builds up its lipid content during brain growth and maintains its lipids in adulthood has remained elusive. Two new studies show that inactivating mutations in MFSD2A, known to be expressed specifically at the blood-brain barrier, lead to microcephaly, thereby offering a simple and surprising solution to an old enigma.

  17. The availability of teaching–pedagogical resources used for promotion of learning in teaching human anatomy

    Science.gov (United States)

    Aragão, José Aderval; Fonseca-Barreto, Ana Terra; Brito, Ciro José; Guerra, Danilo Ribeiro; Nunes-Mota, José Carlos; Reis, Francisco Prado

    2013-01-01

    Five hundred students attending higher education institutions in northeastern Brazil responded to questionnaires about their anatomy classes; students represented a variety of different health sciences disciplines. Analysis of the responses revealed the participation of teaching assistants in a large percentage of classes and the use of teaching resources, particularly images, from conventional radiographs to magnetic resonance images. The number of classes for cadaver dissection and the number of students with access to that type of class were small. In most cases, dissection was performed according to anatomic regions or systems. Medicine and nursing students had the highest number of practical dissection classes. Most students were assessed using practical and theoretical tests. Findings revealed conditions similar to those found elsewhere. Resources should be renewed and used to improve teaching for students whose courses demand the study of human anatomy. PMID:24062622

  18. The availability of teaching-pedagogical resources used for promotion of learning in teaching human anatomy.

    Science.gov (United States)

    Aragão, José Aderval; Fonseca-Barreto, Ana Terra; Brito, Ciro José; Guerra, Danilo Ribeiro; Nunes-Mota, José Carlos; Reis, Francisco Prado

    2013-01-01

    Five hundred students attending higher education institutions in northeastern Brazil responded to questionnaires about their anatomy classes; students represented a variety of different health sciences disciplines. Analysis of the responses revealed the participation of teaching assistants in a large percentage of classes and the use of teaching resources, particularly images, from conventional radiographs to magnetic resonance images. The number of classes for cadaver dissection and the number of students with access to that type of class were small. In most cases, dissection was performed according to anatomic regions or systems. Medicine and nursing students had the highest number of practical dissection classes. Most students were assessed using practical and theoretical tests. Findings revealed conditions similar to those found elsewhere. Resources should be renewed and used to improve teaching for students whose courses demand the study of human anatomy.

  19. Neuroglobin and Cytoglobin expression in the human brain

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Kelsen, Jesper; Hay-Schmidt, Anders

    2013-01-01

    Neuroglobin and Cytoglobin are new members of the heme-globin family. Both globins are primarily expressed in neurons of the brain and retina. Neuroglobin and Cytoglobin have been suggested as novel therapeutic targets in various neurodegenerative diseases based on their oxygen binding and cell...... protecting properties. However, findings in Neuroglobin-deficient mice question the endogenous neuroprotective properties. The expression pattern of Neuroglobin and Cytoglobin in the rodent brain is also in contradiction to a major role of neuronal protection. In a recent study, Neuroglobin was ubiquitously...... expressed and up-regulated following stroke in the human brain. The present study aimed at confirming our previous observations in rodents using two post-mortem human brains. The anatomical localization of Neuroglobin and Cytoglobin in the human brain is much like what has been described for the rodent...

  20. 3D Digitization and Prototyping of the Skull for Practical Use in the Teaching of Human Anatomy.

    Science.gov (United States)

    Lozano, Maria Teresa Ugidos; Haro, Fernando Blaya; Diaz, Carlos Molino; Manzoor, Sadia; Ugidos, Gonzalo Ferrer; Mendez, Juan Antonio Juanes

    2017-05-01

    The creation of new rapid prototyping techniques, low cost 3D printers as well as the creation of new software for these techniques have allowed the creation of 3D models of bones making their application possible in the field of teaching anatomy in the faculties of Health Sciences. The 3D model of cranium created in the present work, at full scale, present accurate reliefs and anatomical details that are easily identifiable by undergraduate students in their use for the study of human anatomy. In this article, the process of scanning the skull and the subsequent treatment of these images with specific software until the generation of 3D model using 3D printer has been reported.

  1. Sex beyond the genitalia: The human brain mosaic

    Science.gov (United States)

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains (“female brain” or “male brain”). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features in males and females) and internally consistent (i.e., a brain has only “male” or only “female” features). Here, analysis of MRIs of more than 1,400 human brains from four datasets reveals extensive overlap between the distributions of females and males for all gray matter, white matter, and connections assessed. Moreover, analyses of internal consistency reveal that brains with features that are consistently at one end of the “maleness-femaleness” continuum are rare. Rather, most brains are comprised of unique “mosaics” of features, some more common in females compared with males, some more common in males compared with females, and some common in both females and males. Our findings are robust across sample, age, type of MRI, and method of analysis. These findings are corroborated by a similar analysis of personality traits, attitudes, interests, and behaviors of more than 5,500 individuals, which reveals that internal consistency is extremely rare. Our study demonstrates that, although there are sex/gender differences in the brain, human brains do not belong to one of two distinct categories: male brain/female brain. PMID:26621705

  2. Does simulation-based training facilitate the integration of human anatomy with surgery? A report of a novel Surgical Anatomy Course.

    Science.gov (United States)

    Torres, K; Denisow-Pietrzyk, M; Pietrzyk, Ł; Maciejewski, R; Torres, A

    2018-01-01

    Knowledge of gross anatomy, as a basic core subject, is fundamental for medical students and essential to medical practitioners, particularly for those intending a surgical career. However, both medical students and clinical teachers have found a significant gap in teaching basic sciences and the transition into clinical skills. The authors present a Surgical Anatomy Course developed to teach the anatomical basis of surgical procedures with particular emphasis on laparo-scopic skills while incorporating medical simulation. An evaluation of the students' satisfaction of the Surgical Anatomy Course was completed using a mix of multiple choice and open-ended questions, and a six-point Likert Scale. Questions were asked about the students' perceived improvement in surgical and laparoscopic skills. Manual skills were assessed using a laparoscopic simulator. Both evaluation of the course structure and the general impression of the course were positive. Most students believed the course should be an integral part of a modern curriculum. The course supported the traditional surgical classes and improved anatomical knowledge and strengthened students' confidentiality and facilitated understanding and taking surgical rotations. A medical course combining the practical learning of anatomy and surgical-based approaches will bring out the best from the students. Medical students positively evaluated the Surgical Anatomy Course as useful and benefi-cial regarding understanding anatomical structure and relationship necessary for further surgical education. (Folia Morphol 2018; 77, 2: 279-285).

  3. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning

    NARCIS (Netherlands)

    Luursema, J.M.; Vorstenbosch, M.A.; Kooloos, J.G.M.

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different

  4. Evaluating How Circle of Willis Topology Affects Embolus Distribution in the Brain

    Science.gov (United States)

    Jani, Neel; Mukherjee, Debanjan; Shadden, Shawn

    2016-11-01

    Embolic stroke occurs when fragmented cellular or acellular material (emboli) travels to the brain to occlude an artery. Understanding the transport of emboli across unsteady, pulsatile flow in complex arterial geometries is challenging and influenced by a range of factors, including patient anatomy. The work herein develops the modeling and mechanistic understanding of how embolus transport is affected by the arterial connections at the base of the brain known as the Circle of Willis (CoW). A majority of the human population has an incomplete CoW anatomy, with connections either missing or ill-developed. We employ numerical simulations combining image-based modeling, computational fluid dynamics, discrete particle dynamics, and a sampling based analysis to compare collateral flow through the most prevalent CoW topologies, to determine embolus distribution fractions among vessels in the CoW, and to investigate the role of inertial effects in causing differences in flow and embolus distribution. The computational framework developed enables characterization of the complex interplay of anatomy, hemodynamics, and embolus properties in the context of embolic stroke as well as statistical analysis of embolism risks across common CoW variations.

  5. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  6. Influence of X chromosome and hormones on human brain development: a magnetic resonance imaging and proton magnetic resonance spectroscopy study of Turner syndrome

    NARCIS (Netherlands)

    Cutter, William J.; Daly, Eileen M.; Robertson, Dene M. W.; Chitnis, Xavier A.; van Amelsvoort, Therese A. M. J.; Simmons, Andrew; Ng, Virginia W. K.; Williams, Benjamin S.; Shaw, Phillip; Conway, Gerard S.; Skuse, David H.; Collier, David A.; Craig, Michael; Murphy, Declan G. M.

    2006-01-01

    Women with Turner syndrome (TS; 45,X) lack a normal second X chromosome, and many are prescribed exogenous sex and growth hormones (GH). Hence, they allow us an opportunity to investigate genetic and endocrine influences on brain development. We examined brain anatomy and metabolism in 27 adult

  7. Small-world human brain networks: Perspectives and challenges.

    Science.gov (United States)

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Students Helping Students: Evaluating a Pilot Program of Peer Teaching for an Undergraduate Course in Human Anatomy

    Science.gov (United States)

    Bruno, Paul A.; Love Green, Jennifer K.; Illerbrun, Sara L.; Holness, Duncan A.; Illerbrun, Samantha J.; Haus, Kara A.; Poirier, Sylvianne M.; Sveinson, Katherine L.

    2016-01-01

    The educational literature generally suggests that supplemental instruction (SI) is effective in improving academic performance in traditionally difficult courses. A pilot program of peer teaching based on the SI model was implemented for an undergraduate course in human anatomy. Students in the course were stratified into three groups based on…

  9. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  10. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  11. Surface anatomy scanning (SAS) in intracranial tumours: comparison with surgical findings

    International Nuclear Information System (INIS)

    Sumida, M.; Uozumi, T.; Kiya, K.; Arita, K.; Kurisu, K.; Onda, J.; Satoh, H.; Ikawa, F.; Yukawa, O.; Migita, K.; Hada, H.; Katada, K.

    1995-01-01

    We evaluated the usefulness of surface anatomy scanning (SAS) in intracranial tumours, comparing it with surgical findings. We examined 31 patients with brain tumours preoperatively. The tumours included 16 meningiomas, 8 gliomas, 4 metastases and 3 others. SAS clearly demonstrated the tumours, allowing them to be distinguished from the structures of the brain surface, including oedema, except in cases of metastasis. SAS clearly demonstrated large cortical veins. SAS is useful for three-dimensional delineation of the brain surface before surgery. (orig.)

  12. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The impact of Body Worlds on adult visitors' knowledge on human anatomy: A preliminary study.

    Science.gov (United States)

    Fonseca, Guilherme R B C; Finn, Gabrielle M

    2016-05-01

    Body Worlds is an anatomical exhibition that shows human remains to the public. It has been considered controversial since it raises ethical tensions and issues. However, organizers and supporters of Body Worlds have claimed the exhibition is intended to promote visitors' understanding over the human body. Despite these claims, no studies were found that support or refute the hypothesis that a visit to Body Worlds increases the public's objective knowledge on human anatomy. Consequently, the objective of this study was to determine the impact of Body Worlds on anatomical knowledge. We constructed and delivered a questionnaire to both a previsit random sample and a postvisit random sample of visitors of Body Worlds' event Facets of Life, in Berlin. The questionnaire was available in both English and German languages and contained (a) basic sociodemographic questions and (b) a valid and reliable anatomy quiz. The quiz consisted of 16 multiple-choice questions that assessed the ability to identify the location of major anatomical structures on the human body. Average scores achieved on the quiz by the postvisit sample (X¯= 9.08, s = 2.48, n = 164) were significantly higher (unpaired t = 3.3957, P = 0.0008) than those achieved by the previsit sample (X¯= 8.11, s = 2.69, n = 167). Our results suggest that a visit to Body Worlds' event Facets of Life may have a beneficial effect in anatomical knowledge. However, further studies with better empirical designs and fewer limitations are needed to confirm our results. © 2016 Wiley Periodicals, Inc.

  14. Multilayer modeling and analysis of human brain networks

    Science.gov (United States)

    2017-01-01

    Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916

  15. Ontology-driven education: Teaching anatomy with intelligent 3D games on the web

    Science.gov (United States)

    Nilsen, Trond

    Human anatomy is a challenging and intimidating subject whose understanding is essential to good medical practice, taught primarily using a combination of lectures and the dissection of human cadavers. Lectures are cheap and scalable, but do a poor job of teaching spatial understanding, whereas dissection lets students experience the body's interior first-hand, but is expensive, cannot be repeated, and is often imperfect. Educational games and online learning activities have the potential to supplement these teaching methods in a cheap and relatively effective way, but they are difficult for educators to customize for particular curricula and lack the tutoring support that human instructors provide. I present an approach to the creation of learning activities for anatomy called ontology-driven education, in which the Foundational Model of Anatomy, an ontological representation of knowledge about anatomy, is leveraged to generate educational content, model student knowledge, and support learning activities and games in a configurable web-based educational framework for anatomy.

  16. Revisiting Glycogen Content in the Human Brain.

    Science.gov (United States)

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  17. A pilot study comparing the use of Thiel- and formalin-embalmed cadavers in the teaching of human anatomy.

    Science.gov (United States)

    Balta, Joy Y; Lamb, Clare; Soames, Roger W

    2015-01-01

    Formalin had traditionally been used to preserve human material to teach gross anatomy. In 2008 the Centre for Anatomy and Human Identification (CAHID) at the University of Dundee embarked on the use of the Thiel method of embalming. The aim of this pilot study was to assess the difference between formalin-embalmed cadavers (FEC) and Thiel-embalmed cadavers (TEC) used for teaching and surgical training. Three different questionnaires were prepared for data collection from undergraduate and postgraduate students and clinical staff. All undergraduate and postgraduate students as well as clinical staff commented on the appearance of the TEC. There was no overall consensus concerning the use of TEC, some respondents preferred TEC for the entire dissection, some only for certain areas such as the musculoskeletal system. On a technical level TEC were considered less hazardous then FEC by one-third of participants with fewer than 10% regarding TEC as more irritating than FEC. Psychologically, 32.7% of undergraduate students expressed the view that TEC made them feel more uncomfortable compared with FEC because of their life-like appearance. However, 57.1% of undergraduate students encountered the same uncomfortable feelings when viewing both TEC and FEC. The use of Thiel-embalmed cadavers to teach anatomy has an added value, though further research is required over longer periods of time to identify its best usage. © 2014 American Association of Anatomists.

  18. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography.

    Science.gov (United States)

    Forkel, Stephanie J; Thiebaut de Schotten, Michel; Kawadler, Jamie M; Dell'Acqua, Flavio; Danek, Adrian; Catani, Marco

    2014-07-01

    The occipital and frontal lobes are anatomically distant yet functionally highly integrated to generate some of the most complex behaviour. A series of long associative fibres, such as the fronto-occipital networks, mediate this integration via rapid feed-forward propagation of visual input to anterior frontal regions and direct top-down modulation of early visual processing. Despite the vast number of anatomical investigations a general consensus on the anatomy of fronto-occipital connections is not forthcoming. For example, in the monkey the existence of a human equivalent of the 'inferior fronto-occipital fasciculus' (iFOF) has not been demonstrated. Conversely, a 'superior fronto-occipital fasciculus' (sFOF), also referred to as 'subcallosal bundle' by some authors, is reported in monkey axonal tracing studies but not in human dissections. In this study our aim is twofold. First, we use diffusion tractography to delineate the in vivo anatomy of the sFOF and the iFOF in 30 healthy subjects and three acallosal brains. Second, we provide a comprehensive review of the post-mortem and neuroimaging studies of the fronto-occipital connections published over the last two centuries, together with the first integral translation of Onufrowicz's original description of a human fronto-occipital fasciculus (1887) and Muratoff's report of the 'subcallosal bundle' in animals (1893). Our tractography dissections suggest that in the human brain (i) the iFOF is a bilateral association pathway connecting ventro-medial occipital cortex to orbital and polar frontal cortex, (ii) the sFOF overlaps with branches of the superior longitudinal fasciculus (SLF) and probably represents an 'occipital extension' of the SLF, (iii) the subcallosal bundle of Muratoff is probably a complex tract encompassing ascending thalamo-frontal and descending fronto-caudate connections and is therefore a projection rather than an associative tract. In conclusion, our experimental findings and review of the

  19. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning

    OpenAIRE

    Luursema, Jan-Maarten; Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual ...

  20. Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals

    Science.gov (United States)

    Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L

    2014-01-01

    Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization. PMID:24397462

  1. Is there a superior simulator for human anatomy education? How virtual dissection can overcome the anatomic and pedagogic limitations of cadaveric dissection.

    Science.gov (United States)

    Darras, Kathryn E; de Bruin, Anique B H; Nicolaou, Savvas; Dahlström, Nils; Persson, Anders; van Merriënboer, Jeroen; Forster, Bruce B

    2018-03-23

    Educators must select the best tools to teach anatomy to future physicians and traditionally, cadavers have always been considered the "gold standard" simulator for living anatomy. However, new advances in technology and radiology have created new teaching tools, such as virtual dissection, which provide students with new learning opportunities. Virtual dissection is a novel way of studying human anatomy through patient computed tomography (CT) scans. Through touchscreen technology, students can work together in groups to "virtually dissect" the CT scans to better understand complex anatomic relationships. This article presents the anatomic and pedagogic limitations of cadaveric dissection and explains what virtual dissection is and how this new technology may be used to overcome these limitations.

  2. Brain shape in human microcephalics and Homo floresiensis.

    Science.gov (United States)

    Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M J; Sutikna, Thomas; Jatmiko; Saptomo, E Wayhu; Imhof, Herwig; Seidler, Horst; Prior, Fred

    2007-02-13

    Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm(3), some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an approximately 3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species.

  3. Posterior subscapular dissection: An improved approach to the brachial plexus for human anatomy students.

    Science.gov (United States)

    Hager, Shaun; Backus, Timothy Charles; Futterman, Bennett; Solounias, Nikos; Mihlbachler, Matthew C

    2014-05-01

    Students of human anatomy are required to understand the brachial plexus, from the proximal roots extending from spinal nerves C5 through T1, to the distal-most branches that innervate the shoulder and upper limb. However, in human cadaver dissection labs, students are often instructed to dissect the brachial plexus using an antero-axillary approach that incompletely exposes the brachial plexus. This approach readily exposes the distal segments of the brachial plexus but exposure of proximal and posterior segments require extensive dissection of neck and shoulder structures. Therefore, the proximal and posterior segments of the brachial plexus, including the roots, trunks, divisions, posterior cord and proximally branching peripheral nerves often remain unobserved during study of the cadaveric shoulder and brachial plexus. Here we introduce a subscapular approach that exposes the entire brachial plexus, with minimal amount of dissection or destruction of surrounding structures. Lateral retraction of the scapula reveals the entire length of the brachial plexus in the subscapular space, exposing the brachial plexus roots and other proximal segments. Combining the subscapular approach with the traditional antero-axillary approach allows students to observe the cadaveric brachial plexus in its entirety. Exposure of the brachial dissection in the subscapular space requires little time and is easily incorporated into a preexisting anatomy lab curriculum without scheduling additional time for dissection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Biomechanical Constraints Underlying Motor Primitives Derived from the Musculoskeletal Anatomy of the Human Arm.

    Science.gov (United States)

    Gritsenko, Valeriya; Hardesty, Russell L; Boots, Mathew T; Yakovenko, Sergiy

    2016-01-01

    Neural control of movement can only be realized though the interaction between the mechanical properties of the limb and the environment. Thus, a fundamental question is whether anatomy has evolved to simplify neural control by shaping these interactions in a beneficial way. This inductive data-driven study analyzed the patterns of muscle actions across multiple joints using the musculoskeletal model of the human upper limb. This model was used to calculate muscle lengths across the full range of motion of the arm and examined the correlations between these values between all pairs of muscles. Musculoskeletal coupling was quantified using hierarchical clustering analysis. Muscle lengths between multiple pairs of muscles across multiple postures were highly correlated. These correlations broadly formed two proximal and distal groups, where proximal muscles of the arm were correlated with each other and distal muscles of the arm and hand were correlated with each other, but not between groups. Using hierarchical clustering, between 11 and 14 reliable muscle groups were identified. This shows that musculoskeletal anatomy does indeed shape the mechanical interactions by grouping muscles into functional clusters that generally match the functional repertoire of the human arm. Together, these results support the idea that the structure of the musculoskeletal system is tuned to solve movement complexity problem by reducing the dimensionality of available solutions.

  5. Anatomy and physiology of genital organs - women.

    Science.gov (United States)

    Graziottin, Alessandra; Gambini, Dania

    2015-01-01

    "Anatomy is destiny": Sigmund Freud viewed human anatomy as a necessary, although not a sufficient, condition for understanding the complexity of human sexual function with a solid biologic basis. The aim of the chapter is to describe women's genital anatomy and physiology, focusing on women's sexual function with a clinically oriented vision. Key points include: embryology, stressing that the "female" is the anatomic "default" program, differentiated into "male" only in the presence of androgens at physiologic levels for the gestational age; sex determination and sex differentiation, describing the interplay between anatomic and endocrine factors; the "clitoral-urethral-vaginal" complex, the most recent anatomy reading of the corpora cavernosa pattern in women; the controversial G spot; the role of the pelvic floor muscles in modulating vaginal receptivity and intercourse feelings, with hyperactivity leading to introital dyspareunia and contributing to provoked vestibulodynia and recurrent postcoital cystitis, whilst lesions during delivery reduce vaginal sensations, genital arousability, and orgasm; innervation, vessels, bones, ligaments; and the physiology of women's sexual response. Attention to physiologic aging focuses on "low-grade inflammation," genital and systemic, with its impact on women sexual function, especially after the menopause, if the woman does not or cannot use hormone replacement therapy. © 2015 Elsevier B.V. All rights reserved.

  6. Bone Conduction: Anatomy, Physiology, and Communication

    National Research Council Canada - National Science Library

    Henry, Paula; Letowski, Tomasz R

    2007-01-01

    .... This report combines results of an extensive literature review of the anatomy and physiology of human hearing, theories behind the mechanisms of bone conduction transmission, devices for use in bone...

  7. Predictive modeling of neuroanatomic structures for brain atrophy detection

    Science.gov (United States)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  8. Ultrasound simulator-assisted teaching of cardiac anatomy to preclinical anatomy students: A pilot randomized trial of a three-hour learning exposure.

    Science.gov (United States)

    Canty, David Jeffrey; Hayes, Jenny A; Story, David Andrew; Royse, Colin Forbes

    2015-01-01

    Ultrasound simulation allows students to virtually explore internal anatomy by producing accurate, moving, color, three-dimensional rendered slices from any angle or approach leaving the organs and their relationships intact without requirement for consumables. The aim was to determine the feasibility and efficacy of self-directed learning of cardiac anatomy with an ultrasound simulator compared to cadavers and plastic models. After a single cardiac anatomy lecture, fifty university anatomy students participated in a three-hour supervised self-directed learning exposure in groups of five, randomized to an ultrasound simulator or human cadaveric specimens and plastic models. Pre- and post-tests were conducted using pictorial and non-pictorial multiple-choice questions (MCQs). Simulator students completed a survey on their experience. Four simulator and seven cadaver group students did not attend after randomization. Simulator use in groups of five students was feasible and feedback from participants was very positive. Baseline test scores were similar (P = 0.9) between groups. After the learning intervention, there was no difference between groups in change in total test score (P = 0.37), whether they were pictorial (P = 0.6) or non-pictorial (P = 0.21). In both groups there was an increase in total test scores (simulator +19.8 ±12.4%% and cadaver: +16.4% ± 10.2, P human cadaveric prosections for learning cardiac anatomy. © 2014 American Association of Anatomists.

  9. Measurement of P-31 MR relaxation times and concentrations in human brain and brain tumors

    International Nuclear Information System (INIS)

    Roth, K.; Naruse, S.; Hubesch, B.; Gober, I.; Lawry, T.; Boska, M.; Matson, G.B.; Weiner, M.W.

    1987-01-01

    Measurements of high-energy phosphates and pH were made in human brain and brain tumors using P-31 MR imaging. Using a Philips Gyroscan 1.5-T MRMRS, MR images were used to select a cuboidal volume of interest and P-31 MR spectra were obtained from that volume using the ISIS technique. An external quantitation standard was used. T 1 s were measured by inversion recovery. Quantitative values for metabolites were calculated using B 1 field plot of the head coil. The results for normal brain phosphates are as follows; adenosine triphosphate, 2.2 mM; phosphocreatin, 5.3 mM; inorganic phosphate, 1.6 mM. Preliminary studies with human brain tumors show a decrease of all phosphate compounds. These experiments are the first to quantitate metabolites in human brain

  10. "Messing with the Mind: Evolutionary Challenges to Human Brain Augmentation

    Directory of Open Access Journals (Sweden)

    ARTHUR eSANIOTIS

    2014-09-01

    Full Text Available The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce augmented brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties.

  11. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    Science.gov (United States)

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Larynx Anatomy

    Science.gov (United States)

    ... e.g. -historical Searches are case-insensitive Larynx Anatomy Add to My Pictures View /Download : Small: 648x576 ... View Download Large: 2700x2400 View Download Title: Larynx Anatomy Description: Anatomy of the larynx; drawing shows the ...

  13. Vulva Anatomy

    Science.gov (United States)

    ... e.g. -historical Searches are case-insensitive Vulva Anatomy Add to My Pictures View /Download : Small: 720x634 ... View Download Large: 3000x2640 View Download Title: Vulva Anatomy Description: Anatomy of the vulva; drawing shows the ...

  14. Pharynx Anatomy

    Science.gov (United States)

    ... e.g. -historical Searches are case-insensitive Pharynx Anatomy Add to My Pictures View /Download : Small: 720x576 ... View Download Large: 3000x2400 View Download Title: Pharynx Anatomy Description: Anatomy of the pharynx; drawing shows the ...

  15. ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION

    OpenAIRE

    Silvestri, L.; Mascaro, A. L. Allegra; Lotti, J.; Sacconi, L.; Pavone, F. S.

    2013-01-01

    Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brain...

  16. Muscular anatomy of the human ventricular folds.

    Science.gov (United States)

    Moon, Jerald; Alipour, Fariborz

    2013-09-01

    Our purpose in this study was to better understand the muscular anatomy of the ventricular folds in order to help improve biomechanical modeling of phonation and to better understand the role of these muscles during phonatory and nonphonatory tasks. Four human larynges were decalcified, sectioned coronally from posterior to anterior by a CryoJane tape transfer system, and stained with Masson's trichrome. The total and relative areas of muscles observed in each section were calculated and used for characterizing the muscle distribution within the ventricular folds. The ventricular folds contained anteriorly coursing thyroarytenoid and ventricularis muscle fibers that were in the lower half of the ventricular fold posteriorly, and some ventricularis muscle was evident in the upper and lateral portions of the fold more anteriorly. Very little muscle tissue was observed in the medial half of the fold, and the anterior half of the ventricular fold was largely devoid of any muscle tissue. All 4 larynges contained muscle bundles that coursed superiorly and medially through the upper half of the fold, toward the lateral margin of the epiglottis. Although variability of expression was evident, a well-defined thyroarytenoid muscle was readily apparent lateral to the arytenoid cartilage in all specimens.

  17. Human-like brain hemispheric dominance in birdsong learning.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  18. Video-based lectures: An emerging paradigm for teaching human anatomy and physiology to student nurses

    OpenAIRE

    Rabab El-Sayed Hassan El-Sayed; Samar El-Hoseiny Abd El-Raouf El-Sayed

    2013-01-01

    Video-based teaching material is a rich and powerful medium being used in computer assisted learning. This paper aimed to assess the learning outcomes and student nurses’ acceptance and satisfaction with the video-based lectures versus the traditional method of teaching human anatomy and physiology courses. Data were collected from 27 students in a Bachelor of Nursing program and experimental control was achieved using an alternating-treatments design. Overall, students experienced 10 lecture...

  19. Hand Anatomy

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... Hand Therapist? Media Find a Hand Surgeon Home Anatomy Bones Joints Muscles Nerves Vessels Tendons Anatomy The upper extremity is ...

  20. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography

    Science.gov (United States)

    Campbell, J. P.; Zhang, M.; Hwang, T. S.; Bailey, S. T.; Wilson, D. J.; Jia, Y.; Huang, D.

    2017-02-01

    Optical coherence tomography angiography (OCTA) is a noninvasive method of 3D imaging of the retinal and choroidal circulations. However, vascular depth discrimination is limited by superficial vessels projecting flow signal artifact onto deeper layers. The projection-resolved (PR) OCTA algorithm improves depth resolution by removing projection artifact while retaining in-situ flow signal from real blood vessels in deeper layers. This novel technology allowed us to study the normal retinal vasculature in vivo with better depth resolution than previously possible. Our investigation in normal human volunteers revealed the presence of 2 to 4 distinct vascular plexuses in the retina, depending on location relative to the optic disc and fovea. The vascular pattern in these retinal plexuses and interconnecting layers are consistent with previous histologic studies. Based on these data, we propose an improved system of nomenclature and segmentation boundaries for detailed 3-dimensional retinal vascular anatomy by OCTA. This could serve as a basis for future investigation of both normal retinal anatomy, as well as vascular malformations, nonperfusion, and neovascularization.

  1. The Use of Educational Comics in Learning Anatomy among Multiple Student Groups

    Science.gov (United States)

    Kim, Jiyoon; Chung, Min Suk; Jang, Hae Gwon; Chung, Beom Sun

    2017-01-01

    Understanding basic human anatomy can be beneficial for all students, regardless of when, or if, they will later undertake a formal course in the subject. For students who are preparing to undertake a formal anatomy course, educational comics on basic anatomy can serve as a concise and approachable review of the material. For other students, these…

  2. Nonlocal atlas-guided multi-channel forest learning for human brain labeling.

    Science.gov (United States)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-02-01

    It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. The authors have comprehensively evaluated their method on both public LONI_LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity coefficient

  3. Microsurgical anatomy of the central core of the brain.

    Science.gov (United States)

    Ribas, Eduardo Carvalhal; Yağmurlu, Kaan; de Oliveira, Evandro; Ribas, Guilherme Carvalhal; Rhoton, Albert

    2017-12-22

    OBJECTIVE The purpose of this study was to describe in detail the cortical and subcortical anatomy of the central core of the brain, defining its limits, with particular attention to the topography and relationships of the thalamus, basal ganglia, and related white matter pathways and vessels. METHODS The authors studied 19 cerebral hemispheres. The vascular systems of all of the specimens were injected with colored silicone, and the specimens were then frozen for at least 1 month to facilitate identification of individual fiber tracts. The dissections were performed in a stepwise manner, locating each gray matter nucleus and white matter pathway at different depths inside the central core. The course of fiber pathways was also noted in relation to the insular limiting sulci. RESULTS The insular surface is the most superficial aspect of the central core and is divided by a central sulcus into an anterior portion, usually containing 3 short gyri, and a posterior portion, with 2 long gyri. It is bounded by the anterior limiting sulcus, the superior limiting sulcus, and the inferior limiting sulcus. The extreme capsule is directly underneath the insular surface and is composed of short association fibers that extend toward all the opercula. The claustrum lies deep to the extreme capsule, and the external capsule is found medial to it. Three fiber pathways contribute to form both the extreme and external capsules, and they lie in a sequential anteroposterior disposition: the uncinate fascicle, the inferior fronto-occipital fascicle, and claustrocortical fibers. The putamen and the globus pallidus are between the external capsule, laterally, and the internal capsule, medially. The internal capsule is present medial to almost all insular limiting sulci and most of the insular surface, but not to their most anteroinferior portions. This anteroinferior portion of the central core has a more complex anatomy and is distinguished in this paper as the "anterior perforated

  4. The use of computers to teach human anatomy and physiology to allied health and nursing students

    Science.gov (United States)

    Bergeron, Valerie J.

    Educational institutions are under tremendous pressure to adopt the newest technologies in order to prepare their students to meet the challenges of the twenty-first century. For the last twenty years huge amounts of money have been spent on computers, printers, software, multimedia projection equipment, and so forth. A reasonable question is, "Has it worked?" Has this infusion of resources, financial as well as human, resulted in improved learning? Are the students meeting the intended learning goals? Any attempt to develop answers to these questions should include examining the intended goals and exploring the effects of the changes on students and faculty. This project investigated the impact of a specific application of a computer program in a community college setting on students' attitudes and understanding of human anatomy and physiology. In this investigation two sites of the same community college with seemingly similar students populations, seven miles apart, used different laboratory activities to teach human anatomy and physiology. At one site nursing students were taught using traditional dissections and laboratory activities; at the other site two of the dissections, specifically cat and sheep pluck, were replaced with the A.D.A.M.RTM (Animated Dissection of Anatomy for Medicine) computer program. Analysis of the attitude data indicated that students at both sites were extremely positive about their laboratory experiences. Analysis of the content data indicated a statistically significant difference in performance between the two sites in two of the eight content areas that were studied. For both topics the students using the computer program scored higher. A detailed analysis of the surveys, interviews with faculty and students, examination of laboratory materials, and observations of laboratory facilities in both sites, and cost-benefit analysis led to the development of seven recommendations. The recommendations call for action at the level of the

  5. Connectome imaging for mapping human brain pathways.

    Science.gov (United States)

    Shi, Y; Toga, A W

    2017-09-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.

  6. Active Learning and Flipped Classroom, Hand in Hand Approach to Improve Students Learning in Human Anatomy and Physiology

    Science.gov (United States)

    Entezari, Maria; Javdan, Mohammad

    2016-01-01

    Because Human Anatomy and Physiology (A&P), a gateway course for allied health majors, has high dropout rates nationally, it is challenging to find a successful pedagogical intervention. Reports on the effect of integration of flipped classrooms and whether it improves learning are contradictory for different disciplines. Thus many educators…

  7. The anatomy workbook

    International Nuclear Information System (INIS)

    Hagen-Ansert, S.L.

    1986-01-01

    This is an atlas of human anatomy presented in the form of line drawings, many of which correspond to imaging planes used in ultrasound (US), computed tomography (CT), and magnetic resonance (MR). The book is organized into 17 sections, each covering a specific structure or organ system. Large, uncluttered drawings are labeled for identification of structures of interest. Many illustrations include captions consisting of comments explaining major divisions within organs, specific anatomic relationships and landmarks, and pertinent vascular anatomy. Most organs are first depicted in isolation or in relation to important adjacent organs or blood vessels and are rendered as if viewed from anterior, posterior, inferior, or superior perspectives. The organs are demonstrated again in serial transverse, saggital, and coronal sections, each accompanied by a drawing of a body in anatomic position denoting the plane of the section

  8. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  9. Modeling Functional Neuroanatomy for an Anatomy Information System

    Science.gov (United States)

    Niggemann, Jörg M.; Gebert, Andreas; Schulz, Stefan

    2008-01-01

    Objective Existing neuroanatomical ontologies, databases and information systems, such as the Foundational Model of Anatomy (FMA), represent outgoing connections from brain structures, but cannot represent the “internal wiring” of structures and as such, cannot distinguish between different independent connections from the same structure. Thus, a fundamental aspect of Neuroanatomy, the functional pathways and functional systems of the brain such as the pupillary light reflex system, is not adequately represented. This article identifies underlying anatomical objects which are the source of independent connections (collections of neurons) and uses these as basic building blocks to construct a model of functional neuroanatomy and its functional pathways. Design The basic representational elements of the model are unnamed groups of neurons or groups of neuron segments. These groups, their relations to each other, and the relations to the objects of macroscopic anatomy are defined. The resulting model can be incorporated into the FMA. Measurements The capabilities of the presented model are compared to the FMA and the Brain Architecture Management System (BAMS). Results Internal wiring as well as functional pathways can correctly be represented and tracked. Conclusion This model bridges the gap between representations of single neurons and their parts on the one hand and representations of spatial brain structures and areas on the other hand. It is capable of drawing correct inferences on pathways in a nervous system. The object and relation definitions are related to the Open Biomedical Ontology effort and its relation ontology, so that this model can be further developed into an ontology of neuronal functional systems. PMID:18579841

  10. Genomic validation of the differential preservation of population history in modern human cranial anatomy.

    Science.gov (United States)

    Reyes-Centeno, Hugo; Ghirotto, Silvia; Harvati, Katerina

    2017-01-01

    In modern humans, the significant correlation between neutral genetic loci and cranial anatomy suggests that the cranium preserves a population history signature. However, there is disagreement on whether certain parts of the cranium preserve this signature to a greater degree than other parts. It is also unclear how different quantitative measures of phenotype affect the association of genetic variation and anatomy. Here, we revisit these matters by testing the correlation of genetic distances and various phenotypic distances for ten modern human populations. Geometric morphometric shape data from the crania of adult individuals (n = 224) are used to calculate phenotypic P ST , Procrustes, and Mahalanobis distances. We calculate their correlation to neutral genetic distances, F ST , derived from single nucleotide polymorphisms (SNPs). We subset the cranial data into landmark configurations that include the neurocranium, the face, and the temporal bone in order to evaluate whether these cranial regions are differentially correlated to neutral genetic variation. Our results show that P ST , Mahalanobis, and Procrustes distances are correlated with F ST distances to varying degrees. They indicate that overall cranial shape is significantly correlated with neutral genetic variation. Of the component parts examined, P ST distances for both the temporal bone and the face have a stronger association with F ST distances than the neurocranium. When controlling for population divergence time, only the whole cranium and the temporal bone have a statistically significant association with F ST distances. Our results confirm that the cranium, as a whole, and the temporal bone can be used to reconstruct modern human population history. © 2016 Wiley Periodicals, Inc.

  11. Ionising radiation and the developing human brain

    International Nuclear Information System (INIS)

    Schull, W.J.

    1991-01-01

    This article reviews the effects of radiation exposure of the developing human brain. Much of the evidence has come from the prenatally exposed in Hiroshima and Nagasaki. The effects on development age, mental retardation, head size, neuromuscular performance, intelligence tests, school performance and the occurrence of convulsions are discussed. Other topics covered include the biological nature of the damage to the brain, risk estimates in human and problems in radiation protection. (UK)

  12. Academic Performance in Human Anatomy and Physiology Classes: A 2-Yr Study of Academic Motivation and Grade Expectation

    Science.gov (United States)

    Sturges, Diana; Maurer, Trent W.; Allen, Deborah; Gatch, Delena Bell; Shankar, Padmini

    2016-01-01

    This project used a nonexperimental design with a convenience sample and studied the relationship between academic motivation, grade expectation, and academic performance in 1,210 students enrolled in undergraduate human anatomy and physiology (HAP) classes over a 2-yr period. A 42-item survey that included 28 items of the adapted academic…

  13. The Anatomy Puzzle Book.

    Science.gov (United States)

    Jacob, Willis H.; Carter, Robert, III

    This document features review questions, crossword puzzles, and word search puzzles on human anatomy. Topics include: (1) Anatomical Terminology; (2) The Skeletal System and Joints; (3) The Muscular System; (4) The Nervous System; (5) The Eye and Ear; (6) The Circulatory System and Blood; (7) The Respiratory System; (8) The Urinary System; (9) The…

  14. Visual artistic creativity and the brain.

    Science.gov (United States)

    Heilman, Kenneth M; Acosta, Lealani Mae

    2013-01-01

    Creativity is the development of a new or novel understanding--insight that leads to the expression of orderly relationships (e.g., finding and revealing the thread that unites). Visual artistic creativity plays an important role in the quality of human lives, and the goal of this chapter is to describe some of the brain mechanisms that may be important in visual artistic creativity. The initial major means of learning how the brain mediates any activity is to understand the anatomy and physiology that may support these processes. A further understanding of specific cognitive activities and behaviors may be gained by studying patients who have diseases of the brain and how these diseases influence these functions. Physiological recording such as electroencephalography and brain imaging techniques such as PET and fMRI have also allowed us to gain a better understanding of the brain mechanisms important in visual creativity. In this chapter, we discuss anatomic and physiological studies, as well as neuropsychological studies of healthy artists and patients with neurological disease that have helped us gain some insight into the brain mechanisms that mediate artistic creativity. © 2013 Elsevier B.V. All rights reserved.

  15. Traumatic brain lesions in newborns

    Directory of Open Access Journals (Sweden)

    Nícollas Nunes Rabelo

    Full Text Available ABSTRACT The neonatal period is a highly vulnerable time for an infant. The high neonatal morbidity and mortality rates attest to the fragility of life during this period. The incidence of birth trauma is 0.8%, varying from 0.2-2 per 1,000 births. The aim of this study is to describe brain traumas, and their mechanism, anatomy considerations, and physiopathology of the newborn traumatic brain injury. Methods A literature review using the PubMed data base, MEDLINE, EMBASE, Science Direct, The Cochrane Database, Google Scholar, and clinical trials. Selected papers from 1922 to 2016 were studied. We selected 109 papers, through key-words, with inclusion and exclusion criteria. Discussion This paper discusses the risk factors for birth trauma, the anatomy of the occipito-anterior and vertex presentation, and traumatic brain lesions. Conclusion Birth-related traumatic brain injury may cause serious complications in newborn infants. Its successful management includes special training, teamwork, and an individual approach.

  16. Evaluation of free i-applications for tertiary level gross anatomy education

    Directory of Open Access Journals (Sweden)

    Matthew F. Pollard

    2012-04-01

    Full Text Available BackgroundThe use of electronic resources in education, including i-applications used on portable handheld devices, is increasing. Apple® handheld devices are popular, with free applications the most prevalent download form. Many gross anatomy i-applications are available, however no information on the quality of free anatomy products is available. Rating such products could therefore guide product recommendations.AimTo evaluate the quality and range of free iPod® applications that are applicable for tertiary level gross anatomy education.MethodsA search of the iTunes® Application Store with keywords anatomy, free, medical, functional, clinical, gross, and human was performed, with inclusion based on free applications containing human gross anatomy usable for tertiary education purposes. Application specification was noted; each was trialled independently and rated for usability, specification, academic level, and quality (image and programme.ResultsSixty-three applications were identified and eleven met inclusion criteria. Two provided gross anatomy of the entire body, nine examined specific regions or systems. Five were judged introductory in academic level, five intermediate, and one advanced. One application was rated low quality, and four excellent. None were considered difficult to use (six easy, five medium. Application size ranged between 1.2MB and 229MB (mean 27MB.ConclusionsThere are few free i-applications for learning gross anatomy and most concentrate on individual body systems, with the academic level and usability of all products well rated. Results suggest some free I-applications could be suitable adjuncts for gross anatomy education at both an undergraduate and graduate level.

  17. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A new ontology (structured hierarchy) of human developmental anatomy for the first 7 weeks (Carnegie stages 1-20).

    Science.gov (United States)

    Bard, Jonathan

    2012-11-01

    This paper describes a new ontology of human developmental anatomy covering the first 49 days [Carnegie stages (CS)1-20], primarily structured around the parts of organ systems and their development. The ontology includes more than 2000 anatomical entities (AEs) that range from the whole embryo, through organ systems and organ parts down to simple or leaf tissues (groups of cells with the same morphological phenotype), as well as features such as cavities. Each AE has assigned to it a set of facts of the form , with the relationships including starts_at and ends_at (CSs), part_of (there can be several parents) and is_a (this gives the type of tissue, from an organ system down to one of ~ 80 simple tissues predominantly composed of a single cell kind, which is also specified). Leaf tissues also have a develops_from link to its parent tissue. The ontology includes ~14 000 such facts, which are mainly from the literature and an earlier ontology of human developmental anatomy (EHDAA, now withdrawn). The relationships enable these facts to be integrated into a single, complex hierarchy (or mathematical graph) that was made and can be viewed in the OBO-Edit browser (oboedit.org). Each AE has an EHDAA2 ID that may be useful in an informatics context, while the ontology as a whole can be used for organizing databases of human development. It is also a knowledge resource: a user can trace the lineage of any tissue back to the egg, study the changes in cell phenotype that occur as a tissue develops, and use the structure to add further (e.g. molecular) information. The ontology may be downloaded from www.obofoundry.org. Queries and corrections should be sent to j.bard@ed.ac.uk. © 2012 The Author Journal of Anatomy © 2012 Anatomical Society.

  19. Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus.

    Science.gov (United States)

    Pereira-Pedro, Ana Sofia; Rilling, James K; Chen, Xu; Preuss, Todd M; Bruner, Emiliano

    2017-01-01

    The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage. © 2017 S. Karger AG, Basel.

  20. Effects of Sex Steroids in the Human Brain.

    Science.gov (United States)

    Nguyen, Tuong-Vi; Ducharme, Simon; Karama, Sherif

    2017-11-01

    Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

  1. Teaching Anatomy in the XXI Century: New Aspects and Pitfalls

    Directory of Open Access Journals (Sweden)

    Veronica Papa

    2013-01-01

    Full Text Available Anatomy has historically been a cornerstone in medical education regardless of nation, racial background, or medical school system. By learning gross anatomy, medical students get a first “impression” about the structure of the human body which is the basis for understanding pathologic and clinical problems. Although the importance of teaching anatomy to both undergraduate and postgraduate students remains undisputed, there is currently a relevant debate concerning methods of anatomy teaching. In the past century, dissection and lectures were its sole pedagogy worldwide. Recently, the time allocated for anatomy teaching was dramatically reduced to such an extent that some suggest that it has fallen below an adequate standard. Traditional anatomy education based on topographical structural anatomy taught in lectures and gross dissection classes has been replaced by a multiple range of study modules, including problem-based learning, plastic models or computer-assisted learning, and curricula integration. “Does the anatomical theatre still have a place in medical education?” And “what is the problem with anatomic specimens?” We endeavor to answer both of these questions and to contribute to the debate on the current situation in undergraduate and graduate anatomy education.

  2. Digital dissection system for medical school anatomy training

    Science.gov (United States)

    Augustine, Kurt E.; Pawlina, Wojciech; Carmichael, Stephen W.; Korinek, Mark J.; Schroeder, Kathryn K.; Segovis, Colin M.; Robb, Richard A.

    2003-05-01

    As technology advances, new and innovative ways of viewing and visualizing the human body are developed. Medicine has benefited greatly from imaging modalities that provide ways for us to visualize anatomy that cannot be seen without invasive procedures. As long as medical procedures include invasive operations, students of anatomy will benefit from the cadaveric dissection experience. Teaching proper technique for dissection of human cadavers is a challenging task for anatomy educators. Traditional methods, which have not changed significantly for centuries, include the use of textbooks and pictures to show students what a particular dissection specimen should look like. The ability to properly carry out such highly visual and interactive procedures is significantly constrained by these methods. The student receives a single view and has no idea how the procedure was carried out. The Department of Anatomy at Mayo Medical School recently built a new, state-of-the-art teaching laboratory, including data ports and power sources above each dissection table. This feature allows students to access the Mayo intranet from a computer mounted on each table. The vision of the Department of Anatomy is to replace all paper-based resources in the laboratory (dissection manuals, anatomic atlases, etc.) with a more dynamic medium that will direct students in dissection and in learning human anatomy. Part of that vision includes the use of interactive 3-D visualization technology. The Biomedical Imaging Resource (BIR) at Mayo Clinic has developed, in collaboration with the Department of Anatomy, a system for the control and capture of high resolution digital photographic sequences which can be used to create 3-D interactive visualizations of specimen dissections. The primary components of the system include a Kodak DC290 digital camera, a motorized controller rig from Kaidan, a PC, and custom software to synchronize and control the components. For each dissection procedure, the

  3. Integration of genomic and medical data into a 3D atlas of human anatomy.

    Science.gov (United States)

    Turinsky, Andrei L; Fanea, Elena; Trinh, Quang; Dong, Xiaoli; Stromer, Julie N; Shu, Xueling; Wat, Stephen; Hallgrímsson, Benedikt; Hill, Jonathan W; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W

    2008-01-01

    We have developed a framework for the visual integration and exploration of multi-scale biomedical data, which includes anatomical and molecular components. We have also created a Java-based software system that integrates molecular information, such as gene expression data, into a three-dimensional digital atlas of the male adult human anatomy. Our atlas is structured according to the Terminologia Anatomica. The underlying data-indexing mechanism uses open standards and semantic ontology-processing tools to establish the associations between heterogeneous data types. The software system makes an extensive use of virtual reality visualization.

  4. The availability of teaching–pedagogical resources used for promotion of learning in teaching human anatomy

    Directory of Open Access Journals (Sweden)

    Aragão JA

    2013-08-01

    Full Text Available José Aderval Aragão,1,5 Ana Terra Fonseca-Barreto,2 Ciro José Brito,1,3 Danilo Ribeiro Guerra,1 José Carlos Nunes-Mota,4 Francisco Prado Reis5 1Master's Degree Program in Physical Education, Universidade Federal de Sergipe (UFS, Aracaju, Sergipe, Brazil; 2School of Medicine, Universidade Federal de Sergipe (UFS, Aracaju, Sergipe, Brazil; 3Department of Physical Education, Universidade Federal de Sergipe (UFS, Aracaju, Sergipe, Brazil; 4Department of Morphology, (UFS, Aracaju, Sergipe, Brazil; 5School of Medicine, Universidade Tiradentes (UNIT, Aracaju, Sergipe, Brazil Abstract: Five hundred students attending higher education institutions in northeastern Brazil responded to questionnaires about their anatomy classes; students represented a variety of different health sciences disciplines. Analysis of the responses revealed the participation of teaching assistants in a large percentage of classes and the use of teaching resources, particularly images, from conventional radiographs to magnetic resonance images. The number of classes for cadaver dissection and the number of students with access to that type of class were small. In most cases, dissection was performed according to anatomic regions or systems. Medicine and nursing students had the highest number of practical dissection classes. Most students were assessed using practical and theoretical tests. Findings revealed conditions similar to those found elsewhere. Resources should be renewed and used to improve teaching for students whose courses demand the study of human anatomy. Keywords: educational assessments, gross anatomy, dissection, education medical undergraduate, anatomic models

  5. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    Dorn, A.; Bernstein, H.G.; Rinne, A.; Hahn, H.J.; Ziegler, M.

    1983-01-01

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  6. Does Spatial Ability Help the Learning of Anatomy in a Biomedical Science Course?

    Science.gov (United States)

    Sweeney, Kevin; Hayes, Jennifer A.; Chiavaroli, Neville

    2014-01-01

    A three-dimensional appreciation of the human body is the cornerstone of clinical anatomy. Spatial ability has previously been found to be associated with students' ability to learn anatomy and their examination performance. The teaching of anatomy has been the subject of major change over the last two decades with the reduction in time spent…

  7. The intrinsic geometry of the human brain connectome.

    Science.gov (United States)

    Ye, Allen Q; Ajilore, Olusola A; Conte, Giorgio; GadElkarim, Johnson; Thomas-Ramos, Galen; Zhan, Liang; Yang, Shaolin; Kumar, Anand; Magin, Richard L; G Forbes, Angus; Leow, Alex D

    2015-12-01

    This paper describes novel methods for constructing the intrinsic geometry of the human brain connectome using dimensionality-reduction techniques. We posit that the high-dimensional, complex geometry that represents this intrinsic topology can be mathematically embedded into lower dimensions using coupling patterns encoded in the corresponding brain connectivity graphs. We tested both linear and nonlinear dimensionality-reduction techniques using the diffusion-weighted structural connectome data acquired from a sample of healthy subjects. Results supported the nonlinearity of brain connectivity data, as linear reduction techniques such as the multidimensional scaling yielded inferior lower-dimensional embeddings. To further validate our results, we demonstrated that for tractography-derived structural connectome more influential regions such as rich-club members of the brain are more centrally mapped or embedded. Further, abnormal brain connectivity can be visually understood by inspecting the altered geometry of these three-dimensional (3D) embeddings that represent the topology of the human brain, as illustrated using simulated lesion studies of both targeted and random removal. Last, in order to visualize brain's intrinsic topology we have developed software that is compatible with virtual reality technologies, thus allowing researchers to collaboratively and interactively explore and manipulate brain connectome data.

  8. Evolutionary developmental pathology and anthropology: A new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine.

    Science.gov (United States)

    Diogo, Rui; Smith, Christopher M; Ziermann, Janine M

    2015-11-01

    We introduce a new subfield of the recently created field of Evolutionary-Developmental-Anthropology (Evo-Devo-Anth): Evolutionary-Developmental-Pathology-and-Anthropology (Evo-Devo-P'Anth). This subfield combines experimental and developmental studies of nonhuman model organisms, biological anthropology, chordate comparative anatomy and evolution, and the study of normal and pathological human development. Instead of focusing on other organisms to try to better understand human development, evolution, anatomy, and pathology, it places humans as the central case study, i.e., as truly model organism themselves. We summarize the results of our recent Evo-Devo-P'Anth studies and discuss long-standing questions in each of the broader biological fields combined in this subfield, paying special attention to the links between: (1) Human anomalies and variations, nonpentadactyly, homeotic transformations, and "nearest neighbor" vs. "find and seek" muscle-skeleton associations in limb+facial muscles vs. other head muscles; (2) Developmental constraints, the notion of "phylotypic stage," internalism vs. externalism, and the "logic of monsters" vs. "lack of homeostasis" views about human birth defects; (3) Human evolution, reversions, atavisms, paedomorphosis, and peromorphosis; (4) Scala naturae, Haeckelian recapitulation, von Baer's laws, and parallelism between phylogeny and development, here formally defined as "Phylo-Devo parallelism"; and (5) Patau, Edwards, and Down syndrome (trisomies 13, 18, 21), atavisms, apoptosis, heart malformations, and medical implications. © 2015 Wiley Periodicals, Inc.

  9. The history of anatomy in Persia.

    Science.gov (United States)

    Shoja, Mohammadali M; Tubbs, R Shane

    2007-04-01

    The study of human anatomy can be found throughout the rich history of Persia. For thousands of years, morphological descriptions derived from this part of the world have contributed to and have helped form our current anatomical knowledge base. In this article we review the major influential Persian periods and the individuals who have contributed to the development of anatomy. We have divided the history of Persia into five eras: (1) the period of the Elamites, Medes, early Persians and Babylonians (10th millennium to 6th century BC); (2) following the establishment of the Persian Empire (6th century BC) to the 7th century AD; (3) after the Islamic conquest of Persia to the ascendency of Baghdad (7th to 13th century AD); (4) from the Mongol invasion of Persia to the foundations of modern anatomy (13th to 18th century AD); and (5) modern Persia/Iran (18th century AD to present). Evidence indicates that human dissection was commonplace in the first era, which led to a disciplined practice of surgery in the centuries leading to the foundation of the Persian Empire. By the emergence of Zoroastrianism in the Persian Empire, the microcosm theory was widely used to understand internal anatomy in relation to the external universe. The world's first cosmopolitan university and hospital were built in Gondishapur, south-western Persia, in the third century AD. Greek and Syriac knowledge influenced the second era. With the gradual ruin of Gondishapur and the foundation of Baghdad following the Islamic conquest of Persia (637-651 AD), a great movement took place, which led to the flourishing of the so-called Middle Age or Islamic Golden Age. Of the influential anatomists of this period, Mesue (777-857 AD), Tabbari (838-870 AD), Rhazes (865-925 AD), Joveini (?-983 AD), Ali ibn Abbas (930-994 AD), Avicenna (980-1037 AD) and Jorjani (1042-1137 AD) all hailed from Persia. There is evidence in the Persian literature as to the direct involvement of these scholars in human

  10. Neurospin Seminar: From the Proton to the Human Brain

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    From the Proton to the Human Brain Speaker: Prof Denis Le Bihan Abstract: The understanding of the human brain is one of the main scientific challenges of the 21st century. In the early 2000s the French Atomic Energy Commission (CEA) launched a program to conceive and build a “human brain explorer”, the first human MRI scanner operating at 11.7T. This scanner was envisioned to be part of the ambitious Iseult project, bridging together industrial and academic partners to push the limits of molecular neuroimaging, from mouse to man, using Ultra-High Field (UHF) MRI. In this seminar a summary of the main features of this magnet, and the neuroscience and medical targets of NeuroSpin where this outstanding instrument will be installed in 2017 will be surveyed. The unprecedented resolution and the new contrasts allowed by such UHF magnets, in combination with innovative concepts in physics and neurobiology, will allow to explore the human brain at a mesoscale at which everything remains to d...

  11. Computer-Assisted Learning in Anatomy at the International Medical School in Debrecen, Hungary: A Preliminary Report

    Science.gov (United States)

    Kish, Gary; Cook, Samuel A.; Kis, Greta

    2013-01-01

    The University of Debrecen's Faculty of Medicine has an international, multilingual student population with anatomy courses taught in English to all but Hungarian students. An elective computer-assisted gross anatomy course, the Computer Human Anatomy (CHA), has been taught in English at the Anatomy Department since 2008. This course focuses on an…

  12. Detailed sectional anatomy of the spine

    International Nuclear Information System (INIS)

    Rauschning, W.

    1985-01-01

    Morphologic studies on the human spine constitute a special challenge because of the spine's complex topographic anatomy and the intimate relationship between the supporting skeleton and the contiguous soft tissues (muscles, discs, joint capsules) as well as the neurovascular contents of the spinal canal and intervertebral foramina. The improving resolution and multiplanar image reformatting capabilities of modern CT scanners call for accurate anatomic reference material. Such anatomic images should be available without distortion, in natural colors, and in considerable detail. The images should present the anatomy in the correct axial, sagittal, and coronal planes and should also be sufficiently closely spaced so as to follow the thin cuts of modern CT scanners. This chapter details one of several recent attempts to correlate gross anatomy with the images depicted by high-resolution CT. The methods of specimen preparation, sectioning, and photographing have been documented elsewhere

  13. Vesalius, Röntgen and the origins of Modern Anatomy.

    Science.gov (United States)

    Thomas, Adrian M K

    2016-06-01

    The discovery of X-rays in 1895 by Wilhelm Conrad Röntgen transformed our understanding of both the physical world and our understanding of ourselves. Traditional anatomy as shown by Andreas Vesalius was learnt from dissection of the supine deceased body. Radiology showed anatomy in the living in a manner previously not possible, and has transformed our anatomical understanding, particularly of human growth and variation.

  14. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    Science.gov (United States)

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Multimodal integration of anatomy and physiology classes: How instructors utilize multimodal teaching in their classrooms

    Science.gov (United States)

    McGraw, Gerald M., Jr.

    Multimodality is the theory of communication as it applies to social and educational semiotics (making meaning through the use of multiple signs and symbols). The term multimodality describes a communication methodology that includes multiple textual, aural, and visual applications (modes) that are woven together to create what is referred to as an artifact. Multimodal teaching methodology attempts to create a deeper meaning to course content by activating the higher cognitive areas of the student's brain, creating a more sustained retention of the information (Murray, 2009). The introduction of multimodality educational methodologies as a means to more optimally engage students has been documented within educational literature. However, studies analyzing the distribution and penetration into basic sciences, more specifically anatomy and physiology, have not been forthcoming. This study used a quantitative survey design to determine the degree to which instructors integrated multimodality teaching practices into their course curricula. The instrument used for the study was designed by the researcher based on evidence found in the literature and sent to members of three associations/societies for anatomy and physiology instructors: the Human Anatomy and Physiology Society; the iTeach Anatomy & Physiology Collaborate; and the American Physiology Society. Respondents totaled 182 instructor members of two- and four-year, private and public higher learning colleges collected from the three organizations collectively with over 13,500 members in over 925 higher learning institutions nationwide. The study concluded that the expansion of multimodal methodologies into anatomy and physiology classrooms is at the beginning of the process and that there is ample opportunity for expansion. Instructors continue to use lecture as their primary means of interaction with students. Email is still the major form of out-of-class communication for full-time instructors. Instructors with

  16. A neurologist looks at mind and brain: "the enchanted loom".

    Science.gov (United States)

    Hansotia, Phiroze

    2003-10-01

    For a long time, before we developed an appreciation of the neuroanatomy and neurophysiology of the brain, there was uncertainty as to the nature and source of the human mind. Philosophers linked the mind to mythical "humors" that controlled the human body, and others speculated that the mind was associated with "life-force" or soul. Few felt that there was a relation between the human mind and brain, but they had to wait for the Age of Enlightenment and scientific discovery in the 18th and 19th centuries to establish a clear association between the two. Three centuries ago Rene Descartes described the mind as an extracorporeal entity that was expressed through the pineal gland. Descartes was wrong about the pineal, but the debate he set off regarding the relationship between mind and brain rages on. This review looks at the history of speculation on the mind and the development of ideas that have led to our present understanding of this phenomenon. The basic anatomy and physiology of the brain is reviewed to help us understand the brain's association with the complex function we call mind. This is followed by a look at some syndromes that may result when part of the brain is damaged-the parietal lobe is arbitrarily selected as an example-and the resulting effect on the subject's mind. This assists us in understanding the association of mind and brain, and also to better understanding its components, behavior, function and dysfunction.

  17. Quantitative and Qualitative Changes in Teaching Histology by Means of Virtual Microscopy in an Introductory Course in Human Anatomy

    Science.gov (United States)

    Husmann, Polly R.; O'Loughlin, Valerie Dean; Braun, Mark W.

    2009-01-01

    This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T-tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were…

  18. Infrasounds and biorhythms of the human brain

    Science.gov (United States)

    Panuszka, Ryszard; Damijan, Zbigniew; Kasprzak, Cezary; McGlothlin, James

    2002-05-01

    Low Frequency Noise (LFN) and infrasound has begun a new public health hazard. Evaluations of annoyance of (LFN) on human occupational health were based on standards where reactions of human auditory system and vibrations of parts of human body were small. Significant sensitivity has been observed on the central nervous system from infrasonic waves especially below 10 Hz. Observed follow-up effects in the brain gives incentive to study the relationship between parameters of waves and reactions obtained of biorhythms (EEG) and heart action (EKG). New results show the impact of LFN on the electrical potentials of the brain are dependent on the pressure waves on the human body. Electrical activity of circulatory system was also affected. Signals recorded in industrial workplaces were duplicated by loudspeakers and used to record data from a typical LFN spectra with 5 and 7 Hz in a laboratory chamber. External noise, electromagnetic fields, temperature, dust, and other elements were controlled. Results show not only a follow-up effect in the brain but also a result similar to arrhythmia in the heart. Relaxations effects were observed of people impacted by waves generated from natural sources such as streams and waterfalls.

  19. Historical perspective-Anatomy down the ages in Australasia; lessons for the future.

    Science.gov (United States)

    Flack, Natasha Ams; Nicholson, Helen D

    2016-01-01

    Is anatomy a dying discipline? This article explores the history and current state of human anatomy in Australasia, and considers the changing nature of the discipline, and possibilities for the future. A web-based search of all tertiary institutions in Australasia was performed to identify which taught anatomy. Those identified were invited to provide further information about postgraduate student numbers, external courses and public outreach. Forty-one institutions across Australasia teach anatomy. There are seven identifiable anatomy departments and nine disciplines of anatomy. From 1900 to 2014, the number of medical schools has increased (from 4 to 20), however a concomitant increase in the number of anatomy departments (2014, n = 7) was not observed. Twenty-one institutions, without medical schools, currently teach anatomy but none have a stand-alone anatomy department. Anatomy is taught in more than 18 different undergraduate and postgraduate programs. From the 28 institutions that provided current data, 310 postgraduate research students were identified. Predominantly, they came from longer-established institutions with an identifiable anatomy department. Similarly, those with anatomy departments/disciplines offered external professional courses. Many institutions engaged in public outreach. The evidence suggests that anatomy is alive and possibly even growing in Australasia. However, the structures around the discipline and the students who are learning anatomy are changing. Our challenge is to prepare the next generation of anatomy faculty to be both researchers and teachers. © 2015 Wiley Periodicals, Inc.

  20. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... of accurate head models to the integration of the models in the numerical calculations. These problems substantially limit a more widespread application of numerical methods in brain stimulation up to now. We introduce an optimized processing pipeline allowing for the automatic generation of individualized...... the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh...

  1. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    Science.gov (United States)

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  2. Integer anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, R. [ONR, Arlington, VA (United States)

    1994-11-15

    The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.

  3. Sigma and opioid receptors in human brain tumors

    International Nuclear Information System (INIS)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J.

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using [ 3 H] 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: μ, [D-ala 2 , mePhe 4 , gly-ol 5 ] enkephalin (DAMGE); κ, ethylketocyclazocine (EKC) or U69,593; δ, [D-pen 2 , D-pen 5 ] enkephalin (DPDPE) or [D-ala 2 , D-leu 5 ] enkephalin (DADLE) with μ suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. κ opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed

  4. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  5. An Analysis of the Educational Value of Low-Fidelity Anatomy Models as External Representations

    Science.gov (United States)

    Chan, Lap Ki; Cheng, Maurice M. W.

    2011-01-01

    Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the…

  6. Variable ATP yields and uncoupling of oxygen consumption in human brain

    DEFF Research Database (Denmark)

    Gjedde, Albert; Aanerud, Joel; Peterson, Ericka

    2011-01-01

    normalized the metabolic rate to the population average of that region. Coefficients of variation ranged from 10 to 15% in the different regions of the human brain and the normalized regional metabolic rates ranged from 70% to 140% of the population average for each region, equal to a two-fold variation......The distribution of brain oxidative metabolism values among healthy humans is astoundingly wide for a measure that reflects normal brain function and is known to change very little with most changes of brain function. It is possible that the part of the oxygen consumption rate that is coupled...... to ATP turnover is the same in all healthy human brains, with different degrees of uncoupling explaining the variability of total oxygen consumption among people. To test the hypothesis that about 75% of the average total oxygen consumption of human brains is common to all individuals, we determined...

  7. Anatomy of a Cancer Treatment Scam

    Medline Plus

    Full Text Available ... Competition Matters Tech@FTC Comment Policy Contests IoT Home Inspector Challenge Robocalls: Humanity Strikes Back DetectaRobo Zapping ... File Documents in Adjudicative Proceedings You are here Home » News & Events » Audio/Video » Anatomy of a Cancer ...

  8. Sex differences in brain organization: implications for human communication.

    Science.gov (United States)

    Hanske-Petitpierre, V; Chen, A C

    1985-12-01

    This article reviews current knowledge in two major research domains: sex differences in neuropsychophysiology, and in human communication. An attempt was made to integrate knowledge from several areas of brain research with human communication and to clarify how such a cooperative effort may be beneficial to both fields of study. By combining findings from the area of brain research, a communication paradigm was developed which contends that brain-related sex differences may reside largely in the area of communication of emotion.

  9. Honoring our donors: a survey of memorial ceremonies in United States anatomy programs.

    Science.gov (United States)

    Jones, Trahern W; Lachman, Nirusha; Pawlina, Wojciech

    2014-01-01

    Many anatomy programs that incorporate dissection of donated human bodies hold memorial ceremonies of gratitude towards body donors. The content of these ceremonies may include learners' reflections on mortality, respect, altruism, and personal growth told through various humanities modalities. The task of planning is usually student- and faculty-led with participation from other health care students. Objective information on current memorial ceremonies for body donors in anatomy programs in the United States appears to be lacking. The number of programs in the United States that currently plan these memorial ceremonies and information on trends in programs undertaking such ceremonies remain unknown. Gross anatomy program directors throughout the United States were contacted and asked to respond to a voluntary questionnaire on memorial ceremonies held at their institution. The results (response rate 68.2%) indicated that a majority of human anatomy programs (95.5%) hold memorial ceremonies. These ceremonies are, for the most part, student-driven and nondenominational or secular in nature. Participants heavily rely upon speech, music, poetry, and written essays, with a small inclusion of other humanities modalities, such as dance or visual art, to explore a variety of themes during these ceremonies. © 2013 American Association of Anatomists.

  10. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  11. Thymus Gland Anatomy

    Science.gov (United States)

    ... historical Searches are case-insensitive Thymus Gland, Adult, Anatomy Add to My Pictures View /Download : Small: 720x576 ... Large: 3000x2400 View Download Title: Thymus Gland, Adult, Anatomy Description: Anatomy of the thymus gland; drawing shows ...

  12. Normal Pancreas Anatomy

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Pancreas Anatomy Add to My Pictures View /Download : Small: ... 1586x1534 View Download Large: 3172x3068 View Download Title: Pancreas Anatomy Description: Anatomy of the pancreas; drawing shows ...

  13. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  14. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  15. Using human brain activity to guide machine learning.

    Science.gov (United States)

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  16. Pain. Part 2a: Trigeminal Anatomy Related to Pain.

    Science.gov (United States)

    Renton, Tara; Egbuniwe, Obi

    2015-04-01

    In order to understand the underlying principles of orofacial pain it is important to understand the corresponding anatomy and mechanisms. Paper 1 of this series explains the central nervous and peripheral nervous systems relating to pain. The trigeminal nerve is the 'great protector' of the most important region of our body. It is the largest sensory nerve of the body and over half of the sensory cortex is responsive to any stimulation within this system. This nerve is the main sensory system of the branchial arches and underpins the protection of the brain, sight, smell, airway, hearing and taste, underpinning our very existence. The brain reaction to pain within the trigeminal system has a significant and larger reaction to the threat of, and actual, pain compared with other sensory nerves. We are physiologically wired to run when threatened with pain in the trigeminal region and it is a 'miracle' that patients volunteer to sit in a dental chair and undergo dental treatment. Clinical Relevance: This paper aims to provide the dental and medical teams with a review of the trigeminal anatomy of pain and the principles of pain assessment.

  17. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guangkai [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China and Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong; Wu, Guorong [Department of Computer Science, Department of Radiology, and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States); Wu, Ligang [Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 02841 (Korea, Republic of)

    2016-02-15

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the

  18. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    International Nuclear Information System (INIS)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-01-01

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the

  19. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  20. Clinically related anatomy for physicists

    International Nuclear Information System (INIS)

    Wright, A.E.; Boyer, A.L.

    1987-01-01

    With the advent of CT and MR imaging, delineation of malignancies and the shaping of radiation treatment fields have become much more precise. Treatment planning in more than one transverse plane is more widely practiced as the use of sophisticated computers grow. These developments emphasize the need for the physicist to have a basic knowledge of human anatomy. This course is designed to familiarize the clinical physicist with the gross anatomy and topographic landmarks used by the physician in planning three-dimensional radiation treatment volumes. The significance of the various anatomic structures and their related lymphatics in the spread of disease is discussed. Emphasis is placed on disease entities that pose particular problems due to overlying or nearby healthy structures at risk

  1. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    Science.gov (United States)

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  2. Validation of In Vitro Cell-Based Human Blood-Brain Barrier Model Using Clinical Positron Emission Tomography Radioligands To Predict In Vivo Human Brain Penetration

    International Nuclear Information System (INIS)

    Mabondzo, A.; Guyot, A.C.; Bottlaender, M.; Deverre, J.R.; Tsaouin, K.; Balimane, P.V.

    2010-01-01

    We have evaluated a novel in vitro cell-based human blood-brain barrier (BBB) model that could predict in vivo human brain penetration for compounds with different BBB permeabilities using the clinical positron emission tomography (PET) data. Comparison studies were also performed to demonstrate that the in vitro cell-based human BBB model resulted in better predictivity over the traditional permeability model in discovery organizations, Caco-2 cells. We evaluated the in vivo BBB permeability of [ 18 F] and [ 11 C]-compounds in humans by PET imaging. The in vivo plasma-brain exchange parameters used for comparison were determined in humans by PET using a kinetic analysis of the radiotracer binding. For each radiotracer, the parameters were determined by fitting the brain kinetics of the radiotracer using a two-tissue compartment model of the ligand-receptor interaction. Bidirectional transport studies with the same compounds as in in vivo studies were carried out using the in vitro cell-based human BBB model as well as Caco-2 cells. The in vitro cell-based human BBB model has important features of the BBB in vivo and is suitable for discriminating between CNS and non-CNS marketed drugs. A very good correlation (r 2 =0.90; P≤0.001) was demonstrated between in vitro BBB permeability and in vivo permeability coefficient. In contrast, a poor correlation (r 2 = 0.17) was obtained between Caco-2 data and in vivo human brain penetration. This study highlights the potential of this in vitro cell-based human BBB model in drug discovery and shows that it can be an extremely effective screening tool for CNS programs. (authors)

  3. Impaired insulin action in the human brain: causes and metabolic consequences.

    Science.gov (United States)

    Heni, Martin; Kullmann, Stephanie; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich

    2015-12-01

    Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined.

  4. 2016 High School Honors Human Anatomy and Physiology Curriculum Investigation for College Board Advanced Placement Classification Validity

    Directory of Open Access Journals (Sweden)

    Jeanine Siebold

    2017-02-01

    Full Text Available Four sections of senior Honors Human Anatomy and Physiology (A&P students are representative of sixty-five nations. These classes participated in a yearlong investigation pursuant of innovative learning, and grading modalities to introduce a 21st century curriculum for A&P to become a College Board Advanced Placement (AP course. All enrollees began the year by taking a self-assessment based on Howard Gardner's Multiple Intelligences. This data was evaluated for the design of learning approaches identifying student uniqueness that could better implement the Next Generation Science Standards (NGSS, and present State of Tennessee Human Anatomy and Physiology Learning Standards laying the groundwork to write the AP curriculum. Component curriculum rubrics were used, and modified to enable students to self-evaluate their performance in certain areas. Students participated in teams represented as Center for Disease Control and Prevention (CDC 'Intern Teams' investigating various diseases. The students, also, researched health equity, and disparity issues from variables based on survey questions they designed that could affect the health care treatment of patients suffering from their investigated disease. They then proposed a 2016 CDC Educational Campaign revamping public health education for the disease, including brochure, and public service announcement (PSA.

  5. “Messing with the mind”: evolutionary challenges to human brain augmentation

    OpenAIRE

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P.

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understa...

  6. The progress of radiosensitive genes of human brain glioma

    International Nuclear Information System (INIS)

    Wang Xi; Liu Qiang

    2008-01-01

    Human gliomas are one of the most aggressive tumors in brain which grow infiltrativly. Surgery is the mainstay of treatment. But as the tumor could not be entirely cut off, it is easy to relapse. Radiotherapy plays an important role for patients with gliomas after surgery. The efficacy of radiotherapy is associated with radio sensitivity of human gliomas. This paper makes a summary of current situation and progress for radiosensitive genes of human brain gliomas. (authors)

  7. Single-shot T1 mapping of the corpus callosum: A rapid characterization of fiber bundle anatomy

    Directory of Open Access Journals (Sweden)

    Sabine eHofer

    2015-05-01

    Full Text Available Using diffusion-tensor MRI and fiber tractography the topographic organization of the corpus callosum (CC has been described to comprise 5 segments with fibers projecting into prefrontal (I, premotor and supplementary motor (II, primary motor (III, and primary sensory areas (IV, as well as into parietal, temporal, and occipital cortical areas (V. In order to more rapidly characterize the underlying anatomy of these segments, this study used a novel single-shot T1 mapping method to quantitatively determine T1 relaxation times in the human CC. A region-of-interest analysis revealed a tendency for the lowest T1 relaxation times in the genu and the highest T1 relaxation times in the somatomotor region of the CC. This observation separates regions dominated by myelinated fibers with large diameters (somatomotor area from densely packed smaller axonal bundles (genu with less myelin. The results indicate that characteristic T1 relaxation times in callosal profiles provide an additional means to monitor differences in fiber anatomy, fiber density, and gray matter in respective neocortical areas. In conclusion, rapid T1 mapping allows for a characterization of the axonal architecture in an individual CC in less than 10 s. The approach emerges as a valuable means for studying neocortical brain anatomy with possible implications for the diagnosis of neurodegenerative processes.

  8. Analysis of brain CT on 120 patients of human cysticercosis

    International Nuclear Information System (INIS)

    Ma, J.; To, R.; Ri, T.; Ra, S.; Inomata, Taiten; Ogawa, Yasuhiro; Maeda, Tomoo.

    1990-01-01

    A study on brain CT was made in 120 patients of human cysticercosis, which is a rare disease in Japan and clinical symptoms and laboratory data for the diagnosis were also discussed. From the point of therapeutic view, we proposed a new differentiation on brain CT of human cysticercosis, which is divided into two groups according to the alve or dead parasite. Furthermore, we proposed a new type named multiple large and small cysts type on brain CT. The idea of diagnostic standard was made integrating brain CT image, clinical symptoms and labolatory data. (author)

  9. The human brain. Prenatal development and structure

    International Nuclear Information System (INIS)

    Marin-Padilla, Miguel

    2011-01-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  10. The human brain. Prenatal development and structure

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  11. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alcendor Donald J

    2012-05-01

    Full Text Available Abstract Background Congenital human cytomegalovirus (HCMV infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV, microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC. However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha, interleukin-1 beta (IL-1beta, and interleukin-6 (IL-6. Pericytes exposed to SBCMV elicited

  12. Evidence of native α-synuclein conformers in the human brain.

    Science.gov (United States)

    Gould, Neal; Mor, Danielle E; Lightfoot, Richard; Malkus, Kristen; Giasson, Benoit; Ischiropoulos, Harry

    2014-03-14

    α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.

  13. Connecting art and science: An interdisciplinary strategy and its impact on the affective domain of community college human anatomy students

    Science.gov (United States)

    Petti, Kevin

    Educational objectives are often described within the framework of a three-domain taxonomy: cognitive, affective and psychomotor. While most of the research on educational objectives has focused on the cognitive domain, the research that has been conducted on the affective domain, which speaks to emotions, attitudes, and values, has identified a number of positive outcomes. One approach to enhancing the affective domain is that of interdisciplinary education. Science education research in the realm of interdisciplinary education and affective outcomes is limited; especially research conducted on community college students of human anatomy. This project investigated the relationship between an interdisciplinary teaching strategy and the affective domain in science education by utilizing an interdisciplinary lecture in a human anatomy class. Subjects were anatomy students in a California community college who listened to a one-hour lecture describing the cultural, historical and scientific significance of selected pieces of art depicting human dissection in European medieval and Renaissance universities. The focus was on how these renderings represent the state of anatomy education during their respective eras. After listening to the lecture, subjects were administered a 35-question survey that was composed of 14 demographic questions and 21 Likert-style statements that asked respondents to rate the extent to which the intervention influenced their affective domain. Descriptive statistics were then used to determine which component of the affective domain was most influenced, and multiple regression analysis was used to examine the extent to which individual differences along the affective continuum were explained by select demographic measures such as gender, race/ethnicity, education level, and previous exposure to science courses. Results indicate that the interdisciplinary intervention had a positive impact on every component of the affective domain hierarchy

  14. Sigma and opioid receptors in human brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. (St. Louis Univ. School of Medicine, MO (USA))

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  15. Human astrocytes: structure and functions in the healthy brain.

    Science.gov (United States)

    Vasile, Flora; Dossi, Elena; Rouach, Nathalie

    2017-07-01

    Data collected on astrocytes' physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.

  16. Development of Human Brain Structural Networks Through Infancy and Childhood

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  17. Bovine brain ribonuclease is the functional homolog of human ribonuclease 1.

    Science.gov (United States)

    Eller, Chelcie H; Lomax, Jo E; Raines, Ronald T

    2014-09-19

    Mounting evidence suggests that human pancreatic ribonuclease (RNase 1) plays important roles in vivo, ranging from regulating blood clotting and inflammation to directly counteracting tumorigenic cells. Understanding these putative roles has been pursued with continual comparisons of human RNase 1 to bovine RNase A, an enzyme that appears to function primarily in the ruminant gut. Our results imply a different physiology for human RNase 1. We demonstrate distinct functional differences between human RNase 1 and bovine RNase A. Moreover, we characterize another RNase 1 homolog, bovine brain ribonuclease, and find pronounced similarities between that enzyme and human RNase 1. We report that human RNase 1 and bovine brain ribonuclease share high catalytic activity against double-stranded RNA substrates, a rare quality among ribonucleases. Both human RNase 1 and bovine brain RNase are readily endocytosed by mammalian cells, aided by tight interactions with cell surface glycans. Finally, we show that both human RNase 1 and bovine brain RNase are secreted from endothelial cells in a regulated manner, implying a potential role in vascular homeostasis. Our results suggest that brain ribonuclease, not RNase A, is the true bovine homolog of human RNase 1, and provide fundamental insight into the ancestral roles and functional adaptations of RNase 1 in mammals. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. How useful is YouTube in learning heart anatomy?

    Science.gov (United States)

    Raikos, Athanasios; Waidyasekara, Pasan

    2014-01-01

    Nowadays more and more modern medical degree programs focus on self-directed and problem-based learning. That requires students to search for high quality and easy to retrieve online resources. YouTube is an emerging platform for learning human anatomy due to easy access and being a free service. The purpose of this study is to make a quantitative and qualitative analysis of the available human heart anatomy videos on YouTube. Using the search engine of the platform we searched for relevant videos using various keywords. Videos with irrelevant content, animal tissue, non-English language, no sound, duplicates, and physiology focused were excluded from further elaboration. The initial search retrieved 55,525 videos, whereas only 294 qualified for further analysis. A unique scoring system was used to assess the anatomical quality and details, general quality, and the general data for each video. Our results indicate that the human heart anatomy videos available on YouTube conveyed our anatomical criteria poorly, whereas the general quality scoring found borderline. Students should be selective when looking up on public video databases as it can prove challenging, time consuming, and the anatomical information may be misleading due to absence of content review. Anatomists and institutions are encouraged to prepare and endorse good quality material and make them available online for the students. The scoring rubric used in the study comprises a valuable tool to faculty members for quality evaluation of heart anatomy videos available on social media platforms. Copyright © 2013 American Association of Anatomists.

  19. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  20. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  1. Personnel of human anatomy department of Saratov State Medical University n.a. V. I. Razumovsky as the participants of the Great Patriotic War

    Directory of Open Access Journals (Sweden)

    Aleshkina O.Yu.

    2015-03-01

    Full Text Available The article provides evidence on participation of assistants who worked at the Department of Human Anatomy of Saratov State Medical University n.a. V. I. Razumovsky and took part in the Great Patriotic War.

  2. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  3. Eye Anatomy

    Science.gov (United States)

    ... News About Us Donate In This Section Eye Anatomy en Español email Send this article to a ... You at Risk For Glaucoma? Childhood Glaucoma Eye Anatomy Five Common Glaucoma Tests Glaucoma Facts and Stats ...

  4. Structural brain imaging in diabetes : A methodological perspective

    NARCIS (Netherlands)

    Jongen, Cynthia; Biessels, Geert Jan

    2008-01-01

    Brain imaging provides information on brain anatomy and function and progression of cerebral abnormalities can be monitored. This may provide insight into the aetiology of diabetes related cerebral disorders. This paper focuses on the methods for the assessment of white matter hyperintensities and

  5. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military

  6. [The scientific works of the teachers of human anatomy in the "Université Libre de Bruxelles" (ULB)].

    Science.gov (United States)

    Louryan, S

    2014-06-01

    The "Université Libre de Bruxelles" was founded in 1834. Between this year and 1904, the teachers of human anatomy were essentially clinicians and surgeons. Their works were mainly practical. Until 1904 (arrival of Albert Brachet) since present, the researches of the anatomical laboratory were devoted to embryology, and included the beginning of causal embryology. More recently, biomechanics appeared in the field of activity of the laboratory. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Orthopedic Resident Anatomy Review Course: A Collaboration between Anatomists and Orthopedic Surgeons

    Science.gov (United States)

    DeFriez, Curtis B.; Morton, David A.; Horwitz, Daniel S.; Eckel, Christine M.; Foreman, K. Bo; Albertine, Kurt H.

    2011-01-01

    A challenge for new residents and senior residents preparing for board examinations is refreshing their knowledge of basic science disciplines, such as human gross anatomy. The Department of Orthopaedics at the University of Utah School of Medicine has for many years held an annual Orthopedic Resident Anatomy Review Course during the summer months…

  8. Paraganglioma Anatomy

    Science.gov (United States)

    ... e.g. -historical Searches are case-insensitive Paraganglioma Anatomy Add to My Pictures View /Download : Small: 648x576 ... View Download Large: 2700x2400 View Download Title: Paraganglioma Anatomy Description: Paraganglioma of the head and neck; drawing ...

  9. Facial anatomy.

    Science.gov (United States)

    Marur, Tania; Tuna, Yakup; Demirci, Selman

    2014-01-01

    Dermatologic problems of the face affect both function and aesthetics, which are based on complex anatomical features. Treating dermatologic problems while preserving the aesthetics and functions of the face requires knowledge of normal anatomy. When performing successfully invasive procedures of the face, it is essential to understand its underlying topographic anatomy. This chapter presents the anatomy of the facial musculature and neurovascular structures in a systematic way with some clinically important aspects. We describe the attachments of the mimetic and masticatory muscles and emphasize their functions and nerve supply. We highlight clinically relevant facial topographic anatomy by explaining the course and location of the sensory and motor nerves of the face and facial vasculature with their relations. Additionally, this chapter reviews the recent nomenclature of the branching pattern of the facial artery. © 2013 Elsevier Inc. All rights reserved.

  10. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  11. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  12. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  13. Gaze-and-brain-controlled interfaces for human-computer and human-robot interaction

    Directory of Open Access Journals (Sweden)

    Shishkin S. L.

    2017-09-01

    Full Text Available Background. Human-machine interaction technology has greatly evolved during the last decades, but manual and speech modalities remain single output channels with their typical constraints imposed by the motor system’s information transfer limits. Will brain-computer interfaces (BCIs and gaze-based control be able to convey human commands or even intentions to machines in the near future? We provide an overview of basic approaches in this new area of applied cognitive research. Objective. We test the hypothesis that the use of communication paradigms and a combination of eye tracking with unobtrusive forms of registering brain activity can improve human-machine interaction. Methods and Results. Three groups of ongoing experiments at the Kurchatov Institute are reported. First, we discuss the communicative nature of human-robot interaction, and approaches to building a more e cient technology. Specifically, “communicative” patterns of interaction can be based on joint attention paradigms from developmental psychology, including a mutual “eye-to-eye” exchange of looks between human and robot. Further, we provide an example of “eye mouse” superiority over the computer mouse, here in emulating the task of selecting a moving robot from a swarm. Finally, we demonstrate a passive, noninvasive BCI that uses EEG correlates of expectation. This may become an important lter to separate intentional gaze dwells from non-intentional ones. Conclusion. The current noninvasive BCIs are not well suited for human-robot interaction, and their performance, when they are employed by healthy users, is critically dependent on the impact of the gaze on selection of spatial locations. The new approaches discussed show a high potential for creating alternative output pathways for the human brain. When support from passive BCIs becomes mature, the hybrid technology of the eye-brain-computer (EBCI interface will have a chance to enable natural, fluent, and the

  14. Higher cortical modulation of pain perception in the human brain: Psychological determinant.

    Science.gov (United States)

    Chen, Andrew Cn

    2009-10-01

    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed determination, (b) distraction, (c) placebo, (d) hypnosis, (e) meditation, (f) qi-gong, (g) belief, and (h) emotions, respectively, in the brain function for pain modulation. In each, the operational definition, cortical processing, neuroimaging, and pain modulation were systematically deliberated. However, not all studies had featured the brain modulation processing but rather demonstrated potential effects on human pain. In our own studies on the emotional modulation on human pain, we observed that emotions could be induced from music melodies or pictures perception for reduction of tonic human pain, mainly in potentiation of the posterior alpha EEG fields, likely resulted from underneath activities of precuneous in regulation of consciousness, including pain perception. To sum, higher brain functions become the leading edge research in all sciences. How to solve the information bit of thinking and feeling in the brain can be the greatest challenge of human intelligence. Application of higher cortical modulation of human pain and suffering can lead to the progress of social humanity and civilization.

  15. Development of human brain structural networks through infancy and childhood.

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. The effect of image quality, repeated study, and assessment method on anatomy learning.

    Science.gov (United States)

    Fenesi, Barbara; Mackinnon, Chelsea; Cheng, Lucia; Kim, Joseph A; Wainman, Bruce C

    2017-06-01

    The use of two-dimensional (2D) images is consistently used to prepare anatomy students for handling real specimen. This study examined whether the quality of 2D images is a critical component in anatomy learning. The visual clarity and consistency of 2D anatomical images was systematically manipulated to produce low-quality and high-quality images of the human hand and human eye. On day 0, participants learned about each anatomical specimen from paper booklets using either low-quality or high-quality images, and then completed a comprehension test using either 2D images or three-dimensional (3D) cadaveric specimens. On day 1, participants relearned each booklet, and on day 2 participants completed a final comprehension test using either 2D images or 3D cadaveric specimens. The effect of image quality on learning varied according to anatomical content, with high-quality images having a greater effect on improving learning of hand anatomy than eye anatomy (high-quality vs. low-quality for hand anatomy P = 0.018; high-quality vs. low-quality for eye anatomy P = 0.247). Also, the benefit of high-quality images on hand anatomy learning was restricted to performance on short-answer (SA) questions immediately after learning (high-quality vs. low-quality on SA questions P = 0.018), but did not apply to performance on multiple-choice (MC) questions (high-quality vs. low-quality on MC questions P = 0.109) or after participants had an additional learning opportunity (24 hours later) with anatomy content (high vs. low on SA questions P = 0.643). This study underscores the limited impact of image quality on anatomy learning, and questions whether investment in enhancing image quality of learning aids significantly promotes knowledge development. Anat Sci Educ 10: 249-261. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  17. The Implementation of Clay Modeling and Rat Dissection into the Human Anatomy and Physiology Curriculum of a Large Urban Community College

    Science.gov (United States)

    Haspel, Carol; Motoike, Howard K.; Lenchner, Erez

    2014-01-01

    After a considerable amount of research and experimentation, cat dissection was replaced with rat dissection and clay modeling in the human anatomy and physiology laboratory curricula at La Guardia Community College (LAGCC), a large urban community college of the City University of New York (CUNY). This article describes the challenges faculty…

  18. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  19. Teaching Anatomy: need or taste?

    OpenAIRE

    Farrokhi, Ahmad; Nejad, Masoume Soleymani

    2017-01-01

    Abstract Background: Anatomy is one of the core sections of Basic Medical Sciences. Given the central role of anatomy, the development of medical knowledge and reach new horizons in science is not possible without relying on anatomy. Since in the anatomy science, students are familiar with the basic terms of medical language, the anatomy's hard to know and have a negative attitude towards this course. With these conditions, anatomy professors have an important role in providing incentives...

  20. Dental CT: examination technique, radiation load and anatomy; Dental-CT: Untersuchungstechnik, Strahlenbelastung und Anatomie

    Energy Technology Data Exchange (ETDEWEB)

    Lenglinger, F.X.; Muhr, T. [AKH Wels (Austria). Inst. fuer Radiologie; Krennmair, G. [Praxis fuer Zahn-, Mund- und Kieferheilkunde und Implantologie, Marchtrenk (Austria)

    1999-12-01

    Traditionally oral surgeons and dentists have evaluated the jaws using intraoral films and panoramic radiographs. The involvement of radiologists has been limited. In the past few years dedicated CT-software-programs developed to evaluate dental implant patients have provided a new look at the jaws. The complex anatomy is described and identified on human skulls and on axial, panoramic, and cross-sectional images. With this anatomic description Dental-CT-scans are used to demonstrate the anatomy of maxilla and the mandible. An overview of the technique of Dental-CT is provided, furthermore the radiation dose of different organs is explained. Suggestions to reduce these doses by simple modifications of the recommended protocols are given. (orig.) [German] Die Einfuehrung im Bereich der Computertomographiesoftware (Dental-CT) ermoeglicht dem Radiologen zusaetzlich zu den ueblichen, von den Zahnaerzten durchgefuehrten Roentgenuntersuchungen eine ueberlagerungs- und verzerrungsfreie Darstellung des Ober- und Unterkiefers. In der Implantologie ist mit dieser Darstellung eine exakte Planung moeglich. Weiterhin haben sich Duennschicht-CT-Untersuchungen auch bei der Abklaerung von Zysten, Tumoren, Frakturen, tiefen Parodontitiden und retinierten Zaehnen bewaehrt. In dieser Zeit wird ein Ueberblick ueber die Anatomie, die Untersuchungstechnik des Dental-CT und die auftretende Strahlenbelastung gegeben. Basierend auf rezente Literaturangaben kann eine Reduktion der absorbierten Dosis bei gleichbleibender Bildqualitaet durch einfache Protokollmodifikationen erzielt werden. (orig.)

  1. Cyto- and receptor architectonic mapping of the human brain.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl

    2018-01-01

    Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  3. Body painting to promote self-active learning of hand anatomy for preclinical medical students.

    Science.gov (United States)

    Jariyapong, Pitchanee; Punsawad, Chuchard; Bunratsami, Suchirat; Kongthong, Paranyu

    2016-01-01

    The purpose of this study was to use the body painting method to teach hand anatomy to a group of preclinical medical students. Students reviewed hand anatomy using the traditional method and body painting exercise. Feedback and retention of the anatomy-related information were examined by a questionnaire and multiple-choice questions, respectively, immediately and 1 month after the painting exercise. Students agreed that the exercise was advantageous and helped facilitate self-active learning after in-class anatomy lessons. While there was no significant difference in knowledge retention between the control and experimental groups, the students appreciated the exercise in which they applied body paint to the human body to learn anatomy. The body painting was an efficient tool for aiding the interactive learning of medical students and increasing the understanding of gross anatomy.

  4. Sensitivity analysis of human brain structural network construction

    Directory of Open Access Journals (Sweden)

    Kuang Wei

    2017-12-01

    Full Text Available Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP, we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes. Diffusion tractography has been proven to be a promising noninvasive technique to study the network properties of the human brain. However, how various tractography and network construction parameters affect network properties has not been studied using a large cohort of high-quality data. We utilize data provided by the Human Connectome Project to characterize the changes to network properties induced by varying the brain parcellation atlas scales, the number of reconstructed tractography tracks, and the degree of grey

  5. Dynamic Multi-Coil Shimming of the Human Brain at 7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Boer, Vincent O.; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    High quality magnetic field homogenization of the human brain (i.e. shimming) for MR imaging and spectroscopy is a demanding task. The susceptibility differences between air and tissue are a longstanding problem as they induce complex field distortions in the prefrontal cortex and the temporal lobes. To date, the theoretical gains of high field MR have only been realized partially in the human brain due to limited magnetic field homogeneity. A novel shimming technique for the human brain is presented that is based on the combination of non-orthogonal basis fields from 48 individual, circular coils. Custom-built amplifier electronics enabled the dynamic application of the multi-coil shim fields in a slice-specific fashion. Dynamic multi-coil (DMC) shimming is shown to eliminate most of the magnetic field inhomogeneity apparent in the human brain at 7 Tesla and provided improved performance compared to state-of-the-art dynamic shim updating with zero through third order spherical harmonic functions. The novel technique paves the way for high field MR applications of the human brain for which excellent magnetic field homogeneity is a prerequisite. PMID:21824794

  6. Cross-hemispheric functional connectivity in the human fetal brain.

    Science.gov (United States)

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  7. Brain structures in the sciences and humanities.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  8. Thrombin binding to human brain and spinal cord

    International Nuclear Information System (INIS)

    McKinney, M.; Snider, R.M.; Richelson, E.

    1983-01-01

    Thrombin, a serine protease that regulates hemostasis, has been shown to stimulate the formation of cGMP in murine neuroblastoma cells. The nervous system in vivo thus may be postulated to respond to this blood-borne factor after it breaches the blood-brain barrier, as in trauma. Human alpha-thrombin was radiolabeled with 125I and shown to bind rapidly, reversibly, and with high affinity to human brain and spinal cord. These findings indicate the presence of specific thrombin-binding sites in nervous tissue and may have important clinical implications

  9. Mu opioid receptor binding sites in human brain

    International Nuclear Information System (INIS)

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand [ 3 H]DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of [ 3 H]DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas

  10. A study of the role and functions of inspectors of anatomy in South ...

    African Journals Online (AJOL)

    2017-12-01

    Dec 1, 2017 ... anatomy, with the fundamental role of regulating human tissue. As a result, the .... requirement or order of an inspector of anatomy' or health officer.[22]. As seen from .... chief forensic pathologist; and (iv) a nursing education/occupational .... bodies of the poor and families experiencing financial constraints).

  11. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    OpenAIRE

    Xerxes D. Arsiwalla; Riccardo eZucca; Alberto eBetella; Enrique eMartinez; David eDalmazzo; Pedro eOmedas; Gustavo eDeco; Gustavo eDeco; Paul F.M.J. Verschure; Paul F.M.J. Verschure

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  12. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction

    OpenAIRE

    Arsiwalla, Xerxes D.; Zucca, Riccardo; Betella, Alberto; Martínez, Enrique, 1961-; Dalmazzo, David; Omedas, Pedro; Deco, Gustavo; Verschure, Paul F. M. J.

    2015-01-01

    BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimula...

  13. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  14. Visual dictionaries as intermediate features in the human brain

    Directory of Open Access Journals (Sweden)

    Kandan eRamakrishnan

    2015-01-01

    Full Text Available The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2 and V3. However BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.

  15. History of teaching anatomy in India: from ancient to modern times.

    Science.gov (United States)

    Jacob, Tony George

    2013-01-01

    Safe clinical practice is based on a sound knowledge of the structure and function of the human body. Thus, knowledge of anatomy has been an essential tool in the practice of healthcare throughout the ages. The history of anatomy in India traces from the Paleolithic Age to the Indus Valley Civilization, the Vedic Times, the Islamic Dynasties, the modern Colonial Period, and finally to Independent India. The course of the study of anatomy, despite accompanying controversies and periods of latencies, has been fascinating. This review takes the reader through various periods of Indian medicine and the role of anatomy in the field of medical practice. It also provides a peek into the modern system of pedagogy in anatomical sciences in India. Copyright © 2013 American Association of Anatomists.

  16. Multiple brain atlas database and atlas-based neuroimaging system.

    Science.gov (United States)

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  17. [Anatomia practica: features from the history of early patho-anatomy].

    Science.gov (United States)

    Jensen, Olaf Myhre

    2002-01-01

    Since the anatomy school of Alexandria during the fourth og third century before Christ dissection of the human body seems not to have been practiced until late Medieval or early Renaissance period, undoubtedly due to ethical and religious aversions. The teaching of anatomy was based on Galen using animal dissection. In the fourteenth and fifteenth centuries, however, anatomical examinations of the human body slowly began, seemingly for the purpose of describing both the normal structure and the abnormal structure caused by diseases, maldevelopment or trauma. This latter branch of anatomy was called practical, medical or correlative anatomy and corresponds to what we today name as patho-anatomy. Antonio Benivieni of Florence (1442-1502) is the first one to collect (and publish) a series of clinical observations some of which could be correlated to post mortem findings. It is unknown, however, whether the autopsies were performed by himself; and there is no mentioning of technique or circumstances for sectioning. Studies of the dead body by incision for the purpose of displaying diseased organs (autopsy) seem to have been an accepted practice for which relatives consented in those days. Other medical doctors in the years to follow, as for instance Fernel (1485-1558) in Paris, Eustachius (1524-1574) in Rome, Felix Plater (1536-1614) in Basle and Th. Bartholin (1616-1680) in Copenhagen have used the anatomical method for the study of diseases. Further, Schenck (1530-1598) in Freiburg and Bonet (1620-1689) in Genéva collected and published large series of clinical symptoms which had been related to post mortem findings dating back to ancient observers. This is the scientific background for anatomists as Morgagni, Lieutaud, Baillie, Bichât and others who founded the morbid anatomy on which the study of disease flourished in the classical patho-anatomical era of the nineteenth century with names as Rokitanski and Virchow.

  18. Comparative anatomy of rabbit and human achilles tendons with magnetic resonance and ultrasound imaging.

    Science.gov (United States)

    Doherty, Geoffrey P; Koike, Yoichi; Uhthoff, Hans K; Lecompte, Martin; Trudel, Guy

    2006-02-01

    We sought to describe the comparative anatomy of the Achilles tendon in rabbits and humans by using macroscopic observation, magnetic resonance imaging, and ultrasonography. The calcaneus-Achilles tendon-gastrocnemius-soleus complexes from 18 New Zealand white rabbits underwent ultrasound (US) and magnetic resonance (MR) imaging and gross anatomic sectioning; these results were compared with those from a cadaveric gastrocnemius-soleus-Achilles tendon-calcaneus specimen from a 68-y-old human male. The medial and lateral gastrocnemius muscle tendons merged 5.2 +/- 0.6 mm proximal to the calcaneal insertion macroscopically, at 93% of their course, different from the gastrocnemius human tendons, which merged at 23% of their overall course. The rabbit flexor digitorum superficialis tendon, corresponding to the flexor digitorum longus tendon in human and comparable in size with the gastrocnemius tendons, was located medial and anterior to the medial gastrocnemius tendon proximally and rotated dorsally and laterally to run posterior to the Achilles tendon-calcaneus insertion. In humans, the flexor digitorum longus tendon tracks posteriorly to the medial malleolus. The soleus muscle and tendon are negligible in the rabbit; these particular comparative anatomic features in the rabbit were confirmed on the MR images. Therefore the rabbit Achilles tendon shows distinctive gross anatomical and MR imaging features that must be considered when using the rabbit as a research model, especially for mechanical testing, or when generalizing results from rabbits to humans.

  19. The immune response of the human brain to abdominal surgery

    DEFF Research Database (Denmark)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin

    2017-01-01

    OBJECTIVE: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans....... This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. METHODS: Eight males undergoing prostatectomy under general...... anesthesia were included. Prior to surgery (baseline), at postoperative days 3 to 4, and after 3 months, patients were examined using [11C]PBR28 brain PET imaging to assess brain immune cell activation. Concurrently, systemic inflammatory biomarkers, ex vivo blood tests on immunoreactivity...

  20. Optogenetic control of human neurons in organotypic brain cultures

    DEFF Research Database (Denmark)

    Andersson, My; Avaliani, Natalia; Svensson, Andreas

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof......-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies....

  1. Centrality of Social Interaction in Human Brain Function.

    Science.gov (United States)

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Brain activation during human male ejaculation

    NARCIS (Netherlands)

    Holstege, Ger; Georgiadis, Janniko R.; Paans, Anne M.J.; Meiners, Linda C.; Graaf, Ferdinand H.C.E. van der; Reinders, A.A.T.Simone

    2003-01-01

    Brain mechanisms that control human sexual behavior in general, and ejaculation in particular, are poorly understood. We used positron emission tomography to measure increases in regional cerebral blood flow (rCBF) during ejaculation compared with sexual stimulation in heterosexual male volunteers.

  3. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    Science.gov (United States)

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  4. Normal Female Reproductive Anatomy

    Science.gov (United States)

    ... historical Searches are case-insensitive Reproductive System, Female, Anatomy Add to My Pictures View /Download : Small: 720x756 ... Large: 3000x3150 View Download Title: Reproductive System, Female, Anatomy Description: Anatomy of the female reproductive system; drawing ...

  5. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  6. The LINDSAY Virtual Human Project: an immersive approach to anatomy and physiology.

    Science.gov (United States)

    Tworek, Janet K; Jamniczky, Heather A; Jacob, Christian; Hallgrímsson, Benedikt; Wright, Bruce

    2013-01-01

    The increasing number of digital anatomy teaching software packages challenges anatomy educators on how to best integrate these tools for teaching and learning. Realistically, there exists a complex interplay of design, implementation, politics, and learning needs in the development and integration of software for education, each of which may be further amplified by the somewhat siloed roles of programmers, faculty, and students. LINDSAY Presenter is newly designed software that permits faculty and students to model and manipulate three-dimensional anatomy presentations and images, while including embedded quizzes, links, and text-based content. A validated tool measuring impact across pedagogy, resources, interactivity, freedom, granularity, and factors outside the immediate learning event was used in conjunction with observation, field notes, and focus groups to critically examine the impact of attitudes and perceptions of all stakeholders in the early implementation of LINDSAY Presenter before and after a three-week trial period with the software. Results demonstrate that external, personal media usage, along with students' awareness of the need to apply anatomy to clinical professional situations drove expectations of LINDSAY Presenter. A focus on the software over learning, which can be expected during initial orientation, surprisingly remained after three weeks of use. The time-intensive investment required to create learning content is a detractor from user-generated content and may reflect the consumption nature of other forms of digital learning. Early excitement over new technologies needs to be tempered with clear understanding of what learning is afforded, and how these constructively support future application and integration into professional practice. Copyright © 2012 American Association of Anatomists.

  7. The concept of schizotypy — A computational anatomy perspective

    Directory of Open Access Journals (Sweden)

    C. Modenato

    2015-06-01

    Full Text Available Despite major progress in diagnostic accuracy and symptomatic treatment of mental disorders, there is an ongoing debate about their classification aiming to follow current advances in neurobiology. The main goal of this review is to provide a comprehensive summary of the put forward schizotypy concept that follows the needs for objective assessment of schizophrenia-like personality traits in the general population. We focus on major achievements in the field from the perspective of magnetic resonance imaging-based computational anatomy of the brain. Particular interest is devoted to overlapping brain structure findings in schizotypy and schizophrenia to promote a dimensional view on schizophrenia as extension of phenotype traits in the non-clinical general population.

  8. Data integration through brain atlasing: Human Brain Project tools and strategies.

    Science.gov (United States)

    Bjerke, Ingvild E; Øvsthus, Martin; Papp, Eszter A; Yates, Sharon C; Silvestri, Ludovico; Fiorilli, Julien; Pennartz, Cyriel M A; Pavone, Francesco S; Puchades, Maja A; Leergaard, Trygve B; Bjaalie, Jan G

    2018-04-01

    The Human Brain Project (HBP), an EU Flagship Initiative, is currently building an infrastructure that will allow integration of large amounts of heterogeneous neuroscience data. The ultimate goal of the project is to develop a unified multi-level understanding of the brain and its diseases, and beyond this to emulate the computational capabilities of the brain. Reference atlases of the brain are one of the key components in this infrastructure. Based on a new generation of three-dimensional (3D) reference atlases, new solutions for analyzing and integrating brain data are being developed. HBP will build services for spatial query and analysis of brain data comparable to current online services for geospatial data. The services will provide interactive access to a wide range of data types that have information about anatomical location tied to them. The 3D volumetric nature of the brain, however, introduces a new level of complexity that requires a range of tools for making use of and interacting with the atlases. With such new tools, neuroscience research groups will be able to connect their data to atlas space, share their data through online data systems, and search and find other relevant data through the same systems. This new approach partly replaces earlier attempts to organize research data based only on a set of semantic terminologies describing the brain and its subdivisions. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  9. Deconstructing Anger in the Human Brain.

    Science.gov (United States)

    Gilam, Gadi; Hendler, Talma

    2017-01-01

    Anger may be caused by a wide variety of triggers, and though it has negative consequences on health and well-being, it is also crucial in motivating to take action and approach rather than avoid a confrontation. While anger is considered a survival response inherent in all living creatures, humans are endowed with the mental flexibility that enables them to control and regulate their anger, and adapt it to socially accepted norms. Indeed, a profound interpersonal nature is apparent in most events which evoke anger among humans. Since anger consists of physiological, cognitive, subjective, and behavioral components, it is a contextualized multidimensional construct that poses theoretical and operational difficulties in defining it as a single psychobiological phenomenon. Although most neuroimaging studies have neglected the multidimensionality of anger and thus resulted in brain activations dispersed across the entire brain, there seems to be several reoccurring neural circuits subserving the subjective experience of human anger. Nevertheless, to capture the large variety in the forms and fashions in which anger is experienced, expressed, and regulated, and thus to better portray the related underlying neural substrates, neurobehavioral investigations of human anger should aim to further embed realistic social interactions within their anger induction paradigms.

  10. Decade of the Brain 1990--2000: Maximizing human potential

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  11. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  12. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.

    Science.gov (United States)

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2017-01-04

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT 1A , 5-HT 1B , 5-HT 2A , and 5-HT 4 ) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain. We present a high-resolution positron emission tomography (PET)- and magnetic resonance imaging-based human brain atlas of important serotonin receptors and the transporter. The regional PET-derived binding measures correlate strongly with the corresponding autoradiography protein levels. The strong correlation enables the transformation of the PET-derived human brain atlas into a protein density map of the serotonin (5-hydroxytryptamine, 5-HT) system. Next, we compared the regional receptor/transporter protein densities with mRNA levels and uncovered unique associations between protein expression and density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain's regional protein

  13. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  14. Delaware Anatomy: With Linguistic, Social, and Medical Aspects

    Science.gov (United States)

    Miller, Jay

    1977-01-01

    Presents the comprehensive partonomy of anatomy in Unami Lenape or Delaware as provided by a modern Unami specialist. The primary referent is the human body, but some comparative terms referring to animals and plants are also provided. (CHK)

  15. The influence of ancient Greek thought on fifteenth century anatomy: Galenic influence and Leonardo da Vinci.

    Science.gov (United States)

    Tubbs, Richard Isaiah; Gonzales, Jocelyn; Iwanaga, Joe; Loukas, Marios; Oskouian, Rod J; Tubbs, R Shane

    2018-06-01

    Leonardo da Vinci (1452-1519) can be called one of the earliest contributors to the history of anatomy and, by extension, the study of medicine. He may have even overshadowed Andreas Vesalius (1514-1564), the so-called founder of human anatomy, if his works had been published within his lifetime. While some of the best illustrations of their time, with our modern knowledge of anatomy, it is clear that many of da Vinci's depictions of human anatomy are inaccurate. However, he also made significant discoveries in anatomy and remarkable predictions of facts he could not yet discover with the technology available to him. Additionally, da Vinci was largely influenced by Greek anatomists, as indicated from his ideas about anatomical structure. In this historical review, we describe da Vinci's history, influences, and discoveries in anatomical research and his depictions and errors with regards to the musculoskeletal system, cardiovascular system, nervous system, and other organs.

  16. Modified Team-Based Learning Strategy to Improve Human Anatomy Learning: A Pilot Study at the Universidad Del Norte in Barranquilla, Colombia

    Science.gov (United States)

    Martínez, Emilio G.; Tuesca, Rafael

    2014-01-01

    As part of an institutional program sponsored by the Centre for Teaching Excellence at the Universidad del Norte, Barranquilla, Colombia, we developed an educational research study on two sessions of human anatomy in which we combined team-based learning (TBL) and the use of iPads. Study data included the TBL, assessments applied during the…

  17. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System

    DEFF Research Database (Denmark)

    Beliveau, Vincent; Ganz-Benjaminsen, Melanie; Feng, Ling

    2017-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4...... with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human...... brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system...

  18. Body painting to promote self-active learning of hand anatomy for preclinical medical students.

    Science.gov (United States)

    Jariyapong, Pitchanee; Punsawad, Chuchard; Bunratsami, Suchirat; Kongthong, Paranyu

    2016-01-01

    Background The purpose of this study was to use the body painting method to teach hand anatomy to a group of preclinical medical students. Methods Students reviewed hand anatomy using the traditional method and body painting exercise. Feedback and retention of the anatomy-related information were examined by a questionnaire and multiple-choice questions, respectively, immediately and 1 month after the painting exercise. Results Students agreed that the exercise was advantageous and helped facilitate self-active learning after in-class anatomy lessons. While there was no significant difference in knowledge retention between the control and experimental groups, the students appreciated the exercise in which they applied body paint to the human body to learn anatomy. Conclusion The body painting was an efficient tool for aiding the interactive learning of medical students and increasing the understanding of gross anatomy.

  19. Skull base, orbits, temporal bone, and cranial nerves: anatomy on MR imaging.

    Science.gov (United States)

    Morani, Ajaykumar C; Ramani, Nisha S; Wesolowski, Jeffrey R

    2011-08-01

    Accurate delineation, diagnosis, and treatment planning of skull base lesions require knowledge of the complex anatomy of the skull base. Because the skull base cannot be directly evaluated, imaging is critical for the diagnosis and management of skull base diseases. Although computed tomography (CT) is excellent for outlining the bony detail, magnetic resonance (MR) imaging provides better soft tissue detail and is helpful for evaluating the adjacent meninges, brain parenchyma, and bone marrow of the skull base. Thus, CT and MR imaging are often used together for evaluating skull base lesions. This article focuses on the radiologic anatomy of the skull base pertinent to MR imaging evaluation. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Patterns of differences in brain morphology in humans as compared to extant apes.

    Science.gov (United States)

    Aldridge, Kristina

    2011-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Convergent transcriptional specializations in the brains of humans and song-learning birds

    DEFF Research Database (Denmark)

    Pfenning, Andreas R.; Hara, Erina; Whitney, Osceola

    2014-01-01

    Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified...... convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production...... and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes....

  2. Topological organization of the human brain functional connectome across the lifespan

    Directory of Open Access Journals (Sweden)

    Miao Cao

    2014-01-01

    Full Text Available Human brain function undergoes complex transformations across the lifespan. We employed resting-state functional MRI and graph-theory approaches to systematically chart the lifespan trajectory of the topological organization of human whole-brain functional networks in 126 healthy individuals ranging in age from 7 to 85 years. Brain networks were constructed by computing Pearson's correlations in blood-oxygenation-level-dependent temporal fluctuations among 1024 parcellation units followed by graph-based network analyses. We observed that the human brain functional connectome exhibited highly preserved non-random modular and rich club organization over the entire age range studied. Further quantitative analyses revealed linear decreases in modularity and inverted-U shaped trajectories of local efficiency and rich club architecture. Regionally heterogeneous age effects were mainly located in several hubs (e.g., default network, dorsal attention regions. Finally, we observed inverse trajectories of long- and short-distance functional connections, indicating that the reorganization of connectivity concentrates and distributes the brain's functional networks. Our results demonstrate topological changes in the whole-brain functional connectome across nearly the entire human lifespan, providing insights into the neural substrates underlying individual variations in behavior and cognition. These results have important implications for disease connectomics because they provide a baseline for evaluating network impairments in age-related neuropsychiatric disorders.

  3. The Speculative Neuroscience of the Future Human Brain

    Directory of Open Access Journals (Sweden)

    Robert A. Dielenberg

    2013-05-01

    Full Text Available The hallmark of our species is our ability to hybridize symbolic thinking with behavioral output. We began with the symmetrical hand axe around 1.7 mya and have progressed, slowly at first, then with greater rapidity, to producing increasingly more complex hybridized products. We now live in the age where our drive to hybridize has pushed us to the brink of a neuroscientific revolution, where for the first time we are in a position to willfully alter the brain and hence, our behavior and evolution. Nootropics, transcranial direct current stimulation (tDCS, transcranial magnetic stimulation (TMS, deep brain stimulation (DBS and invasive brain mind interface (BMI technology are allowing humans to treat previously inaccessible diseases as well as open up potential vistas for cognitive enhancement. In the future, the possibility exists for humans to hybridize with BMIs and mobile architectures. The notion of self is becoming increasingly extended. All of this to say: are we in control of our brains, or are they in control of us?

  4. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions.

    Science.gov (United States)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From this solid basis, connectivity studies of the human sexual response have begun to add a deeper understanding of the brain network function and structure involved. The study of "sexual" brain connectivity is still very young. Yet, by approaching the brain as a connected organ, the essence of brain function is captured much more accurately, increasing the likelihood of finding useful biomarkers and targets for intervention in sexual dysfunction.

  5. Anatomy Journal of Africa

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... Anatomy Journal of Africa is the Official Journal for the Association of Anatomical Societies of Africa. ... Applied anatomy - Clinical anatomy - Morphology, - Embryology ...

  6. The Brain Prize 2014: complex human functions.

    Science.gov (United States)

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The role of human endogenous retroviruses in brain development and function.

    Science.gov (United States)

    Mortelmans, Kristien; Wang-Johanning, Feng; Johanning, Gary L

    2016-01-01

    Endogenous retroviral sequences are spread throughout the genome of all humans, and make up about 8% of the genome. Despite their prevalence, the function of human endogenous retroviruses (HERVs) in humans is largely unknown. In this review we focus on the brain, and evaluate studies in animal models that address mechanisms of endogenous retrovirus activation in the brain and central nervous system (CNS). One such study in mice found that TRIM28, a protein critical for mouse early development, regulates transcription and silencing of endogenous retroviruses in neural progenitor cells. Another intriguing finding in human brain cells and mouse models was that endogenous retrovirus HERV-K appears to be protective against neurotoxins. We also report on studies that associate HERVs with human diseases of the brain and CNS. There is little doubt of an association between HERVs and a number of CNS diseases. However, a cause and effect relationship between HERVs and these diseases has not yet been established. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  8. Development of the Young Brain

    Medline Plus

    Full Text Available ... and Adolescents (26 items) Diversity and Ethnic Groups (4 items) Men’s Mental Health (11 items) Women’s Mental ... and Trials (3 items) Mental Health Services Research (4 items) Genetics (3 items) Brain Anatomy and Physiology ( ...

  9. Restructuring a basic science course for core competencies: an example from anatomy teaching.

    Science.gov (United States)

    Gregory, Jeremy K; Lachman, Nirusha; Camp, Christopher L; Chen, Laura P; Pawlina, Wojciech

    2009-09-01

    Medical schools revise their curricula in order to develop physicians best skilled to serve the public's needs. To ensure a smooth transition to residency programs, undergraduate medical education is often driven by the six core competencies endorsed by the Accreditation Council for Graduate Medical Education (ACGME): patient care, medical knowledge, practice-based learning, interpersonal skills, professionalism, and systems-based practice. Recent curricular redesign at Mayo Medical School provided an opportunity to restructure anatomy education and integrate radiology with first-year gross and developmental anatomy. The resulting 6-week (120-contact-hour) human structure block provides students with opportunities to learn gross anatomy through dissection, radiologic imaging, and embryologic correlation. We report more than 20 educational interventions from the human structure block that may serve as a model for incorporating the ACGME core competencies into basic science and early medical education. The block emphasizes clinically-oriented anatomy, invites self- and peer-evaluation, provides daily formative feedback through an audience response system, and employs team-based learning. The course includes didactic briefing sessions and roles for students as teachers, leaders, and collaborators. Third-year medical students serve as teaching assistants. With its clinical focus and competency-based design, the human structure block connects basic science with best-practice clinical medicine.

  10. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  11. Ex vivo MR volumetry of human brain hemispheres.

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A; Schneider, Julie A; Dawe, Robert J; Golak, Tom; Leurgans, Sue E; Yu, Lei; Arfanakis, Konstantinos

    2014-01-01

    The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics. Copyright © 2013 Wiley Periodicals, Inc.

  12. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  13. A stochastic large deformation model for computational anatomy

    DEFF Research Database (Denmark)

    Arnaudon, Alexis; Holm, Darryl D.; Pai, Akshay Sadananda Uppinakudru

    2017-01-01

    In the study of shapes of human organs using computational anatomy, variations are found to arise from inter-subject anatomical differences, disease-specific effects, and measurement noise. This paper introduces a stochastic model for incorporating random variations into the Large Deformation...

  14. An anatomy precourse enhances student learning in veterinary anatomy.

    Science.gov (United States)

    McNulty, Margaret A; Stevens-Sparks, Cathryn; Taboada, Joseph; Daniel, Annie; Lazarus, Michelle D

    2016-07-08

    Veterinary anatomy is often a source of trepidation for many students. Currently professional veterinary programs, similar to medical curricula, within the United States have no admission requirements for anatomy as a prerequisite course. The purpose of the current study was to evaluate the impact of a week-long precourse in veterinary anatomy on both objective student performance and subjective student perceptions of the precourse educational methods. Incoming first year veterinary students in the Louisiana State University School of Veterinary Medicine professional curriculum were asked to participate in a free precourse before the start of the semester, covering the musculoskeletal structures of the canine thoracic limb. Students learned the material either via dissection only, instructor-led demonstrations only, or a combination of both techniques. Outcome measures included student performance on examinations throughout the first anatomy course of the professional curriculum as compared with those who did not participate in the precourse. This study found that those who participated in the precourse did significantly better on examinations within the professional anatomy course compared with those who did not participate. Notably, this significant improvement was also identified on the examination where both groups were exposed to the material for the first time together, indicating that exposure to a small portion of veterinary anatomy can impact learning of anatomical structures beyond the immediate scope of the material previously learned. Subjective data evaluation indicated that the precourse was well received and students preferred guided learning via demonstrations in addition to dissection as opposed to either method alone. Anat Sci Educ 9: 344-356. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.

  15. Application of flipped classroom pedagogy to the human gross anatomy laboratory: Student preferences and learning outcomes.

    Science.gov (United States)

    Fleagle, Timothy R; Borcherding, Nicholas C; Harris, Jennie; Hoffmann, Darren S

    2017-12-28

    To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating in-class preparation provided the opportunity to end each period with integrative group activities that connected laboratory and lecture material and explored clinical correlations. Materials provided for prelaboratory preparation included: custom-made, three-dimensional (3D) anatomy videos, abbreviated dissection instructions, key atlas figures, and dissection videos. Data from three years of the course (n = 241 students) allowed for analysis of students' preferences for these materials and detailed tracking of usage of 3D anatomy videos. Students reported spending an average of 27:22 (±17:56) minutes preparing for laboratory, similar to the 30 minutes previously allocated for in-class dissection preparation. The 3D anatomy videos and key atlas figures were rated the most helpful resources. Scores on laboratory examinations were compared for the three years before the curriculum change (2011-2013; n = 242) and three years after (2014-2016; n = 241). There was no change in average grades on the first and second laboratory examinations. However, on the final semi-cumulative laboratory examination, scores were significantly higher in the post-flip classes (P = 0.04). These results demonstrate an effective model for applying flipped classroom pedagogy to the gross anatomy laboratory and illustrate a meaningful role for 3D anatomy visualizations in a dissection-based course. Anat Sci Educ. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  16. Amplification of a transcriptionally active DNA sequence in the human brain

    International Nuclear Information System (INIS)

    Yakovlev, A.G.; Sazonov, A.E.; Spunde, A.Ya.; Gindilis, V.M.

    1986-01-01

    The authors present their findings of tissue-specific amplification of a DNA fragment actively transcribed in the human brain. This genome fragment was found in the library complement of cDNA of the human brain and evidently belongs to a new class of moderate repetitions of DNA with an unstable copying capacity in the human genome. The authors isolated total cell RNA from various human tissues (brain, placenta), and rat tissues (brain, liver), by the method of hot phenol extraction with guanidine thiocynate. The poly(A + ) RNA fraction was isolated by chromatography. Synthesis of cDNA was done on a matrix of poly(A + ) RNA of human brain. The cDNA obtained was cloned in plasmid pBR322 for the PstI site using (dC/dG) sequences synthesized on the 3' ends of the vector molecule and cDNA respectively. In cloning 75 ng cDNA, the authors obtained approximately 10 5 recombinant. This library was analyzed by the hybridization method on columns with two radioactive ( 32 P) probes: the total cDNA preparation and the total nuclear DNA from the human brain. The number of copies of the cloned DNA fragment in the genome was determined by dot hybridization. Restricting fragments of human and rat DNA genomes homologous to the cloned cDNA were identified on radio-autographs. In each case, 10 micrograms of EcoRI DNA hydrolyzate was fractionated in 1% agarose gel. The probe was also readied with RNA samples fractionated in agarose gel with formaldehyde and transferred to a nitrocellulose filter under weak vacuum. The filter was hybridized with 0.1 micrograms DNA pAG 02, labeled with ( 32 P) to a specific activity of 0.5-1 x 10 9 counts/min x microgram. The autograph was exposed with amplifying screens at -70 0 C for 2 days

  17. Puberty and structural brain development in humans.

    Science.gov (United States)

    Herting, Megan M; Sowell, Elizabeth R

    2017-01-01

    Adolescence is a transitional period of physical and behavioral development between childhood and adulthood. Puberty is a distinct period of sexual maturation that occurs during adolescence. Since the advent of magnetic resonance imaging (MRI), human studies have largely examined neurodevelopment in the context of age. A breadth of animal findings suggest that sex hormones continue to influence the brain beyond the prenatal period, with both organizational and activational effects occurring during puberty. Given the animal evidence, human MRI research has also set out to determine how puberty may influence otherwise known patterns of age-related neurodevelopment. Here we review structural-based MRI studies and show that pubertal maturation is a key variable to consider in elucidating sex- and individual- based differences in patterns of human brain development. We also highlight the continuing challenges faced, as well as future considerations, for this vital avenue of research. Copyright © 2016. Published by Elsevier Inc.

  18. Quantifying anisotropy and fiber orientation in human brain histological sections

    Directory of Open Access Journals (Sweden)

    Matthew D Budde

    2013-02-01

    Full Text Available Diffusion weighted imaging (DWI has provided unparalleled insight into the microscopic structure and organization of the central nervous system. Diffusion tensor imaging (DTI and other models of the diffusion MRI signal extract microstructural properties of tissues with relevance to the normal and injured brain. Despite the prevalence of such techniques and applications, accurate and large-scale validation has proven difficult, particularly in the human brain. In this report, human brain sections obtained from a digital public brain bank were employed to quantify anisotropy and fiber orientation using structure tensor analysis. The derived maps depict the intricate complexity of white matter fibers at a resolution not attainable with current DWI experiments. Moreover, the effects of multiple fiber bundles (i.e. crossing fibers and intravoxel fiber dispersion were demonstrated. Examination of the cortex and hippocampal regions validated specific features of previous in vivo and ex vivo DTI studies of the human brain. Despite the limitation to two dimensions, the resulting images provide a unique depiction of white matter organization at resolutions currently unattainable with DWI. The method of analysis may be used to validate tissue properties derived from DTI and alternative models of the diffusion signal.

  19. Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus.

    Directory of Open Access Journals (Sweden)

    Moriah E Thomason

    Full Text Available The human brain undergoes dramatic maturational changes during late stages of fetal and early postnatal life. The importance of this period to the establishment of healthy neural connectivity is apparent in the high incidence of neural injury in preterm infants, in whom untimely exposure to ex-uterine factors interrupts neural connectivity. Though the relevance of this period to human neuroscience is apparent, little is known about functional neural networks in human fetal life. Here, we apply graph theoretical analysis to examine human fetal brain connectivity. Utilizing resting state functional magnetic resonance imaging (fMRI data from 33 healthy human fetuses, 19 to 39 weeks gestational age (GA, our analyses reveal that the human fetal brain has modular organization and modules overlap functional systems observed postnatally. Age-related differences between younger (GA <31 weeks and older (GA≥31 weeks fetuses demonstrate that brain modularity decreases, and connectivity of the posterior cingulate to other brain networks becomes more negative, with advancing GA. By mimicking functional principles observed postnatally, these results support early emerging capacity for information processing in the human fetal brain. Current technical limitations, as well as the potential for fetal fMRI to one day produce major discoveries about fetal origins or antecedents of neural injury or disease are discussed.

  20. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The implementation of clay modeling and rat dissection into the human anatomy and physiology curriculum of a large urban community college.

    Science.gov (United States)

    Haspel, Carol; Motoike, Howard K; Lenchner, Erez

    2014-01-01

    After a considerable amount of research and experimentation, cat dissection was replaced with rat dissection and clay modeling in the human anatomy and physiology laboratory curricula at La Guardia Community College (LAGCC), a large urban community college of the City University of New York (CUNY). This article describes the challenges faculty overcame and the techniques used to solve them. Methods involved were: developing a laboratory manual in conjunction with the publisher, holding training sessions for faculty and staff, the development of instructional outlines for students and lesson plans for faculty, the installation of storage facilities to hold mannequins instead of cat specimens, and designing mannequin clean-up techniques that could be used by more than one thousand students each semester. The effectiveness of these curricular changes was assessed by examining student muscle practical examination grades and the responses of faculty and students to questionnaires. The results demonstrated that the majority of faculty felt prepared to teach using clay modeling and believed the activity was effective in presenting lesson content. Students undertaking clay modeling had significantly higher muscle practical examination grades than students undertaking cat dissection, and the majority of students believed that clay modeling was an effective technique to learn human skeletal, respiratory, and cardiovascular anatomy, which included the names and locations of blood vessels. Furthermore, the majority of students felt that rat dissection helped them learn nervous, digestive, urinary, and reproductive system anatomy. Faculty experience at LAGCC may serve as a resource to other academic institutions developing new curricula for large, on-going courses. © 2013 American Association of Anatomists.

  2. The telencephalon of the Göttingen minipig, cytoarchitecture and cortical surface anatomy.

    Science.gov (United States)

    Bjarkam, Carsten R; Glud, Andreas N; Orlowski, Dariusz; Sørensen, Jens Christian H; Palomero-Gallagher, Nicola

    2017-07-01

    During the last 20 years pigs have become increasingly popular in large animal translational neuroscience research as an economical and ethical feasible substitute to non-human primates. The anatomy of the pig telencephalon is, however, not well known. We present, accordingly, a detailed description of the surface anatomy and cytoarchitecture of the Göttingen minipig telencephalon based on macrophotos and consecutive high-power microphotographs of 15 μm thick paraffin embedded Nissl-stained coronal sections. In 1-year-old specimens the formalin perfused brain measures approximately 55 × 47 × 36 mm (length, width, height) and weighs around 69 g. The telencephalic part of the Göttingen minipig cerebrum covers a large surface area, which can be divided into a neocortical gyrencephalic part located dorsal to the rhinal fissure, and a ventral subrhinal part dominated by olfactory, amygdaloid, septal, and hippocampal structures. This part of the telencephalon is named the subrhinal lobe, and based on cytoarchitectural and sulcal anatomy, can be discerned from the remaining dorsally located neocortical perirhinal/insular, pericallosal, frontal, parietal, temporal, and occipital lobes. The inner subcortical structure of the minipig telencephalon is dominated by a prominent ventricular system and large basal ganglia, wherein the putamen and the caudate nucleus posterior and dorsally are separated into two entities by the internal capsule, whereas both structures ventrally fuse into a large accumbens nucleus. The presented anatomical data is accompanied by surface renderings and high-power macrophotographs illustrating the telencephalic sulcal pattern, and the localization of the identified lobes and cytoarchitectonic areas. Additionally, 24 representative Nissl-stained telencephalic coronal sections are presented as supplementary material in atlas form on http://www.cense.dk/minipig_atlas/index.html and referred to as S1-S24 throughout the manuscript.

  3. Neuronal substrates of sensory gating within the human brain.

    NARCIS (Netherlands)

    Grunwald, T.; Boutros, N.N.; Pezer, N.; Oertzen, J. von; Fernandez, G.S.E.; Schaller, C.; Elger, C.E.

    2003-01-01

    BACKGROUND: For the human brain, habituation to irrelevant sensory input is an important function whose failure is associated with behavioral disturbances. Sensory gating can be studied by recording the brain's electrical responses to repeated clicks: the P50 potential is normally reduced to the

  4. Use of Eye Tracking as an Innovative Instructional Method in Surgical Human Anatomy.

    Science.gov (United States)

    Sánchez-Ferrer, María Luísa; Grima-Murcia, María Dolores; Sánchez-Ferrer, Francisco; Hernández-Peñalver, Ana Isabel; Fernández-Jover, Eduardo; Sánchez Del Campo, Francisco

    Tobii glasses can record corneal infrared light reflection to track pupil position and to map gaze focusing in the video recording. Eye tracking has been proposed for use in training and coaching as a visually guided control interface. The aim of our study was to test the potential use of these glasses in various situations: explanations of anatomical structures on tablet-type electronic devices, explanations of anatomical models and dissected cadavers, and during the prosection thereof. An additional aim of the study was to test the use of the glasses during laparoscopies performed on Thiel-embalmed cadavers (that allows pneumoinsufflation and exact reproduction of the laparoscopic surgical technique). The device was also tried out in actual surgery (both laparoscopy and open surgery). We performed a pilot study using the Tobii glasses. Dissection room at our School of Medicine and in the operating room at our Hospital. To evaluate usefulness, a survey was designed for use among students, instructors, and practicing physicians. The results were satisfactory, with the usefulness of this tool supported by more than 80% positive responses to most questions. There was no inconvenience for surgeons and that patient safety was ensured in the real laparoscopy. To our knowledge, this is the first publication to demonstrate the usefulness of eye tracking in practical instruction of human anatomy, as well as in teaching clinical anatomy and surgical techniques in the dissection and operating rooms. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  5. A study of student perceptions of learning transfer from a human anatomy and physiology course in an allied health program

    Science.gov (United States)

    Harrell, Leigh S.

    The purpose of this study was two-fold. First the study was designed to determine student perceptions regarding the perceived degree of original learning from a human anatomy and physiology course, and the student perception of the use of the knowledge in an allied health program. Second, the intention of the study was to establish student beliefs on the characteristics of the transfer of learning including those factors which enhance learning transfer and those that serve as barriers to learning transfer. The study participants were those students enrolled in any allied health program at a community college in a Midwest state, including: nursing, radiology, surgical technology, health information technology, and paramedic. Both quantitative and qualitative data were collected and analyzed from the responses to the survey. A sub-group of participants were chosen to participate in semi-structured formal interviews. From the interviews, additional qualitative data were gathered. The data collected through the study demonstrated student perception of successful transfer experiences. The students in the study were able to provide specific examples of learning transfer experienced from the human anatomy and physiology course in their allied health program. Findings also suggested students who earned higher grades in the human anatomy and physiology course perceived greater understanding and greater use of the course's learning objectives in their allied health program. The study found the students believed the following learning activities enhances the transfer of learning: (1) Providing application of the information or skills being learned during the instruction of the course content enhances the transfer of learning. (2) Providing resource materials and activities which allow the students to practice the content being taught facilitates the transfer of learning. The students made the following recommendations to remove barriers to the transfer of learning: (1

  6. Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies.

    Science.gov (United States)

    Cooper, Robert J; Caffini, Matteo; Dubb, Jay; Fang, Qianqian; Custo, Anna; Tsuzuki, Daisuke; Fischl, Bruce; Wells, William; Dan, Ippeita; Boas, David A

    2012-09-01

    We describe the validation of an anatomical brain atlas approach to the analysis of diffuse optical tomography (DOT). Using MRI data from 32 subjects, we compare the diffuse optical images of simulated cortical activation reconstructed using a registered atlas with those obtained using a subject's true anatomy. The error in localization of the simulated cortical activations when using a registered atlas is due to a combination of imperfect registration, anatomical differences between atlas and subject anatomies and the localization error associated with diffuse optical image reconstruction. When using a subject-specific MRI, any localization error is due to diffuse optical image reconstruction only. In this study we determine that using a registered anatomical brain atlas results in an average localization error of approximately 18 mm in Euclidean space. The corresponding error when the subject's own MRI is employed is 9.1 mm. In general, the cost of using atlas-guided DOT in place of subject-specific MRI-guided DOT is a doubling of the localization error. Our results show that despite this increase in error, reasonable anatomical localization is achievable even in cases where the subject-specific anatomy is unavailable. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Driving and driven architectures of directed small-world human brain functional networks.

    Directory of Open Access Journals (Sweden)

    Chaogan Yan

    Full Text Available Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86 to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule. Further split-half analyses indicated that our results were highly reproducible between two

  8. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  9. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  10. Long-term neuroglobin expression of human astrocytes following brain trauma.

    Science.gov (United States)

    Chen, Xiameng; Liu, Yuan; Zhang, Lin; Zhu, Peng; Zhu, Haibiao; Yang, Yu; Guan, Peng

    2015-10-08

    Neuroglobin (Ngb), a 17 kDa monomeric protein, was initially described as a vertebrate oxygen-binding heme protein in 2000 and detected in metabolically active organs or cells, like the brain, peripheral nervous system as well as certain endocrine cells. A large array of initial experimental work reported that Ngb displayed a neuron restricted expression pattern in mammalian brains. However, growing evidence indicated astrocytes may also express Ngb under pathological conditions. To address the question whether human astrocytes express Ngb under traumatic insults, we investigated Ngb immuno-reactivity in post-mortem human brain tissues that died of acute, sub-acute and chronic brain trauma, respectively. We observed astrocytic Ngb expression in sub-acute and chronic traumatic brains rather than acute traumatic brains. Strikingly, the Ngb immuno-reactive astrocytes were still strongly detectable in groups that died 12 months after brain trauma. Our findings may imply an unexplored role of Ngb in astrocytes and the involved mechanisms were suggested to be further characterized. Also, therapeutic application of Ngb or Ngb-inducible chemical compounds in neuro-genesis or astrocytic scar forming can be expected. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  12. Gross Anatomy classroom and dissection laboratory. An ethnographic approach to the study of human anatomy

    Directory of Open Access Journals (Sweden)

    María Belén López Castro

    2016-06-01

    Full Text Available The academic areas that rely on university chairs articulate teaching and research in particular ways. The aim of this paper is to describe the ways in which knowledge about the body is built from the work of the laboratories of dissection, without losing sight of its articulation with the anatomy lessons as a regular signature. From an ethnographic perspective, the proposal is to focus in the interventions over the dead body in the dissection laboratory based on the object of didactic transposition of the class.

  13. "Digit anatomy": a new technique for learning anatomy using motor memory.

    Science.gov (United States)

    Oh, Chang-Seok; Won, Hyung-Sun; Kim, Kyong-Jee; Jang, Dong-Su

    2011-01-01

    Gestural motions of the hands and fingers are powerful tools for expressing meanings and concepts, and the nervous system has the capacity to retain multiple long-term motor memories, especially including movements of the hands. We developed many sets of successive movements of both hands, referred to as "digit anatomy," and made students practice the movements which express (1) the aortic arch, subclavian, and thoracoacromial arteries and their branches, (2) the celiac trunk, superior mesenteric artery and their branches, and formation of the portal vein, (3) the heart and the coronary arteries, and (4) the brachial, lumbar, and sacral plexuses. A feedback survey showed that digit anatomy was helpful for the students not only in memorizing anatomical structures but also in understanding their functions. Out of 40 students, 34 of them who learned anatomy with the help of digit anatomy were "very satisfied" or "generally satisfied" with this new teaching method. Digit anatomy that was used to express the aortic arch, subclavian, and thoracoacromial arteries and their branches was more helpful than those representing other structures. Although the movements of digit anatomy are expected to be remembered longer than the exact meaning of each movement, invoking the motor memory of the movement may help to make relearning of the same information easier and faster in the future. Copyright © 2011 American Association of Anatomists.

  14. Lactate fuels the human brain during exercise

    DEFF Research Database (Denmark)

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up......)] from a resting value of 6 to exercise, cerebral activation associated with mental activity, or exposure to a stressful situation. The CMR decrease is prevented with combined beta(1)- and beta(2)-adrenergic receptor...

  15. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    Science.gov (United States)

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Kisspeptin modulates sexual and emotional brain processing in humans.

    Science.gov (United States)

    Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S

    2017-02-01

    Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

  17. Ex-vivo MR Volumetry of Human Brain Hemispheres

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos

    2013-01-01

    Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751

  18. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2016-12-01

    Full Text Available Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies.Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization (ISH and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype’s spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most

  19. Human blood-brain barrier insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.

    1988-01-01

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefold greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of 125 I-IGF-1, 125 I-IGF-2, and 125 I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin

  20. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain

    Directory of Open Access Journals (Sweden)

    Dini Gabriele

    2004-10-01

    Full Text Available Abstract Background The multiple drug resistance protein (MDR1/P-glycoprotein is overexpressed in glia and blood-brain barrier (BBB endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. Methods Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. Results MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. Conclusions Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.

  1. Measuring and Reconstructing the Brain at the Synaptic Scale: Towards a Biofidelic Human Brain in silico

    OpenAIRE

    NeuroData; CE, Priebe; Burns, R.; RJ, Vogelstein

    2015-01-01

    Vogelstein JT, Priebe CE, Burns R, Vogelstein RJ, Lichtman J. Measuring and Reconstructing the Brain at the Synaptic Scale: Towards a Biofidelic Human Brain in silico. DARPA Neural Engineering, Science and Technology Forum, 2010

  2. Normal anatomy and MR findings of fetal main organs at MR imaging

    International Nuclear Information System (INIS)

    Xia Liming; Zou Mingli; Feng Dingyi; Hu Junwu; Qi Jianpin; Wang Chengyuan

    2005-01-01

    Objective: To investigate normal anatomy and MR findings of fetal main organs. Methods: Forty-seven fetus underwented fast MR imaging, SSFSE sequence was used, the normal anatomy and MR findings of fetal main organs was observed in different gestational age. The organs included: brain, lungs, heart, liver, spleen, gastrointestinal tract, urinary collecting systems, bladder, bones, spine, and subcutaneous fat. Results: Results of MR in 47 fetus showed that the main organs had developed by 20-week-old fetus, about 20 weeks gestation, cerebral cortical surface was smooth, no cortical gyri and sulci, then cortical gyri and sulci developed slowly. The lungs, trachea, bronchus, gastrointestinal tract, renal collecting system and bladder showed high signal intensity; the heart, great vessels, liver, spleen, bones and muscles appeared hypointense; the kidneys appeared isointense, the spine had developed and subcutaneous fat was seen in 20-week-old fetus, the subcutaneous fat increased with fetus maturating. Conclusion: Normal anatomy and MR findings of fetal main organs were clearly showed by fast MR imaging, and they are different from the newborns. (authors)

  3. A study of the role and functions of inspectors of anatomy in South Africa

    Directory of Open Access Journals (Sweden)

    P Pillay

    2017-12-01

    Full Text Available Inspectors of anatomy are supposed to monitor and regulate the use of human tissue for teaching and research purposes. In South Africa, provincial inspectors are appointed to oversee this function. However, there is a critical shortage of such persons, and there are only three inspectors currently appointed: one in an acting capacity for KwaZulu-Natal Province, and one each for the Gauteng and Western Cape provinces, respectively. It is imperative, therefore, that the appointment of inspectors of anatomy in the other provinces be addressed urgently. The responsibilities of inspectors of anatomy towards higher-education institutions are to: (i maintain cadaver records; (ii ensure that cadavers are obtained in a legal and ethical manner; (iii carry out inspections of anatomy departments at least once a year; (iv evaluate health and safety with regard to the storage of specimens; and (v monitor cadaver procurement. This study recommends the establishment of a National Consultative Anatomy Forum to make decisions on: (i the type of consent required for donations of bodies; (ii the mechanisms for the donation of bodies for teaching and research; and (iii the treatment of unclaimed and/or unidentified bodies. In addition, the forum should advise government on policy, and provide guidelines for the donation and use of cadavers and human tissue.

  4. Brain Imaging of Human Sexual Response : Recent Developments and Future Directions

    NARCIS (Netherlands)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for

  5. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  6. Repeated Exposure to Dissection Does Not Influence Students' Attitudes towards Human Body Donation for Anatomy Teaching

    Science.gov (United States)

    Mwachaka, Philip Maseghe; Mandela, Pamela; Saidi, Hassan

    2016-01-01

    The use of unclaimed bodies for anatomical dissection has been the main method of instruction at our institution. There is however a shortage of cadavers for dissection given the increase in the number of medical schools as well as in the number of students enrolling in these schools. This shortage could be mitigated by having voluntary human body donation programs. This study aimed at assessing the attitudes of medical students and surgical residents towards body donation for anatomy learning. We conducted an online survey involving 72 first-year medical students and 41 surgical residents at University of Nairobi who had completed one year of anatomy dissection. For the medical students, this was their first dissection experience while it was the second exposure for the surgery trainees. Most of the surgical trainees (70.7%) and medical students (68.1%) were opposed to self-body donation. This was mainly due to cultural (37%) and religious (20%) barriers. Surprisingly, of those not willing to donate themselves, 67.9% (82.8% surgical trainees, 59.2% medical students) would recommend the practice to other people. Exposure to repeated dissection does not change the perceptions towards body donation. It is noteworthy that culture and religion rank high as clear barriers amongst this “highly informed” group of potential donors. PMID:27190650

  7. Repeated Exposure to Dissection Does Not Influence Students' Attitudes towards Human Body Donation for Anatomy Teaching.

    Science.gov (United States)

    Mwachaka, Philip Maseghe; Mandela, Pamela; Saidi, Hassan

    2016-01-01

    The use of unclaimed bodies for anatomical dissection has been the main method of instruction at our institution. There is however a shortage of cadavers for dissection given the increase in the number of medical schools as well as in the number of students enrolling in these schools. This shortage could be mitigated by having voluntary human body donation programs. This study aimed at assessing the attitudes of medical students and surgical residents towards body donation for anatomy learning. We conducted an online survey involving 72 first-year medical students and 41 surgical residents at University of Nairobi who had completed one year of anatomy dissection. For the medical students, this was their first dissection experience while it was the second exposure for the surgery trainees. Most of the surgical trainees (70.7%) and medical students (68.1%) were opposed to self-body donation. This was mainly due to cultural (37%) and religious (20%) barriers. Surprisingly, of those not willing to donate themselves, 67.9% (82.8% surgical trainees, 59.2% medical students) would recommend the practice to other people. Exposure to repeated dissection does not change the perceptions towards body donation. It is noteworthy that culture and religion rank high as clear barriers amongst this "highly informed" group of potential donors.

  8. Synaptic Tau Seeding Precedes Tau Pathology in Human Alzheimer's Disease Brain

    Directory of Open Access Journals (Sweden)

    Sarah L. DeVos

    2018-04-01

    Full Text Available Alzheimer's disease (AD is defined by the presence of intraneuronal neurofibrillary tangles (NFTs composed of hyperphosphorylated tau aggregates as well as extracellular amyloid-beta plaques. The presence and spread of tau pathology through the brain is classified by Braak stages and thought to correlate with the progression of AD. Several in vitro and in vivo studies have examined the ability of tau pathology to move from one neuron to the next, suggesting a “prion-like” spread of tau aggregates may be an underlying cause of Braak tau staging in AD. Using the HEK293 TauRD-P301S-CFP/YFP expressing biosensor cells as a highly sensitive and specific tool to identify the presence of seed competent aggregated tau in brain lysate—i.e., tau aggregates that are capable of recruiting and misfolding monomeric tau—, we detected substantial tau seeding levels in the entorhinal cortex from human cases with only very rare NFTs, suggesting that soluble tau aggregates can exist prior to the development of overt tau pathology. We next looked at tau seeding levels in human brains of varying Braak stages along six regions of the Braak Tau Pathway. Tau seeding levels were detected not only in the brain regions impacted by pathology, but also in the subsequent non-pathology containing region along the Braak pathway. These data imply that pathogenic tau aggregates precede overt tau pathology in a manner that is consistent with transneuronal spread of tau aggregates. We then detected tau seeding in frontal white matter tracts and the optic nerve, two brain regions comprised of axons that contain little to no neuronal cell bodies, implying that tau aggregates can indeed traverse along axons. Finally, we isolated cytosolic and synaptosome fractions along the Braak Tau Pathway from brains of varying Braak stages. Phosphorylated and seed competent tau was significantly enriched in the synaptic fraction of brain regions that did not have extensive cellular tau

  9. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Kish, Stephen J.; Furukawa, Yoshiaki; Chang Lijan; Tong Junchao; Ginovart, Nathalie; Wilson, Alan; Houle, Sylvain; Meyer, Jeffrey H.

    2005-01-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  10. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  11. Improving gross anatomy learning using reciprocal peer teaching.

    Science.gov (United States)

    Manyama, Mange; Stafford, Renae; Mazyala, Erick; Lukanima, Anthony; Magele, Ndulu; Kidenya, Benson R; Kimwaga, Emmanuel; Msuya, Sifael; Kauki, Julius

    2016-03-22

    The use of cadavers in human anatomy teaching requires adequate number of anatomy instructors who can provide close supervision of the students. Most medical schools are facing challenges of lack of trained individuals to teach anatomy. Innovative techniques are therefore needed to impart adequate and relevant anatomical knowledge and skills. This study was conducted in order to evaluate the traditional teaching method and reciprocal peer teaching (RPT) method during anatomy dissection. Debriefing surveys were administered to the 227 first year medical students regarding merits, demerits and impact of both RPT and Traditional teaching experiences on student's preparedness prior to dissection, professionalism and communication skills. Out of this, 159 (70 %) completed the survey on traditional method while 148 (65.2 %) completed survey on RPT method. An observation tool for anatomy faculty was used to assess collaboration, professionalism and teaching skills among students. Student's scores on examinations done before introduction of RPT were compared with examinations scores after introduction of RPT. Our results show that the mean performance of students on objective examinations was significantly higher after introduction of RPT compared to the performance before introduction of RPT [63.7 ± 11.4 versus 58.6 ± 10, mean difference 5.1; 95 % CI = 4.0-6.3; p-value peers and faculty compared to 38 % for the tradition method. The majority of faculty reported that the learning environment of the dissection groups was very active learning during RPT sessions and that professionalism was observed by most students during discussions. Introduction of RPT in our anatomy dissection laboratory was generally beneficial to both students and faculty. Both objective (student performance) and subjective data indicate that RPT improved student's performance and had a positive learning experience impact. Our future plan is to continue RPT practice and continually

  12. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning.

    Science.gov (United States)

    Luursema, Jan-Maarten; Vorstenbosch, Marc; Kooloos, Jan

    2017-01-01

    A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F (1) = 5.63 and p = .02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.

  13. Mary Jane Hogue (1883-1962): A pioneer in human brain tissue culture.

    Science.gov (United States)

    Zottoli, Steven J; Seyfarth, Ernst-August

    2018-05-16

    The ability to maintain human brain explants in tissue culture was a critical step in the use of these cells for the study of central nervous system disorders. Ross G. Harrison (1870-1959) was the first to successfully maintain frog medullary tissue in culture in 1907, but it took another 38 years before successful culture of human brain tissue was accomplished. One of the pioneers in this achievement was Mary Jane Hogue (1883-1962). Hogue was born into a Quaker family in 1883 in West Chester, Pennsylvania, and received her undergraduate degree from Goucher College in Baltimore, Maryland. Research with the developmental biologist Theodor Boveri (1862-1915) in Würzburg, Germany, resulted in her Ph.D. (1909). Hogue transitioned from studying protozoa to the culture of human brain tissue in the 1940s and 1950s, when she was one of the first to culture cells from human fetal, infant, and adult brain explants. We review Hogue's pioneering contributions to the study of human brain cells in culture, her putative identification of progenitor neuroblast and/or glioblast cells, and her use of the cultures to study the cytopathogenic effects of poliovirus. We also put Hogue's work in perspective by discussing how other women pioneers in tissue culture influenced Hogue and her research.

  14. Brain mechanisms underlying human communication

    Directory of Open Access Journals (Sweden)

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  15. Brain mechanisms underlying human communication.

    Science.gov (United States)

    Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  16. Activation analysis study on subcellular distribution of trace elements in human brain tumor

    International Nuclear Information System (INIS)

    Zheng Jian; Zhuan Guisun; Wang Yongji; Dong Mo; Zhang Fulin

    1992-01-01

    The concentrations of up to 11 elements in subcellular fractions of human brain (normal and malignant tumor) have been determined by a combination of gradient centrifugation and INAA methods. Samples of human brain were homogenized in a glass homogenizer tube, the homogenate was separated into nuclei, mitochondrial, myelin, synaptosome fractions, and these fractions were then analyzed using the INAA method. The discussions of elemental subcelleular distributions in human brain malignant tumor are presented in this paper. (author) 11 refs.; 2 figs.; 4 tabs

  17. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size.

    Directory of Open Access Journals (Sweden)

    Rotem Kadir

    2016-03-01

    Full Text Available Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.

  18. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  19. Differing levels of excision repair in human fetal dermis and brain cells

    International Nuclear Information System (INIS)

    Gibson, R.E.; D'Ambrosio, S.M.; Ohio State Univ., Columbus

    1982-01-01

    The levels of DNA excision repair, as measured by unscheduled DNA synthesis (UDS) and the UV-endonuclease sensitive site assay, were compared in cells derived from human fetal brain and dermal tissues. The level of UDS induced following ultraviolet (UV) irradiation was found to be lower (approx. 60%) in the fetal brain cells than in fetal dermal cells. It was determined, using the UV-endonuclease sensitive site assay to confirm the UDS observation, that 50% of the dimers induced by UV in fetal dermal cells were repaired in 8 h. while only 15% were removed in the fetal brain cells during the same period of time. Even after 24 h. only 44% of the dimers induced by UV in the fetal brain cells were repaired, while 65% were removed in the dermal cells. These data suggest that cultured human fetal brain cells exhibit lower levels of excision repair compared to cultured human fetal dermal cells. (author)

  20. Tolerances of the human brain to concussion.

    Science.gov (United States)

    1971-03-01

    The report reviews the pertinent literature and adds additional evidence indicating that the human brain may be able to tolerate head impact forces in the range of 300 to 400 g's without evidence of concussion or other detectable neurologic sequelae,...

  1. Who Is Repeating Anatomy? Trends in an Undergraduate Anatomy Course

    Science.gov (United States)

    Schutte, Audra F.

    2016-01-01

    Anatomy courses frequently serve as prerequisites or requirements for health sciences programs. Due to the challenging nature of anatomy, each semester there are students remediating the course (enrolled in the course for a second time), attempting to earn a grade competitive for admissions into a program of study. In this retrospective study,…

  2. Anatomy of Sarcocaulon

    Directory of Open Access Journals (Sweden)

    R. L. Verhoeven

    1983-11-01

    Full Text Available The anatomy of the leaf blade, petiole, stem and root of the genus Sarcocaulon (DC. Sweet is discussed. On the basis of the leaf anatomy, the four sections recognized by Moffett (1979 can be identified: section Denticulati (dorsiventral leaves, section Multifidi (isobilateral leaves and adaxial and abaxial palisade continuous at midvein, section Crenati (isobilateral leaves, short curved trichomes and glandular hairs, section Sarcocaulon (isobilateral leaves and glandular hairs only. The anatomy of the stem is typically that of a herbaceous dicotyledon with a thick periderm. The root structure shows that the function of the root is not food storage.

  3. Dental CT: examination technique, radiation load and anatomy

    International Nuclear Information System (INIS)

    Lenglinger, F.X.; Muhr, T.

    1999-01-01

    Traditionally oral surgeons and dentists have evaluated the jaws using intraoral films and panoramic radiographs. The involvement of radiologists has been limited. In the past few years dedicated CT-software-programs developed to evaluate dental implant patients have provided a new look at the jaws. The complex anatomy is described and identified on human skulls and on axial, panoramic, and cross-sectional images. With this anatomic description Dental-CT-scans are used to demonstrate the anatomy of maxilla and the mandible. An overview of the technique of Dental-CT is provided, furthermore the radiation dose of different organs is explained. Suggestions to reduce these doses by simple modifications of the recommended protocols are given. (orig.) [de

  4. Evaluation of an innovative hands-on anatomy-centered ultrasound curriculum to supplement graduate gross anatomy education.

    Science.gov (United States)

    Royer, Danielle F; Kessler, Ross; Stowell, Jeffrey R

    2017-07-01

    Ultrasound (US) can enhance anatomy education, yet is incorporated into few non-medical anatomy programs. This study is the first to evaluate the impact of US training in gross anatomy for non-medical students in the United States. All 32 master's students enrolled in gross anatomy with the anatomy-centered ultrasound (ACUS) curriculum were recruited. Mean Likert ratings on pre- and post-course surveys (100% response rates) were compared to evaluate the effectiveness of the ACUS curriculum in developing US confidence, and gauge its impact on views of US. Post-course, students reported significantly higher (P education and to students' future careers remained positive after the course. End-of-semester quiz performance (91% response rate) provided data on educational outcomes. The average score was 79%, with a 90% average on questions about distinguishing tissues/artifacts, demonstrating positive learning outcomes and retention. The anatomy-centered ultrasound curriculum significantly increased confidence with and knowledge of US among non-medical anatomy students with limited prior training. Non-medical students greatly value the contributions that US makes to anatomy education and to their future careers. It is feasible to enhance anatomy education outside of medical training by incorporating US. Anat Sci Educ 10: 348-362. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  5. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  6. The Complex Functioning of the Human Brain: The Two Hemispheres

    Directory of Open Access Journals (Sweden)

    Iulia Cristina Timofti

    2010-04-01

    Full Text Available The present study reveals just a glimpse of the possible functions and reactions that the human brain can have. I considered as good examples different situations characteristic both of a normal person and a split-brain one. These situations prove that the brain, although divided in two, works as a unit, as an amazing computer that has data processing as a main goal.

  7. Human brain organoids on a chip reveal the physics of folding

    Science.gov (United States)

    Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R.; Hanna, Jacob H.; Reiner, Orly

    2018-05-01

    Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a microfabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.

  8. Classic versus millennial medical lab anatomy.

    Science.gov (United States)

    Benninger, Brion; Matsler, Nik; Delamarter, Taylor

    2014-10-01

    This study investigated the integration, implementation, and use of cadaver dissection, hospital radiology modalities, surgical tools, and AV technology during a 12-week contemporary anatomy course suggesting a millennial laboratory. The teaching of anatomy has undergone the greatest fluctuation of any of the basic sciences during the past 100 years in order to make room for the meteoric rise in molecular sciences. Classically, anatomy consisted of a 2-year methodical, horizontal, anatomy course; anatomy has now morphed into a 12-week accelerated course in a vertical curriculum, at most institutions. Surface and radiological anatomy is the language for all clinicians regardless of specialty. The objective of this study was to investigate whether integration of full-body dissection anatomy and modern hospital technology, during the anatomy laboratory, could be accomplished in a 12-week anatomy course. Literature search was conducted on anatomy text, journals, and websites regarding contemporary hospital technology integrating multiple image mediums of 37 embalmed cadavers, surgical suite tools and technology, and audio/visual technology. Surgical and radiology professionals were contracted to teach during the anatomy laboratory. Literature search revealed no contemporary studies integrating full-body dissection with hospital technology and behavior. About 37 cadavers were successfully imaged with roentograms, CT, and MRI scans. Students were in favor of the dynamic laboratory consisting of multiple activity sessions occurring simultaneously. Objectively, examination scores proved to be a positive outcome and, subjectively, feedback from students was overwhelmingly positive. Despite the surging molecular based sciences consuming much of the curricula, full-body dissection anatomy is irreplaceable regarding both surface and architectural, radiological anatomy. Radiology should not be a small adjunct to understand full-body dissection, but rather, full-body dissection

  9. Gorilla-like anatomy on Australopithecus afarensis mandibles suggests Au. afarensis link to robust australopiths.

    Science.gov (United States)

    Rak, Yoel; Ginzburg, Avishag; Geffen, Eli

    2007-04-17

    Mandibular ramus morphology on a recently discovered specimen of Australopithecus afarensis closely matches that of gorillas. This finding was unexpected given that chimpanzees are the closest living relatives of humans. Because modern humans, chimpanzees, orangutans, and many other primates share a ramal morphology that differs from that of gorillas, the gorilla anatomy must represent a unique condition, and its appearance in fossil hominins must represent an independently derived morphology. This particular morphology appears also in Australopithecus robustus. The presence of the morphology in both the latter and Au. afarensis and its absence in modern humans cast doubt on the role of Au. afarensis as a modern human ancestor. The ramal anatomy of the earlier Ardipithecus ramidus is virtually that of a chimpanzee, corroborating the proposed phylogenetic scenario.

  10. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-01-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  11. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  12. Anatomy Comic Strips

    Science.gov (United States)

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  13. Constructive, collaborative, contextual, and self-directed learning in surface anatomy education.

    Science.gov (United States)

    Bergman, Esther M; Sieben, Judith M; Smailbegovic, Ida; de Bruin, Anique B H; Scherpbier, Albert J J A; van der Vleuten, Cees P M

    2013-01-01

    Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self-directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self-directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Copyright © 2012 American Association of Anatomists.

  14. The maternal brain and its plasticity in humans

    Science.gov (United States)

    Kim, Pilyoung; Strathearn, Lane; Swain, James E.

    2015-01-01

    Early mother-infant relationships play important roles in infants’ optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers’ brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  15. Mind Over Matter: The Brain's Response to Drugs. Teacher's Guide.

    Science.gov (United States)

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This teacher's guide aims to develop an understanding among students grades 5 through 9 of the physical reality of drug use. Contents include: (1) "Brain Anatomy"; (2) "Nerve Cells and Neurotransmission"; (3) "Effects of Drugs on the Brain"; (4) "Marijuana"; (5) "Opiates"; (6) "Inhalants"; (7) "Hallucinogens"; (8) "Steroids"; (9) "Stimulants";…

  16. [Anatomy as theatre. From the library of the Society of the Dutch Journal of Medicine. Govard Bidloo: Ontleding des Menschelijken Lichaams (Dissection of the Human Body); 1689; and William Cowper: The Anatomy of Humane Bodies; 1698].

    Science.gov (United States)

    Molenaar, J C

    2004-12-25

    Opinions differ regarding the scientific quality of the atlas by Govard Bidloo, Ontleding des Menschelijken Lichaams (Dissection of the Human Body) (1689) and the plagiarism made thereof by William Cowper, The Anatomy of Humane Bodies (1698). Both books were also published in Latin; the Society of the Dutch Journal of Medicine has acquired a copy of all 4 atlases. The anatomical plates were made by the artist Gerard de Lairesse (Liège 1640-Amsterdam 1711) and their great artistic value is beyond all doubt. De Lairesse settled in Amsterdam in 1665, a few months after the reopening of the city theatre, and subsequently achieved fame as an innovative creator of theatre sets. He also became one of the favourite artists of prince William III and many other well-to-do citizens of Amsterdam. The great artistic value of his anatomical plates justifies more attention for his importance as a medical illustrator in medical history.

  17. Simple instrument for biochemical studies of the living human brain

    International Nuclear Information System (INIS)

    Bice, A.N.; Wagner, H.N. Jr.; Lee, M.C.; Frost, J.J.

    1986-01-01

    A simple, relatively inexpensive radiation detection system was developed for measurement of positron-emitting receptor-binding drugs in the human brain. This high-efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of [ 11 C]-carfentanil, a high-affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist exemplifies the use of this system for estimating different degrees of receptor binding of drugs in the human brain. The instrument has also been used for measurement of the transport into the brain of other positron-emitting radiotracers, such as large neutral amino acids

  18. Applied peritoneal anatomy

    International Nuclear Information System (INIS)

    Patel, R.R.; Planche, K.

    2013-01-01

    The peritoneal cavity is a complex anatomical structure with multiple attachments and connections. These are better understood with reference to the embryological development of this region. Armed with this knowledge, the diagnosis and assessment of a wide range of common intra-abdominal diseases becomes straightforward. This article will review and simplify the terminology, complex embryological development, and anatomy of the peritoneum, peritoneal attachments, and the reflections forming the peritoneal boundaries. Normal anatomy will be described using schematic diagrams with corresponding computed tomography (CT) and magnetic resonance imaging (MRI) images, including CT peritoneograms. The relevance of intra- and extra-peritoneal anatomy to common pathological processes will be demonstrated

  19. Genome-wide DNA methylation analyses in the brain reveal four differentially methylated regions between humans and non-human primates

    Directory of Open Access Journals (Sweden)

    Wang Jinkai

    2012-08-01

    Full Text Available Abstract Background The highly improved cognitive function is the most significant change in human evolutionary history. Recently, several large-scale studies reported the evolutionary roles of DNA methylation; however, the role of DNA methylation on brain evolution is largely unknown. Results To test if DNA methylation has contributed to the evolution of human brain, with the use of MeDIP-Chip and SEQUENOM MassARRAY, we conducted a genome-wide analysis to identify differentially methylated regions (DMRs in the brain between humans and rhesus macaques. We first identified a total of 150 candidate DMRs by the MeDIP-Chip method, among which 4 DMRs were confirmed by the MassARRAY analysis. All 4 DMRs are within or close to the CpG islands, and a MIR3 repeat element was identified in one DMR, but no repeat sequence was observed in the other 3 DMRs. For the 4 DMR genes, their proteins tend to be conserved and two genes have neural related functions. Bisulfite sequencing and phylogenetic comparison among human, chimpanzee, rhesus macaque and rat suggested several regions of lineage specific DNA methylation, including a human specific hypomethylated region in the promoter of K6IRS2 gene. Conclusions Our study provides a new angle of studying human brain evolution and understanding the evolutionary role of DNA methylation in the central nervous system. The results suggest that the patterns of DNA methylation in the brain are in general similar between humans and non-human primates, and only a few DMRs were identified.

  20. Exploring the use of a Facebook page in anatomy education.

    Science.gov (United States)

    Jaffar, Akram Abood

    2014-01-01

    Facebook is the most popular social media site visited by university students on a daily basis. Consequently, Facebook is the logical place to start with for integrating social media technologies into education. This study explores how a faculty-administered Facebook Page can be used to supplement anatomy education beyond the traditional classroom. Observations were made on students' perceptions and effectiveness of using the Page, potential benefits and challenges of such use, and which Insights metrics best reflect user's engagement. The Human Anatomy Education Page was launched on Facebook and incorporated into anatomy resources for 157 medical students during two academic years. Students' use of Facebook and their perceptions of the Page were surveyed. Facebook's "Insights" tool was also used to evaluate Page performance during a period of 600 days. The majority of in-class students had a Facebook account which they adopted in education. Most students perceived Human Anatomy Education Page as effective in contributing to learning and favored "self-assessment" posts. The majority of students agreed that Facebook could be a suitable learning environment. The "Insights" tool revealed globally distributed fans with considerable Page interactions. The use of a faculty-administered Facebook Page provided a venue to enhance classroom teaching without intruding into students' social life. A wider educational use of Facebook should be adopted not only because students are embracing its use, but for its inherent potentials in boosting learning. The "Insights" metrics analyzed in this study might be helpful when establishing and evaluating the performance of education-oriented Facebook Pages. © 2013 American Association of Anatomists.