WorldWideScience

Sample records for human bone strain

  1. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    Science.gov (United States)

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A

  2. Speckle shearing pattern interferometry to assess mechanical strain in the human mandible jaw bone under physiological stress

    Science.gov (United States)

    Moreno, V.; Vázquez-Vázquez, C.; Gallas, M.; Crespo, J.

    2011-05-01

    Electronic Speckle Pattern Interferometry (ESPI) has been used in experiments to measure displacement on the surface of bones undergoing external forces. However in order to asses directly the derivative of the displacements a related technique, Shearography, is used. This technique has been applied in biomechanical experiments although limited to small pieces of bone to determine their elastic properties. In this work we propose the use of Shearing Speckle Interferometry to evaluate the mechanical behaviour of the human mandible under compressive stress, simulating masticatory forces or impacts, in order to analyze the strain distribution on mandibular bone.

  3. Research on Damage in Trabecular Bone of the Healthy Human Acetabulum at Small Strains Using Nonlinear Micro-finite Element Analysis

    Institute of Scientific and Technical Information of China (English)

    DING Hai; ZHU Zhen-nan; DAI Ke-rong; YE Ming; WANG Cheng-tao

    2008-01-01

    The mechanical properties of the pelvic trabecular bone have been studied at the continuum level. However, nothing is known about the tissue-level damage in the trabecular bone of the healthy human acetabulum at apparent small strains characteristic of habitual. By a DAWING 4000 A supercomputer, nonlinear micro-finite element (μFE) analysis was performed to quantify tissue-level damage accumulation in trabecular bone at small strains. The data indicate that damage in trabecular bone commence at 0.2% apparent strain. The findings imply that tissue yielding can initiate at very low strains in the trabecular bone of the healthy acetabulum and that this local failure has negative consequences on the apparent mechanical properties of trabecular bone.

  4. Broken Bones, Sprains, and Strains (For Parents)

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Broken Bones, Sprains, and Strains KidsHealth > For Parents > Broken Bones, ... home. What to Do: For a Suspected Broken Bone: Do not move a child whose injury involves ...

  5. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain

    Science.gov (United States)

    Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.

    1997-01-01

    Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.

  6. Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Jagodzinski M.

    2004-04-01

    Full Text Available The aim of the study was to investigate the effect of cyclic mechanical strain on differentiation markers in the presence or absence of dexamethasone. Human bone marrow stromal cells (BMSC from seven donors (32.5±6.2 years were cultivated with (D+ or without (D- dexamethasone. A cyclic mechanical strain with an elongation of 2% (D+2; D-2 or 8% (D+8; D-8 was applied for three days with a stimulation time of three times two hours each day. Levels of alkaline phosphatase (ALP and osteocalcin (OC were compared after time intervals of four and seven days. mRNA expression of Collagen I, III and Cbfa1 was investigated after one, four, and seven days. ALP levels were significantly increased in the D+8 group after four and seven days (147.1±6.3%; p<0.05 and 168.6±6,5%; p<0.03 and in the D-8 group after 7 days (197.4±10.4; p<0.04. Cyclic strain had a significant influence on ALP-secretion (F=7.5; p<0.01. In the D-8 group there was a significant increase in OC secretion after 4 days (140.9±12.5%; p<0.05.; p<0.01. The effect of stretching was significantly stronger than that of dexamethasone (F=17.2 vs. 1.8. Collagen I (Col I expression was upregulated in D+8 cultures after 4 days (215.0±53.3 p<0.04 and after seven days (166.7±55.7; p<0.04. Collagen III (Col III expression was upregulated in D+2 and D+8 cultures after 4 days (200.7±16.3 and 185.9±12.7; p<0.04 and after seven days (154.4±10.1 and 118.8±16.4; p<0.04. There was a significant increase of Cbfa1 expression in D+8 cultures at all investigated time intervals (day 1: 105.5±3.7%; day 4: 104.7±3.0%; day 7: 104.4±2.1%; p<0.03. Stretching (F=20.0; p<0.01 was a stronger contributor to Cbfa-1 expression than dexamethasone (F=12.1; p<0.01. Cyclical mechanical stimulation with 8% elongation increases ALP and OC levels and upregulates Col I and III synthesis and Cbfa1 expression. In the short term, cyclical stretching is a stronger differentiation factor than dexamethasone. Cyclical stretching

  7. Review of In Vivo Bone Strain Studies and Finite Element Models of the Zygomatic Complex in Humans and Nonhuman Primates: Implications for Clinical Research and Practice.

    Science.gov (United States)

    Prado, Felippe Bevilacqua; Freire, Alexandre Rodrigues; Cláudia Rossi, Ana; Ledogar, Justin A; Smith, Amanda L; Dechow, Paul C; Strait, David S; Voigt, Tilman; Ross, Callum F

    2016-12-01

    The craniofacial skeleton is often described in the clinical literature as being comprised of vertical bony pillars, which transmit forces from the toothrow to the neurocranium as axial compressive stresses, reinforced transversely by buttresses. Here, we review the literature on bony microarchitecture, in vivo bone strain, and finite-element modeling of the facial skeleton of humans and nonhuman primates to address questions regarding the structural and functional existence of facial pillars and buttresses. Available bone material properties data do not support the existence of pillars and buttresses in humans or Sapajus apella. Deformation regimes in the zygomatic complex emphasize bending and shear, therefore conceptualizing the zygomatic complex of humans or nonhuman primates as a pillar obscures its patterns of stress, strain, and deformation. Human fossil relatives and chimpanzees exhibit strain regimes corroborating the existence of a canine-frontal pillar, but the notion of a zygomatic pillar has no support. The emerging consensus on patterns of strain and deformation in finite element models (FEMs) of the human facial skeleton corroborates hypotheses in the clinical literature regarding zygomatic complex function, and provide new insights into patterns of failure of titanium and resorbable plates in experimental studies. It is suggested that the "pillar and buttress" model of human craniofacial skeleton function be replaced with FEMs that more accurately and precisely represent in vivo function, and which can serve as the basis for future research into implants used in restoration of occlusal function and fracture repair. Anat Rec, 299:1753-1778, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Capacitive Extensometer Particularly Suited for Measuring in Vivo Bone Strain

    Science.gov (United States)

    Perusek, Gail P. (Inventor)

    2000-01-01

    The present invention provides for in vivo measurements of the principal strain magnitudes and directions, and maximum shear strain that occurs in a material, such as human bone, when it is loaded (or subjected to a load). In one embodiment the invention includes a capacitive delta extensometer arranged with six sensors in a three piece configuration, with each sensor of each pair spaced apart from each other by 120 degrees.

  9. Computer modelling of bone's adaptation: the role of normal strain, shear strain and fluid flow.

    Science.gov (United States)

    Tiwari, Abhishek Kumar; Prasad, Jitendra

    2017-04-01

    Bone loss is a serious health problem. In vivo studies have found that mechanical stimulation may inhibit bone loss as elevated strain in bone induces osteogenesis, i.e. new bone formation. However, the exact relationship between mechanical environment and osteogenesis is less clear. Normal strain is considered as a prime stimulus of osteogenic activity; however, there are some instances in the literature where osteogenesis is observed in the vicinity of minimal normal strain, specifically near the neutral axis of bending in long bones. It suggests that osteogenesis may also be induced by other or secondary components of mechanical environment such as shear strain or canalicular fluid flow. As it is evident from the literature, shear strain and fluid flow can be potent stimuli of osteogenesis. This study presents a computational model to investigate the roles of these stimuli in bone adaptation. The model assumes that bone formation rate is roughly proportional to the normal, shear and fluid shear strain energy density above their osteogenic thresholds. In vivo osteogenesis due to cyclic cantilever bending of a murine tibia has been simulated. The model predicts results close to experimental findings when normal strain, and shear strain or fluid shear were combined. This study also gives a new perspective on the relation between osteogenic potential of micro-level fluid shear and that of macro-level bending shear. Attempts to establish such relations among the components of mechanical environment and corresponding osteogenesis may ultimately aid in the development of effective approaches to mitigating bone loss.

  10. Variations in habitual bone strains in vivo: long bone versus mandible

    NARCIS (Netherlands)

    de Jong, W.C.; Korfage, J.A.M.; Langenbach, G.E.J.

    2010-01-01

    Little is known about the similarities and dissimilarities between daily in vivo strain histories of different bones, other than the generally accepted view that most bones need daily loading to maintain their mass. Similarities in daily strain histories might uncover a common basic mechanical stimu

  11. Spatial resolution and measurement uncertainty of strains in bone and bone-cement interface using digital volume correlation.

    Science.gov (United States)

    Zhu, Ming-Liang; Zhang, Qing-Hang; Lupton, Colin; Tong, Jie

    2016-04-01

    The measurement uncertainty of strains has been assessed in a bone analogue (sawbone), bovine trabecular bone and bone-cement interface specimens under zero load using the Digital Volume Correlation (DVC) method. The effects of sub-volume size, sample constraint and preload on the measured strain uncertainty have been examined. There is generally a trade-off between the measurement uncertainty and the spatial resolution. Suitable sub-volume sizes have been be selected based on a compromise between the measurement uncertainty and the spatial resolution of the cases considered. A ratio of sub-volume size to a microstructure characteristic (Tb.Sp) was introduced to reflect a suitable spatial resolution, and the measurement uncertainty associated was assessed. Specifically, ratios between 1.6 and 4 appear to give rise to standard deviations in the measured strains between 166 and 620 με in all the cases considered, which would seem to suffice for strain analysis in pre as well as post yield loading regimes. A microscale finite element (μFE) model was built from the CT images of the sawbone, and the results from the μFE model and a continuum FE model were compared with those from the DVC. The strain results were found to differ significantly between the two methods at tissue level, consistent in trend with the results found in human bones, indicating mainly a limitation of the current DVC method in mapping strains at this level.

  12. Bone regeneration with cultured human bone grafts

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Nakajima, H. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology; Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Ohgushi, H.; Ueda, Y.; Takakura, Y. [Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Uemura, T.; Tateishi, T. [National Inst. for Advanced Interdisciplinary Research (NAIR), Ibaraki (Japan). Tsukuba Research Center; Enomoto, Y.; Ichijima, K. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology

    2001-07-01

    From 73 year old female patient, 3 ml of bone marrow was collected from the ilium. The marrow was cultured to concentrate and expand the marrow mesenchymal cells on a culture dish. The cultured cells were then subculturedeither on another culture dish or in porous areas of hydroxyapatite ceramics in the presence of dexamethasone and beta-glycerophosphate (osteo genic medium). The subculturedtissues on the dishes were analyzed by scanning electron microscopy (SEM), and subculturedtissues in the ceramics were implanted intraperitoneally into athymic nude mice. Vigorous growth of spindle-shaped cells and a marked formation of bone matrix beneath the cell layers was observed on the subculture dishes by SEM. The intraperitoneally implanted ceramics with cultured tissues revealed thick layer of lamellar bone together with active osteoblasts lining in many pore areas of the ceramics after 8 weeks. The in vitro bone formations on the culture dishes and in vivo bone formation in porous ceramics were detected. These results indicate that we can assemble an in vitro bone/ceramic construct, and due to the porous framework of the ceramic, the construct has osteogenic potential similar to that of autologous cancellous bone. A significant benefit of this method is that the construct can be made with only a small amount of aspirated marrow cells from aged patients with little host morbidity. (orig.)

  13. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone.

    Science.gov (United States)

    Fresvig, T; Ludvigsen, P; Steen, H; Reikerås, O

    2008-01-01

    Strain gauges are currently the default method for measuring deformation in bone. Strain gauges are not well suited for in vivo measurements because of their size and because they are difficult to use in bone. They are also unsuitable for repeated measurements over time since they cannot be left in the patient. The optical Bragg grating fibres behave like selective filters of light. As a result the structure will transmit most wavelengths of light, but will reflect certain specific wavelengths. If the Bragg grating is strained along the fibre axis, the wavelength will shift, and this change represents a measure of strain. The optical fibres are very thin, no thicker than a standard surgical suture and are easy to adhere to bone by use of the FDA approved polymethyl-methacrylate (PMMA) as bonding adhesive. Since they are made of biocompatible silica porous bioglass ceramics, it should also be possible to leave the fibres in the patient between and after measurements. We have shown that fibre optic Bragg grating sensors can be used as a measurement tool for bone strain by performing measurements both on an acryl tube and on an extracted sample of human femur diaphysis. On either of them we used four fibre optic sensors and four strain gauges, interspersed at every 45 degrees around the circumference. The standard deviation of the measurements on the acrylic tube for each of the sensors, both optical fibres and strain gauges, varied from 1.0 to 5.2%. Every sensor, both optical fibre and strain gauge, correlated significantly with all of the rest at the 0.01 level with a Pearson correlation coefficient r ranging from 0.986 to 1.0. The linearity for all of the sensors versus load was excellent, the lowest linearity of the eight sensors was 0.996 as expressed by r(2) (coefficient of determination), with no significant difference in linearity between optical fibres and strain gauges. Bone is not an ideal isotropic material, and we found that the strain readings of the

  14. Atomic scale chemical tomography of human bone

    Science.gov (United States)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale – the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  15. Human fetal bone cells in delivery systems for bone engineering.

    Science.gov (United States)

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann

    2011-11-01

    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  16. [Thermo-elastic stress analysis of human bones].

    Science.gov (United States)

    Krüger-Franke, M; Heiland, A; Plitz, W; Refior, H J

    1995-01-01

    The Thermoelastic Stress Analysis (THESA) is a widely used procedure in motorcar- and airplane engineering. This study investigated the reliability of THESA for stress analysis of human bone. A human femur was cyclic stressed and the resulting stress pattern was scanned from the surface of the bone by means of the thermoelastic stress measuring instrument SPATE 9000. To proof whether the scan of SPATE 9000 is equivalent to the stress distribution of human femur surface, strain gauges are used to control the results at two different regions of the femur diaphysis under equal but static conditions. It could be shown, that both measuring methods lead to corresponding results of stress pattern on human femur surface.

  17. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  18. Bone morphology in 46 BXD recombinant inbred strains and femur-tibia correlation.

    Science.gov (United States)

    Zhang, Yueying; Huang, Jinsong; Jiao, Yan; David, Valentin; Kocak, Mehmet; Roan, Esra; Di'Angelo, Denis; Lu, Lu; Hasty, Karen A; Gu, Weikuan

    2015-01-01

    We examined the bone properties of BXD recombinant inbred (RI) mice by analyzing femur and tibia and compared their phenotypes of different compartments. 46 BXD RI mouse strains were analyzed including progenitor C57BL/6J (n = 16) and DBA/2J (n = 15) and two first filial generations (D2B6F1 and B6D2F1). Strain differences were observed in bone quality and structural properties (P tibia. More importantly, positive and negative femur-tibia associations indicated that genetic makeup had an influence on skeletal integrity. We conclude that (a) femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b) strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property.

  19. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone.

    Science.gov (United States)

    Kim, Beom-Jun; Kwak, Mi Kyung; Ahn, Seong Hee; Kim, Hyeonmok; Lee, Seung Hun; Song, Kee-Ho; Suh, Sunghwan; Kim, Jae Hyeon; Koh, Jung-Min

    2017-08-01

    Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. To clarify the link between the sympathetic nervous system and the skeleton in humans. Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption.

  20. Bone Morphology in 46 BXD Recombinant Inbred Strains and Femur-Tibia Correlation

    Directory of Open Access Journals (Sweden)

    Yueying Zhang

    2015-01-01

    Full Text Available We examined the bone properties of BXD recombinant inbred (RI mice by analyzing femur and tibia and compared their phenotypes of different compartments. 46 BXD RI mouse strains were analyzed including progenitor C57BL/6J (n=16 and DBA/2J (n=15 and two first filial generations (D2B6F1 and B6D2F1. Strain differences were observed in bone quality and structural properties (P<0.05 in each bone profile (whole bone, cortical bone, or trabecular bone. It is well known that skeletal phenotypes are largely affected by genetic determinants and genders, such as bone mineral density (BMD. While genetics and gender appear expectedly as the major determinants of bone mass and structure, significant correlations were also observed between femur and tibia. More importantly, positive and negative femur-tibia associations indicated that genetic makeup had an influence on skeletal integrity. We conclude that (a femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property.

  1. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  2. Age changes in human bone: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, W.D.

    1977-12-03

    The human skeleton steadily changes structure and mass during life because of a variety of internal and external factors. Extracellular substance and bone cells get old, characteristic structural remodeling occurs with age and these age-related changes are important in the discrimination between pathological and physiological changes. Perhaps 20 percent of the bone mass is lost between the fourth and the ninth decades, osteoblasts function less efficiently and gradual loss of bone substance is enhanced by delayed mineralization of an increased surface area of thin and relatively less active osteoid seams. After the fifth decade, osteoclasia and the number of Howship's lacunae increase, and with age, the number of large osteolytic osteocytes increases as the number of small osteocytes declines and empty osteocyte lacunae become more common. The result is greater liability to fracture and diminished healing or replacement of injured bone.

  3. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  4. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography

    Science.gov (United States)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella

    2017-08-01

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  5. Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review.

    Science.gov (United States)

    Roberts, Bryant C; Perilli, Egon; Reynolds, Karen J

    2014-03-21

    Digital volume correlation (DVC) provides experimental measurements of displacements and strains throughout the interior of porous materials such as trabecular bone. It can provide full-field continuum- and tissue-level measurements, desirable for validation of finite element models, by comparing image volumes from subsequent µCT scans of a sample in unloaded and loaded states. Since the first application of DVC for measurement of strain in bone tissue, subsequent reports of its application to trabecular bone cores up to whole bones have appeared within the literature. An "optimal" set of procedures capable of precise and accurate measurements of strain, however, still remains unclear, and a systematic review focussing explicitly on the increasing number of DVC algorithms applied to bone or structurally similar materials is currently unavailable. This review investigates the effects of individual parameters reported within individual studies, allowing to make recommendations for suggesting algorithms capable of achieving high accuracy and precision in displacement and strain measurements. These recommendations suggest use of subsets that are sufficiently large to encompass unique datasets (e.g. subsets of 500 µm edge length when applied to human trabecular bone cores, such as cores 10mm in height and 5mm in diameter, scanned at 15 µm voxel size), a shape function that uses full affine transformations (translation, rotation, normal strain and shear strain), the robust normalized cross-correlation coefficient objective function, and high-order interpolation schemes. As these employ computationally burdensome algorithms, researchers need to determine whether they have the necessary computational resources or time to adopt such strategies. As each algorithm is suitable for parallel programming however, the adoption of high precision techniques may become more prevalent in the future.

  6. Long-term measurement of bone strain in vivo: the rat tibia

    Science.gov (United States)

    Rabkin, B. A.; Szivek, J. A.; Schonfeld, J. E.; Halloran, B. P.

    2001-01-01

    Despite the importance of strain in regulating bone metabolism, knowledge of strains induced in bone in vivo during normal activities is limited to short-term studies. Biodegeneration of the bond between gauge and bone is the principle cause of this limitation. To overcome the problem of bond degeneration, a unique calcium phosphate ceramic (CPC) coating has been developed that permits long-term attachment of microminiature strain gauges to bone. Using this technique, we report the first long-term measurements of bone strain in the rat tibia. Gauges, mounted on the tibia, achieved peak or near peak bonding at 7 weeks. Measurements were made between 7-10 weeks. Using ambulation on a treadmill, the pattern and magnitude of strain measured in the tibia remained relatively constant between 7-10 weeks post implantation. That strain levels were similar at 7 and 10 weeks suggests that gauge bonding is stable. These data demonstrate that CPC-coated strain gauges can be used to accurately measure bone strain for extended periods, and provide an in vivo assessment of tibial strain levels during normal ambulation in the rat. Copyright 2001 John Wiley & Sons, Inc.

  7. Diagnostic dry bone histology in human paleopathology.

    Science.gov (United States)

    de Boer, H H Hans; Van der Merwe, A E Lida

    2016-10-01

    Paleopathology is the study of trauma and disease as may be observed in ancient (human) remains. In contrast to its central role in current medical practice, microscopy plays a rather modest role in paleopathology. This is at least partially due to the differences between fresh and decomposed (i.e., skeletonized or "dry bone") tissue samples. This review discusses these differences and describes how they affect the histological analysis of paleopathological specimens. First, we provide a summary of some general challenges related to the histological analysis of palaeopathological specimens. Second, the reader is introduced in bone tissue histology and bone tissue dynamics. The remainder of the paper is dedicated to the diagnostic value of dry bone histology. Its value and limitations are illustrated by comparing several well-studied paleopathological cases with similar contemporary, clinical cases. This review illustrates that due to post-mortem loss of soft tissue, a limited number of disorders display pathognomonic features during histological analysis of skeletonized human remains. In the remainder of cases, histology may help to narrow down the differential diagnosis or is diagnostically unspecific. A comprehensive, multidisciplinary diagnostic approach therefore remains essential. Clin. Anat. 29:831-843, 2016. © 2016 Wiley Periodicals, Inc.

  8. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.

    Science.gov (United States)

    Jang, In Gwun; Kim, Il Yong; Kwak, Byung Ban

    2009-01-01

    In bone-remodeling studies, it is believed that the morphology of bone is affected by its internal mechanical loads. From the 1970s, high computing power enabled quantitative studies in the simulation of bone remodeling or bone adaptation. Among them, Huiskes et al. (1987, "Adaptive Bone Remodeling Theory Applied to Prosthetic Design Analysis," J. Biomech. Eng., 20, pp. 1135-1150) proposed a strain energy density based approach to bone remodeling and used the apparent density for the characterization of internal bone morphology. The fundamental idea was that bone density would increase when strain (or strain energy density) is higher than a certain value and bone resorption would occur when the strain (or strain energy density) quantities are lower than the threshold. Several advanced algorithms were developed based on these studies in an attempt to more accurately simulate physiological bone-remodeling processes. As another approach, topology optimization originally devised in structural optimization has been also used in the computational simulation of the bone-remodeling process. The topology optimization method systematically and iteratively distributes material in a design domain, determining an optimal structure that minimizes an objective function. In this paper, we compared two seemingly different approaches in different fields-the strain energy density based bone-remodeling algorithm (biomechanical approach) and the compliance based structural topology optimization method (mechanical approach)-in terms of mathematical formulations, numerical difficulties, and behavior of their numerical solutions. Two numerical case studies were conducted to demonstrate their similarity and difference, and then the solution convergences were discussed quantitatively.

  9. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.

    Science.gov (United States)

    Webster, Duncan; Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2015-03-18

    Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, pbone marrow plays a significant role in determining osteoblast and osteoclast activity.

  10. Osteoblast recruitment routes in human cancellous bone remodeling

    DEFF Research Database (Denmark)

    Kristensen, Helene B; Levin Andersen, Thomas; Marcussen, Niels

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling......-terminal peptide versus osterix, and (ii) canopy cell densities, found to decline with age, and canopy-capillary contacts above eroded surfaces correlated positively with osteoblast density on bone-forming surfaces. Furthermore, we showed that bone remodeling compartment canopies arise from a mesenchymal envelope...

  11. Understanding site-specific residual strain and architecture in bovine cortical bone.

    Science.gov (United States)

    Giri, Bijay; Tadano, Shigeru; Fujisaki, Kazuhiro; Todoh, Masahiro

    2008-11-14

    Living bone is considered as adaptive material to the mechanical functions, which continually undergoes change in its histological arrangement with respect to external prolonged loading. Such remodeling phenomena within bone depend on the degree of stimuli caused by the mechanical loading being experienced, and therefore, are specific to the sites. In the attempts of understanding strain adaptive phenomena within bones, different theoretical models have been proposed. Also, the existing literatures mostly follow the measurement of surface strains using strain gauges to experimentally quantify the strains experienced in the functional environment. In this work, we propose a novel idea of understanding site-specific functional adaptation to the prolonged load in bone on the basis of inherited residual strains and structural organization. We quantified the residual strains and amount of apatite crystals distribution, i.e., the degree of orientation, using X-ray diffraction procedures. The sites of naturally existing hole in bone, called foramen, are considered from bovine femur and metacarpal samples. Significant values of residual strains are found to exist in the specimens. Trends of residual strains noted in the specimens are mostly consistent with the degree of orientation of the crystallites. These features explain the response behavior of bone to the mechanical loading history near the foramen sites. Preferential orientation of crystals mapped around a femoral foramen specimen showed furnished tailored arrangement of the crystals around the hole. Effect of external loading at the femoral foramen site is also explained by the tensile loading experiment.

  12. Exercise Countermeasures for Bone Loss During Space Flight: A Method for the Study of Ground Reaction Forces and their Implications for Bone Strain

    Science.gov (United States)

    Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.

    1999-01-01

    Effective countermeasures to prevent loss of bone mineral during long duration space flight remain elusive. Despite an exercise program on MIR flights, the data from LeBlanc et al. (1996) indicated that there was still a mean rate of loss of bone mineral density in the proximal femur of 1.58% per month (n=18, flight duration 4 - 14.4 months). The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. A plausible hypothesis is that bone loss during space flight, such as that reported by LeBlanc et al. (1996), may result from failure to effectively load the skeleton in order to generate localized bone strains of sufficient magnitude to prevent disuse osteoporosis. A variety of methods have been proposed to simulate locomotor exercise in reduced gravity. In such simulations, and in an actual microgravity environment, a gravity replacement load (GRL) must always be added to return the exercising subject to the support surface and the resulting skeletal load is critically dependent upon the magnitude of the GRL. To our knowledge, GRLs during orbital flight have only been measured once (on STS 81) and it is likely that most or all prior treadmill exercise in space has used GRLs that were less than one body weight. McCrory (1997) has shown that subjects walking and running in simulated zero-G can tolerate GRLs of 1 if an appropriate harness is used. Several investigators have attempted to measure in vivo strains and forces in the bones of humans, but have faced ethical and technical limitations. The anteromedial aspect of the tibial midshaft has been a common site for the placement of strain gauges; one reason to measure strains in the anterior tibia is that this region is surgically accessible. Aamodt et al. (1997) were able to measure strains on the lateral surface of the proximal femur only because their experimental subjects were

  13. The strain at bone-implant interface determines the effect of spinopelvic reconstruction following total sacrectomy: a strain gauge analysis in various spinopelvic constructs.

    Directory of Open Access Journals (Sweden)

    Yan Yu

    Full Text Available PURPOSE: There is still some controversy regarding the optimal biomechanical concept for spinopelvic stabilization following total sacrectomy for malignancy. Strains at specific anatomical sites at pelvis/sacrum and implants interfaces have been poorly investigated. Herein, we compared and analyzed the strains applied at key points at the bone-implant interface in four different spinopelvic constructs following total sacrectomy; consequently, we defined a balanced architecture for spinopelvic fusion in that situation. METHODS: Six human cadaveric specimens, from second lumbar vertebra to proximal femur, were used to compare the partial strains at specific sites in a total sacrectomy model. Test constructs included: (1 intact pelvis (control, (2 sacral-rod reconstruction (SRR, (3 bilateral fibular flap reconstruction (BFFR, (4 four-rods reconstruction (FRR, and (5 improved compound reconstruction (ICR. Strains were measured by bonded strain gauges onto the surface of three specific sites (pubic rami, arcuate lines, and posterior spinal rods under a 500 N axial load. RESULTS: ICR caused lower strains at specific sites and, moreover, on stress distribution and symmetry, compared to the other three constructs. Strains at pubic rami and arcuate lines following BFFR were lower than those following SRR, but higher at the posterior spinal rod construct. The different modes of strain distribution reflected different patient's parameter-related conditions. FRR model showed the highest strains at all sites because of the lack of an anterior bracing frame. CONCLUSIONS: The findings of this investigation suggest that both anterior bracing frame and the four-rods load dispersion provide significant load sharing. Additionally, these two constructs decrease the peak strains at bone-implant interface, thus determining the theoretical surgical technique to achieve optimal stress dispersion and balance for spinopelvic reconstruction in early postoperative period

  14. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Henk-Jan Prins

    2014-03-01

    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  15. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  16. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  17. The Influence of Partial Knee Replacement Designs on Tensile Strain at Implant-Bone Interface

    Directory of Open Access Journals (Sweden)

    He Wang

    2012-01-01

    Full Text Available Partial knee replacement (PKR results in fast recovery and good knee mechanics and is ideal to treat medial knee osteoarthritis. Cementless PKR depends on bone growing into the implant surface for long-term fixation. Implant loosening may occur due to high tensile strain resulted from large mechanical loads during rehab exercises. The purpose of this study is to investigate whether external fixations such as superior screw and frontal flange could reduce the tensile strain at the implant-bone interface. Three medial PKRs were designed. The first PKR had no external fixations. A superior screw and a frontal flange were then added to the first PKR to form the second and third PKR designs, respectively. Finite element analysis was performed to examine the tensile strain at the implant-bone interface during weight-bearing exercises. The PKR with no external fixations exhibited high tensile strain at the anterior implant-bone interface. Both the screwed and flanged PKRs effectively reduced the tensile strain at the anterior implant-bone interface. Furthermore, the flanged PKR resulted in a more uniform reduction of the tensile strain than the screwed PKR. In conclusion, external fixations are necessary to alleviate tensile strain at the implant-bone interface during knee rehab exercises.

  18. Strain determination in bone sections with simultaneous 3D digital holographic interferometry

    Science.gov (United States)

    Alvarez, Araceli Sánchez; De la Torre Ibarra, Manuel H.; Santoyo, Fernando Mendoza; Anaya, Tonatiuh-Saucedo

    2014-06-01

    A 3D digital holographic interferometer was used to measure the surface strain components in two different bovine's bone sections. The applied force on the sample was induced by a precisely controlled lateral micro compression. The simultaneous acquisition capability of the system helps to record a fast sequence of images, each one containing three independent holograms that result in three orthogonal displacement components u, v and w from which the surface strain components ɛx, ɛy and γxy over the bone's field of view were calculated. This research study was carried out in two different bone sections: the cortical bone and the medullary cavity/yellow marrow section. The resulting strain concentrators are of great importance to better understand the mechanical response of complex biological structures such as this bovine femoral bone.

  19. Mechanistic fracture criteria for the failure of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, Ravi K.; Kinney, John H.; Ritchie, Robert O.

    2002-12-13

    A mechanistic understanding of fracture in human bone is critical to predicting fracture risk associated with age and disease. Despite extensive work, a mechanistic framework for describing how the underlying microstructure affects the failure mode in bone is lacking.

  20. In vivo bone strain and finite element modeling of the mandible of Alligator mississippiensis

    Science.gov (United States)

    Porro, Laura B; Metzger, Keith A; Iriarte-Diaz, Jose; Ross, Callum F

    2013-01-01

    Forces experienced during feeding are thought to strongly influence the morphology of the vertebrate mandible; in vivo strain data are the most direct evidence for deformation of the mandible induced by these loading regimes. Although many studies have documented bone strains in the mammalian mandible, no information is available on strain magnitudes, orientations or patterns in the sauropsid lower jaw during feeding. Furthermore, strain gage experiments record the mechanical response of bone at a few locations, not across the entire mandible. In this paper, we present bone strain data recorded at various sites on the lower jaw of Alligator mississippiensis during in vivo feeding experiments. These data are used to understand how changes in loading regime associated with changes in bite location are related to changes in strain regime on the working and balancing sides of the mandible. Our results suggest that the working side mandible is bent dorsoventrally and twisted about its long-axis during biting, and the balancing side experiences primarily dorsoventral bending. Strain orientations are more variable on the working side than on the balancing side with changes in bite point and between experiments; the balancing side exhibits higher strain magnitudes. In the second part of this paper, we use principal strain orientations and magnitudes recorded in vivo to evaluate a finite element model of the alligator mandible. Our comparison demonstrates that strain orientations and mandibular deformation predicted by the model closely match in vivo results; however, absolute strain magnitudes are lower in the finite element model. PMID:23855772

  1. Aging, human immunodeficiency virus, and bone health

    Directory of Open Access Journals (Sweden)

    Kim C Mansky

    2010-09-01

    Full Text Available Kim C ManskyDivision of Orthodontics, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USAAbstract: Highly active antiretroviral therapy (HAART has had a profound impact on improving the long-term prognosis for individuals infected with human immunodeficiency virus (HIV. HAART has been available for close to two decades, and now a significant number of patients with access to HAART are over the age of 50 years. Many clinical studies have indicated that HIV infection, as well as components of HAART, can increase the risk in these individuals to a variety of noninfectious complications, including a risk to bone health. There is a significant need for detailed mechanistic analysis of the aging, HIV-infected population regarding the risk of HIV infection and therapy in order to maintain bone health. Insights from basic mechanistic studies will help to shed light on the role of HIV infection and the components of HAART that impact bone health, and will help in identifying preventative countermeasures, particularly for individuals 50 years of age and older.Keywords: osteopenia, osteomalacia, osteoporosis, bisphosphonates, tenofovir, osteoimmunology

  2. Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study.

    Science.gov (United States)

    Razi, Hajar; Birkhold, Annette I; Zaslansky, Paul; Weinkamer, Richard; Duda, Georg N; Willie, Bettina M; Checa, Sara

    2015-02-01

    Bone adapts to changes in the local mechanical environment (e.g. strains) through formation and resorption processes. However, the bone adaptation response is significantly reduced with increasing age. The mechanical strains induced within the bone by external loading are determined by bone morphology and tissue material properties. Although it is known that changes in bone mass, architecture and bone tissue quality occur with age, to what extent they contribute to the altered bone adaptation response remains to be determined. This study investigated alterations in strains induced in the tibia of different aged female C57Bl/6J mice (young, 10-week-old; adult, 26-week-old; and elderly, 78-week-old) subjected to in vivo compressive loading. Using a combined in vivo/in silico approach, the strains in the bones were assessed by both strain gauging and finite element modeling experiments. In cortical bone, strain magnitudes induced at the mid-diaphysis decreased by 20% from young to adult mice and by 15% from adult to elderly mice. In the cancellous bone (at the proximal metaphysis), induced strains were 70% higher in young compared with adult and elderly mice. Taking into account previous studies showing a reduced bone adaptation response to mechanical loading in adulthood, these results suggest that the diminished adaptive response is in part due to a reduction in the strains induced within the bone.

  3. Comparison of patella bone strain between females with and without patellofemoral pain: a finite element analysis study.

    Science.gov (United States)

    Ho, Kai-Yu; Keyak, Joyce H; Powers, Christopher M

    2014-01-03

    Elevated bone principal strain (an indicator of potential bone injury) resulting from reduced cartilage thickness has been suggested to contribute to patellofemoral symptoms. However, research linking patella bone strain, articular cartilage thickness, and patellofemoral pain (PFP) remains limited. The primary purpose was to determine whether females with PFP exhibit elevated patella bone strain when compared to pain-free controls. A secondary objective was to determine the influence of patella cartilage thickness on patella bone strain. Ten females with PFP and 10 gender, age, and activity-matched pain-free controls participated. Patella bone strain fields were quantified utilizing subject-specific finite element (FE) models of the patellofemoral joint (PFJ). Input parameters for the FE model included (1) PFJ geometry, (2) elastic moduli of the patella bone, (3) weight-bearing PFJ kinematics, and (4) quadriceps muscle forces. Using quasi-static simulations, peak and average minimum principal strains as well as peak and average maximum principal strains were quantified. Cartilage thickness was quantified by computing the perpendicular distance between opposing voxels defining the cartilage edges on axial plane magnetic resonance images. Compared to the pain-free controls, individuals with PFP exhibited increased peak and average minimum and maximum principal strain magnitudes in the patella. Additionally, patella cartilage thickness was negatively associated with peak minimum principal patella strain and peak maximum principal patella strain. The elevated bone strain magnitudes resulting from reduced cartilage thickness may contribute to patellofemoral symptoms and bone injury in persons with PFP. © 2013 Published by Elsevier Ltd.

  4. Measurement of strain distribution in cortical bone around miniscrew implants used for orthodontic anchorage using digital speckle pattern interferometry

    Science.gov (United States)

    Kumar, Manoj; Agarwal, Rupali; Bhutani, Ravi; Shakher, Chandra

    2016-05-01

    An application of digital speckle pattern interferometry (DSPI) for the measurement of deformations and strain-field distributions developed in cortical bone around orthodontic miniscrew implants inserted into the human maxilla is presented. The purpose of this study is to measure and compare the strain distribution in cortical bone/miniscrew interface of human maxilla around miniscrew implants of different diameters, different implant lengths, and implants of different commercially available companies. The technique is also used to measure tilt/rotation of canine caused due to the application of retraction springs. The proposed technique has high sensitivity and enables the observation of deformation/strain distribution. In DSPI, two specklegrams are recorded corresponding to pre- and postloading of the retraction spring. The DSPI fringe pattern is observed by subtracting these two specklegrams. Optical phase was extracted using Riesz transform and the monogenic signal from a single DSPI fringe pattern. The obtained phase is used to calculate the parameters of interest such as displacement/deformation and strain/stress. The experiment was conducted on a dry human skull fulfilling the criteria of intact dental arches and all teeth present. Eight different miniscrew implants were loaded with an insertion angulation of 45 deg in the inter-radicular region of the maxillary second premolar and molar region. The loading of miniscrew implants was done with force level (150 gf) by nickel-titanium closed-coil springs (9 mm). The obtained results from DSPI reveal that implant diameter and implant length affect the displacement and strain distribution in cortical bone layer surrounding the miniscrew implant.

  5. Peak strain magnitudes and rates in the tibia exceed greatly those in the skull: An in vivo study in a human subject.

    Science.gov (United States)

    Hillam, Richard A; Goodship, Allen E; Skerry, Tim M

    2015-09-18

    Bone mass and architecture are the result of a genetically determined baseline structure, modified by the effect of internal hormonal/biochemical regulators and the effect of mechanical loading. Bone strain is thought to drive a feedback mechanism to regulate bone formation and resorption to maintain an optimal, but not excessive mass and organisation of material at each skeletal location. Because every site in the skeleton has different functions, we have measured bone strains induced by physiological and more unusual activities, at two different sites, the tibia and cranium of a young human male in vivo. During the most vigorous activities, tibial strains were shown to exceed 0.2%, when ground reaction exceeded 5 times body weight. However in the skull the highest strains recorded were during heading a heavy medicine/exercise ball where parietal strains were up to 0.0192%. Interestingly parietal strains during more physiological activities were much lower, often below 0.01%. Strains during biting were not dependent upon bite force, but could be induced by facial contortions of similar appearance without contact between the teeth. Rates of strain change in the two sites were also very different, where peak tibial strain rate exceeded rate in the parietal bone by more than 5 fold. These findings suggest that the skull and tibia are subject to quite different regulatory influences, as strains that would be normal in the human skull would be likely to lead to profound bone loss by disuse in the long bones.

  6. Three-axial strain controlled testing applied to bone specimens from the proximal tibial epiphysis

    DEFF Research Database (Denmark)

    Linde, F.; Pongsoipetch, B.; Frich, Lars Henrik

    1990-01-01

    Reproducibility of the determination of Young's modulus and energy absorption along the three axes of trabecular bone cubes was analysed by non-destructive compression to 0.5% strain using different testing protocols. These protocols included testing with and without pre-conditioning to a viscoel......Reproducibility of the determination of Young's modulus and energy absorption along the three axes of trabecular bone cubes was analysed by non-destructive compression to 0.5% strain using different testing protocols. These protocols included testing with and without pre...

  7. Human Placenta-Derived Adherent Cells Prevent Bone loss, Stimulate Bone formation, and Suppress Growth of Multiple Myeloma in Bone

    Science.gov (United States)

    Li, Xin; Ling, Wen; Pennisi, Angela; Wang, Yuping; Khan, Sharmin; Heidaran, Mohammad; Pal, Ajai; Zhang, Xiaokui; He, Shuyang; Zeitlin, Andy; Abbot, Stewart; Faleck, Herbert; Hariri, Robert; Shaughnessy, John D.; van Rhee, Frits; Nair, Bijay; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel

    2011-01-01

    Human placenta has emerged as a valuable source of transplantable cells of mesenchymal and hematopoietic origin for multiple cytotherapeutic purposes, including enhanced engraftment of hematopoietic stem cells, modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDACs) are mesenchymal-like stem cells isolated from postpartum human placenta. Multiple myeloma is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. We evaluated the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDACs in the severe combined immunodeficiency (SCID)–rab model of medullary myeloma-associated bone loss. Intrabone injection of PDACs into non-myelomatous and myelomatous implanted bone in SCID-rab mice promoted bone formation by stimulating endogenous osteoblastogenesis, and most PDACs disappeared from bone within 4 weeks. PDACs inhibitory effects on myeloma bone disease and tumor growth were dose-dependent and comparable with those of fetal human mesenchymal stem cells (MSCs). Intrabone, but not subcutaneous, engraftment of PDACs inhibited bone disease and tumor growth in SCID-rab mice. Intratumor injection of PDACs had no effect on subcutaneous growth of myeloma cells. A small number of intravenously injected PDACs trafficked into myelomatous bone. Myeloma cell growth rate in vitro was lower in coculture with PDACs than with MSCs from human fetal bone or myeloma patients. PDACs also promoted apoptosis in osteoclast precursors and inhibited their differentiation. This study suggests that altering the bone marrow microenvironment with PDAC cytotherapy attenuates growth of myeloma and that PDAC cytotherapy is a promising therapeutic approach for myeloma osteolysis. PMID:21732484

  8. Tea flavonoids for bone health: from animals to humans.

    Science.gov (United States)

    Shen, Chwan-Li; Chyu, Ming-Chien

    2016-10-01

    Osteoporosis is a skeletal disease characterized by a deterioration of bone mass and bone quality that predisposes an individual to a higher risk of fragility fractures. Emerging evidence has shown that the risk for low bone mass and osteoporosis-related fractures can be reduced by nutritional approaches aiming to improve bone microstructure, bone mineral density, and strength. Tea and its flavonoids, especially those of black tea and green tea, have been suggested to protect against bone loss and to reduce risk of fracture, due to tea's antioxidant and anti-inflammatory properties. Based on the results of animal studies, moderate intake of tea has shown to benefit bone health as shown by mitigation of bone loss and microstructural deterioration as well as improvement of bone strength and quality. Epidemiological studies have reported positive, insignificant, and negative impacts on bone mineral density at multiple skeletal sites and risk of fracture in humans with habitual tea consumption. There are limited human clinical trials that objectively and quantitatively assessed tea consumption and bone efficacy using validated outcome measures in a population at high risk for osteoporosis, along with safety monitoring approach. This review summarizes the current state of knowledge of laboratory animal research, epidemiological observational studies, and clinical trials assessing the skeletal effects of tea and its active flavonoids, along with discussion of relevant future directions in translational research.

  9. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone.

    Science.gov (United States)

    Rubin, C; Turner, A S; Mallinckrodt, C; Jerome, C; McLeod, K; Bain, S

    2002-03-01

    Departing from the premise that it is the large-amplitude signals inherent to intense functional activity that define bone morphology, we propose that it is the far lower magnitude, high-frequency mechanical signals that continually barrage the skeleton during longer term activities such as standing, which regulate skeletal architecture. To examine this hypothesis, we proposed that brief exposure to slight elevations in these endogenous mechanical signals would suffice to increase bone mass in those bones subject to the stimulus. This was tested by exposing the hind limbs of adult female sheep (n = 9) to 20 min/day of low-level (0.3g), high-frequency (30 Hz) mechanical signals, sufficient to induce a peak of approximately 5 microstrain (micro epsilon) in the tibia. Following euthanasia, peripheral quantitative computed tomography (pQCT) was used to segregate the cortical shell from the trabecular envelope of the proximal femur, revealing a 34.2% increase in bone density in the experimental animals as compared with controls (p = 0.01). Histomorphometric examination of the femur supported these density measurements, with bone volume per total volume increasing by 32% (p = 0.04). This density increase was achieved by two separate strategies: trabecular spacing decreased by 36.1% (p = 0.02), whereas trabecular number increased by 45.6% (p = 0.01), indicating the formation of cancellous bone de novo. There were no significant differences in the radii of animals subject to the stimulus, indicating that the adaptive response was local rather than systemic. The anabolic potential of the signal was evident only in trabecular bone, and there were no differences, as measured by any assay, in the cortical bone. These data suggest that subtle mechanical signals generated during predominant activities such as posture may be potent determinants of skeletal morphology. Given that these strain levels are three orders of magnitude below strains that can damage bone tissue, we

  10. Fundamental ratios and logarithmic periodicity in human limb bones.

    Science.gov (United States)

    Pietak, Alexis; Ma, Siyan; Beck, Caroline W; Stringer, Mark D

    2013-05-01

    Fundamental mathematical relationships are widespread in biology yet there is little information on this topic with regard to human limb bone lengths and none related to human limb bone volumes. Forty-six sets of ipsilateral upper and lower limb long bones and third digit short bones were imaged by computed tomography. Maximum bone lengths were measured manually and individual bone volumes calculated from computed tomography images using a stereologic method. Length ratios of femur : tibia and humerus : ulna were remarkably similar (1.21 and 1.22, respectively) and varied little (bone volume ratios varied much more than upper limb ratios. The relationship between bone length and volume was found to be well described by power laws, with R(2) values ranging from 0.983 to 0.995. The most striking finding was a logarithmic periodicity in bone length moving from distal to proximal up the limb (upper limb λ = 0.72, lower limb λ = 0.93). These novel data suggest that human limb bone lengths and volumes follow fundamental and highly conserved mathematical relationships, which may contribute to our understanding of normal and disordered growth, stature estimation, and biomechanics.

  11. Bird Flu Strain May Have Jumped from Cat to Human

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162717.html Bird Flu Strain May Have Jumped From Cat to ... would be the first known transmission of this bird flu strain from cat to human, officials said. ...

  12. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Jose de M. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose W. [Escola Politecnica de Pernambuco (POLI). Universidade de Pernambuco (UPE), Recife, PE (Brazil); Lima, Vanildo J. de M., E-mail: vjr@ufpe.br [Departamento de Anatomia. Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lima, Lindeval F., E-mail: lindeval@dmat.ufrr.br [Departamento de Matematica (DMAT). Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares (CRCN/NE-CNEN-PE), Recife, PE (Brazil); Vasconcelos, Wagner E. de [Departamento de Energia Nuclear (DEN). Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-07-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  13. Tensile material properties of human rib cortical bone under quasi-static and dynamic failure loading and influence of the bone microstucture on failure characteristics

    CERN Document Server

    Subit, Damien; Valazquez-Ameijide, Juan; Arregui-Dalmases, Carlos; Crandall, Jeff

    2011-01-01

    Finite element models of the thorax are under development to assist vehicle safety researchers with the design of countermeasures such as advanced restrain systems. Computational models have become more refined with increasing geometrical complexity as element size decreases. These finite element models can now capture small geometrical features with an attempt to predict fracture. However, the bone material properties currently available, and in particular the rate sensitivity, have been mainly determined from compression tests or tests on long bones. There is a need for a new set of material properties for the human rib cortical bone. With this objective, a new clamping technique was developed to test small bone coupons under tensile loading. Ten coupons were harvested from the cortical shell of the sixth and seventh left ribs from three cadavers. The coupons were tested to fracture under quasi-static (target strain rate of 0.07 %/s) and dynamic loading (target strain rate of 170 %/s). Prior to testing, eac...

  14. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Atul Kumar [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Gajiwala, Astrid Lobo [Tissue Bank, Tata Memorial Hospital, Parel, Mumbai 400012 (India); Rai, Ratan Kumar [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Khan, Mohd Parvez [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Singh, Chandan [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Barbhuyan, Tarun [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Vijayalakshmi, S. [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Chattopadhyay, Naibedya [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Sinha, Neeraj, E-mail: neerajcbmr@gmail.com [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Kumar, Ashutosh, E-mail: ashutoshk@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Bellare, Jayesh R., E-mail: jb@iitb.ac.in [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  15. The evaluation of staphylococci strains isolated from nasal and bone cultures in patients with chronic osteomyelitis

    Directory of Open Access Journals (Sweden)

    Mehmet Uluğ

    2012-09-01

    Full Text Available Objectives: In this study, it was aimed to determine theprevalence of nasal carriage of S. aureus in chronic osteomyelitis,assessed trends in methicillin resistance withtime, and evaluated the bone and nasal cultures in staphylococcalchronic osteomyelitis.Materials and methods: Bone and nasal cultures wereperformed intra-operative and pre-operatively from 43patients with chronic osteomyelitis. Inoculation was performedon 5% sheep blood and eosine-methylen-blueagar. The samples were incubated at 37°C for 24 hours.Catalase and coagulase tests were performed on Grampositive coccus strains. Antimicrobial susceptibilities of allS. aureus strains were evaluated by disc diffusion methodaccording to CLSI for oxacillin and other antibiotics.Results: In this study pre-operative nasal cultures andintra-operative bone cultures obtained between May 2005and September 2006 were evaluated retrospectively. Ofthe 43 nasal cultures, 31 (72% yielded staphylococcalstrain, of these 18 (58% were S. aureus. Of the 18 S.aureus strains, 13 (72.2% have methicilline resistance.On the other hand, of the 43 bone cultures, 29 (67.4%yielded staphylococci strain, of these 23 (79.3% were S.aureus. Of the 23 S. aureus strains, 52.1% have methicillineresistance. Overall the similarity rate of staphylococcalstrains was 38% (11/29, while considering the statusof strains resistant to antibiotics; this ratio was 24% (7/29.Conclusions: Nasal S. aureus carriage rate (58% in patientswith chronic osteomyelitis was higher than the communityand the other patient groups. However, the surveillancecultures can give knowledge about the causativepathogen of 25% of the culture negative cases.Key words: Chronic osteomyelitis, nasal carriage, Staphylococcusaureus, bone culture

  16. Morphological Study of Wormian Bones in Dried Human Skulls

    OpenAIRE

    Divyesh Patel; Ketan Chauhan; Dhananjay Patil

    2015-01-01

    Background: Wormian bones may be defined as a those accidental bones found in the cranium having no regular relation to their normal ossification centre. They are assocated with cranial and central nervous system abnormalities. Knowledge of these bones is important for anthropo-logists, forensic experts, radiologists, orthopedic and neurosurgeons to avoid misleading for multiple fractures of the skull. Materials and Methods: Adult dry human skulls (n= 27) of unknown age and sex availablei...

  17. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone.

    Science.gov (United States)

    Sanyal, Arnav; Scheffelin, Joanna; Keaveny, Tony M

    2015-01-01

    Prior multiaxial strength studies on trabecular bone have either not addressed large variations in bone volume fraction and microarchitecture, or have not addressed the full range of multiaxial stress states. Addressing these limitations, we utilized micro-computed tomography (lCT) based nonlinear finite element analysis to investigate the complete 3D multiaxial failure behavior of ten specimens (5mm cube) of human trabecular bone, taken from three anatomic sites and spanning a wide range of bone volume fraction (0.09–0.36),mechanical anisotropy (range of E3/E1¼3.0–12.0), and microarchitecture. We found that most of the observed variation in multiaxial strength behavior could be accounted for by normalizing the multiaxial strength by specimen-specific values of uniaxial strength (tension,compression in the longitudinal and transverse directions). Scatter between specimens was reduced further when the normalized multiaxial strength was described in strain space.The resulting multiaxial failure envelope in this normalized-strain space had a rectangular boxlike shape for normal–normal loading and either a rhomboidal box like shape or a triangular shape for normal-shear loading, depending on the loading direction. The finite element data were well described by a single quartic yield criterion in the 6D normalized strain space combined with a piecewise linear yield criterion in two planes for normalshear loading (mean error SD: 4.660.8% for the finite element data versus the criterion).This multiaxial yield criterion in normalized-strain space can be used to describe the complete 3D multiaxial failure behavior of human trabecular bone across a wide range of bone volume fraction, mechanical anisotropy, and microarchitecture.

  18. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    Science.gov (United States)

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions.

  19. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    Science.gov (United States)

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  20. Strain-guided mineralization in the bone-PDL-cementum complex of a rat periodontium

    Science.gov (United States)

    Grandfield, Kathryn; Herber, Ralf Peter; Chen, Ling; Djomehri, Sabra; Tam, Caleb; Lee, Ji-Hyun; Brown, Evan; Woolwine, Wood R.; Curtis, Don; Ryder, Mark; Schuck, Jim; Webb, Samuel; Landis, William; Ho, Sunita

    2015-01-01

    Objective The objective of this study was to investigate the effect of mechanical strain by mapping physicochemical properties at periodontal ligament (PDL)-bone and PDL-cementum attachment sites and within the tissues per se. Design Accentuated mechanical strain was induced by applying a unidirectional force of 0.06N for 14 days on molars in a rat model. The associated changes in functional space between tooth and bone, mineral formation and resorbing events at the PDL-bone and PDL-cementum attachment sites were identified by using micro-X-ray computed tomography (micro-XCT), atomic force microscopy (AFM), dynamic histomorphometry, Raman microspectroscopy, AFM-based nanoindentation technique, and were correlated with histochemical stains specific to low and high molecular weight GAGs, including biglycan, and osteoclast distribution through tartrate-resistant acid phosphatase (TRAP) staining. Results Unique chemical and mechanical qualities including heterogenous bony fingers with hygroscopic Sharpey’s fibers contributing to a higher organic (amide III - 1240 cm−1) to inorganic (phosphate - 960 cm−1) ratio, with lower average elastic modulus of 8 GPa versus 12 GPa in unadapted regions were identified. Furthermore, an increased presence of elemental Zn in cement lines and mineralizing fronts of PDL-bone was observed. Adapted regions containing bony fingers exhibited woven bone-like architecture and these regions rich in biglycan (BGN) and bone sialoprotein (BSP) also contained high-molecular weight polysaccharides predominantly at the site of polarized bone growth. Conclusions From a fundamental science perspective the shift in local properties due to strain amplification at the soft-hard tissue attachment sites is governed by semiautonomous cellular events at the PDL-bone and PDL-cementum sites. Over time, these strain-mediated events can alter the physicochemical properties of tissues per se, and consequently the overall biomechanics of the bone

  1. A simplified procedure for preparation of undecalcified human bone sections

    DEFF Research Database (Denmark)

    Wallin, J A; Tkocz, I; Levinsen, J

    1985-01-01

    A new type of apparatus for sectioning samples of hard, undecalcified bone is described. Slices of fresh or archeological human bone 4-5 mm thick are dehydrated and then embedded in epoxy resin. The apparatus used to prepare sections from the resulting blocks consists of a low-speed rim-type diam...

  2. A simplified procedure for preparation of undecalcified human bone sections

    DEFF Research Database (Denmark)

    Wallin, J A; Tkocz, I; Levinsen, J

    1985-01-01

    A new type of apparatus for sectioning samples of hard, undecalcified bone is described. Slices of fresh or archeological human bone 4-5 mm thick are dehydrated and then embedded in epoxy resin. The apparatus used to prepare sections from the resulting blocks consists of a low-speed rim...

  3. Bioreactor cultivation of anatomically shaped human bone grafts.

    Science.gov (United States)

    Temple, Joshua P; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L

    2014-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes.

  4. Ethanol inhibits human bone cell proliferation and function in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friday, K.E.; Howard, G.A. (University of Washington, Seattle (USA))

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

  5. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo

    2012-01-01

    in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... leg. In conclusion, resting femoral bone blood flow increases by physical exercise, but appears to level off with increasing exercise intensities. Moreover, while moderate systemic hypoxia does not change bone blood flow at rest or during exercise, intra-arterially administered adenosine during...

  6. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    Science.gov (United States)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  7. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study

    DEFF Research Database (Denmark)

    Petruskevicius, Juozas; Nielsen, Mette Strange; Kaalund, Søren;

    2002-01-01

    We studied the effects of a newly marketed bone substitute, Osteoset, on bone healing in a tibial defect in humans. 20 patients undergoing an ACL (anterior cruciate ligament) reconstruction with bone-patella tendon-bone graft were block-randomized into 2 groups of 10 each. In the treatment group...

  8. Prediction of Local Ultimate Strain and Toughness of Trabecular Bone Tissue by Raman Material Composition Analysis

    Directory of Open Access Journals (Sweden)

    Roberto Carretta

    2015-01-01

    Full Text Available Clinical studies indicate that bone mineral density correlates with fracture risk at the population level but does not correlate with individual fracture risk well. Current research aims to better understand the failure mechanism of bone and to identify key determinants of bone quality, thus improving fracture risk prediction. To get a better understanding of bone strength, it is important to analyze tissue-level properties not influenced by macro- or microarchitectural factors. The aim of this pilot study was to identify whether and to what extent material properties are correlated with mechanical properties at the tissue level. The influence of macro- or microarchitectural factors was excluded by testing individual trabeculae. Previously reported data of mechanical parameters measured in single trabeculae under tension and bending and its compositional properties measured by Raman spectroscopy was evaluated. Linear and multivariate regressions show that bone matrix quality but not quantity was significantly and independently correlated with the tissue-level ultimate strain and postyield work (r=0.65–0.94. Principal component analysis extracted three independent components explaining 86% of the total variance, representing elastic, yield, and ultimate components according to the included mechanical parameters. Some matrix parameters were both included in the ultimate component, indicating that the variation in ultimate strain and postyield work could be largely explained by Raman-derived compositional parameters.

  9. Effect of boundary conditions on yield properties of human femoral trabecular bone.

    Science.gov (United States)

    Panyasantisuk, J; Pahr, D H; Zysset, P K

    2016-10-01

    Trabecular bone plays an important mechanical role in bone fractures and implant stability. Homogenized nonlinear finite element (FE) analysis of whole bones can deliver improved fracture risk and implant loosening assessment. Such simulations require the knowledge of mechanical properties such as an appropriate yield behavior and criterion for trabecular bone. Identification of a complete yield surface is extremely difficult experimentally but can be achieved in silico by using micro-FE analysis on cubical trabecular volume elements. Nevertheless, the influence of the boundary conditions (BCs), which are applied to such volume elements, on the obtained yield properties remains unknown. Therefore, this study compared homogenized yield properties along 17 load cases of 126 human femoral trabecular cubic specimens computed with classical kinematic uniform BCs (KUBCs) and a new set of mixed uniform BCs, namely periodicity-compatible mixed uniform BCs (PMUBCs). In stress space, PMUBCs lead to 7-72 % lower yield stresses compared to KUBCs. The yield surfaces obtained with both KUBCs and PMUBCs demonstrate a pressure-sensitive ellipsoidal shape. A volume fraction and fabric-based quadric yield function successfully fitted the yield surfaces of both BCs with a correlation coefficient [Formula: see text]. As expected, yield strains show only a weak dependency on bone volume fraction and fabric. The role of the two BCs in homogenized FE analysis of whole bones will need to be investigated and validated with experimental results at the whole bone level in future studies.

  10. Molecular Genetic Studies of Bone Mechanical Strain and of Pedigrees with Very High Bone Density

    Science.gov (United States)

    2006-11-01

    scores. The interval mapping was performed by using a MapQTL software program (Verison 5.0; Wageningen, The Netherlands ). The threshold values for...Wageningen, The Netherlands ). The significant levels of the LOD scores used in this study were obtained by the permutation test on the studied...real time PCR analyses. Bone Histomorphometry—Both the loaded and unloaded (control) tibiae of B6 and C3H mice were removed, after euthanasia , and

  11. In vitro bone strain distributions in a sample of primate pelves.

    Science.gov (United States)

    Lewton, Kristi L

    2015-05-01

    The pelvis is a critical link in the hindlimb locomotor system and has a central role in resisting loads associated with locomotion, but our understanding of its structural biomechanics is quite limited. Empirical data on how the pelvis responds to the loads it encounters are important for understanding pelvic adaptation to locomotion, and for testing hypotheses regarding how the pelvis is adapted to its mechanical demands. This paper presents in vitro strain gauge data on a sample of monkey and ape cadaveric specimens (Macaca, Papio, Ateles, Hylobates), and assesses strain magnitudes and distributions through the bones of the pelvis: the ilium, ischium and pubis. Pelves were individually mounted in a materials testing system, loads were applied across three hindlimb angular positions, and strains were recorded from 18 locations on the pelvic girdle. Peak principal strains range from 2000 to 3000 με, similar to peak strains recorded from other mammals in vivo. Although previous work has suggested that the bones of the pelvis may act as bent beams, this study suggests that there are likely additional loading regimes superimposed on bending. Specifically, these data suggest that the ilium is loaded in axial compression and torsion, the ischium in torsion, the pubic rami in mediolateral bending, and the pubic symphysis is loaded in a combination of compression and torsion. Compressive strains dominate the pelves of all species representatives. Shear strains change with limb position; hip flexion at 45° induces smaller shear strains than mid-stance (90°) or hip extension (105°). The pelvic girdle is a complex structure that does not lend itself easily to modeling, but finite element analyses may prove useful to generate and refine hypotheses of pelvic biomechanics.

  12. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    Directory of Open Access Journals (Sweden)

    Parisa Shokryazdan

    2014-01-01

    Full Text Available The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits.

  13. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  14. Early reversal cells in adult human bone remodeling

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Delaissé, Jean-Marie; Hinge, Maja

    2016-01-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter...... of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts...... demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic....

  15. Comparison of whole genome sequences from human and non-human Escherichia coli O26 strains

    Directory of Open Access Journals (Sweden)

    Keri N Norman

    2015-03-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC O26 is the second leading E. coli serogroup responsible for human illness outbreaks behind E. coli O157:H7. Recent outbreaks have been linked to emerging pathogenic O26:H11 strains harboring stx2 only. Cattle have been recognized as an important reservoir of O26 strains harboring stx1; however the reservoir of these emerging stx2 strains is unknown. The objective of this study was to identify nucleotide polymorphisms in human and cattle-derived strains in order to compare differences in polymorphism derived genotypes and virulence gene profiles between the two host species. Whole genome sequencing was performed on 182 epidemiologically unrelated O26 strains, including 109 human-derived strains and 73 non-human-derived strains. A panel of 289 O26 strains (241 STEC and 48 non-STEC was subsequently genotyped using a set of 283 polymorphisms identified by whole genome sequencing, resulting in 64 unique genotypes. Phylogenetic analyses identified seven clusters within the O26 strains. The seven clusters did not distinguish between isolates originating from humans or cattle; however, clusters did correspond with particular virulence gene profiles. Human and non-human-derived strains harboring stx1 clustered separately from strains harboring stx2, strains harboring eae, and non-STEC strains. Strains harboring stx2 were more closely related to non-STEC strains and strains harboring eae than to strains harboring stx1. The finding of human and cattle-derived strains with the same polymorphism derived genotypes and similar virulence gene profiles, provides evidence that similar strains are found in cattle and humans and transmission between the two species may occur.

  16. Morphological Study of Wormian Bones in Dried Human Skulls

    Directory of Open Access Journals (Sweden)

    Divyesh Patel

    2015-09-01

    Full Text Available Background: Wormian bones may be defined as a those accidental bones found in the cranium having no regular relation to their normal ossification centre. They are assocated with cranial and central nervous system abnormalities. Knowledge of these bones is important for anthropo-logists, forensic experts, radiologists, orthopedic and neurosurgeons to avoid misleading for multiple fractures of the skull. Materials and Methods: Adult dry human skulls (n= 27 of unknown age and sex availablein the Department of Anatomy, Govt. Medical College, Surat were included in the study. Result: Overall incidence of wormian bone was 44.4%. They occurred more frequently at lambdoid suture (48.14%.Wormian bones were also presentat asterion (18.5%, along the coronal suture (0.03%, along the parito-temporal suture (0.07%, along the occipito-mastoid suture (0.03%,andat pterion (0.03 %. Wormain bones were found 48.1% on left half of skull and 37.03% on right half of skull. Conclusion: The Wormian bones were more frequent at the lambdoid suture. The clinical importances of these variant bones were emphasized with relevant review of literature. [Natl J Med Res 2015; 5(3.000: 222-225

  17. In Vitro Fracture of Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, R; Stolken, J; Kinney, J; Ritchie, R

    2004-08-18

    A micro-mechanistic understanding of bone fracture that encompasses how cracks interact with the underlying microstructure and defines their local failure mode is lacking, despite extensive research on the response of bone to a variety of factors like aging, loading, and/or disease. Micro-mechanical models for fracture incorporating such local failure criteria have been widely developed for metallic and ceramic materials systems; however, few such deliberations have been undertaken for the fracture of bone. In fact, although the fracture event in mineralized tissues such as bone is commonly believed to be locally strain controlled, until recently there has been little experimental evidence to support this widely held belief. In the present study, a series of in vitro experiments involving a double-notch bend test geometry are performed in order to shed further light on the nature of the local cracking events that precede catastrophic fracture in bone and to define their relationship to the microstructure. Specifically, crack-microstructure interactions are examined to determine the salient toughening mechanisms in human cortical bone and to characterize how these may affect the anisotropy in fracture properties. Based on preliminary micro-mechanical models of these processes, in particular crack deflection and uncracked ligament bridging, the relative importance of these toughening mechanisms is established.

  18. Determinants of microdamage in elderly human vertebral trabecular bone.

    Directory of Open Access Journals (Sweden)

    Hélène Follet

    Full Text Available Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53 from donors 54-95 years of age (22 men and 30 women, 1 unknown and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types.

  19. DNA and bone structure preservation in medieval human skeletons.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified.

  20. Non-invasive photo acoustic approach for human bone diagnosis.

    Science.gov (United States)

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  1. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Ulett, G.C.; Schembri, M.A.

    2006-01-01

    Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract....... The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. Deliberate colonization of UTI-susceptible individuals with E. coli 83972 has been used successfully as an alternative approach for the treatment of patients who are refractory...... to conventional therapy. Colonization with strain 83972 appears to prevent infection with UPEC strains in such patients despite the fact that this strain is unable to express the primary adhesins involved in UTI, viz. P and type 1 fimbriae. Here we investigated the growth characteristics of E. coli 83972 in human...

  2. Nasal bone shape is under complex epistatic genetic control in mouse interspecific recombinant congenic strains.

    Directory of Open Access Journals (Sweden)

    Gaétan Burgio

    Full Text Available BACKGROUND: Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas. Each strain has inherited 1.3% of its genome from SEG/Pas under the form of few, small-sized, chromosomal segments. RESULTS: The shape of the nasal bone was studied using outline analysis combined with Fourier descriptors, and differential features were identified between IRCS BcG-66H and C57BL/6. An F2 cross between BcG-66H and C57BL/6 revealed that, out of the three SEG/Pas-derived chromosomal regions present in BcG-66H, two were involved. Segments on chromosomes 1 (∼32 Mb and 18 (∼13 Mb showed additive effect on nasal bone shape. The three chromosomal regions present in BcG-66H were isolated in congenic strains to study their individual effect. Epistatic interactions were assessed in bicongenic strains. CONCLUSIONS: Our results show that, besides a strong individual effect, the QTL on chromosome 1 interacts with genes on chromosomes 13 and 18. This study demonstrates that nasal bone shape is under complex genetic control but can be efficiently dissected in the mouse using appropriate genetic tools and shape descriptors.

  3. Molecular Characterization of China Human Rabies Vaccine Strains

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Tao; Na Han; Zhenyang Guo; Qing Tang; Simon Rayner; Guodong Liang

    2013-01-01

    To understand the molecular characteristics of China human rabies vaccine strains,we report the full-length genome of the aG strain and present a comprehensive analysis of this strain and almost all available lyssavirus genomes (58 strains) from GenBank (as of Jan 6,2011).It is generally considered that the G protein plays a predominant role in determining the pathogenicity of the virus,to this end we predicted the tertiary structure of the G protein of aG strain,CTN 181 strain and wild type strain HN 10 based on the crystal structure of Vesicular stomatitis virus (VSV) G.The predicted RABV G structure has a similar topology to VSV G and the ectodomain can be divided into 4 distinct domains DI-DIV.By mapping the characterized mutations to this structure between China vaccine strains and their close street strains,we speculate that the G303(P-H) mutations of CTN181 and HN10 causing D Ⅱ 3D change may be associated with the attenuated virulence in both strains.Specifically,the two signature mutations (G165P and G231P) in the aG strain are withinβsheets,suggesting that both sites are of structural importance.

  4. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft)

    Science.gov (United States)

    Peckham, Steven M.; Badura, Jeffrey M.

    2007-01-01

    The combination of recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS) carrier has been shown to induce bone formation in a number of preclinical and clinical investigations. In 2002, rhBMP-2/ACS at a 1.5-mg/cc concentration (INFUSE® Bone Graft, Medtronic Spinal and Biologics, Memphis, TN) was FDA-approved as an autograft replacement for certain interbody spinal fusion procedures. In 2004, INFUSE® Bone Graft was approved for open tibial fractures with an intermedullary (IM) nail fixation. Most recently, in March 2007, INFUSE® Bone Graft was approved as an alternative to autogenous bone grafts for sinus augmentations, and for localised alveolar ridge augmentations for defects associated with extraction sockets. The culmination of extensive preclinical and clinical research and three FDA approvals makes rhBMP-2 one of the most studied, published and significant advances in orthopaedics. This review article summarises a number of clinical findings of rhBMP-2/ACS, including the FDA-approved investigational device exemption (IDE) studies used in gaining the aforementioned approvals. PMID:17639384

  5. Molecular Genetic Studies of Bone Mechanical Strain and of Pedigrees with Very High Bone Density

    Science.gov (United States)

    2010-11-01

    marrow, spleen developing liver and lung 11,193 Myeloperoxidase Myeliod cells 11,056 Enolase 3, beta muscle Muscle 10,991 ATPase-like vaculor proton...Receptor binding of osteoblast-specific factor 1 (OSF-1/HB-GAM) to human osteosarcoma cells promotes cell attachment. Eur J Cell Biol 1993, 62(2):352...kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis . Cancer Res, 2006. 66(16): p. 7880-8

  6. Microscopic residues of bone from dissolving human remains in acids.

    Science.gov (United States)

    Vermeij, Erwin; Zoon, Peter; van Wijk, Mayonne; Gerretsen, Reza

    2015-05-01

    Dissolving bodies is a current method of disposing of human remains and has been practiced throughout the years. During the last decade in the Netherlands, two cases have emerged in which human remains were treated with acid. In the first case, the remains of a cremated body were treated with hydrofluoric acid. In the second case, two complete bodies were dissolved in a mixture of hydrochloric and sulfuric acid. In both cases, a great variety of evidence was collected at the scene of crime, part of which was embedded in resin, polished, and investigated using SEM/EDX. Apart from macroscopic findings like residual bone and artificial teeth, in both cases, distinct microscopic residues of bone were found as follows: (partly) digested bone, thin-walled structures, and recrystallized calcium phosphate. Although some may believe it is possible to dissolve a body in acid completely, at least some of these microscopic residues will always be found. © 2015 American Academy of Forensic Sciences.

  7. Molecular profile of clonal strains of human skeletal stem/progenitor cells with different potencies

    Directory of Open Access Journals (Sweden)

    Brian J. Sworder

    2015-05-01

    Full Text Available Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells are fibroblastic reticular cells, a subset of which is composed of multipotent skeletal stem cells (SSCs. SSCs/BMSCs are able to recreate a bone/marrow organ in vivo. To determine differences between clonogenic multipotent SSCs and similarly clonogenic but non-multipotent BMSCs, we established single colony-derived strains (SCDSs, initiated by individual Colony Forming Unit-Fibroblasts and determined their differentiation capacity by vivo transplantation. In this series of human SCDSs (N = 24, 20.8% formed fibrous tissue (F, 66.7% formed bone (B, and 12.5% formed a bone/marrow organ, and thus were multipotent (M. RNA isolated from 12 SCDSs just prior to transplantation was analyzed by microarray. Although highly similar, there was variability from one SCDS to another, and SCDSs did not strictly segregate into the three functional groups (F, B or M by unsupervised hierarchical clustering. We then compared 3 F-SCDSs to 3 M-SCDSs that did segregate. Genes associated with skeletogenesis, osteoblastogeneis, hematopoiesis, and extracellular matrix were over-represented in M-SCDSs compared with F-SCDSs. These results highlight the heterogeneity of SSCs/BMSCs, even between functionally similar SCDSs, but also indicate that differences can be detected that may shed light on the character of the SSC.

  8. Bone invading NSCLC cells produce IL-7: mice model and human histologic data

    Directory of Open Access Journals (Sweden)

    Quarto Rodolfo

    2010-01-01

    Full Text Available Abstract Background Bone metastases are a common and dismal consequence of lung cancer that is a leading cause of death. The role of IL-7 in promoting bone metastases has been previously investigated in NSCLC, but many aspects remain to be disclosed. To further study IL-7 function in bone metastasis, we developed a human-in-mice model of bone aggression by NSCLC and analyzed human bone metastasis biopsies. Methods We used NOD/SCID mice implanted with human bone. After bone engraftment, two groups of mice were injected subcutaneously with A549, a human NSCLC cell line, either close or at the contralateral flank to the human bone implant, while a third control group did not receive cancer cells. Tumor and bone vitality and IL-7 expression were assessed in implanted bone, affected or not by A549. Serum IL-7 levels were evaluated by ELISA. IL-7 immunohistochemistry was performed on 10 human bone NSCLC metastasis biopsies for comparison. Results At 12 weeks after bone implant, we observed osteogenic activity and neovascularization, confirming bone vitality. Tumor aggressive cells implanted close to human bone invaded the bone tissue. The bone-aggressive cancer cells were positive for IL-7 staining both in the mice model and in human biopsies. Higher IL-7 serum levels were found in mice injected with A549 cells close to the bone implant compared to mice injected with A549 cells in the flank opposite to the bone implant. Conclusions We demonstrated that bone-invading cells express and produce IL-7, which is known to promote osteoclast activation and osteolytic lesions. Tumor-bone interaction increases IL-7 production, with an increase in IL-7 serum levels. The presented mice model of bone invasion by contiguous tumor is suitable to study bone-tumor cell interaction. IL-7 plays a role in the first steps of metastatic process.

  9. Age variations in the properties of human tibial trabecular bone

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Danielsen, CC;

    1997-01-01

    We tested in compression specimens of human proximal tibial trabecular bone from 31 normal donors aged from 16 to 83 years and determined the mechanical properties, density and mineral and collagen content. Young's modulus and ultimate stress were highest between 40 and 50 years, whereas ultimate...

  10. Ancient DNA in human bone remains from Pompeii archaeological site.

    Science.gov (United States)

    Cipollaro, M; Di Bernardo, G; Galano, G; Galderisi, U; Guarino, F; Angelini, F; Cascino, A

    1998-06-29

    aDNA extraction and amplification procedures have been optimized for Pompeian human bone remains whose diagenesis has been determined by histological analysis. Single copy genes amplification (X and Y amelogenin loci and Y specific alphoid repeat sequences) have been performed and compared with anthropometric data on sexing.

  11. [Microdetermination of fluoride in human bones (author's transl)].

    Science.gov (United States)

    Hanocq, M; Helson-Cambier, M

    1979-01-15

    A spectrophotometric method (cerium(III)-alizarin complexan-fluoride in presence of 25% dimethylsulfoxyde) is described for the determination of fluoride in human bones. The anion is determined after separation by microdiffusion as hydrofluoric acid using Petri boxes without any mineralization. This analytical method is selective, accurate and rapid.

  12. Training human mesenchymal stromal cells for bone tissue engineering applications

    NARCIS (Netherlands)

    Doorn, J.

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are an interesting source for cell therapies and tissue engineering applications, because these cells are able to differentiate into various target tissues, such as bone, cartilage, fat and endothelial cells. In addition, they secrete a wide array of growth fa

  13. Ex Vivo Behaviour of Human Bone Tumor Endothelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Infante, Teresa [SDN-Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, 80143 Naples (Italy); Cesario, Elena [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy); Gallo, Michele; Fazioli, Flavio [Division of Skeletal Muscles Oncology Surgery, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); De Chiara, Annarosaria [Anatomic Pathology Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Tutucci, Cristina; Apice, Gaetano [Medical Oncology of Bone and Soft Sarcoma tissues Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Nigris, Filomena de, E-mail: filomena.denigris@unina2.it [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy)

    2013-04-11

    Cooperation between endothelial cells and bone in bone remodelling is well established. In contrast, bone microvasculature supporting the growth of primary tumors and metastasis is poorly understood. Several antiangiogenic agents have recently been undergoing trials, although an extensive body of clinical data and experimental research have proved that angiogenic pathways differ in each tumor type and stage. Here, for the first time, we characterize at the molecular and functional level tumor endothelial cells from human bone sarcomas at different stages of disease and with different histotypes. We selected a CD31{sup +} subpopulation from biopsies that displayed the capability to grow as adherent cell lines without vascular endothelial growth factor (VEGF). Our findings show the existence in human primary bone sarcomas of highly proliferative endothelial cells expressing CD31, CD44, CD105, CD146 and CD90 markers. These cells are committed to develop capillary-like structures and colony formation units, and to produce nitric oxide. We believe that a better understanding of tumor vasculature could be a valid tool for the design of an efficacious antiangiogenic therapy as adjuvant treatment of sarcomas.

  14. Stable isotopic analysis on ancient human bones in Jiahu site

    Institute of Scientific and Technical Information of China (English)

    HU YaoWu; S.H.AMBROSE; WANG ChangSui

    2007-01-01

    Palaeodietary analysis is one of important topics in bioarchaeology field and has been paid great attention to by Chinese archaeometrists recently. Ancient human bones in Jiahu Site were analyzed by means of stable isotopes of C, N and 0.13 human bones were excluded from 28 bones for dietary reconstruction due to their unusual collagen contents, C and N contents, and C/N atomic ratios especially.δ13C(-20.37±0.53‰)in collagen of remaining samples showed that C3 food were consumed mainly, which is consistent of the archaeological findings that rice was the staple in Jiahu. According to the difference of δ15N and δ13C values in bone collagen, the samples can be classified into four clusters. The changes of δ15N values in bone collagen and δ13C values in hydroxylapatite through whole cultural phases indicated the transition from hunting to gathering and fishing to rice agriculture and animal domestication ultimately. Meanwhile, the δ18O change in hydroxylapatite showed that palaeoclimate was relatively constant during Jiahu culture.

  15. Stable isotopic analysis on ancient human bones in Jiahu site

    Institute of Scientific and Technical Information of China (English)

    S.H.AMBROSE

    2007-01-01

    Palaeodietary analysis is one of important topics in bioarchaeology field and has been paid great at- tention to by Chinese archaeometrists recently. Ancient human bones in Jiahu Site were analyzed by means of stable isotopes of C, N and O. 13 human bones were excluded from 28 bones for dietary re- construction due to their unusual collagen contents, C and N contents, and C/N atomic ratios espe- cially. δ 13C (-20.37±0.53‰) in collagen of remaining samples showed that C3 food were consumed mainly, which is consistent of the archaeological findings that rice was the staple in Jiahu. According to the difference of δ 15N and δ 13C values in bone collagen, the samples can be classified into four clusters. The changes of δ 15N values in bone collagen and δ 13C values in hydroxylapatite through whole cultural phases indicated the transition from hunting to gathering and fishing to rice agriculture and animal domestication ultimately. Meanwhile, the δ 18O change in hydroxylapatite showed that pa- laeoclimate was relatively constant during Jiahu culture.

  16. Long-term potentiation in bone – a role for glutamate in strain-induced cellular memory?

    Directory of Open Access Journals (Sweden)

    Genever Paul G

    2003-07-01

    Full Text Available Abstract Background The adaptive response of bone cells to mechanical strain is a primary determinant of skeletal architecture and bone mass. In vivo mechanical loading induces new bone formation and increases bone mineral density whereas disuse, immobilisation and weightlessness induce bone loss. The potency of mechanical strain is such that a single brief period of loading at physiological strain magnitude is able to induce a long-lasting osteogenic response that lasts for days. Although the process of mechanotransduction in bone is incompletely understood, observations that responses to mechanical strain outlast the duration of stimulation necessitate the existence of a form of cellular memory through which transient strain episodes are recorded, interpreted and remembered by bone cells. Recent evidence supports the existence of a complex multicellular glutamate-signalling network in bone that shares functional similarities to glutamatergic neurotransmission in the central nervous system. In neurones, these signalling molecules coordinate synaptic communication required to support learning and memory formation, through a complex process of long-term potentiation. Presentation of the hypothesis We hypothesise that osteoblasts use a cellular mechanism similar or identical to neuronal long-term potentiation in the central nervous system to mediate long-lasting changes in osteogenesis following brief periods of mechanical strain. Testing the hypothesis N-methyl-D-aspartate (NMDA receptor antagonism should inhibit the saturating response of mechanical strain and reduce the enhanced osteogenicity of segregated loading to that of an equivalent period of uninterrupted loading. Changes in α-amino-3-hydroxy-5-methyl-isoxazole propionate (AMPA receptor expression, localisation and electrophysiological responses should be induced by mechanical strain and inhibited by modulators of neuronal long-term potentiation. Implications of the hypothesis If true

  17. Variation of the mineral density in cortical bone may serve to keep strain amplitudes within a physiological range.

    Science.gov (United States)

    de Jong, W C; van Ruijven, L J; Brugman, P; Langenbach, G E J

    2013-08-01

    Within-bone variation in mineral density could be functional. A heterogeneous mineral-density distribution might serve to maintain habitual amplitudes of bone strain within a non-harmful, i.e., physiological range. Regions of a bone that would be strained the most on the basis of architecture alone might have a higher mineral density to make them more stiff and resistant to strain. We hypothesised that the cortical bone of the rabbit mandible contains such a functional distribution of mineral density. We thereby expected similar mineral-density patterns in the mandibles of different individuals due to the shared masticatory function. Secondly, we hypothesised that the highest mineral densities occur in mandibular regions predicted to be exposed to the largest amplitudes of strain-when taking into account bone architecture only. Mineral-density maps of the cortical bone of rabbit mandibles were obtained using micro-computed tomography (μCT). The μCT scans of two rabbits were converted into finite-element models (FEMs). To predict mandibular deformation during biting, these models were loaded by muscle forces and reaction forces. The forces acted on the condyles and on either the incisal or molar bite point. The FEMs were assigned a homogeneous material stiffness to calculate the strain amplitudes that would occur when only the architecture of the mandibular bone would be of influence. We found the cortical bone-mineral density patterns to be similar in all six mandibles. The mineral density of the corpus was higher than that of the ramus. A second consistent feature of the mandibular mineral-density distribution was that the medial ridge of the temporal-muscle insertion groove contained more mineral than its surrounding regions. The strain amplitudes calculated with the FEMs were variable and did not feature clear corpo-ramal differences. However, specific mandibular bone sites calculated to be exposed to the largest amplitudes of strain, including the medial

  18. Recent origin of low trabecular bone density in modern humans.

    Science.gov (United States)

    Chirchir, Habiba; Kivell, Tracy L; Ruff, Christopher B; Hublin, Jean-Jacques; Carlson, Kristian J; Zipfel, Bernhard; Richmond, Brian G

    2015-01-13

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.

  19. Emerging bone problems in patients infected with human immunodeficiency virus.

    Science.gov (United States)

    Mondy, Kristin; Tebas, Pablo

    2003-04-01

    Recently, a high incidence of osteopenia and osteoporosis has been observed in individuals infected with human immunodeficiency virus (HIV). This problem appears to be more frequent in patients receiving potent antiretroviral therapy. Other bone-related complications in HIV-infected individuals, including avascular necrosis of the hip and compression fracture of the lumbar spine, have also been reported. People living with HIV have significant alterations in bone metabolism, regardless of whether they are receiving potent antiretroviral therapy. The underlying mechanisms to account for these observations remain unknown, although studies are underway to examine the relationship between the bone abnormalities and other complications associated with HIV and antiretroviral therapy. HIV-infected patients with osteopenia or osteoporosis should be treated similarly to HIV-seronegative patients with appropriate use of nutritional supplements (calcium and vitamin D) and exercise. Hormone replacement and antiresorptive therapies might be also indicated.

  20. Calcium isotope ratios in animal and human bone

    Science.gov (United States)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  1. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Ulett, G.C.; Schembri, M.A.

    2006-01-01

    Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract...

  2. An Upper Palaeolithic engraved human bone associated with ritualistic cannibalism.

    Science.gov (United States)

    Bello, Silvia M; Wallduck, Rosalind; Parfitt, Simon A; Stringer, Chris B

    2017-01-01

    Cut-marked and broken human bones are a recurrent feature of Magdalenian (~17-12,000 years BP, uncalibrated dates) European sites. Human remains at Gough's Cave (UK) have been modified as part of a Magdalenian mortuary ritual that combined the intensive processing of entire corpses to extract edible tissues and the modification of skulls to produce skull-cups. A human radius from Gough's Cave shows evidence of cut marks, percussion damage and human tooth marks, indicative of cannibalism, as well as a set of unusual zig-zagging incisions on the lateral side of the diaphysis. These latter incisions cannot be unambiguously associated with filleting of muscles. We compared the macro- and micro-morphological characteristics of these marks to over 300 filleting marks on human and non-human remains and to approximately 120 engraved incisions observed on two artefacts from Gough's Cave. The new macro- and micro-morphometric analyses of the marks, as well as further comparisons with French Middle Magdalenian engraved artefacts, suggest that these modifications are the result of intentional engraving. The engraved motif comfortably fits within a Magdalenian pattern of design; what is exceptional in this case, however, is the choice of raw material (human bone) and the cannibalistic context in which it was produced. The sequence of the manipulations suggests that the engraving was a purposeful component of the cannibalistic practice, implying a complex ritualistic funerary behaviour that has never before been recognized for the Palaeolithic period.

  3. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization

    DEFF Research Database (Denmark)

    Stenderup, Karin; Rosada, Cecilia; Justesen, J;

    2004-01-01

    an in vivo assay for quantifying the bone forming capacity (BFC) and we compared the BFC of osteoblastic cells obtained from young and old donors. Osteoblasts were obtained from human bone marrow stromal cell cultures and implanted subcutaneously in immuno-deficient mice (NOD/LtSz- Prkdc(scid)). After 8...... weeks, the implants were removed and embedded un-decalcified in methyl methacrylate (MMA). Sections were stained histochemically with Goldner's Trichrome stain and immuno-histochemically using human-specific antibodies against known osteogenic markers. Implanted human marrow stromal cells (hMSC) were...... able to form bone in vivo. The donor origin of bone was verified using several human-specific antibodies. Dose-response experiments demonstrated that 5 x 10(5) hMSC per implant gave the maximal bone formation after 8 weeks. No difference in BFC was observed between cells obtained from young (24...

  4. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals.

    Science.gov (United States)

    Mondy, Kristin; Yarasheski, Kevin; Powderly, William G; Whyte, Michael; Claxton, Sherry; DeMarco, Debra; Hoffmann, Mary; Tebas, Pablo

    2003-02-15

    The underlying mechanisms of several bone disorders in human immunodeficiency virus (HIV)-infected persons and any relation to antiretroviral therapy have yet to be defined. A longitudinal study was conducted to estimate the prevalence of osteopenia or osteoporosis in HIV-infected persons; to assess bone mineralization, metabolism, and histomorphometry over time; and to evaluate predisposing factors. A total of 128 patients enrolled the study, and 93 were observed for 72 weeks. "Classic" risk factors (low body mass index, history of weight loss, steroid use, and smoking) for low bone mineral density (BMD) and duration of HIV infection were strongly associated with osteopenia. There was a weak association between low BMD and receipt of treatment with protease inhibitors; this association disappeared after controlling for the above factors. Markers of bone turnover tended to be elevated in the whole cohort but were not associated with low BMD. BMD increased slightly during follow-up. Traditional risk factors and advanced HIV infection play a more significant pathogenic role in the development of osteopenia and osteoporosis associated with HIV infection than do treatment-associated factors.

  5. Survey of radiosensitivity in a variety of human cell strains

    Energy Technology Data Exchange (ETDEWEB)

    Arlett, C.F.; Harcourt, S.A.

    1980-03-01

    Gamma-ray sensitivity for cell killing was assayed in 54 human cell strains, including some derived from individuals suffering from certain hereditary diseases. The overall range of Do values in this study was 38 to 180 rads, indicating a considerable range of variability in humans. The normal sensitivity was described by a range of Do values of 97 to 180 rads. All ten ataxia telangiectasia cell strains tested proved radiosensitive and gave a mean Do value of 57 +- 15 (S.E.) rads, and these represent the most radiosensitive human skin fibroblasts currently available. Representative cell strains from familial retinoblastoma, Fanconi's anemia, and Hutchinson-Gilford progeria occupied positions of intermediate sensitivity, as did one of two ataxia telangiectasia heterozygotes. Six xeroderma pigmentosum cell strains together with two Cockayne's syndrome cell strains (all known to be sensitive to ultraviolet light) fell into the normal range, indicating an absence of cross-sensitivity between ultraviolet light and gamma-irradiation.

  6. Subchondral bone density distribution in the human femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)

    2012-06-15

    This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)

  7. A Crust-based Method of Reconstructing Human Bone

    Institute of Scientific and Technical Information of China (English)

    MA Shu-chao; LIU Yi

    2014-01-01

    We present a crust-based procedure for modeling human being’s bone, which is based on voronoi diagram and its dual, Delaunay triangulation. In three-dimensional space, the crust algorithm can generate a 3D-model using a set of sample points. The purposes of this paper is to extract precise contour from CT series, then refer to these contours as sample points, and then apply the crust algorithm to these sample points to get three dimensional mesh.

  8. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  9. Osteocyte apoptosis and absence of bone remodeling in human auditory ossicles and scleral ossicles of lower vertebrates: a mere coincidence or linked processes?

    Science.gov (United States)

    Palumbo, Carla; Cavani, Francesco; Sena, Paola; Benincasa, Marta; Ferretti, Marzia

    2012-03-01

    Considering the pivotal role as bone mechanosensors ascribed to osteocytes in bone adaptation to mechanical strains, the present study analyzed whether a correlation exists between osteocyte apoptosis and bone remodeling in peculiar bones, such as human auditory ossicles and scleral ossicles of lower vertebrates, which have been shown to undergo substantial osteocyte death and trivial or no bone turnover after cessation of growth. The investigation was performed with a morphological approach under LM (by means of an in situ end-labeling technique) and TEM. The results show that a large amount of osteocyte apoptosis takes place in both auditory and scleral ossicles after they reach their final size. Additionally, no morphological signs of bone remodeling were observed. These facts suggest that (1) bone remodeling is not necessarily triggered by osteocyte death, at least in these ossicles, and (2) bone remodeling does not need to mechanically adapt auditory and scleral ossicles since they appear to be continuously submitted to stereotyped stresses and strains; on the contrary, during the resorption phase, bone remodeling might severely impair the mechanical resistance of extremely small bony segments. Thus, osteocyte apoptosis could represent a programmed process devoted to make stable, when needed, bone structure and mechanical resistance.

  10. Comparison of Human Hematopoietic Reconstitution in Different Strains of Immunodeficient Mice.

    Science.gov (United States)

    Beyer, Ashley I; Muench, Marcus O

    2017-01-15

    Immunodeficient mice play a critical role in hematology research as in vivo models of hematopoiesis and immunology. Multiple strains have been developed, but hematopoietic stem cell engraftment and immune reconstitution have not been methodically compared among them. Four mouse strains were transplanted with human fetal bone marrow or adult peripheral blood CD34(+) cells: NSG, NSG-3GS, hSCF-Tg-NSG, and hSIRPα-DKO. Hematopoietic engraftment in the bone marrow, blood, spleen, and liver was evaluated by flow cytometry 12 weeks after transplant. The highest levels of human engraftment were observed in the liver, spleen, and bone marrow, whereas peripheral blood cell chimerism was notably less. The highest levels of tissue engraftment were in hSCF-Tg-NSG mice, but NSG mice exhibited the highest blood leukocyte engraftment. hSCF-Tg-NSG mice also exhibited the highest levels of CD133(+)CD34(++) stem cells. hSIRPα-DKO engrafted poorly and exhibited poor breeding. Myelopoiesis was greatest in NSG-3GS mice, followed by hSCF-Tg-NSG and NSG mice, whereas B cell engraftment exhibited the opposite pattern. Engraftment of CD3(+) T cells, CD3(+)CD161(+) T cells, and CD3(-)CD56(+) NK cells was greatest in NSG-3GS mice. Mast cell engraftment was highest in hSCF-Tg-NSG mice, but was also elevated in spleen and livers of NSG-3GS mice. Basophils were most abundant in NSG-3GS mice. Overall, hSCF-Tg-NSG mice are the best recipient mice for studies requiring high levels of human hematopoiesis, stem cell engraftment, and an intermediate level of myelopoiesis, whereas NSG and NSG-3GS mice offer select advantages in the engraftment of certain blood cell lineages.

  11. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    Denmark, DenmarkAbstractReplacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standard for bone replacement. However, there are several disadvantages such as donor site...... from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants...... with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: DBM; DBM/CB with ratio of 1/3; DBM/allograft with ratio of 1/3; or allograft (Gold standard), respectively. Standardised surgical procedure was used1. At sacrifice, 6 weeks after surgery, both distal femurs were harvested...

  12. Bone formation induced in mouse thigh by cultured human cells.

    Science.gov (United States)

    Anderson, H C; Coulter, P R

    1967-04-01

    Cultured FL human amnion cells injected intramuscularly into cortisone-conditioned mice proliferate to form discrete nodules which become surrounded by fibroblasts. Within 12 days, fibroblastic zones differentiate into cartilage which calcifies to form bone. Experiments were conducted to test the hypothesis that FL cells behave as an inductor of bone formation. In the electron microscope, FL cells were readily distinguished from surrounding fibroblasts. Transitional forms between the two cell types were not recognized. Stains for acid mucopolysaccharides emphasized the sharp boundary between metachromatic fibroblastic and cartilaginous zones and nonmetachromatic FL cells. (35)S was taken up preferentially by fibroblasts and chondrocytes and then deposited extracellularly in a manner suggesting active secretion of sulfated mucopolysaccharides. FL cells showed negligible (35)S utilization and secretion. FL cells, labeled in vitro with thymidine-(3)H, were injected and followed radioautographically, during bone formation. Nuclear label of injected FL cells did not appear in adjacent fibroblasts in quantities sufficient to indicate origin of the latter from FL cells. The minimal fibroblast nuclear labeling seen may represent reutilization of label from necrotic FL cells. It is suggested that FL cells injected into the mouse thigh induced cartilage and bone formation by host fibroblasts.

  13. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    Science.gov (United States)

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailab...

  14. Tissue engineered humanized bone supports human hematopoiesis in vivo.

    Science.gov (United States)

    Holzapfel, Boris M; Hutmacher, Dietmar W; Nowlan, Bianca; Barbier, Valerie; Thibaudeau, Laure; Theodoropoulos, Christina; Hooper, John D; Loessner, Daniela; Clements, Judith A; Russell, Pamela J; Pettit, Allison R; Winkler, Ingrid G; Levesque, Jean-Pierre

    2015-08-01

    Advances in tissue-engineering have resulted in a versatile tool-box to specifically design a tailored microenvironment for hematopoietic stem cells (HSCs) in order to study diseases that develop within this setting. However, most current in vivo models fail to recapitulate the biological processes seen in humans. Here we describe a highly reproducible method to engineer humanized bone constructs that are able to recapitulate the morphological features and biological functions of the HSC niches. Ectopic implantation of biodegradable composite scaffolds cultured for 4 weeks with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone organ including a large number of human mesenchymal cells which were shown to be metabolically active and capable of establishing a humanized microenvironment supportive of the homing and maintenance of human HSCs. A syngeneic mouse-to-mouse transplantation assay was used to prove the functionality of the tissue-engineered ossicles. We predict that the ability to tissue engineer a morphologically intact and functional large-volume bone organ with a humanized bone marrow compartment will help to further elucidate physiological or pathological interactions between human HSCs and their native niches. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Evaluation of healthy muscle tissue by strain and shear wave elastography – Dependency on depth and ROI position in relation to underlying bone

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Carlsen, Jonathan Frederik; Christiansen, Iben Riishede

    2016-01-01

    and methods: Ten healthy volunteers (five males and five females) had their biceps brachii, gastrocnemius, and quadriceps muscle examined with strain- and shear wave elastography at three different depths and in regions located above bone and beside bone. Strain ratios were averaged from cine-loops of 10 s...

  16. Elastic Comparison Between Human and Bovine Femural Bone

    Directory of Open Access Journals (Sweden)

    Mohamed S. Gaith

    2012-12-01

    Full Text Available In this study, the elastic stiffness and the degree of anisotropy will be compared for the femur human and bovine bones are presented. A scale for measuring the overall elastic stiffness of the bone at different locations is introduced and its correlation with the calculated bulk modulus is analyzed. Based on constructing orthonormal tensor basis elements using the form-invariant expressions, the elastic stiffness for orthotropic system materials is decomposed into two parts; isotropic (two terms and anisotropic parts. The overall elastic stiffness is calculated and found to be directly proportional to bulk modulus. A scale quantitative comparison of the contribution of the anisotropy to the elastic stiffness and to measure the degree of anisotropy in an anisotropic material is proposed using the Norm Ratio Criteria (NRC. It is found that bovine femure plexiform has the largest overall elastic stiffness and bovine has the most isotropic (least anisotropic symmetry.

  17. The effect of latency on bone lengthening force and bone mineralization: an investigation using strain gauge mounted on internal distractor device

    Directory of Open Access Journals (Sweden)

    Wang Jue

    2006-03-01

    Full Text Available Abstract Background The purpose of this study was to investigate the effect of latency on the development of bone lengthening force and bone mineralization during mandible distraction osteogenesis. Methods Distraction tensions were investigated at different latency period in 36 rabbits using internal unilateral distractor. Strain gauges were prepared and attached to the distractor to directly assess the level of distraction tension during mandible lengthening. The tensile force environment of the mandible of rabbit during distraction was evaluated through in vivo experiments using two gauges. The animals were divided into 3 groups each containing 12 rabbits. Latency periods of 0, 4 and 7 days respectively were observed prior to beginning distraction. The distraction protocol consisted of a lengthening rate of 1 mm once daily for 8 days, followed by a consolidation phase of 2 weeks after which the animals were killed. Biopsies specimens were taken from the distracted area at the end of the distraction period. A non-distracted area of the mandible bone served as control. The specimens were analyzed by scanning electron microscopy to assess the ultrastructural pattern, and the bone mineralization. Results The resting tension acting on the distraction gap increases through distraction. The 7-day latency groups exhibit higher tension then those of 0-day and 4-days latency groups. Quantitative energy dispersive spectral analysis confirmed that immediate distractions were associated with lower calcium and phosphate atomic weight ratio. Conclusion the latency periods could affect the bone lengthening tension and the bone mineralization process.

  18. Human Streptococcus agalactiae strains in aquatic mammals and fish

    Directory of Open Access Journals (Sweden)

    Delannoy Christian MJ

    2013-02-01

    Full Text Available Abstract Background In humans, Streptococcus agalactiae or group B streptococcus (GBS is a frequent coloniser of the rectovaginal tract, a major cause of neonatal infectious disease and an emerging cause of disease in non-pregnant adults. In addition, Streptococcus agalactiae causes invasive disease in fish, compromising food security and posing a zoonotic hazard. We studied the molecular epidemiology of S. agalactiae in fish and other aquatic species to assess potential for pathogen transmission between aquatic species and humans. Methods Isolates from fish (n = 26, seals (n = 6, a dolphin and a frog were characterized by pulsed-field gel electrophoresis, multilocus sequence typing and standardized 3-set genotyping, i.e. molecular serotyping and profiling of surface protein genes and mobile genetic elements. Results Four subpopulations of S. agalactiae were identified among aquatic isolates. Sequence type (ST 283 serotype III-4 and its novel single locus variant ST491 were detected in fish from Southeast Asia and shared a 3-set genotype identical to that of an emerging ST283 clone associated with invasive disease of adult humans in Asia. The human pathogenic strain ST7 serotype Ia was also detected in fish from Asia. ST23 serotype Ia, a subpopulation that is normally associated with human carriage, was found in all grey seals, suggesting that human effluent may contribute to microbial pollution of surface water and exposure of sea mammals to human pathogens. The final subpopulation consisted of non-haemolytic ST260 and ST261 serotype Ib isolates, which belong to a fish-associated clonal complex that has never been reported from humans. Conclusions The apparent association of the four subpopulations of S. agalactiae with specific groups of host species suggests that some strains of aquatic S. agalactiae may present a zoonotic or anthroponotic hazard. Furthermore, it provides a rational framework for exploration of pathogenesis and host

  19. Evaluation of Strain Distribution in Bone around Implant in Treatment Design of Overdentures Using Computer and Modeling of Finite Elements

    Directory of Open Access Journals (Sweden)

    Masoumeh Khoshhal

    2015-12-01

    Full Text Available Introduction: Introduction: Few studies have investigated the distribution of stress around implants. In this study the distribution of stress in bones around implants was investigated in five overdenture (OD treatment designs including OD-1, OD-2, OD-3, OD-4 and OD-5. Materials and methods: The Catia modeling software was used in order to simulate the tooth/implant model and bone. First, the borders of cancellous and cortical bone in each section of the CT images were attained by Photoshop software. Then, modeling softwares SolidWorks and NUMBER were applied to make the final three-dimensional model of jaw. Finally, the amount of stress on the surface of bone/implant was studied by means of stress analysis software (Ansys v11.0. Results: Protrusive movements of implants B and D in OD-1 showed the highest amount of strain, 2435 εµ. Also, high amounts of strain, 1668 and 1557 εµwere observed in OD-1 and OD-2 designs in lateral movements respectively. Conclusion: The bottom line is that no forces to the extent of destruction based on the Ferost model were found for these designs. The highest amount of strain occurred in OD-1 design, which is held in mild overload window. Moreover, the amounts of strain in the rest of designs investigated were in adaptive window.

  20. Evaluation of Strain Distribution in Bone around Implant in Treatment Design of Overdentures Using Computer and Modeling of Finite Elements

    Directory of Open Access Journals (Sweden)

    Masoumeh Khoshhal

    2016-03-01

    Full Text Available Introduction: Introduction: Few studies have investigated the distribution of stress around implants. In this study the distribution of stress in bones around implants was investigated in five overdenture (OD treatment designs including OD-1, OD-2, OD-3, OD-4 and OD-5. Materials and methods: The Catia modeling software was used in order to simulate the tooth/implant model and bone. First, the borders of cancellous and cortical bone in each section of the CT images were attained by Photoshop software. Then, modeling softwares SolidWorks and NUMBER were applied to make the final three-dimensional model of jaw. Finally, the amount of stress on the surface of bone/implant was studied by means of stress analysis software (Ansys v11.0. Results: Protrusive movements of implants B and D in OD-1 showed the highest amount of strain, 2435 εµ. Also, high amounts of strain, 1668 and 1557 εµwere observed in OD-1 and OD-2 designs in lateral movements respectively. Conclusion: The bottom line is that no forces to the extent of destruction based on the Ferost model were found for these designs. The highest amount of strain occurred in OD-1 design, which is held in mild overload window. Moreover, the amounts of strain in the rest of designs investigated were in adaptive window.

  1. An atypical Clostridium strain related to the Clostridium botulinum group III strain isolated from a human blood culture.

    Science.gov (United States)

    Bouvet, Philippe; Ruimy, Raymond; Bouchier, Christiane; Faucher, Nathalie; Mazuet, Christelle; Popoff, Michel R

    2014-01-01

    A nontoxigenic strain isolated from a fatal human case of bacterial sepsis was identified as a Clostridium strain from Clostridium botulinum group III, based on the phenotypic characters and 16S rRNA gene sequence, and was found to be related to the mosaic C. botulinum D/C strain according to a multilocus sequence analysis of 5 housekeeping genes.

  2. Comparative study on seeding methods of human bone marrow stromal cells in bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    齐欣; 刘建国; 常颖; 徐莘香

    2004-01-01

    Background In general the traditional static seeding method has its limitation while the dynamic seeding method reveals its advantages over traditional static method. We compared static and dynamic seeding method for human bone marrow stromal cells (hBMSCs) in bone tissue engineering.Methods DNA assay was used for detecting the maximal initial seeding concentration for static seeding. Dynamic and static seeding methods were compared, when scaffolds were loaded with hBMSCs at this maximal initial cell seeding concentration. Histology and scanning electron microscope (SEM) were examined to evaluate the distribution of cells inside the constructs. Markers encoding osteogenic genes were measured by fluorescent RT-PCR. The protocol for dynamic seeding of hBMSCs was also investigated.Results DNA assay showed that the static maximal initial seeding concentration was lower than that in dynamic seeding. Histology and SEM showed even distribution and spread of cells in the dynamically seeded constructs, while their statically seeded counterparts showed cell aggregation.Fluorescent RT-PCR again showed stronger osteogenic potential of dynamically seeded constructs.Conclusion dynamic seeding of hBMSCs is a promising technique in bone tissue engineering.

  3. Evaluation of dengue virus strains for human challenge studies.

    Science.gov (United States)

    Mammen, M P; Lyons, A; Innis, B L; Sun, W; McKinney, D; Chung, R C Y; Eckels, K H; Putnak, R; Kanesa-thasan, N; Scherer, J M; Statler, J; Asher, L V; Thomas, S J; Vaughn, D W

    2014-03-14

    Discordance between the measured levels of dengue virus neutralizing antibody and clinical outcomes in the first-ever efficacy study of a dengue tetravalent vaccine (Lancet, Nov 2012) suggests a need to re-evaluate the process of pre-screening dengue vaccine candidates to better predict clinical benefit prior to large-scale vaccine trials. In the absence of a reliable animal model and established correlates of protection for dengue, a human dengue virus challenge model may provide an approach to down-select vaccine candidates based on their ability to reduce risk of illness following dengue virus challenge. We report here the challenge of flavivirus-naïve adults with cell culture-passaged dengue viruses (DENV) in a controlled setting that resulted in uncomplicated dengue fever (DF). This sets the stage for proof-of-concept efficacy studies that allow the evaluation of dengue vaccine candidates in healthy adult volunteers using qualified DENV challenge strains well before they reach field efficacy trials involving children. Fifteen flavivirus-naïve adult volunteers received 1 of 7 DENV challenge strains (n=12) or placebo (n=3). Of the twelve volunteers who received challenge strains, five (two DENV-1 45AZ5 and three DENV-3 CH53489 cl24/28 recipients) developed DF, prospectively defined as ≥2 typical symptoms, ≥48h of sustained fever (>100.4°F) and concurrent viremia. Based on our study and historical data, we conclude that the DENV-1 and DENV-3 strains can be advanced as human challenge strains. Both of the DENV-2 strains and one DENV-4 strain failed to meet the protocol case definition of DF. The other two DENV-4 strains require additional testing as the illness approximated but did not satisfy the case definition of DF. Three volunteers exhibited effusions (1 pleural/ascites, 2 pericardial) and 1 volunteer exhibited features of dengue (rash, lymphadenopathy, neutropenia and thrombocytopenia), though in the absence of fever and symptoms. The occurrence of

  4. Development of a Human Cranial Bone Surrogate for Impact Studies.

    Science.gov (United States)

    Roberts, Jack C; Merkle, Andrew C; Carneal, Catherine M; Voo, Liming M; Johannes, Matthew S; Paulson, Jeff M; Tankard, Sara; Uy, O Manny

    2013-01-01

    In order to replicate the fracture behavior of the intact human skull under impact it becomes necessary to develop a material having the mechanical properties of cranial bone. The most important properties to replicate in a surrogate human skull were found to be the fracture toughness and tensile strength of the cranial tables as well as the bending strength of the three-layer (inner table-diplöe-outer table) architecture of the human skull. The materials selected to represent the surrogate cranial tables consisted of two different epoxy resins systems with random milled glass fiber to enhance the strength and stiffness and the materials to represent the surrogate diplöe consisted of three low density foams. Forty-one three-point bending fracture toughness tests were performed on nine material combinations. The materials that best represented the fracture toughness of cranial tables were then selected and formed into tensile samples and tested. These materials were then used with the two surrogate diplöe foam materials to create the three-layer surrogate cranial bone samples for three-point bending tests. Drop tower tests were performed on flat samples created from these materials and the fracture patterns were very similar to the linear fractures in pendulum impacts of intact human skulls, previously reported in the literature. The surrogate cranial tables had the quasi-static fracture toughness and tensile strength of 2.5 MPa√ m and 53 ± 4.9 MPa, respectively, while the same properties of human compact bone were 3.1 ± 1.8 MPa√ m and 68 ± 18 MPa, respectively. The cranial surrogate had a quasi-static bending strength of 68 ± 5.7 MPa, while that of cranial bone was 82 ± 26 MPa. This material/design is currently being used to construct spherical shell samples for drop tower and ballistic tests.

  5. Can experimental data in humans verify the finite element-based bone remodeling algorithm?

    DEFF Research Database (Denmark)

    Wong, C.; Gehrchen, P.M.; Kiaer, T.

    2008-01-01

    STUDY DESIGN: A finite element analysis-based bone remodeling study in human was conducted in the lumbar spine operated on with pedicle screws. Bone remodeling results were compared to prospective experimental bone mineral content data of patients operated on with pedicle screws. OBJECTIVE......: The validity of 2 bone remodeling algorithms was evaluated by comparing against prospective bone mineral content measurements. Also, the potential stress shielding effect was examined using the 2 bone remodeling algorithms and the experimental bone mineral data. SUMMARY OF BACKGROUND DATA: In previous studies......, in the human spine, the bone remodeling algorithms have neither been evaluated experimentally nor been examined by comparing to unsystematic experimental data. METHODS: The site-specific and nonsite-specific iterative bone remodeling algorithms were applied to a finite element model of the lumbar spine...

  6. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  7. SYNCHROTRON RADIATION XRF MICROPROBE STUDY OF HUMAN BONE TUMOR SLICE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described Using the bovine liver as the standard reference.the minimum detection limit(MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe.The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated The experimental result relation to the clinical medicine was also discussed.

  8. Phylogenetic analysis of Escherichia coli strains isolated from human samples

    Directory of Open Access Journals (Sweden)

    Abdollah Derakhshandeh

    2013-12-01

    Full Text Available Escherichia coli (E. coli is a normal inhabitant of the gastrointestinal tract of vertebrates, including humans. Phylogenetic analysis has shown that E. coli is composed of four main phylogenetic groups (A, B1, B2 and D. Group A and B1 are generally associated with commensals, whereas group B2 is associated with extra-intestinal pathotypes. Most enteropathogenic isolates, however, are assigned to group D. In the present study, a total of 102 E. coli strains, isolated from human samples, were used. Phylogenetic grouping was done based on the Clermont triplex PCR method using primers targeted at three genetic markers, chuA, yjaA and TspE4.C2. Group A contained the majority of the collected isolates (69 isolates, 67.64%, followed by group B2 (18 isolates, 17.64% and D (15 isolates, 14.7% and no strains were found to belong to group B1. The distribution of phylogenetic groups in our study suggests that although the majority of strains were commensals, the prevalence of enteropathogenic and extra-intestinal pathotypes was noteworthy. Therefore, the role of E. coli in human infections including diarrhea, urinary tract infections and meningitis should be considered.

  9. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus.

    Science.gov (United States)

    Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2016-01-01

    This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations.

  10. A re-evaluation of the premaxillary bone in humans.

    Science.gov (United States)

    Barteczko, K; Jacob, M

    2004-03-01

    The discovery of the premaxillary bone (os incisivum, os intermaxillare or premaxilla) in humans has been attributed to Goethe, and it has also been named os Goethei. However, Broussonet (1779) and Vicq d'Azyr (1780) came to the same result with different methods. The first anatomists described this medial part of the upper jaw as a separate bone in the vertebrate skull, and, as we know, Coiter (1573) was the first to present an illustration of the sutura incisiva in the human. This fact, and furthermore its development from three parts:-(1) the alveolar part with the facial process, (2) the palatine process, and (3) the processus Stenonianus-can no longer be found in modern textbooks of developmental biology. At the end of the nineteenth and in the early twentieth century a vehement discussion focused on the number and position of its ossification centers and its sutures. Therefore, it is hard to believe that the elaborate work of the old embryologists is ignored and that the existence of a premaxillary bone in humans is even denied by many authors. Therefore this re-evaluation was done to demonstrate the early development of the premaxillary bone using the reconstructions of Felber (1919), Jarmer (1922) and data from our own observations on SEM micrographs and serial sections from 16 mm embryo to 68 mm fetus. Ossification of a separate premaxilla was first observed in a 16 mm embryo. We agree with Jarmer (1922), Peter (1924), and Shepherd and McCarthy (1955) that it develops from three anlagen, which are, however, not fully separated. The predominant sutura incisiva (rudimentarily seen on the facial side in a prematurely born child) and a shorter sutura intraincisiva argue in this sense. The later growth of this bone and its processes establish an important structure in the middle of the facial skull. Its architecture fits well with the functional test of others. We also focused on the relation of the developing premaxilla to the forming nasal septum moving from

  11. Muscle fascicle strains in human gastrocnemius during backward downhill walking.

    Science.gov (United States)

    Hoffman, B W; Cresswell, A G; Carroll, T J; Lichtwark, G A

    2014-06-01

    Extensive muscle damage can be induced in isolated muscle preparations by performing a small number of stretches during muscle activation. While typically these fiber strains are large and occur over long lengths, the extent of exercise-induced muscle damage (EIMD) observed in humans is normally less even when multiple high-force lengthening actions are performed. This apparent discrepancy may be due to differences in muscle fiber and tendon dynamics in vivo; however, muscle and tendon strains have not been quantified during muscle-damaging exercise in humans. Ultrasound and an infrared motion analysis system were used to measure medial gastrocnemius fascicle length and lower limb kinematics while humans walked backward, downhill for 1 h (inducing muscle damage), and while they walked briefly forward on the flat (inducing no damage). Supramaximal tibial nerve stimulation, ultrasound, and an isokinetic dynamometer were used to quantify the fascicle length-torque relationship pre- and 2 h postexercise. Torque decreased ~23%, and optimal fascicle length shifted rightward ~10%, indicating that EIMD occurred during the damage protocol even though medial gastrocnemius fascicle stretch amplitude was relatively small (~18% of optimal fascicle length) and occurred predominantly within the ascending limb and plateau region of the length-torque curve. Furthermore, tendon contribution to overall muscle-tendon unit stretch was ~91%. The data suggest the compliant tendon plays a role in attenuating muscle fascicle strain during backward walking in humans, thus minimizing the extent of EIMD. As such, in situ or in vitro mechanisms of muscle damage may not be applicable to EIMD of the human gastrocnemius muscle. Copyright © 2014 the American Physiological Society.

  12. Bone regenerative properties of rat, goat and human platelet-rich plasma.

    NARCIS (Netherlands)

    Plachokova, A.S.; Dolder, J. van den; Beucken, J.J.J.P. van den; Jansen, J.A.

    2009-01-01

    To explore the reported contradictory osteogenic capacity of platelet-rich plasma (PRP), the aim of the study was to examine and compare the bone regenerative effect of: PRPs of different species (rat, goat, human); human bone graft (HB) vs. HB combined with human PRP (HB+hPRP); and HB+hPRP vs. synt

  13. Can experimental data in humans verify the finite element-based bone remodeling algorithm?

    DEFF Research Database (Denmark)

    Wong, Christian; Gehrchen, P Martin; Kiaer, Thomas

    2008-01-01

    A finite element analysis-based bone remodeling study in human was conducted in the lumbar spine operated on with pedicle screws. Bone remodeling results were compared to prospective experimental bone mineral content data of patients operated on with pedicle screws....

  14. Construction of human telomerase reverse transcriptase-immortalized rat bone marrow mesenchemal stem cell strains%构建人端粒酶反转录酶修饰的永生化大鼠骨髓间充质干细胞株

    Institute of Scientific and Technical Information of China (English)

    刘慧萍; 钟晓龙; 赵晴; 黄文起; 安珂

    2015-01-01

    BACKGROUND:Because of convenient source, multi-lineage differentiation and low immunogenicity, bone marrow mesenchymal stem cels are the ideal cel type to serve as vectors of transgenic cels in pain management. However, the replicative senescence and smal amount of cels obtained from the bone marrow restrict the application of bone marrow mesenchymal stem cels in pain research. OBJECTIVE:To construct human telomerase reverse transcriptase (hTERT)-immortalized rat bone marrow mesenchymal stem cels as transgenic celular vectors for pain therapy. METHODS:Bone marrow mesenchymal stem cels were obtained from whole rat bone marrow, and then transfected with a lentivirus containing the hTERT (pLV-Puro-EF1α-hTERT) folowed by puromycin selection. hTERT expression and telomerase activity in these transfected cels were determined by RT-PCR and TRAP. Morphological changes, capacity of cel growth and multi-lineage differentiation, chromosome karyotype and tumorigenicity were observed in vitro. Moreover, the expression of cel surface molecule, Nestin, MHC-I and MHC-II in transfected cels were also detected by flow cytometry and immunocytochemistry. RESULTS AND CONCLUSION: The bone marrow mesenchymal stem cels geneticaly modified by hTERT could be cultured and passaged through 30 generations in vitro. Compared to the primary and negative transfected cels, the hTERT-modified bone marrow mesenchymal stem cels showed higher expression of hTERT mRNA, telomerase activity and cel proliferation. Most of transfected cels stayed at G2/M and S stages. The proliferation index of the transfected cels were increased dramaticaly. The positive rates of CD29, CD44 and CD90 were over 70%, but the positive rates of CD34 and CD45 were less than 5%. Transfected cels were positive for Nestin in the cytoplasm, but negative for MHC-1 and MHC-11. In addition, this cel line continued to exhibit the characteristics of fibroblastic bone marrow mesenchymal stem cels, including phenotype, differentiation

  15. Age variations in the properties of human tibial trabecular bone and cartilage

    DEFF Research Database (Denmark)

    Ding, Ming

    2000-01-01

    ) to investigate the age-related and osteoarthrosis-related changes in the mechanical properties of the human tibial cartilage-bone complex; and 3) to evaluate mutual associations among various properties. Normal specimens from human autopsy proximal tibiae were used for investigation of age variations...... in the properties of trabecular bone and the cartilage-bone complex, and osteoarthrotic specimens were used for the investigation of changes in the mechanical properties of the cartilage-bone complex induced by this disease process. The mechanical properties and physical/compositional properties of trabecular bone...... is parallel to the longitudinal loading axis of the tibia. The mechanical properties of the normal cartilage and bone vary with age and respond simultaneously to mechanical loading. Both cartilage and bone in early-stage OA are mechanically inferior to normal, and OA cartilage and bone have lost their unit...

  16. The relevance of mouse models for investigating age-related bone loss in humans.

    Science.gov (United States)

    Jilka, Robert L

    2013-10-01

    Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized.

  17. Low sensitivity of three-phase bone scintigraphy for the diagnosis of repetitive strain injury

    Directory of Open Access Journals (Sweden)

    Bárbara Juarez Amorim

    Full Text Available CONTEXT AND OBJECTIVE: The diagnosis of repetitive strain injury (RSI is subjective and solely based on clinical signs and physical examination. The aim of this paper was to assess the usefulness of three-phase bone scintigraphy (TPBS in diagnosing RSI. DESIGN AND SETTING: Prospective study at the Division of Nuclear Medicine, Department of Radiology, School of Medical Sciences, Universidade Estadual de Campinas (Unicamp. METHODS: Seventy-three patients (mean age 31.2 years; 47 males with clinical suspicion of RSI in the upper limbs were studied. A total of 127 joints with suspicion of RSI were studied. The shoulders, elbows and wrists were analyzed semi-quantitatively, using the shafts of the humeri and ulnae as references. The results were compared with a control group of 40 normal individuals. The patients’ signs and symptoms were used as the "gold standard" for calculating the probabilities. RESULTS: From visual analysis, abnormalities were observed in the flow phase for four joints, in the blood pool phase for 11 joints and in the delayed images for 26 joints. Visual analysis of the joints of the control group did not show any abnormalities. Semi-quantitative analysis showed that most of the patients’ joint ratios were normal. The exceptions were the wrists of patients with left-sided RSI (p = 0.0216. However, the sensitivity (9% and accuracy (41% were very low. CONCLUSION: TPBS with semi-quantitative analysis has very low sensitivity and accuracy in the detection of RSI abnormalities in the upper limbs.

  18. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  19. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    Science.gov (United States)

    Abrams, Steven A

    2006-11-01

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailability of calcium between infant formulas are unlikely to have long-term consequences. Long-term studies of the effects of infant feeding type on ultimate bone mass are needed. For now, the vitamin-replete breast-fed infant's rate of calcium accretion during the first year of life should be the standard targeted for infant formulas.

  20. Novel Bacteroides host strains for detection of human- and animal-specific bacteriophages in water.

    Science.gov (United States)

    Wicki, Melanie; Auckenthaler, Adrian; Felleisen, Richard; Tanner, Marcel; Baumgartner, Andreas

    2011-03-01

    Bacteriophages active against specific Bacteroides host strains were shown to be suitable for detection of human faecal pollution. However, the practical application of this finding is limited because some specific host strains were restricted to certain geographic regions. In this study, novel Bacteroides host strains were isolated that discriminate human and animal faecal pollution in Switzerland. Two strains specific for bacteriophages present in human faecal contamination and three strains specific for bacteriophages indicating animal faecal contamination were evaluated. Bacteriophages infecting human strains were exclusively found in human wastewater, whereas animal strains detected bacteriophages only in animal waste. The newly isolated host strains could be used to determine the source of surface and spring water faecal contamination in field situations. Applying the newly isolated host Bacteroides thetaiotaomicron ARABA 84 for detection of bacteriophages allowed the detection of human faecal contamination in spring water.

  1. Genetics of Bone Mineralization and Morphology in Inbred Mice: Analysis of the HcB/Dem Recombinant Congenic Strains

    Science.gov (United States)

    2005-04-01

    data for parameters with skewed distil- 3- PONT BEND MODULUS butions. Results of this analysis are summarized in Table 2. Ir TT . We used these data to...the pathogenesis of osteoporosis. I Bone Miner Res 9:739- [be murine strength is achieved. 743. 1002 YERSHOV ET AL. 16. Demant P, Hart AA 1986...Recombinant congenic strains--a 37. Linder E, Schork N 1994 Genetic dissection of complex traits. new tool for analyzing genetic traits determined by more than

  2. Microtomography of the human tooth-alveolar bone complex

    Science.gov (United States)

    Dalstra, Michel; Cattaneo, Paolo M.; Beckmann, Felix; Sakima, Maurício T.; Lemor, Carsten; Laursen, Morten G.; Melsen, Birte

    2006-08-01

    In this study the structure of the adult human dentoalveolar process is examined using conventional and synchrotron radiation-based microtomography (SRμCT). Mandibular and maxillary segments containing two to five adjacent teeth were harvested at autopsy from 49 adult donors. These segments were embedded in blocks of methylmetacrylate and scanned using a conventional table-top μCT-scanner at a pixel size and slice thickness of 35 μm. A few segments were also scanned at a synchrotron facility at an initial pixel size of 16.4 μm, which was binned by a factor 2 to result in an effective voxel size of almost 32.8 μm. The three-dimensional reconstructions revealed how intricately the teeth are supported by the alveolar bone. Furthermore, this support is highly inhomogeneous with respect to the buccal, mesial, lingual and distal quadrants. Reflecting their various degrees of mineralization, tissues like bone, dentine, enamel and cementum, could well be identified, especially in the scans made with SRμCT. Despite comparable voxel sizes, the reconstructed data-sets obtained with conventional μCT were less detailed and somewhat fuzzy in appearance compared to the data-sets of SRμCT. However, for quantification of macroscopical features like the thickness of the alveolar wall or the presence of dehiscences/fenestrations this seemed sufficient.

  3. Inner ear contribution to bone conduction hearing in the human.

    Science.gov (United States)

    Stenfelt, Stefan

    2015-11-01

    Bone conduction (BC) hearing relies on sound vibration transmission in the skull bone. Several clinical findings indicate that in the human, the skull vibration of the inner ear dominates the response for BC sound. Two phenomena transform the vibrations of the skull surrounding the inner ear to an excitation of the basilar membrane, (1) inertia of the inner ear fluid and (2) compression and expansion of the inner ear space. The relative importance of these two contributors were investigated using an impedance lumped element model. By dividing the motion of the inner ear boundary in common and differential motion it was found that the common motion dominated at frequencies below 7 kHz but above this frequency differential motion was greatest. When these motions were used to excite the model it was found that for the normal ear, the fluid inertia response was up to 20 dB greater than the compression response. This changed in the pathological ear where, for example, otosclerosis of the stapes depressed the fluid inertia response and improved the compression response so that inner ear compression dominated BC hearing at frequencies above 400 Hz. The model was also able to predict experimental and clinical findings of BC sensitivity in the literature, for example the so called Carhart notch in otosclerosis, increased BC sensitivity in superior semicircular canal dehiscence, and altered BC sensitivity following a vestibular fenestration and RW atresia.

  4. Human foot bones from Klasies River main site, South Africa.

    Science.gov (United States)

    Rightmire, G Philip; Deacon, H J; Schwartz, Jeffrey H; Tattersall, Ian

    2006-01-01

    The caves at Klasies River contain abundant archaeological evidence relating to human evolution in the late Pleistocene of southern Africa. Along with Middle Stone Age artifacts, animal bones, and other food waste, there are hominin cranial fragments, mandibles with teeth, and a few postcranial remains. Three foot bones can now be added to this inventory. An adult first metatarsal is similar in size and discrete anatomical features to those from Holocene burials in the Cape Province. A complete and well-preserved second metatarsal is especially long and heavy at midshaft in comparison to all Holocene and more recent South African homologues. A large fifth metatarsal is highly distinctive in its morphology. In overall size, these pedal elements resemble specimens from late Pleistocene sites in western Asia, but there are some differences in proportions. The fossils support earlier suggestions concerning a relatively high level of sexual dimorphism in the African Middle Stone Age population. Squatting facets on the two lateral metatarsals appear to indicate a high frequency of kneeling among members of this group. The new postcranial material also underlines the fact that the morphology of particular skeletal elements of some of the 100,000-year-old Klasies River individuals falls outside the range of modern variation.

  5. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  6. Scanning electron microscopy of human cortical bone failure surfaces.

    Science.gov (United States)

    Braidotti, P; Branca, F P; Stagni, L

    1997-02-01

    Undecalcified samples extracted from human femoral shafts are fractured by bending and the fracture surfaces are examined with a scanning electron microscope (SEM). The investigation is performed on both dry and wet (hydrated with a saline solution) specimens. SEM micrographs show patterns in many respects similar to those observed in fractography studies of laminated fiber-reinforced synthetic composites. In particular, dry and wet samples behave like brittle and ductile matrix laminates, respectively. An analysis carried out on the basis of the mechanisms that dominate the fracture process of laminates shows that a reasonable cortical bone model is that of a laminated composite material whose matrix is composed of extracellular noncollagenous calcified proteins, and the reinforcement is constituted by the calcified collagen fiber system.

  7. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  8. A physical mechanism for coupling bone resorption and formation in adult human bone

    DEFF Research Database (Denmark)

    Andersen, Thomas Levin; Sondergaard, Teis Esben; Skorzynska, Katarzyna Ewa

    2009-01-01

    During skeletal remodeling, pre-osteoclasts and pre-osteoblasts are targeted to critical sites of the bone to resorb and reconstruct bone matrix, respectively. Coordination of site-specific recruitment of these two cell types is a prerequisite to maintain the specific architecture of each bone...... within strict limits throughout adult life. Here, we determined that the bone marrow microanatomy adjacent to remodeling areas is a central player in this process. By using histomorphometry and multiple immunostainings, we demonstrated in biopsies exhibiting coupled bone resorption and formation...... that osteoclasts and osteoblasts on the bone surface were always covered by a canopy of flat cells expressing osteoblast markers. In contrast, in biopsies in which this canopy was disrupted, bone formation was deficient. Three-dimensional visualizations revealed that this canopy covered the entire remodeling site...

  9. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    Science.gov (United States)

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  10. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    Science.gov (United States)

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  11. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    Allogenic bone graft has been considered the gold standard in connection with bone graft material in revision joint arthroplasty. However, the lack of osteogenic potential and the risk of disease transmission are clinical challenges. The use of osteoinductive materials, such as demineralized bone...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... (gold standard), respectively. A standardized surgical procedure was used. At sacrifice 6 weeks after implantation, both distal femurs were harvested. The implant fixation was evaluated by mechanical push-out testing to test shear mechanical properties between implant and the host bone...

  12. Concomitant Human Infections with 2 Cowpox Virus Strains in Related Cases, France, 2011

    Science.gov (United States)

    Ducournau, Corinne; Ferrier-Rembert, Audrey; Ferraris, Olivier; Joffre, Aurélie; Favier, Anne-Laure; Flusin, Olivier; Van Cauteren, Dieter; Kecir, Kaci; Auburtin, Brigitte; Védy, Serge; Bessaud, Maël

    2013-01-01

    We investigated 4 related human cases of cowpox virus infection reported in France during 2011. Three patients were infected by the same strain, probably transmitted by imported pet rats, and the fourth patient was infected by another strain. The 2 strains were genetically related to viruses previously isolated from humans with cowpox infection in Europe. PMID:24274113

  13. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.

    Science.gov (United States)

    Wang, Ping; Liu, Xian; Zhao, Liang; Weir, Michael D; Sun, Jirun; Chen, Wenchuan; Man, Yi; Xu, Hockin H K

    2015-05-01

    Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (mean±sd; n=6) were (30.4±5.8)%, (27.4±9.7)% and (22.6±4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0±6.3)% for control (pcells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (pcells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration. Published by Elsevier Ltd.

  14. Engineering new bone via a minimally invasive route using human bone marrow-derived stromal cell aggregates, microceramic particles, and human platelet-rich plasma gel.

    Science.gov (United States)

    Chatterjea, Anindita; Yuan, Huipin; Fennema, Eelco; Burer, Ruben; Chatterjea, Supriyo; Garritsen, Henk; Renard, Auke; van Blitterswijk, Clemens A; de Boer, Jan

    2013-02-01

    There is a rise in the popularity of arthroscopic procedures in orthopedics. However, the majority of cell-based bone tissue-engineered constructs (TECs) rely on solid preformed scaffolding materials, which require large incisions and extensive dissections for placement at the defect site. Thus, they are not suitable for minimally invasive techniques. The aim of this study was to develop a clinically relevant, easily moldable, bone TEC, amenable to minimally invasive techniques, using human mesenchymal stromal cells (hMSCs) and calcium phosphate microparticles in combination with an in situ forming platelet-rich plasma gel obtained from human platelets. Most conventional TECs rely on seeding and culturing single-cell suspensions of hMSCs on scaffolds. However, for generating TECs amenable to the minimally invasive approach, it was essential to aggregate the hMSCs in vitro before seeding them on the scaffolds as unaggregated MSCs did not generate any bone. Twenty four hours of in vitro aggregation was determined to be optimal for maintaining cell viability in vitro and bone formation in vivo. Moreover, no statistically significant difference was observed in the amount of bone formed when the TECs were implanted via an open approach or a minimally invasive route. TECs generated using MSCs from three different human donors generated new bone through the minimally invasive route in a reproducible manner, suggesting that these TECs could be a viable alternative to preformed scaffolds employed through an open surgery for treating bone defects.

  15. Comparison of beam theory and finite-element analysis with in vivo bone strain data from the alligator cranium.

    Science.gov (United States)

    Metzger, Keith A; Daniel, William J T; Ross, Callum F

    2005-04-01

    The mechanical behavior of the vertebrate skull is often modeled using free-body analysis of simple geometric structures and, more recently, finite-element (FE) analysis. In this study, we compare experimentally collected in vivo bone strain orientations and magnitudes from the cranium of the American alligator with those extrapolated from a beam model and extracted from an FE model. The strain magnitudes predicted from beam and FE skull models bear little similarity to relative and absolute strain magnitudes recorded during in vivo biting experiments. However, quantitative differences between principal strain orientations extracted from the FE skull model and recorded during the in vivo experiments were smaller, and both generally matched expectations from the beam model. The differences in strain magnitude between the data sets may be attributable to the level of resolution of the models, the material properties used in the FE model, and the loading conditions (i.e., external forces and constraints). This study indicates that FE models and modeling of skulls as simple engineering structures may give a preliminary idea of how these structures are loaded, but whenever possible, modeling results should be verified with either in vitro or preferably in vivo testing, especially if precise knowledge of strain magnitudes is desired.

  16. Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study

    Science.gov (United States)

    2017-01-01

    Purpose The microstructural characteristics of trabecular bone were identified using micro-computed tomography (micro-CT), in order to develop a potential strategy for implant surface improvement to facilitate osseointegration. Methods Alveolar bone specimens from the cadavers of 30 humans were scanned by high-resolution micro-CT and reconstructed. Volumes of interest chosen within the jaw were classified according to Hounsfield units into 4 bone quality categories. Several structural parameters were measured and statistically analyzed. Results Alveolar bone specimens with D1 bone quality had significantly higher values for all structural parameters than the other bone quality categories, except for trabecular thickness (Tb.Th). The percentage of bone volume, trabecular separation (Tb.Sp), and trabecular number (Tb.N) varied significantly among bone quality categories. Tb.Sp varied markedly across the bone quality categories (D1: 0.59±0.22 mm, D4: 1.20±0.48 mm), whereas Tb.Th had similar values (D1: 0.30±0.08 mm, D4: 0.22±0.05 mm). Conclusions Bone quality depended on Tb.Sp and number—that is, endosteal space architecture—rather than bone surface and Tb.Th. Regardless of bone quality, Tb.Th showed little variation. These factors should be taken into account when developing individualized implant surface topographies. PMID:28261521

  17. Is the corticomedullary index valid to distinguish human from nonhuman bones: a multislice computed tomography study.

    Science.gov (United States)

    Rérolle, Camille; Saint-Martin, Pauline; Dedouit, Fabrice; Rousseau, Hervé; Telmon, Norbert

    2013-09-10

    The first step in the identification process of bone remains is to determine whether they are of human or nonhuman origin. This issue may arise when only a fragment of bone is available, as the species of origin is usually easily determined on a complete bone. The present study aims to assess the validity of a morphometric method used by French forensic anthropologists to determine the species of origin: the corticomedullary index (CMI), defined by the ratio of the diameter of the medullary cavity to the total diameter of the bone. We studied the constancy of the CMI from measurements made on computed tomography images (CT scans) of different human bones, and compared our measurements with reference values selected in the literature. The measurements obtained on CT scans at three different sites of 30 human femurs, 24 tibias, and 24 fibulas were compared between themselves and with the CMI reference values for humans, pigs, dogs and sheep. Our results differed significantly from these reference values, with three exceptions: the proximal quarter of the femur and mid-fibular measurements for the human CMI, and the proximal quarter of the tibia for the sheep CMI. Mid-tibial, mid-femoral, and mid-fibular measurements also differed significantly between themselves. Only 22.6% of CT scans of human bones were correctly identified as human. We concluded that the CMI is not an effective method for determining the human origin of bone remains.

  18. Numerical investigations on the strain-adaptive bone remodelling in the periprosthetic femur: Influence of the boundary conditions

    Directory of Open Access Journals (Sweden)

    Stukenborg-Colsman Christina

    2009-04-01

    Full Text Available Abstract Background There are several numerical investigations on bone remodelling after total hip arthroplasty (THA on the basis of the finite element analysis (FEA. For such computations certain boundary conditions have to be defined. The authors chose a maximum of three static load situations, usually taken from the gait cycle because this is the most frequent dynamic activity of a patient after THA. Materials and methods The numerical study presented here investigates whether it is useful to consider only one static load situation of the gait cycle in the FE calculation of the bone remodelling. For this purpose, 5 different loading cases were examined in order to determine their influence on the change in the physiological load distribution within the femur and on the resulting strain-adaptive bone remodelling. First, four different static loading cases at 25%, 45%, 65% and 85% of the gait cycle, respectively, and then the whole gait cycle in a loading regime were examined in order to regard all the different loadings of the cycle in the simulation. Results The computed evolution of the apparent bone density (ABD and the calculated mass losses in the periprosthetic femur show that the simulation results are highly dependent on the chosen boundary conditions. Conclusion These numerical investigations prove that a static load situation is insufficient for representing the whole gait cycle. This causes severe deviations in the FE calculation of the bone remodelling. However, accompanying clinical examinations are necessary to calibrate the bone adaptation law and thus to validate the FE calculations.

  19. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  20. The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jo Eun; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Huh, Kyung Hoe [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Shin, Jae Myung [Dept. of Oral and Maxillofacial Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of); Oh, Sung Ook [A Plus Dental Clinic, Seoul (Korea, Republic of)

    2013-12-15

    This study was performed to analyze human maxillary and mandibular trabecular bone using the data acquired from micro-computed tomography (micro-CT), and to characterize the site-specific microstructures of trabeculae. Sixty-nine cylindrical bone specimens were prepared from the mandible and maxilla. They were divided into 5 groups by region: the anterior maxilla, posterior maxilla, anterior mandible, posterior mandible, and mandibular condyle. After the specimens were scanned using a micro-CT system, three-dimensional microstructural parameters such as the percent bone volume, bone specific surface, trabecular thickness, trabecular separation, trabecular number, structure model index, and degrees of anisotropy were analyzed. Among the regions other than the condylar area, the anterior mandibular region showed the highest trabecular thickness and the lowest value for the bone specific surface. On the other hand, the posterior maxilla region showed the lowest trabecular thickness and the highest value for the bone specific surface. The degree of anisotropy was lowest at the anterior mandible. The condyle showed thinner trabeculae with a more anisotropic arrangement than the other mandibular regions. There were microstructural differences between the regions of the maxilla and mandible. These results suggested that different mechanisms of external force might exist at each site.

  1. Effect of accelerated electron beam on mechanical properties of human cortical bone: influence of different processing methods.

    Science.gov (United States)

    Kaminski, Artur; Grazka, Ewelina; Jastrzebska, Anna; Marowska, Joanna; Gut, Grzegorz; Wojciechowski, Artur; Uhrynowska-Tyszkiewicz, Izabela

    2012-08-01

    Accelerated electron beam (EB) irradiation has been a sufficient method used for sterilisation of human tissue grafts for many years in a number of tissue banks. Accelerated EB, in contrast to more often used gamma photons, is a form of ionizing radiation that is characterized by lower penetration, however it is more effective in producing ionisation and to reach the same level of sterility, the exposition time of irradiated product is shorter. There are several factors, including dose and temperature of irradiation, processing conditions, as well as source of irradiation that may influence mechanical properties of a bone graft. The purpose of this study was to evaluate the effect e-beam irradiation with doses of 25 or 35 kGy, performed on dry ice or at ambient temperature, on mechanical properties of non-defatted or defatted compact bone grafts. Left and right femurs from six male cadaveric donors, aged from 46 to 54 years, were transversely cut into slices of 10 mm height, parallel to the longitudinal axis of the bone. Compact bone rings were assigned to the eight experimental groups according to the different processing method (defatted or non-defatted), as well as e-beam irradiation dose (25 or 35 kGy) and temperature conditions of irradiation (ambient temperature or dry ice). Axial compression testing was performed with a material testing machine. Results obtained for elastic and plastic regions of stress-strain curves examined by univariate analysis are described. Based on multivariate analysis, including all groups, it was found that temperature of e-beam irradiation and defatting had no consistent significant effect on evaluated mechanical parameters of compact bone rings. In contrast, irradiation with both doses significantly decreased the ultimate strain and its derivative toughness, while not affecting the ultimate stress (bone strength). As no deterioration of mechanical properties was observed in the elastic region, the reduction of the energy

  2. Serotonin receptor agonist quipazine promotes proliferation and apoptosis of human hepatocyte strain of L-02 strain

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Zhi-Yong Zhang

    2009-01-01

    BACKGROUND:Liver disease is commonly seen in the clinic and its pathological characteristic is combined hepatocellular death and apoptosis. Promoting hepatocyte regeneration is one of the main methods of treating liver disease. Serotonin (5-HT) is an important compound which participates in various life process, and 95% of it is carried by platelets in the blood. A recent ifnding showed that platelet-derived serotonin is the key factor in liver regeneration, which fails without serotonin. This study aimed to investigate the effects of quipazine, a selective 5-HT receptor agonist, on proliferation and apoptosis in the human hepatocyte strain L-02. METHODS:L-02 cells were cultured in medium with 5-HT and quipazine, and samples were collected at 24, 48, and 72 hours. The methyl thiazolyl tetrazolium (MTT) method was used to test viability, lfow cytometry to assess the cell cycle, the Annexin-V/PI method to evaluate apoptosis, and immunohistochemistry to detect proliferating cell nuclear antigen (PCNA). RESULTS:Compared with the control group, the viability of L-02 cells was improved in the 10, 50, and 250 μg/ml quipazine groups (P0.05); and no difference in the percentage of apoptotic cells was found between the 50μg/ml quipazine and control groups (P>0.05).CONCLUSION:Quipazine improves proliferation of a human hepatocyte strainin vitro, and this is not based on the inhibition of apoptosis.

  3. Crestal bone resorption in augmented bone using mineralized freeze-dried bone allograft or pristine bone during submerged implant healing: a prospective study in humans.

    Science.gov (United States)

    Huang, Hsiang-yun; Ogata, Yumi; Hanley, James; Finkelman, Matthew; Hur, Yong

    2016-02-01

    There is limited evidence on the crestal bone level changes around implants placed in bone augmented by guided bone regeneration (GBR) during submerged healing. The purpose of this study was to prospectively compare radiographic crestal bone changes around implants placed in augmented bone with changes around implants placed in pristine bone. Patients receiving dental implants in the augmented or pristine mandibular posterior edentulous ridge were included in the study. The digital standardized radiographs from the implant placement procedure were compared to the radiographs from the second-stage procedure to evaluate the peri-implant marginal bone level changes. The soft tissue thickness (ST), width of keratinized mucosa (wKM), and early cover screw exposure (eIE) were measured at the time of the second-stage procedure. A total of 29 implants in 26 patients, 11 in augmented bone (test group) and 18 in pristine bone (control group), were analyzed. The mean peri-implant bone loss (ΔBL) was 0.74 ± 0.74 mm (mean ± SD) in the test group and 0.25 ± 0.55 mm (mean ± SD) in the control group. The differences between the test and control groups in the mesial, distal, and mean peri-implant crestal bone level changes were statistically significant (P = 0.009, P = 0.004, and P = 0.001, respectively). The confounding factors (ST, wKM, and eIE) were adjusted. More peri-implant crestal bone loss during the submerged healing period was observed in augmented bone than in pristine bone. Augmented bone may not exhibit the same characteristics as pristine bone during the implant submerged healing period. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Role of purinergic receptor polymorphisms in human bone

    DEFF Research Database (Denmark)

    Wesselius, Anke; Bours, Martijn J L; Agrawal, Ankita

    2011-01-01

    in the mechanotransductory process, where mechanical stimulation on bone leads to anabolic responses in the skeleton. A number of single nucleotide polymorphisms have been identified in the P2 receptor genes, where especially the P2X7 subtype has been the focus of extensive investigation where several polymorphisms have......Osteoporosis is a multifactorial disease with a strong genetic component. Variations in a number of genes have been shown to associate with bone turnover and risk of osteoporosis. P2 purinergic receptors are proteins that have ATP or other nucleotides as their natural ligands. Various P2Y and P2X...... receptor subtypes have been identified on bone cells. Several cellular functions in bone tissue are coupled to P2-receptor activation, including bone resorption, cytokine release, apoptosis, bone formation, and mineral deposition. Furthermore, ATP release and P2 purinergic signalling is a key pathway...

  5. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  6. Ancient Human Bone Microstructure in Medieval England: Comparisons between Two Socio-Economic Groups

    OpenAIRE

    Miszkiewicz, Justyna J.; Mahoney, Patrick

    2016-01-01

    Understanding the links between bone microstructure and human lifestyle is critical for clinical and anthropological research into skeletal\\ud growth and adaptation. The present study is the first to report correspondence between socio-economic status and variation in bone microstructure\\ud in ancient humans. Products of femoral cortical remodeling were assessed using histological methods in a large human medieval\\ud sample (N:450) which represented two distinct socio-economic groups. Osteona...

  7. Comparison of bones of 4 strains of laying hens kept in conventional cages and floor pens.

    Science.gov (United States)

    Silversides, F G; Singh, R; Cheng, K M; Korver, D R

    2012-01-01

    The maintenance of bone strength has been an important issue in the debate over cage use for laying hens. Bone strength depends on adequate mechanical load and cages restrict movement. Four laying crosses (Lohmann White, Lohmann Brown, H&N White, and Rhode Island Red × Barred Plymouth Rock cross hens) were housed in conventional cages or in floor pens equipped with perches and nest boxes to measure the effect of the housing system on bone strength. Approximately 15 hens of each genotype from each housing system were killed at 50 wk of age and the radius and tibia of each were removed for analysis. There were no differences between the Lohmann White and H&N White (White Leghorn) hens, likely because of their similar genetic background. The Lohmann Brown and the cross hens (brown-egg layers) were larger and they had heavier bones, but the bone density was not different from that of the other lines. The radius was heavier for hens kept in floor pens than for those kept in cages, but the tibia was not. When hens were kept in floor pens, both bones had greater cortical bone density and cross-sectional area, but the difference between housing systems in cortical bone cross-sectional area was much greater for the radius than it was for the tibia. Although the movement of hens in cages is limited, they spend a great deal of time standing, which puts a mechanical load on the tibia. Hens in floor pens are able to stretch their wings or fly, in contrast to hens kept in cages, which likely explains why the difference between housing systems in cortical bone was greater for the radius than for the tibia.

  8. Biomechanics Analysis of Pressure Ulcer Using Damaged Interface Model between Bone and Muscle in the Human Buttock

    Science.gov (United States)

    Slamet, Samuel Susanto; Takano, Naoki; Tanabe, Yoshiyuki; Hatano, Asako; Nagasao, Tomohisa

    This paper aims at building up a computational procedure to study the bio-mechanism of pressure ulcer using the finite element method. Pressure ulcer is a disease that occurs in the human body after 2 hours of continuous external force. In the very early stage of pressure ulcer, it is found that the tissues inside the body are damaged, even though skin surface looks normal. This study assumes that tension and/or shear strain will cause damage to loose fibril tissue between the bone and muscle and that propagation of damaged area will lead to fatal stage. Analysis was performed using the finite element method by modeling the damaged fibril tissue as a cutout. By varying the loading directions and watching both tensile and shear strains, the risk of fibril tissue damage and propagation of the damaged area is discussed, which may give new insight for the careful nursing for patients, particularly after surgical treatment. It was found that the pressure ulcer could reoccur for a surgical flap treatment. The bone cut and surgical flap surgery is not perfect to prevent the bone-muscle interfacial damage.

  9. One Million Bones: Measuring the Effect of Human Rights Participation in the Social Work Classroom

    Science.gov (United States)

    McPherson, Jane; Cheatham, Leah P.

    2015-01-01

    This article describes the integration of human rights content and a national arts-activism initiative--One Million Bones--into a bachelor's-level macro practice class as a human rights teaching strategy. Two previously validated scales, the Human Rights Exposure (HRX) in Social Work and the Human Rights Engagement (HRE) in Social Work (McPherson…

  10. One Million Bones: Measuring the Effect of Human Rights Participation in the Social Work Classroom

    Science.gov (United States)

    McPherson, Jane; Cheatham, Leah P.

    2015-01-01

    This article describes the integration of human rights content and a national arts-activism initiative--One Million Bones--into a bachelor's-level macro practice class as a human rights teaching strategy. Two previously validated scales, the Human Rights Exposure (HRX) in Social Work and the Human Rights Engagement (HRE) in Social Work (McPherson…

  11. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Coulson-Thomas, Vivien J; Norton, Andrew L; Gesteira, Tarsis F; Cavalheiro, Renan P; Meneghetti, Maria Cecília Z; Martins, João R; Dixon, Ronald A; Nader, Helena B

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  12. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Directory of Open Access Journals (Sweden)

    Yvette M Coulson-Thomas

    Full Text Available Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs. Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS and hyaluronic acid (HA. In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  13. Inca - interparietal bones in neurocranium of human skulls in central India.

    Science.gov (United States)

    Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  14. The effects of different maceration techniques on nuclear DNA amplification using human bone.

    Science.gov (United States)

    Lee, Esther J; Luedtke, Jennifer G; Allison, Jamie L; Arber, Carolyn E; Merriwether, D Andrew; Steadman, Dawnie Wolfe

    2010-07-01

    Forensic anthropologists routinely macerate human bone for the purposes of identity and trauma analysis, but the heat and chemical treatments used can destroy genetic evidence. As a follow-up to a previous study on nuclear DNA recovery that used pig ribs, this study utilizes human skeletal remains treated with various bone maceration techniques for nuclear DNA amplification using the standard Combined DNA Index System (CODIS) markers. DNA was extracted from 18 samples of human lower leg bones subjected to nine chemical and heat maceration techniques. Genotyping was carried out using the AmpFlSTR COfiler and AmpFlSTR Profiler Plus ID kits. Results showed that heat treatments via microwave or Biz/Na(2)CO(3) in sub-boiling water efficiently macerate bone and produce amplifiable nuclear DNA for genetic analysis. Long-term use of chemicals such as hydrogen peroxide is discouraged as it results in poor bone quality and has deleterious effects on DNA amplification.

  15. [A general review on the procedures in a human temporal bone laboratory].

    Science.gov (United States)

    Oktay, Mehmet Faruk; Cüreoğlu, Sebahattin; Schachern, Patricia A; Paparella, Micheal M

    2006-01-01

    Structures of the human ear are usually inaccessible during life for examination of pathologic changes of the underlying disease, which is only possible with postmortem studies of the human temporal bone. Human temporal bone laboratories serve as a unique source of material for research in this respect. They enable comparison between histologic findings of temporal bone sections and the ear pathologies documented prior to death, as well as comparison of diseased ears with any selected temporal bone specimens, both of which provide invaluable knowledge to be shared among researchers and other laboratories. This article aims to provide insight into the functions of temporal bone laboratories and to familiarize the reader with histopathologic studies conducted therein.

  16. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    Directory of Open Access Journals (Sweden)

    Drevinek Pavel

    2009-12-01

    Full Text Available Abstract Background The Lactic Acid Bacteria (LAB are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i the initial cultivable LAB strain diversity in the human gut, and (ii the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156 contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be

  17. The daily habitual in-vivo strain history of a non-weight-bearing bone

    NARCIS (Netherlands)

    de Jong, W.C.; Koolstra, J.H.; Korfage, J.A.M.; van Ruijven, L.J.; Langenbach, G.E.J.

    2010-01-01

    Daily mechanical loading strongly influences the architecture and composition of bone tissue. Throughout the day, the amplitudes, rates, frequencies, and the dispersion over time of these loads vary. Nevertheless, most experimental and descriptive studies on the aforementioned relationship consider

  18. MicroRNA profiling in human neutrophils during bone marrow granulopoiesis and in vivo exudation

    DEFF Research Database (Denmark)

    Larsen, Maria T; Hother, Christoffer; Häger, Mattias

    2013-01-01

    The purpose of this study was to describe the microRNA (miRNA) expression profiles of neutrophils and their precursors from the initiation of granulopoiesis in the bone marrow to extravasation and accumulation in skin windows. We analyzed three different cell populations from human bone marrow, p...

  19. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells

    NARCIS (Netherlands)

    Mendes, SC; Tibbe, JM; Veenhof, M; Both, S; Oner, FC; van Blitterswijk, CA; de Bruijn, Joost D.

    2004-01-01

    The use of cell therapies in bone reconstruction has been the subject of extensive research. It is known that human bone marrow stromal cell (HBMSC) cultures contain a population of progenitor cells capable of differentiation towards the osteogenic lineage. In the present study, the correlation betw

  20. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes

    NARCIS (Netherlands)

    S. James (Sally); J. Fox (James); F. Afsari (Farinaz); J. Lee (Jennifer); S. Clough (Sally); C. Knight (Charlotte); J. Ashmore (James); P. Ashton (Peter); O. Preham (Olivier); M.J. Hoogduijn (Martin); R.D.A.R. Ponzoni (Raquel De Almeida Rocha); Y. Hancock; M. Coles (Mark); P.G. Genever (Paul)

    2015-01-01

    textabstractBone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis

  1. Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues.

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François; Gothot, André; Wislet, Sabine

    2017-01-01

    Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow.

  2. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    Science.gov (United States)

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  3. Analysis of bone mineral density of human bones for strength evaluation

    Indian Academy of Sciences (India)

    S N Khan; R M Warkhedkar; A K Shyam

    2015-08-01

    The bone density (BMD) is a medical term normally referring to the amount of mineral matter per square centimetre of bones. Twenty-five patients (18 female and 7 male patients with a mean age of 71.3 years) undergoing both lumbar spine DXA scans and computed tomography imaging were evaluated to determine if HU correlates with BMD and T-scores. BMD is used in clinical medicine as an indirect indicator of osteoporosis and fracture risk. This medical bone density is not the true physical ``density'' of the bone, which would be computed as mass per volume. Dual-energy X-ray absorptiometry (DXA, previously DEXA), a means of measuring BMD, is the most widely used and most thoroughly studied bone density measurement technologies. Different types of bone strength are required for various applications, but this strength calculation requires different machines for each strength property or it is done by different software like X-ray, CT scan, DEXA and BIA. The paper includes the design of an experimental setup which performs different types of test like tension, compression, three point bending, four point bending and torsion. The modified correlation between BMD and HU for various strength calculations is found out and validated with the experimental results.

  4. Evaluation of the human transmission risk of an atypical bovine spongiform encephalopathy prion strain.

    Science.gov (United States)

    Kong, Qingzhong; Zheng, Mengjie; Casalone, Cristina; Qing, Liuting; Huang, Shenghai; Chakraborty, Bikram; Wang, Ping; Chen, Fusong; Cali, Ignazio; Corona, Cristiano; Martucci, Francesca; Iulini, Barbara; Acutis, Pierluigi; Wang, Lan; Liang, Jingjing; Wang, Meiling; Li, Xinyi; Monaco, Salvatore; Zanusso, Gianluigi; Zou, Wen-Quan; Caramelli, Maria; Gambetti, Pierluigi

    2008-04-01

    Bovine spongiform encephalopathy (BSE), the prion disease in cattle, was widely believed to be caused by only one strain, BSE-C. BSE-C causes the fatal prion disease named new variant Creutzfeldt-Jacob disease in humans. Two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H, have been discovered in several countries since 2004; their transmissibility and phenotypes in humans are unknown. We investigated the infectivity and human phenotype of BASE strains by inoculating transgenic (Tg) mice expressing the human prion protein with brain homogenates from two BASE strain-infected cattle. Sixty percent of the inoculated Tg mice became infected after 20 to 22 months of incubation, a transmission rate higher than those reported for BSE-C. A quarter of BASE strain-infected Tg mice, but none of the Tg mice infected with prions causing a sporadic human prion disease, showed the presence of pathogenic prion protein isoforms in the spleen, indicating that the BASE prion is intrinsically lymphotropic. The pathological prion protein isoforms in BASE strain-infected humanized Tg mouse brains are different from those from the original cattle BASE or sporadic human prion disease. Minimal brain spongiosis and long incubation times are observed for the BASE strain-infected Tg mice. These results suggest that in humans, the BASE strain is a more virulent BSE strain and likely lymphotropic.

  5. Yersinia enterocolitica strains associated with human infections in Switzerland 2001-2010.

    Science.gov (United States)

    Fredriksson-Ahomaa, M; Cernela, N; Hächler, H; Stephan, R

    2012-07-01

    Yersinia enterocolitica infections are common in humans. However, very scarce data are available on the different biotypes and virulence factors of human strains, which has proved to be problematic to assess the clinical significance of the isolated strains. In this study, the presence of the ail gene and distribution of different bio- and serotypes among human Y. enterocolitica strains and their possible relation to the genotype and antimicrobial resistance were studied. In total, 128 Y. enterocolitica strains isolated from human clinical samples in Switzerland during 2001-2010 were characterised. Most (75 out of 128) of the Y. enterocolitica strains belonged to biotypes 2, 3 or 4 and carried the ail gene. One of the 51 strains that belonged to biotype 1A was also ail positive. Most of the ail-positive strains belonged to bioserotype 4/O:3 (47 out of 76) followed by 2/O:9 (22 out of 76). Strains of bioserotype 4/O:3 were dominant among patients between 20 and 40 years old and strains of biotype 1A dominate in patients over 40 years. Strains belonging to biotypes 2, 3 and 4, which all carried the ail gene, exhibited a high homogeneity with PFGE typing. Y. enterocolitica 2/O:5,27 and 2/O:9 strains showed resistance to amoxicillin/clavulanic acid and cefoxitin, but Y. enterocolitica 4/O:3 strains did not.

  6. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    Science.gov (United States)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  7. Myeloid Engraftment in Humanized Mice: Impact of Granulocyte-Colony Stimulating Factor Treatment and Transgenic Mouse Strain.

    Science.gov (United States)

    Coughlan, Alice M; Harmon, Cathal; Whelan, Sarah; O'Brien, Eóin C; O'Reilly, Vincent P; Crotty, Paul; Kelly, Pamela; Ryan, Michelle; Hickey, Fionnuala B; O'Farrelly, Cliona; Little, Mark A

    2016-04-01

    Poor myeloid engraftment remains a barrier to experimental use of humanized mice. Focusing primarily on peripheral blood cells, we compared the engraftment profile of NOD-scid-IL2Rγc(-/-) (NSG) mice with that of NSG mice transgenic for human membrane stem cell factor (hu-mSCF mice), NSG mice transgenic for human interleukin (IL)-3, granulocyte-macrophage-colony stimulating factor (GM-CSF), and stem cell factor (SGM3 mice). hu-mSCF and SGM3 mice showed enhanced engraftment of human leukocytes compared to NSG mice, and this was reflected in the number of human neutrophils and monocytes present in these strains. Importantly, discrete classical, intermediate, and nonclassical monocyte populations were identifiable in the blood of NSG and hu-mSCF mice, while the nonclassical population was absent in the blood of SGM3 mice. Granulocyte-colony stimulating factor (GCSF) treatment increased the number of blood monocytes in NSG and hu-mSCF mice, and neutrophils in NSG and SGM3 mice; however, this effect appeared to be at least partially dependent on the stem cell donor used to engraft the mice. Furthermore, GCSF treatment resulted in a preferential expansion of nonclassical monocytes in both NSG and hu-mSCF mice. Human tubulointerstitial CD11c(+) cells were present in the kidneys of hu-mSCF mice, while monocytes and neutrophils were identified in the liver of all strains. Bone marrow-derived macrophages prepared from NSG mice were most effective at phagocytosing polystyrene beads. In conclusion, hu-mSCF mice provide the best environment for the generation of human myeloid cells, with GCSF treatment further enhancing peripheral blood human monocyte cell numbers in this strain.

  8. Probiotic attributes of autochthonous Lactobacillus rhamnosus strains of human origin.

    Science.gov (United States)

    Pithva, Sheetal; Shekh, Satyamitra; Dave, Jayantilal; Vyas, Bharatkumar Rajiv Manuel

    2014-05-01

    The study was aimed at evaluating the probiotic potential of indigenous autochthonous Lactobacillus rhamnosus strains isolated from infant feces and vaginal mucosa of healthy female. The survival of the selected strains and the two reference strains (L. rhamnosus GG and L. casei Actimel) was 67-81 % at pH 2 and 70-80 % after passage through the simulated gastrointestinal fluid. These strains are able to grow in the presence of 4 % bile salt, 10 % NaCl, and 0.6 % phenol. The cell surface of L. rhamnosus strains is hydrophilic in nature as revealed by bacterial adhesion to hydrocarbons (BATH) assay. Despite this, L. rhamnosus strains showed mucin adherence, autoaggregation and coaggregation properties that are strain-specific. In addition, they produce bile salt hydrolase (BSH) and β-galactosidase activities. L. rhamnosus strains exhibit antimicrobial activity against food spoilage organisms and gastrointestinal pathogens, as well as Candida and Aspergillus spp. L. rhamnosus strains have similar antibiotic susceptibility pattern, and resistance to certain antibiotics is intrinsic or innate. The strains are neither haemolytic nor producer of biogenic amines such as histamine, putrescine, cadaverine and tyramine. Lyophilized cells of L. rhamnosus Fb exhibited probiotic properties demonstrating potential of the strain for technological suitability and in the preparation of diverse probiotic food formulations.

  9. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by means...... normal donors aged 16-83 years were tested in compression. The deformation was measured simultaneously in bone and cartilage to obtain the mechanical properties of both tissues. RESULTS: The stiffnesses and elastic energies of both cartilage and bone showed an initial increase, with maxima at 40 years......, followed by a steady decline. The viscoelastic energy was maximal at younger ages (16-29 years), followed by a steady decline. The energy absorption capacity did not vary with age. Stiffnesses and elastic energies were correlated significantly between cartilage and bone. CONCLUSIONS: The present study...

  10. Study on the Microstructure of Human Articular Cartilage/Bone Interface

    Institute of Scientific and Technical Information of China (English)

    Yaxiong Liu; Qin Lian; Jiankang He; Jinna Zhao; Zhongmin Jin; Dichen Li

    2011-01-01

    For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.

  11. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    OpenAIRE

    Islam, Mohammad S; Stemig, Melissa E.; Takahashi, Yutaka; Hui, Susanta K.

    2014-01-01

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harv...

  12. Development of a realistic in vivo bone metastasis model of human renal cell carcinoma.

    Science.gov (United States)

    Valta, Maija P; Zhao, Hongjuan; Ingels, Alexandre; Thong, Alan E; Nolley, Rosalie; Saar, Matthias; Peehl, Donna M

    2014-06-01

    About one-third of patients with advanced renal cell carcinoma (RCC) have bone metastases. The incidence of RCC is increasing and bone metastatic RCC merits greater focus. Realistic preclinical bone metastasis models of RCC are lacking, hampering the development of effective therapies. We developed a realistic in vivo bone metastasis model of human RCC by implanting precision-cut tissue slices under the renal capsule of immunodeficient mice. The presence of disseminated cells in bone marrow of tissue slice graft (TSG)-bearing mice was screened by human-specific polymerase chain reaction and confirmed by immunohistology using human-specific antibody. Disseminated tumor cells in bone marrow of TSG-bearing mice derived from three of seven RCC patients were detected as early as 1 month after tissue implantation at a high frequency with close resemblance to parent tumors (e.g., CAIX expression and high vascularity). The metastatic patterns of TSGs correlated with disease progression in patients. In addition, TSGs retained capacity to metastasize to bone at high frequency after serial passaging and cryopreservation. Moreover, bone metastases in mice responded to Temsirolimus treatment. Intratibial injections of single cells generated from TSGs showed 100 % engraftment and produced X-ray-visible tumors as early as 3 weeks after cancer cell inoculation. Micro-computed tomography (μCT) and histological analysis revealed osteolytic characteristics of these lesions. Our results demonstrated that orthotopic RCC TSGs have potential to develop bone metastases that respond to standard therapy. This first reported primary RCC bone metastasis model provides a realistic setting to test therapeutics to prevent or treat bone metastases in RCC.

  13. Analysis of fatty acid composition in human bone marrow aspirates.

    Science.gov (United States)

    Deshimaru, Ryota; Ishitani, Ken; Makita, Kazuya; Horiguchi, Fumi; Nozawa, Shiro

    2005-09-01

    In the present study, the fatty acid composition of bone marrow aspirates and serum phospholipids in nine patients with hematologic diseases was investigated, and the effect of fatty acids on osteoblast differentiation in ST2 cells was examined. The concentrations of oleic acid and palmitic acid were significantly higher in bone marrow aspirates than in serum phospholipids, but the concentrations of other fatty acids did not differ. The rate of alkaline phosphatase positive ST2 cells induced by BMP2 was significantly increased by oleic acid, but was unaffected by the presence or absence of palmitic acid. We conclude that the fatty acid composition of bone marrow aspirates differs from that of serum phospholipids. This difference may affect osteoblast differentiation in the bone marrow microenvironment.

  14. Engineering bone tissue substitutes from human induced pluripotent stem cells

    National Research Council Canada - National Science Library

    Giuseppe Maria de Peppo; Iván Marcos-Campos; David John Kahler; Dana Alsalman; Linshan Shang; Gordana Vunjak-Novakovic; Darja Marolt

    2013-01-01

    ...) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling...

  15. INCIDENCE OF WORMIAN BONE IN HUMAN SKULLS IN RAJAST HAN

    Directory of Open Access Journals (Sweden)

    William F.

    2013-02-01

    Full Text Available ABSTRACT: Wormian bones are formations associated with insuff icient growth at suture closure and are regarded as epigenetic and hypostatic traits. There exists racial variation in its incidence. AIM : To find the incidence of wormian bone and compare with other study. MATERIAL AND METHOD : This was autopsy study on 150 dead bodies of both sexes of all age groups. RESULT - Incidence of wormian bone in Rajasthan was 4.7 % (4.1% in males & 3.6 % in females. This is comparable with study in other par t of India & abroad and it is in accordance with racial variation. CONCLUSION - knowledge of wormian bone is important to neuroanatomist, neurosurgeon, radiologist, anthropol ogist and morphologist

  16. First forensic records of termite activity on non-fossilized human bones in Brazil.

    Science.gov (United States)

    Queiroz, R A; Soriano, E P; Carvalho, M V D; Caldas-Junior, A F; Souza, E H A; Coelho-Junior, L G T M; Campello, R I C; Almeida, A C; Farias, R C A P; Vasconcellos, A

    2016-07-25

    The aim of this study was to describe the first records of termite activity on non-fossilized human bones in Brazil. The cases reported in this study resulted from forensic analysis of six human skeletons found in northeastern Brazil between 2012 and 2014. Traces of tunnels and nests commonly produced by termites were found on several human bone surfaces as well as the specimens and characteristic signs of osteophagic activity. In four cases, the species were identified: Amitermes amifer Silvestri, 1901, Nasutitermes corniger (Motschulsky, 1855) (on two skeletons), and Microcerotermes indistinctus Mathews, 1977. In two other cases, the activity of termites on bone surfaces was evidenced by remains of nests and tunnels produced by these insects. At least in the samples of human remains available for this report, the number of termites collected was greater on bones found during autumn, the rainy season in the Northeast of Brazil. The human bones examined showed termites like insects with lots of strength at bone degradation, capable of continuing the process of decomposition of human remains even in completely skeletonized bodies.

  17. First forensic records of termite activity on non-fossilized human bones in Brazil

    Directory of Open Access Journals (Sweden)

    R. A. Queiroz

    Full Text Available Abstract The aim of this study was to describe the first records of termite activity on non-fossilized human bones in Brazil. The cases reported in this study resulted from forensic analysis of six human skeletons found in northeastern Brazil between 2012 and 2014. Traces of tunnels and nests commonly produced by termites were found on several human bone surfaces as well as the specimens and characteristic signs of osteophagic activity. In four cases, the species were identified: Amitermes amifer Silvestri, 1901, Nasutitermes corniger (Motschulsky, 1855 (on two skeletons, and Microcerotermes indistinctus Mathews, 1977. In two other cases, the activity of termites on bone surfaces was evidenced by remains of nests and tunnels produced by these insects. At least in the samples of human remains available for this report, the number of termites collected was greater on bones found during autumn, the rainy season in the Northeast of Brazil. The human bones examined showed termites like insects with lots of strength at bone degradation, capable of continuing the process of decomposition of human remains even in completely skeletonized bodies.

  18. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  19. Human Bone Matrix Changes During Deep Saturation Dives

    Science.gov (United States)

    2008-08-08

    agreement notwithstanding, much remains unknown about its pathogenesis, prevention, and treatment . DON is currently disqualifying for U.S. Navy divers...recourse for symptomatic treatment is surgical joint replacement.7 The principal mechanism of bone injury is generally accepted to be bubble formation...urine concentrations of Ntx have been demonstrated in bone diseases such as osteoporosis, primary hyperthyroidism , and Paget’s disease. Also

  20. Measurement of stress-strain behaviour of human hair fibres using optical techniques.

    Science.gov (United States)

    Lee, J; Kwon, H J

    2013-06-01

    Many studies have presented stress-strain relationship of human hair, but most of them have been based on an engineering stress-strain curve, which is not a true representation of stress-strain behaviour. In this study, a more accurate 'true' stress-strain curve of human hair was determined by applying optical techniques to the images of the hair deformed under tension. This was achieved by applying digital image cross-correlation (DIC) to 10× magnified images of hair fibres taken under increasing tension to estimate the strain increments. True strain was calculated by summation of the strain increments according to the theoretical definition of 'true' strain. The variation in diameter with the increase in longitudinal elongation was also measured from the 40× magnified images to estimate the Poisson's ratio and true stress. By combining the true strain and the true stress, a true stress-strain curve could be determined, which demonstrated much higher stress values than the conventional engineering stress-strain curve at the same degree of deformation. Four regions were identified in the true stress-strain relationship and empirical constitutive equations were proposed for each region. Theoretical analysis on the necking condition using the constitutive equations provided the insight into the failure mechanism of human hair. This analysis indicated that local thinning caused by necking does not occur in the hair fibres, but, rather, relatively uniform deformation takes place until final failure (fracture) eventually occurs.

  1. Complete genome sequence of Streptococcus salivarius PS4, a strain isolated from human milk.

    Science.gov (United States)

    Martín, Virginia; Maldonado-Barragán, Antonio; Jiménez, Esther; Ruas-Madiedo, Patricia; Fernández, Leónides; Rodríguez, Juan M

    2012-08-01

    Streptococcus salivarius is a commensal species commonly found in the human oropharyngeal tract. Some strains of this species have been developed for use as oral probiotics, while others have been associated with a variety of opportunistic human infections. Here, we report the complete sequence of strain PS4, which was isolated from breast milk of a healthy woman.

  2. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.

    Science.gov (United States)

    Bevill, Grant; Eswaran, Senthil K; Gupta, Atul; Papadopoulos, Panayiotis; Keaveny, Tony M

    2006-12-01

    Large-deformation bending and buckling have long been proposed as failure mechanisms by which the strength of trabecular bone can be affected disproportionately to changes in bone density, and thus may represent an important aspect of bone quality. We sought here to quantify the contribution of large-deformation failure mechanisms on strength, to determine the dependence of these effects on bone volume fraction and architecture, and to confirm that the inclusion of large-deformation effects in high-resolution finite element models improves predictions of strength versus experiment. Micro-CT-based finite element models having uniform hard tissue material properties were created from 54 cores of human trabecular bone taken from four anatomic sites (age = 70+/-11; 24 male, 27 female donors), which were subsequently biomechanically tested to failure. Strength predictions were made from the models first including, then excluding, large-deformation failure mechanisms, both for compressive and tensile load cases. As expected, strength predictions versus experimental data for the large-deformation finite element models were significantly improved (p deformation models in both tension and compression. Below a volume fraction of about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-80% for compressive loading, while effects were negligible above this volume fraction. Step-wise nonlinear multiple regression revealed that structure model index (SMI) and volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 = 0.83, p deformation failure mechanisms on trabecular bone strength is highly heterogeneous and is not well explained by standard architectural metrics.

  3. Strain-dependent differences in bone development, myeloid hyperplasia, morbidity and mortality in ptpn2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Florian Wiede

    Full Text Available Single nucleotide polymorphisms in the gene encoding the protein tyrosine phosphatase TCPTP (encoded by PTPN2 have been linked with the development of autoimmunity. Here we have used Cre/LoxP recombination to generate Ptpn2(ex2-/ex2- mice with a global deficiency in TCPTP on a C57BL/6 background and compared the phenotype of these mice to Ptpn2(-/- mice (BALB/c-129SJ generated previously by homologous recombination and backcrossed onto the BALB/c background. Ptpn2(ex2-/ex2- mice exhibited growth retardation and a median survival of 32 days, as compared to 21 days for Ptpn2(-/- (BALB/c mice, but the overt signs of morbidity (hunched posture, piloerection, decreased mobility and diarrhoea evident in Ptpn2(-/- (BALB/c mice were not detected in Ptpn2(ex2-/ex2- mice. At 14 days of age, bone development was delayed in Ptpn2(-/- (BALB/c mice. This was associated with increased trabecular bone mass and decreased bone remodeling, a phenotype that was not evident in Ptpn2(ex2-/ex2- mice. Ptpn2(ex2-/ex2- mice had defects in erythropoiesis and B cell development as evident in Ptpn2(-/- (BALB/c mice, but not splenomegaly and did not exhibit an accumulation of myeloid cells in the spleen as seen in Ptpn2(-/- (BALB/c mice. Moreover, thymic atrophy, another feature of Ptpn2(-/- (BALB/c mice, was delayed in Ptpn2(ex2-/ex2- mice and preceded by an increase in thymocyte positive selection and a concomitant increase in lymph node T cells. Backcrossing Ptpn2(-/- (BALB/c mice onto the C57BL/6 background largely recapitulated the phenotype of Ptpn2(ex2-/ex2- mice. Taken together these results reaffirm TCPTP's important role in lymphocyte development and indicate that the effects on morbidity, mortality, bone development and the myeloid compartment are strain-dependent.

  4. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  5. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts.

    Science.gov (United States)

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja; Jensen, Pia Rosgaard; Alnaimi, Ragad Walid; Rolighed, Lars; Engelholm, Lars H; Marcussen, Niels; Andersen, Thomas Levin

    2016-06-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic.

  6. Fimbriation, capsulation, and iron-scavenging systems of Klebsiella strains associated with human urinary tract infection.

    Science.gov (United States)

    Tarkkanen, A M; Allen, B L; Williams, P H; Kauppi, M; Haahtela, K; Siitonen, A; Orskov, I; Orskov, F; Clegg, S; Korhonen, T K

    1992-03-01

    Thirty-two strains of Klebsiella pneumoniae and seven strains of Klebsiella oxytoca isolated from urinary tract infections in elderly adults were analyzed for capsular antigens, iron-scavenging systems, and fimbriation. All strains were capsulated. Twenty-seven different K antigens were identified among the strains, with no particular antigen dominating. All strains produced the iron-scavenging system enterochelin as analyzed by bioassay and DNA hybridization. In contrast, the aerobactin iron-sequestering system was not detected in any of the strains. All strains caused hemagglutination of tannin-treated human erythrocytes and reacted with an anti-type 3 fimbriae antiserum as well as in DNA hybridization with a type 3 fimbria-specific probe, indicating that the Klebsiella strains possessed this fimbrial type. Possession of type 1 fimbriae was analyzed by agglutination tests and by hybridization with DNA probes from two distinct Klebsiella type 1 fimbria gene clusters. Phenotypic expression of the type 1 fimbriae was found in 29 of 32 K. pneumoniae strains, whereas 30 strains reacted with either of the two type 1 fimbrial cluster DNA probes. In K. oxytoca, however, only three of seven strains expressed type 1 fimbriae and reacted with the DNA probes. The type 3 fimbriae were found to bind to a fraction of epithelial cells exfoliated in normal human urine, whereas the type 1 fimbriae bound strongly to urinary slime. No inhibitors of type 3 fimbrial binding were detected in human urine.

  7. Living with cracks: Damage and repair in human bone

    Science.gov (United States)

    Taylor, David; Hazenberg, Jan G.; Lee, T. Clive

    2007-04-01

    Our bones are full of cracks, which form and grow as a result of daily loading activities. Bone is the major structural material in our bodies. Although weaker than many engineering materials, it has one trick that keeps it ahead - it can repair itself. Small cracks, which grow under cyclic stresses by the mechanism of fatigue, can be detected and removed before they become long enough to be dangerous. This article reviews the work that has been done to understand how cracks form and grow in bone, and how they can be detected and repaired in a timely manner. This is truly an interdisciplinary research field, requiring the close cooperation of materials scientists, biologists and engineers.

  8. Combined effects of proinflammatory cytokines and intermittent cyclic mechanical strain in inhibiting osteogenicity in human periodontal ligament cells.

    Science.gov (United States)

    Sun, Chaofan; Chen, Lijiao; Shi, Xinlian; Cao, Zhensheng; Hu, Bibo; Yu, Wenbin; Ren, Manman; Hu, Rongdang; Deng, Hui

    2016-09-01

    Mechanical strain plays an important role in bone formation and resorption during orthodontic tooth movement. The mechanism has not been fully studied, and the process becomes complex with increased amounts of periodontal patients seeking orthodontic care. Our aims were to elucidate the combined effects of proinflammatory cytokines and intermittent cyclic strain (ICS) on the osteogenic capacity of human periodontal ligament cells. Cultured human periodontal ligament cells were exposed to proinflammatory cytokines (interleukin-1β 5 ng/mL and tumor necrosis factor-α 10 ng/mL) for 1 and 5 days, and ICS (0.5 Hz, 12% elongation) was applied for 4 h per day. The autocrine of inflammatory cytokines was measured by enzyme-linked immunosorbent assay. The expression of osteoblast markers runt-related transcription factor 2 and rabbit collagen type I was determined using real-time polymerase chain reaction and Western blot. The osteogenic capacity was also detected by alkaline phosphatase (ALP) staining, ALP activity, and alizarin red staining. We demonstrated that ICS impaired the osteogenic capacity of human periodontal ligament cells when incubated with proinflammatory cytokines, as evidenced by the low expression of ALP staining, low ALP activity, reduced alizarin red staining, and reduced osteoblast markers. These data, for the first time, suggest that ICS has a negative effect on the inductive inhibition of osteogenicity in human PDL cells mediated by proinflammatory cytokines.

  9. Use of recombinant human bone morphogenetic protein-2 with local bone graft instead of iliac crest bone graft in posterolateral lumbar spine arthrodesis.

    Science.gov (United States)

    Park, Daniel K; Kim, Sung S; Thakur, Nikhil; Boden, Scott D

    2013-05-20

    Prospective clinical study. Compare fusion rates between recombinant human bone morphogenetic protein-2 (rhBMP-2) and iliac crest bone graft (ICBG) with rhBMP-2 and local bone graft (LBG) (±bone graft extenders) in posterolateral fusion. Previous reports have shown higher fusion rates when adding rhBMP-2 to ICBG in lumbar posterolateral fusion, compared with ICBG alone. We compared the fusion success rates between rhBMP-2 delivered with ICBG versus that with LBG. Fusion rates were compared in patients with degenerative spondylolisthesis (1-2 levels) with accompanying lumbar stenosis. RhBMP-2 (INFUSE, Medtronic) was delivered on an absorbable collagen sponge (6 mg/side at 1.5 mg/mL) with ICBG alone or with LBG wrapped inside the sponge. Thin slice computed tomographic scans were assessed at 6, 12, and 24 months. In a consecutive series, 16 patients (30 levels) received ICBG with rhBMP-2 and 35 patients (49 levels) received LBG with rhBMP-2. For the ICBG cohort, 80.0%, 93.4%, 96.7% of levels were fused at 6, 12, and 24 months. In contrast, for the local bone with rhBMP-2 cohort, 87.7%, 98.0%, and 98.0% were fused at 6, 12, and 24 months. There was no statistically significant difference in fusion success rates between the 2 groups at any time point. As for fusion quality, the fusion mass showed superior quality in ICBG group than in the local bone group at each time point. This study validates the high fusion success rates previously reported by adding rhBMP-2 to ICBG and shows that local bone may be safely substituted for ICBG in 1- to 2-level posterolateral fusion. The fusion rates were comparable. The avoidance of ICBG harvest has implications for operative time, blood loss, and morbidity. Lastly, this is the first study that directly compares the fusion success rate and quality using local bone with rhBMP-2 versus ICBG with rhBMP-2 at various times. 4.

  10. Comparison of ruminant and human attaching and effacing Escherichia coli (AEEC) strains.

    Science.gov (United States)

    Horcajo, Pilar; Domínguez-Bernal, Gustavo; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, José A; Blanco, Jesús E; Blanco, Miguel; Mora, Azucena; Dahbi, Ghizlane; López, Cecilia; Puentes, Beatriz; Alonso, María Pilar; Blanco, Jorge; Orden, José A

    2012-03-23

    The presence of 12 genes associated with virulence in human attaching and effacing Escherichia coli (AEEC) was studied within a collection of 20 enterohemorrhagic E. coli (EHEC) and 206 atypical enteropathogenic E. coli (EPEC) isolated from ruminants. In addition, virulence genes and the clonal relationship of 49 atypical EPEC O26 strains isolated from humans and ruminants were compared to clarify whether ruminants serve as a reservoir of atypical EPEC for humans. A great diversity in the content of virulence gene was found. Thus, the espH, espG and map genes were detected in more than 85% of ruminant AEEC strains; the tccP2, espI, efa1/lifA, ehxA and paa genes were present in 50-70% of strains; and other genes such as tccP, espP, katP and toxB were detected in <25% of strains. EHEC strains contained more virulence genes than atypical EPEC strains. Our results suggest for the first time that the efa1/lifA gene is associated with diarrhea in newborn ruminants and that the AEEC strains with the H11 flagellar antigen are potentially more virulent than the non-H11 AEEC strains. Importantly, we identified a new intimin variant gene, eaeρ, in three ruminant atypical EPEC strains. The comparison of ruminant and human EPEC O26 strains showed that some ruminant strains possess virulence gene profiles and pulse-field gel electrophoresis pulsotypes similar to those of human strains. In conclusion, our data suggest that atypical EPEC is a heterogeneous group with different pathogenic potential and that ruminants could serve as a reservoir of atypical EPEC for humans.

  11. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations.

    Science.gov (United States)

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-09-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. © 2014 Anatomical Society.

  12. Characterisation of probiotic properties in human vaginal lactobacilli strains

    Directory of Open Access Journals (Sweden)

    Pirje Hütt

    2016-08-01

    Full Text Available Background: Vaginal lactobacilli offer protection against recurrent urinary infections, bacterial vaginosis, and vaginal candidiasis. Objective: To characterise the isolated vaginal lactobacilli strains for their probiotic properties and to compare their probiotic potential. Methods: The Lactobacillus strains were isolated from vaginal samples by conventional culturing and identified by sequencing of the 16S rDNA fragment. Several functional properties were detected (production of hydrogen peroxide and lactic acid; antagonistic activity against Escherichia coli, Candida albicans, Candida glabrata, and Gardnerella vaginalis; auto-aggregation and adhesiveness as well as safety (haemolytic activity, antibiotic susceptibility, presence of transferrable resistance genes. Results: A total of 135 vaginal lactobacilli strains of three species, Lactobacillus crispatus (56%, Lactobacillus jensenii (26%, and Lactobacillus gasseri (18% were characterised using several functional and safety tests. Most of L. crispatus (89% and L. jensenii (86% strains produced H2O2. The best lactic acid producers were L. gasseri (18.2±2.2 mg/ml compared to L. crispatus (15.6±2.8 mg/ml and L. jensenii (11.6±2.6 mg/ml (p<0.0001; p<0.0001, respectively. L. crispatus strains showed significantly higher anti-E. coli activity compared to L. jensenii. L. gasseri strains expressed significantly lower anticandidal activity compared to L. crispatus and L. jensenii (p<0.0001. There was no significant difference between the species in antagonistic activity against G. vaginalis. Nearly a third of the strains were able to auto-aggregate while all the tested strains showed a good ability to adhere to HeLa cells. None of the tested lactobacilli caused haemolysis. Although phenotypical resistance was not found to ampicillin, chloramphenicol, erythromycin, gentamycin, tetracycline, and vancomycin, the erm(B, tet(M, and tet(K were detected in some strains. All strains were resistant to

  13. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.

    Science.gov (United States)

    Butcher, Michael T; White, Bartholomew J; Hudzik, Nathan B; Gosnell, W Casey; Parrish, John H A; Blob, Richard W

    2011-08-01

    Terrestrial locomotion can impose substantial loads on vertebrate limbs. Previous studies have shown that limb bones from cursorial species of eutherian mammals experience high bending loads with minimal torsion, whereas the limb bones of non-avian reptiles (and amphibians) exhibit considerable torsion in addition to bending. It has been hypothesized that these differences in loading regime are related to the difference in limb posture between upright mammals and sprawling reptiles, and that the loading patterns observed in non-avian reptiles may be ancestral for tetrapod vertebrates. To evaluate whether non-cursorial mammals show loading patterns more similar to those of sprawling lineages, we measured in vivo strains in the femur during terrestrial locomotion of the Virginia opossum (Didelphis virginiana), a marsupial that uses more crouched limb posture than most mammals from which bone strains have been recorded, and which belongs to a clade phylogenetically between reptiles and the eutherian mammals studied previously. The presence of substantial torsion in the femur of opossums, similar to non-avian reptiles, would suggest that this loading regime likely reflects an ancestral condition for tetrapod limb bone design. Strain recordings indicate the presence of both bending and appreciable torsion (shear strain: 419.1 ± 212.8 με) in the opossum femur, with planar strain analyses showing neutral axis orientations that placed the lateral aspect of the femur in tension at the time of peak strains. Such mediolateral bending was unexpected for a mammal running with near-parasagittal limb kinematics. Shear strains were similar in magnitude to peak compressive axial strains, with opossum femora experiencing similar bending loads but higher levels of torsion compared with most previously studied mammals. Analyses of peak femoral strains led to estimated safety factor ranges of 5.1-7.2 in bending and 5.5-7.3 in torsion, somewhat higher than typical mammalian values

  14. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans

    DEFF Research Database (Denmark)

    Nissen, Anne; Christensen, Mikkel; Knop, Filip K

    2014-01-01

    -minute glucose clamps with co-infusion of GIP (4 pmol/kg/min for 15 min, followed by 2 pmol/kg/min for 45 min) or placebo. The samples were analyzed for concentrations of degradation products of C-terminal telopeptide of type I collagen (CTX), a bone resorption marker. RESULTS regarding effects...

  15. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...

  16. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Armas, Laura A G; Akhter, Mohammed P; Drincic, Andjela; Recker, Robert R

    2012-01-01

    Patients with Type 1 Diabetes Mellitus (DM) have markedly increased risk of fracture, but little is known about abnormalities in bone microarchitecture or remodeling properties that might give insight into the pathogenesis of skeletal fragility in these patients. We report here a case-control study comparing bone histomorphometric and micro-CT results from iliac biopsies in 18 otherwise healthy subjects with Type 1 Diabetes Mellitus with those from healthy age- and sex-matched non-diabetic control subjects. Five of the diabetics had histories of low-trauma fracture. Transilial bone biopsies were obtained after tetracycline labeling. The biopsy specimens were fixed, embedded, and scanned using a desktop μCT at 16 μm resolution. They were then sectioned and quantitative histomorphometry was performed as previously described by Recker et al. [1]. Two sections, >250 μm apart, were read from the central part of each biopsy. Overall there were no significant differences between diabetics and controls in histomorphometric or micro-CT measurements. However, fracturing diabetics had structural and dynamic trends different from nonfracturing diabetics by both methods of analysis. In conclusion, Type 1 Diabetes Mellitus does not result in abnormalities in bone histomorphometric or micro-CT variables in the absence of manifest complications from the diabetes. However, diabetics suffering fractures may have defects in their skeletal microarchitecture that may underlie the presence of excess skeletal fragility.

  17. In vitro experiment of the modular orthopedic plate based on Nitinol, used for human radius bone fractures.

    Science.gov (United States)

    Tarniţă, Daniela; Tarniţă, D N; Hacman, L; Copiluş, C; Berceanu, C

    2010-01-01

    Shape memory alloys (SMAs) and in particular Ni-Ti alloys are commonly used in bioengineering applications as they join important qualities as resistance to corrosion, biocompatibility, fatigue resistance, MR compatibility, kink resistance with two unique thermo-mechanical behaviors: the shape memory effect and the pseudoelastic effect. They allow Ni-Ti devices to undergo large mechanically induced deformations and then to recover the original shape by thermal loading or simply by mechanical unloading. Diaphyseal fractures of the radius and ulna present specific problems not encountered in the treatment of fractures of the shafts of other long bones. The adaptive modular implants based on smart materials represent a superior solution in the osteosynthesis of the fractured bones over the conventional implants known so far. To realize the model of the implant module we used SolidWorks software. The small sizes of the modules enable the surgeon to make small incisions, using surgical techniques minimally invasive, having the following advantages: reduction of soft tissues destruction; eliminating intra-operator infections; reduction of blood losses; the reduction of infection risk; the reduction of the healing time. Numerical simulations of the virtual modular implant are realized using Visual Nastran software. The stress diagrams, the displacements diagram and the strain diagram are obtained. An in vitro experiment is made, simulating the osteosynthesis of a transverse diaphyseal fracture of human radius bone. The kinematical parameters diagrams of the staple are obtained, using SIMI Motion video capture system. The experimental diagram force-displacement is obtained.

  18. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    Science.gov (United States)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  19. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    Directory of Open Access Journals (Sweden)

    Verônica Fernandes Vianna

    2013-01-01

    Full Text Available Bone marrow stromal cells (BMSCs are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells and those that did not adhere by three days but did by six days (L-cells. Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics.

  20. Identification of molecular markers related to human alveolar bone cells and pathway analysis in diabetic patients.

    Science.gov (United States)

    Sun, X; Ren, Q H; Bai, L; Feng, Q

    2015-10-28

    Alveolar bone osteoblasts are widely used in dental and related research. They are easily affected by systemic diseases such as diabetes. However, the mechanism of diabetes-induced alveolar bone absorption remains unclear. This study systematically explored the changes in human alveolar bone cell-related gene expression and biological pathways, which may facilitate the investigation of its mechanism. Alveolar bone osteoblasts isolated from 5 male diabetics and 5 male healthy adults were cultured. Total RNA was extracted from these cells and subjected to gene microarray analysis. Differentially expressed genes were screened, and a gene interaction network was constructed. An enrichment pathway analysis was simultaneously performed on differentially expressed genes to identify the biological pathways associated with changes in the alveolar bone cells of diabetic humans. In total, we identified 147 mRNAs that were differentially expressed in diabetic alveolar bone cells (than in the normal cells; 91 upregulated and 36 downregulated mRNAs). The constructed co-expression network showed 3 pairs of significantly-expressed genes. High-enrichment pathway analysis identified 8 pathways that were affected by changes in gene expression; three of the significant pathways were related to metabolism (inositol phosphate metabolism, propanoate metabolism, and pyruvate metabolism). Here, we identified a few potential genes and biological pathways for the diagnosis and treatment of alveolar bone cells in diabetic patients.

  1. Clinical Application of Human Mesenchymal Stromal Cells for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anindita Chatterjea

    2010-01-01

    Full Text Available The gold standard in the repair of bony defects is autologous bone grafting, even though it has drawbacks in terms of availability and morbidity at the harvesting site. Bone-tissue engineering, in which osteogenic cells and scaffolds are combined, is considered as a potential bone graft substitute strategy. Proof-of-principle for bone tissue engineering using mesenchymal stromal cells (MSCs has been demonstrated in various animal models. In addition, 7 human clinical studies have so far been conducted. Because the experimental design and evaluation parameters of the studies are rather heterogeneous, it is difficult to draw conclusive evidence on the performance of one approach over the other. However, it seems that bone apposition by the grafted MSCs in these studies is observed but not sufficient to bridge large bone defects. In this paper, we discuss the published human clinical studies performed so far for bone-tissue regeneration, using culture-expanded, nongenetically modified MSCs from various sources and extract from it points of consideration for future clinical studies.

  2. Local origins impart conserved bone type-related differences in human osteoblast behaviour.

    Science.gov (United States)

    Shah, M; Gburcik, V; Reilly, P; Sankey, R A; Emery, R J; Clarkin, C E; Pitsillides, A A

    2015-03-04

    Osteogenic behaviour of osteoblasts from trabecular, cortical and subchondral bone were examined to determine any bone type-selective differences in samples from both osteoarthritic (OA) and osteoporotic (OP) patients. Cell growth, differentiation; alkaline phosphatase (TNAP) mRNA and activity, Runt-related transcription factor-2 (RUNX2), SP7-transcription factor (SP7), bone sialoprotein-II (BSP-II), osteocalcin/bone gamma-carboxyglutamate (BGLAP), osteoprotegerin (OPG, TNFRSF11B), receptor activator of nuclear factor-κβ ligand (RANKL, TNFSF11) mRNA levels and proangiogenic vascular endothelial growth factor-A (VEGF-A) mRNA and protein release were assessed in osteoblasts from paired humeral head samples from age-matched, human OA/OP (n = 5/4) patients. Initial outgrowth and increase in cell number were significantly faster (p origins in OA and trabecular origins in OP. We found virtually identical bone type-related differences, however, in TNFRSF11B:TNFSF11 in OA and OP, consistent with greater potential for paracrine effects on osteoclasts in trabecular osteoblasts. Subchondral osteoblasts (OA) exhibited highest VEGF-A mRNA levels and release. Our data indicate that human osteoblasts in trabecular, subchondral and cortical bone have inherent, programmed diversity, with specific bone type-related differences in growth, differentiation and pro-angiogenic potential in vitro.

  3. Gene Expression Changes in Femoral Head Necrosis of Human Bone Tissue

    Directory of Open Access Journals (Sweden)

    Bernadett Balla

    2011-01-01

    Full Text Available Osteonecrosis of the femoral head (ONFH is the result of an interruption of the local circulation and the injury of vascular supply of bone. Multiple factors have been implicated in the development of the disease. However the mechanism of ischemia and necrosis in non-traumatic ONFH is not clear. The aim of our investigation was to identify genes that are differently expressed in ONFH vs. non-ONFH human bone and to describe the relationships between these genes using multivariate data analysis. Six bone tissue samples from ONFH male patients and 8 bone tissue samples from non-ONFH men were examined. The expression differences of selected 117 genes were analyzed by TaqMan probe-based quantitative real-time RT-PCR system. The significance test indicated marked differences in the expression of nine genes between ONFH and non-ONFH individuals. These altered genes code for collagen molecules, an extracellular matrix digesting metalloproteinase, a transcription factor, an adhesion molecule, and a growth factor. Canonical variates analysis demonstrated that ONFH and non-ONFH bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via canonical TGFB pathway as well as genes coding for extracellular matrix composing collagen type molecules. The markedly altered gene expression profile observed in the ONFH of human bone tissue may provide further insight into the pathogenetic process of osteonecrotic degeneration of bone.

  4. Characterization of Staphylococcus aureus strains involved in human and bovine mastitis.

    Science.gov (United States)

    Delgado, Susana; García, Pilar; Fernández, Leonides; Jiménez, Esther; Rodríguez-Baños, Mercedes; del Campo, Rosa; Rodríguez, Juan M

    2011-07-01

    Staphylococcus aureus is one of the main etiological agents of mastitis in different mammalian species. At present, it is unknown whether strains isolated from human mastitis cases share phenotypic properties and genetic background with those obtained from animal mastitis cases. Therefore, the objective of this study was to characterize S. aureus strains isolated from women with lactational mastitis and to compare them with the strains responsible for bovine mastitis and noninfectious strains. All the strains were genotyped by both pulsed field gel electrophoresis and multilocus sequence typing and submitted to a characterization scheme that included diverse assays related to pathogenic potential and antibiotic resistance. Apart from siderophore production, no significant association was observed between the strains from bovine and human mastitis. Statistical differences between human- and bovine-mastitis-associated strains were detected for some traits and virulence determinants, such as the presence of prophages and cna and hlb genes, which were more frequently found within the bovine group. On the contrary, resistance to penicillin was significantly higher among strains isolated from human lactational mastitis, probably related to the common presence of the blaZ gene. A high genetic diversity was found among the strains involved in mastitis in breastfeeding women. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Morphological Characterization of the Frontal and Parietal Bones of the Human Skull

    Science.gov (United States)

    2017-03-01

    frozen, male postmortem human subject (PMHS) donors aged 76–86 yrs. The skulls did not have a history of musculoskeletal diseases nor did they...to 17 as assessed by computed tomography. European J of Plastic Surgery. 2015;38(3):193–198. Hubbard RP. Flexure of layered cranial bone. J of...changes with age and sex from computed tomography scans. J of Bone and Mineral Research. 2016;31(2):299–307. Approved for public release

  6. Human tolerance to heat strain during exercise: influence of hydration.

    Science.gov (United States)

    Sawka, M N; Young, A J; Latzka, W A; Neufer, P D; Quigley, M D; Pandolf, K B

    1992-07-01

    This study determined whether 1) exhaustion from heat strain occurs at the same body temperatures during exercise in the heat when subjects are euhydrated as when they are hypohydrated, 2) aerobic fitness influences the body temperature at which exhaustion from heat strain occurs, and 3) curves could be developed to estimate exhaustion rates at a given level of physiological strain. Seventeen heat-acclimated men [maximal oxygen uptake (VO2max) from 45 to 65 ml.kg-1.min-1] attempted two heat stress tests (HSTs): one when euhydrated and one when hypohydrated by 8% of total body water. The HSTs consisted of 180 min of rest and treadmill walking (45% VO2max) in a hot-dry (ambient temperature 49 degrees C, relative humidity 20%) environment. The required evaporative cooling (Ereq) exceeded the maximal evaporative cooling capacity of the environment (Emax); thus thermal equilibrium could not be achieved and 27 of 34 HSTs ended by exhaustion from heat strain. Our findings concerning exhaustion from heat strain are 1) hypohydration reduced the core temperature that could be tolerated; 2) aerobic fitness, per se, did not influence the magnitude of heat strain that could be tolerated; 3) curves can be developed to estimate exhaustion rates for a given level of physiological strain; and 4) exhaustion was rarely associated with a core temperature up to 38 degrees C, and it always occurred before a temperature of 40 degrees C was achieved. These findings are applicable to heat-acclimated individuals performing moderate-intensity exercise under conditions where Ereq approximates or exceeds Emax and who have high skin temperatures.

  7. IFITM1 increases osteogenesis through Runx2 in human alveolar-derived bone marrow stromal cells.

    Science.gov (United States)

    Kim, Beom-Su; Kim, Hyung-Jin; Kim, Jin Seong; You, Yong-Ouk; Zadeh, Homa; Shin, Hong-In; Lee, Seung-Jin; Park, Yoon-Jeong; Takata, Takashi; Pi, Sung-Hee; Lee, Jun; You, Hyung-Keun

    2012-09-01

    The exact molecular mechanisms governing the differentiation of bone marrow stromal stem/progenitor cells (BMSCs) into osteoblasts remain largely unknown. In this study, a highly expressed protein that had a high degree of homology with interferon-induced transmembrane protein 1 (IFITM1) was identified using differentially expressed gene (DEG) screening. We sought to determine whether IFITM1 influenced osteoblast differentiation. During differentiation, IFITM1 expression gradually increased from 5 to 10days and subsequently decreased at 15 days in culture. Analysis of IFITM1 protein expression in several cell lines as well as in situ studies on human tissues revealed its selective expression in bone cells and human bone. Proliferation of human alveolar-derived bone marrow stromal cells (hAD-BMSCs) was significantly inhibited by IFITM1 knockdown by using short hairpin RNA, as were bone specific markers such as alkaline phosphatase, collagen type I α 1, bone sialoprotein, osteocalcin, and osterix were decreased. Calcium accumulation also decreased following IFITM1 knockdown. Moreover, IFITM1 knockdown in hAD-BMSCs was associated with inhibition of Runx2 mRNA and protein expression. Collectively, the present data provide evidence for the role of IFITM1 in osteoblast differentiation. The exact mechanisms of IFITM1's involvement in osteoblast differentiation are still under investigation.

  8. Human maxillary sinus floor elevation as a model for bone regeneration enabling the application of one-step surgical procedures

    NARCIS (Netherlands)

    Farre-Guasch, E.; Prins, H.J.; Overman, J.R.; ten Bruggenkate, C.M.; Schulten, E.A.J.M.; Helder, M.N.; Klein-Nulend, J.

    2013-01-01

    Bone loss in the oral and maxillofacial region caused by trauma, tumors, congenital disorders, or degenerative diseases is a health care problem worldwide. To restore (reconstruct) these bone defects, human or animal bone grafts or alloplastic (synthetic) materials have been used. However, several d

  9. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques.

    Science.gov (United States)

    Zhang, Qingwen; Wang, Qiong; Tian, Guang; Qi, Zhizhen; Zhang, Xuecan; Wu, Xiaohong; Qiu, Yefeng; Bi, Yujing; Yang, Xiaoyan; Xin, Youquan; He, Jian; Zhou, Jiyuan; Zeng, Lin; Yang, Ruifu; Wang, Xiaoyi

    2014-01-01

    Yersinia pestis biovar Microtus is considered to be a virulent to larger mammals, including guinea pigs, rabbits and humans. It may be used as live attenuated plague vaccine candidates in terms of its low virulence. However, the Microtus strain's protection against plague has yet to be demonstrated in larger mammals. In this study, we evaluated the protective efficacy of the Microtus strain 201 as a live attenuated plague vaccine candidate. Our results show that this strain is highly attenuated by subcutaneous route, elicits an F1-specific antibody titer similar to the EV and provides a protective efficacy similar to the EV against bubonic plague in Chinese-origin rhesus macaques. The Microtus strain 201 could induce elevated secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4, IL-5, and IL-6), as well as chemokines MCP-1 and IL-8. However, the protected animals developed skin ulcer at challenge site with different severity in most of the immunized and some of the EV-immunized monkeys. Generally, the Microtus strain 201 represented a good plague vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses as well as its good protection against high dose of subcutaneous virulent Y. pestis challenge.

  10. Total lymphatic irradiation and bone marrow in human heart transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, D.R.; Hong, R.; Greenberg, A.J.; Gilbert, E.F.; Dacumos, G.C.; Dufek, J.H.

    1984-08-01

    Six patients, aged 36 to 59 years, had heart transplants for terminal myocardial disease using total lymphatic irradiation (TLI) and donor bone marrow in addition to conventional therapy. All patients were poor candidates for transplantation because of marked pulmonary hypertension, unacceptable tissue matching, or age. Two patients are living and well more than four years after the transplants. Two patients died of infection at six and seven weeks with normal hearts. One patient, whose preoperative pulmonary hypertension was too great for an orthotopic heart transplant, died at 10 days after such a procedure. The other patient died of chronic rejection seven months postoperatively. Donor-specific tolerance developed in 2 patients. TLI and donor bone marrow can produce specific tolerance to donor antigens and allow easy control of rejection, but infection is still a major problem. We describe a new technique of administering TLI with early reduction of prednisone that may help this problem.

  11. Thermal Conductivity of Human Bone in Cryoprobe Freezing as Related to Density.

    Science.gov (United States)

    Walker, Kyle E; Baldini, Todd; Lindeque, Bennie G

    2016-12-09

    Cryoprobes create localized cell destruction through freezing. Bone is resistant to temperature flow but is susceptible to freezing necrosis at warmer temperatures than tumor cells. Few studies have determined the thermal conductivity of human bone. No studies have examined conductivity as related to density. The study goal was to examine thermal conductivity in human bone while comparing differences between cancellous and cortical bone. An additional goal was to establish a relationship between bone density and thermal conductivity. Six knee joints from 5 cadavers were obtained. The epiphyseal region was sliced in half coronally prior to inserting an argon-circulating cryoprobe directed away from the joint line. Thermistor thermometers were placed perpendicularly at measured increments, and the freezing cycle was recorded until steady-state conditions were achieved. For 2 cortical samples, the probe was placed intramedullary in metaphyseal samples and measurements were performed radially from the central axis of each sample. Conductivity was calculated using Fournier's Law and then plotted against measured density of each sample. Across samples, density of cancellous bone ranged from 0.86 to 1.38 g/mL and average thermal conductivity ranged between 0.404 and 0.55 W/mK. Comparatively, cortical bone had a density of 1.70 to 1.86 g/mL and thermal conductivity of 0.0742 to 0.109 W/mK. A strong 2-degree polynomial correlation was seen (R(2)=0.8226, P<.001). Bone is highly resistant to temperature flow. This resistance varies and inversely correlates strongly with density. This information is clinically relevant to maximize tumor ablation while minimizing morbidity through unnecessary bone loss and damage to surrounding structures. [Orthopedics. 201x; xx(x):xx-xx.].

  12. The relationship between the mechanical anisotropy of human cortical bone tissue and its microstructure

    Science.gov (United States)

    Espinoza Orias, Alejandro A.

    Orthopedics research has made significant advances in the areas of biomechanics, bone implants and bone substitute materials. However, to date there is no definitive model to explain the structure-property relationships in bone as a material to enable better implant designs or to develop a true biomechanical analog of bone. The objective of this investigation was to establish a relationship between the elastic anisotropy of cortical bone tissue and its microstructure. Ultrasonic wave propagation was used to measure stiffness coefficients for specimens sectioned along the length of a human femur. The elastic constants were orthotropic and varied with anatomical location. Stiffness coefficients were generally largest at the midshaft and stiffness anisotropy ratios were largest at the distal and proximal ends. These tests were run on four additional human femurs to assess the influence of phenotypic variation, and in most cases, it was found that phenotypes do not exert a significant effect. Stiffness coefficients were shown to be correlated as a power law relation to apparent density, but anisotropy ratios were not. Texture analysis was performed on selected samples to measure the orientation distribution of the bone mineral crystals. Inverse pole figures showed that bone mineral crystals had a preferred crystallographic orientation, coincident with the long axis of the femur, which is its principal loading direction. The degree of preferred orientation was represented in Multiples of a Random Distribution (MRD), and correlated to the anisotropy ratios. Variation in elastic anisotropy was shown to be primarily due to the bone mineral orientation. The results found in this work can be used to incorporate anisotropy into structural analysis for bone as a material.

  13. Targeted regeneration of bone in the osteoporotic human femur.

    Directory of Open Access Journals (Sweden)

    Kenneth E S Poole

    Full Text Available We have recently developed image processing techniques for measuring the cortical thicknesses of skeletal structures in vivo, with resolution surpassing that of the underlying computed tomography system. The resulting thickness maps can be analysed across cohorts by statistical parametric mapping. Applying these methods to the proximal femurs of osteoporotic women, we discover targeted and apparently synergistic effects of pharmaceutical osteoporosis therapy and habitual mechanical load in enhancing bone thickness.

  14. Characterization of a Composite Material to Mimic Human Cranial Bone

    Science.gov (United States)

    2015-09-01

    a general population. These file formats can be sent directly to additive manufacturing machines , generically referred to as 3-D printers, to...Illustration of the SLA additive manufacturing process. The SLA machine used in this study to manufacture specimens was a Viper Si (3D Systems, Rock...architectures while possessing physical and mechanical characteristics similar to that of bone. We are utilizing additive manufacturing , more generally

  15. Late effects on human bone marrow after extended field radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Parmentier, C.; Morardet, N.; Tubiana, M.

    1983-09-01

    Thirty-two patients with lymphoma were treated by extended radiotherapy (RT) at a dose of 40 Gy and were studied by ferrokinetic studies and surface counting at various times following irradiation. Loss of hematopoietic activity in the irradiated areas is compensated by increased activity in the non-irradiated areas. Despite the return of peripheral blood counts to normal, the hyperactivity of the non-irradiated bone marrow persists over up to 13 years after RT, while the hematopoietic activity of the irradiated areas remains depressed and is only slightly higher than immediately after RT. The hypoactivity persisted even when the hemopoietic tissues had been subjected to the intense stimulation provoked by an aplasia caused by chemotherapy. However, a recovery was observed for dose of 20 Gy or lower. The hemopoietic activity of the irradiated bone marrow appears to be related to the volume of the marrow irradiated and is higher after a mantle + inverted Y field than after a mantle field. Bone marrow scintigraphies with /sup 59/Fe in 7 out of 9 patients studied revealed an extension of hematopoiesis into a normally dormant area of the marrow, such as the femora. In 2 patients an erythropoietic activity was observed in spleens which had received a dose of 40 Gy, and extra medullary erythropoiesis was found in approximately two-thirds of the patients.

  16. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche

    Directory of Open Access Journals (Sweden)

    Zach S. Templeton

    2015-12-01

    Full Text Available BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014 and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006 and IL-1β (P = .001 in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche.

  17. Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study.

    NARCIS (Netherlands)

    Limbert, G.; Lierde, C. van; Muraru, O.L.; Walboomers, X.F.; Frank, M.; Hansson, S.; Middleton, J.; Jaecques, S.

    2010-01-01

    The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the impla

  18. Changes in microgaps, micromotion, and trabecular strain from interlocked cement-trabecular bone interfaces in total knee replacements with in vivo service.

    Science.gov (United States)

    Miller, Mark A; Goodheart, Jacklyn R; Khechen, Benjamin; Janssen, Dennis; Mann, Kenneth A

    2016-06-01

    The initial fixation of cemented Total Knee Replacements (TKRs) relies on mechanical interlock between cement and bone, but loss of interlock occurs with in vivo service. In this study, cement-trabeculae gap morphology and micromechanics were measured for lab prepared (representing post-operative state) and postmortem retrieval (with in vivo remodeling) TKRs to determine how changes in fixation affect local micromechanics. Small specimens taken from beneath the tibial tray were loaded with 1 MPa axial compression and the local micromechanics of the trabeculae-cement interface was quantified using digital image correlation. Lab prepared trabeculae that initially interlock with cement had small gaps (ave:14 μm) and limited micromotion (ave:1 μm) which were larger near the cement border. Trabecular resorption was prevalent following in vivo service; interface gaps became larger (ave:40 μm) and micromotion increased (ave:6 μm), particularly near the cement border. Interlocked trabeculae from lab prepared specimens exhibited strains that were 20% of the supporting bone strain, indicating the trabeculae were initially strain shielded. The spatial and temporal progression of gaps, micromotion, and bone strain was complex and much more variable for post-mortem retrievals compared to the lab prepared specimens. From a clinical perspective, attaining more initial interlock results in cement-bone interfaces that are better fixed with less micromotion. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1019-1025, 2016.

  19. Human Bone Marrow Stromal Cells: A Reliable, Challenging Tool for In Vitro Osteogenesis and Bone Tissue Engineering Approaches

    Directory of Open Access Journals (Sweden)

    Ute Hempel

    2016-01-01

    Full Text Available Adult human bone marrow stromal cells (hBMSC are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the “aspect plastic adherence” without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a how many passages the osteogenic characteristics are stable in and (b the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP, octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ. The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts.

  20. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold.

    Science.gov (United States)

    Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen

    2016-01-01

    Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects.

  1. Draft Genome Sequences of Two Historical Listeria monocytogenes Strains from Human Listeriosis Cases in 1933

    Science.gov (United States)

    Lee, Sangmi; Ward, Todd J.; Orwig, Nathane; Altermann, Eric; Jima, Dereje; Parsons, Cameron; Kathariou, Sophia

    2016-01-01

    We report here the draft genome sequences of two Listeria monocytogenes strains from some of the earliest reported cases of human listeriosis in North America. The strains were isolated in 1933 from patients in Massachusetts and Connecticut, USA, and belong to the widely disseminated hypervirulent clonal complex 1 (CC1) and CC2. PMID:27932656

  2. Optical detection of carotenoid antioxidants in human bone and surrounding tissue.

    Science.gov (United States)

    Ermakov, Igor V; Ermakova, Maia R; Rosenberg, Thomas D; Gellermann, Werner

    2013-11-01

    Carotenoids are known to play an important role in health and disease state of living human tissue based on their antioxidant and optical filtering functions. In this study, we show that carotenoids exist in human bone and surrounding fatty tissue both in significant and individually variable concentrations. Measurements of biopsied tissue samples with molecule-specific Raman spectroscopy and high-performance liquid chromatography reveal that all carotenoids that are known to exist in human skin are also present in human bone. This includes all carotenes, lycopene, β-cryptoxanthin, lutein, and zeaxanthin. We propose quantitative reflection imaging as a noncontact optical method suitable for the measurement of composite carotenoid levels in bone and surrounding tissue exposed during open surgeries such as total knee arthroplasty, and as a proof of concept, demonstrate carotenoid measurements in biopsied bone samples. This will allow one to establish potential correlations between internal tissue carotenoid levels and levels in skin and to potentially use already existing optical skin carotenoid tests as surrogate marker for bone carotenoid status.

  3. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  4. Genome Sequences of 11 Human Vaginal Actinobacteria Strains

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences. PMID:27688328

  5. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Science.gov (United States)

    Meier, Raphael P H; Seebach, Jörg D; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H; Muller, Yannick D

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  6. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  7. Noninvasive optical measurement of bone marrow lesions: a Monte Carlo study on visible human dataset

    Science.gov (United States)

    Su, Yu; Li, Ting

    2016-03-01

    Bone marrow is both the main hematopoietic and important immune organ. Bone marrow lesions (BMLs) may cause a series of severe complications and even myeloma. The traditional diagnosis of BMLs rely on mostly bone marrow biopsy/ puncture, and sometimes MRI, X-ray, and etc., which are either invasive and dangerous, or ionizing and costly. A diagnosis technology with advantages in noninvasive, safe, real-time continuous detection, and low cost is requested. Here we reported our preliminary exploration of feasibility verification of using near-infrared spectroscopy (NIRS) in clinical diagnosis of BMLs by Monte Carlo simulation study. We simulated and visualized the light propagation in the bone marrow quantitatively with a Monte Carlo simulation software for 3D voxelized media and Visible Chinese Human data set, which faithfully represents human anatomy. The results indicate that bone marrow actually has significant effects on light propagation. According to a sequence of simulation and data analysis, the optimal source-detector separation was suggested to be narrowed down to 2.8-3.2cm, at which separation the spatial sensitivity distribution of NIRS cover the most region of bone marrow with high signal-to-noise ratio. The display of the sources and detectors were optimized as well. This study investigated the light transport in spine addressing to the BMLs detection issue and reported the feasibility of NIRS detection of BMLs noninvasively in theory. The optimized probe design of the coming NIRS-based BMLs detector is also provided.

  8. Comparison of Escherichia coli Strains Recovered from Human Cystitis and Pyelonephritis Infections in Transurethrally Challenged Mice

    Science.gov (United States)

    Johnson, David E.; Lockatell, C. Virginia; Russell, Robert G.; Hebel, J. Richard; Island, Michael D.; Stapleton, Ann; Stamm, Walter E.; Warren, John W.

    1998-01-01

    Urinary tract infection, most frequently caused by Escherichia coli, is one of the most common bacterial infections in humans. A vast amount of literature regarding the mechanisms through which E. coli induces pyelonephritis has accumulated. Although cystitis accounts for 95% of visits to physicians for symptoms of urinary tract infections, few in vivo studies have investigated possible differences between E. coli recovered from patients with clinical symptoms of cystitis and that from patients with symptoms of pyelonephritis. Epidemiological studies indicate that cystitis-associated strains appear to differ from pyelonephritis-associated strains in elaboration of some putative virulence factors. With transurethrally challenged mice we studied possible differences using three each of the most virulent pyelonephritis and cystitis E. coli strains in our collection. The results indicate that cystitis strains colonize the bladder more rapidly than do pyelonephritis strains, while the rates of kidney colonization are similar. Cystitis strains colonize the bladder in higher numbers, induce more pronounced histologic changes in the bladder, and are more rapidly eliminated from the mouse urinary tract than pyelonephritis strains. These results provide evidence that cystitis strains differ from pyelonephritis strains in this model, that this model is useful for the study of the uropathogenicity of cystitis strains, and that it would be unwise to use pyelonephritis strains to study putative virulence factors important in the development of cystitis. PMID:9632566

  9. Biochemical and serological characterization of mycoplasma strains isolated from the genital tracts of humans in Nigeria.

    Science.gov (United States)

    Agbakoba, N R; Adetosoye, A I; Adewole, I F

    2006-06-01

    Fifty-five (55) Mycoplasma strains isolated from the genital tracts of humans were biochemically characterized using various biochemical tests and also serologically identified by growth inhibition technique using 5 mycoplasma antisera namely M. hominis PG2 1: M. genitalium G37: M. penetrans GTU54 and 2 strains of M. fermentans PG18 (HRC 6-62-S-170 and MB713-501-069). Biochemically, 43 (78.2%) strains were identified as Mycoplasma hominis, 8 (14.5%) strains as M. fermentans and 4 (7.3%) as M. penetrans. The M. hominis strains hydrolyzed only arginine while the M. fermentans and M. penetrans strains in addition to arginine hydrolysis also broke down glucose fermentatively and oxidatively. The M. fermentans strains showed varying reactions to phosphatase activity and to the reduction of tetrazolium chloride. Serologically, 4 (7.3%) mycoplasma strains were confirmed as M. penetrans GTU54 and of the 8 M. fermentans strains, 4 (7.3%) were identified as M. fermentans PG18 serotype HRC 6-62-S-170 and the other 4 (7.3%) as M. fermentans PG18 serotype MB 713-501-069. Only 13 (30.2%) of the 43 M. hominis strains were identified as M. hominis serotype PG2 1. None was identified as M. genitalium. The heterogeneity of the mycoplasma strains especially M. hominis was observed in this study and the need for the use of multiple antisera in growth inhibition test is hereby supported.

  10. Tumour necrosis factor-alpha (TNFα stimulates the growth of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    F. Rougier

    1997-01-01

    Full Text Available This study reports that TNF-α is a potent mitogen for human bone marrow sternal cells in vitro (assessed by [3H]-thymidine incorporation into DNA and cell counts. In contrast, cytokines such as IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, LIF, SCF, M-CSF, G-CSF and GM-CSF had no effect. The effect of TNF-α on the growth of human bone marrow stromal cells could be of importance during inflammatory processes which take place in the marrow, for example marrow fibrosis.

  11. Antinociceptive Effect of Intrathecal Injection of Genetically Engineered Human Bone Marrow Stem Cells Expressing the Human Proenkephalin Gene in a Rat Model of Bone Cancer Pain

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2017-01-01

    Full Text Available Background. This study aimed to investigate the use of human bone marrow mesenchymal stem cells (hBMSCs genetically engineered with the human proenkephalin (hPPE gene to treat bone cancer pain (BCP in a rat model. Methods. Primary cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 106 were then intrathecally injected into a rat model of BCP. Paw mechanical withdrawal threshold (PMWT was measured before and after BCP. The effects of hPPE gene transfer on hBMSC bioactivity were analyzed in vitro and in vivo. Results. No changes were observed in the surface phenotypes and differentiation of hBMSCs after gene transfer. The hPPE-hBMSC group showed improved PMWT values on the ipsilateral side of rats with BCP from day 12 postoperatively, and the analgesic effect was reversed by naloxone. The levels of proinflammatory cytokines such as IL-1β and IL-6 were ameliorated, and leucine-enkephalin (L-EK secretion was augmented, in the hPPE-engineered hBMSC group. Conclusion. The intrathecal administration of BMSCs modified with the hPPE gene can effectively relieve pain caused by bone cancer in rats and might be a potentially therapeutic tool for cancer-related pain in humans.

  12. Antinociceptive Effect of Intrathecal Injection of Genetically Engineered Human Bone Marrow Stem Cells Expressing the Human Proenkephalin Gene in a Rat Model of Bone Cancer Pain

    Science.gov (United States)

    Tian, Yuke; Li, Haifeng; Zhang, Dengwen; Sun, Qiang

    2017-01-01

    Background. This study aimed to investigate the use of human bone marrow mesenchymal stem cells (hBMSCs) genetically engineered with the human proenkephalin (hPPE) gene to treat bone cancer pain (BCP) in a rat model. Methods. Primary cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 106) were then intrathecally injected into a rat model of BCP. Paw mechanical withdrawal threshold (PMWT) was measured before and after BCP. The effects of hPPE gene transfer on hBMSC bioactivity were analyzed in vitro and in vivo. Results. No changes were observed in the surface phenotypes and differentiation of hBMSCs after gene transfer. The hPPE-hBMSC group showed improved PMWT values on the ipsilateral side of rats with BCP from day 12 postoperatively, and the analgesic effect was reversed by naloxone. The levels of proinflammatory cytokines such as IL-1β and IL-6 were ameliorated, and leucine-enkephalin (L-EK) secretion was augmented, in the hPPE-engineered hBMSC group. Conclusion. The intrathecal administration of BMSCs modified with the hPPE gene can effectively relieve pain caused by bone cancer in rats and might be a potentially therapeutic tool for cancer-related pain in humans. PMID:28286408

  13. On the multiscale origins of fracture resistance in human bone and its biological degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.

    2012-03-09

    Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length-scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone?s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length-scales becomes severely degraded with such factors as aging, irradiation and disease. Indeed aging and irradiation can cause changes to the cross-link profile at fibrillar length-scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone's overall resistance to the initiation and growth of cracks.

  14. In vivo measurement of mechanical properties of human long bone by using sonic sound

    Science.gov (United States)

    Hossain, M. Jayed; Rahman, M. Moshiur; Alam, Morshed

    2016-07-01

    Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.

  15. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P growth.

  16. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-bin; SUN Li; YANG Shu-hua; ZHANG Yu-kun; HU Ru-yin; FU De-hao

    2008-01-01

    Background Nanobone putty is an injectable and bioresorbable bone substitute. The neutral-pH putty resembles hard bone tissue, does not contain polymers or plasticizers, and is self-setting and nearly isothermic, properties which are helpful for the adhesion, proliferation, and function of bone cells. The aim of this study was to investigate the osteogenic potential of human bone morphogenetic protein 2(hBMP2)gene activated nanobone putty in inducing ectopic bone formation, and the effects of the hBMP2 gene activated nanobone putry on repairing bone defects. Methods Twenty four Kunming mice were randomly divided into two groups. The nanobone putty+hBMP2 plasmid was injected into the right thigh muscle pouches of the mice(experiment side). The nanobone putty+blank plasmid or nanobone putty was injected into the left thigh muscle pouches of the group 1(control side 1)or group 2(control side 2), respectively. The effects of ectopic bone formation were evaluated by radiography, histology, and molecular biology analysis at 2 and 4 weeks after operation. Bilateral 15 mm radial defects were made in forty-eight rabbits. These rabbits were randomly divided into three groups: Group A, nanobone putty+hBMP2 plasmid;Group B, putty+blank plasmid; Group C, nanobone putty only. Six rabbits with left radial defects served as blank controls. The effect of bone repairing was evaluated by radiography, histology, molecular biology, and biomechanical analysis at 4, 8, and 12 weeks after operation. Results The tissue from the experimental side of the mice expressed hBMP2. Obvious cartilage and island-distributed immature bone formation in implants of the experiment side were observed at 2 weeks after operation, and massive mature bone observed at 4 weeks. No bone formation was observed in the control side of the mice. The ALP activity in the experiment side of the mice was higher than that in the control side. The tissue of Group A rabbits expressed hBMP2 protein and higher ALP level

  17. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yue-Dong Gao

    2014-01-01

    Full Text Available The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1 exploring the genetic differences between E. coli strains in human gut and (2 dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study.

  18. Strontium-90 concentration measurements in human bones and teeth in Greece.

    Science.gov (United States)

    Stamoulis, K C; Assimakopoulos, P A; Ioannides, K G; Johnson, E; Soucacos, P N

    1999-05-19

    Strontium-90 concentration was measured in human bones and teeth collected in Greece during the period 1992-1996. One hundred and five bone samples, mainly cancellous bone, and 108 samples, taken from a total of 896 individual teeth were processed. Samples were classified according to the age and sex of the donors. Samples were chemically pre-treated according to a specially devised method to enable extraction of 90Y, at equilibrium with 90Sr in the original sample. Subsequently, 90Y beta activity was measured with a gas proportional counter. Radiostrontium concentration in bone samples showed small variations with respect to age or sex, with an average value of 30 mBq 90Sr/g Ca. However, 90Sr concentration measurements in teeth demonstrated a pronounced structure, which clearly reflects contamination from the 1960s atmospheric nuclear weapons tests and the more recent Chernobyl accident. This difference is attributed to the different histological structure of skeletal bones and teeth, the later consisting mainly of compact bone. An age-dependent model for radiostrontium concentration in human bones and teeth is developed which is able to successfully reproduce the experimental data. Through a fitting process, the model also yielded calcium turnover rates for compact bone, as a function of age, as well as an estimate of radiostrontium contamination of foodstuffs in Greece for the past four decades. The results obtained in this study indicate that radiostrontium environmental contamination which resulted from the atmospheric nuclear weapons tests in the 1960s, exceed by far that caused by the Chernobyl accident.

  19. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    LI Jing-hui; LIU Da-yong; ZHANG Fang-ming; WANG Fan; ZHANG Wen-kui; ZHANG Zhen-ting

    2011-01-01

    Background The seed cell is a core problem in bone tissue engineering research.Recent research indicates that human dental pulp stem cells (hDPSCs) can differentiate into osteoblasts in vitro,which suggests that they may become a new kind of seed cells for bone tissue engineering.The aim of this study was to evaluate the osteogenic differentiation of hDPSCs in vitro and bone-like tissue formation when transplanted with three-dimensional gelatin scaffolds in vivo,and hDPSCs may become appropriate seed cells for bone tissue engineering.Methods We have utilized enzymatic digestion to obtain hDPSCs from dental pulp tissue extracted during orthodontic treatment.After culturing and expansion to three passages,the cells were seeded in 6-well plates or on three-dimensional gelatin scaffolds and cultured in osteogenic medium.After 14 days in culture,the three-dimensional gelatin scaffolds were implanted subcutaneously in nude mice for 4 weeks.In 6-well plate culture,osteogenesis was assessed by alkaline phosphatase staining,Von Kossa staining,and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the osteogenesis-specific genes type I collagen (COL l),bone sialoprotein (BSP),osteocalcin (OCN),RUNX2,and osterix (OSX).In three-dimensional gelatin scaffold culture,X-rays,hematoxylin/eosin staining,and immunohistochemical staining were used to examine bone formation.Results In vitro studies revealed that hDPSCs do possess osteogenic differentiation potential.In vivo studies revealed that hDPSCs seeded on gelatin scaffolds can form bone structures in heterotopic sites of nude mice.Conclusions These findings suggested that hDPSCs may be valuable as seed cells for bone tissue engineering.As a special stem cell source,hDPSCs may blaze a new path for bone tissue engineering.

  20. Characteristics of porous zirconia coated with hydroxyapatite as human bones

    Indian Academy of Sciences (India)

    V V Narulkar; S Prakash; K Chandra

    2007-08-01

    Since hydroxyapatite has excellent biocompatibility and bone bonding ability, porous hydroxyapatite ceramics have been intensively studied. However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared by ceramic slurry infiltration of expanded polystyrene bead compacts, followed by firing at 1500°C. Then slurry of hydroxyapatite–borosilicate glass mixed powder was used to coat the porous ceramics, followed by firing at 1200°C. The porous structures without the coating had high porosities of 51–69%, high pore interconnectivity, and sufficiently large pore window sizes (300–500 m). The porous ceramics had compressive strengths of 5.3∼36.8 MPa, favourably comparable to the mechanical properties of cancellous bones. In addition, porous hydroxyapatite surface was formed on the top of the composite coating, whereas a borosilicate glass layer was found on the interface. Thus, porous zirconia-based ceramics were modified with a bioactive composite coating for biomedical applications.

  1. Relationships of human plasma fluoride and bone fluoride to age

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, F.M.; Tinanoff, N.; Moutinho, M.; Anstey, M.B.; Waziri, M.H.

    1976-04-01

    There is evidence that fluoride levels in plasma correlate with the fluoride content in bones. The authors determined whether or not fluoride in plasma and bones might correlate with age. In 41 in-patients at the University Hospital, Iowa City, 36 of whom had been residing in fluoridated communities plasma fluoride was determined in the fasting stage by the fluoride ion selective electrode. The teeth of these children were compared with those of a neighboring city where the natural fluoride content in drinking water was 0.1 ppm. For the second sampling 42 months following the beginning of the program only 10 and 11 year old children - who had been 6 and 7 years old at the beginning of the experiment - were selected. Twenty-five boys and girls in each group were compared with a similar group of children as controls. After 28 months (approximately 33 rinsing with sodium fluoride solution) the DMF index in the fluoride-treated children was 18.4% less than in the controls. In the second group among 10 and 11 year old children after 42 months with 55 rinsings the difference was 35.0%. The author acknowledged that factors other than applications of sodium fluoride may have contributed to the prevention of caries in the fluoride-treated groups.

  2. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  3. Campylobacter jejuni strains of human and chicken origin are invasive in chickens after oral challenge

    DEFF Research Database (Denmark)

    Knudsen, Katrine Nørrelund; Bang, Dang Duong; Andresen, Lars Ole

    2006-01-01

    The aim of the study was to evaluate the colonizing ability and the invasive capacity of selected Campylobacter jejuni strains of importance for the epidemiology of C jejuni in Danish broiler chickens. Four C jejuni strains were selected for experimental colonization Studies in day-old and 14-day......-old chickens hatched from specific pathogen free (SPF) eggs. Of the four C jejuni strains tested, three were Penner heat-stable serotype 2,flaA type 1/1, the most common type found among broilers and human cases in Denmark. The fourth strain was Penner heat-stable serotype 19, which has been shown...... to be associated with the Guillain Barre Syndrome (GBS) in humans. The minimum dose for establishing colonization in the clay-old chickens was approximately 2 cfu, whereas two- to threefold higher doses were required for establishing colonization in the 14-day-old chickens. Two of the C jejuni strains were shown...

  4. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by {sup 99m}Tc-MDP bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shunfang [Department of Nuclear Medicine, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China)], E-mail: yzyg@sh163.net; Dong Qianggang [Laboratory of Mol-diagnosis, Shanghai Cancer Institute of Shanghai Jiaotong University, Shanghai 200032 (China); Yao Ming [Laboratory of Pathology, Shanghai Cancer Institute of Shanghai Jiaotong University, Shanghai 200032 (China); Shi Meiping [Department of Pathology, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Ye Jianding [Department of Radiology, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Zhao Langxiang [Department of Pathology, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Su Jianzhong; Gu Weiyong [Shanghai Thoracic Tumor Institute, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Xie Wenhui [Department of Nuclear Medicine, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Wang Kankan; Du Yanzhi [State Key Laboratory of Medical Genomics, Ruijin Hospital of Shanghai Jiaotong University, Shanghai 200025 (China); Li Yao [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China); Huang Yan [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China)], E-mail: huangyan@fudan.edu.cn

    2009-04-15

    Background: Bone metastasis is one of the most common clinical phenomena of late stage lung cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal and cell model. This study aims to establish human lung adenocarcinoma cell line with highly bone metastases potency with {sup 99m}Tc-MDP bone scintigraphy. Methods: The human lung adenocarcinoma cancer cells SPC-A-1 were injected into the left cardiac ventricle of NIH-Beige-Nude-XID (NIH-BNX) immunodeficient mice. The metastatic lesions of tumor-bearing mice were imaged with {sup 99m}Tc-MDP bone scintigraphy on a Siemens multi-single photon emission computed tomography. Pinhole images were acquired on a GZ-B conventional gamma camera with a self-designed pinhole collimator. The mice with bone metastasis were sacrificed under deep anesthesia, and the lesions were resected. Bone metastatic cancer cells in the resected lesions were subjected for culture and then reinoculated into the NIH-BNX mice through left cardiac ventricle. The process was repeated for eight cycles to obtain a novel cell subline SPC-A-1BM. Real-time polymerase chain reaction (PCR) was used to compare the gene expression differences in the parental and SPC-A-1BM cells. Results: The bone metastasis sites were successfully revealed by bone scintigraphy. The established bone metastasis cell line SPC-A-1BM had a high potential to metastasize in bone, including mandible, humerus, thoracic vertebra, lumbar, femur, patella, ilium and cartilage rib. The expression level of vascular endothelial growth factor gene family, Bcl-2 and cell adhesion-related genes ECM1, ESM1, AF1Q, SERPINE2 and FN1 were examined. Gene expression difference was found between parental and bone-seeking metastasis cell SPC-A-1BM, which indicates SPC-A-1BM has metastatic capacity vs. its parental cells. Conclusion: SPC-A-1BM is a bone-seeking metastasis human lung adenocarcinoma cell line. Bone scintigraphy may be used as

  5. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by (99m)Tc-MDP bone scintigraphy.

    Science.gov (United States)

    Yang, Shunfang; Dong, Qianggang; Yao, Ming; Shi, Meiping; Ye, Jianding; Zhao, Langxiang; Su, Jianzhong; Gu, Weiyong; Xie, Wenhui; Wang, Kankan; Du, Yanzhi; Li, Yao; Huang, Yan

    2009-04-01

    Bone metastasis is one of the most common clinical phenomena of late stage lung cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal and cell model. This study aims to establish human lung adenocarcinoma cell line with highly bone metastases potency with (99m)Tc-MDP bone scintigraphy. The human lung adenocarcinoma cancer cells SPC-A-1 were injected into the left cardiac ventricle of NIH-Beige-Nude-XID (NIH-BNX) immunodeficient mice. The metastatic lesions of tumor-bearing mice were imaged with (99m)Tc-MDP bone scintigraphy on a Siemens multi-single photon emission computed tomography. Pinhole images were acquired on a GZ-B conventional gamma camera with a self-designed pinhole collimator. The mice with bone metastasis were sacrificed under deep anesthesia, and the lesions were resected. Bone metastatic cancer cells in the resected lesions were subjected for culture and then reinoculated into the NIH-BNX mice through left cardiac ventricle. The process was repeated for eight cycles to obtain a novel cell subline SPC-A-1BM. Real-time polymerase chain reaction (PCR) was used to compare the gene expression differences in the parental and SPC-A-1BM cells. The bone metastasis sites were successfully revealed by bone scintigraphy. The established bone metastasis cell line SPC-A-1BM had a high potential to metastasize in bone, including mandible, humerus, thoracic vertebra, lumbar, femur, patella, ilium and cartilage rib. The expression level of vascular endothelial growth factor gene family, Bcl-2 and cell adhesion-related genes ECM1, ESM1, AF1Q, SERPINE2 and FN1 were examined. Gene expression difference was found between parental and bone-seeking metastasis cell SPC-A-1BM, which indicates SPC-A-1BM has metastatic capacity vs. its parental cells. SPC-A-1BM is a bone-seeking metastasis human lung adenocarcinoma cell line. Bone scintigraphy may be used as an accurate, sensitive, noninvasive tool to detect

  6. Comparison of mesenchymal stem cells from human placenta and bone marrow

    Institute of Scientific and Technical Information of China (English)

    张毅; 李长东; 江小霞; 李荷莲; 唐佩弦; 毛宁

    2004-01-01

    Background Nowadays bone marrow represents the main source of mesenchymal stem cells (MSCs). We identified a new population of MSCs derived from human placenta and compared its biological characterization with bone marrow derived MSCs.Methods Mononucleated cells (MNC) were isolated from the human placenta tissue perfusate by density gradient fractionation. Individual colonies were selected and cultured in tissue dishes. At the same time, human bone marrow derived MSCs were identified. Culture-expanded cells were characterized by immune phenotyping and cultured under conditions promoting differetiation to osteoblasts or adipocytes. The hematopoietic cytokines were assayed using reverse transcriptase polymerase chain reaction (RT-PCR). Results Human placental MSCs exhibited fibroblastoid morphology. Flow cytometric analyses showed that the placental MSC were CD29, CD44, CD73, CD105, CD166, HLA-ABC positive; but were negative for CD34, CD45, and HLA-DR. Functionally, they could be induced into adipocytes or osteocytes. Moreover, several hematopoietic cytokine mRNA was found in placenta-derived MSCs by RT-PCR analysis, including IL-6, M-CSF, Flt3-ligand and SCF. These results were consistent with the properties of bone marrow derived MSCs.Conclusion These observations implicate the postpartum human placenta as an important and novel source of multipotent stem cells that could potentially be used for investigating mesenchymal differentiation and regulation of hematopoiesis.

  7. Surface Properties of Bifidobacterial Strains of Human Origin

    Science.gov (United States)

    Pérez, Pablo F.; Minnaard, Yessica; Disalvo, Edgardo A.; De Antoni, Graciela L.

    1998-01-01

    The adherence of Bifidobacterium strains isolated from infant feces and commercial fermented dairy products to enterocyte-like cells was correlated with the autoagglutination and hemagglutination properties of these organisms. These results allowed us to define two groups: (i) cell-adherent bacteria showing hemagglutination and autoagglutination and (ii) non-cell-adherent, nonhemagglutinating, nonautoagglutinating bacteria. Glass adherence was shown to be nonspecific and was discarded as a criterion for selection of adherent cells. Hydrophobicity appeared to be necessary for adhesion to enterocyte-like cells and autoagglutination. Adhesive strains were highly hydrophobic, and the degree of adherence was slightly dependent on the surface potential. Cells autoagglutinated more when the electrostatic negative charges on the cell surface were shielded by a decrease in the pH from 7 to 2. However, in some strains negative charges at the cell surface were adjuvant to adhesion, thus suggesting that specific chemical interactions occurred. The present results provide a method for preliminary selection of bacteria potentially adherent to epithelial cells by means of autoagglutination. PMID:9435057

  8. Strain and elongation of the human semitendinosus muscle - tendon unit.

    Science.gov (United States)

    Kellis, Eleftherios; Patsika, Glykeria; Karagiannidis, Evaggelos

    2013-12-01

    The semitendinosus (ST) consists of a long distal tendon and it is divided in two parts by a tendinous inscription (TI). The purpose of this study was to quantify strain and elongation of the TI and the distal tendon of ST. Fourteen subjects performed ramp isometric contractions of the knee flexors at 0°, 45° and 90° of knee flexion. Two ultrasound probes were used to visualize the displacement of the distal tendon and selected points across the TI and aponeuroses. Three-way analysis of variance designs indicated that: (a) strain and elongation of the ST distal muscle-tendon junction were higher than that of the aponeurosis - TI junction points (p segments significantly increased from 90° to 0° of knee flexion while the inverse was observed for the TI arm length (p segments at 45° and 90° of knee flexion while the opposite was observed at 0° of knee flexion. The arrangement of TI along ST length results in differential local strains, indicating that the mechanical properties of the ST muscle are affected by tendon, aponeuroses and tendinous inscription interactions.

  9. Human-associated Staphylococcus aureus strains within great ape populations in Central Africa (Gabon).

    Science.gov (United States)

    Nagel, M; Dischinger, J; Türck, M; Verrier, D; Oedenkoven, M; Ngoubangoye, B; Le Flohic, G; Drexler, J F; Bierbaum, G; Gonzalez, J-P

    2013-11-01

    The risk of serious infections caused by Staphylococcus aureus is well-known. However, most studies regarding the distribution of (clinically relevant) S. aureus among humans and animals took place in the western hemisphere and only limited data are available from (Central) Africa. In this context, recent studies focused on S. aureus strains in humans and primates, but the question of whether humans and monkeys share related S. aureus strains or may interchange strains remained largely unsolved. In this study we aimed to evaluate the distribution and spread of human-like S. aureus strains among great apes living in captivity. Therefore, a primate facility at the International Centre for Medical Research of Franceville (Gabon) was screened. We detected among the primates a common human S. aureus strain, belonging to the spa-type t148. It was isolated from three different individuals of the western lowland gorilla (Gorilla gorilla gorilla), of which one individual showed a large necrotizing wound. This animal died, most probably of a staphylococcal sepsis. Additionally, we discovered the t148 type among chimpanzees (Pan troglodytes) that were settled in the immediate neighbourhood of the infected gorillas. A detailed analysis by pulsed field gel electrophoresis showed that the gorilla and chimpanzee isolates represented two closely related strains. To our knowledge, this is the first report of a human-associated S. aureus strain causing disease in great apes. The simultaneous detection in gorillas and chimpanzees indicated an interspecies transmission of this S. aureus strain. Our results recommend that protection of wild animals must not only be based on habitat conservation, but also on the assessment of the risk of contact with human pathogens.

  10. Fe and Cu stable isotopes in archeological human bones and their relationship to sex.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent; Herrscher, Estelle; Lamboux, Aline; Telouk, Philippe; Albarède, Francis

    2012-07-01

    Accurate sex assignment of ancient human remains usually relies on the availability of coxal bones or well-preserved DNA. Iron (Fe) and copper (Cu) stable isotope compositions ((56)Fe/(54)Fe and (65)Cu/(63)Cu, respectively) were recently measured in modern human blood, and an unexpected result was the discovery of a (56)Fe-depletion and a (65)Cu-enrichment in men's blood compared to women's blood. Bones, being pervasively irrigated by blood, are expected to retain the (56)Fe/(54)Fe and (65)Cu/(63)Cu signature of blood, which in turn is useful for determining the sex of ancient bones. Here, we report the (56)Fe/(54)Fe, (65)Cu/(63)Cu, and (66)Zn/(64)Zn ratios from a suite of well-preserved phalanxes (n = 43) belonging to individuals buried in the 17th and 18th centuries at the necropolis of Saint-Laurent de Grenoble, France, and for which the sex was independently estimated from pelvic bone morphology. The metals were purified from the bone matrix by liquid chromatography on ion exchange resin and the isotope compositions were measured by multiple-collector inductively coupled plasma mass spectrometry. The results show that, as expected from literature data on blood, male bone iron is depleted in (56)Fe and enriched in (65)Cu relative to female. No sex difference is found in the (66)Zn/(64)Zn ratios of bone. The concentration and isotopic data show no evidence of soil contamination. Four samples of five (77%) can be assigned their correct sex, a result comparable to sex assignment using Fe and Cu isotopes in blood (81%). Isotopic analysis of metals may therefore represent a valid method of sex assignment applicable to incomplete human remains.

  11. Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Melanie Werner-Klein

    Full Text Available Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null (NSG and HLA-I expressing NSG mice (NSG-HLA-A2/HHD comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses.

  12. Proteomic Analysis of Outer Membrane Proteins from Salmonella Enteritidis Strains with Different Sensitivity to Human Serum

    Science.gov (United States)

    Dudek, Bartłomiej; Krzyżewska, Eva; Kapczyńska, Katarzyna; Rybka, Jacek; Pawlak, Aleksandra; Korzekwa, Kamila; Klausa, Elżbieta; Bugla-Płoskońska, Gabriela

    2016-01-01

    Differential analysis of outer membrane composition of S. Enteritidis strains, resistant to 50% normal human serum (NHS) was performed in order to find factors influencing the resistance to higher concentrations of NHS. Ten S. Enteritidis clinical strains, resistant to 50% NHS, all producing very long lipopolysaccharide, were subjected to the challenge of 75% NHS. Five extreme strains: two resistant and three sensitive to 75% NHS, were chosen for the further analysis of outer membrane proteins composition. Substantial differences were found in the levels of particular outer membrane proteins between resistant and sensitive strains, i.e. outer membrane protease E (PgtE) was present mainly in resistant strains, while sensitive strains possessed a high level of flagellar hook-associated protein 2 (FliD) and significantly higher levels of outer membrane protein A (OmpA). PMID:27695090

  13. Construction of the plasmid-free strain for human growth hormone production.

    Science.gov (United States)

    Schulga, A A; Mechev, P V; Kirpichnikov, M P; Skryabin, K G; Deyev, S M

    2016-01-01

    The E. coli strain, overproducing human growth hormone (hGH) was made by integration of the hGH gene under the control of T7 promoter into the chromosomal LacZ gene of BL21(DE3) via lambda Red recombineering. The strain gave higher productivity (50 mg·L(-1)·OD550(-1)) and better growth characteristics than the corresponding strain in which the same hGH expression cassette was placed in a plasmid. The protein produced by the plasmid-free strain was purified and characterized to be hGH. The results demonstrates that a plasmid-free recombinant strain having a single-copy gene expression cassette in the chromosome could provide better gene activity regulation, higher productivity, superior growth characteristics, as well as more stringent control of the gene sequence invariance than a plasmid-based strain.

  14. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  15. The water jet as a new tool for endoprosthesis revision surgery--an in vitro study on human bone and bone cement.

    Science.gov (United States)

    Honl, Matthias; Rentzsch, Reemt; Schwieger, Karsten; Carrero, Volker; Dierk, Oliver; Dries, Sebastian; Louis, Hartmut; Pude, Frank; Bishop, Nick; Hille, Ekkehard; Morlock, Michael

    2003-01-01

    In revision surgeries of endoprostheses, the interface between implant and bone cement or bone must be loosened. Conventional tools have many disadvantages because of their size and limited range. Taking advantage of the selective and athermic cutting process, a plain water jet is already used in order to cut soft tissues. This study investigates the possibilities of both a plain and an abrasive water jet as cutting tools for revision surgery. Samples of the mid-diaphysis of human femora and bone cement (CMW3) were cut with a plain water jet (PWJ) and an abrasive water jet (AWJ) at two different jet-to-surface angles (30 degrees,90 degrees ) and at five different pressure levels (30, 40, 50, 60, 70 MPa). For a PWJ a selective pressure range was identified, where only bone cement was cut. Injecting a bio-compatible abrasive (lactose) to the jet stream resulted in significantly higher cut depths in both materials. Material removal in bone was significantly less at the smaller jet-to-surface angle for both techniques. No clear selectivity between bone and bone cement was observed for application of the AWJ. However, the material removal rate was significantly higher for bone cement than for bone at all pressure levels. The results indicate that an AWJ might be an alternative tool for cement removal. The possibility for localised cutting at interfaces could be an advantage for revision of a non-cemented prosthesis.

  16. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-yu; Cao, Jia-qing; Huang, Jing-huan; Zhang, Jie-yuan; Jia, Wei-tao; Wang, Jing; Liu, Chang-sheng; Li, Xiao-lin

    2017-01-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration. PMID:28230059

  17. Biological Characteristics of Human Bone Marrow Mesenchymal Stem Cell Cultured in Vitro

    Institute of Scientific and Technical Information of China (English)

    FA Xian'en; WANG Lixia; HOU Jianfeng; ZHANG Ruicheng; WANG Haiyong; YANG Chenyuan

    2005-01-01

    Summary: Some biological characteristics of human bone marrow mesenchymal stem cells (MSCs) cultured in vitro were observed. hMSCs were isolated from bone marrow and purified by density gradient centrifugation method, and then cultured in vitro. The proliferation and growth characteristics of hMSCs were observed in primary and passage culture. MSCs of passage 3 were examined for the purify by positive rate of CD29 and CD44 through flow cytometry. Human bone marrow MSCs showed active proliferation capacity in vitro. The purify of MSCs separated by our method was higher than 90 %. It was concluded that hMSCs have been successfully cultured and expanded effectively. It provided a foundation for further investigation and application of MSCs.

  18. Two novel EHEC/EAEC hybrid strains isolated from human infections.

    Directory of Open Access Journals (Sweden)

    Rita Prager

    Full Text Available The so far highest number of life-threatening hemolytic uremic syndrome was associated with a food-borne outbreak in 2011 in Germany which was caused by an enterohemorrhagic Escherichia coli (EHEC of the rare serotype O104:H4. Most importantly, the outbreak strain harbored genes characteristic of both EHEC and enteroaggregative E. coli (EAEC. Such strains have been described seldom but due to the combination of virulence genes show a high pathogenicity potential. To evaluate the importance of EHEC/EAEC hybrid strains in human disease, we analyzed the EHEC strain collection of the German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens (NRC. After exclusion of O104:H4 EHEC/EAEC strains, out of about 2400 EHEC strains sent to NRC between 2008 and 2012, two strains exhibited both EHEC and EAEC marker genes, specifically were stx2 and aatA positive. Like the 2011 outbreak strain, one of the novel EHEC/EAEC harbored the Shiga toxin gene type stx2a. The strain was isolated from a patient with bloody diarrhea in 2010, was serotyped as O59:H-, belonged to MLST ST1136, and exhibited genes for type IV aggregative adherence fimbriae (AAF. The second strain was isolated from a patient with diarrhea in 2012, harbored stx2b, was typed as Orough:H-, and belonged to MLST ST26. Although the strain conferred the aggregative adherence phenotype, no known AAF genes corresponding to fimbrial types I to V were detected. In summary, EHEC/EAEC hybrid strains are currently rarely isolated from human disease cases in Germany and two novel EHEC/EAEC of rare serovars/MLST sequence types were characterized.

  19. Group B strains of human respiratory syncytial virus in Saudi Arabia: molecular and phylogenetic analysis.

    Science.gov (United States)

    Almajhdi, Fahad N; Farrag, Mohamed A; Amer, Haitham M

    2014-04-01

    The genetic variability and circulation pattern of human respiratory syncytial virus group B (HRSV-B) strains, identified in Riyadh during the winters of 2008 and 2009, were evaluated by partial sequencing of the attachment (G) protein gene. The second hypervariable region (HVR-2) of G gene was amplified by RT-PCR, sequenced and compared to representatives of different HRSV-B genotypes. Sequence and phylogenetic analysis revealed that all Saudi strains belonged to the genotype BA, which is characterized by 60-nucleotide duplication at HVR-2. Only strains of 2008 were clustered with subgroup BA-IV, while those isolated at 2009 were clustered among the most recent subgroups (particularly BA-X and CB-B). Amino acid sequence analysis demonstrated 18 amino acid substitutions in Saudi HRSV-B strains; among which five are specific for individual strains. Furthermore, two potential N-glycosylation sites at residues 230 and 296 were identified for all Saudi strains, and an additional site at amino acid 273 was found only in Riyadh 28/2008 strain. O-glycosylation was predicted in 42-43 sites, where the majority (no = 38) are highly conserved among Saudi strains. The average ratio between non-synonymous and synonymous mutations (ω) implied stabilizing selection pressure on G protein, with evidences of positive selection on certain Saudi strains. This report provides preliminary data on the circulation pattern and molecular characteristics of HRSV-B strains circulating in Saudi Arabia.

  20. Nisin-Producing Lactococcus lactis Strains Isolated from Human Milk

    OpenAIRE

    Beasley, Shea S.; Saris, Per E.J.

    2004-01-01

    Characterization by partial 16S rRNA gene sequencing, ribotyping, and green fluorescent protein-based nisin bioassay revealed that 6 of 20 human milk samples contained nisin-producing Lactococcus lactis bacteria. This suggests that the history of humans consuming nisin is older than the tradition of consuming fermented milk products.

  1. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    Science.gov (United States)

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.

  2. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.

    Science.gov (United States)

    Li, Fuping; Li, Jinshan; Kou, Hongchao; Huang, Tingting; Zhou, Lian

    2015-09-01

    Porous titanium and its alloys are believed to be promising materials for bone implant applications, since they can reduce the "stress shielding" effect by tailoring porosity and improve fixation of implant through bone ingrowth. In the present work, porous Ti6Al4V alloys for biomedical application were fabricated by diffusion bonding of alloy meshes. Compressive mechanical behavior and compatibility in the range of physiological strain rate were studied under quasi-static and dynamic conditions. The results show that porous Ti6Al4V alloys possess anisotropic structure with elongated pores in the out-of-plane direction. For porous Ti6Al4V alloys with 60-70 % porosity, more than 40 % pores are in the range of 200-500 μm which is the optimum pore size suited for bone ingrowth. Quasi-static Young's modulus and yield stress of porous Ti6Al4V alloys with 30-70 % relative density are in the range of 6-40 GPa and 100-500 MPa, respectively. Quasi-static compressive properties can be quantitatively tailored by porosity to match those of cortical bone. Strain rate sensitivity of porous Ti6Al4V alloys is related to porosity. Porous Ti6Al4V alloys with porosity higher than 50 % show enhanced strain rate sensitivity, which is originated from that of base materials and micro-inertia effect. Porous Ti6Al4V alloys with 60-70 % porosity show superior compressive mechanical compatibility in the range of physiological strain rate for cortical bone implant applications.

  3. [Diagnostics of the skeletal massiveness and human somatotype using hand bones].

    Science.gov (United States)

    Zviagin, V N; Zamiatina, A O; Galitskaia, O I

    2003-01-01

    The skeleton massiveness (SM) and the somatotype of human constitution were determined on the basis of osteometry of bones of carpal and metacarpal bones (MB) and of phalanxes. Seventy male and 13 female skeletons from the collection of the chair for anthropology, Moscow State University, were investigated. Described are the results of examinations of 8 carpal bones made according to 3 signs (length, width, and height), and of 5 metacarpal bones made according to 4 signs (length, base and head width, and base height); investigation findings of finger phalanxes (in full) are also presented. Methods of current multidimensional statistics were used within the case study, i.e. related with the key components--for SM specification and the discriminative analysis--for constitution specification. The SM determination accuracy according to type A was 40%, according to type B--80%, according to type C--37.5% and according to type D--52.9%. The classification accuracy of constitutions by carpal bones was 50.0%, by MB--46.4%, and by MB plus finger phalanxes--48.1%. It is pointed out that it was for the first time that the elaborated quantitative criteria of osteometry of hand bones could be used in the expertise practice for the purpose of personality identification by osseous remains.

  4. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone.

    Science.gov (United States)

    Lanocha-Arendarczyk, Natalia; Kosik-Bogacka, Danuta I; Kalisinska, Elzbieta; Sokolowski, Sebastian; Kolodziej, Lukasz; Budis, Halina; Safranow, Krzysztof; Kot, Karolina; Ciosek, Zaneta; Tomska, Natalia; Galant, Katarzyna

    2016-01-01

    The aim of this study was to investigate the impact of environmental factors on the concentrations of vanadium (V), chromium (Cr), and calcium (Ca) and to examine the synergistic or antagonistic relationships between these metals, in cartilage (C), cortical bone (CB), and spongy bone (SB) samples obtained following hip joint surgery on patients with osteoarthritis in NW Poland. We found significantly higher concentrations of V and Cr in spongy bone in patients who consumed game meat and also those with prosthetic implants. Chromium levels were significantly lower in patients with kidney diseases. The greatest positive correlations were found between spongy bone V and (i) the amount of consumed beer and (ii) seafood diet. Correlation analysis also showed a significant correlation between Cr levels and seafood diet. To a certain extent these results indicate that the concentrations of V, Cr, and Ca in the human hip joint tissues are connected with occupational exposure, kidney diseases, diet containing game meat, sea food, beer, and the presence of implants. Furthermore, we noted new types of interactions in specific parts of the femoral head. Vanadium may contribute to the lower bone Ca levels, especially in the external parts (cartilage and cortical bone).

  5. The Pyrolytic Profile of Lyophilized and Deep-Frozen Compact Part of the Human Bone

    Directory of Open Access Journals (Sweden)

    Jolanta Lodowska

    2012-01-01

    Full Text Available Background. Bone grafts are used in the treatment of nonunion of fractures, bone tumors and in arthroplasty. Tissues preserved by lyophilization or deep freezing are used as implants nowadays. Lyophilized grafts are utilized in the therapy of birth defects and bone benign tumors, while deep-frozen ones are applied in orthopedics. The aim of the study was to compare the pyrolytic pattern, as an indirect means of the analysis of organic composition of deep-frozen and lyophilized compact part of the human bone. Methods. Samples of preserved bone tissue were subjected to thermolysis and tetrahydroammonium-hydroxide- (TMAH- associated thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS. Results. Derivatives of benzene, pyridine, pyrrole, phenol, sulfur compounds, nitriles, saturated and unsaturated aliphatic hydrocarbons, and fatty acids (C12–C20 were identified in the pyrolytic pattern. The pyrolyzates were the most abundant in derivatives of pyrrole and nitriles originated from proteins. The predominant product in pyrolytic pattern of the investigated bone was pyrrolo[1,2-α]piperazine-3,6-dione derived from collagen. The content of this compound significantly differentiated the lyophilized graft from the deep-frozen one. Oleic and palmitic acid were predominant among fatty acids of the investigated samples. The deep-frozen implants were characterized by higher percentage of long-chain fatty acids than lyophilized grafts.

  6. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone

    Directory of Open Access Journals (Sweden)

    Natalia Lanocha-Arendarczyk

    2016-01-01

    Full Text Available The aim of this study was to investigate the impact of environmental factors on the concentrations of vanadium (V, chromium (Cr, and calcium (Ca and to examine the synergistic or antagonistic relationships between these metals, in cartilage (C, cortical bone (CB, and spongy bone (SB samples obtained following hip joint surgery on patients with osteoarthritis in NW Poland. We found significantly higher concentrations of V and Cr in spongy bone in patients who consumed game meat and also those with prosthetic implants. Chromium levels were significantly lower in patients with kidney diseases. The greatest positive correlations were found between spongy bone V and (i the amount of consumed beer and (ii seafood diet. Correlation analysis also showed a significant correlation between Cr levels and seafood diet. To a certain extent these results indicate that the concentrations of V, Cr, and Ca in the human hip joint tissues are connected with occupational exposure, kidney diseases, diet containing game meat, sea food, beer, and the presence of implants. Furthermore, we noted new types of interactions in specific parts of the femoral head. Vanadium may contribute to the lower bone Ca levels, especially in the external parts (cartilage and cortical bone.

  7. Mineralization of human bone tissue under hypokinesia and physical exercise with calcium supplements

    Science.gov (United States)

    Zorbas, Yan G.; Verentsov, Grigori E.; Abratov, Nikolai I.

    It has been suggested that physical exercise and calcium supplements may be used to prevent demineralization of bone tissue under hypokinesia (diminished muscular activity). Thus, the aim of this study was to determine mineral content of bones of 12 physically healthy men aged 19-24 years under 90 days of hypokinesia and intensive physical exercise (PE) with calcium lactate (C) supplements. They were divided into experimental and control groups with 6 men in each. The experimental group of men were subjected to hypokinesia (HK) and intensive PE and took 650 mg C 6 times per day; the control group was placed under pure HK, i.e. without the use of any preventive measures. The mineral content of different bone tissues was measured with a densitometric X-ray method in milligrams of calcium per 1 mm 3 before and after exposure to HK. The level of bone density of the examined bone tissues decreased by 7-9% and 5-7% for the control and experimental groups of men, respectively. A statistical analysis revealed that the reduction of bone mineralization was significant with P human organisms, since the entire animal kingdom had been formed in an environment of high motor activity which left its imprint on the evolution, structure, function and behaviour of animals and men. The impossibility of the body tissues to retain optimum amounts of fluid and electrolytes is the dominant hypokinetic effect.

  8. How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, Robert O; Koester, K. J.; Ager III, J. W.; Ritchie, R.O.

    2008-05-10

    Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.

  9. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari Kermani, Abbas; Qanie, Diyako; Andersen, Thomas L

    2017-01-01

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...

  10. The Human Figure Drawing with Donor and Nondonor Siblings of Pediatric Bone Marrow Transplant Patients.

    Science.gov (United States)

    Packman, Wendy L.; Beck, Vanessa L.; VanZutphen, Kelly H.; Long, Janet K.; Spengler, Gisele

    2003-01-01

    There is little research on the psychological impact of bone marrow transplantation (BMT) on family members. This study uses the Human Figure Drawing (HFD) to measure siblings' emotional distress toward BMT. Among the siblings, feelings of isolation, anger, depression, anxiety, and low self-esteem emerged as major themes. Findings indicate the…

  11. Forskolin enhances in vivo bone formation by human mesenchymal stromal cells

    NARCIS (Netherlands)

    Doorn, J.; Siddappa, R.; Blitterswijk, van C.A.; Boer, de J.

    2012-01-01

    Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effe

  12. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  13. Increased presence of capillaries next to remodeling sites in adult human cancellous bone

    DEFF Research Database (Denmark)

    Kristensen, Helene Bjoerg; Andersen, Thomas Levin; Marcussen, Niels;

    2013-01-01

    by pericytes. Furthermore, the BRC canopy cells were found to express SMA. These ordered distributions support the existence of an osteogenic-vascular interface in adult human cancellous bone. The organization of this interface fits the current knowledge on the mode of action of vasculature on osteogenesis...

  14. Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells.

    Science.gov (United States)

    Bhowmick, Arundhati; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-05-05

    Here, we have developed biomimetic nanocomposites containing chitosan, poly(vinyl alcohol) and nano-hydroxyapatite-zinc oxide as bone extracellular matrix for human osteoblastic cells and characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction. Scanning electron microscopy images revealed interconnected macroporous structures. Moreover, in this study, the problem related to fabricating a porous composite with good mechanical strength has been resolved by incorporating 5wt% of nano-hydroxyapatite-zinc oxide into chitosan-poly(vinyl alcohol) matrix; the present composite showed high tensile strength (20.25MPa) while maintaining appreciable porosity (65.25%). These values are similar to human cancellous bone. These nanocomposites also showed superior water uptake, antimicrobial and biodegradable properties than the previously reported results. Compatibility with human blood and pH was observed, indicating nontoxicity of these materials to the human body. Moreover, proliferation of osteoblastic MG-63 cells onto the nanocomposites was also observed without having any negative effect.

  15. [Comparison of fluoride concentrations in human, dog, fox and raccoon dog bones from northwestern Poland].

    Science.gov (United States)

    Palczewska-Komsa, Mirona

    2015-01-01

    Since the beginning of the XXth there has been a constant increase in fluoride (F-) emissions into the environment, mainly due to the development of industry, the fluoridation of drinking water, and the widespread use of toothpaste containing fluoride. All these factors have resulted in an intensive accumulation of F- in the bodies of vertebrates, mainly in their bones. It is therefore reasonable to estimate the F- concentration in humans and other long-lived mammals. Accordingly, ecotoxicologists worldwide have looked for mammalian species that may serve as good bioindicators of environmental fluoride pollution. In contrast to ungulates, long-lived domestic mammals and wild carnivores have rarely been used for this purpose (including the dog, fox and raccoon dog). The main aims of this study were to: 1) investigate F- concentrations in bones obtained from humans, dog, fox and raccoon dog from northwestern Poland, 2) perform intra- and inter-specific comparisons of F- concentrations in the studied mammalian bones against the background of environmental and living conditions, 3) examine the relationship between concentrations of F- in bones and the age or age category of the studied mammals. The study material comprised bones of the hip joint obtained from 36 patients who underwent hip replacement in Szczecin, 43 dogs from Szczecin veterinary clinics, 32 foxes and 18 raccoon dogs provided by hunters, with the whole test material consisting of 129 samples. The indications of F- (using potentiometry with Thermo Orion ion-selective electrodes) were performed in triplicate. The F- concentration was expressed on a dry weight basis. Interspecific analysis showed that the largest number of differences in the concentrations of F- were between the fox and raccoon, and then between the dog and fox, and then between the dog and the wild canids (foxes and raccoon dogs together). Close statistically significant differences were also found between the samples from humans and the

  16. Human rotavirus K8 strain represents a new VP4 serotype.

    Science.gov (United States)

    Li, B; Larralde, G; Gorziglia, M

    1993-01-01

    The complete VP4 gene of the human rotavirus (HRV) K8 strain (G1 serotype) was cloned and inserted into the baculovirus transfer vector pVL941 under the control of the polyhedrin promoter. A K8VP4 recombinant baculovirus was obtained by cotransfection of Spodoptera frugiperda (Sf9) cells with transfer vector DNA containing the K8VP4 gene and wild-type baculovirus DNA. Infection of Sf9 cells with this VP4 recombinant baculovirus resulted in the production of a protein that is similar in size and antigenic activity to the authentic VP4 of the K8 strain. Guinea pigs immunized with the expressed VP4 developed antibodies that neutralized the infectivity of the K8 strain. This antiserum neutralized HRV strains belonging to VP4 serotypes 1A, 1B, and 2 with efficiency eightfold or lower than that of the homologous virus, indicating that the human rotavirus K8 strain represents a distinct VP4 serotype (P3). In addition, low levels of cross-immunoprecipitation of the K8VP4 and its VP5 and VP8 subunits with hyperimmune antisera to HRV strains representing different VP4 serotype specificities also suggested that the K8 strain possesses a unique VP4 with few epitopes in common with other P-serotype strains. Images PMID:8380098

  17. Evolution of human G4P[8] group A rotavirus strains circulating in Italy in 2013.

    Science.gov (United States)

    Ianiro, Giovanni; Delogu, Roberto; Fiore, Lucia; Ruggeri, Franco M

    2015-06-02

    Group A rotaviruses (RVA) are the leading cause of acute gastroenteritis in young (humans worldwide are associated with the five major G/P combinations G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8]. During RVA gastroenteritis surveillance in Italy, a total of 1112 samples collected from children hospitalized with acute gastroenteritis in 2013 were RVA positive and were genotyped following standardized protocols from the EuroRotaNet. Most strains analyzed belonged to the five major human genotypes. Among these common strains, 22 G4P[8] RVA strains from different Italian regions were subjected to nucleotide sequencing of their VP4, VP6, VP7 and NSP4 genes to investigate their evolution. The phylogenetic analysis showed that the Italian strains belonged to lineage G4-I for VP7 and to lineage P[8]-III for VP4, in line with the modern G4P[8] RVA strains detected in children worldwide. The phylogenetic trees revealed high degrees of nucleotide identity between the RVA strains involved in this study and G4P[8] strains detected previously in Europe, Asia and Africa, but also demonstrated at least three separate evolution clusters within the same lineage. Based on the amino acid sequences deduced for their hypervariable regions, both the VP7 and VP8* proteins of the Italian G4P[8] RVA strains presented amino acid substitutions near known neutralizing epitopes.

  18. Entrance and Survival of Brucella pinnipedialis Hooded Seal Strain in Human Macrophages and Epithelial Cells

    Science.gov (United States)

    Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  19. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anett K Larsen

    Full Text Available Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis and cetaceans (B. ceti from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17 by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1, two murine macrophage cell lines (RAW264.7 and J774A.1, and a human malignant epithelial cell line (HeLa S3 were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72-96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3, suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.

  20. Human cytomegalovirus UL145 gene is highly conserved among clinical strains

    Indian Academy of Sciences (India)

    Zhengrong Sun; Ying Lu; Qiang Ruan; Yaohua Ji; Rong He; Ying Qi; Yanping Ma; Yujing Huang

    2007-09-01

    Human cytomegalovirus (HCMV), a ubiquitous human pathogen, is the leading cause of birth defects in newborns. A region (referred to as UL/b′) present in the Toledo strain of HCMV and low-passage clinical isolates) contains 22 additional genes, which are absent in the highly passaged laboratory strain AD169. One of these genes, UL145 open reading frame (ORF), is located between the highly variable genes UL144 and UL146. To assess the structure of the UL145 gene, the UL145 ORF was amplified by PCR and sequenced from 16 low-passage clinical isolates and 15 non-passage strains from suspected congenitally infected infants. Nine UL145 sequences previously published in the GenBank were used for sequence comparison. The identities of the gene and the similarities of its putative protein among all strains were 95.9–100% and 96.6–100%, respectively. The post-translational modification motifs of the UL145 putative protein in clinical strains were conserved, comprising the protein kinase C phosphorylation motif (PKC) and casein kinase II phosphorylation site (CK-II). We conclude that the structure of the UL145 gene and its putative protein are relatively conserved among clinical strains, irrespective of whether the strains come from patients with different manifestations, from different areas of the world, or were passaged or not in human embryonic lung fibroblast (HELF) cells.

  1. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    Energy Technology Data Exchange (ETDEWEB)

    Antebi, Uri; Mathor, Monica B., E-mail: uri@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Guimaraes, Rodrigo P., E-mail: clinicaguimaraes@gmail.com [Santa Casa de Sao Paulo (FCM/SCSP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Medicas

    2015-07-01

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  2. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering.

    Science.gov (United States)

    Moreno-Jiménez, Inés; Hulsart-Billstrom, Gry; Lanham, Stuart A; Janeczek, Agnieszka A; Kontouli, Nasia; Kanczler, Janos M; Evans, Nicholas D; Oreffo, Richard Oc

    2016-08-31

    Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (μCT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by μCT analysis (p < 0.01). This human-avian system offers a simple refinement model for animal research and a step towards a humanized in vivo model for tissue engineering.

  3. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering

    Science.gov (United States)

    Moreno-Jiménez, Inés; Hulsart-Billstrom, Gry; Lanham, Stuart A.; Janeczek, Agnieszka A.; Kontouli, Nasia; Kanczler, Janos M.; Evans, Nicholas D.; Oreffo, Richard Oc

    2016-08-01

    Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (μCT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by μCT analysis (p < 0.01). This human-avian system offers a simple refinement model for animal research and a step towards a humanized in vivo model for tissue engineering.

  4. Diversity of Vibrio navarrensis Revealed by Genomic Comparison: Veterinary Isolates Are Related to Strains Associated with Human Illness and Sewage Isolates While Seawater Strains Are More Distant

    Directory of Open Access Journals (Sweden)

    Keike Schwartz

    2017-09-01

    Full Text Available Strains of Vibrio navarrensis are present in aquatic environments like seawater, rivers, and sewage. Recently, strains of this species were identified in human clinical specimens. In this study, V. navarrensis strains isolated from livestock in Germany were characterized that were found in aborted fetuses and/or placentas after miscarriages. The veterinary strains were analyzed using phenotypical and genotypical methods and compared to isolates from marine environments of the Baltic Sea and North Sea. The investigated phenotypical traits were similar in all German strains. Whole genome sequencing (WGS was used to evaluate a phylogenetic relationship by performing a single nucleotide polymorphism (SNP analysis. For the SNP analysis, WGS data of two American human pathogenic strains and two Spanish environmental isolates from sewage were included. A phylogenetic analysis of concatenated sequences of five protein-coding housekeeping genes (gyrB, pyrH, recA, atpA, and rpoB, was additionally performed. Both phylogenetic analyses reveal a greater distance of the environmental seawater strains to the other strains. The phylogenetic tree constructed from concatenated sequences of housekeeping genes places veterinary, human pathogenic and Spanish sewage strains into one cluster. Presence and absence of virulence-associated genes were investigated based on WGS data and confirmed by PCR. However, this analysis showed no clear pattern for the potentially pathogenic strains. The detection of V. navarrensis in human clinical specimens strongly suggests that this species should be regarded as a potential human pathogen. The identification of V. navarrensis strains in domestic animals implicates a zoonotic potential of this species. This could indicate a potential threat for humans, as according to the “One Health” concept, human, animal, and environmental health are linked. Future studies are necessary to search for reservoirs of these bacteria in the

  5. Amendment on the strain measurement of thin-walled human skull shell as intracranial pressure changes

    Institute of Scientific and Technical Information of China (English)

    Xianfang Yue; Li Wang; Feng Zhou

    2008-01-01

    The human skuU,composed of tabula externa,tabula interna,and a porous diploe sandwiched in between,is deformed with changing intracranial pressure (ICP).Because the human skull's thickness is only 6 mm,it is simplified as a thin-walled shell. The objective of this article is to analyze the strain of the thin-walled shell by the stress-strain calculation of a human skull with changing ICP.Under the same loading conditions,using finite element analysis (FEA),the strains of the human skull were calculated and the results were compared with the measurements of the simulative experiment in vitro.It is demonstrated that the strain of the thin-walled shell is totally measured by pasting the one-way strain foils on the exterior surface of the shell with suitable amendment for data.The amendment scope of the measured strain values of the thin-walled shell is from 13.04% to 22.22%.

  6. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  7. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Wang FJ

    2015-12-01

    Full Text Available Mesenchymal stromal cells (MSCs have shown promise as treatment for graft-versus-host disease (GvHD following allogeneic bone marrow transplantation (alloBMT. Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs were injected via carotid artery (IA or tail vein (TV into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments.

  8. Contour changes in human alveolar bone following tooth extraction of the maxillary central incisor.

    Science.gov (United States)

    Li, Bei; Wang, Yao

    2014-12-01

    The purpose of this study was to apply cone-beam computed tomography (CBCT) to observe contour changes in human alveolar bone after tooth extraction of the maxillary central incisor and to provide original morphological evidence for aesthetic implant treatment in the maxillary anterior area. Forty patients were recruited into the study. Each patient had two CBCT scans (CBCT I and CBCT II), one taken before and one taken three months after tooth extraction of maxillary central incisor (test tooth T). A fixed anatomic reference point was used to orient the starting axial slice of the two scans. On three CBCT I axial slices, which represented the deep, middle, and shallow layers of the socket, labial and palatal alveolar bone widths of T were measured. The number of sagittal slices from the start point to the pulp centre of T was recorded. On three CBCT II axial slices, the pulp centres of extracted T were oriented according to the number of moved sagittal slices recorded in CBCT I. Labial and palatal alveolar bone widths at the oriented sites were measured. On the CBCT I axial slice which represented the middle layer of the socket, sagittal slices were reconstructed. Relevant distances of T on the sagittal slice were measured, as were the alveolar bone width and tooth length of the opposite central incisor. On the CBCT II axial slice, which represented the middle layer of the socket, relevant distances recorded in CBCT I were transferred on the sagittal slice. The height reduction of alveolar bone on labial and palatal sides was measured, as were the alveolar bone width and tooth length of the opposite central incisor at the oriented site. Intraobserver reliability assessed by intraclass correlation coefficients (ICCs) was high. Paired sample t-tests were performed. The alveolar bone width and tooth length of the opposite central incisor showed no statistical differences (P<0.05). The labial alveolar bone widths of T at the deep, middle, and shallow layers all showed

  9. Cytopathogenesis of Naegleria fowleri Thai strains for cultured human neuroblastoma cells.

    Science.gov (United States)

    Tiewcharoen, Supathra; Malainual, Nat; Junnu, Virach; Chetanachan, Pruksawan; Rabablert, Jundee

    2008-04-01

    The aim of this study is to evaluate cellular interaction between free-living amoebae Naegleria fowleri strains and mammalian target cells in vitro. Two Thai strains of N. fowleri; Khon Kaen strain from the environment and Siriraj strain from the patient's cerebrospinal fluid and the Center of Disease Control VO 3081 strain from Atlanta (US) were studied. Human neuroblastoma (SK-N-MC) and African Green monkey Kidney (Vero) cells were used as target cells. Each cell line was inoculated with each strain of N. fowleri at a ratio of 1:1 and observed for 7 days. The uninoculated target cells and each strain of N. fowleri were used as control. The numbers of the challenged and unchallenged cells as well as the free-living amoebae were counted three times by trypan blue exclusion method. The inoculation began when the amoebae attached to the cell membrane and ingested the target cells. In this study, extensive cytopathogenesis with many floating inoculated cells and abundant number of amoebae were observed. The destruction pattern of both inoculated SK-N-MC and Vero target cells were similar. Interestingly, SK-N-MC was more susceptible to N. fowleri strains than the Vero cell. In addition, N. fowleri Siriraj strain showed the highest destruction pattern for each target cell. Our findings suggest that the SK-N-MC should be used as a base model for studying the neuropathogenesis in primary amoebic meningoencephalitis patients.

  10. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    Science.gov (United States)

    Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538

  11. Evaluation of the osteogenesis and angiogenesis effects of erythropoietin and the efficacy of deproteinized bovine bone/recombinant human erythropoietin scaffold on bone defect repair.

    Science.gov (United States)

    Li, Donghai; Deng, Liqing; Xie, Xiaowei; Yang, Zhouyuan; Kang, Pengde

    2016-06-01

    Erythropoietin (EPO) could promote the angiogenesis and may also play a role in bone regeneration. This study was conducted to evaluate the osteogenesis and angiogenesis effects of EPO and the efficacy of deproteinized bovine bone/recombinant human EPO scaffold on bone defect repair. Twenty-four healthy adult goats were chosen to build goat defects model and randomly divided into four groups. The goats were treated with DBB/rhEPO scaffolds (group A), porous DBB scaffolds (group B), autogenous cancellous bone graft (group C), and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The grey value of radiographs was used to evaluate the healing of the defects and the outcome revealed that the group A had a better outcome of defect healing compared with group B (P 0.05). The newly formed bone area was calculated from histological sections and the results demonstrated that the amount of new bone in group A increased significantly compared with that in group B (P 0.05) at 4, 8, 12 weeks respectively. In addition, the expression of vascular endothelial growth factor (VEGF) by immunohistochemical testing and real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group B (P 0.05). Therefore, EPO has significant effects on bone formation and angiogenesis, and has capacity to promote the repair of bone defects. It is worthy of being recommended to further studies.

  12. Characterization of functional properties of Enterococcus faecium strains isolated from human gut.

    Science.gov (United States)

    İspirli, Hümeyra; Demirbaş, Fatmanur; Dertli, Enes

    2015-11-01

    The aim of this work was to characterize the functional properties of Enterococcus faecium strains identified after isolation from human faeces. Of these isolates, strain R13 showed the best resistance to low pH, bile salts, and survival in the simulated in vitro digestion assay, and demonstrated an important level of adhesion to hexadecane as a potential probiotic candidate. Analysis of the antibiotic resistance of E. faecium strains indicated that in general these isolates were sensitive to the tested antibiotics and no strain appeared to be resistant to vancomycin. Examination of the virulence determinants for E. faecium strains demonstrated that all strains contained the virulence genes common in gut- and food-originated enterococci, and strain R13 harboured the lowest number of virulence genes. Additionally, no strain contained the genes related to cytolysin metabolism and showed hemolytic activity. The antimicrobial role of E. faecium strains was tested against several pathogens, in which different levels of inhibitory effects were observed, and strain R13 was inhibitory to all tested pathogens. PCR screening of genes encoding enterocin A and B indicated the presence of these genes in E. faecium strains. Preliminary characterization of bacteriocins revealed that their activity was lost after proteolytic enzyme treatments, but no alteration in antimicrobial activity was observed at different pHs (3.5 to 9.5) and after heat treatments. In conclusion, this study revealed the functional characteristics of E. faecium R13 as a gut isolate, and this strain could be developed as a new probiotic after further tests.

  13. Osteogenic Differentiation Capacity of In Vitro Cultured Human Skeletal Muscle for Expedited Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Chunlei Miao

    2017-01-01

    Full Text Available Expedited bone tissue engineering employs the biological stimuli to harness the intrinsic regenerative potential of skeletal muscle to trigger the reparative process in situ to improve or replace biological functions. When genetically modified with adenovirus mediated BMP2 gene transfer, muscle biopsies from animals have demonstrated success in regenerating bone within rat bony defects. However, it is uncertain whether the human adult skeletal muscle displays an osteogenic potential in vitro when a suitable biological trigger is applied. In present study, human skeletal muscle cultured in a standard osteogenic medium supplemented with dexamethasone demonstrated significant increase in alkaline phosphatase activity approximately 24-fold over control at 2-week time point. More interestingly, measurement of mRNA levels revealed the dramatic results for osteoblast transcripts of alkaline phosphatase, bone sialoproteins, transcription factor CBFA1, collagen type I, and osteocalcin. Calcified mineral deposits were demonstrated on superficial layers of muscle discs after an extended 8-week osteogenic induction. Taken together, these are the first data supporting human skeletal muscle tissue as a promising potential target for expedited bone regeneration, which of the technologies is a valuable method for tissue repair, being not only effective but also inexpensive and clinically expeditious.

  14. Osteogenic Differentiation Capacity of In Vitro Cultured Human Skeletal Muscle for Expedited Bone Tissue Engineering

    Science.gov (United States)

    Miao, Chunlei; Zhou, Lulu; Tian, Lufeng; Zhang, Yingjie; Zhang, Wei; Yang, Fanghong; Liu, Tianyi

    2017-01-01

    Expedited bone tissue engineering employs the biological stimuli to harness the intrinsic regenerative potential of skeletal muscle to trigger the reparative process in situ to improve or replace biological functions. When genetically modified with adenovirus mediated BMP2 gene transfer, muscle biopsies from animals have demonstrated success in regenerating bone within rat bony defects. However, it is uncertain whether the human adult skeletal muscle displays an osteogenic potential in vitro when a suitable biological trigger is applied. In present study, human skeletal muscle cultured in a standard osteogenic medium supplemented with dexamethasone demonstrated significant increase in alkaline phosphatase activity approximately 24-fold over control at 2-week time point. More interestingly, measurement of mRNA levels revealed the dramatic results for osteoblast transcripts of alkaline phosphatase, bone sialoproteins, transcription factor CBFA1, collagen type I, and osteocalcin. Calcified mineral deposits were demonstrated on superficial layers of muscle discs after an extended 8-week osteogenic induction. Taken together, these are the first data supporting human skeletal muscle tissue as a promising potential target for expedited bone regeneration, which of the technologies is a valuable method for tissue repair, being not only effective but also inexpensive and clinically expeditious. PMID:28210626

  15. Resorption of monetite granules in alveolar bone defects in human patients.

    Science.gov (United States)

    Tamimi, Faleh; Torres, Jesus; Bassett, David; Barralet, Jake; Cabarcos, Enrique L

    2010-04-01

    Bone grafting is often required to restore mandibular or maxillary bone volume prior to prosthetic tooth root implantation. Preclinical animal models are often used to study the in vivo properties of new bone graft products designed for human use. Although animal studies may offer valuable data regarding bioperformance, materials do not necessarily perform the same in human patients. In this study we implanted bovine hydroxyapatite (BH), a widely used porous apatite granule, and dicalcium phosphate anhydrous (monetite) granules, bilaterally in human patients post extraction alveolar sockets. After six months, histomorphometrical analysis of the biopsies revealed that the amount of bone regenerated with monetite (59.5 +/- 13%) was significantly higher than that obtained with BH (33.1% +/- 4.9), while the amount of unresorbed graft was higher in the sockets treated with BH (37.8 +/- 6.1) than in those implanted with monetite (25.8 +/- 14.3). Resorption of calcium phosphate ceramics is discussed by applying the Hixon-Crowell dissolution model.

  16. Zika Virus Strains Potentially Display Different Infectious Profiles in Human Neural Cells

    Directory of Open Access Journals (Sweden)

    Yannick Simonin

    2016-10-01

    Full Text Available The recent Zika virus (ZIKV epidemic has highlighted the poor knowledge on its physiopathology. Recent studies showed that ZIKV of the Asian lineage, responsible for this international outbreak, causes neuropathology in vitro and in vivo. However, two African lineages exist and the virus is currently found circulating in Africa. The original African strain was also suggested to be neurovirulent but its laboratory usage has been criticized due to its multiple passages. In this study, we compared the French Polynesian (Asian ZIKV strain to an African strain isolated in Central African Republic and show a difference in infectivity and cellular response between both strains in human neural stem cells and astrocytes. Consistently, this African strain led to a higher infection rate and viral production, as well as stronger cell death and anti-viral response. Our results highlight the need to better characterize the physiopathology and predict neurological impairment associated with African ZIKV.

  17. Mining the human gut microbiota for effector strains that shape the immune system.

    Science.gov (United States)

    Ahern, Philip P; Faith, Jeremiah J; Gordon, Jeffrey I

    2014-06-19

    The gut microbiota codevelops with the immune system beginning at birth. Mining the microbiota for bacterial strains responsible for shaping the structure and dynamic operations of the innate and adaptive arms of the immune system represents a formidable combinatorial problem but one that needs to be overcome to advance mechanistic understanding of microbial community and immune system coregulation and to develop new diagnostic and therapeutic approaches that promote health. Here, we discuss a scalable, less biased approach for identifying effector strains in complex microbial communities that impact immune function. The approach begins by identifying uncultured human fecal microbiota samples that transmit immune phenotypes to germ-free mice. Clonally arrayed sequenced collections of bacterial strains are constructed from representative donor microbiota. If the collection transmits phenotypes, effector strains are identified by testing randomly generated subsets with overlapping membership in individually housed germ-free animals. Detailed mechanistic studies of effector strain-host interactions can then be performed.

  18. Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Rudbeck, L.; Willerslev, E.

    2005-01-01

    The majority of ancient DNA studies on human specimens have utilised teeth and bone as a source of genetic material. In this study the levels of endogenous contamination (i.e. present within the sample prior to sampling for the DNA analysis) are assessed within human bone and teeth specimens...... sampled from the cemetery of Santa Lucia alle Malve, Matera, Italy. This site is of exceptional interest, because the samples have been assayed for IS measures of biochemical and physical preservation, and it is the only one identified in a study of more than 107 animal and 154 human bones from 43 sites...... across Europe, where a significant number of human bones was well preserved. The findings demonstrate several important issues: (a) although teeth are more resilient to contamination than bone, both are readily contaminated (presumably through handling or washing), and (b) once contaminated in this way...

  19. Combined Effects of Mechanical Strain and Hydroxyapatite/Collagen Composite on Osteogenic Differentiation of Rat Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs represent a promising source for bone repair and regeneration. Recent lines of evidence have shown that appropriate strain could regulate the osteogenic differentiation of MSCs. Our previous study demonstrated that hydroxyapatite/collagen (HA/Col composite also played an important role in the osteogenic differentiation of MSCs. The aim of this study is to investigate the effects of mechanical strain and HA/Col composite on the osteogenic differentiation of rat bone marrow derived MSCs (rBMSCs in vitro. rBMSCs were treated with cyclic strain generated by a self-designed stretching device with or without the presence of HA/Col composite. Osteogenic differentiation levels were evaluated using reverse transcription polymerase chain reaction (RT-PCR, alkaline phosphatase spectrophotometry, and western blotting. The results demonstrated that mechanical strain combined with HA/Col composite could obviously induce the differentiation of rBMSCs into osteoblasts, which had a better effect than only mechanical strain or HA/Col composite treatment. This provides a new avenue for mechanistic studies of stem cell differentiation and a novel approach to obtain more committed differentiated cells.

  20. Relationship between sample volumes and modulus of human vertebral trabecular bone in micro-finite element analysis.

    Science.gov (United States)

    Wen, Xin-Xin; Xu, Chao; Zong, Chun-Lin; Feng, Ya-Fei; Ma, Xiang-Yu; Wang, Fa-Qi; Yan, Ya-Bo; Lei, Wei

    2016-07-01

    Micro-finite element (μFE) models have been widely used to assess the biomechanical properties of trabecular bone. How to choose a proper sample volume of trabecular bone, which could predict the real bone biomechanical properties and reduce the calculation time, was an interesting problem. Therefore, the purpose of this study was to investigate the relationship between different sample volumes and apparent elastic modulus (E) calculated from μFE model. 5 Human lumbar vertebral bodies (L1-L5) were scanned by micro-CT. Cubic concentric samples of different lengths were constructed as the experimental groups and the largest possible volumes of interest (VOI) were constructed as the control group. A direct voxel-to-element approach was used to generate μFE models and steel layers were added to the superior and inferior surface to mimic axial compression tests. A 1% axial strain was prescribed to the top surface of the model to obtain the E values. ANOVA tests were performed to compare the E values from the different VOIs against that of the control group. Nonlinear function curve fitting was performed to study the relationship between volumes and E values. The larger cubic VOI included more nodes and elements, and more CPU times were needed for calculations. E values showed a descending tendency as the length of cubic VOI decreased. When the volume of VOI was smaller than (7.34mm(3)), E values were significantly different from the control group. The fit function showed that E values approached an asymptotic values with increasing length of VOI. Our study demonstrated that apparent elastic modulus calculated from μFE models were affected by the sample volumes. There was a descending tendency of E values as the length of cubic VOI decreased. Sample volume which was not smaller than (7.34mm(3)) was efficient enough and timesaving for the calculation of E.

  1. Strain-Related Differences in the Immune Response: Relevance to Human Stroke.

    Science.gov (United States)

    Becker, Kyra J

    2016-08-01

    There are significant differences in the immune response and in the susceptibility to autoimmune diseases among rodent strains. It would thus be expected that the contribution of the immune response to cerebral ischemic injury would also differ among rodent strains. More importantly, there are significant differences between the immune responses of rodents and humans. All of these factors are likely to impact the successful translation of immunomodulatory therapies from experimental rodent models to patients with stroke.

  2. A 3D in vitro bone organ model using human progenitor cells

    Directory of Open Access Journals (Sweden)

    A Papadimitropoulos

    2011-05-01

    Full Text Available Three-dimensional (3D organotypic culture models based on human cells may reduce the use of complex and costly animal models, while gaining clinical relevance. This study aimed at developing a 3D osteoblastic-osteoclastic-endothelial cell co-culture system, as an in vitro model to mimic the process of bone turnover. Osteoprogenitor and endothelial lineage cells were isolated from the stromal vascular fraction (SVF of human adipose tissue, whereas CD14+ osteoclast progenitors were derived from human peripheral blood. Cells were co-cultured within 3D porous ceramic scaffolds using a perfusion-based bioreactor device, in the presence of typical osteoclastogenic factors. After 3 weeks, the scaffolds contained cells with endothelial (2.0 ±0.3%, pre/osteoclastic (14.0 ±1.4% and mesenchymal/osteoblastic (44.0 ±8.4% phenotypes, along with tartrate-resistant acid phosphatase-positive (TRAP+ osteoclastic cells in contact with deposited bone-like matrix. Supernatant analysis demonstrated sustained matrix deposition (by C-terminus procollagen-I propeptides, resorption (by N-terminus collagen-I telopeptides and phosphate levels and osteoclastic activity (by TRAP-5b only when SVF and CD14+ cells were co-cultured. Scanning electron microscopy and magnetic resonance imaging confirmed the pattern of matrix deposition and resorption. The effectiveness of Vitamin D in replacing osteoclastogenic factors indicated a functional osteoblast-osteoclast coupling in the system. The formation of human-origin bone-like tissue, blood vessels and osteoclasts upon ectopic implantation validated the functionality of the developed cell types. The 3D co-culture system and the associated non-invasive analytical tools can be used as an advanced model to capture some aspects of the functional coupling of bone-like matrix deposition and resorption and could be exploited toward the engineering of multi-functional bone substitute implants.

  3. Differentiation of adult human bone marrow mesenchymal stem cells into Schwann-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Li-ye; ZHENG Jia-kun; WANG Chao-yang; LI Wen-yu

    2005-01-01

    Objective: To investigate the differentiative capability of adult human bone marrow mesenchymal stem cells (BMSCs) into Schwann-like cells. Methods: Bone marrows were aspirated from healthy donors and mononuclear cells were separated by Percoll lymphocytes separation liquid (1.073 g/ml) with centrifugation, cells were cultured in DMEM/F12 (1:1) medium containing 10% fetal bovine serum (FBS), 20 ng/ml epidermal growth factor (EGF) and 20 ng/ml basic fibroblast growth factor (bFGF). Cells of passage 1 were identified with immunocytochemistry. Conclusions: Bone marrow contains the stem cells with the ability of differentiating into Schwann-like cells, which may represent an alternative stem cell sources for neural transplantation.

  4. Early human bone response to laser metal sintering surface topography: a histologic report.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  5. Non-invasive assessment of bone quantity and quality in human trabeculae using scanning ultrasound imaging

    Science.gov (United States)

    Xia, Yi

    Fractures and associated bone fragility induced by osteoporosis and osteopenia are widespread health threat to current society. Early detection of fracture risk associated with bone quantity and quality is important for both the prevention and treatment of osteoporosis and consequent complications. Quantitative ultrasound (QUS) is an engineering technology for monitoring bone quantity and quality of humans on earth and astronauts subjected to long duration microgravity. Factors currently limiting the acceptance of QUS technology involve precision, accuracy, single index and standardization. The objective of this study was to improve the accuracy and precision of an image-based QUS technique for non-invasive evaluation of trabecular bone quantity and quality by developing new techniques and understanding ultrasound/tissue interaction. Several new techniques have been developed in this dissertation study, including the automatic identification of irregular region of interest (iROI) in bone, surface topology mapping (STM) and mean scattering spacing (MSS) estimation for evaluating trabecular bone structure. In vitro results have shown that (1) the inter- and intra-observer errors in QUS measurement were reduced two to five fold by iROI compared to previous results; (2) the accuracy of QUS parameter, e.g., ultrasound velocity (UV) through bone, was improved 16% by STM; and (3) the averaged trabecular spacing can be estimated by MSS technique (r2=0.72, p<0.01). The measurement errors of BUA and UV introduced by the soft tissue and cortical shells in vivo can be quantified by developed foot model and simplified cortical-trabecular-cortical sandwich model, which were verified by the experimental results. The mechanisms of the errors induced by the cortical and soft tissues were revealed by the model. With developed new techniques and understanding of sound-tissue interaction, in vivo clinical trail and bed rest study were preformed to evaluate the performance of QUS in

  6. Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    M Mumme

    2012-09-01

    Full Text Available Inflammatory cytokines present in the milieu of the fracture site are important modulators of bone healing. Here we investigated the effects of interleukin-1β (IL-1β on the main events of endochondral bone formation by human bone marrow mesenchymal stromal cells (BM-MSC, namely cell proliferation, differentiation and maturation/remodelling of the resulting hypertrophic cartilage. Low doses of IL-1β (50 pg/mL enhanced colony-forming units-fibroblastic (CFU-f and -osteoblastic (CFU-o number (up to 1.5-fold and size (1.2-fold in the absence of further supplements and glycosaminoglycan accumulation (1.4-fold upon BM-MSC chondrogenic induction. In osteogenically cultured BM-MSC, IL-1β enhanced calcium deposition (62.2-fold and BMP-2 mRNA expression by differential activation of NF-κB and ERK signalling. IL-1β-treatment of BM-MSC generated cartilage resulted in higher production of MMP-13 (14.0-fold in vitro, mirrored by an increased accumulation of the cryptic cleaved fragment of aggrecan, and more efficient cartilage remodelling/resorption after 5 weeks in vivo (i.e., more TRAP positive cells and bone marrow, less cartilaginous areas, resulting in the formation of mature bone and bone marrow after 12 weeks. In conclusion, IL-1β finely modulates early and late events of the endochondral bone formation by BM-MSC. Controlling the inflammatory environment could enhance the success of therapeutic approaches for the treatment of fractures by resident MSC and as well as improve the engineering of implantable tissues.

  7. Identification of Rorβ targets in cultured osteoblasts and in human bone

    Energy Technology Data Exchange (ETDEWEB)

    Roforth, Matthew M., E-mail: roforth.matthew@mayo.edu; Khosla, Sundeep, E-mail: khosla.sundeep@mayo.edu; Monroe, David G., E-mail: monroe.david@mayo.edu

    2013-11-01

    Highlights: •We examine the gene expression patterns controlled by Rorβ in osteoblasts. •Genes involved in extracellular matrix regulation and proliferation are affected. •Rorβ mRNA levels increase in aged, human bone biopsies. •Rorβ may affect osteoblast activity by modulation of these pathways. -- Abstract: Control of osteoblastic bone formation involves the cumulative action of numerous transcription factors, including both activating and repressive functions that are important during specific stages of differentiation. The nuclear receptor retinoic acid receptor-related orphan receptor β (Rorβ) has been recently shown to suppress the osteogenic phenotype in cultured osteoblasts, and is highly upregulated in bone marrow-derived osteogenic precursors isolated from aged osteoporotic mice, suggesting Rorβ is an important regulator of osteoblast function. However the specific gene expression patterns elicited by Rorβ are unknown. Using microarray analysis, we identified 281 genes regulated by Rorβ in an MC3T3-E1 mouse osteoblast cell model (MC3T3-Rorβ-GFP). Pathway analysis revealed alterations in genes involved in MAPK signaling, genes involved in extracellular matrix (ECM) regulation, and cytokine-receptor interactions. Whereas the identified Rorβ-regulated ECM genes normally decline during osteoblastic differentiation, they were highly upregulated in this non-mineralizing MC3T3-Rorβ-GFP model system, suggesting that Rorβ may exert its anti-osteogenic effects through ECM disruption. Consistent with these in vitro findings, the expression of both RORβ and a subset of RORβ-regulated genes were increased in bone biopsies from postmenopausal women (73 ± 7 years old) compared to premenopausal women (30 ± 5 years old), suggesting a role for RORβ in human age-related bone loss. Collectively, these data demonstrate that Rorβ regulates known osteogenic pathways, and may represent a novel therapeutic target for age-associated bone loss.

  8. Finite element analysis of equine incisor teeth. Part 2: investigation of stresses and strain energy densities in the periodontal ligament and surrounding bone during tooth movement.

    Science.gov (United States)

    Schrock, P; Lüpke, M; Seifert, H; Staszyk, C

    2013-12-01

    This study investigated the hypothetical contribution of biomechanical loading to the onset of equine odontoclastic tooth resorption and hypercementosis (EOTRH) and to elucidate the physiological age-related positional changes of the equine incisors. Based on high resolution micro-computed tomography (μCT) datasets, 3-dimensional models of entire incisor arcades and the canine teeth were constructed representing a young and an old incisor dentition. Special attention was paid to constructing an anatomically correct model of the periodontal ligament (PDL). Using previously determined Young's moduli for the equine incisor PDL, finite element (FE) analysis was performed. Resulting strains, stresses and strain energy densities (SEDs), as well as the resulting regions of tension and compression within the PDL and the surrounding bone were investigated during occlusion. The results showed a distinct distribution pattern of high stresses and corresponding SEDs in the PDL and bone. Due to the tooth movement, peaks of SEDs were obtained in the PDL as well as in the bone on the labial and palatal/lingual sides of the alveolar crest. At the root, highest SEDs were detected in the PDL on the palatal/lingual side slightly occlusal of the root tip. This distribution pattern of high SEDs within the PDL coincides with the position of initial resorptive lesions in EOTRH affected teeth. The position of high SEDs in the bone can explain the typical age-related alteration of shape and angulation of equine incisors.

  9. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.

    Science.gov (United States)

    Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai

    2015-12-16

    We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.

  10. Prostaglandin E2 regulates macrophage colony stimulating factor secretion by human bone marrow stromal cells.

    Science.gov (United States)

    Besse, A; Trimoreau, F; Faucher, J L; Praloran, V; Denizot, Y

    1999-07-08

    Bone marrow stromal cells regulate marrow haematopoiesis by secreting growth factors such as macrophage colony stimulating factor (M-CSF) that regulates the proliferation, differentiation and several functions of cells of the mononuclear-phagocytic lineage. By using a specific ELISA we found that their constitutive secretion of M-CSF is enhanced by tumour necrosis factor-alpha (TNF-alpha). The lipid mediator prostaglandin E2 (PGE2) markedly reduces in a time- and dose-dependent manner the constitutive and TNF-alpha-induced M-CSF synthesis by bone marrow stromal cells. In contrast, other lipid mediators such as 12-HETE, 15-HETE, leukotriene B4, leukotriene C4 and lipoxin A4 have no effect. EP2/EP4 selective agonists (11-deoxy PGE1 and 1-OH PGE1) and EP2 agonist (19-OH PGE2) inhibit M-CSF synthesis by bone marrow stromal cells while an EP1/EP3 agonist (sulprostone) has no effect. Stimulation with PGE2 induces an increase of intracellular cAMP levels in bone marrow stromal cells. cAMP elevating agents (forskolin and cholera toxin) mimic the PGE2-induced inhibition of M-CSF production. In conclusion, PGE2 is a potent regulator of M-CSF production by human bone marrow stromal cells, its effects being mediated via cAMP and PGE receptor EP2/EP4 subtypes.

  11. Engineering a human bone marrow model: a case study on ex vivo erythropoiesis.

    Science.gov (United States)

    Mantalaris, A; Keng, P; Bourne, P; Chang, A Y; Wu, J H

    1998-01-01

    Bone marrow, with its intricate, three-dimensional tissue structure facilitating cell-cell interactions, provides a microenvironment supporting the production of hundreds of billions of multilineal blood cells everyday. We have developed a three-dimensional bone marrow culture system in which marrow cells are cultured in a reactor packed with porous microspheres. The culture supports a three-dimensional growth configuration and multilineal hemopoiesis mimicking the bone marrow in vivo. We studied ex vivo human erythropoiesis using the three-dimensional culture system. The system sustained extensive erythropoiesis at low erythropoietin concentrations (0.2 U/mL), plus stem cell factor, interleukin-3, granulocyte-macrophage colony-stimulating factor, and insulin-like growth factor-I. Erythroid cell production lasted for more than 5 weeks, and the percentage of erythroid cells in the nonadherent cell population was approximately 60%. Flow cytometric analysis using cell surface markers specific for erythroid cells (CD71 and glycophorin-A) indicated that the culture produced early, intermediate, and late erythroid cells. As the culture progressed, the erythroid cell population shifted gradually toward mature cell types. When compared to the three-dimensional culture, the traditional flask cultures failed to support extensive erythropoiesis under the same conditions. This indicates that the three-dimensional bone marrow culture system provides a microenvironment conducive to erythropoiesis under more physiological conditions and is a better bone marrow model.

  12. Effect of Aging on the Toughness of Human Cortical Bone: Evaluation by R-Curves

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, J

    2004-10-08

    Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, are responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, unlike most previous studies the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34-99 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40% over six decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging in the wake of the crack.

  13. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    Science.gov (United States)

    Andrade, E.; Solís, C.; Canto, C. E.; de Lucio, O. G.; Chavez, E.; Rocha, M. F.; Villanueva, O.; Torreblanca, C. A.

    2014-08-01

    Analysis of ancient human bones found in "El Cóporo", an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone's black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  14. [Degradation of biomolecules: a comparative study of diagenesis of DNA and proteins in human bone tissue].

    Science.gov (United States)

    Harbeck, Michaela; Ritz-Timme, Stefanie; Schröder, Inge; Oehmichen, Manfred; von Wurmb-Schwark, Nicole

    2004-12-01

    Diagenesis of macromolecules is a not yet fully understood process that can be important for anthropological and forensic research. Trying to elucidate the diagenesis of DNA and proteins we investigated the process of fragmentation of DNA and razemisation of aspartic acid in human bone material. We created an in vitro-model of accelerated aging by incubating bone samples in hot water. A comparison of diagenesis of molecules in those artificially aged samples with altogether 30 historical bones from different regions and of different ages was carried out. The in vitro-model showed the expected positive correlation between the increase of razemisation of aspartic acid and DNA fragmentation, while there was a much lesser correlation when investigating historical bones. The in vitro-model showed the expected correlation between the increase of razemisation of aspartic acid and DNA fragmentation and to a much lesser extent in historical bones. This study shows that diagenesis is probably influenced by additional forces affecting different macromolecules in different ways.

  15. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells.

    Science.gov (United States)

    Yan, X Z; Rathe, F; Gilissen, C; van der Zande, M; Veltman, J; Junker, R; Yang, F; Jansen, J A; Walboomers, X F

    2014-06-01

    Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation.

  16. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.

    Science.gov (United States)

    Tang, C Y; Tsui, C P; Tang, Y M; Wei, L; Wong, C T; Lam, K W; Ip, W Y; Lu, W W J; Pang, M Y C

    2014-01-01

    With the development of micro-computed tomography (micro-CT) technology, it is possible to construct three-dimensional (3D) models of human bone without destruction of samples and predict mechanical behavior of bone using finite element analysis (FEA). However, due to large number of elements required for constructing the FE models of entire bone, this demands a substantial computational effort and the analysis usually needs a high level of computer. In this article, a voxel-based approach for generation of FE models of entire bone with microscopic architecture from micro-CT image data is proposed. To enable the FE analyses of entire bone to be run even on a general personal computer, grayscale intensity thresholds were adopted to reduce the amount of elements. Human metacarpal bone (MCP) bone was used as an example for demonstrating the applicability of the proposed method. The micro-CT images of the MCP bone were combined and converted into 3D array of pixels. Dual grayscale intensity threshold parameters were used to distinguish the pixels of bone tissues from those of surrounding soft tissues and improve predictive accuracy for the FE analyses with different sizes of elements. The method of selecting an appropriate value of the second grayscale intensity threshold was also suggested to minimize the area error for the reconstructed cross-sections of a FE structure. Experimental results showed that the entire FE MCP bone with microscopic architecture could be modeled and analyzed on a personal computer with reasonable accuracy.

  17. New STLV-3 strains and a divergent SIVmus strain identified in non-human primate bushmeat in Gabon

    Directory of Open Access Journals (Sweden)

    Liégeois Florian

    2012-03-01

    Full Text Available Abstract Background Human retroviral infections such as Human Immunodeficiency Virus (HIV or Human T-cell Lymphotropic Virus (HTLV are the result of simian zoonotic transmissions through handling and butchering of Non-Human Primates (NHP or by close contact with pet animals. Recent studies on retroviral infections in NHP bushmeat allowed for the identification of numerous Simian Immunodeficiency Viruses (SIV and Simian T-cell Lymphotropic Viruses (STLV to which humans are exposed. Nevertheless, today, data on simian retroviruses at the primate/hunter interface remain scarce. We conducted a pilot study on 63 blood and/or tissues samples derived from NHP bushmeat seized by the competent authorities in different locations across the country. Results SIV and STLV were detected by antibodies to HIV and HTLV antigens, and PCRs were performed on samples with an HIV or/and HTLV-like or indeterminate profile. Fourteen percent of the samples cross-reacted with HIV antigens and 44% with HTLV antigens. We reported STLV-1 infections in five of the seven species tested. STLV-3 infections, including a new STLV-3 subtype, STLV-1 and -3 co-infections, and triple SIV, STLV-1, STLV-3 infections were observed in red-capped mangabeys (C.torquatus. We confirmed SIV infections by PCR and sequence analyses in mandrills, red-capped mangabeys and showed that mustached monkeys in Gabon are infected with a new SIV strain basal to the SIVgsn/mus/mon lineage that did not fall into the previously described SIVmus lineages reported from the corresponding species in Cameroon. The same monkey (subspecies can thus be carrier of, at least, three distinct SIVs. Overall, the minimal prevalence observed for both STLV and SIV natural infections were 26.9% and 11.1% respectively. Conclusions Overall, these data, obtained from a restricted sampling, highlight the need for further studies on simian retroviruses in sub-Saharan Africa to better understand their evolutionary history and to

  18. Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi

    Science.gov (United States)

    Magalhães, Luísa M. D.; Viana, Agostinho; Chiari, Egler; Galvão, Lúcia M. C.; Gollob, Kenneth J.; Dutra, Walderez O.

    2015-01-01

    Background Trypanosoma cruzi strains are currently classified into six discrete typing units (DTUs) named TcI to VI. It is known that these DTUs have different geographical distribution, as well as biological features. TcI and TcII are major DTUs found in patients from northern and southern Latin America, respectively. Our hypothesis is that upon infection of human peripheral blood cells, Y strain (Tc II) and Col cl1.7 (Tc I), cause distinct immunological changes, which might influence the clinical course of Chagas disease. Methodology/Principal Findings We evaluated the infectivity of CFSE-stained trypomastigotes of Col cl1.7 and Y strain in human monocytes for 15 and 72 hours, and determined the immunological profile of lymphocytes and monocytes exposed to the different isolates using multiparameter flow cytometry. Our results showed a similar percentage and intensity of monocyte infection by Y and Col cl1.7. We also observed an increased expression of CD80 and CD86 by monocytes infected with Col cl1.7, but not Y strain. IL-10 was significantly higher in monocytes infected with Col cl1.7, as compared to Y strain. Moreover, infection with Col cl1.7, but not Y strain, led to an increased expression of IL-17 by CD8+ T cells. On the other hand, we observed a positive correlation between the expression of TNF-alpha and granzyme A only after infection with Y strain. Conclusion/Significance Our study shows that while Col cl1.7 induces higher monocyte activation and, at the same time, production of IL-10, infection with Y strain leads to a lower monocyte activation but higher inflammatory profile. These results show that TcI and TcII have a distinct immunological impact on human cells during early infection, which might influence disease progression. PMID:26147698

  19. Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains.

    Directory of Open Access Journals (Sweden)

    Olivo Miotto

    Full Text Available BACKGROUND: There is widespread concern that H5N1 avian influenza A viruses will emerge as a pandemic threat, if they become capable of human-to-human (H2H transmission. Avian strains lack this capability, which suggests that it requires important adaptive mutations. We performed a large-scale comparative analysis of proteins from avian and human strains, to produce a catalogue of mutations associated with H2H transmissibility, and to detect their presence in avian isolates. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a dataset of influenza A protein sequences from 92,343 public database records. Human and avian sequence subsets were compared, using a method based on mutual information, to identify characteristic sites where human isolates present conserved mutations. The resulting catalogue comprises 68 characteristic sites in eight internal proteins. Subtype variability prevented the identification of adaptive mutations in the hemagglutinin and neuraminidase proteins. The high number of sites in the ribonucleoprotein complex suggests interdependence between mutations in multiple proteins. Characteristic sites are often clustered within known functional regions, suggesting their functional roles in cellular processes. By isolating and concatenating characteristic site residues, we defined adaptation signatures, which summarize the adaptive potential of specific isolates. Most adaptive mutations emerged within three decades after the 1918 pandemic, and have remained remarkably stable thereafter. Two lineages with stable internal protein constellations have circulated among humans without reassorting. On the contrary, H5N1 avian and swine viruses reassort frequently, causing both gains and losses of adaptive mutations. CONCLUSIONS: Human host adaptation appears to be complex and systemic, involving nearly all influenza proteins. Adaptation signatures suggest that the ability of H5N1 strains to infect humans is related to the presence of an

  20. Ancient Human Bone Microstructure in Medieval England: Comparisons between Two Socio-Economic Groups.

    Science.gov (United States)

    Miszkiewicz, Justyna J; Mahoney, Patrick

    2016-01-01

    Understanding the links between bone microstructure and human lifestyle is critical for clinical and anthropological research into skeletal growth and adaptation. The present study is the first to report correspondence between socio-economic status and variation in bone microstructure in ancient humans. Products of femoral cortical remodeling were assessed using histological methods in a large human medieval sample (N = 450) which represented two distinct socio-economic groups. Osteonal parameters were recorded in posterior midshaft femoral sections from adult males (N = 233) and females (N = 217). Using univariate and multivariate statistics, intact, fragmentary, and osteon population densities, Haversian canal area and diameter, and osteon area were compared between the two groups, accounting for sex, age, and estimated femoral robusticity. The size of osteons and their Haversian canals, as well as osteon density, varied significantly between the socio-economic groups, although minor inconsistencies were observed in females. Variation in microstructure was consistent with historical textual evidence that describes differences in mechanical loading and nutrition between the two groups. Results demonstrate that aspects of ancient human lifestyle can be inferred from bone microstructure.

  1. Sustained Engraftment of Cryopreserved Human Bone Marrow CD34(+) Cells in Young Adult NSG Mice.

    Science.gov (United States)

    Wiekmeijer, Anna-Sophia; Pike-Overzet, Karin; Brugman, Martijn H; Salvatori, Daniela C F; Egeler, R Maarten; Bredius, Robbert G M; Fibbe, Willem E; Staal, Frank J T

    2014-06-01

    Hematopoietic stem cells (HSCs) are defined by their ability to repopulate the bone marrow of myeloablative conditioned and/or (lethally) irradiated recipients. To study the repopulating potential of human HSCs, murine models have been developed that rely on the use of immunodeficient mice that allow engraftment of human cells. The NSG xenograft model has emerged as the current standard for this purpose allowing for engraftment and study of human T cells. Here, we describe adaptations to the original NSG xenograft model that can be readily implemented. These adaptations encompass use of adult mice instead of newborns and a short ex vivo culture. This protocol results in robust and reproducible high levels of lympho-myeloid engraftment. Immunization of recipient mice with relevant antigen resulted in specific antibody formation, showing that both T cells and B cells were functional. In addition, bone marrow cells from primary recipients exhibited repopulating ability following transplantation into secondary recipients. Similar results were obtained with cryopreserved human bone marrow samples, thus circumventing the need for fresh cells and allowing the use of patient derived bio-bank samples. Our findings have implications for use of this model in fundamental stem cell research, immunological studies in vivo and preclinical evaluations for HSC transplantation, expansion, and genetic modification.

  2. A Development of a Human Cranial Bone Surrogate for Impact Studies

    Directory of Open Access Journals (Sweden)

    Jack C Roberts

    2013-10-01

    Full Text Available In order to replicate the fracture behavior of the intact human skull under impact it becomes necessary to develop a material having the mechanical properties of cranial bone. The most important properties to replicate in a surrogate human skull were found to be the fracture toughness and tensile strength of the cranial tables as well as the bending strength of the 3-layer (inner table-diplöe-outer table architecture of the human skull. The materials selected to represent the surrogate cranial tables consisted of two different epoxy resins systems with random milled glass fiber to enhance the strength and stiffness and the materials to represent the surrogate diplöe consisted of three low density foams. Forty-one three-point bending fracture toughness tests were performed on nine material combinations. The materials that best represented the fracture toughness of cranial tables were then selected and formed into tensile samples and tested. These materials were then used with the two surrogate diplöe foam materials to create the three layer surrogate cranial bone samples for three point bending tests. Drop tower tests were performed on flat samples created from these materials and the fracture patterns were very similar to the linear fractures seen in pendulum impacts of intact human skulls. The surrogate cranial tables had the quasi-static fracture toughness and tensile strength of 2.5 MPa√m and 53 ± 4.9 MPa, respectively, while the same properties of human compact bone were 3.1 ± 1.8 MPa√m and 68 ± 18 MPa, respectively. The cranial surrogate had a quasi-static bending strength of 68 ± 5.7 MPa, while that of cranial bone was 82 ± 26 MPa. This material/design is currently being used to construct spherical shell samples for drop tower and ballistic tests.

  3. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis.

    Science.gov (United States)

    Swindell, William R; Michaels, Kellie A; Sutter, Andrew J; Diaconu, Doina; Fritz, Yi; Xing, Xianying; Sarkar, Mrinal K; Liang, Yun; Tsoi, Alex; Gudjonsson, Johann E; Ward, Nicole L

    2017-03-09

    Imiquimod (IMQ) produces a cutaneous phenotype in mice frequently studied as an acute model of human psoriasis. Whether this phenotype depends on strain or sex has never been systematically investigated on a large scale. Such effects, however, could lead to conflicts among studies, while further impacting study outcomes and efforts to translate research findings. RNA-seq was used to evaluate the psoriasiform phenotype elicited by 6 days of Aldara (5% IMQ) treatment in both sexes of seven mouse strains (C57BL/6 J (B6), BALB/cJ, CD1, DBA/1 J, FVB/NJ, 129X1/SvJ, and MOLF/EiJ). In most strains, IMQ altered gene expression in a manner consistent with human psoriasis, partly due to innate immune activation and decreased homeostatic gene expression. The response of MOLF males was aberrant, however, with decreased expression of differentiation-associated genes (elevated in other strains). Key aspects of the IMQ response differed between the two most commonly studied strains (BALB/c and B6). Compared with BALB/c, the B6 phenotype showed increased expression of genes associated with DNA replication, IL-17A stimulation, and activated CD8+ T cells, but decreased expression of genes associated with interferon signaling and CD4+ T cells. Although IMQ-induced expression shifts mirrored psoriasis, responses in BALB/c, 129/SvJ, DBA, and MOLF mice were more consistent with other human skin conditions (e.g., wounds or infections). IMQ responses in B6 mice were most consistent with human psoriasis and best replicated expression patterns specific to psoriasis lesions. These findings demonstrate strain-dependent aspects of IMQ dermatitis in mice. We have shown that IMQ does not uniquely model psoriasis but in fact triggers a core set of pathways active in diverse skin diseases. Nonetheless, our findings suggest that B6 mice provide a better background than other strains for modeling psoriasis disease mechanisms.

  4. Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging

    Institute of Scientific and Technical Information of China (English)

    RUAN Wen; PAN Cui-zhen; HUANG Guo-qian; LI Yan-lin; GE Jun-bo; SHU Xian-hong

    2005-01-01

    Background Emerging evidence suggests that stem cells can be used to improve cardiac function in patients after acute myocardial infarction. In this randomized trial, we aimed to use Doppler tissue tracking and strain imaging to assess left ventricular segmental function after intracoronary transfer of autologous bone-marrow stem cells (BMCs) for 6 months' follow up. Methods Twenty patients with acute myocardial infarction and anterior descending coronary artery occlusion proven by angiography were double-blindedly randomized into intracoronary injection of bone-marrow cell (treated, n=9) or diluted serum (control, n=11) groups. GE vivid 7 and Q-analyze software were used to perform echocardiogram in both groups 1 week, 3 months and 6 months after treatment. Three apical views of tissue Doppler imaging were acquired to measure peak systolic displacement (Ds) and peak systolic strain (εpeak) from 12 segments of LV walls. Left ventricular ejection fraction (LVEF), end-diastolic volume (EDV) and end-systolic volume (ESV) were obtained by Simposon's biplane method. Results (1) 3 months later, Ds and εpeak over the infract-related region clearly increased in the BMCs group [Ds: (4.49±2.71) mm vs (7.56±2.95) mm, P0.05; εpeak : (-13.84±6.05)% vs (-15.04±6.75)%, P>0.05]. At the same time, Ds over the normal region also increased, but the Ds enhancement was markedly higher in the BMCs group than that in the control group [(3.21±3.17) mm vs (0.76±1.94) mm, P0.05). (2) LVEF in treated and control groups were almost the same at baseline (1st week after PCI) [(53.37±8.92)% vs (53.51±5.84)%, P>0.05]. But 6 months later, LVEF in the BMCs group were clearly higher than that in the control group [(59.33±12.91)% vs (50.30±8.30)%, P0.05; ESV: (57.12±18.66) ml vs (62.09±17.68) ml, P>0.05]. Three months later, EDV and ESV in the control group were markedly greater than those in the BMCs group [EDV: (154.89±46.34) ml vs (104.85±33.21) ml, P0.05). Conclusions Emergency

  5. Technical note: early post-mortem changes of human bone in taphonomy with μCT.

    Science.gov (United States)

    Le Garff, Erwan; Mesli, Vadim; Delannoy, Yann; Colard, Thomas; Demondion, Xavier; Becart, Anne; Hedouin, Valéry

    2016-12-29

    Post-mortem interval (PMI) estimation is an important issue in forensic medicine, particularly for criminal purposes and legal limitation periods. The goal of the present study is to examine the evolution of the trabecular cranial vault bone after 4 weeks of conservation in a controlled environment with micro-tomography (μCT) analyses.Four bone samples were extracted from a fresh human cranial vault (a donation to science according to the French law) and conserved in an air-controlled environment. The samples were weighed and μCT scanned at a 10-μm resolution every week after death for a month. The μCT features were identical for every sample. Each set of data from the μCTs was reconstructed, registered, and analyzed in terms of the total volume, bone volume, bone surface, number of trabeculae, trabeculae thickness, and mean distance of the trabeculae. The samples were conserved in a glass box in 20 °C air with 60% humidity in a laboratory hood between each μCT acquisition. Descriptive statistics were determined. Each sample was observed and compared to itself over time.After 1 month of conservation, the mean bone volume (-1.9%), bone surface (-5.1%), and trabecular number (-12.35%) decreased, whereas the mean trabecular separation (+5.55%) and trabecular thickness (+12.7%) increased. Many variations (i.e., increases and decreases) were observed between the extraction of the sample and the end of the 4 weeks of conservation. The present observations may be explained by bone diagenesis. Previous observations have indicated that protein and lipid losses occur with bone weight and volume losses. These diagenesis effects may explain the trabecular modifications observed in the present work. We observed many bone variations with the μCT scans between the beginning and the end of the conservation that had no explanations. Additional studies, particularly studies involving statistics, need to be performed to confirm our observations and explain these results

  6. Ex vivo expansion of Primate CD34+ Cells isolated from Bone Marrow and Human Bone Marrow Mononuclear Cells using a Novel Scaffold

    Directory of Open Access Journals (Sweden)

    Devaprasad D

    2009-01-01

    Full Text Available Bone marrow derived CD34+ cells have been in clinical application in patients with haematological malignancies. One of the major problems with this treatment is the non-availability of matched donors or the necessity of multiple transfusions depending upon the pathology. Recently evidences have been accumulating to prove the safety and efficacy of autologous CD34+ cells in diseases such as myocardial dysfunction, peripheral vascular diseases and neurological certain conditions. However there are only a few reports in the literature on ex vivo expansion of the bone marrow derived CD34+ cells. We have in two different studies proven that isolated CD34+ cells from baboon bone marrow and non-isolated BMMNCs from human bone marrow could be expanded with increase in percentage of CD34+ cells using a novel scaffold.

  7. Effect of nitrous oxide on folate coenzyme distribution and de novo synthesis of thymidylate in human bone marrow cells

    NARCIS (Netherlands)

    A.A.M. Ermens (Anton); M. Schoester (Martijn); J. Lindemans (Jan); J. Abels

    1992-01-01

    markdownabstractAbstract The effect of nitrous oxide on intracellular folate metabolism of the human bone marrow was studied in vitro. Bone marrow cells, obtained from healthy volunteers, were incubated with 5 × 10−8m-[3H]5-formyltetrahydrofolate (5-formylTHF) for 18 hr to label intracellular fola

  8. Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry

    NARCIS (Netherlands)

    Terstappen, Leon W.M.M.; Johnsen, Steen; Segers-Nolten, Ine M.J.; Loken, Michael R.

    1990-01-01

    The low frequency of plasma cells and the lack of specific cell surface markers has been a major obstacle for a detailed characterization of plasma cells in normal human bone marrow. Multiparameter flow cytometry enabled the identification of plasma cells in normal bone marrow aspirates. The plasma

  9. Potential Use of Bacterial Community Succession in Decaying Human Bone for Estimating Postmortem Interval.

    Science.gov (United States)

    Damann, Franklin E; Williams, Daniel E; Layton, Alice C

    2015-07-01

    Bacteria are taphonomic agents of human decomposition, potentially useful for estimating postmortem interval (PMI) in late-stage decomposition. Bone samples from 12 individuals and three soil samples were analyzed to assess the effects of decomposition and advancing time on bacterial communities. Results indicated that partially skeletonized remains maintained a presence of bacteria associated with the human gut, whereas bacterial composition of dry skeletal remains maintained a community profile similar to soil communities. Variation in the UniFrac distances was significantly greater between groups than within groups (p < 0.001) for the unweighted metric and not the weighted metric. The members of the bacterial communities were more similar within than between decomposition stages. The oligotrophic environment of bone relative to soft tissue and the physical protection of organic substrates may preclude bacterial blooms during the first years of skeletonization. Therefore, community membership (unweighted) may be better for estimating PMI from skeletonized remains than community structure (weighted).

  10. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  11. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous h......MSC population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high......-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. RESULTS: In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts...

  12. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas;

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous h......MSC population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high......-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. RESULTS: In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts...

  13. Computational prediction of vaccine strains for human influenza A (H3N2) viruses.

    Science.gov (United States)

    Steinbrück, L; Klingen, T R; McHardy, A C

    2014-10-01

    Human influenza A viruses are rapidly evolving pathogens that cause substantial morbidity and mortality in seasonal epidemics around the globe. To ensure continued protection, the strains used for the production of the seasonal influenza vaccine have to be regularly updated, which involves data collection and analysis by numerous experts worldwide. Computer-guided analysis is becoming increasingly important in this problem due to the vast amounts of generated data. We here describe a computational method for selecting a suitable strain for production of the human influenza A virus vaccine. It interprets available antigenic and genomic sequence data based on measures of antigenic novelty and rate of propagation of the viral strains throughout the population. For viral isolates sampled between 2002 and 2007, we used this method to predict the antigenic evolution of the H3N2 viruses in retrospective testing scenarios. When seasons were scored as true or false predictions, our method returned six true positives, three false negatives, eight true negatives, and one false positive, or 78% accuracy overall. In comparison to the recommendations by the WHO, we identified the correct antigenic variant once at the same time and twice one season ahead. Even though it cannot be ruled out that practical reasons such as lack of a sufficiently well-growing candidate strain may in some cases have prevented recommendation of the best-matching strain by the WHO, our computational decision procedure allows quantitative interpretation of the growing amounts of data and may help to match the vaccine better to predominating strains in seasonal influenza epidemics. Importance: Human influenza A viruses continuously change antigenically to circumvent the immune protection evoked by vaccination or previously circulating viral strains. To maintain vaccine protection and thereby reduce the mortality and morbidity caused by infections, regular updates of the vaccine strains are required. We

  14. Bone marrow CFU-GM and human tumor xenograft efficacy of three antitumor nucleoside analogs.

    Science.gov (United States)

    Bagley, Rebecca G; Roth, Stephanie; Kurtzberg, Leslie S; Rouleau, Cecile; Yao, Min; Crawford, Jennifer; Krumbholz, Roy; Lovett, Dennis; Schmid, Steven; Teicher, Beverly A

    2009-05-01

    Nucleoside analogs are rationally designed anticancer agents that disrupt DNA and RNA synthesis. Fludarabine and cladribine have important roles in the treatment of hematologic malignancies. Clofarabine is a next generation nucleoside analog which is under clinical investigation. The bone marrow toxicity, tumor cell cytotoxicity and human tumor xenograft activity of fludarabine, cladribine and clofarabine were compared. Mouse and human bone marrow were subjected to colony forming (CFU-GM) assays over a 5-log concentration range in culture. NCI-60 cell line screening data were compared. In vivo, a range of clofarabine doses was compared with fludarabine for efficacy in several human tumor xenografts. The IC90 concentrations for fludarabine and cladribine for mouse CFU-GM were >30 and 0.93 microM, and for human CFU-GM were 8 and 0.11 microM, giving mouse to human differentials of >3.8- and 8.5-fold. Clofarabine produced IC90s of 1.7 microM in mouse and 0.51 microM in human CFU-GM, thus a 3.3-fold differential between species. In the NCI-60 cell line screen, fludarabine and cladribine showed selective cytotoxicity toward leukemia cell lines while for clofarabine there was no apparent selectivity based upon origin of the tumor cells. In vivo, clofarabine produced a dose-dependent increase in tumor growth delay in the RL lymphoma, the RPMI-8226 multiple myeloma, and HT-29 colon carcinoma models. The PC3 prostate carcinoma was equally responsive to clofarabine and fludarabine. Bringing together bone marrow toxicity data, tumor cell line cytotoxicity data, and human tumor xenograft efficacy provides valuable information for the translation of preclinical findings to the clinic.

  15. Functional assay, expression of growth factors and proteins modulating bone-arrangement in human osteoblasts seeded on an anorganic bovine bone biomaterial

    Directory of Open Access Journals (Sweden)

    O Trubiani

    2010-07-01

    Full Text Available The basic aspects of bone tissue engineering include chemical composition and geometry of the scaffold design, because it is very important to improve not only cell attachment and growth but especially osteodifferentiation, bone tissue formation, and vascularization. Geistlich Bio-Oss® (GBO is a xenograft consisting of deproteinized, sterilized bovine bone, chemically and physically identical to the mineral phase of human bone.In this study, we investigated the growth behaviour and the ability to form focal adhesions on the substrate, using vinculin, a cytoskeletal protein, as a marker. Moreover, the expression of bone specific proteins and growth factors such as type I collagen, osteopontin, bone sialoprotein, bone morphogenetic protein-2 (BMP-2, BMP-7 and de novo synthesis of osteocalcin in normal human osteoblasts (NHOst seeded on xenogenic GBO were evaluated. Our observations suggest that after four weeks of culture in differentiation medium, the NHOst showed a high affinity for the three dimensional biomaterial; in fact, cellular proliferation, migration and colonization were clearly evident. The osteogenic differentiation process, as demonstrated by morphological, histochemical, energy dispersive X-ray microanalysis and biochemical analysis was mostly obvious in the NHOst grown on three-dimensional inorganic bovine bone biomaterial. Functional studies displayed a clear and significant response to calcitonin when the cells were differentiated. In addition, the presence of the biomaterial improved the response, suggesting that it could drive the differentiation of these cells towards a more differentiated osteogenic phenotype. These results encourage us to consider GBO an adequate biocompatible three-dimensional biomaterial, indicating its potential use for the development of tissue-engineering techniques.

  16. Bone diseases associated with human immunodeficiency virus infection: pathogenesis, risk factors and clinical management.

    Science.gov (United States)

    Bongiovanni, Marco; Tincati, Camilla

    2006-06-01

    Bone disorders such as osteopenia and osteoporosis have been recently reported in patients infected with the human immunodeficiency virus (HIV), but their etiology remains still unknown. The prevalence estimates vary widely among the different studies and can be affected by concomitant factors such as the overlapping of other possible conditions inducing bone loss as lypodystrophy, advanced HIV-disease, advanced age, low body weight or concomitant use of other drugs. All the reports at the moment available in the literature showed a higher than expected prevalence of reduced bone mineral density (BMD) in HIV-infected subjects both naïve and receiving potent antiretroviral therapy compared to healthy controls. This controversial can suggest a double role played by both antiretroviral drugs and HIV itself due to immune activation and/or cytokines disregulation. An improved understanding of the pathogenesis of bone disorders can result in better preventative and therapeutic measures. However, the clinical relevance and the risk of fractures remains undefined in HIV-population. The clinical management of osteopenia and osteoporosis in HIV-infected subjects is still being evaluated. Addressing potential underlying bone disease risk factors (e.g., smoking and alcohol intake, use of corticosteroids, advanced age, low body weight), evaluating calcium and vitamin D intake, and performing dual x-ray absorptiometry in HIV-infected individuals who have risk factors for bone disease can be important strategies to prevent osteopenia and osteoporosis in this population. The administration of bisphosphonates (e.g., alendronate), with calcium and vitamin D supplementation, may be a reasonable and effective option to treat osteoporosis in these subjects.

  17. Effect of Loading Rate and Orientation on the Compressive Response of Human Cortical Bone

    Science.gov (United States)

    2014-05-01

    Biomechanics 1975, 8, 27–40. 11. Ntim, M. M.; Bembey, A. K.; Ferguson, V. I.; Bushby, A. J. Hydration Effects on the Viscoelastic Properties of Collagen. MRS...Determination of Mechanical Properties of Human Femoral Cortical Bone by the Hopkinson Bar Stress Technique. Journal of Biomechanics 1990, 23 (11...Science and Technology 2011, 25 (9), 2211–2215. 18. Chen, W.; Song, B. Split Hopkinson (Kolsky) Bar; Springer : New York, 2010; pp 29–77. 19. Kulin, R

  18. Construction and characterization of a recombinant human adenovirus vector expressing bone morphogenetic protein 2

    OpenAIRE

    Zhang, Zheng; WANG, GUOXIAN; Li, Chen; Liu, Danping

    2013-01-01

    The aim of this study was to construct and characterize a novel recombinant human adenovirus vector expressing bone morphogenetic protein 2 (BMP2) and green fluorescent protein (GFP). The BMP2 gene in the plasmid pcDNA3-BMP2 was sequenced and the restriction enzyme recognition sites were analyzed. Following mutagenesis using polymerase chain reaction (PCR), the gene sequence after the translation termination codon was removed and new restriction sites were added. The mutated BMP2 gene (BMP2+ ...

  19. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    OpenAIRE

    Giannini, C.; D. Siliqi; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon res...

  20. Changes in the stiffness of the human tibial cartilage-bone complex in early-stage osteoarthrosis

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    Cylindrical human tibial cartilage-bone unit specimens were removed from 9 early-stage medial osteoarthrotic (OA) tibiae (mean age 74 years) and 10 normal age-matched tibiae (mean age 73 years). These specimens were divided into 4 groups: OA, lateral comparison, medial age-matched, and lateral ag...... and bone remained significant in the three control groups. Our findings suggest that both cartilage and bone in early-stage OA are mechanically inferior to normal, and that OA cartilage and bone have lost their unit function to mechanical loading....

  1. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.

    Science.gov (United States)

    Park, Jung Jin; Hyun, Woo Jin; Mun, Sung Cik; Park, Yong Tae; Park, O Ok

    2015-03-25

    Because of their outstanding electrical and mechanical properties, graphene strain sensors have attracted extensive attention for electronic applications in virtual reality, robotics, medical diagnostics, and healthcare. Although several strain sensors based on graphene have been reported, the stretchability and sensitivity of these sensors remain limited, and also there is a pressing need to develop a practical fabrication process. This paper reports the fabrication and characterization of new types of graphene strain sensors based on stretchable yarns. Highly stretchable, sensitive, and wearable sensors are realized by a layer-by-layer assembly method that is simple, low-cost, scalable, and solution-processable. Because of the yarn structures, these sensors exhibit high stretchability (up to 150%) and versatility, and can detect both large- and small-scale human motions. For this study, wearable electronics are fabricated with implanted sensors that can monitor diverse human motions, including joint movement, phonation, swallowing, and breathing.

  2. Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells.

    Science.gov (United States)

    Alexander, Dorothea; Hoffmann, Jürgen; Munz, Adelheid; Friedrich, Björn; Geis-Gerstorfer, Jürgen; Reinert, Siegmar

    2008-03-01

    For bone regeneration constructs using human jaw periosteal cells (JPC) the extent of osteoinductive ability of different three-dimensional scaffolds is not yet established. We analyzed open-cell polylactic acid (OPLA) scaffolds for their suitability as bone engineering constructs using human JPC. Cell adhesion and spreading was visualized on the surface of scaffolds by scanning electron microscopy. JPC proliferation within OPLA scaffolds was compared with proliferation within collagen and calcium phosphate scaffolds. We found a significant increase of proliferation rates in OPLA scaffolds versus Coll/CaP scaffolds at three time points. Live-measurements of oxygen consumption within the cell-seeded scaffolds indicate that the in vitro culturing time should not exceed 12-15 days. OPLA scaffolds, which were turned out to be the most beneficial for JPC growth, were chosen for osteogenic differentiation experiments with or without BMP-2. Gene expression analyses demonstrated induction of several osteogenic genes (alkaline phosphatase, osterix, Runx-2 and insulin-like growth factor) within the 3D-scaffolds after 12 days of in vitro culturing. Element analysis by EDX spectrometry of arising nodules during osteogenesis demonstrated that JPC growing within OPLA scaffolds are able to form CaP particles. We conclude that OPLA scaffolds provide a promising environment for bone substitutes using human JPC.

  3. On the origin of human adipocytes and the contribution of bone marrow-derived cells.

    Science.gov (United States)

    Rydén, Mikael

    2016-01-01

    In the last decade, results in both animal models and humans have demonstrated that white adipocytes are generated over the entire life-span. This adds to the plasticity of adipose tissue and alterations in adipocyte turnover are linked to metabolic dysfunction. Adipocytes are derived from precursors present primarily in the perivascular areas of adipose tissue but their precise origin remains unclear. The multipotent differentiation capacity of bone marrow-derived cells (BMDC) has prompted the suggestion that BMDC may contribute to different cell tissue pools, including adipocytes. However, data in murine transplantation models have been conflicting and it has been a matter of debate whether BMDC actually differentiate into adipocytes or just fuse with resident fat cells. To resolve this controversy in humans, we recently performed a study in 65 subjects that had undergone bone marrow transplantation. Using a set of newly developed assays including single cell genome-wide analyses of mature adipocytes, we demonstrated that bone marrow contributes with approximately 10 % to the adipocyte pool. This proportion was more than doubled in obesity, suggesting that BMDC may constitute a reserve pool for adipogenesis, particularly upon weight gain. This commentary discusses the possible relevance of these and other recent findings for human pathophysiology.

  4. American alligator proximal pedal phalanges resemble human finger bones: Diagnostic criteria for forensic investigators.

    Science.gov (United States)

    Ferraro, Joseph V; Binetti, Katie M

    2014-07-01

    A scientific approach to bone and tooth identification requires analysts to pursue the goal of empirical falsification. That is, they may attribute a questioned specimen to element and taxon only after having ruled out all other possible attributions. This requires analysts to possess a thorough understanding of both human and non-human osteology, particularly so for remains that may be morphologically similar across taxa. To date, forensic anthropologists have identified several potential 'mimics' for human skeletal remains, including pig teeth and bear paws. Here we document another possible mimic for isolated human skeletal elements--the proximal pedal phalanges of American alligators (Alligator mississippiensis) closely resemble the proximal and intermediate hand phalanges of adult humans. We detail morphological similarities and differences between these elements, with the goal of providing sufficient information for investigators to confidently falsify the hypothesis that a questioned phalanx is derived from an American alligator.

  5. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.

    Science.gov (United States)

    Boyle, Christopher; Kim, Il Yong

    2011-03-15

    The law of bone remodeling, commonly referred to as Wolff's Law, asserts that the internal trabecular bone adapts to external loadings, reorienting with the principal stress trajectories to maximize mechanical efficiency creating a naturally optimum structure. The goal of the current study was to utilize an advanced structural optimization algorithm, called design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur and analyse the results to determine the validity of Wolff's hypothesis. DSO optimizes the layout of material by iteratively distributing it into the areas of highest loading, while simultaneously changing the design domain to increase computational efficiency. The result is a "fully stressed" structure with minimized compliance and increased stiffness. The large-scale computational simulation utilized a 175 μm mesh resolution and the routine daily loading activities of walking and stair climbing. The resulting anisotropic trabecular architecture was compared to both Wolff's trajectory hypothesis and natural femur samples from literature using a variety of visualization techniques, including radiography and computed tomography (CT). The results qualitatively revealed several anisotropic trabecular regions, that were comparable to the natural human femurs. Quantitatively, the various regional bone volume fractions from the computational results were consistent with quantitative CT analyses. The global strain energy proceeded to become more uniform during optimization; implying increased mechanical efficiency was achieved. The realistic simulated trabecular geometry suggests that the DSO method can accurately predict bone adaptation due to mechanical loading and that the proximal femur is an optimum structure as the Wolff hypothesized.

  6. Resistance of mice to infection with the human strain of Hymenolepis nana.

    Science.gov (United States)

    al-Baldawi, F A; Mahdi, N K; Abdul-Hafidh, B A

    1989-06-01

    Six attempts were made to infect mice by feeding them eggs of the human strain of Hymenolepis nana, but none was successful. No eggs were found in the mouse faeces 14 days after feeding, and no adult worms were recovered at post mortem examination. In attempts to induce cysticercoids to infect mice, beetles were either fed on infected human faeces or given Hymenolepis eggs on filter paper. Both methods were unsuccessful, as no cysticercoids were recovered six days after exposure of the beetles.

  7. Cyclic strain alters the expression and release of angiogenic factors by human tendon cells.

    Science.gov (United States)

    Mousavizadeh, Rouhollah; Khosravi, Shahram; Behzad, Hayedeh; McCormack, Robert G; Duronio, Vincent; Scott, Alex

    2014-01-01

    Angiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain). We found that mechanically stimulated human tendon cells released factors that promoted in vitro proliferation and tube formation by human umbilical vein endothelial cells (HUVEC). In response to cyclic strain, there was a transient increase in the expression of several angiogenic genes including ANGPTL4, FGF-2, COX-2, SPHK1, TGF-alpha, VEGF-A and VEGF-C, with no change in anti-angiogenic genes (BAI1, SERPINF1, THBS1 and 2, TIMP1-3). Cyclic strain also resulted in the extracellular release of ANGPTL4 protein by tendon cells. Our study is the first report demonstrating the induction of ANGPTL4 mRNA and release of ANGPTL4 protein in response to cyclic strain. Tenocytes may contribute to the upregulation of angiogenesis during the development of overuse tendinopathy.

  8. Campylobacter jejuni strains of human and chicken origin are invasive in chickens after oral challenge

    DEFF Research Database (Denmark)

    Knudsen, Katrine Nørrelund; Bang, Dang Duong; Andresen, Lars Ole

    2006-01-01

    to be associated with the Guillain Barre Syndrome (GBS) in humans. The minimum dose for establishing colonization in the clay-old chickens was approximately 2 cfu, whereas two- to threefold higher doses were required for establishing colonization in the 14-day-old chickens. Two of the C jejuni strains were shown...

  9. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879

    NARCIS (Netherlands)

    Triana, Sergio; González, Andrés; Ohm, Robin A|info:eu-repo/dai/nl/304837628; Wosten, Han|info:eu-repo/dai/nl/120693186; de Cock, Hans|info:eu-repo/dai/nl/087737116; Restrepo, Silvia; Celis, Adriana

    2015-01-01

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia

  10. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879.

    Science.gov (United States)

    Triana, Sergio; González, Andrés; Ohm, Robin A; Wösten, Han A B; de Cock, Hans; Restrepo, Silvia; Celis, Adriana

    2015-10-15

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia species. Copyright © 2015 Triana et al.

  11. Dominance of Human Innate Immune Responses in Primary Francisella tularensis Live Vaccine Strain Vaccination

    Science.gov (United States)

    2006-03-31

    Diseases, Bacteriology Division, 425 Porter St, Frederick , MD 21702-5011. Dr Brittingham is the recipient of the National Research Council Fellowship...tularemia vaccine strain) infection by the sera of human recipients of the live tula- remia vaccine. Am J Med Sci 1994;308:83-7. 10. Herzberg VL

  12. A calibrated human PBPK model for benzene inhalation with urinary bladder and bone marrow compartments.

    Science.gov (United States)

    Knutsen, Jeffrey S; Kerger, Brent D; Finley, Brent; Paustenbach, Dennis J

    2013-07-01

    A physiologically-based pharmacokinetic (PBPK) model of benzene inhalation based on a recent mouse model was adapted to include bone marrow (target organ) and urinary bladder compartments. Empirical data on human liver microsomal protein levels and linked CYP2E1 activities were incorporated into the model, and metabolite-specific conversion rate parameters were estimated by fitting to human biomonitoring data and adjusting for background levels of urinary metabolites. Human studies of benzene levels in blood and breath, and phenol levels in urine were used to validate the rate of human conversion of benzene to benzene oxide, and urinary benzene metabolites from Chinese benzene worker populations provided model validation for rates of human conversion of benzene to muconic acid (MA) and phenylmercapturic acid (PMA), phenol (PH), catechol (CA), hydroquinone (HQ), and benzenetriol (BT). The calibrated human model reveals that while liver microsomal protein and CYP2E1 activities are lower on average in humans compared to mice, the mouse also shows far lower rates of benzene conversion to MA and PMA, and far higher conversion of benzene to BO/PH, and of BO/PH to CA, HQ, and BT. The model also differed substantially from existing human PBPK models with respect to several metabolic rate parameters of importance to interpreting benzene metabolism and health risks in human populations associated with bone marrow doses. The model provides a new methodological paradigm focused on integrating linked human liver metabolism data and calibration using biomonitoring data, thus allowing for model uncertainty analysis and more rigorous validation. © 2012 Society for Risk Analysis.

  13. A novel model system for the study of experimental guided bone formation in humans.

    Science.gov (United States)

    Hämmerle, C H; Schmid, J; Olah, A J; Lang, N P

    1996-03-01

    The aim of the present experiment was to test a novel model system, designed to obtain human specimens of regenerated and also newly regenerated jaw bone, for the study of the biological events under a variety of conditions. Following information and disclosure of possible risks associated with a minor oral surgical procedure, 9 systemically healthy subjects (5 men, 4 women, mean age 31.7 years) signed consent forms and volunteered to participate in this study. Hollow test cylinders with an outer diameter of 3.5 mm, an inner diameter of 2.5 mm, and 4 mm in height were used. They were manufactured from commercially pure titanium and exhibited a highly polished inner surface and a titanium plasma sprayed outer rough surface. A mucoperiosteal flap was raised in the retromolar area of the mandible corresponding to standard retrained third molar surgery. Following flap reflection a standardized hole was drilled through the cortical bone into the bone marrow using round burs. The congruent test cylinders were firmly placed into the prepared bony bed yielding primary stability. One-and-a-half to 2 mm of the test device were submerged below the level of the surrounding bone, while the remainder surpassed the level of the bone surface. The bone-facing end of the cylinder was left open, while the coronal soft tissue facing end was closed by an ePTFE-membrane. The flap was sutured to obtain primary wound closure. In order to prevent infection, penicillin was prescribed systemically and oral rinses of chlorhexidine were administered. After 2, 7, and 12 weeks one test device including the regenerated tissue was surgically harvested, while after 16, 24 and 36 weeks respectively, 2 devices were harvested and processed for soft or hard tissue histology or histochemistry. The two surgical procedures and the presence of the test cylinders during the time of healing were well tolerated by the volunteers. In all 9 subjects generated tissue could successfully be harvested. The tissue

  14. A butchered bone from Norfolk: evidence for very early human presence in Britain

    Directory of Open Access Journals (Sweden)

    Simon Parfitt

    2004-08-01

    Full Text Available Before the Anglian glaciation some 450,000 years ago, much of England was drained by large rivers that deposited sediments - known as the Cromer Forest-bed Formation - now exposed along the coast of East Anglia. The Forest-bed has yielded a great variety of fossils but until now no definite evidence of human activity. The recent discovery of cut marks on a bison bone collected from it in the nineteenth century demonstrates conclusively that humans were present in this part of East Anglia over half a million years ago.

  15. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength.

  16. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Solís, C.; Canto, C.E.; Lucio, O.G. de [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Chavez, E. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, 07738 México D.F. (Mexico); Rocha, M.F.; Villanueva, O.; Torreblanca, C.A. [Centro INAH Zacatecas, Miguel Auza No. 205, Col. Centro, Zacatecas/Zacatecas CP 98000 (Mexico)

    2014-08-01

    Analysis of ancient human bones found in “El Cóporo”, an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: {sup 14}C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The {sup 14}C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone’s black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  17. An analysis of factors affecting the mercury content in the human femoral bone.

    Science.gov (United States)

    Zioła-Frankowska, A; Dąbrowski, M; Kubaszewski, Ł; Rogala, P; Kowalski, A; Frankowski, M

    2017-01-01

    The study was carried out to determine the content of mercury in bone tissue of the proximal femur (head and neck bone) of 95 patients undergoing total hip replacement due to osteoarthritis, using CF-AFS analytical technique. Furthermore, the investigations were aimed at assessing the impact of selected factors, such as age, gender, tobacco smoking, alcohol consumption, exposure to chemical substance at work, type of degenerative changes, clinical evaluation and radiological parameters, type of medications, on the concentration of mercury in the head and neck of the femur, resected in situ. Mercury was obtained in all samples of the head and neck of the femur (n = 190) in patients aged 25-91 years. The mean content of mercury for the whole group of patients was as follows: 37.1 ± 35.0 ng/g for the femoral neck and 24.2 ± 19.5 ng/g for the femoral head. The highest Hg contents were found in femoral neck samples, both in women and men, and they amounted to 169.6 and 176.5 ng/g, respectively. The research showed that the mercury content of bones can be associated with body mass index, differences in body anatomy, and gender. The uses of statistical analysis gave the possibility to define the influence of factors on mercury content in human femoral bones.

  18. Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation.

    Science.gov (United States)

    Zhu, Junfeng; Zhang, Xiaoling; Wang, Chengtao; Peng, Xiaochun; Zhang, Xianlong

    2008-12-01

    Mechanical factors are related to periprosthetic osseointegration following total hip arthroplasty. However, osteoblast response to strain in implanted femurs is unclear because of the absence of accurate stress-measuring methods. In our study, finite element analysis was performed to calculate strain distribution in implanted femurs. 0.8-3.2% tensile strain was then applied to human osteoblasts. Higher magnitudes of strain enhanced the expression of osteocalcin, type I collagen, and Cbfa1/Runx2. Lower magnitudes significantly increased ALP activity. Among these, type I collagen expression increased with the activation of ERK1/2 phosphorylation in a strain-magnitude-dependent manner. Our study marks the first investigation of osteoblast response at different magnitudes of periprosthetic strain. The results indicate that the functional status of human osteoblasts is determined by strain magnitude. The strain distribution in the proximal region of implanted femur should be improved for osseointegration.

  19. [Human bone marrow cell culture--a sensitive method for the evaluation of the biocompatibility of materials used in orthopedics].

    Science.gov (United States)

    Wilke, A; von Hirschheydt, S; Orth, J; Kienapfel, H; Griss, P; Franke, R P

    1995-01-01

    The objective of the study was to develop a test system to determine the cytotoxicity and biocompatibility of different biomaterials used in orthopedic surgery. This system was based on the use of a human bone marrow cell culture and the purpose was to find a screening method as a alternative to early animal experimental methods. The established human bone marrow cell culture has certain advantages when compared with other cell culture models. The result demonstrated a high conformity with animal experimental results.

  20. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  1. Rabbit and human hepatitis E virus strains belong to a single serotype.

    Science.gov (United States)

    Wang, Song; Cheng, Xianfeng; Dai, Xing; Dong, Chen; Xu, Mingjie; Liang, Jiuhong; Dong, Min; Purdy, Michael A; Meng, Jihong

    2013-09-01

    Hepatitis E virus (HEV) is a zoonotic pathogen and all four established genotypes of HEV belong to a single serotype. The recently identified rabbit HEV is antigenically and genetically related to human HEV. It is unclear whether rabbit HEV belongs to the same serotype as human HEV. The purpose of this study was to determine the serotypic relationship between rabbit and human HEVs. HEV ORF2 recombinant capsid protein p166 (amino acids 452-617) of four known HEV genotypes and rabbit HEV were used to induce immune serum, which were evaluated for their ability to neutralize human HEV genotype 1, 4, and rabbit HEV strains by an in vitro PCR-based HEV neutralization assay. Immune sera of five kinds of p166 proteins were all found to neutralize or cross-neutralize the three different HEV strains, suggesting a common neutralization epitope(s) existing between human and rabbit HEV. Rabbit models of a second-passage rabbit HEV strain, JS204-2, and a genotype 4 human HEV strain, NJ703, were established as evidenced by fecal virus shedding, viremia and anti-HEV IgG seroconversion. Six rabbits, recovered from JS204 infection, were challenged with NJ703, and another six recovered from NJ703 infection were challenged with JS204-2. After challenge, viremia was not detected, shorter fecal virus shedding durations and obvious early stage declines in anti-HEV IgG values were observed. The results from this study indicate that rabbit HEV belongs to the same serotype as human HEV.

  2. Comparative diversity analysis of gut microbiota in two different human flora-associated mouse strains.

    Science.gov (United States)

    Zhang, Xiaojing; Zeng, Benhua; Liu, Zhiwei; Liao, Zhenlin; Li, Wenxai; Wei, Hong; Fang, Xiang

    2014-09-01

    The Kunming (KM) mouse is a closed colony mouse strain widely used in Chinese pharmacology, toxicology, and microbiology research laboratories. However, few studies have examined human flora-associated (HFA) microbial communities in KM mice. In this study, HFA models were built from germ-free KM and C57BL/6J mouse strains, and gut microbial diversity was analyzed by denaturing gradient gel electrophoresis (DGGE) and DNA sequencing. We found that the two strains of HFA mice were significantly different based on the UPGMA dendrogram and the Richness index, but dice similarity coefficients of mouse replicates were not significantly different between HFA-KM and HFA-C57BL/6J. Most of the dominant phyla of human gut microflora could be transferred into the guts of the two mouse strains. However, the predominant genus that formed in HFA-KM was Clostridium sp. and that in HFA-C57BL/6J was Blautia sp. These results imply that genotypes difference between the two mice strains is a critical factor in shaping the intestinal microflora. However, genetic differences of individuals within KM mouse populations failed to lead to individual difference in microflora. Successful generation of HFA-KM mice will facilitate studies examining how diet affects gut microbial structure, and will enable comparative studies for uncovering genetic factors that shape gut microbial communities.

  3. Strain-level dissection of the contribution of the gut microbiome to human metabolic disease.

    Science.gov (United States)

    Zhang, Chenhong; Zhao, Liping

    2016-04-20

    The gut microbiota has been linked with metabolic diseases in humans, but demonstration of causality remains a challenge. The gut microbiota, as a complex microbial ecosystem, consists of hundreds of individual bacterial species, each of which contains many strains with high genetic diversity. Recent advances in genomic and metabolomic technologies are facilitating strain-level dissection of the contribution of the gut microbiome to metabolic diseases. Interventional studies and correlation analysis between variations in the microbiome and metabolome, captured by longitudinal sampling, can lead to the identification of specific bacterial strains that may contribute to human metabolic diseases via the production of bioactive metabolites. For example, high-quality draft genomes of prevalent gut bacterial strains can be assembled directly from metagenomic datasets using a canopy-based algorithm. Specific metabolites associated with a disease phenotype can be identified by nuclear magnetic resonance-based metabolomics of urine and other samples. Such multi-omics approaches can be employed to identify specific gut bacterial genomes that are not only correlated with detected metabolites but also encode the genes required for producing the precursors of those metabolites in the gut. Here, we argue that if a causative role can be demonstrated in follow-up mechanistic studies--for example, using gnotobiotic models--such functional strains have the potential to become biomarkers for diagnostics and targets for therapeutics.

  4. Morphometric study of distance between posterior inferior iliac spine and ischial spine of the human hip bone for sex determination

    OpenAIRE

    2014-01-01

    Background: Objective of current study was to study the distance between Posterior Inferior Iliac Spine and Ischial Spine (PIIS-IS) of human hip bone for determination of sex. Methods: The study comprised unpaired 149 adult human hip bones of known sex. The posterior inferior iliac spine and ischial spine were identified in all the hip bones and a vernier calliper was used to measure the distance between the PIIS-IS. Results: It was observed that the mean distance of PIIS-IS in males a...

  5. The effects of strain amplitude and localization on viscoelastic mechanical behaviour of human abdominal fascia.

    Science.gov (United States)

    Kirilova-Doneva, Miglena; Pashkouleva, Dessislava; Kavardzhikov, Vasil

    2016-01-01

    The purpose of the paper is to examine and compare the viscoelastic mechanical properties of human transversalis and umbilical fasciae according to chosen strain levels. A sequence of relaxation tests of finite deformation ranging from 4 to 6% strain with increment 0.3% was performed at strain rate 1.26 mm/s. Initial and equilibrium stresses T0, Teq, initial modulus E and equilibrium modulus Eeq, reduction of the stress during relaxation process ΔT, as well as the ratio (1 - Eeq /E) were calculated. The range in which parameters change their values are (0.184-1.74 MPa) for initial stress, (0.098-0.95 MPa) for equilibrium stress, (43.5-4.6 MPa) for initial modulus E. For Eeq this interval is (23.75-2.45 MPa). There are no statistically significant differences between the values of these parameters according to localization. The differences in viscoelastic properties of both fasciae are demonstrated by reduction of the stress during relaxation process and ratio (1 - Eeq /E). The values of ΔT and (1 - Eeq /E) ratio for umbilical fascia are significantly greater than that of fascia transversalis. An increase of 2% in strain leads to change of the normalized relaxation ratio of fasciae between 28%-66%. There is a weak contribution of viscous elements in fascia transversalis samples during relaxation, while in umbilical fascia the contribution of viscous component increases with strain level to 0.66 at 5.3% strain. This study adds new data for the material properties of human abdominal fascia. The results demonstrate that in chosen range of strain there is an influence of localization on visco-elastic tissue properties.

  6. Human Cytomegalovirus UL138 Open Reading Frame Is Highly Conserved in Clinical Strains

    Institute of Scientific and Technical Information of China (English)

    Ying Qi; Rong He; Yan-ping Ma; Zheng-rong Sun; Yao-hua Ji; Qiang Ruan

    2009-01-01

    To investigate the variability of human cytomegalovirus (HCMV) UL138 open reading flame (ORF) in clinical strains.Methods HCMV UL138 ORF was amplified by polymerase chain reaction (PCR) and PCR amplification products were sequenced directly, and the data were analyzed in 19 clinical strains.Results UL138 ORF in all 30 clinical strains was amplified successfully. Compared with that of Toledo strain, the nucleotide and amino acid sequence identities of UL138 ORF in all strains were 97.41% to 99.41% and 98.24% to 99.42%, respectively. All of the nucleotide mutations were substitutions. The spatial structure and post-translational modification sites of UL138 encoded proteins were conserved. The result of phylogenetic tree showed that HCMV UL138 sequence variations were not definitely related with different clinical symptoms.Conclusion HCMV UL138 ORF in clinical strains is high conservation, which might be helpful for UL138 encoded protein to play a role in latent infection of HCMV.

  7. Association between in vivo bone formation and ex vivo migratory capacity of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Zaher, Walid; Larsen, Kenneth H

    2015-01-01

    by bioluminescence imaging (BLI). In order to identify the molecular phenotype associated with enhanced migration, we carried out comparative DNA microarray analysis of gene expression of hBMSC-derived high bone forming (HBF) clones versus low bone forming (LBF) clones. RESULTS: HBF clones were exhibited higher ex...

  8. Antinociceptive Effect of Intrathecal Microencapsulated Human Pheochromocytoma Cell in a Rat Model of Bone Cancer Pain

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2014-07-01

    Full Text Available Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l lysine-alginate (APA microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  9. An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans

    Directory of Open Access Journals (Sweden)

    Hilpert Kirsten F

    2007-01-01

    Full Text Available Abstract Human, animal, and in vitro research indicates a beneficial effect of appropriate amounts of omega-3 (n-3 polyunsaturated fatty acids (PUFA on bone health. This is the first controlled feeding study in humans to evaluate the effect of dietary plant-derived n-3 PUFA on bone turnover, assessed by serum concentrations of N-telopeptides (NTx and bone-specific alkaline phosphatase (BSAP. Subjects (n = 23 consumed each diet for 6 weeks in a randomized, 3-period crossover design: 1 Average American Diet (AAD; [34% total fat, 13% saturated fatty acids (SFA, 13% monounsaturated fatty acids (MUFA, 9% PUFA (7.7% LA, 0.8% ALA], 2 Linoleic Acid Diet (LA; [37% total fat, 9% SFA, 12% MUFA, 16% PUFA (12.6% LA, 3.6% ALA], and 3 α-Linolenic Acid Diet (ALA; [38% total fat, 8% SFA, 12% MUFA, 17% PUFA (10.5% LA, 6.5% ALA]. Walnuts and flaxseed oil were the predominant sources of ALA. NTx levels were significantly lower following the ALA diet (13.20 ± 1.21 nM BCE, relative to the AAD (15.59 ± 1.21 nM BCE (p

  10. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    Science.gov (United States)

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  11. Tnhibitory effect of Fuzheng Yiliuyin in combination with chemotherapeutics on human gastric carcinoma cell strain

    Institute of Scientific and Technical Information of China (English)

    Yi Liu; Rui Wang; Gen-Quan Qiu; Ke-Jun Nan; Xi-Cai Sun

    2006-01-01

    AIM: To study the inhibitory effects of Fuzheng Yiliuyin (Decoction for Suppressing Tumors by Strengthening the Body Resistance) in combination with chemotherapeutics on human gastric carcinoma cell strain.METHODS: Fuzheng Yiliuyin (ZY) combined with various kinds of chemotherapeutics was put into two kinds of cultivated human gastric carcinoma cell strains,then its inhibitory effects on human gastric carcinoma cell strains were determind by the MTT method. Flow cytometer was used to assay the apoptosis rate, and the ultrastructure of gastric carcinoma cells was observed under transmission electron microscope.RESULTS: Obvious apoptosis was seen in gastric carcinoma cells after treatment with ZY for 72 h. ZY and chemical drugs had synergistic inhibition effects on the cultivated gastric carcinoma cells, but the effects were different on various cell strains. The inhibitory effects of ZY could be strengthened by cytotoxic action and apoptosis. ZY combined with fluorouracil, etoposide and cisplatin (EFP) chemotherapeutics had better inhibitory effects on SGC-7901, while ZY combined with EFP or with DDP chemotherapeutics had better inhibitory effects than other drugs on MGC-803.CONCLUSION: ZY induces apoptosis and inhibits the growth of gastric carcinoma cells. ZY has the synergistic function of chemotherapeutics.

  12. Recombinant human bone morphogenic protein-2-enhanced anterior spine fusion without bone encroachment into the spinal canal: a histomorphometric study in a thoracoscopically instrumented porcine model.

    Science.gov (United States)

    Zhang, Hong; Sucato, Daniel J; Welch, Robert D

    2005-03-01

    A thoracoscopically assisted 5-level anterior spinal fusion and instrumentation model analyzing new bone formation when using recombinant human bone morphogenic protein-2 (rhBMP-2) with a collagen hydroxyapatite-tricalcium phosphate (HA/TCP) composite sponge carrier. To determine whether new bone formation extends beyond the posterior confines of the vertebral body encroaching into the spinal canal when rhBMP-2 is used to enhance anterior fusion. A possible concern regarding the use of rhBMP-2 to enhance spinal fusion is the risk of unwanted bone formation leading to inadvertent fusion of adjacent levels or compression of neural elements. The safety of rhBMP-2 in one spinal application does not ensure similar results in other applications. Therefore, the expanded use of rhBMP-2 should occur only after carefully monitored preclinical and clinical studies for each new application. Eighteen pigs underwent thoracoscopically-assisted instrumentation and fusion of 5 contiguous levels (T5-T10) and randomly assigned to 4 treatment groups: group 1 (n = 6): rh-BMP-2 on a HA/TCP-collagen sponge (Medtronic Sofamor Danek, Memphis, TN); group 2 (n = 4): iliac crest autograft; group 3 (n = 4): empty; group 4 (n = 4): HA/TCP-collagen sponge (Medtronic Sofamor Danek) only. In groups 1 and 4, the HA/TCP collagen sponge was morselized into small granules and pushed through a bone delivery funnel for implantation into the disc. At 4 months after surgery, spines were sectioned longitudinally through the midsagittal plane and underwent undecalcified processing. Bone formation extending beyond the margins of the original discectomy and the confines of vertebral body were evaluated histomorphometrically at each operative level. Recombinant human bone morphogenic protein-2 on a HA/TCP-collagen sponge induced significant new bone formation extending anterior to the confines of the vertebral body compared with the other treatment groups (P fusion area and beyond the discectomy area (P fusion

  13. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.

    Science.gov (United States)

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T

    2011-03-01

    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants.

  14. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Behnaz BAKHSHANDEH; Masoud SOLEIMANI; Nasser GHAEMI; Iman SHABANI

    2011-01-01

    Aim: Bioartificial bone tissue engineering is an increasingly popular technique to solve bone defect challenges. This study aimed to investigate the interactions between matrix composition and appropriate cell type, focusing on hydroxyapatite (HA), to achieve a more effective combination for bone regeneration.Methods: Human unrestricted somatic stem cells (USSCs) were isolated from placental cord blood. The cellular and molecular events during the osteo-induction of USSCs were evaluated for 21 d under the following conditions: (1) in basal culture, (2) supplemented with hydroxyapatite nanoparticle (nHA) suspension, and (3) seeded on electrospun aligned nanoflbrous poly-ε-caprolactone/poly-L-lactic acid/nHA (PCL/PLLA/nHA) scaffolds. The scaffolds were characterized using scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and tensile test.Results: Maintenance of USSCs for 21 d in basal or osteogenic culture resulted in significant increase in osteoblast differentiation. With nHA suspension, even soluble osteo-inductive additives were ineffective, probably due to induced apoptosis of the cells. In con-trast to the hindrance of proliferation by nHA suspension, the scaffolds improved cell growth. The scaffolds mimic the nanostructure of natural bone matrix with the combination of PLLA/PCL (organic phase) and HA (inorganic phase) offering a favorable surface topogra-phy, which was demonstrated to possess suitable properties for supporting USSCs. Quantitative measurement of osteogenic markers, enzymatic activity and mineralization indicated that the scaffolds did not disturb, but enhanced the osteogenic potential of USSCs.Moreover, the alignment of the fibers led to cell orientation during cell growth.Conclusion: The results demonstrated the synergism of PCL/PLLA/nHA nanoflbrous scaffolds and USSCs in the augmentation of osteo-genic differentiation. Thus, nHA grafted into PCI./PLLA scaffolds can be a suitable choice for bone tissue

  15. Effects of ionizing radiation on proteins in lyophilized or frozen demineralized human bone

    Science.gov (United States)

    Antebi, Uri; Mathor, Monica Beatriz; da Silva, André Ferreira; Guimarães, Rodrigo Pereira; Honda, Emerson Kiyoshi

    2016-01-01

    Objective The aim was to study the effects of application of ionizing radiation (gamma and electrons) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, on lyophilized or frozen demineralized bone tissue for use in transplants. Methods Five human femoral diaphyses from different donors of musculoskeletal tissue were demineralized and preserved as lyophilized or frozen at −80 °C. The samples were divided into two groups: non-irradiated (control) and irradiated by means of gamma rays or an electron beam. The bone proteins were extracted and used to determine the concentrations of total protein and BMP 2 and 7. Results Decreases in total protein and BMP 2 and 7 concentrations were observed. The decreases in total protein concentrations, in comparison with the respective control groups, were significant in the lyophilized and frozen samples that were irradiated at a dose of 50 kGy of gamma radiation and electron beam, with reductions of more than 30%. Significant decreases in the levels of BMP 2 and 7 were also observed at higher doses and especially through use of the electron beam. Conclusion The reductions in the concentrations of total proteins and osteoinductive proteins (BMP 2 and 7) were related to the radiation dose, i.e. they increased with higher doses of ionizing radiation type and the type of bone preservation. The largest reductions in concentrations were observed in the bones irradiated by means of an electron beam and at a dose of 50 kGy. However, this type of radiation and this high dose are not usual practices for sterilization of bone tissue. PMID:27069893

  16. Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone

    Directory of Open Access Journals (Sweden)

    Jens Gronewold

    2014-03-01

    Full Text Available Short stem hip arthroplasties with predominantly metaphyseal fixation, such as the METHA® stem (Aesculap, Tuttlingen, Germany, are recommended because they are presumed to allow a more physiologic load transfer and thus a reduction of stress-shielding. However, the hypothesized metaphyseal anchorage associated with the aforementioned benefits still needs to be verified. Therefore, the METHA short stem and the Bicontact® standard stem (Aesculap, Tuttlingen, Germany were tested biomechanically in synthetic femora while strain gauges monitored their corresponding strain patterns. For the METHA stem, the strains in all tested locations including the region of the calcar (87% of the non-implanted femur were similar to conditions of synthetic bone without implanted stem. The Bicontact stem showed approximately the level of strain of the non-implanted femur on the lateral and medial aspect in the proximal diaphysis of the femur. On the anterior and posterior aspect of the proximal metaphysis the strains reached averages of 78% and 87% of the non-implanted femur, respectively. This study revealed primary metaphyseal anchorage of the METHA short stem, as opposed to a metaphyseal-diaphyseal anchorage of the Bicontact stem.

  17. Paramagnetic and crystallographic effects of low temperature ashing on human bone and tooth enamel.

    Science.gov (United States)

    Tochon-Danguy, H J; Very, J M; Geoffroy, M; Baud, C A

    1978-02-28

    Low temperature ashing by excited gas (LTA) causes crystallographic and paramagnetic alterations of the human bone and tooth enamel mineral. On the one hand, LTA induces variations of the alpha lattice parameter. These variations depend upon the nature of the gas used, but are little affected by its degree of excitation. Trapping of gas molecules in the crystal structure is demonstrated. On the other hand, LTA produces two preponderant paramagnetic centers in bone and enamel samples at 20 degrees C. Their inorganic origin clearly indicated. One of the two radicals has been identified as O3- (g1 = 2.002, g2 = 2.010, g3 = 2.016) and the other as (CO3-3 (parallel = 1.996, g = perpendicular 2.003). Variations of the alpha lattice parameter and trapping of paramagnetic gas species do not seem to be directly related.

  18. Oxygen isotope analysis of human bone phosphate evidences weaning age in archaeological populations.

    Science.gov (United States)

    Britton, Kate; Fuller, Benjamin T; Tütken, Thomas; Mays, Simon; Richards, Michael P

    2015-06-01

    Here we report bone phosphate oxygen (δ(18)Op) values from perinates/neonates and infants (isotope systems likely due to breastfeeding. After the age of 2-3 years, δ(18)Op values are lower, and all children between the ages of 4 and 12, along with the vast majority of sub-adults and adults sampled (aged 16 to >50 years), have δ(18)Op values consistent with the consumption of local modern drinking water. The implications of this study for the reconstruction of weaning practices in archaeological populations are discussed, including variations observed with bone δ(15)Ncoll and δ(18)Op co-analysis and the influence of culturally-modified drinking water and seasonality. The use of this method to explore human mobility and palaeoclimatic conditions are also discussed with reference to the data presented. © 2015 Wiley Periodicals, Inc.

  19. Proteome Changes of Human Bone Marrow Mesenchymal Stem Cells Induced by 1,4-Benzoquinone

    Science.gov (United States)

    2016-01-01

    Benzene is metabolized to hydroquinone in liver and subsequently transported to bone marrow for further oxidization to 1,4-benzoquinone (1,4-BQ), which may be related to the leukemia and other blood disorders. In the present study, we investigated the proteome profiles of human primary bone marrow mesenchymal stem cells (hBM-MSCs) treated by 1,4-BQ. We identified 32 proteins that were differentially expressed. Two of them, HSP27 and Vimentin, were verified at both mRNA and protein levels and their cellular localization was examined by immunofluorescence. We also found increased mRNA level of RAP1GDS1, a critical factor of metabolism that has been identified as a fusion partner in various hematopoietic malignancies. Therefore, these differentially expressed proteins can play important roles in benzene-mediated hematoxicity. PMID:28119923

  20. Heterotopic ossification after the use of recombinant human bone morphogenetic protein-7

    Science.gov (United States)

    Papanagiotou, Marianthi; Dailiana, Zoe H; Karachalios, Theophilos; Varitimidis, Sokratis; Hantes, Michael; Dimakopoulos, Georgios; Vlychou, Marianna; Malizos, Konstantinos N

    2017-01-01

    AIM To present the incidence of heterotopic ossification after the use of recombinant human bone morphogenetic protein-7 (rhBMP-7) for the treatment of nonunions. METHODS Bone morphogenetic proteins (BMPs) promote bone formation by auto-induction. Recombinant human BMP-7 in combination with bone grafts was used in 84 patients for the treatment of long bone nonunions. All patients were evaluated radiographicaly for the development of heterotopic ossification during the standard assessment for the nonunion healing. In all patients (80.9%) with radiographic signs of heterotopic ossification, a CT scan was performed. Nonunion site palpation and ROM evaluation of the adjacent joints were also carried out. Factors related to the patient (age, gender), the nonunion (location, size, chronicity, number of previous procedures, infection, surrounding tissues condition) and the surgical procedure (graft and fixation type, amount of rhBMP-7) were correlated with the development of heterotopic ossification and statistical analysis with Pearsons χ2 test was performed. RESULTS Eighty point nine percent of the nonunions treated with rhBMP-7, healed with no need for further procedures. Heterotopic bone formation occurred in 15 of 84 patients (17.8%) and it was apparent in the routine radiological evaluation of the nonunion site, in a mean time of 5.5 mo after the rhBMP-7 application (range 3-12). The heterotopic ossification was located at the femur in 8 cases, at the tibia in 6, and at the humerus in οne patient. In 4 patients a palpable mass was present and only in one patient, with a para-articular knee nonunion treated with rhBMP-7, the size of heterotopic ossification affected the knee range of motion. All the patients with heterotopic ossification were male. Statistical analysis proved that patient’s gender was the only important factor for the development of heterotopic ossification (P = 0.007). CONCLUSION Heterotopic ossification after the use of rhBMP-7 in nonunions was

  1. Flat bones and sutures formation in the human cranial vault during prenatal development and infancy: A computational model.

    Science.gov (United States)

    Burgos-Flórez, F J; Gavilán-Alfonso, M E; Garzón-Alvarado, D A

    2016-03-21

    The processes of flat bones growth, sutures formation and interdigitation in the human calvaria are controlled by a complex interaction between genetic, biochemical and environmental factors that regulate bone formation and resorption during prenatal development and infancy. Despite previous experimental evidence accounting for the role of the main biochemical factors acting on these processes, the underlying mechanisms controlling them are still unknown. Therefore, we propose a mathematical model of the processes of flat bone and suture formation, taking into account several biological events. First, we model the growth of the flat bones and the formation of sutures and fontanels as a reaction diffusion system between two proteins: TGF-β2 and TGF-β3. The former is expressed by osteoblasts and allows adjacent mesenchymal cells differentiation on the bone fronts of each flat bone. The latter is expressed by mesenchymal cells at the sutures and inhibits their differentiation into osteoblasts at the bone fronts. Suture interdigitation is modelled using a system of reaction diffusion equations that develops spatio-temporal patterns of bone formation and resorption by means of two molecules (Wnt and Sclerostin) which control mesenchymal cells differentiation into osteoblasts at these sites. The results of the computer simulations predict flat bone growth from ossification centers, sutures and fontanels formation as well as bone formation and resorption events along the sutures, giving rise to interdigitated patterns. These stages were modelled and solved by the finite elements method. The simulation results agree with the morphological characteristics of calvarial bones and sutures throughout human prenatal development and infancy.

  2. Theobromine Upregulates Osteogenesis by Human Mesenchymal Stem Cells In Vitro and Accelerates Bone Development in Rats.

    Science.gov (United States)

    Clough, Bret H; Ylostalo, Joni; Browder, Elizabeth; McNeill, Eoin P; Bartosh, Thomas J; Rawls, H Ralph; Nakamoto, Tetsuo; Gregory, Carl A

    2017-03-01

    Theobromine (THB) is one of the major xanthine-like alkaloids found in cacao plant and a variety of other foodstuffs such as tea leaves, guarana and cola nuts. Historically, THB and its derivatives have been utilized to treat cardiac and circulatory disorders, drug-induced nephrotoxicity, proteinuria and as an immune-modulator. Our previous work demonstrated that THB has the capacity to improve the formation of hydroxyl-apatite during tooth development, suggesting that it may also enhance skeletal development. With its excellent safety profile and resistance to pharmacokinetic elimination, we reasoned that it might be an excellent natural osteoanabolic supplement during pregnancy, lactation and early postnatal growth. To determine whether THB had an effect on human osteoprogenitors, we subjected primary human bone marrow mesenchymal stem cells (hMSCs) to osteogenic assays after exposure to THB in vitro and observed that THB exposure increased the rate of osteogenesis and mineralization by hMSCs. Moreover, THB exposure resulted in a list of upregulated mRNA transcripts that best matched an osteogenic tissue expression signature as compared to other tissue expression signatures archived in several databases. To determine whether oral administration of THB resulted in improved skeletal growth, we provided pregnant rats with chow supplemented with THB during pregnancy and lactation. After weaning, offspring received THB continuously until postnatal day 50 (approximately 10 mg kg(-1) day(-1)). Administration of THB resulted in neonates with larger bones, and 50-day-old offspring accumulated greater body mass, longer and thicker femora and superior tibial trabecular parameters. The accelerated growth did not adversely affect the strength and resilience of the bones. These results indicate that THB increases the osteogenic potential of bone marrow osteoprogenitors, and dietary supplementation of a safe dose of THB to expectant mothers and during the postnatal period

  3. Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2010-01-01

    Full Text Available The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC in vitro bone differentiation. This was the subject of the present study. Materials and MethodsHuman passaged-3 MSCs isolated from the marrow aspirates were seeded on either Matrigel or conventional polystyrene plastic surfaces (as control for 10 days. To compare the cell proliferation in two cultures, the cell numbers were determined during the cultivation period. For bone differentiation, the confluent cultures from either group were provided with osteogenic medium and incubated for 21 days during which the alkaline phosphates (ALP activity, culture mineralization and the expression of some bone-related genes were quantified and statistically compared.ResultsMTT assay indicated thatMatrigel-cultivated cells underwent statistically less proliferation than polystyrene-cultivated cells (P<0.05. Regarding the osteogenic differentiation, ALP activity was significantly high in Matrigel versus plastic cultures. Calcium deposition in Matrigel cultures tended to be significantly extensive compared with that of control cultures (2.533±0.017 versus 0.607±0.09 mM. Furthermore, according to the semi-quantitative RT-PCR analysis, compared with polystyrene plastic surface, Matrigel seemed to provide a microenvironment in which human MSC expressed osteocalcin and collagen I genes in a significantly higher level. ConclusionCollectively it seems that Matrigel could be considered as an appropriate matrix for MSC osteogenic differentiation.

  4. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field

    Directory of Open Access Journals (Sweden)

    Z Zhao

    2011-11-01

    Full Text Available At sites of bone fracture, naturally-occurring electric fields (EFs exist during healing and may guide cell migration. In this study, we investigated whether EFs could direct the migration of bone marrow mesenchymal stem cells (BM-MSCs, which are known to be key players in bone formation. Human BM-MSCs were cultured in direct current EFs of 10 to 600 mV/mm. Using time-lapse microscopy, we demonstrated that an EF directed migration of BM-MSCs mainly to the anode. Directional migration occurred at a low threshold and with a physiological EF of ~25 mV/mm. Increasing the EF enhanced the MSC migratory response. The migration speed peaked at 300 mV/mm, at a rate of 42 ±1 µm/h, around double the control (no EF migration rate. MSCs showed sustained response to prolonged EF application in vitro up to at least 8 h. The electrotaxis of MSCs with either early (P3-P5 or late (P7-P10 passage was also investigated. Migration was passage-dependent with higher passage number showing reduced directed migration, within the range of passages examined. An EF of 200 mV/mm for 2 h did not affect cell senescence, phenotype, or osteogenic potential of MSCs, regardless of passage number within the range tested (P3-P10. Our findings indicate that EFs are a powerful cue in directing migration of human MSCs in vitro. An applied EF may be useful to control or enhance migration of MSCs during bone healing.

  5. Optimized Cryopreservation and Banking of Human Bone-Marrow Fragments and Stem Cells.

    Science.gov (United States)

    Carnevale, Gianluca; Pisciotta, Alessandra; Riccio, Massimo; De Biasi, Sara; Gibellini, Lara; Ferrari, Adriano; La Sala, Giovanni B; Bruzzesi, Giacomo; Cossarizza, Andrea; de Pol, Anto

    2016-04-01

    Adult mesenchymal stem cells are a promising source for cell therapies and tissue engineering applications. Current procedures for banking of human bone-marrow mesenchymal stem cells (hBM-MSCs) require cell isolation and expansion, and thus the use of large amounts of animal sera. However, animal-derived culture supplements have the potential to trigger infections and severe immune reactions. The aim of this study was to investigate an optimized method for cryopreservation of human bone-marrow fragments for application in cell banking procedures where stem-cell expansion and use are not immediately needed. Whole trabecular fragments enclosing the bone marrow were stored in liquid nitrogen for 1 year in a cryoprotective solution containing a low concentration of dimethyl sulfoxide and a high concentration of human serum (HuS). After thawing, the isolation, colony-forming-unit ability, proliferation, morphology, stemness-related marker expression, cell senescence, apoptosis, and multi-lineage differentiation potential of hBM-MSCs were tested in media containing HuS compared with hBM-MSCs isolated from fresh fragments. Human BM-MSCs isolated from cryopreserved fragments expressed MSC markers until later passages, had a good proliferation rate, and exhibited the capacity to differentiate toward osteogenic, adipogenic, and myogenic lineages similar to hBM-MSCs isolated from fresh fragments. Moreover, the cryopreservation method did not induce cell senescence or cell death. These results imply that minimal processing may be adequate for the banking of tissue samples with no requirement for the immediate isolation and use of hBM-MSCs, thus limiting cost and the risk of contamination, and facilitating banking for clinical use. Furthermore, the use of HuS for cryopreservation and expansion/differentiation has the potential for clinical application in compliance with good manufacturing practice standards.

  6. Allogeneic Bone Marrow Transplant from MRL/MpJ Super-Healer Mice Does Not Improve Articular Cartilage Repair in the C57Bl/6 Strain.

    Directory of Open Access Journals (Sweden)

    Catherine A Leonard

    Full Text Available Articular cartilage has been the focus of multiple strategies to improve its regenerative/ repair capacity. The Murphy Roths Large (MRL/MpJ "super-healer" mouse demonstrates an unusual enhanced regenerative capacity in many tissues and provides an opportunity to further study endogenous cartilage repair. The objective of this study was to test whether the super-healer phenotype could be transferred from MRL/MpJ to non-healer C57Bl/6 mice by allogeneic bone marrow transplant.The healing of 2mm ear punches and full thickness cartilage defects was measured 4 and 8 weeks after injury in control C57Bl/6 and MRL/MpJ "super-healer" mice, and in radiation chimeras reconstituted with bone marrow from the other mouse strain. Healing was assessed using ear hole diameter measurement, a 14 point histological scoring scale for the cartilage defect and an adapted version of the Osteoarthritis Research Society International scale for assessment of osteoarthritis in mouse knee joints.Normal and chimeric MRL mice showed significantly better healing of articular cartilage and ear wounds along with less severe signs of osteoarthritis after cartilage injury than the control strain. Contrary to our hypothesis, however, bone marrow transplant from MRL mice did not confer improved healing on the C57Bl/6 chimeras, either in regards to ear wound healing or cartilage repair.The elusive cellular basis for the MRL regenerative phenotype still requires additional study and may possibly be dependent on additional cell types external to the bone marrow.

  7. The SK-N-AS human neuroblastoma cell line develops osteolytic bone metastases with increased angiogenesis and COX-2 expression

    Directory of Open Access Journals (Sweden)

    Takahiro Tsutsumimoto

    2014-11-01

    Full Text Available Neuroblastoma (NB, which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2. In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB.

  8. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.

    Science.gov (United States)

    Lawson, Michelle A; Paton-Hough, Julia M; Evans, Holly R; Walker, Rebecca E; Harris, William; Ratnabalan, Dharshi; Snowden, John A; Chantry, Andrew D

    2015-01-01

    Animal models of multiple myeloma vary in terms of consistency of onset, degree of tumour burden and degree of myeloma bone disease. Here we describe five pre-clinical models of myeloma in NOD/SCID-GAMMA mice to specifically study the effects of therapeutic agents on myeloma bone disease. Groups of 7-8 week old female irradiated NOD/SCID-GAMMA mice were injected intravenously via the tail vein with either 1x106 JJN3, U266, XG-1 or OPM-2 human myeloma cell lines or patient-derived myeloma cells. At the first signs of morbidity in each tumour group all animals were sacrificed. Tumour load was measured by histological analysis, and bone disease was assessed by micro-CT and standard histomorphometric methods. Mice injected with JJN3, U266 or OPM-2 cells showed high tumour bone marrow infiltration of the long bones with low variability, resulting in osteolytic lesions. In contrast, mice injected with XG-1 or patient-derived myeloma cells showed lower tumour bone marrow infiltration and less bone disease with high variability. Injection of JJN3 cells into NOD/SCID-GAMMA mice resulted in an aggressive, short-term model of myeloma with mice exhibiting signs of morbidity 3 weeks later. Treating these mice with zoledronic acid at the time of tumour cell injection or once tumour was established prevented JJN3-induced bone disease but did not reduce tumour burden, whereas, carfilzomib treatment given once tumour was established significantly reduced tumour burden. Injection of U266, XG-1, OPM-2 and patient-derived myeloma cells resulted in less aggressive longer-term models of myeloma with mice exhibiting signs of morbidity 8 weeks later. Treating U266-induced disease with zoledronic acid prevented the formation of osteolytic lesions and trabecular bone loss as well as reducing tumour burden whereas, carfilzomib treatment only reduced tumour burden. In summary, JJN3, U266 or OPM-2 cells injected into NOD/SCID-GAMMA mice provide robust models to study anti-myeloma therapies

  9. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.

    Directory of Open Access Journals (Sweden)

    Michelle A Lawson

    Full Text Available Animal models of multiple myeloma vary in terms of consistency of onset, degree of tumour burden and degree of myeloma bone disease. Here we describe five pre-clinical models of myeloma in NOD/SCID-GAMMA mice to specifically study the effects of therapeutic agents on myeloma bone disease. Groups of 7-8 week old female irradiated NOD/SCID-GAMMA mice were injected intravenously via the tail vein with either 1x106 JJN3, U266, XG-1 or OPM-2 human myeloma cell lines or patient-derived myeloma cells. At the first signs of morbidity in each tumour group all animals were sacrificed. Tumour load was measured by histological analysis, and bone disease was assessed by micro-CT and standard histomorphometric methods. Mice injected with JJN3, U266 or OPM-2 cells showed high tumour bone marrow infiltration of the long bones with low variability, resulting in osteolytic lesions. In contrast, mice injected with XG-1 or patient-derived myeloma cells showed lower tumour bone marrow infiltration and less bone disease with high variability. Injection of JJN3 cells into NOD/SCID-GAMMA mice resulted in an aggressive, short-term model of myeloma with mice exhibiting signs of morbidity 3 weeks later. Treating these mice with zoledronic acid at the time of tumour cell injection or once tumour was established prevented JJN3-induced bone disease but did not reduce tumour burden, whereas, carfilzomib treatment given once tumour was established significantly reduced tumour burden. Injection of U266, XG-1, OPM-2 and patient-derived myeloma cells resulted in less aggressive longer-term models of myeloma with mice exhibiting signs of morbidity 8 weeks later. Treating U266-induced disease with zoledronic acid prevented the formation of osteolytic lesions and trabecular bone loss as well as reducing tumour burden whereas, carfilzomib treatment only reduced tumour burden. In summary, JJN3, U266 or OPM-2 cells injected into NOD/SCID-GAMMA mice provide robust models to study anti

  10. Circulating strains of human respiratory syncytial virus in central and south America.

    Directory of Open Access Journals (Sweden)

    Merly Sovero

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of viral lower respiratory tract infections among infants and young children. HRSV strains vary genetically and antigenically and have been classified into two broad subgroups, A and B (HRSV-A and HRSV-B, respectively. To date, little is known about the circulating strains of HRSV in Latin America. We have evaluated the genetic diversity of 96 HRSV strains by sequencing a variable region of the G protein gene of isolates collected from 2007 to 2009 in Central and South America. Our results show the presence of the two antigenic subgroups of HRSV during this period with the majority belonging to the genotype HRSV-A2.

  11. [Recent knowledge on the linkage of strain specific genotypes with clinical manifestations of human citomegalovirus disease].

    Science.gov (United States)

    Pignatelli, Sara

    2011-01-01

    Human citomegalovirus (CMV) is a beta-herpesvirus able to establish lifelong persistent infections which usually remain asymptomatic. However, severe diseases may develop in immunocompromised subjects (e.g., AIDS patients and transplant recipients) and if acquired in utero. Circulating CMV clinical strains display genetic polymorphisms in multiple genes, which may be implicated in CMV-induced immunopathogenesis, as well as strain-specific tissue-tropism, viral spread in the host cells and virulence, finally determining the wide spectrum of clinical manifestations of CMV disease. Current literature report a number of studies regarding the main CMV polymorphic genes (UL55-gB, UL144, UL73-gN, UL74-gO), their diagnostic and therapeutic impact, their potential clinical relevance as prognostic markers. This paper aims to critically analyse the results of these studies and evaluate the linkage of strain-specific genotypes with clinical manifestations of CMV disease and their perspective implications.

  12. Molecular typing of Leptospira spp. strains isolated from field mice confirms a link to human leptospirosis.

    Science.gov (United States)

    Li, S J; Wang, D M; Zhang, C C; Li, X W; Yang, H M; Tian, K C; Wei, X Y; Liu, Y; Tang, G P; Jiang, X G; Yan, J

    2013-11-01

    In recent years, human leptospirosis has been reported in Jinping and Liping counties, Guizhou province, but the leptospires have never been isolated. To track the source of infection and understand the aetiological characteristics, we performed surveillance for field mice carriage of leptospirosis in 2011. Four strains of leptospire were isolated from Apodemus agrarius. PCR confirmed the four isolates as pathogenic. Multiple-locus variable-number tandem repeat analysis (MLVA) showed that the four strains were closely related to serovar Lai strain 56601 belonging to serogroup Icterohaemorrhagiae, which is consistent with the antibody detection results from local patients. Furthermore, the diversity of leptospiral isolates from different hosts and regions was demonstrated with MLVA. Our results suggest that A. agrarius may be the main carrier of Leptospira in Jinping and Liping counties, and the serogroup Icterohaemorrhagiae serovar may be the epidemic serogroup of Leptospira. This will contribute to the control and prevention of leptospirosis in these localities.

  13. Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration.

    Directory of Open Access Journals (Sweden)

    Junjie Guan

    Full Text Available Bone tissue engineering requires highly proliferative stem cells that are easy to isolate. Human urine stem cells (USCs are abundant and can be easily harvested without using an invasive procedure. In addition, in our previous studies, USCs have been proved to be able to differentiate into osteoblasts, chondrocytes, and adipocytes. Therefore, USCs may have great potential and advantages to be applied as a cell source for tissue engineering. However, there are no published studies that describe the interactions between USCs and biomaterials and applications of USCs for bone tissue engineering. Therefore, the objective of the present study was to evaluate the interactions between USCs with a typical bone tissue engineering scaffold, beta-Tricalcium Phosphate (β-TCP, and to determine whether the USCs seeded onto β-TCP scaffold can promote bone regeneration in a segmental femoral defect of rats. Primary USCs were isolated from urine and seeded on β-TCP scaffolds. Results showed that USCs remained viable and proliferated within β-TCP. The osteogenic differentiation of USCs within the scaffolds was demonstrated by increased alkaline phosphatase activity and calcium content. Furthermore, β-TCP with adherent USCs (USCs/β-TCP were implanted in a 6-mm critical size femoral defect of rats for 12 weeks. Bone regeneration was determined using X-ray, micro-CT, and histologic analyses. Results further demonstrated that USCs in the scaffolds could enhance new bone formation, which spanned bone defects in 5 out of 11 rats while β-TCP scaffold alone induced modest bone formation. The current study indicated that the USCs can be used as a cell source for bone tissue engineering as they are compatible with bone tissue engineering scaffolds and can stimulate the regeneration of bone in a critical size bone defect.

  14. Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration.

    Science.gov (United States)

    Guan, Junjie; Zhang, Jieyuan; Li, Haiyan; Zhu, Zhenzhong; Guo, Shangchun; Niu, Xin; Wang, Yang; Zhang, Changqing

    2015-01-01

    Bone tissue engineering requires highly proliferative stem cells that are easy to isolate. Human urine stem cells (USCs) are abundant and can be easily harvested without using an invasive procedure. In addition, in our previous studies, USCs have been proved to be able to differentiate into osteoblasts, chondrocytes, and adipocytes. Therefore, USCs may have great potential and advantages to be applied as a cell source for tissue engineering. However, there are no published studies that describe the interactions between USCs and biomaterials and applications of USCs for bone tissue engineering. Therefore, the objective of the present study was to evaluate the interactions between USCs with a typical bone tissue engineering scaffold, beta-Tricalcium Phosphate (β-TCP), and to determine whether the USCs seeded onto β-TCP scaffold can promote bone regeneration in a segmental femoral defect of rats. Primary USCs were isolated from urine and seeded on β-TCP scaffolds. Results showed that USCs remained viable and proliferated within β-TCP. The osteogenic differentiation of USCs within the scaffolds was demonstrated by increased alkaline phosphatase activity and calcium content. Furthermore, β-TCP with adherent USCs (USCs/β-TCP) were implanted in a 6-mm critical size femoral defect of rats for 12 weeks. Bone regeneration was determined using X-ray, micro-CT, and histologic analyses. Results further demonstrated that USCs in the scaffolds could enhance new bone formation, which spanned bone defects in 5 out of 11 rats while β-TCP scaffold alone induced modest bone formation. The current study indicated that the USCs can be used as a cell source for bone tissue engineering as they are compatible with bone tissue engineering scaffolds and can stimulate the regeneration of bone in a critical size bone defect.

  15. Antimicrobial susceptibilities of Listeria monocytogenes human strains isolated from 1970 to 2008 in Brazil

    Directory of Open Access Journals (Sweden)

    Cristhiane Moura Falavina dos Reis

    2011-04-01

    Full Text Available INTRODUCTION: Listeria monocytogenes is the causative agent of listeriosis, a foodborne illness that affects mainly pregnant women, the elderly and immunocompromised patients. The primary treatment is a combination of ampicillin with an aminoglycoside, in addition to a second-choice drug represented by chloramphenicol, erythromycin, tetracycline and rifampicin. The aim of this study was to analyze the antimicrobial susceptibility profile of strains isolated from human sources in the last four decades. METHODS: Sixty-eight strains were selected from the culture collection of the Laboratory of Bacterial Zoonoses/LABZOO/FIOCRUZ isolated in different regions of Brazil from 1970 to 2008 and primarily isolated from cerebrospinal fluid and blood culture. Susceptibility tests to antimicrobials drugs were evaluated using the criteria established by Soussy using the Kirby-Bauer method and E-Test strips were used to determine the minimum inhibitory concentration (MIC. RESULTS: Among the strains tested, serovar L4b (60.3% was the most prevalent, followed by serovar 1/2a (20.6%, 1/2b (13.2% and the more uncommon serovars 1/2c, 3b and 4ab (5.9%. All strains were susceptible to ampicillin, cephalothin, erythromycin, gentamicin, teicoplanin and vancomycin. Only one strain (1.5% showed resistance to rifampin, and two (3% were resistant to trimethoprim-sulfamethoxazole. MICs with values up to 2μg/ml reinforce the need for microbiological surveillance. CONCLUSIONS: The study demonstrated low prevalence of strains resistant to the antimicrobial drugs indicated in the treatment of human listeriosis. Monitoring antimicrobial resistance profile is still very important to determine adequate treatment, especially in immunocompromised patients.

  16. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    Recent studies have shown that dental pulp cells possess stem cell like potential and thus may be potential candidates for tissue engineering purposes particularly in the oro-facial region. Successful tissue engineering ideally requires that newly formed bone adapts its mass, shape, and trabecular...... and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation....... We also assessed bone formation by DPCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Results: We found that DPCs are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. Implantation of DPCs resulted...

  17. Potential Factors Enabling Human Body Colonization by Animal Streptococcus dysgalactiae subsp. equisimilis Strains.

    Science.gov (United States)

    Ciszewski, Marcin; Szewczyk, Eligia M

    2017-05-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a pyogenic, Lancefield C or G streptococcal pathogen. Until recently, it has been considered as an exclusive animal pathogen. Nowadays, it is responsible for both animal infections in wild animals, pets, and livestock and human infections often clinically similar to the ones caused by group A streptococcus (Streptococcus pyogenes). The risk of zoonotic infection is the most significant in people having regular contact with animals, such as veterinarians, cattlemen, and farmers. SDSE is also prevalent on skin of healthy dogs, cats, and horses, which pose a risk also to people having contact with companion animals. The main aim of this study was to evaluate if there are features differentiating animal and human SDSE isolates, especially in virulence factors involved in the first stages of pathogenesis (adhesion and colonization). Equal groups of human and animal SDSE clinical strains were obtained from superficial infections (skin, wounds, abscesses). The presence of five virulence genes (prtF1, prtF2, lmb, cbp, emm type) was evaluated, as well as ability to form bacterial biofilm and produce BLIS (bacteriocin-like inhibitory substances) which are active against human skin microbiota. The study showed that the presence of genes coding for fibronectin-binding protein and M protein, as well as BLIS activity inhibiting the growth of Corynebacterium spp. strains might constitute the virulence factors which are necessary to colonize human organism, whereas they are not crucial in animal infections. Those virulence factors might be horizontally transferred from human streptococci to animal SDSE strains, enabling their ability to colonize human organism.

  18. Human Osteoblast Differentiation and Bone Formation: Growth Factors, Hormones and Regulatory Networks

    NARCIS (Netherlands)

    H.J.M. Eijken (Marco)

    2007-01-01

    textabstractOsteoporosis is the most common bone disease and is characterized by low bone mass, micro architectural deterioration and decreased bone quality resulting in increased risk of fractures. Osteoblasts, the bone forming cells, play a crucial role in the regulation of bone mass and

  19. Reduced thoracolumbar fascia shear strain in human chronic low back pain

    Science.gov (United States)

    2011-01-01

    Background The role played by the thoracolumbar fascia in chronic low back pain (LBP) is poorly understood. The thoracolumbar fascia is composed of dense connective tissue layers separated by layers of loose connective tissue that normally allow the dense layers to glide past one another during trunk motion. The goal of this study was to quantify shear plane motion within the thoracolumbar fascia using ultrasound elasticity imaging in human subjects with and without chronic low back pain (LBP). Methods We tested 121 human subjects, 50 without LBP and 71 with LBP of greater than 12 months duration. In each subject, an ultrasound cine-recording was acquired on the right and left sides of the back during passive trunk flexion using a motorized articulated table with the hinge point of the table at L4-5 and the ultrasound probe located longitudinally 2 cm lateral to the midline at the level of the L2-3 interspace. Tissue displacement within the thoracolumbar fascia was calculated using cross correlation techniques and shear strain was derived from this displacement data. Additional measures included standard range of motion and physical performance evaluations as well as ultrasound measurement of perimuscular connective tissue thickness and echogenicity. Results Thoracolumbar fascia shear strain was reduced in the LBP group compared with the No-LBP group (56.4% ± 3.1% vs. 70.2% ± 3.6% respectively, p fascia shear strain and the following variables: perimuscular connective tissue thickness (r = -0.45, p fascia shear strain was ~20% lower in human subjects with chronic low back pain. This reduction of shear plane motion may be due to abnormal trunk movement patterns and/or intrinsic connective tissue pathology. There appears to be some sex-related differences in thoracolumbar fascia shear strain that may also play a role in altered connective tissue function. PMID:21929806

  20. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    Science.gov (United States)

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  1. Translational Research: Palatal-derived Ecto-mesenchymal Stem Cells from Human Palate: A New Hope for Alveolar Bone and Cranio-Facial Bone Reconstruction.

    Science.gov (United States)

    Grimm, Wolf Dieter; Dannan, Aous; Giesenhagen, Bernd; Schau, Ingmar; Varga, Gabor; Vukovic, Mark Alexander; Sirak, Sergey Vladimirovich

    2014-05-01

    The management of facial defects has rapidly changed in the last decade. Functional and esthetic requirements have steadily increased along with the refinements of surgery. In the case of advanced atrophy or jaw defects, extensive horizontal and vertical bone augmentation is often unavoidable to enable patients to be fitted with implants. Loss of vertical alveolar bone height is the most common cause for a non primary stability of dental implants in adults. At present, there is no ideal therapeutic approach to cure loss of vertical alveolar bone height and achieve optimal pre-implantological bone regeneration before dental implant placement. Recently, it has been found that specific populations of stem cells and/or progenitor cells could be isolated from different dental resources, namely the dental follicle, the dental pulp and the periodontal ligament. Our research group has cultured palatal-derived stem cells (paldSCs) as dentospheres and further differentiated into various cells of the neuronal and osteogenic lineage, thereby demonstrating their stem cell state. In this publication will be shown whether paldSCs could be differentiated into the osteogenic lineage and, if so, whether these cells are able to regenerate alveolar bone tissue in vivo in an athymic rat model. Furthermore, using these data we have started a proof of principle clinical- and histological controlled study using stem cell-rich palatal tissues for improving the vertical alveolar bone augmentation in critical size defects. The initial results of the study demonstrate the feasibility of using stem cell-mediated tissue engineering to treat alveolar bone defects in humans.

  2. Development of a Potential Probiotic Fresh Cheese Using Two Lactobacillus salivarius Strains Isolated from Human Milk

    Directory of Open Access Journals (Sweden)

    Nivia Cárdenas

    2014-01-01

    Full Text Available Cheeses have been proposed as a good alternative to other fermented milk products for the delivery of probiotic bacteria to the consumer. The objective of this study was to assess the survival of two Lactobacillus salivarius strains (CECT5713 and PS2 isolated from human milk during production and storage of fresh cheese for 28 days at 4°C. The effect of such strains on the volatile compounds profile, texture, and other sensorial properties, including an overall consumer acceptance, was also investigated. Both L. salivarius strains remained viable in the cheeses throughout the storage period and a significant reduction in their viable counts was only observed after 21 days. Globally, the addition of the L. salivarius strains did not change significantly neither the chemical composition of the cheese nor texture parameters after the storage period, although cheeses manufactured with L. salivarius CECT5713 presented significantly higher values of hardness. A total of 59 volatile compounds were identified in the headspace of experimental cheeses, and some L. salivarius-associated differences could be identified. All cheeses presented good results of acceptance after the sensory evaluation. Consequently, our results indicated that fresh cheese can be a good vehicle for the two L. salivarius strains analyzed in this study.

  3. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages

    Directory of Open Access Journals (Sweden)

    L. M. Rocha-Ramírez

    2017-01-01

    Full Text Available Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214 showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation. Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages.

  4. Preexisting human antibodies neutralize recently emerged H7N9 influenza strains

    Science.gov (United States)

    Henry Dunand, Carole J.; Leon, Paul E.; Kaur, Kaval; Tan, Gene S.; Zheng, Nai-Ying; Andrews, Sarah; Huang, Min; Qu, Xinyan; Huang, Yunping; Salgado-Ferrer, Marlene; Ho, Irvin Y.; Taylor, William; Hai, Rong; Wrammert, Jens; Ahmed, Rafi; García-Sastre, Adolfo; Palese, Peter; Krammer, Florian; Wilson, Patrick C.

    2015-01-01

    The emergence and seasonal persistence of pathogenic H7N9 influenza viruses in China have raised concerns about the pandemic potential of this strain, which, if realized, would have a substantial effect on global health and economies. H7N9 viruses are able to bind to human sialic acid receptors and are also able to develop resistance to neuraminidase inhibitors without a loss in fitness. It is not clear whether prior exposure to circulating human influenza viruses or influenza vaccination confers immunity to H7N9 strains. Here, we demonstrate that 3 of 83 H3 HA-reactive monoclonal antibodies generated by individuals that had previously undergone influenza A virus vaccination were able to neutralize H7N9 viruses and protect mice against homologous challenge. The H7N9-neutralizing antibodies bound to the HA stalk domain but exhibited a difference in their breadth of reactivity to different H7 influenza subtypes. Mapping viral escape mutations suggested that these antibodies bind at least two different epitopes on the stalk region. Together, these results indicate that these broadly neutralizing antibodies may contribute to the development of therapies against H7N9 strains and may also be effective against pathogenic H7 strains that emerge in the future. PMID:25689254

  5. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    Science.gov (United States)

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  6. Novel Strain of Andes Virus Associated with Fatal Human Infection, Central Bolivia

    Science.gov (United States)

    Cruz, Cristhopher D.; Vallejo, Efrain; Agudo, Roberto; Vargas, Jorge; Blazes, David L.; Guevara, Carolina; Laguna-Torres, V. Alberto; Halsey, Eric S.; Kochel, Tadeusz J.

    2012-01-01

    To better describe the genetic diversity of hantaviruses associated with human illness in South America, we screened blood samples from febrile patients in Chapare Province in central Bolivia during 2008–2009 for recent hantavirus infection. Hantavirus RNA was detected in 3 patients, including 1 who died. Partial RNA sequences of small and medium segments from the 3 patients were most closely related to Andes virus lineages but distinct (1 hantaviruses; the highest prevalence was among agricultural workers. Because of the high level of human exposure to hantavirus strains and the severity of resulting disease, additional studies are warranted to determine the reservoirs, ecologic range, and public health effect of this novel strain of hantavirus. PMID:22515983

  7. NOTE: A preliminary study for non-invasive quantification of manganese in human hand bones

    Science.gov (United States)

    Aslam; Pejović-Milić, A.; Chettle, D. R.; McNeill, F. E.; Pysklywec, M. W.; Oudyk, J.

    2008-10-01

    Manganese (Mn) is a nutrient essential for regulating neurological and skeletal functions in the human body, but it is also toxic when humans are excessively exposed to Mn. Blood (or serum/plasma) and other body fluids reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive measurement of Mn stored in bone, using in vivo neutron activation analysis. Following feasibility studies, a first pilot study, using neutron activation analysis to measure Mn in the bones of the hand of ten healthy male human subjects, was conducted with the approval of the concerned research ethics boards. The participants of this study had no known history of exposure to Mn. Two volunteers were excluded from this study due to technical problems with their measurements. The inverse variance weighted mean value of Mn/Ca for the participants of this study is 0.12 ± 0.68 µg Mn/g Ca which is comparable within uncertainties with the estimated range of 0.16 0.78 µg Mn/g Ca and mean value of 0.63 ± 0.30 µg Mn/g Ca derived from cadaver data. It is recommended to investigate the use of the diagnostic technique for in vivo measurements of workers exposed occupationally to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. The technique needs further development to improve the precision of in vivo measurements in the non-exposed population.

  8. Easily-handled method to isolate mesenchymal stem cells from coagulated human bone marrow samples

    Institute of Scientific and Technical Information of China (English)

    Heng-Xiang; Wang; Zhi-Yong; Li; Zhi-Kun; Guo; Zi-Kuan; Guo

    2015-01-01

    AIM:To establish an easily-handled method to isolate mesenchymal stem cells(MSCs) from coagulated human bone marrow samples. METHODS: Thrombin was added to aliquots of seven heparinized human bone marrow samples to mimic marrow coagulation. The clots were untreated,treated with urokinase or mechanically cut into pieces before culture for MSCs. The un-coagulated samples and the clots were also stored at 4 ℃ for 8 or 16 h before the treatment. The numbers of colony-forming unit-fibroblast(CFU-F) in the different samples were determined. The adherent cells from different groups were passaged and their surface profile was analyzed with flow cytometry. Their capacities of in vitro osteogenesis and adipogenesis were observed after the cells were exposed to specific inductive agents.RESULTS: The average CFU-F number of urokinasetreated samples(16.85 ± 11.77/106) was comparable to that of un-coagulated control samples(20.22 ± 10.65/106,P = 0.293),which was significantly higher than those of mechanically-cut clots(6.5 ± 5.32/106,P < 0.01) and untreated clots(1.95 ± 1.86/106,P < 0.01). The CFU-F numbers decreased after samples were stored,but those of control and urokinase-treated clots remained higher than the other two groups. Consistently,the numbers of the attached cells at passage 0 were higher in control and urokinase-treated clots than those of mechanically-cut clots and untreated clots.The attached cells were fibroblast-like in morphology and homogenously positive for CD44,CD73 and CD90,and negative for CD31 and CD45. Also,they could be induced to differentiate into osteoblasts and adipocytes in vitro. CONCLUSION: Urokinase pretreatment is an optimal strategy to isolate MSCs from human bone marrow samples that are poorly aspirated and clotted.

  9. Lysophosphatidic acid mediates myeloid differentiation within the human bone marrow microenvironment.

    Directory of Open Access Journals (Sweden)

    Denis Evseenko

    Full Text Available Lysophosphatidic acid (LPA is a pleiotropic phospholipid present in the blood and certain tissues at high concentrations; its diverse effects are mediated through differential, tissue specific expression of LPA receptors. Our goal was to determine if LPA exerts lineage-specific effects during normal human hematopoiesis. In vitro stimulation of CD34+ human hematopoietic progenitors by LPA induced myeloid differentiation but had no effect on lymphoid differentiation. LPA receptors were expressed at significantly higher levels on Common Myeloid Progenitors (CMP than either multipotent Hematopoietic Stem/Progenitor Cells (HSPC or Common Lymphoid Progenitors (CLP suggesting that LPA acts on committed myeloid progenitors. Functional studies demonstrated that LPA enhanced migration, induced cell proliferation and reduced apoptosis of isolated CMP, but had no effect on either HSPC or CLP. Analysis of adult and fetal human bone marrow sections showed that PPAP2A, (the enzyme which degrades LPA was highly expressed in the osteoblastic niche but not in the perivascular regions, whereas Autotaxin (the enzyme that synthesizes LPA was expressed in perivascular regions of the marrow. We propose that a gradient of LPA with the highest levels in peri-sinusoidal regions and lowest near the endosteal zone, regulates the localization, proliferation and differentiation of myeloid progenitors within the bone marrow marrow.

  10. Occurrence of bacteriophages infecting Bacteroides host strains (ARABA 84 and GB-124) in fecal samples of human and animal origin.

    Science.gov (United States)

    Diston, David; Wicki, Melanie

    2015-09-01

    Bacteriophage-based microbial source-tracking studies are an economical and simple way of identifying fecal sources in polluted water systems. Recently isolated Bacteroides spp. strains ARABA 84, and GB-124 have been shown to detect bacteriophages exclusively in aquatic systems impacted by human fecal material. To date, limited examination of the occurrence or concentration of phages capable of infecting Bacteroides fragilis strain GB-124 or B. thetaiotaomicron strain ARABA 84 in human and animal feces has been carried out. This study reports the prevalence rates and concentrations of phages infecting ARABA 84 and GB-124 host strains in human and a range of animal feces. Discrete human fecal samples (n=55) and pooled animal samples (n=46, representing the feces of over 230 animals) were examined for phages infecting the host strains ARABA 84, GB-124, and E. coli strain WG5. Both human Bacteroides host strains were highly specific (95% and 100% for ARABA 84 and GB-124, respectively), challenging results from previous studies. This study supports the use of Bacteroides strains GB-124 and ARABA 84 in fecal source tracking studies for the detection of human fecal contamination.

  11. [Consensus statement: recommendations for the management of metabolic bone disease in human immunodeficiency virus patients].

    Science.gov (United States)

    Martínez, Esteban; Jódar Gimeno, Esteban; Reyes García, Rebeca; Carpintero, Pedro; Casado, José Luis; Del Pino Montes, Javier; Domingo Pedrol, Pere; Estrada, Vicente; Maalouf, Jorge; Negredo, Eugenia; Ocampo, Antonio; Muñoz-Torres, Manuel

    2014-04-01

    To provide practical recommendations for the evaluation and treatment of metabolic bone disease in human immunodeficiency virus (HIV) patients. Members of scientific societies related to bone metabolism and HIV: Grupo de Estudio de Sida (GeSIDA), Sociedad Española de Endocrinología y Nutrición (SEEN), Sociedad Española de Investigación Ósea y del Metabolismo Mineral (SEIOMM), and Sociedad Española de Fractura Osteoporótica (SEFRAOS). A systematic search was carried out in PubMed, and papers in English and Spanish with a publication date before 28 May 2013 were included. Recommendations were formulated according to GRADE system (Grading of Recommendations, Assessment, Development, and Evaluation) setting both their strength and the quality of supporting evidence. Working groups were established for each major part, and the final resulting document was later discussed in a face-to-face meeting. All the authors reviewed the final written document and agreed with its content. The document provides evidence-based practical recommendations on the detection and treatment of bone disease in HIV-infected patients. Copyright © 2013 Elsevier España, S.L. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. A high volume extraction and purification method for recovering DNA from human bone.

    Science.gov (United States)

    Marshall, Pamela L; Stoljarova, Monika; Schmedes, Sarah E; King, Jonathan L; Budowle, Bruce

    2014-09-01

    DNA recovery, purity and overall extraction efficiency of a protocol employing a novel silica-based column, Hi-Flow(®) (Generon Ltd., Maidenhead, UK), were compared with that of a standard organic DNA extraction methodology. The quantities of DNA recovered by each method were compared by real-time PCR and quality of DNA by STR typing using the PowerPlex(®) ESI 17 Pro System (Promega Corporation, Madison, WI) on DNA from 10 human bone samples. Overall, the Hi-Flow method recovered comparable quantities of DNA ranging from 0.8ng±1 to 900ng±159 of DNA compared with the organic method ranging from 0.5ng±0.9 to 855ng±156 of DNA. Complete profiles (17/17 loci tested) were obtained for at least one of three replicates for 3/10 samples using the Hi-Flow method and from 2/10 samples with the organic method. All remaining bone samples yielded partial profiles for all replicates with both methods. Compared with a standard organic DNA isolation method, the results indicated that the Hi-Flow method provided equal or improved recovery and quality of DNA without the harmful effects of organic extraction. Moreover, larger extraction volumes (up to 20mL) can be employed with the Hi-Flow method which enabled more bone sample to be extracted at one time. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone.

    Science.gov (United States)

    Henriksen, S S; Ding, M; Juhl, M Vinther; Theilgaard, N; Overgaard, S

    2011-05-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture. Controls were un-reinforced calcium-phosphate scaffolds. Microarchitectural properties were quantified using micro-CT scanning. Mechanical properties were evaluated by destructive compression testing. Results showed that adding 10 or 15% PLA to the scaffold significantly increased the mechanical strength. The increase in mechanical strength was seen as a result of increased scaffold thickness and changes to plate-like structure. However, the porosity was significantly lowered as a consequence of adding 15% PLA, whereas adding 10% PLA had no significant effect on porosity. Hyaluronic acid had no significant effect on mechanical strength. The novel composite scaffold is comparable to that of human bone which may be suitable for transplantation in specific weight-bearing situations, such as long bone repair.

  14. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    Recent studies have shown that dental pulp cells possess stem cell like potential and thus may be potential candidates for tissue engineering purposes particularly in the oro-facial region. Successful tissue engineering ideally requires that newly formed bone adapts its mass, shape, and trabecular...... and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation...

  15. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  16. Human calcium metabolism including bone resorption measured with {sup 41}Ca tracer

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.P.H.T. [Lawrence Livermore National Lab., CA (United States); King, J.C. [California Univ., Berkeley, CA (United States). Dept. of Nutritional Science; Vieira, N.E. [National Inst. of Child Health and Human Development, Bethesda, MD (United States); Woodhouse, L.R. [California Univ., Berkeley, CA (United States). Dept. of Nutritional Science; Yergey, A.L. [National Inst. of Child Health and Human Development, Bethesda, MD (United States)

    1996-08-01

    Accelerator mass spectrometry is so sensitive to small quantities of {sup 41}Ca that it might be used as a tracer in the study of human calcium kinetics to generate unique kinds of data. In contrast with the use of other Ca isotopic tracers, {sup 41}Ca tracer can be so administered that the tracer movements between the various body pools achieve a quasi steady state. Resorbing bone may thus be directly measured. We have tested such a protocol against a conventional stable isotope experiment with good agreement.

  17. Molecular cloning of complementary DNA for human medullasin: an inflammatory serine protease in bone marrow cells.

    Science.gov (United States)

    Okano, K; Aoki, Y; Sakurai, T; Kajitani, M; Kanai, S; Shimazu, T; Shimizu, H; Naruto, M

    1987-07-01

    Medullasin, an inflammatory serine protease in bone marrow cells, modifies the functions of natural killer cells, monocytes, and granulocytes. We have cloned a medullasin cDNA from a human acute promyelocytic cell (ML3) cDNA library using oligonucleotide probes synthesized from the information of N-terminal amino acid sequence of natural medullasin. The cDNA contained a long open reading frame encoding 237 amino acid residues beginning from the second amino acid of natural meduallasin. The deduced amino acid sequence of medullasin shows a typical serine protease structure, with 41% homology with pig elastase 1.

  18. Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones

    Science.gov (United States)

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.

    2003-01-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904

  19. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Science.gov (United States)

    Sroga, Grażyna E; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and

  20. A novel mouse model of human breast cancer stem-like cells with high CD44+CD24-/lower phenotype metastasis to human bone

    Institute of Scientific and Technical Information of China (English)

    LING Li-jun; WANG Feng; WANG Shui; LIU Xiao-an; SHEN En-chao; DING Qiang; LU Chao; XU Jian; CAO Qin-hong; ZHU Hai-qing

    2008-01-01

    Background A satisfactory animal model of breast cancer metastasizing to bone is unavailable. In this study, we used human breast cancer stem-like cells and human bone to build a novel "human-source" model of human breast cancer skeletal metastasis.Methods Human breast cancer stem-like cells, the CD44+/CD24-/lower subpopulation, was separated and cultured. Before injection with the stem-like cells, mice were implanted with human bone in the right or left dorsal flanks. Animals in Groups A, B, and C were injected with 1x105, 1x106 human breast cancer stem-like cells, and 1x106 parental MDA-MB-231 cells, respectively. A positive control group (D) without implantation of human bone was also injected with 1x106 MDA-MB-231 cells. Immunohistochemistry was performed for determination of CD34, CD105, smooth muscle antibody, CD44, CD24, cytokine, CXC chemokine receptor-4 (CXCR4), and osteopontin (OPN). mRNA levels of CD44, CD24, CXCR4, and OPN in bone metastasis tissues were analyzed by real-time quantitative polymerase chain reaction (PCR). Results Our results demonstrated that cells in implanted human bones of group B, which received 1x106 cancer stem-like cells, stained strongly positive for CD44, CXCR4, and OPN, whereas those of other groups showed no or minimum staining. Moreover, group B had the highest incidence of human bone metastasis (77.8%, P=0.0230) and no accompaniment of other tissue metastasis. The real-time PCR showed an increase of CD44, CXCR4, and OPN mRNA in metastatic bone tissues in group B compared with those of groups C and D, however the expression of CD24 mRNA in group B were the lowest. Conclusions In the novel "human source" model of breast cancer, breast cancer stem-like cells demonstrated a higher human bone-seeking ability. Its mechanism might be related to the higher expressions of CD44, CXCR4, and OPN, and the lower expression of CD24 in breast cancer stem-like cells.

  1. Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity

    Directory of Open Access Journals (Sweden)

    Hill Peter A

    2005-02-01

    Full Text Available Abstract Background Breast cancer cells frequently metastasize to the skeleton and induce extensive bone destruction. Cancer cells produce proteinases, including matrix metalloproteinases (MMPs and the plasminogen activator system (PAS which promote invasion of extracellular matrices, but whether these proteinases degrade bone matrix is unclear. To characterize the role that breast cancer cell proteinases play in bone degradation we compared the effects of three human breast cancer cell lines, MDA-MB-231, ZR-75-1 and MCF-7 with those of a normal breast epithelial cell line, HME. The cell lines were cultured atop radiolabelled matrices of either mineralized or non-mineralized bone or type I collagen, the principal organic constituent of bone. Results The 3 breast cancer cell lines all produced significant degradation of the 3 collagenous extracellular matrices (ECMs whilst the normal breast cell line was without effect. Breast cancer cells displayed an absolute requirement for serum to dissolve collagen. Degradation of collagen was abolished in plasminogen-depleted serum and could be restored by the addition of exogenous plasminogen. Localization of plasmin activity to the cell surface was critical for the degradation process as aprotinin, but not α2 antiplasmin, prevented collagen dissolution. During ECM degradation breast cancer cell lines expressed urokinase-type plasminogen activator (u-PA and uPA receptor, and MMPs-1, -3, -9,-13, and -14. The normal breast epithelial cell line expressed low levels of MMPs-1, and -3, uPA and uPA receptor. Inhibitors of both the PAS (aprotinin and PA inhibitor-1 and MMPs (CT1166 and tisue inhibitor of metalloproteinase blocked collagen degradation, demonstrating the requirement of both plasminogen activation and MMP activity for degradation. The activation of MMP-13 in human breast cancer cells was prevented by plasminogen activator inhibitor-1 but not by tissue inhibitor of metalloproteinase-1, suggesting

  2. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone

    Directory of Open Access Journals (Sweden)

    Shepherd Duncan ET

    2008-10-01

    Full Text Available Abstract Background Polyurethane (PU foam is widely used as a model for cancellous bone. The higher density foams are used as standard biomechanical test materials, but none of the low density PU foams are universally accepted as models for osteoporotic (OP bone. The aim of this study was to determine whether low density PU foam might be suitable for mimicking human OP cancellous bone. Methods Quasi-static compression tests were performed on PU foam cylinders of different lengths (3.9 and 7.7 mm and of different densities (0.09, 0.16 and 0.32 g.cm-3, to determine the Young's modulus, yield strength and energy absorbed to yield. Results Young's modulus values were 0.08–0.93 MPa for the 0.09 g.cm-3 foam and from 15.1–151.4 MPa for the 0.16 and 0.32 g.cm-3 foam. Yield strength values were 0.01–0.07 MPa for the 0.09 g.cm-3 foam and from 0.9–4.5 MPa for the 0.16 and 0.32 g.cm-3 foam. The energy absorbed to yield was found to be negligible for all foam cylinders. Conclusion Based on these results, it is concluded that 0.16 g.cm-3 PU foam may prove to be suitable as an OP cancellous bone model when fracture stress, but not energy dissipation, is of concern.

  3. Below the Callus Surface: Applying Paleohistological Techniques to Understand the Biology of Bone Healing in Skeletonized Human Remains.

    Science.gov (United States)

    Assis, Sandra; Keenleyside, Anne

    2016-01-01

    Bone trauma is a common occurrence in human skeletal remains. Macroscopic and imaging scrutiny is the approach most currently used to analyze and describe trauma. Nevertheless, this line of inquiry may not be sufficient to accurately identify the type of traumatic lesion and the associated degree of bone healing. To test the usefulness of histology in the examination of bone healing biology, we used an integrative approach that combines gross inspection and microscopy. Six bone samples belonging to 5 adult individuals with signs of bone trauma were collected from the Human Identified Skeletal Collection from the Museu Bocage (Lisbon, Portugal). Previous to sampling, the lesions were described according to their location, morphology, and healing status. After sampling, the bone specimens were prepared for plane light and polarized light analysis. The histological analysis was pivotal: (1) to differentiate between types of traumatic lesions; (2) to ascertain the posttraumatic interval, and (3) to diagnose other associated pathological conditions. The outer surface of a bone lesion may not give a complete picture of the biology of the tissue's response. Accordingly, microscopic analysis is essential to differentiate, characterize, and classify trauma signs. © 2016 S. Karger AG, Basel.

  4. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  5. Influence of object location in different FOVs on trabecular bone microstructure measurements of human mandible: a cone beam CT study

    NARCIS (Netherlands)

    Ibrahim, N.; Parsa, A.; Hassan, B.; van der Stelt, P.; Aartman, I.H.A.; Nambiar, P.

    2014-01-01

    The aim of this study was to assess the influence of different object locations in different fields of view (FOVs) of two cone beam CT (CBCT) systems on trabecular bone microstructure measurements of a human mandible. A block of dry human mandible was scanned at five different locations (centre,

  6. Influence of object location in different FOVs on trabecular bone microstructure measurements of human mandible: a cone beam CT study

    NARCIS (Netherlands)

    Ibrahim, N.; Parsa, A.; Hassan, B.; van der Stelt, P.; Aartman, I.H.A.; Nambiar, P.

    2014-01-01

    The aim of this study was to assess the influence of different object locations in different fields of view (FOVs) of two cone beam CT (CBCT) systems on trabecular bone microstructure measurements of a human mandible. A block of dry human mandible was scanned at five different locations (centre, lef

  7. [Experimental study on application recombinant human bone morphogenetic protein 2(rhBMP-2)/poly-lactide-co-glycolic acid (PLGA)/fibrin sealant(FS) on repair of rabbit radial bone defect].

    Science.gov (United States)

    Fan, Zhongkai; Cao, Yang; Zhang, Zhe; Zhang, Mingchao; Lu, Wei; Tang, Lei; Yao, Qi; Lu, Gang

    2012-10-01

    This paper is aimed to investigate the repair of rabbit radial bone defect by the recombinant human bone morphogenetic protein 2/poly-lactideco-glycolic acid microsphere with fibrin sealant (rhBMP-2/PLGA/FS). The radial bone defect models were prepared using New Zealand white rabbits, which were randomly divided into 3 groups, experiment group which were injected with eMP-2/PLGA/FS at bone defect location, control group which were injected with FS at bone defect location, and blank control group without treatment. The ability of repairing bone defect was evaluated with X-ray radiograph. Bone mineral density in the defect regions was analysed using the level of ossification. The osteogenetic ability of repairing bone defect, the degradation of the material, the morphologic change and the bone formation were assessed by HE staining and Masson staining. The result showed that rhBMP-2/PLGA/FS had overwhelming superiority in the osteogenetic ability and quality of bone defect over the control group, and it could promote the repair of bone defect and could especially repair the radial bone defect of rabbit well. It may be a promising and efficient synthetic bone graft.

  8. Detection and Characterization of Shiga Toxin Producing Escherichia coli, Salmonella spp., and Yersinia Strains from Human, Animal, and Food Samples in San Luis, Argentina.

    Science.gov (United States)

    Favier, Gabriela Isabel; Lucero Estrada, Cecilia; Cortiñas, Teresa Inés; Escudero, María Esther

    2014-01-01

    Shiga toxin producing Escherichia coli (STEC), Salmonella spp., and Yersinia species was investigated in humans, animals, and foods in San Luis, Argentina. A total of 453 samples were analyzed by culture and PCR. The antimicrobial susceptibility of all the strains was studied, the genomic relationships among isolates of the same species were determined by PFGE, and the potencial virulence of Y. enterocolitica strains was analyzed. Yersinia species showed higher prevalence (9/453, 2.0%, 95% CI, 0.7-3.3%) than STEC (4/453, 0.9%, 95% CI, 0-1.8%) and Salmonella spp. (3/453, 0.7%, 95% CI, 0-1.5%). Y. enterocolitica and Y. intermedia were isolated from chicken carcasses (6/80, 7.5%, 95% CI, 1.5-13.5%) and porcine skin and bones (3/10, 30%, 95% CI, 0-65%). One STEC strain was recovered from human feces (1/70, 1.4%, 95% CI, 0-4.2%) and STEC stx1/stx2 genes were detected in bovine stools (3/129, 2.3%, 95% CI, 0-5.0%). S. Typhimurium was isolated from human feces (1/70, 1.4%, 95% CI, 0-4.2%) while one S. Newport and two S. Gaminara strains were recovered from one wild boar (1/3, 33%, 95% CI, 0-99%). The knowledge of prevalence and characteristics of these enteropathogens in our region would allow public health services to take adequate preventive measures.

  9. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model.

    Directory of Open Access Journals (Sweden)

    Matthew B Greenblatt

    Full Text Available Mice bearing a "humanized" immune system are valuable tools to experimentally manipulate human cells in vivo and facilitate disease models not normally possible in laboratory animals. Here we describe a form of GVHD that develops in NOD/SCID mice reconstituted with human fetal bone marrow, liver and thymus (NS BLT mice. The skin, lungs, gastrointestinal tract and parotid glands are affected with progressive inflammation and sclerosis. Although all mice showed involvement of at least one organ site, the incidence of overt clinical disease was approximately 35% by 22 weeks after reconstitution. The use of hosts lacking the IL2 common gamma chain (NOD/SCID/γc(-/- delayed the onset of disease, but ultimately did not affect incidence. Genetic analysis revealed that particular donor HLA class I alleles influenced the risk for the development of GVHD. At a cellular level, GVHD is associated with the infiltration of human CD4+ T cells into the skin and a shift towards Th1 cytokine production. GVHD also induced a mixed M1/M2 polarization phenotype in a dermal murine CD11b+, MHC class II+ macrophage population. The presence of xenogenic GVHD in BLT mice both presents a major obstacle in the use of humanized mice and an opportunity to conduct preclinical studies on GVHD in a humanized model.

  10. Characterization of Yersinia enterocolitica strains potentially virulent for humans and animals in river water.

    Science.gov (United States)

    Terech-Majewska, E; Pajdak, J; Platt-Samoraj, A; Szczerba-Turek, A; Bancerz-Kisiel, A; Grabowska, K

    2016-08-01

    The aim of this study was to isolate and identify potentially pathogenic strains of Yersinia enterocolitica in water samples collected from the upstream section of the Drwęca River in Poland. Thirty-nine water samples were collected. Strains were isolated, identified with the use of the API(®) 20E test kit (Biomerieux, Marcy l'Etoile, France) at 37°C, serotyped and subjected to a molecular analysis. Multiplex PCR was carried out to amplify three virulence genes: ail, ystA and ystB. Fragments of ail and ystA genes were not identified in the genetic material of the analysed strains. The ystB gene was identified in four strains. Yersinia enterocolitica strains of biotype 1A, which contain the ystB gene, may cause gastrointestinal problems. In our study, Y. enterocolitica strains of biotype 1A/ystB with serotypes 0 : 3, 0 : 5 and 0 : 8 were identified in samples collected from the Drwęca River which flows through the areas protected by Natura 2000, one of the largest networks of nature conservation areas in the European Union. The presence of Y. enterocolitica in the Drwęca River indicates that the analysed bacteria colonize natural water bodies. Most research focuses on food or sewage as a source of Y. enterocolitica infections. Little is known about the occurrence of this pathogen in natural waters. Our results show that natural waters are also a potential threat to human and animal health. © 2016 The Society for Applied Microbiology.

  11. iPSC-derived human mesenchymal stem cells improve myocardial strain of infarcted myocardium.

    Science.gov (United States)

    Miao, Qingfeng; Shim, Winston; Tee, Nicole; Lim, Sze Yun; Chung, Ying Ying; Ja, K P Myu Mia; Ooi, Ting Huay; Tan, Grace; Kong, Geraldine; Wei, Heming; Lim, Chong Hee; Sin, Yoong Kong; Wong, Philip

    2014-08-01

    We investigated global and regional effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) in infarcted myocardium. Acute myocardial infarction (MI) was induced by ligation of left coronary artery of severe combined immunodeficient mice before 2 × 10(5) iMSCs or cell-free saline were injected into peri-infarcted anterior free wall. Sham-operated animals received no injection. Global and regional myocardial function was assessed serially at 1-week and 8-week by segmental strain analysis by using two dimensional (2D) speckle tracking echocardiography. Early myocardial remodelling was observed at 1-week and persisted to 8-week with global contractility of ejection fraction and fractional area change in saline- (32.96 ± 14.23%; 21.50 ± 10.07%) and iMSC-injected (32.95 ± 10.31%; 21.00 ± 7.11%) groups significantly depressed as compared to sham control (51.17 ± 11.69%, P myocardial dilatation was observed in saline-injected animals (4.40 ± 0.62 mm, P strain analysis showed significant improved basal anterior wall strain (28.86 ± 8.16%, P strain only in saline-injected (21.50 ± 5.31%, P myocardial strain coincided with the presence of interconnecting telocytes in interstitial space of the infarcted anterior segment of the heart. Our results show that localized injection of iMSCs alleviates ventricular remodelling, sustains global and regional myocardial strain by paracrine-driven effect on neoangiogenesis and myocardial deformation/compliance via parenchymal and interstitial cell interactions in the infarcted myocardium.

  12. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanopa