WorldWideScience

Sample records for human bone samples

  1. Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Hansen, Anders J.; Willerslev, E.

    2006-01-01

    A principal problem facing human DNA studies that use old and degraded remains is contamination from other sources of human DNA. In this study we have attempted to contaminate deliberately bones and teeth sampled from a medieval collection excavated in Trondheim, Norway, in order to investigate......, prior to assaying for the residual presence of the handler's DNA. Surprisingly, although our results suggest that a large proportion of the teeth were contaminated with multiple sources of human DNA prior to our investigation, we were unable to contaminate the samples with further human DNA. One...

  2. Human bloodstains on bone artefacts: an SEM intra- and inter-sample comparative study using ratite bird tibiotarsus.

    Science.gov (United States)

    Hortolà, Policarp

    2016-11-01

    Apart from their forensic significance in crime investigation, human bloodstains have an anthropological interest due to their occurrence on certain traditional weapons and ritual objects. Previously, a guiding study of erythrocytes in experimental samples including domestic sheep (Ovis aries) tibia was carried out using a scanning electron microscope (SEM). Here, a comparative SEM study to reveal the potential differences in bloodstain surface morphology as a function of intra-sample (smear region) and inter-sample (individual smear, smearing mechanism, bone origin) parameters is reported. A fragment of emu (Dromaius novaehollandiae) tibiotarsus was smeared with an adult man's peripheral blood. After air-drying and storing indoors, the boundary and neighbouring inner areas of the three individual bloodstains obtained were examined via secondary electrons in a variable-pressure SEM working in low-vacuum mode. As a whole, desiccation microcracks were present, the limits between the smear and the substrate appeared poorly defined, and no erythrocyte negative replicas were observed in the examined areas. In addition, a putative fibrin network, more or less embedded in the dried plasma matrix, was observed in the smears' boundary. Regarding the smear region in sliding smears, the periphery and boundary revealed to be different, while the head and tail were similar. Considering individual sliding smears, they had similar characteristics. Relating to the smear region as a function of the smearing mechanism, the periphery was different whether sliding or touching, while the boundary was similar in sliding and touching smears. Concerning the smear region as a function of the bone origin, the periphery revealed to be similar in both ratite and mammalian bone, while the boundary did different in ratite and mammalian bone. The results of this study show that SEM examination can be used fruitfully to detect bloodstains on ratite bone. Combined with previous SEM results in

  3. Metric Sex Determination of the Human Coxal Bone on a Virtual Sample using Decision Trees.

    Science.gov (United States)

    Savall, Frédéric; Faruch-Bilfeld, Marie; Dedouit, Fabrice; Sans, Nicolas; Rousseau, Hervé; Rougé, Daniel; Telmon, Norbert

    2015-11-01

    Decision trees provide an alternative to multivariate discriminant analysis, which is still the most commonly used in anthropometric studies. Our study analyzed the metric characterization of a recent virtual sample of 113 coxal bones using decision trees for sex determination. From 17 osteometric type I landmarks, a dataset was built with five classic distances traditionally reported in the literature and six new distances selected using the two-step ratio method. A ten-fold cross-validation was performed, and a decision tree was established on two subsamples (training and test sets). The decision tree established on the training set included three nodes and its application to the test set correctly classified 92% of individuals. This percentage was similar to the data of the literature. The usefulness of decision trees has been demonstrated in numerous fields. They have been already used in sex determination, body mass prediction, and ancestry estimation. This study shows another use of decision trees enabling simple and accurate sex determination. © 2015 American Academy of Forensic Sciences.

  4. Correlation between chemical composition of dental calculus and bone samples in ancient human burials: perspectives in paleonutritional studies

    International Nuclear Information System (INIS)

    Capasso, L.; Di Tota, G.; Bondioli, L.

    1997-01-01

    Full text: The authors describe the results of an assay based on the comparison between chemical composition of dental calculus and bone respectively obtained from teeth and bones of ancient skeletons. The chemical analysis has been performed by synchrotron light. The concentrations of the following oligoelements having paleonutritional correlations were analysed: Fe, Cu, Zn, Pb, Sr and Ca. The authors demonstrate that- in a given individual the concentration of such elements in the bone sample were in the range of those obtained for the same elements in the sample of dental calculus. Such correspondence suggests that the chemical analysis of dental calculus may give paleonutritional indications analogous to those deriving from the analysis of bone samples. The authors underline also that the use of dental calculus has a distinct advantage over the use of bone samples, since it may allow a diachronic investigation. In fact, dental calculus typically presents a concentric pattern of growth, and the chemical composition of each layer may vary in accordance with temporal dietary variations. This is not the case for bone. This fact is the theoretical basis for the possible future development of techniques directed to the reconstruction of variations in the dietary habits of ancient individuals, possibly in relation to environmental seasonal changes

  5. Sampling strategy and analysis of trace element concentrations by inductively coupled plasma mass spectrometry on medieval human bones--the concept of chemical life history.

    Science.gov (United States)

    Skytte, Lilian; Rasmussen, Kaare Lund

    2013-07-30

    Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Selection of bone samples for 239Pu analyses in man

    International Nuclear Information System (INIS)

    Jee, W.S.S.; Wronski, T.J.; Smith, J.M.; Kimmel, D.B.; Miller, S.C.; Stover, B.J.

    1981-01-01

    Studies on the skeletal macrodistribution, microdistribution, and toxicity of 239 Pu and studies on bone turnover rates show that trabecular bone sites with high turnover rates have the greatest affinity for 239 Pu. In the adult beagle, these high-turnover, trabecular bone sites also show a higher occurrence of osteosarcomas. Correspondingly, high-turnover bone sites in the human would include the ilium (pelvis) and lumbar vertebrae (LVB), sites that are readily obtainable at autopsy. We recommend that the trabecular bone of the ilium and of the LVB be sampled to determine the skeletal radionuclide content of humans

  7. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.

    Science.gov (United States)

    Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M

    2018-02-01

    Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and

  8. Perfluoroalkyl substances in human bone: concentrations in bones and effects on bone cell differentiation.

    Science.gov (United States)

    Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J

    2017-07-28

    Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.

  9. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  10. Radiocarbon dating of VIRI bone samples using ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Masayo, E-mail: minami@nendai.nagoya-u.ac.jp [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan); Yamazaki, Kana [Faculty of Science, Nagoya University, Nagoya 464-8602 (Japan); Omori, Takayuki [University Museum, University of Tokyo, Tokyo 113-0033 (Japan); Nakamura, Toshio [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan)

    2013-01-15

    Ultrafiltration can effectively remove low-molecular-weight (LMW) contaminants from bone gelatin to extract high-molecular-weight (HMW) proteins that are derived from original bone collagen, though it cannot remove HMW collagen crosslinked with humic acids. Therefore, ultrafiltration is often used to obtain more accurate {sup 14}C dates of bones. However, ultrafiltration may introduce new contaminants to bone gelatins, mainly from ultrafilters used. To study the effects of ultrafiltration on {sup 14}C age, we analyzed the C/N ratio, {delta}{sup 13}C{sub PDB} and {delta}{sup 15}N{sub AIR} values, and {sup 14}C ages of acid-soluble bone collagen obtained by decalcification, gelatin extracted from acid-insoluble bone collagen, and the HMW gelatin and LMW fractions produced during ultrafiltration of the extracted gelatin. Bone samples from the Fifth International Radiocarbon Intercomparison (VIRI) were used: VIRI-E (mammoth), -F (horse), -G (human), and -I (whale). In this study, carbon and nitrogen content and gelatin yields were used to evaluate collagen preservation in the VIRI bone samples. Radiocarbon ages, {delta}{sup 13}C{sub PDB} and {delta}{sup 15}N{sub AIR} values of unfiltered and HMW gelatins were obtained and compared with the published consensus values. The LMW fraction was found to exhibit different values from those of the other fractions, indicating the possible presence of extraneous contamination. The Vivaspin Trade-Mark-Sign 6 ultrafilters used in this study were analyzed and radiocarbon dated both before and after cleaning. We present evidence to suggest that LMW fraction contaminants could be derived from the ultrafilters rather than humic substances. Excessively long ultrafiltration time was suspected to have contaminated the bone samples with material from the ultrafilter, because those samples exhibited older {sup 14}C ages than did those filtered for shorter durations. The results in this study indicate that {sup 14}C ages of unfiltered

  11. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Jose de M. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose W. [Escola Politecnica de Pernambuco (POLI). Universidade de Pernambuco (UPE), Recife, PE (Brazil); Lima, Vanildo J. de M., E-mail: vjr@ufpe.br [Departamento de Anatomia. Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lima, Lindeval F., E-mail: lindeval@dmat.ufrr.br [Departamento de Matematica (DMAT). Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares (CRCN/NE-CNEN-PE), Recife, PE (Brazil); Vasconcelos, Wagner E. de [Departamento de Energia Nuclear (DEN). Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-07-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  12. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    International Nuclear Information System (INIS)

    Lima Filho, Jose de M.; Vieira, Jose W.; Lima, Vanildo J. de M.; Lima, Lindeval F.; Lima, Fernando R.A.; Vasconcelos, Wagner E. de

    2011-01-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  13. The effect of radiation sterilization on human transplantable bone

    International Nuclear Information System (INIS)

    Triantafyllou, N.; Karatzas, P.

    1974-11-01

    In order to study the effect of radiation sterilization on human transplantable bones, work was carried out on human and bovine bone tissue samples. Factors causing possible alterations in the mechanical structures of the preserved bone allografts were considered to be deep freezing (-35degC), lyophylization, irradiation, or a combination of lyophylization and irradiation. The latter could be shown to lower the mechanical strength of the bone. Crystal lattice of the bone did not show any alterations in x-ray diffraction pattern, following freeze drying and/or irradiation with doses up to 10 Mrad of gamma radiation. Deterioration in mechanical properties is probably due to damage to the organic phase of the bone matrix

  14. Atomic scale chemical tomography of human bone

    Science.gov (United States)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  15. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    International Nuclear Information System (INIS)

    Singh, Atul Kumar; Gajiwala, Astrid Lobo; Rai, Ratan Kumar; Khan, Mohd Parvez; Singh, Chandan; Barbhuyan, Tarun; Vijayalakshmi, S.; Chattopadhyay, Naibedya; Sinha, Neeraj; Kumar, Ashutosh; Bellare, Jayesh R.

    2016-01-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  16. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Atul Kumar [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Gajiwala, Astrid Lobo [Tissue Bank, Tata Memorial Hospital, Parel, Mumbai 400012 (India); Rai, Ratan Kumar [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Khan, Mohd Parvez [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Singh, Chandan [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Barbhuyan, Tarun [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Vijayalakshmi, S. [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Chattopadhyay, Naibedya [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Sinha, Neeraj, E-mail: neerajcbmr@gmail.com [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Kumar, Ashutosh, E-mail: ashutoshk@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Bellare, Jayesh R., E-mail: jb@iitb.ac.in [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  17. MicroCT evaluation of bone mineral density loss in human bones

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Oliveira, Luis F.

    2007-01-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca 10 (PO 4 ) 6 OH 2 ], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 μm (±5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm -3 and 1.92 g.cm -3 respectively. The correlation of the measured absorption coefficient with the mineral content in the samples was then

  18. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  19. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  20. Radiation dosimetry in human bone using electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Breen, S.L.

    1995-01-01

    Accurate measurements of dose in bone are required in order to improve the dosimetry of systemic radiotherapy for osseous metastases. Bone is an integrating dosimeter which records the radiation history of the skeleton. During irradiation, electrons become trapped in the crystalline component of bone mineral (hydroxyapatite). The traps are very stable; at room temperature, emptying of the traps occurs with a half-life of many years. The population of trapped unpaired electrons is proportional to the radiation dose administered to the bone and can be measured in excised bone samples using electron paramagnetic resonance (EPR). EPR spectra of synthetic hydroxyapatite, irradiated with Co-60, were obtained at room temperature and at 77 K. At room temperature, the radiation-induced signal, with a g-value of 2.001 ± 0.001 increased linearly with absorbed dose above a lower threshold of 3 Gy, up to doses of 200 Gy. In contrast with pure hydroxyapatite, EPR spectra of excised human bone showed a broad 'native' signal, due to the organic component of bone, which masks the dosimetrically important signal. This native signal is highly variable from sample to sample and precludes the use of EPR as an absolute dosimetry technique. However, after subtraction of the background signal, irradiated human bone showed a linear response with a lower limit of measurement similar to that of synthetic hydroxyapatite. Bone is an in vivo linear dosimeter which can be exploited to develop accurate estimates of the radiation dose delivered during systemic radiotherapy and teletherapy. However, improved sensitivity of the EPR dosimetry technique is necessary before it can be applied reliably in clinical situations. (author)

  1. Uranium concentrations in human bone

    International Nuclear Information System (INIS)

    Schlenker, R.A.; Oltman, B.G.

    1981-01-01

    The uranium concentration in bone from an individual injected with 239 Pu has been determined, using the fission-track method. The data are consistent with those reported about 10 years ago by Welford and Baird for New York City area residents and by Hamilton in England. They are at variance with the more recent data of Welford et al

  2. Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone.

    Directory of Open Access Journals (Sweden)

    Christopher A Smith

    Full Text Available To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC. BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1 concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.

  3. DNA and bone structure preservation in medieval human skeletons.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Mechanical and morphological properties of trabecular bone samples obtained from third metacarpal bones of cadavers of horses with a bone fragility syndrome and horses unaffected by that syndrome.

    Science.gov (United States)

    Symons, Jennifer E; Entwistle, Rachel C; Arens, Amanda M; Garcia, Tanya C; Christiansen, Blaine A; Fyhrie, David P; Stover, Susan M

    2012-11-01

    To determine morphological and mechanical properties of trabecular bone of horses with a bone fragility syndrome (BFS; including silicate-associated osteoporosis). Cylindrical trabecular bone samples from the distal aspects of cadaveric third metacarpal bones of 39 horses (19 horses with a BFS [BFS bone samples] and 20 horses without a BFS [control bone samples]). Bone samples were imaged via micro-CT for determination of bone volume fraction; apparent and mean mineralized bone densities; and trabecular number, thickness, and separation. Bone samples were compressed to failure for determination of apparent elastic modulus and stresses, strains, and strain energy densities for yield, ultimate, and failure loads. Effects of BFS and age of horses on variables were determined. BFS bone samples had 25% lower bone volume fraction, 28% lower apparent density, 18% lower trabecular number and thickness, and 16% greater trabecular separation versus control bone samples. The BFS bone samples had 22% lower apparent modulus and 32% to 33% lower stresses, 10% to 18% lower strains, and 41 % to 52% lower strain energy densities at yield, ultimate, and failure loads, compared with control bone samples. Differences between groups of bone samples were not detected for mean mineral density and trabecular anisotropy. Results suggested that horses with a BFS had osteopenia and compromised trabecular bone function, consistent with bone deformation and pathological fractures that develop in affected horses. Effects of this BFS may be systemic, and bones other than those that are clinically affected had changes in morphological and mechanical properties.

  5. Instrumental neutron activation analysis of rib bone samples and of bone reference materials

    International Nuclear Information System (INIS)

    Saiki, M.; Takata, M.K.; Kramarski, S.; Borelli, A.

    2000-01-01

    The instrumental neutron activation analysis method was used for the determination of trace elements in rib bone samples taken from autopsies of accident victims. The elements Br, Ca, Cl, Cr, Fe, Mg, Mn, Na, P, Sr, Rb and Zn were determined in cortical tissues by using short and long irradiations with thermal neutron flux of the IEA-R1m nuclear reactor. The reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were also analyzed in order to evaluate the precision and the accuracy of the results. It was verified that lyophilization is the most convenient process for drying bone samples since it does not cause any element losses. Comparisons were made between the results obtained for rib samples and the literature values as well as between the results obtained for different ribs from a single individual and for bones from different individuals. (author)

  6. Age changes in human bone: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, W.D.

    1977-12-03

    The human skeleton steadily changes structure and mass during life because of a variety of internal and external factors. Extracellular substance and bone cells get old, characteristic structural remodeling occurs with age and these age-related changes are important in the discrimination between pathological and physiological changes. Perhaps 20 percent of the bone mass is lost between the fourth and the ninth decades, osteoblasts function less efficiently and gradual loss of bone substance is enhanced by delayed mineralization of an increased surface area of thin and relatively less active osteoid seams. After the fifth decade, osteoclasia and the number of Howship's lacunae increase, and with age, the number of large osteolytic osteocytes increases as the number of small osteocytes declines and empty osteocyte lacunae become more common. The result is greater liability to fracture and diminished healing or replacement of injured bone.

  7. Radiocarbon dating of bone samples by liquid scintillation spectroscopy

    International Nuclear Information System (INIS)

    Lisi, C.S.; Pessenda, L.C.R.; Cruz, M.V.; Pessin, G.; Pazdur, M.F.

    1995-01-01

    It is developed and adapted methodology for radiocarbon dating of bone samples. The collagen, the most representative fraction of age of bone samples, was extracted by Login method. To eliminate/minimize the contamination of gaseous compounds (nitrogen oxides) produced during the collagen combustion, two methods were used: CO 2 precipitation as Ba CO 3 and Sr CO 3 with subsequent acid hydrolysis. It was determined the efficiency of combustion of collagen sample, the performance of methods in the CO 2 purification and the effect of atmospheric 14 CO 2 contamination and radioactivity of reagents in the determination of 14 C activity. To verify the accuracy of the method, it was realized a laboratory intercomparison, analysing bone and collagen samples also dated by 14 C laboratories of Gliwice, Poland and Groningen, the Netherlands. (author). 4 refs, 2 figs, 1 tab

  8. High frequency of parvovirus B19 DNA in bone marrow samples from rheumatic patients

    DEFF Research Database (Denmark)

    Lundqvist, Anders; Isa, Adiba; Tolfvenstam, Thomas

    2005-01-01

    BACKGROUND: Human parvovirus B19 (B19) polymerase chain reaction (PCR) is now a routine analysis and serves as a diagnostic marker as well as a complement or alternative to B19 serology. The clinical significance of a positive B19 DNA finding is however dependent on the type of tissue or body fluid...... analysed and of the immune status of the patient. OBJECTIVES: To analyse the clinical significance of B19 DNA positivity in bone marrow samples from rheumatic patients. STUDY DESIGN: Parvovirus B19 DNA was analysed in paired bone marrow and serum samples by nested PCR technique. Serum was also analysed...... negative group. A high frequency of parvovirus B19 DNA was thus detected in bone marrow samples in rheumatic patients. The clinical data does not support a direct association between B19 PCR positivity and rheumatic disease manifestation. Therefore, the clinical significance of B19 DNA positivity in bone...

  9. Creep of trabecular bone from the human proximal tibia.

    Science.gov (United States)

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L; McKittrick, Joanna

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  11. Protocol for sampling and analysis of bone specimens

    International Nuclear Information System (INIS)

    Aras, N.K.

    2000-01-01

    The iliac crest of hip bone was chosen as the most suitable sampling site for several reasons: Local variation in the elemental concentration along the iliac crest is minimal; Iliac crest biopsies are commonly taken clinically on patients; The cortical part of the sample is small (∼2 mm) and can be separated easily from the trabecular bone; The use of the trabecular part of the iliac crest for trace element analysis has the advantage of reflecting rapidly changes in the composition of bone due to external parameters, including medication. Biopsy studies, although in some ways more difficult than autopsy studies, because of the need to obtain the informed consents of the subjects, are potentially more useful than autopsy studies. Thereby many problems of postmortem migration of elements can be avoided and reliable dietary and other data can be collected simultaneously. Select the subjects among the patients undergoing orthopedic surgery due to any reason other than osteoporosis. Follow an established protocol to obtain bone biopsies. Patients undergoing synergy should fill in the 'Osteoporosis Project Questionnaire Form' including information on lifestyle variables, dietary intakes, the reason for surgery etc. If possible, measure the bone mineral density (BMD) prior to removal of the biopsy sample. However it may not possible to have BMD results on all the subjects because of difficulty of DEXA measurement after an accident

  12. Development of a Human Cranial Bone Surrogate for Impact Studies

    International Nuclear Information System (INIS)

    Roberts, Jack C.; Merkle, Andrew C.; Carneal, Catherine M.; Voo, Liming M.; Johannes, Matthew S.; Paulson, Jeff M.; Tankard, Sara; Uy, O. Manny

    2013-01-01

    In order to replicate the fracture behavior of the intact human skull under impact it becomes necessary to develop a material having the mechanical properties of cranial bone. The most important properties to replicate in a surrogate human skull were found to be the fracture toughness and tensile strength of the cranial tables as well as the bending strength of the three-layer (inner table-diplöe-outer table) architecture of the human skull. The materials selected to represent the surrogate cranial tables consisted of two different epoxy resins systems with random milled glass fiber to enhance the strength and stiffness and the materials to represent the surrogate diplöe consisted of three low density foams. Forty-one three-point bending fracture toughness tests were performed on nine material combinations. The materials that best represented the fracture toughness of cranial tables were then selected and formed into tensile samples and tested. These materials were then used with the two surrogate diplöe foam materials to create the three-layer surrogate cranial bone samples for three-point bending tests. Drop tower tests were performed on flat samples created from these materials and the fracture patterns were very similar to the linear fractures in pendulum impacts of intact human skulls, previously reported in the literature. The surrogate cranial tables had the quasi-static fracture toughness and tensile strength of 2.5 MPa√ m and 53 ± 4.9 MPa, respectively, while the same properties of human compact bone were 3.1 ± 1.8 MPa√ m and 68 ± 18 MPa, respectively. The cranial surrogate had a quasi-static bending strength of 68 ± 5.7 MPa, while that of cranial bone was 82 ± 26 MPa. This material/design is currently being used to construct spherical shell samples for drop tower and ballistic tests.

  13. Osteoblast recruitment routes in human cancellous bone remodeling

    DEFF Research Database (Denmark)

    Kristensen, Helene Bjørg; Andersen, Thomas Levin; Marcussen, Niels

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling...... is lacking. We addressed this question by quantifying cell densities, cell proliferation, osteoblast differentiation markers, and capillaries in human iliac crest biopsy specimens. We found that recruitment occurs on both reversal and bone-forming surfaces, as shown by the cell density and osterix levels...

  14. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture.

    Science.gov (United States)

    Kim, Yoon Jeong; Henkin, Jeffrey

    2015-04-01

    Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.

  15. Analysis of bone mineral density of human bones for strength ...

    Indian Academy of Sciences (India)

    Different types of bone strength are required for various ... To statically analyse various methods to find BMD and related material ... bone study for research purpose. ..... and Dagoberto Vela Arvizo 2007 A qualitative stress analysis of a cross ...

  16. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  17. Normal human bone marrow and its variations in MRI

    International Nuclear Information System (INIS)

    Vahlensieck, M.; Schmidt, H.M.

    2000-01-01

    Physiology and age dependant changes of human bone marrow are described. The resulting normal distribution patterns of active and inactive bone marrow including the various contrasts on different MR-sequences are discussed. (orig.) [de

  18. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.

    Science.gov (United States)

    Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C

    2013-11-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. © 2013. Published by Elsevier Inc. All rights reserved.

  19. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆

    Science.gov (United States)

    Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.

    2013-01-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972

  20. Calcium isotope ratios in animal and human bone

    Science.gov (United States)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  1. Determination of Sr90 activity in human bones

    International Nuclear Information System (INIS)

    Mendonca, Anamelia Habib

    1970-01-01

    Several studies have been published in the literature on the extent and levels of radioactive contamination of food chains caused by fallout from nuclear weapon tests. According to UNSCEAR, these studies cover a great number of:-areas of the developed world, though large, areas of Asia, Africa and South-America are left aside with only, unsatisfactory information about the levels, of radioactive contamination. In 1968, UNSCEAR recommended that a survey on the contamination of biological materials such as human - bone by fission products and particularly Sr 90 should be encouraged on those areas where only fragmentary information was available. UNSCEAR recommendations call upon the fact that many individuals on such areas of the world have been exposed to Sr 90 contamination from birth to their adult area. Therefore, that group have an Sr 90 skeletal burden very much different from people exposed only at adult age. Based on these considerations, UNSCEAR recommendations called for Sr 90 analysis on human bones from different age groups. In Brazil, studies on the of Sr 90 in human bone are practically non-existent, except for the year of 1959. Following UNSCEAR recommendations, we decided to perform such a survey on Sr 90 levels in human bones. Samples were collected from individuals that died in Rio de Janeiro from accidents. These samples were firstly classified according to social level in very poor and poor groups. Samples were then classified in three age groups ranging 0-18, 18-30 and 30-40 years of age. Results show that levels found in the Brazilian age groups are close to the ones observed in Chile (1969), Argentina and Australia (1966-1968) and slightly, higher than -those observed in Venezuela, Senegal and Jamaica (1969). If one compares the results obtained for the North and South hemispheres respectively, one sees that there was a more pronounced decrease in the levels of Sr 90 content of the of some regions of South America. Our results show no

  2. Aging, human immunodeficiency virus, and bone health

    Directory of Open Access Journals (Sweden)

    Kim C Mansky

    2010-09-01

    Full Text Available Kim C ManskyDivision of Orthodontics, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USAAbstract: Highly active antiretroviral therapy (HAART has had a profound impact on improving the long-term prognosis for individuals infected with human immunodeficiency virus (HIV. HAART has been available for close to two decades, and now a significant number of patients with access to HAART are over the age of 50 years. Many clinical studies have indicated that HIV infection, as well as components of HAART, can increase the risk in these individuals to a variety of noninfectious complications, including a risk to bone health. There is a significant need for detailed mechanistic analysis of the aging, HIV-infected population regarding the risk of HIV infection and therapy in order to maintain bone health. Insights from basic mechanistic studies will help to shed light on the role of HIV infection and the components of HAART that impact bone health, and will help in identifying preventative countermeasures, particularly for individuals 50 years of age and older.Keywords: osteopenia, osteomalacia, osteoporosis, bisphosphonates, tenofovir, osteoimmunology

  3. Inhibition of radio cobalt uptake by human bone powder using Mg and Ni

    International Nuclear Information System (INIS)

    Abdel Fattah, A.T.A.; Mohamed, S.A.

    1992-01-01

    Human bone powder samples of 30 - 40 Μ in diameter were prepared from human bone femurs as fat free (FFB), protein free (PEB) or left untreated as a raw bone powder (RB). The uptake of 60 Co by these types of bone powder took the sequence : PFB > FFB> RB. Stable ions of magnesium and nickel exhibit an inhibition or competing effect on the uptake process of 60 Co. The competing effect did not disturb the uptake sequence. The competing effect of nickel was higher than magnesium

  4. Analysis of bone mineral density of human bones for strength ...

    Indian Academy of Sciences (India)

    The bone density (BMD) is a medical term normally referring to the amount of mineral matter per square centimetre of bones. Twenty-five patients (18 female and 7 male patients with a mean age of 71.3 years) undergoing both lumbar spine DXA scans and computed tomography imaging were evaluated to determine if HU ...

  5. A murine model of human myeloma bone disease

    NARCIS (Netherlands)

    Garrett, I.R.; Dallas, S.; Radl, J.; Mundy, G.R.

    1997-01-01

    Myeloma causes a devastating and unique form of osteolytic bone disease. Although osteoclast activation is responsible for bone destruction, the precise mechanisms by which myeloma cells increase osteoclast activity have not been defined. An animal model of human myeloma bone disease mould help in

  6. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus.

    Science.gov (United States)

    Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2016-01-01

    This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations. © 2015 Anatomical Society.

  7. Prediction of autosomal STR typing success in ancient and Second World War bone samples.

    Science.gov (United States)

    Zupanič Pajnič, Irena; Zupanc, Tomaž; Balažic, Jože; Geršak, Živa Miriam; Stojković, Oliver; Skadrić, Ivan; Črešnar, Matija

    2017-03-01

    Human-specific quantitative PCR (qPCR) has been developed for forensic use in the last 10 years and is the preferred DNA quantification technique since it is very accurate, sensitive, objective, time-effective and automatable. The amount of information that can be gleaned from a single quantification reaction using commercially available quantification kits has increased from the quantity of nuclear DNA to the amount of male DNA, presence of inhibitors and, most recently, to the degree of DNA degradation. In skeletal remains samples from disaster victims, missing persons and war conflict victims, the DNA is usually degraded. Therefore the new commercial qPCR kits able to assess the degree of degradation are potentially able to predict the success of downstream short tandem repeat (STR) typing. The goal of this study was to verify the quantification step using the PowerQuant kit with regard to its suitability as a screening method for autosomal STR typing success on ancient and Second World War (WWII) skeletal remains. We analysed 60 skeletons excavated from five archaeological sites and four WWII mass graves from Slovenia. The bones were cleaned, surface contamination was removed and the bones ground to a powder. Genomic DNA was obtained from 0.5g of bone powder after total demineralization. The DNA was purified using a Biorobot EZ1 device. Following PowerQuant quantification, DNA samples were subjected to autosomal STR amplification using the NGM kit. Up to 2.51ng DNA/g of powder were extracted. No inhibition was detected in any of bones analysed. 82% of the WWII bones gave full profiles while 73% of the ancient bones gave profiles not suitable for interpretation. Four bone extracts yielded no detectable amplification or zero quantification results and no profiles were obtained from any of them. Full or useful partial profiles were produced only from bone extracts where short autosomal (Auto) and long degradation (Deg) PowerQuant targets were detected. It is

  8. Engineering bone tissue from human embryonic stem cells

    OpenAIRE

    Marolt, Darja; Campos, Iván Marcos; Bhumiratana, Sarindr; Koren, Ana; Petridis, Petros; Zhang, Geping; Spitalnik, Patrice F.; Grayson, Warren L.; Vunjak-Novakovic, Gordana

    2012-01-01

    In extensive bone defects, tissue damage and hypoxia lead to cell death, resulting in slow and incomplete healing. Human embryonic stem cells (hESC) can give rise to all specialized lineages found in healthy bone and are therefore uniquely suited to aid regeneration of damaged bone. We show that the cultivation of hESC-derived mesenchymal progenitors on 3D osteoconductive scaffolds in bioreactors with medium perfusion leads to the formation of large and compact bone constructs. Notably, the i...

  9. Intraoperative bone and bone marrow sampling: a simple method for accurate measurement of uptake of radiopharmaceuticals in bone and bone marrow

    International Nuclear Information System (INIS)

    Oyen, W.J.G.; Buijs, W.C.A.M.; Kampen, A. van; Koenders, E.B.; Claessens, R.A.M.J.; Corstens, F.H.M.

    1993-01-01

    Accurate estimation of bone marrow uptake of radiopharmaceuticals is of crucial importance for accurate whole body dosimetry. In this study, a method for obtaining normal bone marrow and bone during routine surgery without inconvenience to volunteers is suggested and compared to an indirect method. In five volunteers (group 1), 4 MBq 111 In-labelled human polyclonal IgG ( 111 In-IgG) was administered 48h before placement of a total hip prosthesis. After resection of the femoral head and neck, bone marrow was aspirated from the medullary space with a biopsy needle. In five patients, suspected of having infectious disease (group 2), bone marrow uptake was calculated according to a well-accepted method using regions of interest over the lumbar spine, 48h after injection of 75 MBq 111 In-IgG. Bone marrow uptake in group 1 (4.5 ±1.3%D kg -1 ) was significantly lower than that in group 2 (8.5 ± 2.1%D kg -1 ) (P<0.01). Blood and plasma activity did not differ significantly for both groups. This method provides a system for directly and accurately measuring uptake and retention in normal bone marrow and bone of all radiopharmaceuticals at various time points. It is a safe and simple procedure without any discomfort to the patient. Since small amounts of activity are sufficient, the radiation dose to the patient is low. (author)

  10. Regulation of bone blood flow in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Boushel, Robert; Hellsten, Ylva

    2018-01-01

    of cyclooxygenase (COX) enzyme, thus prostaglandin (PG) synthesis on femoral bone marrow blood flow by positron emission tomography in healthy young men at rest and during one leg dynamic exercise. In an additional group of healthy men, the role of adenosine (ADO) in the regulation of BBF during exercise......The mechanisms that regulate bone blood flow (BBF) in humans are largely unknown. Animal studies suggest that nitric oxide (NO) could be involved and in the present study we investigated the effects of inhibition of nitric oxide synthase (NOS) alone and in combination with inhibition.......036), but did not affect BBF significantly during exercise (5.5±1.4 ml/100g/min, p=0.25). On the other hand, while combined NOS and COX inhibition did not cause any further reduction of blood flow at rest (0.6±0.2 ml/100g/min), the combined blockade reduced BBF during exercise by ~21%, to 5.0±1.8 ml/100g/min (p...

  11. Synchrotron radiation XRF microprobe study of human bone tumor slice

    International Nuclear Information System (INIS)

    Huang Yuying; Zhao Limin; Wang Zhouguang; Shao Hanru; Li Guangcheng; Wu Yingrong; He Wei; Lu Jianxin; He Rongguo

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described. Using the bovine liver as the standard reference, the minimum detection limit (MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe. The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated. The experimental result relation to the clinical medicine was also discussed. (author)

  12. Pathogenesis of age-related bone loss in humans.

    Science.gov (United States)

    Khosla, Sundeep

    2013-10-01

    Although data from rodent systems are extremely useful in providing insights into possible mechanisms of age-related bone loss, concepts evolving from animal models need to ultimately be tested in humans. This review provides an update on mechanisms of age-related bone loss in humans based on the author's knowledge of the field and focused literature reviews. Novel imaging, experimental models, biomarkers, and analytic techniques applied directly to human studies are providing new insights into the patterns of bone mass acquisition and loss as well as the role of sex steroids, in particular estrogen, on bone metabolism and bone loss with aging in women and men. These studies have identified the onset of trabecular bone loss at multiple sites that begins in young adulthood and remains unexplained, at least based on current paradigms of the mechanisms of bone loss. In addition, estrogen appears to be a major regulator of bone metabolism not only in women but also in men. Studies assessing mechanisms of estrogen action on bone in humans have identified effects of estrogen on RANKL expression by several different cell types in the bone microenvironment, a role for TNF-α and IL-1β in mediating effects of estrogen deficiency on bone, and possible regulation of the Wnt inhibitor, sclerostin, by estrogen. There have been considerable advances in our understanding of age-related bone loss in humans. However, there are also significant gaps in knowledge, particularly in defining cell autonomous changes in bone in human studies to test or validate concepts emerging from studies in rodents. Decision Editor: Luigi Ferrucci, MD, PhD.

  13. Colonic complications following human bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Paulino Martínez Hernández-Magro

    2015-01-01

    Full Text Available Background: Human bone marrow transplantation (BMT becomes an accepted treatment of leukemia, aplastic anemia, immunodeficiency syndromes, and hematologic malignancies. Colorectal surgeons must know how to determine and manage the main colonic complications. Objective: To review the clinical features, clinical and pathological staging of graft vs host disease (GVHD, and treatment of patients suffering with colonic complications of human bone marrow transplantation. Patients and methods: We have reviewed the records of all patients that received an allogeneic bone marrow transplant and were evaluated at our Colon and Rectal Surgery department due to gastrointestinal symptoms, between January 2007 and January 2012. The study was carried out in patients who developed colonic complications, all of them with clinical, histopathological or laboratory diagnosis. Results: The study group was constituted by 77 patients, 43 male and 34 female patients. We identified colonic complications in 30 patients (38.9%; five patients developed intestinal toxicity due to pretransplant chemotherapy (6.4%; graft vs. host disease was present in 16 patients (20%; 13 patients (16.8% developed acute colonic GVHD, and 3 (3.8% chronic GVHD. Infection was identified in 9 patients (11.6%. Conclusions: The three principal colonic complications are the chemotherapy toxicity, GVHD, and superinfection; the onset of symptoms could help to suspect the type of complication (0–20 day chemotherapy toxicity, 20 and more GVHD, and infection could appear in any time of transplantation. Resumo: Experiência: O transplante de medula óssea humana (MOH passou a ser um tratamento adotado para leucemia, anemia aplástica, síndromes de imunodeficiência e neoplasias hematológicas. Cirurgiões colorretais devem saber como determinar e tratar as principais complicações do cólon. Objetivo: Revisar as características clínicas, estadiamentos clínico e patológico da doença do enxerto

  14. Validating in vivo Raman spectroscopy of bone in human subjects

    Science.gov (United States)

    Esmonde-White, Francis W. L.; Morris, Michael D.

    2013-03-01

    Raman spectroscopy can non-destructively measure properties of bone related to mineral density, mineral composition, and collagen composition. Bone properties can be measured through the skin in animal and human subjects, but correlations between the transcutaneous and exposed bone measurements have only been reported for human cadavers. In this study, we examine human subjects to collect measurements transcutaneously, on surgically exposed bone, and on recovered bone fragments. This data will be used to demonstrate in vivo feasibility and to compare transcutaneous and exposed Raman spectroscopy of bone. A commercially available Raman spectrograph and optical probe operating at 785 nm excitation are used for the in vivo measurements. Requirements for applying Raman spectroscopy during a surgery are also discussed.

  15. Human bone ingrowth into a porous tantalum acetabular cup

    Directory of Open Access Journals (Sweden)

    Gregory N. Haidemenopoulos

    2017-11-01

    Full Text Available Porous Tantalum is increasingly used as a structural scaffold in orthopaedic applications. Information on the mechanisms of human bone ingrowth into trabecular metal implants is rather limited. In this work we have studied, qualitatively, human bone ingrowth into a retrieved porous tantalum monoblock acetabular cup using optical microscopy, scanning electron microscopy and energy dispersive X-ray analysis. According to the results and taking into account the short operational life (4 years of the implant, bone ingrowth on the acetabular cup took place in the first two-rows of porous tantalum cells to an estimated depth of 1.5 to 2 mm. The bone material, grown inside the first raw of cells, had almost identical composition with the attached bone on the cup surface, as verified by the same Ca:P ratio. Bone ingrowth has been a gradual process starting with Ca deposition on the tantalum struts, followed by bone formation into the tantalum cells, with gradual densification of the bone tissue into hydroxyapatite. A critical step in this process has been the attachment of bone material to the tantalum struts following the topology of the porous tantalum scaffold. These results provide insight to the human bone ingrowth process into porous tantalum implants.

  16. Inca - interparietal bones in neurocranium of human skulls in central India.

    Science.gov (United States)

    Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  17. Inca - interparietal bones in neurocranium of human skulls in central India

    Directory of Open Access Journals (Sweden)

    R R Marathe

    2010-01-01

    Full Text Available Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. Objectives: To find the incidence of Inca variants in Central India. Materials and Methods: In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Results: Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%. The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. Conclusions: This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  18. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.

    Science.gov (United States)

    Prisby, Rhonda D

    2014-07-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (pnecrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Trace aluminium determination and sampling problems of archeological bone employing destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.; Recker, R.R.; Leffler, J.A.; Teitelbaum, S.

    1978-01-01

    A destructive neutron activation analysis procedure was developed for determining trace aluminium content in bone. The method is based on a carefully planned sample preparation, irradiation at a neutron flux for 3.1x10 11 nxcm -2 xs -1 for 5 minutes, and chemical separation based on ion exchange. It was found that bone samples soaked in aluminium containing soil gave highly elevated aluminium values as a result of the aluminium adsorption into the bone matrix. The maximum aluminium content values for prehistoric bones are larger than those of modern bones and comparable to aluminium levels present in bone from renal patients. (T.G.)

  20. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    Science.gov (United States)

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  1. Spatial orientation in bone samples and Young's modulus

    NARCIS (Netherlands)

    Geraets, W.G.M.; van Ruijven, L.J.; Verheij, H.G.C.; van der Stelt, P.F.; van Eijden, T.M.G.J.

    2008-01-01

    Bone mass is the most important determinant of the mechanical strength of bones, and spatial structure is the second. In general, the spatial structure and mechanical properties of bones such as the breaking strength are direction dependent. The mean intercept length (MIL) and line frequency

  2. The Role od Bone Marrow Aspirate and Trephine Samples in ...

    African Journals Online (AJOL)

    Other disorders diagnosed after bone marrow examination include myelodysplastic syndrome (MDS), aplastic anaemia, megaloblastic anaemia and myelofibrosis. Only 8.75% of these patients had a normal bone marrow. Conclusions: This study has demonstrated the complexity of using bone marrow examination in ...

  3. Mechanical properties of human bone-tendon-bone grafts preserved by different methods and radiation sterilised

    International Nuclear Information System (INIS)

    Kaminski, A.; Gut, G.

    2008-01-01

    Full text: Patellar tendon auto and allografts are commonly used in orthopaedic surgery for reconstruction of the anterior crucial ligaments (ACL). Autografts are mainly used for primary reconstruction, while allografts are useful for revision surgery. To avoid the risk of infection diseases transmission allografts should be radiation-sterilised. As radiation-sterilisation is supposed to decrease the mechanical strength of tendon tissue, it is important to establish methods of allografts preservation and sterilisation resulting in their best quality and safety. Therefore, the purpose of the study was to compare the tensile strength of the central one third of human patellar tendon (as used for ACL reconstruction), preserved by different methods (deep fresh freezing, lyophilisation) and subsequently radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. Bone-tendon-bone grafts were prepared from cadaveric human patella tendon with both patellar and tibial attachments. BTB grafts were preserved by deep freezing, glicerolisation or lyophilisation and radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. To estimate mechanical properties all samples were subjected to tensile tests to failure using Instron system. Before these tests all lyophilised grafts were rehydrated. We found decrease of tensile strength of irradiated grafts compared to non-irradiated controls. Obtained results of the mechanical testing of studied grafts indicate their potential usefulness for clinical applications.(Author)

  4. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    Science.gov (United States)

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  5. Registration-based Bone Morphometry for Shape Analysis of the Bones of the Human Wrist

    Science.gov (United States)

    Joshi, Anand A.; Leahy, Richard M.; Badawi, Ramsey D.; Chaudhari, Abhijit J.

    2015-01-01

    We present a method that quantifies point-wise changes in surface morphology of the bones of the human wrist. The proposed method, referred to as Registration-based Bone Morphometry (RBM), consists of two steps: an atlas selection step and an atlas warping step. The atlas for individual wrist bones was selected based on the shortest l2 distance to the ensemble of wrist bones from a database of a healthy population of subjects. The selected atlas was then warped to the corresponding bones of individuals in the population using a non-linear registration method based on regularized l2 distance minimization. The displacement field thus calculated showed local differences in bone shape that then were used for the analysis of group differences. Our results indicate that RBM has potential to provide a standardized approach to shape analysis of bones of the human wrist. We demonstrate the performance of RBM for examining group differences in wrist bone shapes based on sex and between those of the right and left wrists in healthy individuals. We also present data to show the application of RBM for tracking bone erosion status in rheumatoid arthritis. PMID:26353369

  6. Thermal Conductivity of Human Bone in Cryoprobe Freezing as Related to Density.

    Science.gov (United States)

    Walker, Kyle E; Baldini, Todd; Lindeque, Bennie G

    2017-03-01

    Cryoprobes create localized cell destruction through freezing. Bone is resistant to temperature flow but is susceptible to freezing necrosis at warmer temperatures than tumor cells. Few studies have determined the thermal conductivity of human bone. No studies have examined conductivity as related to density. The study goal was to examine thermal conductivity in human bone while comparing differences between cancellous and cortical bone. An additional goal was to establish a relationship between bone density and thermal conductivity. Six knee joints from 5 cadavers were obtained. The epiphyseal region was sliced in half coronally prior to inserting an argon-circulating cryoprobe directed away from the joint line. Thermistor thermometers were placed perpendicularly at measured increments, and the freezing cycle was recorded until steady-state conditions were achieved. For 2 cortical samples, the probe was placed intramedullary in metaphyseal samples and measurements were performed radially from the central axis of each sample. Conductivity was calculated using Fournier's Law and then plotted against measured density of each sample. Across samples, density of cancellous bone ranged from 0.86 to 1.38 g/mL and average thermal conductivity ranged between 0.404 and 0.55 W/mK. Comparatively, cortical bone had a density of 1.70 to 1.86 g/mL and thermal conductivity of 0.0742 to 0.109 W/mK. A strong 2-degree polynomial correlation was seen (R 2 =0.8226, P<.001). Bone is highly resistant to temperature flow. This resistance varies and inversely correlates strongly with density. This information is clinically relevant to maximize tumor ablation while minimizing morbidity through unnecessary bone loss and damage to surrounding structures. [Orthopedics. 2017; 40(2):90-94.]. Copyright 2016, SLACK Incorporated.

  7. First forensic records of termite activity on non-fossilized human bones in Brazil

    Directory of Open Access Journals (Sweden)

    R. A. Queiroz

    Full Text Available Abstract The aim of this study was to describe the first records of termite activity on non-fossilized human bones in Brazil. The cases reported in this study resulted from forensic analysis of six human skeletons found in northeastern Brazil between 2012 and 2014. Traces of tunnels and nests commonly produced by termites were found on several human bone surfaces as well as the specimens and characteristic signs of osteophagic activity. In four cases, the species were identified: Amitermes amifer Silvestri, 1901, Nasutitermes corniger (Motschulsky, 1855 (on two skeletons, and Microcerotermes indistinctus Mathews, 1977. In two other cases, the activity of termites on bone surfaces was evidenced by remains of nests and tunnels produced by these insects. At least in the samples of human remains available for this report, the number of termites collected was greater on bones found during autumn, the rainy season in the Northeast of Brazil. The human bones examined showed termites like insects with lots of strength at bone degradation, capable of continuing the process of decomposition of human remains even in completely skeletonized bodies.

  8. INAA of cortical and trabecular bone samples from animals

    International Nuclear Information System (INIS)

    Takata, M.K.; Saiki, M.

    2004-01-01

    Instrumental neutron activation analysis (INAA) was applied to determine Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Sr and Zn in bovine and porcine rib bones. Precise results were obtained in analyses of freeze-dried cortical and trabecular bones separately, and also of whole bone ashes. Cortical tissues presented higher concentrations of Ba, Ca, Mg, Mn, Na, P, Sr and Zn than those obtained in trabecular ones. Comparisons were also made between the results obtained for bovine and porcine rib bones. (author)

  9. Expression profiling of microRNAs in human bone tissue from postmenopausal women.

    Science.gov (United States)

    De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia

    2018-01-01

    Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.

  10. Gene Expression Changes in Femoral Head Necrosis of Human Bone Tissue

    Directory of Open Access Journals (Sweden)

    Bernadett Balla

    2011-01-01

    Full Text Available Osteonecrosis of the femoral head (ONFH is the result of an interruption of the local circulation and the injury of vascular supply of bone. Multiple factors have been implicated in the development of the disease. However the mechanism of ischemia and necrosis in non-traumatic ONFH is not clear. The aim of our investigation was to identify genes that are differently expressed in ONFH vs. non-ONFH human bone and to describe the relationships between these genes using multivariate data analysis. Six bone tissue samples from ONFH male patients and 8 bone tissue samples from non-ONFH men were examined. The expression differences of selected 117 genes were analyzed by TaqMan probe-based quantitative real-time RT-PCR system. The significance test indicated marked differences in the expression of nine genes between ONFH and non-ONFH individuals. These altered genes code for collagen molecules, an extracellular matrix digesting metalloproteinase, a transcription factor, an adhesion molecule, and a growth factor. Canonical variates analysis demonstrated that ONFH and non-ONFH bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via canonical TGFB pathway as well as genes coding for extracellular matrix composing collagen type molecules. The markedly altered gene expression profile observed in the ONFH of human bone tissue may provide further insight into the pathogenetic process of osteonecrotic degeneration of bone.

  11. Is fatty acid composition of human bone marrow significant to bone health?

    Science.gov (United States)

    Pino, Ana María; Rodríguez, J Pablo

    2017-12-16

    The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Histomorphometric quantification of human pathological bones from synchrotron radiation 3D computed microtomography

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson

    2011-01-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a noninvasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, the output 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify pathological samples of human bone. Samples of human bones were cut into small blocks (8 mm x 8 mm x 10 mm) with a precision saw and then imaged. The computed microtomographies were obtained at SYRMEP (Synchrotron Radiation for MEdical Physics) beamline, at ELETTRA synchrotron radiation facility (Italy). The obtained 3D images yielded excellent resolution and details of intra-trabecular bone structures, including marrow present inside trabeculae. Histomorphometric quantification was compared to literature as well. (author)

  13. Early reversal cells in adult human bone remodeling

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Delaissé, Jean-Marie; Hinge, Maja

    2016-01-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter...... of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts....... Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone...

  14. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study

    DEFF Research Database (Denmark)

    Ojanen, X.; Tanska, P.; Malo, M. K.H.

    2017-01-01

    Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were charact......). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone....

  15. Sex assessment from carpals bones: discriminant function analysis in a contemporary Mexican sample.

    Science.gov (United States)

    Mastrangelo, Paola; De Luca, Stefano; Sánchez-Mejorada, Gabriela

    2011-06-15

    Sex assessment is one of the first essential steps in human identification, in both medico-legal cases and bio-archaeological contexts. Fragmentary human remains compromised by different types of burial or physical insults may frustrate the use of the traditional sex estimation methods, such as the analysis of the skull and pelvis. Currently, the application of discriminant functions to sex unidentified skeletal remains is steadily increasing. However, several studies have demonstrated that, due to variation in size and patterns of sexual dimorphism, discriminant functions are population-specific. In this study, in order to improve sex assessment from skeletal remains and to establish population-specific discriminant functions, the diagnostic values of the carpal bones were considered. A sample of 136 individuals (78 males, 58 females) of known sex and age was analyzed. They belong to a contemporary identified collection from the Laboratory of Physical Anthropology, Faculty of Medicine, UNAM (Universidad Nacional Autónoma de México, Mexico City). The age of the individuals ranged between 25 and 85 years. Between four and nine measurements of each carpal bone were taken. Independent t-tests confirm that all carpals are sexually dimorphic. Univariate measurements produce accuracy levels that range from 61.8% to 90.8%. Classification accuracies ranged between 81.3% and 92.3% in the multivariate stepwise discriminant analysis. In addition, intra- and inter-observer error tests were performed. These indicated that replication of measurements was satisfactory for the same observer over time and between observers. These results suggest that carpal bones can be used for assessing sex in both forensic and bio-archaeological identification procedures and that bone dimensions are population specific. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Minor and trace elements in human bones and teeth

    Energy Technology Data Exchange (ETDEWEB)

    Iyengar, G V; Tandon, L

    1999-07-01

    Chemical elements play a great role in the metabolism of bones and teeth. Some elements are beneficial (F at non toxic concentrations in bones and teeth, supplementation of Cu, Mn and Zn along with Ca to delay or prevent the onset of osteoporosis) and some others (chronic exposure to Pb even at moderate concentrations, and excessive exposures to F as in fluorosis situations) are detrimental for the normal functioning of the skeleton. Knowledge on the roles played by both groups of elements can be enhanced if reliable compositional picture is available for scrutiny. The present survey was undertaken to assess the literature status on chemical composition of bones and teeth, and revealed that much needs to be done in order to have tangible collection of meaningful data. In this context, there is a desperate need for harmonization (types of samples chosen, procedures adopted to process the specimens, and finally the determination of analytes) to generate comparable data. To begin with, it is necessary to develop a bioanalytical protocol that exemplifies the merits and demerits of analyzing bones and teeth. Identification of any particular type of bone as a representative sample for the whole skeleton appears to be a far cry. Even if such a representative segment of a particular bone is identified, the logistics related to medico-legal (autopsy) and anatomical (biopsy) parameters will prevail as decisive factors. For the sake of gaining a comprehensive insight into the distribution of various trace elements in different types of bones, it is necessary to carry out controlled investigations on different types of bones (and cortical and trabecular segments from the same sources) from the same cadaver under well defined sampling conditions. On the analytical side, development of hard tissue RMs for whole bone, as well as for cortical, trabecular and marrow segments separately, would be very helpful for future investigations. (author)

  17. Minor and trace elements in human bones and teeth

    International Nuclear Information System (INIS)

    Iyengar, G.V.; Tandon, L.

    1999-01-01

    Chemical elements play a great role in the metabolism of bones and teeth. Some elements are beneficial (F at non toxic concentrations in bones and teeth, supplementation of Cu, Mn and Zn along with Ca to delay or prevent the onset of osteoporosis) and some others (chronic exposure to Pb even at moderate concentrations, and excessive exposures to F as in fluorosis situations) are detrimental for the normal functioning of the skeleton. Knowledge on the roles played by both groups of elements can be enhanced if reliable compositional picture is available for scrutiny. The present survey was undertaken to assess the literature status on chemical composition of bones and teeth, and revealed that much needs to be done in order to have tangible collection of meaningful data. In this context, there is a desperate need for harmonization (types of samples chosen, procedures adopted to process the specimens, and finally the determination of analytes) to generate comparable data. To begin with, it is necessary to develop a bioanalytical protocol that exemplifies the merits and demerits of analyzing bones and teeth. Identification of any particular type of bone as a representative sample for the whole skeleton appears to be a far cry. Even if such a representative segment of a particular bone is identified, the logistics related to medico-legal (autopsy) and anatomical (biopsy) parameters will prevail as decisive factors. For the sake of gaining a comprehensive insight into the distribution of various trace elements in different types of bones, it is necessary to carry out controlled investigations on different types of bones (and cortical and trabecular segments from the same sources) from the same cadaver under well defined sampling conditions. On the analytical side, development of hard tissue RMs for whole bone, as well as for cortical, trabecular and marrow segments separately, would be very helpful for future investigations. (author)

  18. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  19. Autologous Pancreatic Islet Transplantation in Human Bone Marrow

    Science.gov (United States)

    Maffi, Paola; Balzano, Gianpaolo; Ponzoni, Maurilio; Nano, Rita; Sordi, Valeria; Melzi, Raffaella; Mercalli, Alessia; Scavini, Marina; Esposito, Antonio; Peccatori, Jacopo; Cantarelli, Elisa; Messina, Carlo; Bernardi, Massimo; Del Maschio, Alessandro; Staudacher, Carlo; Doglioni, Claudio; Ciceri, Fabio; Secchi, Antonio; Piemonti, Lorenzo

    2013-01-01

    The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being ideal. We recently have shown in mice that the bone marrow (BM) may be a valid alternative to the liver, and here we report a pilot study to test feasibility and safety of BM as a site for islet transplantation in humans. Four patients who developed diabetes after total pancreatectomy were candidates for the autologous transplantation of pancreatic islet. Because the patients had contraindications for intraportal infusion, islets were infused in the BM. In all recipients, islets engrafted successfully as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples analyzed during follow-up. Thus far, we have recorded no adverse events related to the infusion procedure or the presence of islets in the BM. Islet function was sustained for the maximum follow-up of 944 days. The encouraging results of this pilot study provide new perspectives in identifying alternative sites for islet infusion in patients with type 1 diabetes. Moreover, this is the first unequivocal example of successful engraftment of endocrine tissue in the BM in humans. PMID:23733196

  20. [Comparation on Haversian system between human and animal bones by imaging analysis].

    Science.gov (United States)

    Lu, Hui-Ling; Zheng, Jing; Yao, Ya-Nan; Chen, Sen; Wang, Hui-Pin; Chen, Li-Xian; Guo, Jing-Yuan

    2006-04-01

    To explore the differences in Haversian system between human and animal bones through imaging analysis and morphology description. Thirty-five slices grinding from human being as well as dog, pig, cow and sheep bones were observed to compare their structure, then were analysed with the researchful microscope. Plexiform bone or oeston band was not found in human bones; There were significant differences in the shape, size, location, density of Haversian system, between human and animal bones. The amount of Haversian lamella and diameter of central canal in human were the biggest; Significant differences in the central canal diameter and total area percentage between human and animal bones were shown by imaging analysis. (1) Plexiform bone and osteon band could be the exclusive index in human bone; (2) There were significant differences in the structure of Haversian system between human and animal bones; (3) The percentage of central canals total area was valuable in species identification through imaging analysis.

  1. Differentiating human versus non-human bone by exploring the nutrient foramen: implications for forensic anthropology.

    Science.gov (United States)

    Johnson, Vail; Beckett, Sophie; Márquez-Grant, Nicholas

    2017-11-01

    One of the roles of a forensic anthropologist is to assist medico-legal investigations in the identification of human skeletal remains. In some instances, only small fragments of bone may be present. In this study, a non-destructive novel technique is presented to distinguish between human and non-human long bones. This technique is based on the macroscopic and computed tomography (CT) analysis of nutrient foramina. The nutrient foramen of long bone diaphyses transmits the nutrient artery which provides much of the oxygen and nutrients to the bone. The nutrient foramen and its canal were analysed in six femora and humeri of human, sheep (Ovies aries) and pig (Sus scrofa) species. The location, position and direction of the nutrient foramina were measured macroscopically. The length of the canal, angle of the canal, circumference and area of the entrance of the foramen were measured from CT images. Macroscopic analysis revealed the femora nutrient foramina are more proximal, whereas humeri foramina are more distal. The human bones and sheep humerus conform to the perceived directionality, but the pig bones and sheep femur do not. Amongst the parameters measured in the CT analysis, the angle of the canal had a discriminatory power. This study shows the potential of this technique to be used independently or complementary to other methods in distinguishing between human and non-human bone in forensic anthropology.

  2. Distribution of radium and plutonium in human bone

    International Nuclear Information System (INIS)

    Schlenker, R.A.

    1985-01-01

    This review covers studies of the microdistribution of radium and plutonium in human bone, conducted at Argonne with emphasis on the alpha-spectrometric method of measurement. Alpha spectrometry offers high spatial resolution and is well suited to the measurement of radionuclide concentrations near bone surfaces. With these techniques surface deposit thicknesses have been measured to be about 1 μm thick for isotopes of lead, radium and the actinides, and volume deposits of 226 Ra have been found to be quite nonuniform near bone surfaces, leading to endosteal tissue dose rates that are higher than expected under the assumption of uniform volume concentration normally used in radiation protection calculations. With autoradiography, the bony septa of the mastoid air cell system have been found to be depleted in radium relative to the bone tissue surrounding them; this is expected to have a significant influence on the dosimetry of the mastoid epithelia. A combination of autoradiographic and morphometric measurements indicates that specific activities in the axial skeleton are higher than in the appendicular skeleton, primarily because the former has higher bone surface-to-volume ratios and higher bone surface concentrations of plutonium. 19 references, 14 figures, 6 tables

  3. Strontium-90 content of human bone collected in 1967

    International Nuclear Information System (INIS)

    Jeanmaire, L.; Patti, F.

    1969-01-01

    This report follows report CEA-R-3381 and presents the strontium 90 content of human bones collected in 1967 in the Paris area. The main trend is much the same as during 1966; contamination levels are falling down in infants up to 5 year old. Beyond this age, the values are the same or experience a slight increase. (authors) [fr

  4. Ancient pathogen DNA in human teeth and petrous bones

    DEFF Research Database (Denmark)

    Margaryan, Ashot; Hansen, Henrik B.; Rasmussen, Simon

    2018-01-01

    Recent ancient DNA (aDNA) studies of human pathogens have provided invaluable insights into their evolutionary history and prevalence in space and time. Most of these studies were based on DNA extracted from teeth or postcranial bones. In contrast, no pathogen DNA has been reported from the petro...

  5. Specific depletion of mature T lymphocytes from human bone marrow

    DEFF Research Database (Denmark)

    Geisler, C; Møller, J; Plesner, T

    1989-01-01

    An effective method for specific depletion of mature T lymphocytes from human bone marrow mononuclear cells (BMMC) with preservation of prethymic T cells and natural killer (NK) cells is presented. The BMMC were incubated with F101.01, a monoclonal antibody recognizing an epitope of the T...

  6. Immune Humanization of Immunodeficient Mice Using Diagnostic Bone Marrow Aspirates from Carcinoma Patients

    Science.gov (United States)

    Werner-Klein, Melanie; Proske, Judith; Werno, Christian; Schneider, Katharina; Hofmann, Hans-Stefan; Rack, Brigitte; Buchholz, Stefan; Ganzer, Roman; Blana, Andreas; Seelbach-Göbel, Birgit; Nitsche, Ulrich

    2014-01-01

    Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses. PMID:24830425

  7. Immune humanization of immunodeficient mice using diagnostic bone marrow aspirates from carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Melanie Werner-Klein

    Full Text Available Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null (NSG and HLA-I expressing NSG mice (NSG-HLA-A2/HHD comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses.

  8. Diagnostic dry bone histology in human paleopathology

    NARCIS (Netherlands)

    de Boer, H. H. Hans; van der Merwe, A. E. Lida

    2016-01-01

    Paleopathology is the study of trauma and disease as may be observed in ancient (human) remains. In contrast to its central role in current medical practice, microscopy plays a rather modest role in paleopathology. This is at least partially due to the differences between fresh and decomposed (i.e.,

  9. Fluorine determination in human and animal bones by particle-induced gamma-ray emission

    International Nuclear Information System (INIS)

    Sastri, Chaturvedula S.; Hoffmann, Peter; Ortner, Hugo M.; Iyengar, Venkatesh; Blondiaux, Gilbert; Tessier, Yves; Petri, Hermann; Aras, Namik K.; Zaichick, Vladimir

    2002-01-01

    Fluorine was determined in the iliac crest bones of patients and in ribs collected from postmortem investigations by particle-induced gamma-ray emission based on the 19 F(p,pγ) 19 F reaction, using 20/2.5 MeV protons. The results indicate that for 68% of the human samples the F concentration is in the range 500-1999 μg g -1 . For comparison purposes fluorine was also determined in some animal bones; in some animal tissues lateral profiles of fluorine were measured. (abstract)

  10. Archival Bone Marrow Samples: Suitable for Multiple Biomarker Analysis?

    DEFF Research Database (Denmark)

    Lund, Bendik; Najmi, A. Laeya; Wesolowska, Agata

    2015-01-01

    biopsies from 18 Danish and Norwegian childhood acute lymphoblastic leukemia patients were included and compared with corresponding blood samples. Samples were grouped according to the age of sample and whether WGA was performed or not. We found that measurements of DNA concentration after DNA extraction...

  11. Age variations in the properties of human tibial trabecular bone

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Danielsen, CC

    1997-01-01

    We tested in compression specimens of human proximal tibial trabecular bone from 31 normal donors aged from 16 to 83 years and determined the mechanical properties, density and mineral and collagen content. Young's modulus and ultimate stress were highest between 40 and 50 years, whereas ultimate...... strain and failure energy showed maxima at younger ages. These age-related variations (except for failure energy) were non-linear. Tissue density and mineral concentration were constant throughout life, whereas apparent density (the amount of bone) varied with ultimate stress. Collagen density (the...... amount of collagen) varied with failure energy. Collagen concentration was maximal at younger ages but varied little with age. Our results suggest that the decrease in mechanical properties of trabecular bone such as Young's modulus and ultimate stress is mainly a consequence of the loss of trabecular...

  12. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    Science.gov (United States)

    Andrade, E.; Solís, C.; Canto, C. E.; de Lucio, O. G.; Chavez, E.; Rocha, M. F.; Villanueva, O.; Torreblanca, C. A.

    2014-08-01

    Analysis of ancient human bones found in "El Cóporo", an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone's black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  13. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    Energy Technology Data Exchange (ETDEWEB)

    Antebi, Uri; Mathor, Monica B., E-mail: uri@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Guimaraes, Rodrigo P., E-mail: clinicaguimaraes@gmail.com [Santa Casa de Sao Paulo (FCM/SCSP), Sao Paulo, SP (Brazil). Faculdade de Ciencias Medicas

    2015-07-01

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  14. Effects of ionizing radiation on proteins in demineralized, lyophilized or frozen human bone

    International Nuclear Information System (INIS)

    Antebi, Uri; Mathor, Monica B.; Guimaraes, Rodrigo P.

    2015-01-01

    The aim is the study of the application of ionizing radiation (gamma and electron) as sterilizing agents at doses of 15 kGy, 25 kGy and 50 kGy, the demineralized bone tissue frozen and freeze-dried for use in transplants. Five human femoral diaphysis of different donors demineralized bone tissues were preserved as lyophilized or frozen at - 80 deg C. The samples were divided into non-irradiated groups (control) and irradiated by gamma rays or electron beam. The bone proteins were extracted and used to determine the concentrations of total protein, BMP 2 and 7. It was observed a decrease in total protein concentrations, and BMP 2 and 7. The decrease in total protein concentrations, as compared to respective control groups was significant in the lyophilized and frozen samples irradiated at a dose of 50 kGy gamma radiation and beam electrons with greater than 30% reduction. The significant decrease in the levels of BMP 2 and 7 were also observed in higher doses and especially by electron beam. The reductions in the concentrations of total protein and osteoinductive proteins (BMP 2 and 7), were related to the radiation dose, i.e., increase with higher doses of ionizing radiation type and the type of preservation of the bones. The largest reductions in concentrations were observed in bone irradiated by electron beam and at a dose of 50 kGy. But this type of radiation and this high dose are not usual practice for the sterilization of bone tissue. Keywords: demineralized bone tissue, ionizing radiation, Tissue Bank, BMP 2, BMP 7, bone proteins. (author)

  15. Fe and Cu stable isotopes in archeological human bones and their relationship to sex.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent; Herrscher, Estelle; Lamboux, Aline; Telouk, Philippe; Albarède, Francis

    2012-07-01

    Accurate sex assignment of ancient human remains usually relies on the availability of coxal bones or well-preserved DNA. Iron (Fe) and copper (Cu) stable isotope compositions ((56)Fe/(54)Fe and (65)Cu/(63)Cu, respectively) were recently measured in modern human blood, and an unexpected result was the discovery of a (56)Fe-depletion and a (65)Cu-enrichment in men's blood compared to women's blood. Bones, being pervasively irrigated by blood, are expected to retain the (56)Fe/(54)Fe and (65)Cu/(63)Cu signature of blood, which in turn is useful for determining the sex of ancient bones. Here, we report the (56)Fe/(54)Fe, (65)Cu/(63)Cu, and (66)Zn/(64)Zn ratios from a suite of well-preserved phalanxes (n = 43) belonging to individuals buried in the 17th and 18th centuries at the necropolis of Saint-Laurent de Grenoble, France, and for which the sex was independently estimated from pelvic bone morphology. The metals were purified from the bone matrix by liquid chromatography on ion exchange resin and the isotope compositions were measured by multiple-collector inductively coupled plasma mass spectrometry. The results show that, as expected from literature data on blood, male bone iron is depleted in (56)Fe and enriched in (65)Cu relative to female. No sex difference is found in the (66)Zn/(64)Zn ratios of bone. The concentration and isotopic data show no evidence of soil contamination. Four samples of five (77%) can be assigned their correct sex, a result comparable to sex assignment using Fe and Cu isotopes in blood (81%). Isotopic analysis of metals may therefore represent a valid method of sex assignment applicable to incomplete human remains. Copyright © 2012 Wiley Periodicals, Inc.

  16. In vivo x-ray fluorescence of bone lead in the study of human lead metabolism: Serum lead, whole blood lead, bone lead, and cumulative exposure

    International Nuclear Information System (INIS)

    Cake, K.M.; Chettle, D.R.; Webber, C.E.; Gordon, C.L.

    1995-01-01

    Traditionally, clinical studies of lead's effect on health have relied on blood lead levels to indicate lead exposure. However, this is unsatisfactory because blood lead levels have a half-life of approximately 5 weeks, and thus reflect recent exposure. Over 90% of the lead body burden is in bone, and it is thought to have a long residence time, thus implying that measurements of bone lead reflect cumulative exposure. So, measurements of bone lead are useful in understanding the long-term health effects of lead. Ahlgren reported the first noninvasive measurements of bone lead in humans, where γ-rays from 57 Co were used to excite the K series x-rays of lead. The lead detection system at McMaster University uses a 109 Cd source which is positioned at the center of the detector face (HPGe) and a near backscatter (∼160 degrees) geometry. This arrangement allows great flexibility, since one can sample lead in a range of different bone sites due to a robust normalization technique which eliminates the need to correct for bone geometry, thickness of overlying tissue, and other related factors. The effective radiation dose to an adult during an x-ray fluorescence bone lead measurement is extremely low, being 35 nSv. This paper addresses the issue of how bone, whole blood, and serum lead concentrations can be related in order to understand a person's lead exposure history

  17. Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Rudbeck, L.; Willerslev, E.

    2005-01-01

    sampled from the cemetery of Santa Lucia alle Malve, Matera, Italy. This site is of exceptional interest, because the samples have been assayed for IS measures of biochemical and physical preservation, and it is the only one identified in a study of more than 107 animal and 154 human bones from 43 sites......, both are difficult (if not impossible) to decontaminate. Furthermore, although assessed on bone samples, several of the specific biochemical and physical characteristics that describe overall sample preservation, levels of microbial attack and related increases in sample porosity directly correlate...

  18. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    Best Poster 5Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants AuthorsBabiker , H.; Ding M.; Overgaard S.InstitutionOrthopaedic Research Laboratory, Department of Orthopaedic Surgery, Odense University Hospital, Clinical Institute, University of Southern...... from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants...... with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: DBM; DBM/CB with ratio of 1/3; DBM/allograft with ratio of 1/3; or allograft (Gold standard), respectively. Standardised surgical procedure was used1. At sacrifice, 6 weeks after surgery, both distal femurs were harvested...

  19. Synchrotron Radiation and Energy Dispersive X-Ray Fluorescence Applications on Elemental Distribution in Human Hair and Bones

    International Nuclear Information System (INIS)

    Carvalho, M.L.; Marques, A.F.; Brito, J.

    2003-01-01

    This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 μg g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment

  20. Decision tree analysis as a supplementary tool to enhance histomorphological differentiation when distinguishing human from non-human cranial bone in both burnt and unburnt states: A feasibility study.

    Science.gov (United States)

    Simmons, T; Goodburn, B; Singhrao, S K

    2016-01-01

    This feasibility study was undertaken to describe and record the histological characteristics of burnt and unburnt cranial bone fragments from human and non-human bones. Reference series of fully mineralized, transverse sections of cranial bone, from all variables and specimen states, were prepared by manual cutting and semi-automated grinding and polishing methods. A photomicrograph catalogue reflecting differences in burnt and unburnt bone from human and non-humans was recorded and qualitative analysis was performed using an established classification system based on primary bone characteristics. The histomorphology associated with human and non-human samples was, for the main part, preserved following burning at high temperature. Clearly, fibro-lamellar complex tissue subtypes, such as plexiform or laminar primary bone, were only present in non-human bones. A decision tree analysis based on histological features provided a definitive identification key for distinguishing human from non-human bone, with an accuracy of 100%. The decision tree for samples where burning was unknown was 96% accurate, and multi-step classification to taxon was possible with 100% accuracy. The results of this feasibility study strongly suggest that histology remains a viable alternative technique if fragments of cranial bone require forensic examination in both burnt and unburnt states. The decision tree analysis may provide an additional but vital tool to enhance data interpretation. Further studies are needed to assess variation in histomorphology taking into account other cranial bones, ontogeny, species and burning conditions. © The Author(s) 2015.

  1. Effects of Recombinant Human Bone Morphogenetic Protein-2 on Vertical Bone Augmentation in a Canine Model.

    Science.gov (United States)

    Hsu, Yung-Ting; Al-Hezaimi, Khalid; Galindo-Moreno, Pablo; O'Valle, Francisco; Al-Rasheed, Abdulaziz; Wang, Hom-Lay

    2017-09-01

    Vertical bone augmentation (VBA) remains unpredictable and challenging for most clinicians. This study aims to compare hard tissue outcomes of VBA, with and without recombinant human bone morphogenetic protein (rhBMP)-2, under space-making titanium mesh in a canine model. Eleven male beagle dogs were used in the study. Experimental ridge defects were created to form atrophic ridges. VBA was performed via guided bone regeneration using titanium mesh and allografts. In experimental hemimandibles, rhBMP-2/absorbable collagen sponge was well mixed with allografts prior to procedures, whereas a control buffer was applied within controls. Dogs were euthanized after a 4-month healing period. Clinical and radiographic examinations were performed to assess ridge dimensional changes. In addition, specimens were used for microcomputed tomography (micro-CT) assessment and histologic analysis. Membrane exposure was found on five of 11 (45.5%) rhBMP-2-treated sites, whereas it was found on nine of 11 (81.8%) non-rhBMP-2-treated sites. Within 4 months of healing, rhBMP-2-treated sites showed better radiographic bone density, greater defect fill, and significantly more bone gain in ridge height (P 0.05). Under light microscope, predominant lamellar patterns were found in the specimen obtained from rhBMP-2 sites. With inherent limitations of the canine model and the concern of such a demanding surgical technique, current findings suggest that the presence of rhBMP-2 in a composite graft allows an increase of vertical gain, with formation of ectopic bone over the titanium mesh in comparison with non-rhBMP-2 sites.

  2. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  3. Effects of bone damage on creep behaviours of human vertebral trabeculae.

    Science.gov (United States)

    O'Callaghan, Paul; Szarko, Matthew; Wang, Yue; Luo, Jin

    2018-01-01

    A subgroup of patients suffering with vertebral fractures can develop progressive spinal deformities over time. The mechanism underlying such clinical observation, however, remains unknown. Previous studies suggested that creep deformation of the vertebral trabeculae may play a role. Using the acoustic emission (AE) technique, this study investigated effects of bone damage (modulus reduction) on creep behaviours of vertebral trabecular bone. Thirty-seven human vertebral trabeculae samples were randomly assigned into five groups (A to E). Bones underwent mechanical tests using similar experimental protocols but varied degree of bone damage was induced. Samples first underwent creep test (static compressive stress of 0.4MPa) for 30min, and then were loaded in compression to a specified strain level (0.4%, 1.0%, 1.5%, 2.5%, and 4% for group A to E, respectively) to induce different degrees of bone damage (0.4%, no damage control; 1.0%, yield strain; 1.5%, beyond yield strain, 2.5% and 4%, post-ultimate strains). Samples were creep loaded (0.4MPa) again for 30min. AE techniques were used to monitor bone damage. Bone damage increased significantly from group A to E (P30% of modulus reduction in group D and E. Before compressive loading, creep deformation was not different among the five groups and AE hits in creep test were rare. After compressive loading, creep deformation was significantly greater in group D and E than those in other groups (Pcreep test were significantly greater in group D and E than in group A, B, and C (Pcreep deformation may occur even when the vertebra was under physiological loads. The boosted creep deformation observed may be attributed to newly created trabecular microfractures. Findings provide a possible explanation as to why some vertebral fracture patients develop progressive spinal deformity over time. Copyright © 2017. Published by Elsevier Inc.

  4. Incorporation of Trace Elements in Ancient and Modern Human Bone: An X-Ray Absorption Spectroscopy Study

    Science.gov (United States)

    Pingitore, N. E.; Cruz-Jimenez, G.; Price, T. D.

    2001-12-01

    X-ray absorption spectroscopy (XAS) affords the opportunity to probe the atomic environment of trace elements in human bone. We are using XAS to investigate the mode(s) of incorporation of Sr, Zn, Pb, and Ba in both modern and ancient (and thus possibly altered) human and animal bone. Because burial and diagenesis may add trace elements to bone, we performed XAS analysis on samples of pristine contemporary and ancient, buried human and animal bone. We assume that deposition of these elements during burial occurs by processes distinct from those in vivo, and this will be reflected in their atomic environments. Archaeologists measure strontium in human and animal bone as a guide to diet. Carnivores show lower Sr/Ca ratios than their herbivore prey due to discrimination against Sr relative to Ca up the food chain. In an initial sample suite no difference was observed between modern and buried bone. Analysis of additional buried samples, using a more sensitive detector, revealed significant differences in the distance to the second and third neighbors of the Sr in some of the buried samples. Distances to the first neighbor, oxygen, were similar in all samples. Zinc is also used in paleo-diet studies. Initial x-ray absorption spectroscopy of a limited suite of bones did not reveal any differences between modern and buried samples. This may reflect the limited number of samples examined or the low levels of Zn in typical aqueous solutions in soils. Signals from barium and lead were too low to record useful XAS spectra. Additional samples will be studied for Zn, Ba, and Pb. We conducted our XAS experiments on beam lines 4-1 and 4-3 at the Stanford Synchrotron Radiation Laboratory. Data were collected in the fluorescence mode, using a Lytle detector and appropriate filter, and a solid state, 13-element Ge-detector.

  5. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone

    Directory of Open Access Journals (Sweden)

    Natalia Lanocha-Arendarczyk

    2016-01-01

    Full Text Available The aim of this study was to investigate the impact of environmental factors on the concentrations of vanadium (V, chromium (Cr, and calcium (Ca and to examine the synergistic or antagonistic relationships between these metals, in cartilage (C, cortical bone (CB, and spongy bone (SB samples obtained following hip joint surgery on patients with osteoarthritis in NW Poland. We found significantly higher concentrations of V and Cr in spongy bone in patients who consumed game meat and also those with prosthetic implants. Chromium levels were significantly lower in patients with kidney diseases. The greatest positive correlations were found between spongy bone V and (i the amount of consumed beer and (ii seafood diet. Correlation analysis also showed a significant correlation between Cr levels and seafood diet. To a certain extent these results indicate that the concentrations of V, Cr, and Ca in the human hip joint tissues are connected with occupational exposure, kidney diseases, diet containing game meat, sea food, beer, and the presence of implants. Furthermore, we noted new types of interactions in specific parts of the femoral head. Vanadium may contribute to the lower bone Ca levels, especially in the external parts (cartilage and cortical bone.

  6. [Comparison of fluoride concentrations in human, dog, fox and raccoon dog bones from northwestern Poland].

    Science.gov (United States)

    Palczewska-Komsa, Mirona

    2015-01-01

    Since the beginning of the XXth there has been a constant increase in fluoride (F-) emissions into the environment, mainly due to the development of industry, the fluoridation of drinking water, and the widespread use of toothpaste containing fluoride. All these factors have resulted in an intensive accumulation of F- in the bodies of vertebrates, mainly in their bones. It is therefore reasonable to estimate the F- concentration in humans and other long-lived mammals. Accordingly, ecotoxicologists worldwide have looked for mammalian species that may serve as good bioindicators of environmental fluoride pollution. In contrast to ungulates, long-lived domestic mammals and wild carnivores have rarely been used for this purpose (including the dog, fox and raccoon dog). The main aims of this study were to: 1) investigate F- concentrations in bones obtained from humans, dog, fox and raccoon dog from northwestern Poland, 2) perform intra- and inter-specific comparisons of F- concentrations in the studied mammalian bones against the background of environmental and living conditions, 3) examine the relationship between concentrations of F- in bones and the age or age category of the studied mammals. The study material comprised bones of the hip joint obtained from 36 patients who underwent hip replacement in Szczecin, 43 dogs from Szczecin veterinary clinics, 32 foxes and 18 raccoon dogs provided by hunters, with the whole test material consisting of 129 samples. The indications of F- (using potentiometry with Thermo Orion ion-selective electrodes) were performed in triplicate. The F- concentration was expressed on a dry weight basis. Interspecific analysis showed that the largest number of differences in the concentrations of F- were between the fox and raccoon, and then between the dog and fox, and then between the dog and the wild canids (foxes and raccoon dogs together). Close statistically significant differences were also found between the samples from humans and the

  7. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy.

    Science.gov (United States)

    Chikhani, Madelen; Wuhrer, Richard; Green, Hayley

    2018-03-30

    Raman spectroscopy has recently been investigated for use in the calculation of postmortem interval from skeletal material. The fluorescence generated by samples, which affects the interpretation of Raman data, is a major limitation. This study compares the effectiveness of two sample preparation techniques, chemical bleaching and scraping, in the reduction of fluorescence from bone samples during testing with Raman spectroscopy. Visual assessment of Raman spectra obtained at 1064 nm excitation following the preparation protocols indicates an overall reduction in fluorescence. Results demonstrate that scraping is more effective at resolving fluorescence than chemical bleaching. The scraping of skeletonized remains prior to Raman analysis is a less destructive method and allows for the preservation of a bone sample in a state closest to its original form, which is beneficial in forensic investigations. It is recommended that bone scraping supersedes chemical bleaching as the preferred method for sample preparation prior to Raman spectroscopy. © 2018 American Academy of Forensic Sciences.

  8. Heavy metals in human bones in different historical epochs.

    Science.gov (United States)

    Martínez-García, M J; Moreno, J M; Moreno-Clavel, J; Vergara, N; García-Sánchez, A; Guillamón, A; Portí, M; Moreno-Grau, S

    2005-09-15

    The concentration of the metals lead, copper, zinc, cadmium and iron was determined in bone remains belonging to 30 individuals buried in the Region of Cartagena dating from different historical periods and in eight persons who had died in recent times. The metals content with respect to lead, cadmium and copper was determined either by anodic stripping voltammetry or by atomic absorption spectroscopy on the basis of the concentrations present in the bone remains. In all cases, zinc and iron were quantified by means of atomic absorption spectroscopy. The lead concentrations found in the bone remains in our city are greater than those reported in the literature for other locations. This led to the consideration of the sources of these metals in our area, both the contribution from atmospheric aerosols as well as that from the soil in the area. Correlation analysis leads us to consider the presence of the studied metals in the analysed bone samples to be the consequence of analogous inputs, namely the inhalation of atmospheric aerosols and diverse contributions in the diet. The lowest values found in the studied bone remains correspond to the Neolithic period, with similar contents to present-day samples with respect to lead, copper, cadmium and iron. As regards the evolution over time of the concentrations of the metals under study, a clear increase in these is observed between the Neolithic period and the grouping made up of the Bronze Age, Roman domination and the Byzantine period. The trend lines used to classify the samples into 7 periods show that the maximum values of lead correspond to the Roman and Byzantine periods. For copper, this peak is found in the Byzantine Period and for iron, in the Islamic Period. Zinc shows an increasing tendency over the periods under study and cadmium is the only metal whose trend lines shows a decreasing slope.

  9. Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair

    Science.gov (United States)

    Weir, Michael D.; Xu, Hockin H.K.

    2010-01-01

    Due to its injectability and excellent osteoconductivity, calcium phosphate cement (CPC) is highly promising for orthopedic applications. However, a literature search revealed no report on human bone marrow mesenchymal stem cell (hBMSC) encapsulation in CPC for bone tissue engineering. The aim of this study was to encapsulate hBMSCs in alginate hydrogel beads and then incorporate them into CPC, CPC–chitosan and CPC–chitosan–fiber scaffolds. Chitosan and degradable fibers were used to mechanically reinforce the scaffolds. After 21 days, that the percentage of live cells and the cell density of hBMSCs inside CPC-based constructs matched those in alginate without CPC, indicating that the CPC setting reaction did not harm the hBMSCs. Alkaline phosphate activity increased by 8-fold after 14 days. Mineral staining, scanning electron microscopy and X-ray diffraction confirmed that apatitic mineral was deposited by the cells. The amount of hBMSC-synthesized mineral in CPC–chitosan–fiber matched that in CPC without chitosan and fibers. Hence, adding chitosan and fibers, which reinforced the CPC, did not compromise hBMSC osteodifferentiation and mineral synthesis. In conclusion, hBMSCs were encapsulated in CPC and CPC–chitosan–fiber scaffolds for the first time. The encapsulated cells remained viable, osteodifferentiated and synthesized bone minerals. These self-setting, hBMSC-encapsulating CPC-based constructs may be promising for bone tissue engineering applications. PMID:20451676

  10. Radiographic Comparison of Bovine Bone Substitute Alone versus Bovine Bone Substitute and Simvastatin for Human Maxillary Sinus Augmentation

    Directory of Open Access Journals (Sweden)

    Amir Ali Reza Rasouli Ghahroudi

    2018-01-01

    Full Text Available Objectives: The aim of this study was to compare the efficacy of bovine bone substitute (Compact Bone B. ® alone versus bovine bone substitute and simvastatin for human maxillary sinus augmentation.Materials and Methods: This study was conducted on 16 sinuses in eight patients. Radiographic assessments were done preoperatively (T0, immediately (T1 and at nine months after sinus grafting (T2. Alveolar bone height and density were assessed on cone beam computed tomography (CBCT scans using Planmeca Romexis™ Imaging Software 2.2.Results: The change in alveolar bone height and density between T0, T1 and T2 was significant in both groups. Alveolar bone height (h0, h1, h2 and vertical height of the grafted bone (g1, g2 in three lines (anterior, middle and posterior were not significantly different between groups. The grafted bone height shrinkage (% in the anterior, middle and posterior limits of the augmented area were not significantly different between groups. The existing alveolar and grafted bone density increased significantly in both groups between T1 and T2, except for the existing alveolar bone density in the control group. There were no statistically significant differences between the alveolar bone density values obtained in TI and T2 between groups, except for the existing alveolar bone density at T1.Conclusions: This study did not show any significant positive effect for simvastatin in maxillary sinus augmentation based on radiographic examination.

  11. Comparing different post-mortem human samples as DNA sources for downstream genotyping and identification.

    Science.gov (United States)

    Calacal, Gayvelline C; Apaga, Dame Loveliness T; Salvador, Jazelyn M; Jimenez, Joseph Andrew D; Lagat, Ludivino J; Villacorta, Renato Pio F; Lim, Maria Cecilia F; Fortun, Raquel D R; Datar, Francisco A; De Ungria, Maria Corazon A

    2015-11-01

    The capability of DNA laboratories to perform genotyping procedures from post-mortem remains, including those that had undergone putrefaction, continues to be a challenge in the Philippines, a country characterized by very humid and warm conditions all year round. These environmental conditions accelerate the decomposition of human remains that were recovered after a disaster and those that were left abandoned after a crime. When considerable tissue decomposition of human remains has taken place, there is no other option but to extract DNA from bone and/or teeth samples. Routinely, femur shafts are obtained from recovered bodies for human identification because the calcium matrix protects the DNA contained in the osteocytes. In the Philippines, there is difficulty in collecting femur samples after natural disasters or even human-made disasters, because these events are usually characterized by a large number of fatalities. Identification of casualties is further delayed by limitation in human and material resources. Hence, it is imperative to test other types of biological samples that are easier to collect, transport, process and store. We analyzed DNA that were obtained from body fluid, bone marrow, muscle tissue, clavicle, femur, metatarsal, patella, rib and vertebral samples from five recently deceased untreated male cadavers and seven male human remains that were embalmed, buried for ∼ 1 month and then exhumed. The bodies had undergone different environmental conditions and were in various stages of putrefaction. A DNA extraction method utilizing a detergent-washing step followed by an organic procedure was used. The utility of bone marrow and vitreous fluid including bone marrow and vitreous fluid that was transferred on FTA(®) cards and subjected to autosomal STR and Y-STR DNA typing were also evaluated. DNA yield was measured and the presence or absence of PCR inhibitors in DNA extracts was assessed using Plexor(®)HY. All samples were amplified using

  12. Micro-CT analyses of historical bone samples presenting with osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, C.; Pietschmann, P. [Medical University Vienna (MUV), Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Vienna (Austria); Dockner, M.; Weber, G.W. [University of Vienna, Department of Anthropology, Vienna (Austria); University of Vienna, Core Facility for Micro-Computed Tomography, Vienna (Austria); Pospischek, B.; Winter, E.; Patzak, B. [Museum of Natural History (NHM), Collection of Anatomical Pathology in the Madhouse Tower, Vienna (Austria); Pretterklieber, M. [Medical University of Vienna (MUV), Department of Applied Anatomy, Vienna (Austria)

    2015-10-15

    Osteomyelitis is an inflammation of the bone marrow mainly caused by bacteria such as Staphylococcus aureus. It typically affects long bones, e.g. femora, tibiae and humeri. Recently micro-computed tomography (μCT) techniques offer the opportunity to investigate bone micro-architecture in great detail. Since there is no information on long bone microstructure in osteomyelitis, we studied historic bone samples with osteomyelitis by μCT. We investigated 23 femora of 22 individuals suffering from osteomyelitis provided by the Collection of Anatomical Pathology, Museum of Natural History, Vienna (average age 44 ±19 years); 9 femora from body donors made available by the Department of Applied Anatomy, Medical University of Vienna (age range, 56-102 years) were studied as controls. Bone microstructure was assessed by μCT VISCOM X 8060 II with a minimal resolution of 18 μm. In the osteomyelitic femora, most prominent alterations were seen in the cortical compartment. In 71.4 % of the individuals with osteomyelitis, cortical porosity occurred. 57.1 % of the individuals showed cortical thinning. In 42.9 % trabecularisation of cortical bone was observed. Osteomyelitis is associated with severe alterations of cortical bone structure otherwise typically observed at old age such as cortical porosity and cortical thinning. (orig.)

  13. Subchondral bone density distribution in the human femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)

    2012-06-15

    This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)

  14. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  15. Recombinant human bone morphogenetic protein-2 in the treatment of bone fractures

    Directory of Open Access Journals (Sweden)

    Neil Ghodadra

    2008-09-01

    Full Text Available Neil Ghodadra, Kern SinghDepartment of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USAAbstract: Over one million fractures occur per year in the US and are associated with impaired healing increasing patient morbidity, stress, and economic costs. Despite improvements in surgical technique, internal fixation, and understanding of biologics, fracture healing is delayed or impaired in up to 4% of all fractures. Complications due to impaired fracture healing present therapeutic challenges to the orthopedic surgeon and often lead to chronic functional and psychological disability for the patient. As a result, it has become clinically desirable to augment mechanical fixation with biologic strategies in order to accelerate osteogenesis and promote successful arthrodesis. The discovery of bone morphogenic protein (BMP has been pivotal in understanding the biology of fracture healing and has been a source of intense clinical research as an adjunct to fracture treatment. Multiple in vitro and in vivo studies in animals have elucidated the complex biologic interactions between BMPs and cellular receptors and have convincingly demonstrated rhBMP-2 to be a safe, effective treatment option to enhance bone healing. Multiple clinical trials in trauma surgery have provided level 1 evidence for the use of rhBMP-2 as a safe and effective treatment of fractures. Human clinical trials have provided further insight into BMP-2 dosage, time course, carriers, and efficacy in fracture healing of tibial defects. These promising results have provided hope that a new biologic field of technology has emerged as a useful adjunct in the treatment of skeletal injuries and conditions.Keywords: bone morphogenic protein-2, bone fracture, bone healing

  16. Below the Callus Surface: Applying Paleohistological Techniques to Understand the Biology of Bone Healing in Skeletonized Human Remains.

    Science.gov (United States)

    Assis, Sandra; Keenleyside, Anne

    2016-01-01

    Bone trauma is a common occurrence in human skeletal remains. Macroscopic and imaging scrutiny is the approach most currently used to analyze and describe trauma. Nevertheless, this line of inquiry may not be sufficient to accurately identify the type of traumatic lesion and the associated degree of bone healing. To test the usefulness of histology in the examination of bone healing biology, we used an integrative approach that combines gross inspection and microscopy. Six bone samples belonging to 5 adult individuals with signs of bone trauma were collected from the Human Identified Skeletal Collection from the Museu Bocage (Lisbon, Portugal). Previous to sampling, the lesions were described according to their location, morphology, and healing status. After sampling, the bone specimens were prepared for plane light and polarized light analysis. The histological analysis was pivotal: (1) to differentiate between types of traumatic lesions; (2) to ascertain the posttraumatic interval, and (3) to diagnose other associated pathological conditions. The outer surface of a bone lesion may not give a complete picture of the biology of the tissue's response. Accordingly, microscopic analysis is essential to differentiate, characterize, and classify trauma signs. © 2016 S. Karger AG, Basel.

  17. Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone

    Science.gov (United States)

    Prisby, Rhonda D.

    2014-01-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721

  18. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    International Nuclear Information System (INIS)

    Andrade, E.; Solís, C.; Canto, C.E.; Lucio, O.G. de; Chavez, E.; Rocha, M.F.; Villanueva, O.; Torreblanca, C.A.

    2014-01-01

    Analysis of ancient human bones found in “El Cóporo”, an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14 C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14 C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone’s black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment

  19. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Solís, C.; Canto, C.E.; Lucio, O.G. de [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Chavez, E. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, 07738 México D.F. (Mexico); Rocha, M.F.; Villanueva, O.; Torreblanca, C.A. [Centro INAH Zacatecas, Miguel Auza No. 205, Col. Centro, Zacatecas/Zacatecas CP 98000 (Mexico)

    2014-08-01

    Analysis of ancient human bones found in “El Cóporo”, an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: {sup 14}C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The {sup 14}C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone’s black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  20. Neovascular niche for human myeloma cells in immunodeficient mouse bone.

    Directory of Open Access Journals (Sweden)

    Hirono Iriuchishima

    Full Text Available The interaction with bone marrow (BM plays a crucial role in pathophysiological features of multiple myeloma (MM, including cell proliferation, chemoresistance, and bone lesion progression. To characterize the MM-BM interactions, we utilized an in vivo experimental model for human MM in which a GFP-expressing human MM cell line is transplanted into NOG mice (the NOG-hMM model. Transplanted MM cells preferentially engrafted at the metaphyseal region of the BM endosteum and formed a complex with osteoblasts and osteoclasts. A subpopulation of MM cells expressed VE-cadherin after transplantation and formed endothelial-like structures in the BM. CD138(+ myeloma cells in the BM were reduced by p53-dependent apoptosis following administration of the nitrogen mustard derivative bendamustine to mice in the NOG-hMM model. Bendamustine maintained the osteoblast lining on the bone surface and protected extracellular matrix structures. Furthermore, bendamustine suppressed the growth of osteoclasts and mesenchymal cells in the NOG-hMM model. Since VE-cadherin(+ MM cells were chemoresistant, hypoxic, and HIF-2α-positive compared to the VE-cadherin(- population, VE-cadherin induction might depend on the oxygenation status. The NOG-hMM model described here is a useful system to analyze the dynamics of MM pathophysiology, interactions of MM cells with other cellular compartments, and the utility of novel anti-MM therapies.

  1. A histomorphometric and scanning electron microscopy study of human condylar cartilage and bone tissue changes in relation to age

    DEFF Research Database (Denmark)

    Paulsen, Hans Ulrik; Thomsen, J.S.; Hougen, Hans Petter

    1999-01-01

    To determine the possibility for adaptive growth in human condyles, quantifying the thickness of fibrocartilage and the constitution of cells with potential activity, the trabecular bone volume, and the structural parameter: marrow space star volume in a larger sample of human autopsy condyles....... EXPERIMENTAL SETTING AND DESIGN: A histomorphometric and scanning electron microscopic analysis of cartilage characteristics and bone remodelling activity. The Departments of Orthodontics and Cell Biology at Aarhus University, Denmark. An autopsy sample of condyles from 20 individuals, 18-31 years of age...

  2. Quantification of manganese in human hand bones: a feasibility study

    International Nuclear Information System (INIS)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E

    2008-01-01

    Manganese is both an essential element to human health and also toxic when humans are exposed to excessive levels, particularly by means of inhalation. Biological monitoring of manganese exposure is problematic. It is subject to homeostasis; levels in blood (or serum/plasma) reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive technique for measurement of manganese stored in bone, using in vivo neutron activation analysis. Following preliminary feasibility studies, the technique has been enhanced by two significant infrastructure advances. A specially designed irradiation facility serves to maximize the activation of manganese with respect to the dose of ionizing radiation. Secondly, an array of eight NaI(Tl) crystals provides a detection system with very close to 4π geometry. This feasibility study, using neutron activation analysis to measure manganese in the bones of the hand, takes two features into account. Firstly, there is considerable magnesium present in the bone and this produces a spectral interference with the manganese. The 26 Mg(n,γ) 27 Mg reaction produces γ-rays of 0.843 MeV from the decay of 27 Mg, which interfere with the 0.847 MeV γ-rays from the decay of 56 Mn, produced by the 55 Mn(n,γ) 56 Mn reaction. Secondly, this work provides estimates of the levels of manganese to be expected in referent subjects. A revised estimate has been made from the most recent literature to explore the potential of the technique as a suitable means of screening patients and people exposed to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. This report presents the enhancements to the neutron activation system, by which manganese can be measured, which resulted in a detection limit in the hand of human subjects of 1.6

  3. Quantification of manganese in human hand bones: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada)], E-mail: aslamib@mcmaster.ca

    2008-08-07

    Manganese is both an essential element to human health and also toxic when humans are exposed to excessive levels, particularly by means of inhalation. Biological monitoring of manganese exposure is problematic. It is subject to homeostasis; levels in blood (or serum/plasma) reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive technique for measurement of manganese stored in bone, using in vivo neutron activation analysis. Following preliminary feasibility studies, the technique has been enhanced by two significant infrastructure advances. A specially designed irradiation facility serves to maximize the activation of manganese with respect to the dose of ionizing radiation. Secondly, an array of eight NaI(Tl) crystals provides a detection system with very close to 4{pi} geometry. This feasibility study, using neutron activation analysis to measure manganese in the bones of the hand, takes two features into account. Firstly, there is considerable magnesium present in the bone and this produces a spectral interference with the manganese. The {sup 26}Mg(n,{gamma}){sup 27}Mg reaction produces {gamma}-rays of 0.843 MeV from the decay of {sup 27}Mg, which interfere with the 0.847 MeV {gamma}-rays from the decay of {sup 56}Mn, produced by the {sup 55}Mn(n,{gamma}){sup 56}Mn reaction. Secondly, this work provides estimates of the levels of manganese to be expected in referent subjects. A revised estimate has been made from the most recent literature to explore the potential of the technique as a suitable means of screening patients and people exposed to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. This report presents the enhancements to the neutron activation system, by which manganese can be measured, which resulted in a detection

  4. Bone sarcoma in humans induced by radium: A threshold response?

    International Nuclear Information System (INIS)

    Rowland, R.E.

    1996-01-01

    The radium 226 and radium 228 have induced malignancies in the skeleton (primarily bone sarcomas) of humans. They have also induced carcinomas in the paranasal sinuses and mastoid air cells. There is no evidence that any leukemias or any other solid cancers have been induced by internally deposited radium. This paper discuses a study conducted on the dial painter population. This study made a concerted effort to verify, for each of the measured radium cases, the published values of the skeletal dose and the initial intake of radium. These were derived from body content measurements made some 40 years after the radium intake. Corrections to the assumed radium retention function resulted in a considerable number of dose changes. These changes have changed the shape of the dose response function. It now appears that the induction of bone sarcomas is a threshold process

  5. An in vitro 3D bone metastasis model by using a human bone tissue culture and human sex-related cancer cells.

    Science.gov (United States)

    Salamanna, Francesca; Borsari, Veronica; Brogini, Silvia; Giavaresi, Gianluca; Parrilli, Annapaola; Cepollaro, Simona; Cadossi, Matteo; Martini, Lucia; Mazzotti, Antonio; Fini, Milena

    2016-11-22

    One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes.

  6. Phosphorus determination in bone samples by activation analysis using fast neutrons

    International Nuclear Information System (INIS)

    Madi Filho, T.; Cunha, I.I.L.

    1992-01-01

    In this report, the phosphorus determination in animal bone samples was made by means of the irradiation of samples using 14 MeV neutron generator (Van de Graaff accelerator). Induced radiation in irradiated material was measured using a NaI(Tl) detector. The method was tested in a IAEA certified standard, being obtained the values of 15,48% and 15,75%. The content of phosphorus was obtained by using two different calculating methods. Based on the experiments performed it was possible to establish a method of phosphorus analysis in bone using the Van de Graaff accelerator. (author)

  7. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study

    DEFF Research Database (Denmark)

    Petruskevicius, Juozas; Nielsen, Mette Strange; Kaalund, Søren

    2002-01-01

    We studied the effects of a newly marketed bone substitute, Osteoset, on bone healing in a tibial defect in humans. 20 patients undergoing an ACL (anterior cruciate ligament) reconstruction with bone-patella tendon-bone graft were block-randomized into 2 groups of 10 each. In the treatment group......, the tibial defect was filled manually with Osteoset pellets, in the control group the defect was left empty. CTs of the defect were taken on the first day after the operation, 6 weeks, 3 and 6 months postoperatively. We found about the same amount of bone in the defect in the Osteoset and control groups...... after 6 weeks, 3, and 6 months. In the control group, but not in the Osteoset group, the bone volume increased from 6 weeks to 3 months. The Osteoset pellets were almost resorbed after 6 weeks....

  8. Free Radicals Formation of Irradiated Lyophilized Can-Cellous Human and Bovine Bone

    International Nuclear Information System (INIS)

    Abbas, Basril; Sudiro, Sutjipto; Hilmy, Nazly

    2000-01-01

    Radiation sterilization of lyophilized human and bovine bone as allograft and xenograft have been produced and used in orthopaedic practice in Indonesia routinely. It is well known from radio biologic studies that one of the most pronounce effects of ionizing radiation on biologic species produced the free radicals that influence the physico-chemical as well as the mechanical properties of irradiated bone. The aim of our study is to investigate the free radicals formation of irradiated lyophilized cancellous triple A bone (Autolyzed Antigen-Extracted Allograft) produced by Batan Research Tissue Bank in Jakarta. The cancellous triple A were prepared according to AATB (American Association of Tissue Bank) method. Gamma Irradiations was done at doses of 10, 20 and 30 kGy with a dose rate of 7,5 kGy/h at room temperature (30 o C± 2 o C). Measurements of free radicals was done at 24 o C ±1 o C within 30 minutes after irradiational and measurement were continued up to 9 months of storage using a JES-REIX ESR Spectrophotometer (JEOL) with Mn exp. ++ standard. Parameters measured, were the effects of mechanical grinding, water immersion and irradiation dose on free radicals formation in the bone. Results show that the signal area of ESR spectra from irradiated bovine bone of 30 kGy was higher than those of human bone I.e. 1,4 x 10 exp. 7 dan 6,4 x 10 exp. 6 Au (arbitrary unit)/g samples respectively. The signal of ESR spectra increased linearly with increasing dose in the range of 10-30 kGy and it will reduce about 30% caused by water immersion. The ESR signal reduced sharply after 2 days and gradually decreased up to 14 days and then became constant up to 9 months of storage at room temperature. A certain method of crushing can produce free radicals. Key Words: free radical, irradiation, allograft, xenograft, mechanical-grinding

  9. Plutonium and uranium in human bones from areas surrounding the Semipalatinsk nuclear test site.

    Science.gov (United States)

    Yamamoto, Masayoshi; Hoshi, Masaharu; Sakaguchi, Aya; Shinohara, Kunihiko; Kurihara, Osamu; Apsalikov, Kazbek N; Gusev, Boris I

    2006-02-01

    To evaluate the present levels of 239,240Pu and U in residents living near the Semipalatinsk nuclear test site, more than 70 bone samples were obtained at autopsy. The subjects ranged in age from 30 to 86 years (mean 59.3+/-12.9). Most of the samples consisted of victims who died of various diseases. Plutonium and U were radiochemically separated and determined by alpha-ray spectrometry. The mean concentrations of 239,240Pu and 238U observed were 0.050+/-0.041 mBq/g-ash (vertebrae 71, long-bones 18) and 0.28+/-0.13 mBq/g-ash (22.8+/-10.6 microg U/kg-ash) (vertebrae 58, long bones 16), respectively. The present 239,240Pu levels were within the range found for human bone samples from other countries due solely to global fallout in the early 1980s. The average U concentration was close to the estimate (mean 22.5 microg U/kg-ash) for the UK, and about 10 times higher than those estimated for residents in New York City and Japan. By assuming that the average concentration of 239,240Pu in bone samples is the value at 45 years after instantaneous inhalation in 1955, the initial total intake and the effective dose for 45 years were estimated as 10 Bq and 0.2 mSv, respectively. The annual intake of total U (234,235,238U) and its effective dose for 60 years were estimated as 30 Bq for adult and 0.1 mSv, respectively, for chronic ingestion.

  10. 3D Synchrotron μ-x-ray fluorescence analysis on human bones

    International Nuclear Information System (INIS)

    Zoeger, N.; Wobrauschek, P.; Streli, C.; Chinea-Cano, E.; Wegrzynek, D.; Roschger, P.; Simon, R.; Staub, S.; Falkenberg, G.

    2004-01-01

    A comparison between μ-x-ray fluorescence tomography and confocal μ-x-ray fluorescence analysis (μ-XRF) will be presented. These techniques were used to study the three dimensional (3D) elemental distribution in human bone. Since bone shows very strong inhomogeneities in structure as well as in distribution of the chemical elements, two dimensional (2D) analysis (element mapping) of the samples always led to difficulties in interpreting the results and assigning elemental distributions to microscopic structures. Tomography scans in fluorescence and absorption mode have been carried out simultaneously at the fluo-topo beamline at ANKA, Karlsruhe, to determine the distribution of the elements over the depth of the previously prepared sample from human patella. A monochromatized x-ray beam (17 keV) from a bending magnet station focused by a compound refractive lens to a beamsize of 10 x 5 μm was used to perform the measurements. The transmitted beam signal measured with the SD detector was utilized to apply a simplified absorption correction to XRF tomographic images. Based on the XRF sinograms the elemental distribution within the object cross-section was reconstructed by means of filtered backprojection. The same section of human bone has been analyzed by confocal μ-XRF at HASYLAB, Hamburg, Germany beamline L. With this experiment two polycapillary half lenses were used; one for focusing the previously monochromatized primary x-ray beam onto the sample and the second half lens in front of a Si(Li) detector to get a small inspected area. By overlapping the two foci of the lenses a very well defined volume of investigation could be defined. Scanning the sample up- and downstream it was possible to determine the elemental distribution in depth of the sample. An absorption correction has been applied to get a corrected fluorescence image of the sample. Both methods showed consistent results and allowed a precise localization of the elements of interest. (author)

  11. Age variations in the properties of human tibial trabecular bone and cartilage

    DEFF Research Database (Denmark)

    Ding, Ming

    2000-01-01

    , such as apparent, apparent ash and collagen densities of human tibial trabecular bone have significant relationships with age. Tissue density and mineral concentration remain constant throughout life. Trabecular bone is tougher in the younger age, i.e. fracture requires more energy. Collagen density was the single......Initiated and motivated by clinical and scientific problems such as age-related bone fracture, prosthetic loosening, bone remodeling, and degenerative bone diseases, much significant research on the properties of trabecular bone has been carried out over the last two decades. This work has mainly...... focused on the central vertebral trabecular bone, while little is known about age-related changes in the properties of human peripheral (tibial) trabecular bone. Knowledge of the properties of peripheral (tibial) trabecular bone is of major importance for the understanding of degenerative diseases...

  12. Human bones obtained from routine joint replacement surgery as a tool for studies of plutonium, americium and {sup 90}Sr body-burden in general public

    Energy Technology Data Exchange (ETDEWEB)

    Mietelski, Jerzy W., E-mail: jerzy.mietelski@ifj.edu.pl [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); Golec, Edward B. [Traumatology and Orthopaedic Clinic, 5th Military Clinical Hospital and Polyclinic, Independent Public Healthcare Facility, Wroclawska 1-3, 30-901 Cracow (Poland); Orthopaedic Rehabilitation Department, Chair of Clinical Rehabilitation, Faculty of Motor of the Bronislaw Czech' s Academy of Physical Education, Cracow (Poland); Department of Physical Therapy Basics, Faculty of Physical Therapy, Administration College, Bielsko-Biala (Poland); Tomankiewicz, Ewa [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); Golec, Joanna [Orthopaedic Rehabilitation Department, Chair of Clinical Rehabilitation, Faculty of Motor of the Bronislaw Czech' s Academy of Physical Education, Cracow (Poland); Physical Therapy Department, Institute of Physical Therapy, Faculty of Heath Science, Jagiellonian University, Medical College, Cracow (Poland); Nowak, Sebastian [Traumatology and Orthopaedic Clinic, 5th Military Clinical Hospital and Polyclinic, Independent Public Healthcare Facility, Wroclawska 1-3, 30-901 Cracow (Poland); Orthopaedic Rehabilitation Department, Chair of Clinical Rehabilitation, Faculty of Motor of the Bronislaw Czech' s Academy of Physical Education, Cracow (Poland); Szczygiel, Elzbieta [Physical Therapy Department, Institute of Physical Therapy, Faculty of Heath Science, Jagiellonian University, Medical College, Cracow (Poland); Brudecki, Kamil [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland)

    2011-06-15

    The paper presents a new sampling method for studying in-body radioactive contamination by bone-seeking radionuclides such as {sup 90}Sr, {sup 239+240}Pu, {sup 238}Pu, {sup 241}Am and selected gamma-emitters, in human bones. The presented results were obtained for samples retrieved from routine surgeries, namely knee or hip joints replacements with implants, performed on individuals from Southern Poland. This allowed to collect representative sets of general public samples. The applied analytical radiochemical procedure for bone matrix is described in details. Due to low concentrations of {sup 238}Pu the ratio of Pu isotopes which might be used for Pu source identification is obtained only as upper limits other then global fallout (for example Chernobyl) origin of Pu. Calculated concentrations of radioisotopes are comparable to the existing data from post-mortem studies on human bones retrieved from autopsy or exhumations. Human bones removed during knee or hip joint surgery provide a simple and ethical way for obtaining samples for plutonium, americium and {sup 90}Sr in-body contamination studies in general public. - Highlights: > Surgery for joint replacement as novel sampling method for studying in-body radioactive contamination. > Proposed way of sampling is not causing ethic doubts. > It is a convenient way of collecting human bone samples from global population. > The applied analytical radiochemical procedure for bone matrix is described in details. > The opposite patient age correlations trends were found for 90Sr (negative) and Pu, Am (positive).

  13. Insights into the effects of tensile and compressive loadings on human femur bone.

    Science.gov (United States)

    Havaldar, Raviraj; Pilli, S C; Putti, B B

    2014-01-01

    Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.

  14. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  15. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Influence of Lead on the Interpretation of Bone Samples with Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Abdolhamed Shahedi

    2016-01-01

    Full Text Available This study is devoted to tracing and identifying the elements available in bone sample using Laser-Induced Breakdown Spectroscopy (LIBS. The bone samples were prepared from the thigh of laboratory rats, which consumed 325.29 g/mol lead acetate having 4 mM concentration in specified time duration. About 76 atomic lines have been analyzed and we found that the dominant elements are Ca I, Ca II, Mg I, Mg II, Fe I, and Fe II. Temperature curve and bar graph were drawn to compare bone elements of group B which consumed lead with normal group, group A, in the same laboratory conditions. Plasma parameters including plasma temperature and electron density were determined by considering Local Thermodynamic Equilibrium (LTE condition in the plasma. An inverse relationship has been detected between lead absorption and elements like Calcium and Magnesium absorption comparing elemental values for both the groups.

  17. Lead determinations in human bone by particle induced x-ray emission (PIXE) and graphite furnace atomic absorption spectrometry (GFAAS)

    Energy Technology Data Exchange (ETDEWEB)

    Deibel, M A; Savage, J M; Robertson, J D; Ehmann, W D [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Markesbery, W R [Kentucky Univ., Lexington, KY (United States)

    1995-08-01

    Chronic lead (Pb) intoxication has been linked to Alzheimer`s disease (AD). Lead, like many heavy elements, tends to accumulate in bone. Pixe is a powerful analytical tool which permits the determination of Pb at the {mu}g/g level without requiring sample digestion. GFAAS is one of the most sensitive methods for the determination of Pb and is capable of determining ng/g levels is solution. For bone analyses by GFAAS, sample dissolution and a matrix modifier are required. Rib bone samples were analyzed for Pb by PIXE and GFAAS. IAEA Animal Bone (H-5) was used as a secondary standard for Pb with both methods to ensure accuracy. The range of Pb concentrations in human rib bone was 1.4-11.5 {mu}/g for the trabecular surface by PIXE, 1.3-45 {mu}g/g for the cortical surface by PIXE, and 1.54-11.75 {mu}g/g for whole bone by GFAAS. No significant difference p.<0.05 was found for AD versus control for either surface or for whole bone. (author). 17 refs., 2 figs., 3 tabs.

  18. Lead determinations in human bone by particle induced x-ray emission (PIXE) and graphite furnace atomic absorption spectrometry (GFAAS)

    International Nuclear Information System (INIS)

    Deibel, M.A.; Savage, J.M.; Robertson, J.D.; Ehmann, W.D.

    1995-01-01

    Chronic lead (Pb) intoxication has been linked to Alzheimer's disease (AD). Lead, like many heavy elements, tends to accumulate in bone. Pixe is a powerful analytical tool which permits the determination of Pb at the μg/g level without requiring sample digestion. GFAAS is one of the most sensitive methods for the determination of Pb and is capable of determining ng/g levels is solution. For bone analyses by GFAAS, sample dissolution and a matrix modifier are required. Rib bone samples were analyzed for Pb by PIXE and GFAAS. IAEA Animal Bone (H-5) was used as a secondary standard for Pb with both methods to ensure accuracy. The range of Pb concentrations in human rib bone was 1.4-11.5 μ/g for the trabecular surface by PIXE, 1.3-45 μg/g for the cortical surface by PIXE, and 1.54-11.75 μg/g for whole bone by GFAAS. No significant difference (p.<0.05 was found for AD versus control for either surface or for whole bone. (author). 17 refs., 2 figs., 3 tabs

  19. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities.

    Science.gov (United States)

    Lang, Thomas; Van Loon, Jack J W A; Bloomfield, Susan; Vico, Laurence; Chopard, Angele; Rittweger, Joern; Kyparos, Antonios; Blottner, Dieter; Vuori, Ilkka; Gerzer, Rupert; Cavanagh, Peter R

    2017-01-01

    Without effective countermeasures, the musculoskeletal system is altered by the microgravity environment of long-duration spaceflight, resulting in atrophy of bone and muscle tissue, as well as in deficits in the function of cartilage, tendons, and vertebral disks. While inflight countermeasures implemented on the International Space Station have evidenced reduction of bone and muscle loss on low-Earth orbit missions of several months in length, important knowledge gaps must be addressed in order to develop effective strategies for managing human musculoskeletal health on exploration class missions well beyond Earth orbit. Analog environments, such as bed rest and/or isolation environments, may be employed in conjunction with large sample sizes to understand sex differences in countermeasure effectiveness, as well as interaction of exercise with pharmacologic, nutritional, immune system, sleep and psychological countermeasures. Studies of musculoskeletal biomechanics, involving both human subject and computer simulation studies, are essential to developing strategies to avoid bone fractures or other injuries to connective tissue during exercise and extravehicular activities. Animal models may be employed to understand effects of the space environment that cannot be modeled using human analog studies. These include studies of radiation effects on bone and muscle, unraveling the effects of genetics on bone and muscle loss, and characterizing the process of fracture healing in the mechanically unloaded and immuno-compromised spaceflight environment. In addition to setting the stage for evidence-based management of musculoskeletal health in long-duration space missions, the body of knowledge acquired in the process of addressing this array of scientific problems will lend insight into the understanding of terrestrial health conditions such as age-related osteoporosis and sarcopenia.

  20. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  1. Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity

    DEFF Research Database (Denmark)

    Saparin, Peter I.; Thomsen, Jesper Skovhus; Prohaska, Steffen

    2005-01-01

    3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify...

  2. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Directory of Open Access Journals (Sweden)

    Grażyna E Sroga

    Full Text Available To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation or ribose (ribosylation. Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women. More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples. Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar

  3. Association between in vivo bone formation and ex vivo migratory capacity of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Andersen, Rikke K.; Zaher, Walid; Larsen, Kenneth Hauberg

    2015-01-01

    INTRODUCTION: There is a clinical need for developing systemic transplantation protocols for use of human skeletal stem cells (also known bone marrow stromal stem cells) (hBMSC) in tissue regeneration. In systemic transplantation studies, only a limited number of hBMSC home to injured tissues...... populations derived from telomerized hBMSC (hBMSC-TERT) with variable ability to form heterotopic bone when implanted subcutaneously in immune deficient mice. In vitro transwell migration assay was used and the in vivo homing ability of transplanted hBMSC to bone fractures in mice was visualized...... suggesting that only a subpopulation of hBMSC possesses "homing" capacity. Thus, we tested the hypothesis that a subpopulation of hBMSC defined by ability to form heterotopic bone in vivo, is capable of homing to injured bone. METHODS: We tested ex vivo and in vivo homing capacity of a number of clonal cell...

  4. Can experimental data in humans verify the finite element-based bone remodeling algorithm?

    DEFF Research Database (Denmark)

    Wong, C.; Gehrchen, P.M.; Kiaer, T.

    2008-01-01

    STUDY DESIGN: A finite element analysis-based bone remodeling study in human was conducted in the lumbar spine operated on with pedicle screws. Bone remodeling results were compared to prospective experimental bone mineral content data of patients operated on with pedicle screws. OBJECTIVE......: The validity of 2 bone remodeling algorithms was evaluated by comparing against prospective bone mineral content measurements. Also, the potential stress shielding effect was examined using the 2 bone remodeling algorithms and the experimental bone mineral data. SUMMARY OF BACKGROUND DATA: In previous studies...... operated on with pedicle screws between L4 and L5. The stress shielding effect was also examined. The bone remodeling results were compared with prospective bone mineral content measurements of 4 patients. They were measured after surgery, 3-, 6- and 12-months postoperatively. RESULTS: After 1 year...

  5. Estimation of mineral concentration in bone samples by backscattering of beta-rays

    International Nuclear Information System (INIS)

    Meissner, J.; Marten, R.F.

    1978-01-01

    The method of using backscattered β-rays for the determination of density is used for the first time to measure the mineral concentration in specimens of bone and its usefulness as an aid in the diagnosis of osteopathies is investigated. The reliability of the technique is studied on the basis of methodical examinations employing model substances that are similar in composition to bone. For the geometry chosen for the measureing set-up, a calibration is carried out both for the determination of the effective atomic number and for the mineral concentration of measuring samples. The axial-symmetrical arrangement chose, permits the determination of the concentration to an accuracy of max. +-1% standard deviation. In agreement with computed deviations experiments confirm that with this set-up there is no dependence of the backscatter on sample density. After appropriate calibration, both mineral concentration and density can be measured in two suitable fixed positions of the beta source, sample and detector. The figure for mineral concentration calculated from the backscattering rates are compared with corresponding figure obtained with analytical chemical determinations. It can be seen that two methods have a high degree of agreement. The backscatter method seems to have the advantage of simplicity of the set-up that provides accurate results in thin specimens having a diameter of only 10 mm. With repect to measurements in bone, however, the method is limited to biopsy specimens obtained from compact bone. In such samples, however, both the absolute figure for mineral concentration can be determined and also its local variation in large parts of the skeleton examined. From the mineral concentration and density, the mineral content of the bone substance is computed; this provides differential diagnostic information on osteopathic conditions. (orig.) [de

  6. Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Martínez, I; Arsuaga, J L; Quam, R; Carretero, J M; Gracia, A; Rodríguez, L

    2008-01-01

    This study describes and compares two hyoid bones from the middle Pleistocene site of the Sima de los Huesos in the Sierra de Atapuerca (Spain). The Atapuerca SH hyoids are humanlike in both their morphology and dimensions, and they clearly differ from the hyoid bones of chimpanzees and Australopithecus afarensis. Their comparison with the Neandertal specimens Kebara 2 and SDR-034 makes it possible to begin to approach the question of temporal variation and sexual dimorphism in this bone in fossil humans. The results presented here show that the degree of metric and anatomical variation in the fossil sample was similar in magnitude and kind to living humans. Modern hyoid morphology was present by at least 530 kya and appears to represent a shared derived feature of the modern human and Neandertal evolutionary lineages inherited from their last common ancestor.

  7. Comparative kinetic analysis of89 Sr,60 Co and65 Zn Uptake by human bone powder

    International Nuclear Information System (INIS)

    Abdel-Fatah, A.T.A.; Essa, M.W.A.; Mohamed, S.A.; Molokhia, M.K.

    1990-01-01

    Human bone powder samples were prepared from recent femurs. The Bone particles range between 30 and 40 MU in diameter. One portion of this powder was prepared fat-free (FFB), the second portion as protein-free (PFB) and the last portion was left as raw bone powder-(RB). The sequence of uptake of 89 Sr by these types of bone powder is : FFB > RB > PFB, while that of 60 Co and 65 Zn is: PFB > FFB > RB. Kinetic analysis of the uptake curves of the 3 isotopes indicated that these processes proceed in 3 distinct steps; very fast initial, moderate intermediate and slow last step. The obtained rates of uptake indicated that : (1) the uptake by PEB is faster in its third step than the other types, (2) the most predominant step in case of 89 Sr and 60 Co is the third step (ion exchange step) while in case of 65 Zn it is the first step (physical adsorption), (3) defatenisation or deproteinisation, in general, inhances the uptake process

  8. Electron spin resonance dating of bones samples from recently excavated in Karnataka, India

    International Nuclear Information System (INIS)

    Ramamurthy, Ramya; Godhandabani, Velraj

    2011-01-01

    The study of radiation defects created in biomaterials, such as bone and teeth, can be used in dating with importance to paleontology and archaeology. A preliminary attempt has been made to date the bone samples from the archaeological site Gudnapur in Karnataka state, India. Each sample was divided into five sets which were given an artificial dose (AD) by using γ rays of 50 Gy, 300 Gy, 800 Gy and 1500 Gy and 3200 Gy. All the samples show similar EPR spectra having g-values 2.0026, 2.0025 and 2.0013 corresponding to CO 2 - orthorhombic and axial CO 2 - respectively. These signals have been used for the age estimation of the archaeological bone samples assuming the dose rate to be 1.12 mGy/a. The calculated ages of the samples are 199 ± 54 ka, 28 ± 23 ka and 225 ± 74 ka. The first and third correspond to the III interglacial stage whereas the second one corresponds to I glacial stage of the Pleistocene epoch respectively and in good agreement with age predicted by archaeological Department. (author)

  9. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Henk-Jan Prins

    2014-03-01

    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  10. Analysis of urine samples from metastatic bone cancer patients administered 153Sm-EDTMP

    International Nuclear Information System (INIS)

    Goeckeler, W.F.; Stoneburner, L.K.; Price, D.R.; Fordyce, W.A.

    1993-01-01

    153 Sm-EDTMP is currently undergoing clinical evaluation as a radiotherapeutic agent for the relief of pain associated with cancer metastatic to bone. These clinical studies have demonstrated biodistributions similar to those seen earlier in animals, namely, rapid clearance from blood, selective uptake in bone and in particular metastatic bone lesions. The radioactivity not deposited in bone is cleared through the kidneys into the urine. In this study, urine samples collected from 9 patients injected with 153 Sm-EDTMP underwent complexation analysis via Pharmacia SP-Sephadex C25 cation exchange chromatography. The results showed 96.9 ± 1.7% of the radioactivity in the urine to be present as a complex of 153 Sm. An HPLC method was developed and it was demonstrated that different complexes of 153 Sm could be separated. A non-radioactive analytical standard of the Sm-EDTMP chelate was synthesized, characterized and shown to have the same HPLC retention profile as the 153 -EDTMP drug product. HPLC analysis was performed on six urine samples and in each case a single radioactivity peak with an elution profile the same as that of a 153 Sm-EDTMP standard was observed. These results indicate that the 153 Sm-EDTMP chelate is excreted intact in the urine of patients. (Author)

  11. Human DPSCs fabricate vascularized woven bone tissue: A new tool in bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Paino, F.; Noce, M.L.; Giuliani, A.; de Rosa, A.; Mazzoni, F.; Laino, L.; Amler, Evžen; Papaccio, G.; Desiderio, V.; Tirino, V.

    2017-01-01

    Roč. 131, č. 8 (2017), s. 699-713 ISSN 0143-5221 Institutional support: RVO:68378041 Keywords : bone differentiation * bone regeneration * bone tissue engineering Subject RIV: FP - Other Medical Disciplines OBOR OECD: Orthopaedics Impact factor: 4.936, year: 2016

  12. Neutron activation analysis of calcium/phosphorus ratio in rib bone of healthy humans

    International Nuclear Information System (INIS)

    Tzaphlidou, Margaret; Zaichick, Vladimir

    2002-01-01

    The Ca/P ratio was estimated in intact rib bone samples from healthy humans, 37 women and 45 men, aged from 15 to 55 years using instrumental neutron activation analysis. No statistically significant differences (p>0.05) age- or sex-related differences in the Ca/P ratio were observed. The mean value (M±SD) for the investigated parameter for the whole group studied, 2.33±0.34, was within a very wide range of published data and close to the median value

  13. Trace element determination in human bones using the neutron activation analysis method

    International Nuclear Information System (INIS)

    Kramarski, Sila; Saiki, Mitiko; Borelli, Aurelio; Batalha, Joao R.F.

    1997-01-01

    This work presents the results obtained in the analysis of rib bone samples from normal human individuals by applying instrumental neutron activation analysis. In these analyses, the elements Br, Cl, Fe, K, Mg, Na, Rb, Sr and Zn were found at the ppm level and the elements Ca and P at the level of percentage. The precision and the of the results were evaluated by using biological reference materials NIST SRM 1577a Bovine Liver, IAEA A-11 Milk powder, NIES CRM 9 Sargasso e NIES CRM 10A Rice Flour Unpolished. (author). 5 refs., 3 tabs

  14. 3D Reconstruction of human bones based on dictionary learning.

    Science.gov (United States)

    Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin

    2017-11-01

    An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Timing of blunt force injuries in long bones: the effects of the environment, PMI length and human surrogate model.

    Science.gov (United States)

    Coelho, Luís; Cardoso, Hugo F V

    2013-12-10

    Timing of blunt force trauma in human bone is a critical forensic issue, but there is limited knowledge on how different environmental conditions, the duration of postmortem interval (PMI), different bone types and different animal models influence fracture morphology. This study aims at evaluating the influence of the type of postmortem environment and the duration of the postmortem period on fracture morphology, for distinguishing perimortem from postmortem fractures on different types of long bones from different species. Fresh limb segments from pig and goat were sequentially left to decompose, under 3 different environmental circumstances (surface, buried and submerged), resulting in sets with different PMI lengths (0, 28, 56, 84, 112, 140, 168 and 196 days), which were then fractured. Fractured bones (total=325; pig tibia=110; pig fibula=110; goat metatarsals=105) were classified according to the Fracture Freshness Index (FFI). Climatic data for the experiment location was collected. Statistical analysis included descriptive statistics, correlation analysis between FFI and PMI, Mann-Whitney U tests comparing FFI medians for different PMI's and linear regression analysis using PMI, pluviosity and temperature as predictors for FFI. Surface samples presented increases in FFI with increasing PMI, with positive correlations for all bone types. The same results were observed in submerged samples, except for pig tibia. Median FFI values for surface samples could distinguish bones with PMI=0 days from PMI≥56 days. Buried samples presented no significant correlation between FFI and PMI, and nonsignificant regression models. Regression analysis of surface and submerged samples suggested differences in FFI variation with PMI between bone types, although without statistical significance. Adding climatic data to surface regression models resulted in PMI no longer predicting FFI. When comparing different animal models, linear regressions suggested greater increases in

  16. Human multipotent mesenchymal stromal cells in the treatment of postoperative temporal bone defect: an animal model

    Czech Academy of Sciences Publication Activity Database

    Školoudík, L.; Chrobok, V.; Kalfert, D.; Kočí, Zuzana; Syková, Eva; Chumak, Tetyana; Popelář, Jiří; Syka, Josef; Laco, J.; Dědková, J.; Dayanithi, Govindan; Filip, S.

    2016-01-01

    Roč. 25, č. 7 (2016), s. 1405-1414 ISSN 0963-6897 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : Human bone marrow * Human mesenchymal stromal cells (hMSCs) * Middle ear surgery * Temporal bone Subject RIV: FP - Other Medical Disciplines Impact factor: 3.006, year: 2016

  17. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  18. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    International Nuclear Information System (INIS)

    Hu, Lingzhi; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr.

    2014-01-01

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2 ∗ = 1/T2 ∗ , was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2 ∗ of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2 ∗ of human skull was measured as 0.2–0.3 ms −1 depending on the specific region, which is more than ten times greater than the R2 ∗ of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone

  19. The impact of thickness of resorbable membrane of human origin on the ossification of bone defects: A pathohistologic study

    Directory of Open Access Journals (Sweden)

    Bubalo Marija

    2012-01-01

    Full Text Available Background/Aim. A wide range of resorbable and nonresorbable membranes have been investigated over the last two decades. The barrier membrane protects the defect from ingrowth of soft tissue cells and allows bone progenitor cells to develop bone within a blood clot that is formed beneath the barrier membrane. The membranes are applied to reconstruct small bony defect prior to implantation, to cover dehiscences and fenestrations around dental implants. The aim of this study was to evaluate the influence of human resorbable demineralized membrane (RHDM thickness on bone regeneration. Methods. The experiment, approved by Ethical Committee, was performed on 6 dogs and conducted into three phases. Bone defects were created in all the 6 dogs on the left side of the mandible, 8 weeks after extraction of second, third and fourth premolars. One defect was covered with RHDM 100 μ thick, one with RHDM 200 μ thick, and the third defect left empty (control defect. The histopathological analysis was done 2, 4 and 6 months after the surgery. In the third phase samples of bone tissue were taken and subjected to histopathological analysis. Results. In all the 6 dogs the defects treated with RHDM 200 μ thick showed higher level of bone regeneration in comparison with the defect treated with RHDM 100 μ thick and especially with empty defect. Conclusion. Our results demonstrated that the thicker membrane showed the least soft tissue ingrowths and promoted better bone formation at 6 months compared with a thinner one.

  20. Age-related variations in the microstructure of human tibial cancellous bone

    DEFF Research Database (Denmark)

    Ding, M.; Odgaard, A.; Linde, F.

    2002-01-01

    -related changes in the three-dimensional (3D) microstructure of human tibial cancellous bone. One hundred and sixty cylindrical cancellous bone specimens were produced from 40 normal proximal tibiae from 40 donors, aged 16-85 years. These specimens were micro-computed tomography (micro-CT) scanned......, and microstructural properties were determined. The specimens were then tested in compression to obtain Young's modulus. The degree of anisotropy, mean marrow space volume, and bone surface-to-volume ratio increased significantly with age. Bone volume fraction, mean trabecular volume, and bone surface density...

  1. Enhancement of bone formation in rabbits by recombinant human growth hormone

    International Nuclear Information System (INIS)

    Ehrnberg, A.; Brosjoe, O.; Laaftman, P.; Nilsson, O.; Stroemberg, L.

    1993-01-01

    We studied the effect of human recombinant growth hormone on diaphyseal bone in 40 adult rabbits. The diaphyseal periosteum of one femur in each animal was mechanically stimulated by a nylon cerclage band. The bands induced an increase in bone formation, bone mineral content, and maximum torque capacity of the diaphyseal bone at 1 and 2 months. Growth hormone enhanced the anabolic effect of the cerclage bands on bone metabolism, evidenced by a further increase in torsional strength of the femurs. (au) (32 refs.)

  2. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    Science.gov (United States)

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  3. Cross-sectional properties of the lower limb long bones in the Middle Pleistocene Sima de los Huesos sample (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Arsuaga, Juan Luis

    2018-04-01

    The recovery to date of three complete and five partial femora, seven complete tibiae, and four complete fibulae from the Atapuerca Sima de los Huesos site provides an opportunity to analyze the biomechanical cross-sectional properties in this Middle Pleistocene population and to compare them with those of other fossil hominins and recent modern humans. We have performed direct comparisons of the cross-sectional geometric parameters and reduced major axis (RMA) regression lines among different samples. We have determined that Atapuerca Sima de los Huesos (SH) fossils have significantly thicker cortices than those of recent modern humans for the three leg bones at all diaphyseal levels, except that of the femur at 35% of biomechanical length. The SH bones are similar to those of Neandertals and Middle Pleistocene humans and different from Homo sapiens in their diaphyseal cross-sectional shape and strength parameters. When standardized by estimated body size, both the SH and Neandertal leg bones have in general greater strength than those of H. sapiens from the early modern (EMH), Upper Paleolithic (UP), and recent populations (RH). The Sima de los Huesos human leg bones have, in general terms, an ancestral pattern similar to that of Pleistocene humans and differing from H. sapiens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of water treatment and sample granularity on radiation sensitivity and stability of EPR signals in X-ray irradiated bone samples

    International Nuclear Information System (INIS)

    Ciesielski, Bartlomiej; Krefft, Karolina; Penkowski, Michal; Kaminska, Joanna; Drogoszewska, Barbara

    2014-01-01

    The article describes effects of sample conditions during its irradiation and electron paramagnetic resonance (EPR) measurements on the background (BG) and dosimetric EPR signals in bone. Intensity of the BG signal increased up to two to three times after crushing of bone to sub-millimetre grains. Immersion of samples in water caused about 50 % drop in intensity of the BG component followed by its regrowth in 1-2 months. Irradiation of bone samples produced an axial dosimetric EPR signal (radiation-induced signal) attributed to hydroxyapatite component of bone. This signal was stable and was not affected by water. In samples irradiated in dry conditions, EPR signal similar to the native BG was also generated by radiation. In samples irradiated in wet conditions, this BG-like component was initially much smaller than in bone irradiated as dry, but increased in time, reaching similar levels as in dry-irradiated samples. It is concluded that accuracy of EPR dosimetry in bones can be improved, if calibration of the samples is done by their irradiations in wet conditions. (authors)

  5. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

    Science.gov (United States)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.

    2009-02-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.

  6. Anatomical variation of human thoracic rib in dry bone.

    Directory of Open Access Journals (Sweden)

    Dr. Nalini Konkani

    2017-12-01

    Full Text Available Introduction: The Ribs are essential structure of osseous thorax and provide information that aids in the interpretation of radiologic images. The purpose of this study to investigate variations in thoracic rib and its morphological & clinical importance. So, In present study attempted to find out additional intercostal spaces due to bifurcation of ribs, less intercostal space due to fusion of ribs, variation of the normal ribs like, gap in the rib, fusion of one rib to another at a shaft of rib. Congenital abnormalities of the ribs are usually asymptomatic, often discovered incidentally on chest X-ray. Effects of this neuroskeletal anomaly can include respiratory difficulties and neurological limitations.Material & Method: The study was carried out in Bone Store of Department of Anatomy, B. J. Medical College, Ahmedabad, Gujarat. Study was carried out on 500 human dried ribs. And the variations in the ribs are studied. We got variation in the human ribs and studied. Result : Variations were seen like out of 500 ribs, Bifid rib having two ends 9(1.8%, rib having bifid space 2(0.4%, fusion rib at the level of shaft 1(0.2%, fusion of first rib and second rib 1(0.2%,first rib having two ends 1(0.2%. Conclusion: Bifid rib is an anatomical variant where the sternal end of the rib is cleaved into two. So we can rule out mesodermal abnormalities, parenchymal lung disease, chest wall tumor or costal fracture.

  7. Bone Healing in Transverse Maxillary Defects with Different Surgical Procedures Using Anorganic Bovine Bone in Humans

    OpenAIRE

    Beltrán, Victor; Matthijs, Andries; Borie, Eduardo; Fuentes, Ramón; Valdivia-Gandur, Iván; Engelke, Wilfried

    2013-01-01

    The centripetal resorption of maxilla is a continuous process after tooth loss. For treatment of deficient bone sites, autologous bone grafts may be used, as an alternative, biomaterials can be applied which do not require intra- or extraoral donor sites. The present report we describe the use of anorganic bovine bone (ABB) based on three case reports under different modes: Membrane, rigid barrier and connective tissue graft. Clinical results show that under all conditions, sufficient hard ti...

  8. Comparison of bioengineered human bone construct from four sources of osteogenic cells.

    Science.gov (United States)

    Ng, Angela Min-Hwei; Saim, Aminuddin Bin; Tan, Kok-Keong; Tan, G H; Mokhtar, Sabarul Afian; Rose, Isa Mohamed; Othman, Fauziah; Idrus, Ruszymah Binti Haji

    2005-01-01

    Osteoprogenitor cells have been reported to be present in periosteum, cancellous and cortical bone, and bone marrow; but no attempt to identify the best cell source for bone tissue engineering has yet been reported. In this study, we aimed to investigate the growth and differentiation pattern of cells derived from these four sources in terms of cell doubling time and expression of osteoblast-specific markers in both monolayer cells and three-dimensional cell constructs in vitro. In parallel, human plasma derived-fibrin was evaluated for use as biomaterial when forming three-dimensional bone constructs. Our findings showed osteoprogenitor cells derived from periosteum to be most proliferative followed by cortical bone, cancellous bone, and then bone marrow aspirate. Bone-forming activity was observed in constructs formed with cells derived from periosteum, whereas calcium deposition was seen throughout the constructs formed with cells derived from cancellous and cortical bones. Although no mineralization activity was seen in constructs formed with osteoprogenitor cells derived from bone marrow, well-organized lacunae as would appear in the early phase of bone reconstruction were noted. Scanning electron microscopy evaluation showed cell proliferation throughout the fibrin matrix, suggesting the possible application of human fibrin as the bioengineered tissue scaffold at non-load-bearing sites.

  9. Assessment of bone biopsy needles for sample size, specimen quality and ease of use

    International Nuclear Information System (INIS)

    Roberts, C.C.; Liu, P.T.; Morrison, W.B.; Leslie, K.O.; Carrino, J.A.; Lozevski, J.L.

    2005-01-01

    To assess whether there are significant differences in ease of use and quality of samples among several bone biopsy needles currently available. Eight commonly used, commercially available bone biopsy needles of different gauges were evaluated. Each needle was used to obtain five consecutive samples from a lamb lumbar pedicle. Subjective assessment of ease of needle use, ease of sample removal from the needle and sample quality, before and after fixation, was graded on a 5-point scale. The number of attempts necessary to reach a 1 cm depth was recorded. Each biopsy specimen was measured in the gross state and after fixation. The RADI Bonopty 15 g and Kendall Monoject J-type 11 g needles were rated the easiest to use, while the Parallax Core-Assure 11 g and the Bard Ostycut 16 g were rated the most difficult. Parallax Core-Assure and Kendall Monoject needles had the highest quality specimen in the gross state; Cook Elson/Ackerman 14 g and Bard Ostycut 16 g needles yielded the lowest. The MD Tech without Trap-Lok 11 g needle had the highest quality core after fixation, while the Bard Ostycut 16 g had the lowest. There was a significant difference in pre-fixation sample length between needles (P<0.0001), despite acquiring all cores to a standard 1 cm depth. Core length and width decrease in size by an average of 28% and 42% after fixation. Bone biopsy needles vary significantly in performance. Detailed knowledge of the strengths and weaknesses of different needles is important to make an appropriate selection for each individual's practice. (orig.)

  10. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft...

  11. Strontium 90 content in bone samples of deer and domestic animals

    International Nuclear Information System (INIS)

    Kostadinov, K.; Pozhinarova, M.

    1993-01-01

    A comparative radioecological determination of 90 Sr content in leg bone samples of wild deer from Bulgaria (Veliko Tyrnovo), rain deer from Finland (Lapland) and domestic cows and pigs from Bulgaria have been carried out. The study includes four Finish rain deer, three of them 1-5 Y old, shut in 1991, and one - 13.5 Y old, shut in 1974, two Bulgarian deer, 5-6 Y old, shut in 1991, two cows and a pig killed in 1991. The samples have been prepared by a standard procedure. The fumic nitric acid method has been used for chemical separation of 90 Sr, and a low background beta plastic scintillation device - for counting, The results show that the contamination effect is better expressed in the wild animals due to their specific open air manner of life. The 90 Sr activities vary from 41,5 to 136.9 Bq/kg bone in the Bulgarian deer, from 219.5 to 386.1 Bq/kg bone in the three younger Finish deer, and from 1921.0 to 1967.9 Bq/kg bone in the oldest rain deer. The higher 90 Sr values in the samples of the Finish deer can be connected with the specific trophic chain of these animals and the important role in it of lichen. The quantity of 90 Sr in the investigated pig is 10-20 times lower than its content in the deer (2.1 - 4.4 Bq/kg bone). It is explained with the pig's age (10 months old) and the diet based on food grown about 5 years after Chernobyl. There is no significant difference in 90 Sr content of the cows' and deer's samples. This is due to their very similar zoological systems of eating and similar trophic chains (open pasture). The data obtained show a good reproducibility proved by the similar values of the radiochemical yields achieved (60-70%) in each of the analysis made. 1 tab., 1 refs

  12. Is the corticomedullary index valid to distinguish human from nonhuman bones: a multislice computed tomography study.

    Science.gov (United States)

    Rérolle, Camille; Saint-Martin, Pauline; Dedouit, Fabrice; Rousseau, Hervé; Telmon, Norbert

    2013-09-10

    The first step in the identification process of bone remains is to determine whether they are of human or nonhuman origin. This issue may arise when only a fragment of bone is available, as the species of origin is usually easily determined on a complete bone. The present study aims to assess the validity of a morphometric method used by French forensic anthropologists to determine the species of origin: the corticomedullary index (CMI), defined by the ratio of the diameter of the medullary cavity to the total diameter of the bone. We studied the constancy of the CMI from measurements made on computed tomography images (CT scans) of different human bones, and compared our measurements with reference values selected in the literature. The measurements obtained on CT scans at three different sites of 30 human femurs, 24 tibias, and 24 fibulas were compared between themselves and with the CMI reference values for humans, pigs, dogs and sheep. Our results differed significantly from these reference values, with three exceptions: the proximal quarter of the femur and mid-fibular measurements for the human CMI, and the proximal quarter of the tibia for the sheep CMI. Mid-tibial, mid-femoral, and mid-fibular measurements also differed significantly between themselves. Only 22.6% of CT scans of human bones were correctly identified as human. We concluded that the CMI is not an effective method for determining the human origin of bone remains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells

    LENUS (Irish Health Repository)

    Farrell, Eric

    2011-01-31

    Abstract Background Bone grafts are required to repair large bone defects after tumour resection or large trauma. The availability of patients\\' own bone tissue that can be used for these procedures is limited. Thus far bone tissue engineering has not lead to an implant which could be used as alternative in bone replacement surgery. This is mainly due to problems of vascularisation of the implanted tissues leading to core necrosis and implant failure. Recently it was discovered that embryonic stem cells can form bone via the endochondral pathway, thereby turning in-vitro created cartilage into bone in-vivo. In this study we investigated the potential of human adult mesenchymal stem cells to form bone via the endochondral pathway. Methods MSCs were cultured for 28 days in chondrogenic, osteogenic or control medium prior to implantation. To further optimise this process we induced mineralisation in the chondrogenic constructs before implantation by changing to osteogenic medium during the last 7 days of culture. Results After 8 weeks of subcutaneous implantation in mice, bone and bone marrow formation was observed in 8 of 9 constructs cultured in chondrogenic medium. No bone was observed in any samples cultured in osteogenic medium. Switch to osteogenic medium for 7 days prevented formation of bone in-vivo. Addition of β-glycerophosphate to chondrogenic medium during the last 7 days in culture induced mineralisation of the matrix and still enabled formation of bone and marrow in both human and rat MSC cultures. To determine whether bone was formed by the host or by the implanted tissue we used an immunocompetent transgenic rat model. Thereby we found that osteoblasts in the bone were almost entirely of host origin but the osteocytes are of both host and donor origin. Conclusions The preliminary data presented in this manuscript demonstrates that chondrogenic priming of MSCs leads to bone formation in vivo using both human and rat cells. Furthermore, addition of

  14. Testing sequential extraction methods for the analysis of multiple stable isotope systems from a bone sample

    Science.gov (United States)

    Sahlstedt, Elina; Arppe, Laura

    2017-04-01

    Stable isotope composition of bones, analysed either from the mineral phase (hydroxyapatite) or from the organic phase (mainly collagen) carry important climatological and ecological information and are therefore widely used in paleontological and archaeological research. For the analysis of the stable isotope compositions, both of the phases, hydroxyapatite and collagen, have their more or less well established separation and analytical techniques. Recent development in IRMS and wet chemical extraction methods have facilitated the analysis of very small bone fractions (500 μg or less starting material) for PO43-O isotope composition. However, the uniqueness and (pre-) historical value of each archaeological and paleontological finding lead to preciously little material available for stable isotope analyses, encouraging further development of microanalytical methods for the use of stable isotope analyses. Here we present the first results in developing extraction methods for combining collagen C- and N-isotope analyses to PO43-O-isotope analyses from a single bone sample fraction. We tested sequential extraction starting with dilute acid demineralization and collection of both collagen and PO43-fractions, followed by further purification step by H2O2 (PO43-fraction). First results show that bone sample separates as small as 2 mg may be analysed for their δ15N, δ13C and δ18OPO4 values. The method may be incorporated in detailed investigation of sequentially developing skeletal material such as teeth, potentially allowing for the investigation of interannual variability in climatological/environmental signals or investigation of the early life history of an individual.

  15. Marginal bone level in two Danish cross-sectional population samples in 1997-1998 and 2007-2008.

    Science.gov (United States)

    Bahrami, Golnosh; Vaeth, Michael; Wenzel, Ann; Isidor, Flemming

    2018-04-12

    The aim of this study was to compare the marginal bone level of two randomly selected population samples from 1997/1998 and 2007/2008, with special emphasis on the role of smoking habits and gender. Two cross-sectional randomly selected population samples [1997/1998 (N = 616) and 2007/2008 (N = 396)] were analysed with respect to the marginal bone level. The marginal bone level was measured in full-mouth intraoral radiographs. Information on smoking was gathered using questionnaires. Multiple regression analysis was used in order to adjust for correlating factors (gender, age, smoking habits and number of teeth). After adjusting for confounding factors, the population sample from 2007/2008 had on average a slightly, but statistically significantly, more reduced average marginal bone level (0.15 mm) than the population sample from 1997/1998. Men had more reduced marginal bone level than women (0.12 mm). Smokers in both population samples had more reduced marginal bone level than non-smokers (0.39 mm and 0.12 mm for 1997/1998; 0.65 mm and 0.16 mm for 2007/2008). In these populations, sampled 10 years apart, the 2007/2008 population sample had a slightly more reduced marginal bone level than the 1997/1998 population sample. Men had more reduced marginal bone level than women, and smoking is considered a major risk factor for a reduced marginal bone level.

  16. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Abbas Jafari

    2017-02-01

    Full Text Available Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  17. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  18. Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution

    Science.gov (United States)

    Dechow, Paul C.; Wang, Qian; Peterson, Jill

    2011-01-01

    Skeletal adaptations to reduced function are an important source of skeletal variation and may be indicative of environmental pressures that lead to evolutionary changes. Humans serve as a model animal to investigate the effects of loss of craniofacial function through edentulation. In the human maxilla, it is known that edentulation leads to significant changes in skeletal structure such as residual ridge resorption and loss of cortical thickness. However, little is known about changes in bone tissue structure and material properties, which are also important for understanding skeletal mechanics but are often ignored. The aims of this study were to determine cortical material properties in edentulous crania and to evaluate differences with dentate crania and thus examine the effects of loss of function on craniofacial structure. Cortical bone samples from fifteen edentulous human skulls were measured for thickness and density. Elastic properties and directions of maximum stiffness were determined by using ultrasonic techniques. These data were compared to those from dentate crania reported in a previous investigation. Cortical bone from all regions of the facial skeleton of edentulous individuals is thinner than in dentate skulls. Elastic and shear moduli, and density are similar or greater in the zygoma and cranial vault of edentulous individuals, while these properties are less in the maxilla. Most cortical bone, especially in edentulous maxillae, has reduced directional orientation. The loss of significant occlusal loads following edentulation may contribute to the change in material properties and the loss of orientation over time during the normal process of bone remodeling. These results suggest that area-specific cortical microstructural changes accompany bone resorption following edentulation. They also suggest that functional forces are important for maintaining bone mass throughout the craniofacial skeleton, even in areas such as the browridges, which

  19. Damage characterization on human femur bone by means of ultrasonics and acoustic emission

    International Nuclear Information System (INIS)

    Strantza, M; Boulpaep, F; Van Hemelrijck, D; Aggelis, D G; Polyzos, D; Louis, O

    2015-01-01

    Human bone tissue is characterized as a material with high brittleness. Due to this nature, visible signs of cracking are not easy to be detected before final failure. The main objective of this work is to investigate if the acoustic emission (AE) technique can offer valuable insight to the fracture process of human femur specimens as in other engineering materials characterization. This study describes the AE activity during fracture of whole femur bones under flexural load. Before fracture, broadband AE sensors were used in order to measure parameters like wave velocity dispersion and attenuation. Waveform parameters like the duration, rise time and average frequency, were also examined relatively to the propagation distance as a preparation for the AE monitoring during fracture. After the ultrasonic study, the samples were partly cast in concrete and fixed as cantilevers. A point load was applied on the femur head, which due to the test geometry resulted in a combination of two different patterns of fracture, bending and torsion. Two AE broadband sensors were placed in different points of the sample, one near the fixing end and the other near the femur head. Preliminary analysis shows that parameters like the number of acquired AE signals and their amplitude are well correlated with the load history. Furthermore, the parameters of rise time and frequency can differentiate the two fracture patterns. Additionally, AE allows the detection of the load at the onset of fracture from the micro-cracking events that occur at the early loading stages, allowing monitoring of the whole fracture process. Parameters that have been used extensively for monitoring and characterization of fracture modes of engineering materials seem to poses characterization power in the case of bone tissue monitoring as well. (paper)

  20. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    Science.gov (United States)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  1. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by mea...... that are of importance for the understanding of the etiology and pathogenesis of degenerative joint diseases, such as arthrosis....

  2. The penetration of cefazolin, erythromycin and methicillin into human bone tissue

    DEFF Research Database (Denmark)

    Sørensen, T S; Colding, H; Schroeder, E

    1978-01-01

    The penetration of cefazolin, erythromycin and methicillin into normal bone was studied in 20 patients undergoing surgery for fracture in the trochanteric region of the femur. The antibiotic concentrations were determined in serum, bone marrow, and cancellous and cortical bone. For all three...... antibiotics the bone marrow concentrations were of the same order of magnitude as the serum concentrations. In the eight patients receiving erythromycin, detectable concentrations were found in all the cancellous bone specimens (ranging from 1/7 to 1/2 of the serum concentration) and in three cortical bone...... specimens (ranging from 1/50 to 1/5 of the serum concentration). In the six patients receiving cefazolin, a detectable concentration was found in only one cancellous bone sample. In the six patients receiving methicillin, detectable concentrations were found only in the blood contaminated specimens of one...

  3. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  4. One Million Bones: Measuring the Effect of Human Rights Participation in the Social Work Classroom

    Science.gov (United States)

    McPherson, Jane; Cheatham, Leah P.

    2015-01-01

    This article describes the integration of human rights content and a national arts-activism initiative--One Million Bones--into a bachelor's-level macro practice class as a human rights teaching strategy. Two previously validated scales, the Human Rights Exposure (HRX) in Social Work and the Human Rights Engagement (HRE) in Social Work (McPherson…

  5. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Coulson-Thomas, Vivien J; Norton, Andrew L; Gesteira, Tarsis F; Cavalheiro, Renan P; Meneghetti, Maria Cecília Z; Martins, João R; Dixon, Ronald A; Nader, Helena B

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  6. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Directory of Open Access Journals (Sweden)

    Yvette M Coulson-Thomas

    Full Text Available Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs. Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS and hyaluronic acid (HA. In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  7. Human bone marrow mesenchymal stem cells for retinal vascular injury.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Jonas, Jost B; Xu, Liang; Zhang, Wei

    2017-09-01

    To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley

  8. Ancient pathogen DNA in human teeth and petrous bones

    DEFF Research Database (Denmark)

    Margaryan, Ashot; Hansen, Henrik B.; Rasmussen, Simon

    2018-01-01

    pestis. Based on shotgun sequencing data, four of these five plague victims showed clearly detectable levels of Y.pestis DNA in the teeth, whereas all the petrous bones failed to produce Y.pestis DNA above baseline levels. A broader comparative metagenomic analysis of teeth and petrous bones from 10...

  9. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans

    DEFF Research Database (Denmark)

    Nissen, Anne; Christensen, Mikkel; Knop, Filip K

    2014-01-01

    intestine. The hormone is known as an incretin hormone, but preclinical studies have suggested that it may also influence bone metabolism, showing both antiresorptive and anabolic effects as reflected by changes in biomechanical measures, microarchitecture, and activity of the bone cells in response to GIP...

  10. Liquid scintillation alpha counting and spectrometry and its application to bone and tissue samples

    International Nuclear Information System (INIS)

    McDowell, W.J.; Weiss, J.F.

    1976-01-01

    Three methods for determination of alpha-emitting nuclides using liquid scintillation counting are compared, and the pertinent literature is reviewed. Data showing the application of each method to the measurement of plutonium concentration in tissue and bone samples are presented. Counting with a commercial beta-liquid scintillation counter and an aqueous-phase-accepting scintillator is shown to be accurate only in cases where the alpha activity is high (several hundred counts/min or more), only gross alpha counting is desired, and beta-gamma emitters are known to be absent from the sample or present at low levels compared with the alpha activity. Counting with the same equipment and an aqueous immiscible scintillator containing an extractant for the nuclide of interest (extractive scintillator) is shown to allow better control of alpha peak shift due to quenching, a significant reduction of beta-gamma interference, and, usually, a low background. The desirability of using a multichannel pulse-height analyzer in the above two counting methods is stressed. The use of equipment and procedures designed for alpha liquid scintillation counting is shown to allow alpha spectrometry with an energy resolution capability of 200 to 300 keV full-peak-width-at-half-peak-height and a background of 0.3 to 1.0 counts/min, or as low as 0.01 counts/min if pulse-shape discrimination methods are used. Methods for preparing animal bone and tissue samples for assay are described

  11. A Comparative Analysis of Recombinant Human Bone Morphogenetic Protein-2 with a Demineralized Bone Matrix versus Iliac Crest Bone Graft for Secondary Alveolar Bone Grafts in Patients with Cleft Lip and Palate: Review of 501 Cases.

    Science.gov (United States)

    Hammoudeh, Jeffrey A; Fahradyan, Artur; Gould, Daniel J; Liang, Fan; Imahiyerobo, Thomas; Urbinelli, Leo; Nguyen, JoAnna T; Magee, William; Yen, Stephen; Urata, Mark M

    2017-08-01

    Alveolar cleft reconstruction using iliac crest bone graft is considered standard of care for children with complete cleft lip and palate at the time of mixed dentition. Harvesting bone may result in donor-site morbidity and additional operating time and length of hospitalization. Recombinant human bone morphogenetic protein (rhBMP)-2 with a demineralized bone matrix is an alternative bone source for alveolar cleft reconstruction. The authors investigated the outcomes of rhBMP-2/demineralized bone matrix versus iliac crest bone graft for alveolar cleft reconstruction by reviewing postoperative surgical complications and cleft closure. A retrospective chart review was conducted for 258 rhBMP-2/demineralized bone matrix procedures (mean follow-up, 2.9 years) and 243 iliac crest bone graft procedures (mean follow-up, 4.1 years) on 414 patients over a 12-year period. The authors compared complications, canine eruption, and alveolar cleft closure between the two groups. In the rhBMP-2/demineralized bone matrix group, one patient required prolonged intubation because of intraoperative airway swelling not thought to be caused by rhBMP-2, 36 reported facial swelling and one required outpatient steroids as treatment, and 12 had dehiscence; however, half of these complications resolved without intervention. Twenty-three of the 228 rhBMP-2/demineralized bone matrix patients and 28 of the 242 iliac crest bone graft patients required repeated surgery for alveolar cleft repair. Findings for canine tooth eruption into the cleft site through the graft were similar between the groups. The rhBMP-2/demineralized bone matrix appears to be an acceptable alternative for alveolar cleft repair. The authors found no increase in serious adverse events with the use of this material. Local complications, such as swelling and minor wound dehiscence, predominantly improved without intervention. Therapeutic, III.

  12. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    Science.gov (United States)

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.

  13. Automated processing of human bone marrow grafts for transplantation.

    Science.gov (United States)

    Zingsem, J; Zeiler, T; Zimmermanm, R; Weisbach, V; Mitschulat, H; Schmid, H; Beyer, J; Siegert, W; Eckstein, R

    1993-01-01

    Prior to purging or cryopreservation, we concentrated 21 bone marrow (BM) harvests using a modification of the 'grancollect-protocol' of the Fresenius AS 104 cell separator with the P1-Y set. Within 40-70 min, the initial marrow volume of 1,265 ml (+/- 537 ml) was processed two to three times. A mean of 47% (+/- 21%) of the initial mononuclear cells was recovered in a mean volume of 128 ml (+36 ml). The recovery of clonogenic cells, measured by CFU-GM assays, was 68% (+/- 47%). Red blood cells in the BM concentrates were reduced to 7% (+/- 4%) of the initial number. The procedure was efficient and yielded a BM cell fraction suitable for purging, cryopreservation and transplantation. At this time, 10 of the 21 patients whose BM was processed using this technique have been transplanted. Seven of these 10 patients have been grafted using the BM alone. Three of the 10 patients showed reduced cell viability and colony growth in the thawed BM samples, and therefore obtained BM and peripheral blood-derived stem cells. All transplanted patients showed an evaluable engraftment, achieving 1,000 granulocytes per microliter of peripheral blood in a mean of 18 days.

  14. MESOLITHIC HUMAN BONES FROM THE UPPER VOLGA BASIN : RADIOCARBON AND TRACE ELEMENTS

    NARCIS (Netherlands)

    Alexandrovskiy, A. L.; Alexandrovskaya, E. I.; Zhilin, M. I.; van der Plicht, J.

    2009-01-01

    Human bones from 3 Mesolithic sites in the Upper Volga basin were analyzed for trace elements, and dated by accelerator mass spectrometry (AMS). The radiocarbon dates of the bones correspond to the Mesolithic era. However, some dates differ from those obtained for the enclosing deposits and for the

  15. Establishing quiescence in human bone marrow stem cells leads to enhanced osteoblast marker expression

    DEFF Research Database (Denmark)

    Harkness, Linda; Rumman, Mohammad; Kassem, Moustapha

    Human bone marrow stromal (skeletal) stem cells (hBMSC) are cells that retain a multi-lineage differentiation potential and are thus increasingly being investigated for use in clinical applications. In vivo BMSC, which comprise approximately 0.1% of the bone marrow compartment, are thought to mai...

  16. Penetration of flomoxef into human maxillary and mandibular bones.

    Science.gov (United States)

    Igawa, H H; Sugihara, T; Yoshida, T; Kawashima, K; Ohura, T

    1995-09-01

    Penetration of flomoxef into the maxillary and mandibular bones was assayed clinically to provide data about its usefulness for the prevention of postoperative infection after maxillofacial surgery. Twenty-one patients undergoing maxillofacial surgery at our department were given flomoxef 2 g dissolved in 20 ml of physiological saline intravenously over 3 minutes during operation, and the serum, maxillary and mandibular concentrations were measured 1, 3, and 6 hours after injection by the band culture method using Escherichia coli 7437 as the indicator strain. The mean concentrations were 53.4, 16.1, and 2.6 micrograms/ml, respectively, in the serum, 17.6, 7.8, and 1.0 micrograms/g in maxillary bone, and 16.4, 4.2, and 0.9 micrograms/g in mandibular bone. The mean bone:serum ratios at 1, 3, and 6 hours were 33.0%, 48.2%, and 36.8%, respectively, for maxillary bone, and 30.7%, 26.2%, and 35.7% for mandibular bone. When compared with previously reported data on the bone:serum ratios in jaw of various other intravenous antibiotics, our results show that penetration of flomoxef into maxillary and mandibular bone is extremely high. As all the intramaxillary and intramandibular concentrations exceed its MIC80 values against clinical isolates of bacteria frequently isolated in cases of infection in the oral and maxillofacial region, it is apparent that one intravenous shot of flomoxef 2 g allows penetration of the drug into the maxillary and mandibular bones at effective concentrations. Flomoxef is therefore potentially useful for the prevention and treatment of infections in the oral and maxillofacial region, as it has excellent penetration into the maxillary and mandibular bones.

  17. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    Science.gov (United States)

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for

  18. Computed tomography evaluation of human mandibles with regard to layer thickness and bone density of the cortical bone

    International Nuclear Information System (INIS)

    Markwardt, Jutta; Meissner, H.; Weber, A.; Reitemeier, B.; Laniado, M.

    2013-01-01

    Application of function-restoring individual implants for the bridging of defects in mandibles with continuity separation requires a stable fixation with special use of the cortical bone stumps. Five section planes each of 100 computed tomographies of poly-traumatized patients' jaws were used for measuring the thickness of the cortical layer and the bone density of the mandible. The CT scans of 28 female and 72 male candidates aged between 12 and 86 years with different dentition of the mandible were available. The computed tomographic evaluations of human mandibles regarding the layer thickness of the cortical bone showed that the edge of the mandible in the area of the horizontal branch possesses the biggest layer thickness of the whole of the lower jaws. The highest medians of the cortical bone layer thickness were found in the area of the molars and premolars at the lower edge of the lower jaws in 6-o'clock position, in the area of the molars in the vestibular cranial 10-o'clock position and in the chin region lingual-caudal in the 4-o'clock position. The measurement of the bone density showed the highest values in the 8-o'clock position (vestibular-caudal) in the molar region in both males and females. The average values available of the bone density and the layer thickness of the cortical bone in the various regions of the lower jaw, taking into consideration age, gender and dentition, are an important aid in practice for determining a safe fixation point for implants in the area of the surface layer of the mandible by means of screws or similar fixation elements. (orig.)

  19. Tissue-engineered bone formation using human bone marrow stromal cells and novel β-tricalcium phosphate

    International Nuclear Information System (INIS)

    Liu Guangpeng; Zhao Li; Cui Lei; Liu Wei; Cao Yilin

    2007-01-01

    In this study we investigated not only the cellular proliferation and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) on the novel β-tricalcium phosphate (β-TCP) scaffolds in vitro but also bone formation by ectopic implantation in athymic mice in vivo. The interconnected porous β-TCP scaffolds with pores of 300-500 μm in size were prepared by the polymeric sponge method. β-TCP scaffolds with the dimension of 3 mm x 3 mm x 3 mm were combined with hBMSCs, and incubated with (+) or without (-) osteogenic medium in vitro. Cell proliferation and osteogenic differentiation on the scaffolds were evaluated by scanning electron microscopy (SEM) observation, MTT assay, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content measurement. SEM observation showed that hBMSCs attached well on the scaffolds and proliferated rapidly. No significant difference in the MTT assay could be detected between the two groups, but the ALP activity and OCN content of scaffolds (+) were much higher than those of the scaffolds (-) (p < 0.05). These results indicated that the novel porous β-TCP scaffolds can support the proliferation and subsequent osteogenic differentiation of hBMSCs in vitro. After being cultured in vitro for 14 days, the scaffolds (+) and (-) were implanted into subcutaneous sites of athymic mice. In β-TCP scaffolds (+), woven bone formed after 4 weeks of implantation and osteogenesis progressed with time. Furthermore, tissue-engineered bone could be found at 8 weeks, and remodeled lamellar bone was also observed at 12 weeks. However, no bone formation could be found in β-TCP scaffolds (-) at each time point checked. The above findings illustrate that the novel porous β-TCP scaffolds developed in this work have prominent osteoconductive activity and the potential for applications in bone tissue engineering

  20. Tissue-engineered bone formation using human bone marrow stromal cells and novel {beta}-tricalcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangpeng [National Tissue Engineering Research and Development Center, Shanghai 200235 (China); Zhao Li [National Tissue Engineering Research and Development Center, Shanghai 200235 (China); Cui Lei [National Tissue Engineering Research and Development Center, Shanghai 200235 (China); Liu Wei [National Tissue Engineering Research and Development Center, Shanghai 200235 (China); Cao Yilin [National Tissue Engineering Research and Development Center, Shanghai 200235 (China)

    2007-06-01

    In this study we investigated not only the cellular proliferation and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) on the novel {beta}-tricalcium phosphate ({beta}-TCP) scaffolds in vitro but also bone formation by ectopic implantation in athymic mice in vivo. The interconnected porous {beta}-TCP scaffolds with pores of 300-500 {mu}m in size were prepared by the polymeric sponge method. {beta}-TCP scaffolds with the dimension of 3 mm x 3 mm x 3 mm were combined with hBMSCs, and incubated with (+) or without (-) osteogenic medium in vitro. Cell proliferation and osteogenic differentiation on the scaffolds were evaluated by scanning electron microscopy (SEM) observation, MTT assay, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content measurement. SEM observation showed that hBMSCs attached well on the scaffolds and proliferated rapidly. No significant difference in the MTT assay could be detected between the two groups, but the ALP activity and OCN content of scaffolds (+) were much higher than those of the scaffolds (-) (p < 0.05). These results indicated that the novel porous {beta}-TCP scaffolds can support the proliferation and subsequent osteogenic differentiation of hBMSCs in vitro. After being cultured in vitro for 14 days, the scaffolds (+) and (-) were implanted into subcutaneous sites of athymic mice. In {beta}-TCP scaffolds (+), woven bone formed after 4 weeks of implantation and osteogenesis progressed with time. Furthermore, tissue-engineered bone could be found at 8 weeks, and remodeled lamellar bone was also observed at 12 weeks. However, no bone formation could be found in {beta}-TCP scaffolds (-) at each time point checked. The above findings illustrate that the novel porous {beta}-TCP scaffolds developed in this work have prominent osteoconductive activity and the potential for applications in bone tissue engineering.

  1. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. 14C age determination for human bones during the Yayoi period - the calibration ambiguity around 2400 BP and the marine reservoir effect

    International Nuclear Information System (INIS)

    Mihara, S.; Miyamoto, K.; Nakamura, T.; Koike, H.

    2004-01-01

    14 C ages for Japanese prehistoric samples from the Latest Jomon period to the early Yayoi period have a calibration ambiguity for dates around 2400 BP. It is also necessary to correct for the marine reservoir effect on 14 C ages of human bone samples from people who consumed marine food as a protein source. The Ohtomo site in western Japan, is a cemetery site used from the end of the Latest Jomon period to the Kofun period, provide a useful archaeological chronology. Human bones found in dolmen burials, jar burials and cist burials. In this study, we determined the 14 C ages of human bone samples and calculated the marine reservoir effect, using diet analysis based on carbon and nitrogen stable isotopes. Diet analysis showed that these people obtained from 40% to 60% of their protein from marine sources. Their 14 C ages with calibration and marine reservoir correction were serially matched with the archaeological chronology

  3. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    Science.gov (United States)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  4. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    Science.gov (United States)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  5. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    International Nuclear Information System (INIS)

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A.

    1990-01-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ([3H]thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens

  6. Routine conventional karyotyping of lymphoma staging bone marrow samples does not contribute clinically relevant information.

    Science.gov (United States)

    Nardi, Valentina; Pulluqi, Olja; Abramson, Jeremy S; Dal Cin, Paola; Hasserjian, Robert P

    2015-06-01

    Bone marrow (BM) evaluation is an important part of lymphoma staging, which guides patient management. Although positive staging marrow is defined as morphologically identifiable disease, such samples often also include flow cytometric analysis and conventional karyotyping. Cytogenetic analysis is a labor-intensive and costly procedure and its utility in this setting is uncertain. We retrospectively reviewed pathological reports of 526 staging marrow specimens in which conventional karyotyping had been performed. All samples originated from a single institution from patients with previously untreated Hodgkin and non-Hodgkin lymphomas presenting in an extramedullary site. Cytogenetic analysis revealed clonal abnormalities in only eight marrow samples (1.5%), all of which were positive for lymphoma by morphologic evaluation. Flow cytometry showed a small clonal lymphoid population in three of the 443 morphologically negative marrow samples (0.7%). Conventional karyotyping is rarely positive in lymphoma staging marrow samples and, in our cohort, the BM karyotype did not contribute clinically relevant information in the vast majority of cases. Our findings suggest that karyotyping should not be performed routinely on BM samples taken to stage previously diagnosed extramedullary lymphomas unless there is pathological evidence of BM involvement by lymphoma. © 2015 Wiley Periodicals, Inc.

  7. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC...... population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high...... and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone...

  8. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.

    Science.gov (United States)

    Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari

    2008-02-01

    Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast or fibroblast. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  9. EBV, HCMV, HHV6, and HHV7 Screening in Bone Marrow Samples from Children with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Morales-Sánchez, A.; Pompa-Mera, E. N.; Fajardo-Gutiérrez, A.; Alvarez-Rodríguez, F. J.; Bekker-Méndez, V. C.; Flores-Chapa, J. de Diego; Flores-Lujano, J.; Jiménez-Hernández, E.; Peñaloza-González, J. G.; Rodríguez-Zepeda, M. C.; Torres-Nava, J. R.; Velázquez-Aviña, M. M.; Amador-Sánchez, R.; Alvarado-Ibarra, M.; Reyes-Zepeda, N.; Espinosa-Elizondo, R. M.; Pérez-Saldivar, M. L.; Núñez-Enríquez, J. C.; Mejía-Aranguré, J. M.; Fuentes-Pananá, E. M.

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer in childhood worldwide and Mexico has reported one of the highest incidence rates. An infectious etiology has been suggested and supported by epidemiological evidences; however, the identity of the involved agent(s) is not known. We considered that early transmitted lymphotropic herpes viruses were good candidates, since transforming mechanisms have been described for them and some are already associated with human cancers. In this study we interrogated the direct role of EBV, HCMV, HHV6, and HHV7 human herpes viruses in childhood ALL. Viral genomes were screened in 70 bone marrow samples from ALL patients through standard and a more sensitive nested PCR. Positive samples were detected only by nested PCR indicating a low level of infection. Our result argues that viral genomes were not present in all leukemic cells, and, hence, infection most likely was not part of the initial genetic lesions leading to ALL. The high statistical power of the study suggested that these agents are not involved in the genesis of ALL in Mexican children. Additional analysis showed that detected infections or coinfections were not associated with prognosis. PMID:25309913

  10. Using modern human cortical bone distribution to test the systemic robusticity hypothesis.

    Science.gov (United States)

    Baab, Karen L; Copes, Lynn E; Ward, Devin L; Wells, Nora; Grine, Frederick E

    2018-06-01

    The systemic robusticity hypothesis links the thickness of cortical bone in both the cranium and limb bones. This hypothesis posits that thick cortical bone is in part a systemic response to circulating hormones, such as growth hormone and thyroid hormone, possibly related to physical activity or cold climates. Although this hypothesis has gained popular traction, only rarely has robusticity of the cranium and postcranial skeleton been considered jointly. We acquired computed tomographic scans from associated crania, femora and humeri from single individuals representing 11 populations in Africa and North America (n = 228). Cortical thickness in the parietal, frontal and occipital bones and cortical bone area in limb bone diaphyses were analyzed using correlation, multiple regression and general linear models to test the hypothesis. Absolute thickness values from the crania were not correlated with cortical bone area of the femur or humerus, which is at odds with the systemic robusticity hypothesis. However, measures of cortical bone scaled by total vault thickness and limb cross-sectional area were positively correlated between the cranium and postcranium. When accounting for a range of potential confounding variables, including sex, age and body mass, variation in relative postcranial cortical bone area explained ∼20% of variation in the proportion of cortical cranial bone thickness. While these findings provide limited support for the systemic robusticity hypothesis, cranial cortical thickness did not track climate or physical activity across populations. Thus, some of the variation in cranial cortical bone thickness in modern humans is attributable to systemic effects, but the driving force behind this effect remains obscure. Moreover, neither absolute nor proportional measures of cranial cortical bone thickness are positively correlated with total cranial bone thickness, complicating the extrapolation of these findings to extinct species where only cranial

  11. Identification of Chloride Intracellular Channel Protein 3 as a Novel Gene Affecting Human Bone Formation

    DEFF Research Database (Denmark)

    Brum, A M; Leije, M; J, Schreuders-Koedam

    2017-01-01

    is diminished and more adipocytes are seen in the bone marrow, suggesting a shift in MSC lineage commitment. Identification of specific factors that stimulate osteoblast differentiation from human MSCs may deliver therapeutic targets to treat osteoporosis. The aim of this study was to identify novel genes...... an in vivo human bone formation model in which hMSCs lentivirally transduced with the CLIC3 overexpression construct were loaded onto a scaffold (hydroxyapatite-tricalcium-phosphate), implanted under the skin of NOD-SCID mice, and analyzed for bone formation 8 weeks later. CLIC3 overexpression led to a 15...

  12. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  13. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  14. A Bone Sample Containing a Bone Graft Substitute Analyzed by Correlating Density Information Obtained by X-ray Micro Tomography with Compositional Information Obtained by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Johann Charwat-Pessler

    2015-06-01

    Full Text Available The ability of bone graft substitutes to promote new bone formation has been increasingly used in the medical field to repair skeletal defects or to replace missing bone in a broad range of applications in dentistry and orthopedics. A common way to assess such materials is via micro computed tomography (µ-CT, through the density information content provided by the absorption of X-rays. Information on the chemical composition of a material can be obtained via Raman spectroscopy. By investigating a bone sample from miniature pigs containing the bone graft substitute Bio Oss®, we pursued the target of assessing to what extent the density information gained by µ-CT imaging matches the chemical information content provided by Raman spectroscopic imaging. Raman images and Raman correlation maps of the investigated sample were used in order to generate a Raman based segmented image by means of an agglomerative, hierarchical cluster analysis. The resulting segments, showing chemically related areas, were subsequently compared with the µ-CT image by means of a one-way ANOVA. We found out that to a certain extent typical gray-level values (and the related histograms in the µ-CT image can be reliably related to specific segments within the image resulting from the cluster analysis.

  15. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yuli; Yin, Ying; Jiang, Fei; Chen, Ning

    2015-02-01

    Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.

  16. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells

    International Nuclear Information System (INIS)

    Howlett, C.R.; Zreiqat, H.; O'Dell, R.; Noorman, J.; Evans, P.; Dalton, B.A.; McFarland, C.; Steele, J.G.

    1994-01-01

    Our group is investigating the potential of modifying the surface atomic layers of biomaterials by ion beam implantation in order to stimulate adhesion of bone cells to these treated biomaterials. In this study alumina that had been implanted with magnesium ions (Mg)-(Al 2 O 3 ), was compared to unmodified alumina (Al 2 O 3 ) for the adhesion of cells cultured from explanted human bone. The attachment and spreading of cultured human bone derived cells onto (Mg)-(Al 2 O 3 ) was significantly enhanced as compared to Al 2 O 3 . The role of adsorption of serum adhesive glycoproteins firbronectin (Fn) and vitronectin (Vn) in the adhesion of human bone derived cells to (Mg)-(Al 2 O 3 ) was determined. (Author)

  17. The influence of lifelong exposure to environmental fluoride on bone quality in humans

    Science.gov (United States)

    Chachra, Debbie

    The objective of this study was to determine if lifelong exposure to environmental sources of fluoride (including fluoridated water) had an effect on bone quality in humans. Ninety-two femoral heads were obtained from individuals undergoing total hip arthroplasty in regions with and without fluoridated water (Toronto and Montreal, respectively), so that the donors would have had a wide range of fluoride exposure. As the samples were obtained at surgery, the femoral heads were affected by osteoarthritis (75), osteoporosis (9) and other diseases. The fluoride content of cancellous bone was assessed by instrumental neutron activation analysis. A number of contributors to bone quality were assessed. The compressive and torsional mechanical properties were measured for cancellous cores excised from the centre of the femoral head. The architecture was assessed by image analysis of an x-ray of a 5 mm thick coronal section of the femoral head, as well as of histological sections taken from the superior (weightbearing) and the inferior (nonweightbearing) surface of the femoral head. The degree of mineralization was measured using backscattered electron imaging and microhardness, again at the superior and the inferior surface. Femoral heads from Toronto donors had a greater mean fluoride content than those from Montreal donors (1033 +/- 438 ppm vs. 643 +/- 220 ppm). However, the fluoride content of the Toronto donors ranged approximately twelve-fold (192--2264 ppm) and entirely contained the range of Montreal donors. Therefore, fluoridated water exposure is not the only determinant of fluoride content. The logarithm of the bone fluoride content increased with age. No substantive effect of fluoride, independent of age, was observed for the mechanical properties. Similarly, at the inferior surface, the architecture was affected by age but not by fluoride incorporation but the degree of mineralization was not affected by either. However, the degree of mineralization (measured

  18. The correlation between R2' and bone mineral measurements in human vertebrae: an in vitro study

    International Nuclear Information System (INIS)

    Brismar, T.B.; Karlsson, M.; Li, T.Q.; Ringertz, H.

    1999-01-01

    The aim of this study was to investigate whether MR imaging of trabecular bone structure using magnetic inhomogeneity measurements is related to the amount of bone mineral in human vertebrae. Weight, bone mineral content (BMC DXA ), bone mineral per area (BMA DXA ) and bone mineral density (BMD CT ) were determined in 12 defatted human lumbar vertebrae (L2-L4) by weighing, dual X-ray absorptiometry (DXA) and CT. Inhomogeneity caused by susceptibility differences between trabecular bone and surrounding water was studied with MR imaging at 1.5 T using the GESFIDE sequence. The pulse sequence determines the transverse relaxation rate R2 * and its two components, the non-reversible transverse relaxation rate (R2) and the reversible transverse relaxation rate (R2'; i. e. relaxation rate due to magnetic susceptibility) in a single scan. Voxel size was 0.9 x 1.9 x 5.0 mm. Positive significant correlations between R2' and weight, BMC DXA , BMA DXA and BMD CT were observed (r > 0.61 and p DXA and BMD CT (r > 0.66 and p DXA . Thus, R2' measurements are related to the amount of bone mineral, but they also provide information which is not obtainable from bone mineral measurements. (orig.) (orig.)

  19. A methodology to measure cervical vertebral bone maturation in a sample from low-income children.

    Science.gov (United States)

    Aguiar, Luciana Barreto Vieira; Caldas, Maria de Paula; Haiter Neto, Francisco; Ambrosano, Glaucia Maria Bovi

    2013-01-01

    This study evaluated the applicability of the regression method for determining vertebral age developed by Caldas et al. (2007) by testing this method in children from low-income families of the rural zone. The sample comprised cephalometric and hand-wrist radiographs of 76 boys and 64 girls aged 7.0 to 14.9 years living in a medium-sized city in the desert region of the northeastern region of Brazil, with an HDI of 0.678. C3 and C4 vertebrae were traced and measured on cephalometric radiographs to estimate the bone age. The average age, average hand-wrist age and average error estimated for girls and boys were, respectively, 10.62 and 10.44 years, 11.28 and 10.57 years, and 1.42 and 1.18 years. Based on these results, the formula proposed by Caldas et al. (2007) was not applicable to the studied population, and new multiple regression models were developed to obtain the children's vertebral bone age accurately.

  20. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  1. Clinical uses of radiosterilized freeze-dried human bone: its application in buccomaxillary surgery

    International Nuclear Information System (INIS)

    Wolfsohn, B.; Taramasso, F.; Godoy, J.; Wodowoz, O.; Saldias, M.; Silva, W.; Machin, D.; Sanchez, G.; Alvarez, I.

    2008-01-01

    Full text: The objective of this paper is to evaluate the uses of different human bone tissue allografts in bucomaxillary surgery between 2005 and 2007. Presentation of our experience using single freeze dried bone allografts and associated to bovine collagen membranes (commercial registered). Twenty patients were treated with cortical struts, cancellous chips, morsellized and morsellized demineralized bone. All the grafts were processed at the INDT multi tissue bank from cardiac arrest and brain death cadaveric donors. All the tissues were radiosterilized by Gamma radiation. Bone allografts were used: 1) to optimize bone support increasing maxillar or mandible bone before implant surgery. 2) in dehiscences and fissures during the implant surgery. 3) to stimulate bone regeneration in alveolar cavity, post-apicectomies, and cystectomies as well as for bone defects. The patients were periodically evaluated using standardized protocols. All the cases were successful showing clinic and radiologically osseointegration after 6 and 12 months. Results were evaluated considering surgical technique and patients bucomaxillary rehabilitation. Clinical uses of bone allografts confirm in our experience, as scientific literature outcomes shows, are useful in patients that refuses autografts ablation. (Author)

  2. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  3. Importance of participation rate in sampling of data in population based studies, with special reference to bone mass in Sweden.

    OpenAIRE

    Düppe, H; Gärdsell, P; Hanson, B S; Johnell, O; Nilsson, B E

    1996-01-01

    OBJECTIVE: To study the effects of participation rate in sampling on "normative" bone mass data. DESIGN: This was a comparison between two randomly selected samples from the same population. The participation rates in the two samples were 61.9% and 83.6%. Measurements were made of bone mass at different skeletal sites and of muscle strength, as well as an assessment of physical activity. SETTING: Malmö, Sweden. SUBJECTS: There were 230 subjects (117 men, 113 women), aged 21 to 42 years. RESUL...

  4. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling?

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Kai; Kopp, Felix K.; Schwaiger, Benedikt J.; Gersing, Alexandra S.; Sauter, Andreas; Muenzel, Daniela; Rummeny, Ernst J. [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Diagnostic and Interventional Radiology, Munich (Germany); Bippus, Rolf [Research Laboratories, Philips GmbH Innovative Technologies, Hamburg (Germany); Koehler, Thomas [Research Laboratories, Philips GmbH Innovative Technologies, Hamburg (Germany); Technische Universitaet Muenchen, TUM Institute for Advanced Studies, Garching (Germany); Fehringer, Andreas [Technische Universitaet Muenchen, Lehrstuhl fuer Biomedizinische Physik, Garching (Germany); Pfeiffer, Franz [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Diagnostic and Interventional Radiology, Munich (Germany); Technische Universitaet Muenchen, TUM Institute for Advanced Studies, Garching (Germany); Technische Universitaet Muenchen, Lehrstuhl fuer Biomedizinische Physik, Garching (Germany); Kirschke, Jan S. [Klinikum rechts der Isar, Technische Universitaet Muenchen, Section of Diagnostic and Interventional Neuroradiology, Munich (Germany); Noel, Peter B. [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Diagnostic and Interventional Radiology, Munich (Germany); Technische Universitaet Muenchen, Lehrstuhl fuer Biomedizinische Physik, Garching (Germany); Baum, Thomas [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Diagnostic and Interventional Radiology, Munich (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen, Section of Diagnostic and Interventional Neuroradiology, Munich (Germany)

    2017-12-15

    Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. (orig.)

  5. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling?

    International Nuclear Information System (INIS)

    Mei, Kai; Kopp, Felix K.; Schwaiger, Benedikt J.; Gersing, Alexandra S.; Sauter, Andreas; Muenzel, Daniela; Rummeny, Ernst J.; Bippus, Rolf; Koehler, Thomas; Fehringer, Andreas; Pfeiffer, Franz; Kirschke, Jan S.; Noel, Peter B.; Baum, Thomas

    2017-01-01

    Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. (orig.)

  6. Clinical assessment of bone quality of human extraction sockets after conversion with growth factors.

    Science.gov (United States)

    Ntounis, Athanasios; Geurs, Nico; Vassilopoulos, Philip; Reddy, Michael

    2015-01-01

    The study was conducted to evaluate the effect of mineralized freeze-dried bone allograft (FDBA), alone or in combination with growth factors in extraction sockets, on subjective assessment of bone quality during implant placement. Forty-one patients whose treatment plan involved extraction of anterior or premolar teeth were randomized into four groups: Group 1, collagen plug (control); Group 2, FDBA/β-tricalcium phosphate (β-TCP)/collagen plug; Group 3, FDBA/β-TCP/platelet-rich plasma (PRP)/collagen plug; Group 4, FDBA/β-TCP/recombinant human platelet-derived growth factor BB (rhPDGF-BB)/collagen plug. After 8 weeks of healing, implants were placed. The clinicians assessed bone quality according to the Misch classification. A benchtop calibration exercise test was conducted to evaluate agreement and accuracy of operators in recognizing different bone qualities. Differences were analyzed using one-way analysis of variance (ANOVA) or chi-square tests for continuous and categorical data. Pairwise comparisons were tested using least squares means (LS means). Spearman correlation coefficients were used to evaluate the relationship of bone growth with potential confounders. P .05). Inclusion of bone grafting is associated with a shift from D4 quality to D3 quality bone. Inclusion of PRP in bone grafting eliminates the incidence of D4 bone, establishing D3 and D2 quality bone as prevalent (56% vs. 42%, respectively). Inclusion of rhPDGF-BB and β-TCP in combination with the bone grafting has the same effect, although D2 quality is less prevalent. When compared to sockets grafted with FDBA/β-TCP/collagen plug alone, the sockets with growth factors demonstrated fewer residual bone graft particles. (1) Inclusion of bone grafting enhanced bone quality as assessed during implant placement. (2) Overall inclusion of PRP and rhPDGF-BB enhanced subjective bone quality, eliminating incidence of D4 quality in human extraction sockets. (3) The use of PRP or rhPDGF-BB may

  7. Recombinant human bone morphogenetic protein 2 in augmentation procedures: case reports.

    Science.gov (United States)

    Luiz, Jaques; Padovan, Luis Eduardo Marques; Claudino, Marcela

    2014-01-01

    To successfully rehabilitate edentulous patients using endosseous implants, there must be enough available bone. Several techniques have been proposed for augmentation of sites with insufficient bone volume. Although autogenous bone has long been considered the gold standard for such procedures, the limited availability of graft material and a high morbidity rate are potential disadvantages of this type of graft. An alternative is to use recombinant human bone morphogenetic protein 2 (rhBMP-2), which is able to support bone regeneration in the oral environment. These cases demonstrate the applicability of rhBMP-2 in maxillary sinus elevation and augmentation procedures in the maxilla to enable dental implant placement. The use of rhBMP-2 in alveolar augmentation procedures had several clinical benefits for these patients.

  8. Stria vascularis and cochlear hair cell changes in syphilis: A human temporal bone study.

    Science.gov (United States)

    Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M; Cureoglu, Sebahattin

    2016-12-01

    To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis. We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the two groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis did not significantly differ, in any turn of the cochlea, between the 2 groups (P>0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (Psyphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations.

    Science.gov (United States)

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-09-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. © 2014 Anatomical Society.

  10. Assessing human error during collecting a hydrocarbon sample of ...

    African Journals Online (AJOL)

    This paper reports the assessment method of the hydrocarbon sample collection standard operation procedure (SOP) using THERP. The Performance Shaping Factors (PSF) from THERP analyzed and assessed the human errors during collecting a hydrocarbon sample of a petrochemical refinery plant. Twenty-two ...

  11. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Armas, Laura A G; Akhter, Mohammed P; Drincic, Andjela; Recker, Robert R

    2012-01-01

    Patients with Type 1 Diabetes Mellitus (DM) have markedly increased risk of fracture, but little is known about abnormalities in bone microarchitecture or remodeling properties that might give insight into the pathogenesis of skeletal fragility in these patients. We report here a case-control study comparing bone histomorphometric and micro-CT results from iliac biopsies in 18 otherwise healthy subjects with Type 1 Diabetes Mellitus with those from healthy age- and sex-matched non-diabetic control subjects. Five of the diabetics had histories of low-trauma fracture. Transilial bone biopsies were obtained after tetracycline labeling. The biopsy specimens were fixed, embedded, and scanned using a desktop μCT at 16 μm resolution. They were then sectioned and quantitative histomorphometry was performed as previously described by Recker et al. [1]. Two sections, >250 μm apart, were read from the central part of each biopsy. Overall there were no significant differences between diabetics and controls in histomorphometric or micro-CT measurements. However, fracturing diabetics had structural and dynamic trends different from nonfracturing diabetics by both methods of analysis. In conclusion, Type 1 Diabetes Mellitus does not result in abnormalities in bone histomorphometric or micro-CT variables in the absence of manifest complications from the diabetes. However, diabetics suffering fractures may have defects in their skeletal microarchitecture that may underlie the presence of excess skeletal fragility. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Role of purinergic receptor polymorphisms in human bone

    DEFF Research Database (Denmark)

    Wesselius, Anke; Bours, Martijn J L; Agrawal, Ankita

    2011-01-01

    Osteoporosis is a multifactorial disease with a strong genetic component. Variations in a number of genes have been shown to associate with bone turnover and risk of osteoporosis. P2 purinergic receptors are proteins that have ATP or other nucleotides as their natural ligands. Various P2Y and P2X...

  13. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...

  14. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    Science.gov (United States)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  15. Incidence of human herpes virus-6 and human cytomegalovirus infections in donated bone marrow and umbilical cord blood hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Behzad-Behbahani A

    2008-01-01

    Full Text Available This study examined the incidence of human herpes virus-6 (HHV-6 and human cytomegalovirus (HCMV infections that are potentially transmitted to haematopoietic stem cells (HSC transplant recipients via bone marrow (BM or umbilical cord blood (UCB. Bone marrow progenitor cells were collected from 30 allogenic BM donors. UCB HSC were collected from 34 subjects. The extracted DNA was then processed using nested polymerase chain reaction (nPCR technique. HCMV and HHV-6 serological status were determined by enzyme immunoassay (EIA. Nested PCR identified HCMV in 22 (73% of 30 samples of BM progenitor cells but in only eight (23.5% of 34 samples of UBC HSC ( P = 0.001. HHV-6 DNA was detected in 11 (36.6% of 30 BM progenitor cells and in only one (2.9% of 34 UBC cells ( P = 0.002. Both HHV-6 and HCMV infections were determined in nine (26.5% of 34 bone marrow samples. The results indicate that, the risk of HCMV and HHV-6 via BM progenitor cells is higher than transmission by UCB cells ( P= 0.04.

  16. A sample application of nuclear power human resources model

    International Nuclear Information System (INIS)

    Gurgen, A.; Ergun, S.

    2016-01-01

    One of the most important issues for a new comer country initializing the nuclear power plant projects is to have both quantitative and qualitative models for the human resources development. For the quantitative model of human resources development for Turkey, “Nuclear Power Human Resources (NPHR) Model” developed by the Los Alamos National Laboratory was used to determine the number of people that will be required from different professional or occupational fields in the planning of human resources for Akkuyu, Sinop and the third nuclear power plant projects. The number of people required for different professions for the Nuclear Energy Project Implementation Department, the regulatory authority, project companies, construction, nuclear power plants and the academy were calculated. In this study, a sample application of the human resources model is presented. The results of the first tries to calculate the human resources needs of Turkey were obtained. Keywords: Human Resources Development, New Comer Country, NPHR Model

  17. Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans

    Science.gov (United States)

    Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna

    2011-01-01

    Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823

  18. Three-dimensional microarchitecture of human osteoporotic, osteoarthrotic and rheumatoid arthritic cancellous bones

    DEFF Research Database (Denmark)

    Ding, Ming; Overgaard, Søren

    , OP often leads to skeletal fractures, and OA and RA result in severe joint disability. Over the last a few decades, much significant research on the properties has been carried out on these diseases, however, a detailed comparison of the microarchitecture of cancellous bones of these diseases...... is not available. In this study, we investigated three-dimensional (3-D) microarchitectural properties of OP, OA and RA cancellous bone. We hypothesized that there were significant differences in microarchitecture among OP, OA and RA bone tissues that might lead to different bone quality. Materials and Method...... Twenty OP, fifty OA, and twelve RA femur heads were harvested from patients undergone total hip replacement surgery. Cubic cancellous bone samples (8*8*8 mm3) were prepared and scanned with a high resolution microtomographic system (vivaCT 40, Scanco Medical AG., Brüttisellen, Switzerland). Then micro...

  19. Mutual associations among microstructural, physical and mechanical properties of human cancellous bone

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Danielsen, CC

    2002-01-01

    structure and mechanical properties. In this study, 160 cancellous bone specimens were produced from 40 normal human tibiae aged from 16 to 85 years at post-mortem. The specimens underwent micro-CT and the microstructural properties were calculated using unbiased three-dimensional methods. The specimens...... were tested to determine the mechanical properties and the physical/compositional properties were evaluated. The type of structure together with anisotropy correlated well with Young's modulus of human tibial cancellous bone. The plate-like structure reflected high mechanical stress and the rod......-like structure low mechanical stress. There was a strong correlation between the type of trabecular structure and the bone-volume fraction. The most effective microstructural properties for predicting the mechanical properties of cancellous bone seem to differ with age....

  20. Locating the scala media in the fixed human temporal bone for therapeutic access: a preliminary study.

    Science.gov (United States)

    Pau, H; Fagan, P; Oleskevich, S

    2006-11-01

    To investigate the location of the scala media in relation to the round window niche in human temporal bones. Ten human temporal bones were investigated by radical mastoidectomy and promontory drill-out. Temporal bone laboratory. The distance from the scala media to the anterior edge of the round window niche, measured by Fisch's stapedectomy measuring cylinders. The scala media was identified at the transection point of a vertical line 1.6 to 2.2 mm (mean=1.8 mm; standard deviation=0.2) anterior to the anterior edge of the round window niche and a horizontal line 0.2 mm inferior to the lower border of the oval window. This report demonstrates the point of entry into the scala media via the promontory in fixed temporal bone models, which may provide a site of entry for stem cells and gene therapy insertion.

  1. Comparative pathogenesis of radium-induced intracortical bone lesions in humans and beagles

    International Nuclear Information System (INIS)

    Pool, R.R.; Morgan, J.P.; Parks, N.J.; Farnham, J.E.; Littman, M.S.

    1982-01-01

    An interlaboratory research team from our Laboratory and the Center for Human Radiobiology at Argonne National Laboratory has performed an initial comparison of intracortical lesions in the long bones of dog and man following chronic radium deposition in the skeleton. The sequential radiographic appearance and morphology of radiation osteodystrophy is discussed. The role of osteodystrohy in the evaluation of bone tumors in the dog is examined

  2. Total lymphatic irradiation and bone marrow in human heart transplantation

    International Nuclear Information System (INIS)

    Kahn, D.R.; Hong, R.; Greenberg, A.J.; Gilbert, E.F.; Dacumos, G.C.; Dufek, J.H.

    1984-01-01

    Six patients, aged 36 to 59 years, had heart transplants for terminal myocardial disease using total lymphatic irradiation (TLI) and donor bone marrow in addition to conventional therapy. All patients were poor candidates for transplantation because of marked pulmonary hypertension, unacceptable tissue matching, or age. Two patients are living and well more than four years after the transplants. Two patients died of infection at six and seven weeks with normal hearts. One patient, whose preoperative pulmonary hypertension was too great for an orthotopic heart transplant, died at 10 days after such a procedure. The other patient died of chronic rejection seven months postoperatively. Donor-specific tolerance developed in 2 patients. TLI and donor bone marrow can produce specific tolerance to donor antigens and allow easy control of rejection, but infection is still a major problem. We describe a new technique of administering TLI with early reduction of prednisone that may help this problem

  3. Human Bone Matrix Changes During Deep Saturation Dives

    Science.gov (United States)

    2008-08-08

    urine concentrations of Ntx have been demonstrated in bone diseases such as osteoporosis, primary hyperthyroidism , and Paget’s disease. Also... loss in divers, and that the differentials likely came from the gas- induced osmosis model.30 4 The same facility was used for both dives and...Other demographic data such as age, height, weight , and diving experience were also collected for later correlational analyses. The dive took place

  4. SERPINB2 is a novel TGFβ-responsive lineage fate determinant of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Atteya, Muhammad

    2017-01-01

    TGF-β1, a multifunctional regulator of cell growth and differentiation, is the most abundant bone matrix growth factor. During differentiation of human bone stromal cells (hBMSCs), which constitute bone marrow osteoblast (OS) and adipocyte (AD) progenitor cells, continuous TGF-β1 (10 ng/ml) treat...

  5. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  6. Patient-specific in silico models can quantify primary implant stability in elderly human bone.

    Science.gov (United States)

    Steiner, Juri A; Hofmann, Urs A T; Christen, Patrik; Favre, Jean M; Ferguson, Stephen J; van Lenthe, G Harry

    2018-03-01

    Secure implant fixation is challenging in osteoporotic bone. Due to the high variability in inter- and intra-patient bone quality, ex vivo mechanical testing of implants in bone is very material- and time-consuming. Alternatively, in silico models could substantially reduce costs and speed up the design of novel implants if they had the capability to capture the intricate bone microstructure. Therefore, the aim of this study was to validate a micro-finite element model of a multi-screw fracture fixation system. Eight human cadaveric humerii were scanned using micro-CT and mechanically tested to quantify bone stiffness. Osteotomy and fracture fixation were performed, followed by mechanical testing to quantify displacements at 12 different locations on the instrumented bone. For each experimental case, a micro-finite element model was created. From the micro-finite element analyses of the intact model, the patient-specific bone tissue modulus was determined such that the simulated apparent stiffness matched the measured stiffness of the intact bone. Similarly, the tissue modulus of a small damage region around each screw was determined for the instrumented bone. For validation, all in silico models were rerun using averaged material properties, resulting in an average coefficient of determination of 0.89 ± 0.04 with a slope of 0.93 ± 0.19 and a mean absolute error of 43 ± 10 μm when correlating in silico marker displacements with the ex vivo test. In conclusion, we validated a patient-specific computer model of an entire organ bone-implant system at the tissue-level at high resolution with excellent overall accuracy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:954-962, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Early inhibitory effects of zoledronic acid in tooth extraction sockets in dogs are negated by recombinant human bone morphogenetic protein.

    Science.gov (United States)

    Gerard, David A; Carlson, Eric R; Gotcher, Jack E; Pickett, David O

    2014-01-01

    This study was conducted with 2 purposes. The first was to determine the effect of a single dose of zoledronic acid (ZA) on the healing of a tooth extraction socket in dogs. The second was to determine if placement of recombinant human bone morphogenetic protein-2 (rhBMP-2)/absorbable collagen sponge (ACS) - INFUSE, (Medtronic, Memphis, TN) into these extraction sockets would inhibit the inhibition on bone healing and remodeling by ZA. Nine adult female beagle dogs (2 to 3 yr old) were placed into 3 groups of 3 dogs each. Group I received 15 mL of sterile saline intravenously; group II received 2.5 mg of ZA intravenously; and group III received 5 mg of ZA intravenously. Forty-five days after treatment, all dogs underwent extraction of noncontiguous right and left mandibular first molars and second premolars. In group I, the right mandibular extraction sockets had nothing placed in them, whereas the left mandibular sockets had only ACS placed in them. In groups II and III, the right mandibular sockets had rhBMP-2/ACS placed in them, whereas the left mandibular sockets had only ACS placed. All extraction sockets were surgically closed. Tetracycline was given intravenously 5 and 12 days later, and all animals were euthanized 15 days after tooth extraction. The extraction sockets and rib and femur samples were harvested immediately after euthanasia, processed, and studied microscopically. A single dose of ZA significantly inhibited healing and bone remodeling in the area of the tooth extractions. The combination of rhBMP-2/ACS appeared to over-ride some of the bone remodeling inhibition of the ZA and increased bone fill in the extraction sites, and remodeling activity in the area was noted. The effects of rhBMP-2/ACS were confined to the area of the extraction sockets because bone activity at distant sites was not influenced. A single dose of ZA administered intravenously inhibits early healing of tooth extraction sockets and bone remodeling in this animal model. The

  8. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.

    Science.gov (United States)

    Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L

    2015-12-01

    Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Approach-Induced Biases in Human Information Sampling.

    Directory of Open Access Journals (Sweden)

    Laurence T Hunt

    2016-11-01

    Full Text Available Information sampling is often biased towards seeking evidence that confirms one's prior beliefs. Despite such biases being a pervasive feature of human behavior, their underlying causes remain unclear. Many accounts of these biases appeal to limitations of human hypothesis testing and cognition, de facto evoking notions of bounded rationality, but neglect more basic aspects of behavioral control. Here, we investigated a potential role for Pavlovian approach in biasing which information humans will choose to sample. We collected a large novel dataset from 32,445 human subjects, making over 3 million decisions, who played a gambling task designed to measure the latent causes and extent of information-sampling biases. We identified three novel approach-related biases, formalized by comparing subject behavior to a dynamic programming model of optimal information gathering. These biases reflected the amount of information sampled ("positive evidence approach", the selection of which information to sample ("sampling the favorite", and the interaction between information sampling and subsequent choices ("rejecting unsampled options". The prevalence of all three biases was related to a Pavlovian approach-avoid parameter quantified within an entirely independent economic decision task. Our large dataset also revealed that individual differences in the amount of information gathered are a stable trait across multiple gameplays and can be related to demographic measures, including age and educational attainment. As well as revealing limitations in cognitive processing, our findings suggest information sampling biases reflect the expression of primitive, yet potentially ecologically adaptive, behavioral repertoires. One such behavior is sampling from options that will eventually be chosen, even when other sources of information are more pertinent for guiding future action.

  10. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  11. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2016-01-01

    Full Text Available Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs’ identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects.

  12. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold

    Science.gov (United States)

    Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen

    2016-01-01

    Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects. PMID:27118977

  13. Stature estimation from complete long bones in the Middle Pleistocene humans from the Sima de los Huesos, Sierra de Atapuerca (Spain).

    Science.gov (United States)

    Carretero, José-Miguel; Rodríguez, Laura; García-González, Rebeca; Arsuaga, Juan-Luis; Gómez-Olivencia, Asier; Lorenzo, Carlos; Bonmatí, Alejandro; Gracia, Ana; Martínez, Ignacio; Quam, Rolf

    2012-02-01

    Systematic excavations at the site of the Sima de los Huesos (SH) in the Sierra de Atapuerca (Burgos, Spain) have allowed us to reconstruct 27 complete long bones of the human species Homo heidelbergensis. The SH sample is used here, together with a sample of 39 complete Homo neanderthalensis long bones and 17 complete early Homo sapiens (Skhul/Qafzeh) long bones, to compare the stature of these three different human species. Stature is estimated for each bone using race- and sex-independent regression formulae, yielding an average stature for each bone within each taxon. The mean length of each long bone from SH is significantly greater (p Huesos hominins nor the Neandertals should be considered 'short' people. In fact, the average stature within the genus Homo seems to have changed little over the course of the last two million years, since the appearance of Homo ergaster in East Africa. It is only with the emergence of H. sapiens, whose earliest representatives were 'very tall', that a significant increase in stature can be documented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Monitoring of Bone Loss Biomarkers in Human Sweat: A Non-Invasive, Time Efficient Means of Monitoring Bone Resorption Markers under Micro and Partial Gravity Loading Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this project was to validate the concept that the rate and extent of unloading-induced bone loss in humans can be assessed by monitoring the...

  15. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  16. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.

    Science.gov (United States)

    Wear, Keith A; Nagaraja, Srinidhi; Dreher, Maureen L; Sadoughi, Saghi; Zhu, Shan; Keaveny, Tony M

    2017-10-01

    Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (pmechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone. Published by Elsevier Inc.

  17. Localized ridge defect augmentation using human pericardium membrane and demineralized bone matrix.

    Science.gov (United States)

    Vidyadharan, Arun Kumar; Ravindran, Anjana

    2014-01-01

    Patient wanted to restore her lost teeth with implants in the lower left first molar and second premolar region. Cone beam computerized tomography (CBCT) revealed inadequate bone width and height around future implant sites. The extraction socket of second premolar area revealed inadequate socket healing with sparse bone fill after 4 months of extraction. To evaluate the clinical feasibility of using a collagen physical resorbable barrier made of human pericardium (HP) to augment localized alveolar ridge defects for the subsequent placement of dental implants. Ridge augmentation was done in the compromised area using Puros® demineralized bone matrix (DBM) Putty with chips and an HP allograft membrane. Horizontal (width) and vertical hard tissue measurements with CBCT were recorded on the day of ridge augmentation surgery, 4 month and 7 months follow-up. Intra oral periapical taken 1 year after implant installation showed minimal crestal bone loss. Bone volume achieved through guided bone regeneration was a gain of 4.8 mm horizontally (width) and 6.8 mm vertically in the deficient ridge within a period of 7 months following the procedure. The results suggested that HP Allograft membrane may be a suitable component for augmentation of localized alveolar ridge defects in conjunction with DBM with bone chips.

  18. Survival of Free and Encapsulated Human and Rat Islet Xenografts Transplanted into the Mouse Bone Marrow

    Science.gov (United States)

    Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569

  19. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  20. Methods of human body odor sampling: the effect of freezing.

    Science.gov (United States)

    Lenochova, Pavlina; Roberts, S Craig; Havlicek, Jan

    2009-02-01

    Body odor sampling is an essential tool in human chemical ecology research. However, methodologies of individual studies vary widely in terms of sampling material, length of sampling, and sample processing. Although these differences might have a critical impact on results obtained, almost no studies test validity of current methods. Here, we focused on the effect of freezing samples between collection and use in experiments involving body odor perception. In 2 experiments, we tested whether axillary odors were perceived differently by raters when presented fresh or having been frozen and whether several freeze-thaw cycles affected sample quality. In the first experiment, samples were frozen for 2 weeks, 1 month, or 4 months. We found no differences in ratings of pleasantness, attractiveness, or masculinity between fresh and frozen samples. Similarly, almost no differences between repeatedly thawed and fresh samples were found. We found some variations in intensity; however, this was unrelated to length of storage. The second experiment tested differences between fresh samples and those frozen for 6 months. Again no differences in subjective ratings were observed. These results suggest that freezing has no significant effect on perceived odor hedonicity and that samples can be reliably used after storage for relatively long periods.

  1. Human-Robot Site Survey and Sampling for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  2. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  3. Cells at risk for the production of bone tumors in man: an electron microscope study of the endosteal surface of control bone and bone from a human radium case

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.

    1979-01-01

    The endosteal cells of bone from a radium dial worker are documented for the first time by electron microscopy. Fresh samples of bone and tumor tissue from the femur were made available as a result of amputation for a fibrosarcoma in the region of the right knee joint. Bone was examined from a site proximal to the tumor where no invasion of tumor tissue was evident. The patient, who was exposed at age 16 in 1918, died in 1978 with a terminal body burden, calculated to be 1.2 μCi, 226 Ra. A sample of bone, also obtained at amputation from an unirradiated control patient, age 65, was examined from the same site in the femur. A comparison of the bone bone-marrow interface from the two patients showed that, unlike the control bone where cells were seen close to bone mineral, an intervening fibrotic layer was interposed between the marrow cells and the bone mineral in the radium bone. This layer varied in thickness up to 50 μm and was usually acellular, although cell remnants and occasionally cells, which appeared viable, were seen. Autoradiographs of sections of bone adjacent to those used for the electron microscope studies are being evaluated

  4. Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2.

    Science.gov (United States)

    Edmunds, Ryan K; Mealey, Brian L; Mills, Michael P; Thoma, Daniel S; Schoolfield, John; Cochran, David L; Mellonig, Jim

    2014-01-01

    No human studies exist on the use of recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS) as a sole graft material for lateral ridge augmentation in large ridge defect sites. This series evaluates the treatment outcome of maxillary anterior lateral ridge augmentation with rhBMP-2/ACS. Twenty patients were treated with rhBMP-2/ACS and fixation screws for space maintenance. Cone beam volumetric tomography measurements were used to determine gain in ridge width, and a bone core biopsy was obtained. The mean horizontal ridge gain was 1.2 mm across sites, and every site gained width.

  5. Multi-element determination in cancellous bone of human femoral head by PIXE

    International Nuclear Information System (INIS)

    Yuanxun Zhang; Yongping Zhang; Yongpeng Tong; Shijing Qiu; Xiaotao Wu; Kerong Dai

    1996-01-01

    Proton Induced X-ray Emission (PIXE) method is used for the determination of elemental concentrations in cancellous bone of human femoral head from five autopsies and seven patients with femoral neck broken. The specimen preparation and experimental procedure are described in detail. Using the t test, the results show that the concentrations of P, Ca, Fe, Cu, Sr in control group are higher than those in patient group, but the concentrations of S, K, Zn, Mn are not significantly different. The physiological functions of metallic elements in human bone are also discussed. (author). 19 refs., 1 fig., 4 tabs

  6. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.

    Science.gov (United States)

    Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward

    2008-02-01

    Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the

  7. In vivo measurement of mechanical properties of human long bone by using sonic sound

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M. Jayed, E-mail: zed.hossain06@gmail.com; Rahman, M. Moshiur, E-mail: razib-121@yahoo.com; Alam, Morshed [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.

  8. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty.

    Science.gov (United States)

    Tian, Xiao-bin; Sun, Li; Yang, Shu-hua; Zhang, Yu-kun; Hu, Ru-yin; Fu, De-hao

    2008-04-20

    Nanobone putty is an injectable and bioresorbable bone substitute. The neutral-pH putty resembles hard bone tissue, does not contain polymers or plasticizers, and is self-setting and nearly isothermic, properties which are helpful for the adhesion, proliferation, and function of bone cells. The aim of this study was to investigate the osteogenic potential of human bone morphogenetic protein 2 (hBMP2) gene activated nanobone putty in inducing ectopic bone formation, and the effects of the hBMP2 gene activated nanobone putty on repairing bone defects. Twenty four Kunming mice were randomly divided into two groups. The nanobone putty + hBMP2 plasmid was injected into the right thigh muscle pouches of the mice (experiment side). The nanobone putty + blank plasmid or nanobone putty was injected into the left thigh muscle pouches of the group 1 (control side 1) or group 2 (control side 2), respectively. The effects of ectopic bone formation were evaluated by radiography, histology, and molecular biology analysis at 2 and 4 weeks after operation. Bilateral 15 mm radial defects were made in forty-eight rabbits. These rabbits were randomly divided into three groups: Group A, nanobone putty + hBMP2 plasmid; Group B, putty + blank plasmid; Group C, nanobone putty only. Six rabbits with left radial defects served as blank controls. The effect of bone repairing was evaluated by radiography, histology, molecular biology, and biomechanical analysis at 4, 8, and 12 weeks after operation. The tissue from the experimental side of the mice expressed hBMP2. Obvious cartilage and island-distributed immature bone formation in implants of the experiment side were observed at 2 weeks after operation, and massive mature bone observed at 4 weeks. No bone formation was observed in the control side of the mice. The ALP activity in the experiment side of the mice was higher than that in the control side. The tissue of Group A rabbits expressed hBMP2 protein and higher ALP level. The new bone

  9. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  10. FANTOM5 CAGE profiles of human and mouse samples

    NARCIS (Netherlands)

    Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Kojima, Miki; Kubosaki, Atsutaka; Manabe, Ri-ichiroh; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakazato, Kenichi; Ninomiya, Noriko; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Detmar, Michael; Dohi, Taeko; Edge, Albert S. B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Ishizu, Yuri; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Mummery, Christine L.; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R. R.; Hayashizaki, Yoshihide

    2017-01-01

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples,

  11. Sampling strategy for estimating human exposure pathways to consumer chemicals

    NARCIS (Netherlands)

    Papadopoulou, Eleni; Padilla-Sanchez, Juan A.; Collins, Chris D.; Cousins, Ian T.; Covaci, Adrian; de Wit, Cynthia A.; Leonards, Pim E.G.; Voorspoels, Stefan; Thomsen, Cathrine; Harrad, Stuart; Haug, Line S.

    2016-01-01

    Human exposure to consumer chemicals has become a worldwide concern. In this work, a comprehensive sampling strategy is presented, to our knowledge being the first to study all relevant exposure pathways in a single cohort using multiple methods for assessment of exposure from each exposure pathway.

  12. Sorption behavior of human bone powder towards 60 Co and 65 Zn

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.T.; Essa, M.W.A.; Mohamed, S.A.; Molokhia, M.K.

    1990-01-01

    Human bone powder 30-40 Μ in diameter was prepared from human bone femurs as fat-free (FFB), protein-free (PFB) or left untreated as raw bone powder (RB). The sorption behavior of human bone powder towards 60 Co and 65 Zn was studied. The uptake changed with the type of bone powder to be : PFB>FFB>RB. The increase in the concentration of cobalt(from 10 -6 to 10 -1 Mole/litre)and of zinc (from 10 -7 to 10 -4 M/1) increased the uptake of 60 Co and 65 Zn. Freunclich-type isotherm was successfully applied on the uptake data of both ions and the slopes of these isotherms were, nearly, directly proportional to their uptake values. The uptake was found to be less influenced by the PH. In case of cobalt the uptake increased till PH 4, followed by a plateau till PH 8 while in case of zinc the PH effect is much less pronounced

  13. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by 99mTc-MDP bone scintigraphy

    International Nuclear Information System (INIS)

    Yang Shunfang; Dong Qianggang; Yao Ming; Shi Meiping; Ye Jianding; Zhao Langxiang; Su Jianzhong; Gu Weiyong; Xie Wenhui; Wang Kankan; Du Yanzhi; Li Yao; Huang Yan

    2009-01-01

    Background: Bone metastasis is one of the most common clinical phenomena of late stage lung cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal and cell model. This study aims to establish human lung adenocarcinoma cell line with highly bone metastases potency with 99m Tc-MDP bone scintigraphy. Methods: The human lung adenocarcinoma cancer cells SPC-A-1 were injected into the left cardiac ventricle of NIH-Beige-Nude-XID (NIH-BNX) immunodeficient mice. The metastatic lesions of tumor-bearing mice were imaged with 99m Tc-MDP bone scintigraphy on a Siemens multi-single photon emission computed tomography. Pinhole images were acquired on a GZ-B conventional gamma camera with a self-designed pinhole collimator. The mice with bone metastasis were sacrificed under deep anesthesia, and the lesions were resected. Bone metastatic cancer cells in the resected lesions were subjected for culture and then reinoculated into the NIH-BNX mice through left cardiac ventricle. The process was repeated for eight cycles to obtain a novel cell subline SPC-A-1BM. Real-time polymerase chain reaction (PCR) was used to compare the gene expression differences in the parental and SPC-A-1BM cells. Results: The bone metastasis sites were successfully revealed by bone scintigraphy. The established bone metastasis cell line SPC-A-1BM had a high potential to metastasize in bone, including mandible, humerus, thoracic vertebra, lumbar, femur, patella, ilium and cartilage rib. The expression level of vascular endothelial growth factor gene family, Bcl-2 and cell adhesion-related genes ECM1, ESM1, AF1Q, SERPINE2 and FN1 were examined. Gene expression difference was found between parental and bone-seeking metastasis cell SPC-A-1BM, which indicates SPC-A-1BM has metastatic capacity vs. its parental cells. Conclusion: SPC-A-1BM is a bone-seeking metastasis human lung adenocarcinoma cell line. Bone scintigraphy may be used as an

  14. Plutonium and Uranium in Human Bones from Areas surrounding the Semipalatinsk Nuclear Test Site

    OpenAIRE

    Masayoshi, YAMAMOTO; Masaharu, HOSHI; Aya, SAKAGUCHI; Kunihiko, SHINOHARA; Osamu, KURIHARA; Kazbek N., APSALIKOV; Boris I., GUSEV; Low Level Radioactivity Laboratory, K-INET, Kanazawa University; Research Institute for Radiation Biology and Medicine, Hiroshima University; Low Level Radioactivity Laboratory, K-INET, Kanazawa University; Japan Nuclear Cycle Development Institute; Japan Nuclear Cycle Development Institute; Kazakh Science Research Institute for Radiation, Medicine and Ecology; Kazakh Science Research Institute for Radiation, Medicine and Ecology

    2006-01-01

    To evaluate the present levels of^Pu and U in residents living near the Semipalatinsk nuclear test site, more than 70 bone samples were obtained at autopsy. The subjects ranged in age from 30 to 86 years (mean 59.3±12.9). Most of the samples consisted of victims who died of various diseases. Plutonium and U were radiochemically separated and determined by α-ray spectrometry. The mean concentrations of ^Pu and ^U observed were 0.050±0.041 mBq/g-ash (vertebrae 71, long-bones 18) and 0.28±0.13 m...

  15. Bone lesion biopsy

    Science.gov (United States)

    Bone biopsy; Biopsy - bone ... the cut, then pushed and twisted into the bone. Once the sample is obtained, the needle is ... sample is sent to a lab for examination. Bone biopsy may also be done under general anesthesia ...

  16. METHODS USED FOR THE VIRTUAL HUMAN BONES AND JOINTS RECONSTRUCTION. NORMAL AND PATHOLOGICAL HUMAN JOINTS VIRTUAL SIMULATIONS

    Directory of Open Access Journals (Sweden)

    POPA Laurentiu Dragos

    2015-06-01

    Full Text Available To understand the problems, which appear in every human joint, it is very important to know the anatomy and morphology of the human bones and the way in which the components are working together to realize a normal functionality. For this purpose was used a CAD parametric software which permits to define models with a high degree of difficulty. First, it was used a CT or MRI device to obtain the parallel sections to study each component of the bone. A 3D scanner can be used only for the outer geometry. In the second step the images were transferred to a 2D CAD software, like AutoCAD, where the outer and inner contours of the bone were approximate to polygonal lines composed by many segments. After this, the contours were transferred to a 3D CAD software, like SolidWorks, where, step by step, and section by section, was defined the virtual bone component. Additionally to the main shape can be attached other Loft, Round or Dome shapes. For some components, as vertebrae, mandible or skull bones, can be used a preliminary model obtained by parallel sections. Starting from this, the model can be defined using the main 3D curves and we can get the final virtual solid model. In some simulations, the soft components, as muscles or ligaments, were included in simulations using non-linear virtual springs. Also, sometimes were used implants or prosthetic elements. In the final of the paper, were extracted important conclusions.

  17. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  18. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images.

    Science.gov (United States)

    Dong, Pei; Haupert, Sylvain; Hesse, Bernhard; Langer, Max; Gouttenoire, Pierre-Jean; Bousson, Valérie; Peyrin, Françoise

    2014-03-01

    Osteocytes, the most numerous bone cells, are thought to be actively involved in the bone modeling and remodeling processes. The morphology of osteocyte is hypothesized to adapt according to the physiological mechanical loading. Three-dimensional micro-CT has recently been used to study osteocyte lacunae. In this work, we proposed a computationally efficient and validated automated image analysis method to quantify the 3D shape descriptors of osteocyte lacunae and their distribution in human femurs. Thirteen samples were imaged using Synchrotron Radiation (SR) micro-CT at ID19 of the ESRF with 1.4μm isotropic voxel resolution. With a field of view of about 2.9×2.9×1.4mm(3), the 3D images include several tens of thousands of osteocyte lacunae. We designed an automated quantification method to segment and extract 3D cell descriptors from osteocyte lacunae. An image moment-based approach was used to calculate the volume, length, width, height and anisotropy of each osteocyte lacuna. We employed a fast algorithm to further efficiently calculate the surface area, the Euler number and the structure model index (SMI) of each lacuna. We also introduced the 3D lacunar density map to directly visualize the lacunar density variation over a large field of view. We reported the lacunar morphometric properties and distributions as well as cortical bone histomorphometric indices on the 13 bone samples. The mean volume and surface were found to be 409.5±149.7μm(3) and 336.2±94.5μm(2). The average dimensions were of 18.9±4.9μm in length, 9.2±2.1μm in width and 4.8±1.1μm in depth. We found lacunar number density and six osteocyte lacunar descriptors, three axis lengths, two anisotropy ratios and SMI, that are significantly correlated to bone porosity at a same local region. The proposed method allowed an automatic and efficient direct 3D analysis of a large population of bone cells and is expected to provide reliable biological information for better understanding the

  19. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    Science.gov (United States)

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.

  20. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Science.gov (United States)

    Bouderlique, Thibault; Henault, Emilie; Lebouvier, Angelique; Frescaline, Guilhem; Bierling, Phillipe; Rouard, Helene; Courty, José; Albanese, Patricia; Chevallier, Nathalie

    2014-01-01

    Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  1. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Thibault Bouderlique

    Full Text Available Pleiotrophin (PTN is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  2. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.

    Science.gov (United States)

    Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha

    2014-09-01

    Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, Robert O; Koester, K. J.; Ager III, J. W.; Ritchie, R.O.

    2008-05-10

    Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.

  4. Selective inhibition of B lymphocytes in TBTC-treated human bone marrow long-term culture.

    NARCIS (Netherlands)

    Carfi', M.; Bowe, G.; Pieters, R.; Gribaldo, L.

    2010-01-01

    Tributyltin chloride (TBTC) is well known for its immunotoxic effect, in particular towards immature thymocytes. TBTC is also known to induce adipocyte differentiation in primary human bone marrow cultures, which is reflected in the decrease in a number of adipocyte-derived cytokines, chemokines and

  5. Direct radiocarbon dating and DNA analysis of the Darra-i-Kur (Afghanistan) human temporal bone.

    Science.gov (United States)

    Douka, Katerina; Slon, Viviane; Stringer, Chris; Potts, Richard; Hübner, Alexander; Meyer, Matthias; Spoor, Fred; Pääbo, Svante; Higham, Tom

    2017-06-01

    The temporal bone discovered in the 1960s from the Darra-i-Kur cave in Afghanistan is often cited as one of the very few Pleistocene human fossils from Central Asia. Here we report the first direct radiocarbon date for the specimen and the genetic analyses of DNA extracted and sequenced from two areas of the bone. The new radiocarbon determination places the find to ∼4500 cal BP (∼2500 BCE) contradicting an assumed Palaeolithic age of ∼30,000 years, as originally suggested. The DNA retrieved from the specimen originates from a male individual who carried mitochondrial DNA of the modern human type. The petrous part yielded more endogenous ancient DNA molecules than the squamous part of the same bone. Molecular dating of the Darra-i-Kur mitochondrial DNA sequence corroborates the radiocarbon date and suggests that the specimen is younger than previously thought. Taken together, the results consolidate the fact that the human bone is not associated with the Pleistocene-age deposits of Darra-i-Kur; instead it is intrusive, possibly re-deposited from upper levels dating to much later periods (Neolithic). Despite its Holocene age, the Darra-i-Kur specimen is, so far, the first and only ancient human from Afghanistan whose DNA has been sequenced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Progesterone Promotes Human Bone Marrow Mesenchymal Stem Cells to Synthesize Fibronectin via ERK Pathway].

    Science.gov (United States)

    Wu, Zhen-Yong; Chen, Jing-Li; Huang, Shu; Zhang, Hui; Wang, Fang; Wang, Yan; Bi, Xiao-Yun; Guo, Zi-Kuan

    2015-12-01

    To investigate whether the progesterone can promote fibronection (FN) synthesis by human bone marrow mesenchymal stem cells (MSCs) and to explore the potential underlying mechanism. The human bone marrow MSCs were cultured in a serum-free medium with progesterone for 72 hours, the MTT test was performed to observe the proliferation status and adhension ability of the treated cells. Western blot was used to detect the content of FN in MSDs with GAPDH as the internal reference, the phosphorylation of ERK1/2, as well as the FN content in MSC treated by PD98059, a specific inhibitor of ERK1/2. The progesterone at a range of certain doses not effect on the proliferation of human bone marrow MSCs. Progesterone (25 µg/L) treatment enhanced the FN expression and adherent ability of marrow MSCs. Progesterone could induce prompt phosphorylation of ERK 1/2 and its promoting effects on FN synthesis was reversed by PD98059. The progesterone can promote FN synthesis by human bone marrow MSCs via ERK 1/2 pathway, and it might be used to culture MSCs in serum-free medium.

  7. Strontium-90 content of human bones collected from 1962 to 1966

    International Nuclear Information System (INIS)

    Jeanmaire, L.

    1967-01-01

    The aim of this report is essentially to present results of 90 Sr determination made on human bones collected in the Paris region from 1962 to 1966. The results are classified according to the year and the age-group in, two tables and one figure which show the general evolution of the contamination during this period. (author) [fr

  8. The Human Figure Drawing with Donor and Nondonor Siblings of Pediatric Bone Marrow Transplant Patients.

    Science.gov (United States)

    Packman, Wendy L.; Beck, Vanessa L.; VanZutphen, Kelly H.; Long, Janet K.; Spengler, Gisele

    2003-01-01

    There is little research on the psychological impact of bone marrow transplantation (BMT) on family members. This study uses the Human Figure Drawing (HFD) to measure siblings' emotional distress toward BMT. Among the siblings, feelings of isolation, anger, depression, anxiety, and low self-esteem emerged as major themes. Findings indicate the…

  9. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  10. Phosphorus and the grazing ruminant. 3. Rib bone samples as an ...

    African Journals Online (AJOL)

    man, Pate, Martin & Conrad, 1982); hair (Tischer, 1977); and ..... A loss of mineral matter increases the bone's porosity and is reflected in a reduced ... Macroelements, protein, carotene, vitamins A and E, ... LITTLE, D.A. & RATCLIFF, D., 1979.

  11. Cross-sectional analysis of long bones in a sample of ancient Egyptians

    Directory of Open Access Journals (Sweden)

    Moushira Erfan Zaki

    2015-09-01

    Conclusions: Workers had higher level of skeletal robusticity than High Officials which could reflect their higher levels of mobility and physical workload. The study suggests that different activity patterns can significantly affect the bone structure.

  12. Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering.

    Science.gov (United States)

    Diao, Yinze; Ma, Qingjun; Cui, Fuzhai; Zhong, Yanfeng

    2009-10-01

    Mesenchymal stem cells (MSCs) are ideal seed cells for bone tissue engineering. However, intrinsic deficiencies exist for the autologous transplantation strategy of constructing artificial bone with MSCs derived from bone marrow of patients. In this study, MSCs-like cells were isolated from human umbilical cords and were expanded in vitro. Flow cytometric analysis revealed that cells from the fourth passage were positive for CD29, CD44, CD71, CD73, CD90, and CD105 whereas they were negative for CD14, CD34, CD45, and CD117. Furthermore, these cells expressed HLA-A, B, C (MHC-I), but not HLA-DP, DQ, DR (MHC-II), or costimulatory molecules such as CD80 and CD86. Following incubation in specific inductive media for 3 weeks, cultured cells were shown to possess potential to differentiate into adipogenic, osteogenic or chondrogenic lineages in vitro. The umbilical cord-derived MSCs (UC-MSCs) were loaded with a biomimetic artificial bone scaffold material before being implanted subcutaneously in the back of Balb/c nude mice for four to twelve weeks. Our results revealed that UC-MSCs loaded with the scaffold displayed capacity of osteogenic differentiation leading to osteogenesis with human origin in vivo. As a readily available source of seed cells for bone tissue engineering, UC-MSCs should have broad application prospects.

  13. Severely impaired bone material quality in Chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta.

    Science.gov (United States)

    Fiedler, Imke A K; Schmidt, Felix N; Wölfel, Eva M; Plumeyer, Christine; Milovanovic, Petar; Gioia, Roberta; Tonelli, Francesca; Bale, Hrishikesh A; Jähn, Katharina; Besio, Roberta; Forlino, Antonella; Busse, Björn

    2018-04-17

    Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Since the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how osteogenesis imperfecta manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/ +) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier transform infrared spectroscopy, nanoindentation and X-ray microscopy. At the skeletal level, Chi/+ display smaller body size, deformities and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to WT. The alterations in the cellular, compositional and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/ +. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant osteogenesis imperfecta. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Multi analytical technique study of human bones from an archaeological discovery.

    Science.gov (United States)

    Lachowicz, J I; Palomba, S; Meloni, P; Carboni, M; Sanna, G; Floris, R; Pusceddu, V; Sarigu, M

    2017-03-01

    In 1953, during the building restoration of San Michele church (Bono, Sardinia, 16th-19th Century), a high number of disarticulated skeletons were recovered. From a group of 412 hip bones, two of these, affected by several pathological lesions, were analysed. The two coxal bones can be referred to the same individual, an adult man. A multi-analytical study, started with the purpose of investigating the bone pathology, was extended to characterize the mineral components of a large representative set of bones from the same ossuary, all attributed to adult men who lived in the region four-two centuries ago. A quantitative ICP-AES analysis for Ca, Fe, Mg, Mn, Na, Pb and Zn was executed, and a chemometric investigation on the results was performed. This approach gave evidence of the effects of diagenesis, allowed some hypothesis of the incidence of the known dietary habits on bone composition, and completely differentiated the pathological bones from those of a normal population on the basis of the mineral composition. Moreover, porosity, crystallinity and FT-IR analysis were conducted on both non- and pathological sample. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Monitoring human papillomavirus prevalence in urine samples: a review

    Directory of Open Access Journals (Sweden)

    Enerly E

    2013-03-01

    Full Text Available Espen Enerly, Cecilia Olofsson, Mari NygårdDepartment of Research, Cancer Registry of Norway, Oslo, NorwayAbstract: Human papillomavirus (HPV is the main cause of cervical cancer, and many countries now offer vaccination against HPV to girls by way of government-funded national immunization programs. Monitoring HPV prevalence in adolescents could offer a near-term biological measure of vaccine impact, and urine sampling may be an attractive large-scale method that could be used for this purpose. Our objective was to provide an overview of the literature on HPV DNA detection in urine samples, with an emphasis on adolescents. We searched the PubMed database using the terms “HPV” and “urine” and identified 21 female and 14 male study populations in which HPV prevalence in urine samples was reported, four of which included only asymptomatic female adolescents. We provide herein an overview of the recruitment setting, age, urine sampling procedure, lesion type, HPV assay, and HPV prevalence in urine samples and other urogenital samples for the studies included in this review. In female study populations, concordance for any HPV type and type-specific concordance in paired urine and cervical samples are provided in addition to sensitivity and specificity. We concluded that few studies on HPV prevalence in urine samples have been performed in asymptomatic female adolescent populations but that urine samples may be a useful alternative to cervical samples to monitor changes in HPV prevalence in females in the post-HPV vaccination era. However, care should be taken when extrapolating HPV findings from urine samples to the cervix. In males, urine samples do not seem to be optimal for monitoring HPV prevalence due to a low human genomic DNA content and HPV DNA detection rate compared to other urogenital sites. In each situation the costs and benefits of HPV DNA detection in urine compared to alternative monitoring options should be carefully

  16. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  17. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Wang FJ

    2015-12-01

    Full Text Available Mesenchymal stromal cells (MSCs have shown promise as treatment for graft-versus-host disease (GvHD following allogeneic bone marrow transplantation (alloBMT. Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs were injected via carotid artery (IA or tail vein (TV into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments.

  18. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Tchernin, David; Hyacinthe, Jean-Noël; Van De Ville, Dimitri; Richiardi, Jonas

    2013-01-01

    Human bone blood flow, mean blood speed and the number of moving red blood cells were assessed (in arbitrary units), as a function of time, during one cardiac cycle. The measurements were obtained non-invasively on five volunteers by laser-Doppler flowmetry at large interoptode spacing. The investigated bones included: patella, clavicle, tibial diaphysis and tibial malleolus. As hypothesized, we found that in all bones the number of moving cells remains constant during cardiac cycles. Therefore, we concluded that the pulsatile nature of blood flow must be completely determined by the mean blood speed and not by changes in blood volume (vessels dilation). Based on these results, it is finally demonstrated using a mathematical model (derived from the radiative transport theory) that photoplethysmographic (PPG) pulsations observed by others in the literature, cannot be generated by oscillations in blood oxygen saturation, which is physiologically linked to blood speed. In fact, possible oxygen saturation changes during pulsations decrease the amplitude of PPG pulsations due to specific features of the PPG light source. It is shown that a variation in blood oxygen saturation of 3% may induce a negative change of ∼1% in the PPG signal. It is concluded that PPG pulsations are determined by periodic ‘positive’ changes of the reduced scattering coefficient of the tissue and/or the absorption coefficient at constant blood volume. No explicit experimental PPG measurements have been performed. As a by-product of this study, an estimation of the arterial pulse wave velocity obtained from the analysis of the blood flow pulsations give a value of 7.8 m s −1 (95% confidence interval of the sample mean distribution: [6.7, 9.5] m s −1 ), which is perfectly compatible with data in the literature. We hope that this note will contribute to a better understanding of PPG signals and to further develop the domain of the vascular physiology of human bone. (note)

  19. The behaviour of fatigue-induced microdamage in compact bone samples from control and ovariectomised sheep.

    Science.gov (United States)

    Kennedy, Oran D; Brennan, Orlaith; Mauer, Peter; O'Brien, Fergal J; Rackard, Susan M; Taylor, David; Lee, T Clive

    2008-01-01

    This study investigates the effect of microdamage on bone quality in osteoporosis using an ovariectomised (OVX) sheep model of osteoporosis. Thirty-four sheep were divided into an OVX group (n=16) and a control group (n=18). Fluorochromes were administered intravenously at 3 monthly intervals after surgery to label bone turnover. After sacrifice, beams were removed from the metatarsal and tested in three-point bending. Following failure, microcracks were identified and quantified in terms of region, location and interaction with osteons. Number of cycles to failure (Nf) was lower in the OVX group relative to controls by approximately 7%. Crack density (CrDn) was higher in the OVX group compared to controls. CrDn was 2.5 and 3.5 times greater in the compressive region compared to tensile in control and OVX bone respectively. Combined results from both groups showed that 91% of cracks remained in interstitial bone, approximately 8% of cracks penetrated unlabelled osteons and less than 1% penetrated into labelled osteons. All cases of labelled osteon penetration occurred in controls. Crack surface density (CrSDn), was 25% higher in the control group compared to OVX. It is known that crack behaviour on meeting microstructural features such as osteons will depend on crack length. We have shown that osteon age also affects crack propagation. Long cracks penetrated unlabelled osteons but not labelled ones. Some cracks in the control group did penetrate labelled osteons. This may be due the fact that control bone is more highly mineralized. CrSDn was increased by 25% in the control group compared to OVX. Further study of these fracture mechanisms will help determine the effect of microdamage on bone quality and how this contributes to bone fragility.

  20. [Synthetic human calcitonin in Paget's disease of bone and osteoporosis (author's transl)].

    Science.gov (United States)

    Nuti, R; Vattimo, A

    1981-01-30

    Synthetic human calcitonin was used in the treatment of 26 patients over a period of 1-14 months. 17 patients had Paget's disease of the bone, 6 postmenopausal osteoporosis and 3 Sudeck's syndrome. Subjective improvement (reduction of pain, improvement of mobility) was found in 15 patients with Paget's disease, in 4 females with postmenopausal osteoporosis and in all 3 patients with Sudeck's syndrome. Radiographic improvement of bone changes developed only very slowly. These results were confirmed by diminution of the exchangeable calcium pool indicating reduction of rates of osseous degradation. Calcitonin tolerance was acceptable. Transitory nausea and occasional vomiting occurred in 3 patients.

  1. Trace element concentrations in human bone using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    El-Amri, F.A.; El-Kabroun, M.A.R.

    1997-01-01

    Instrumental neutron activation analysis has been applied to analyze 23 bone samples obtained from Libyan patient aged (3-80) years for the study of the concentration levels of trace elements Ba, Br, Ca, Fe, Sr and Zn and their concentration patterns regarding to the age and sex of the patients. (author)

  2. Unbiased Stereologic Estimation of the Spatial Distribution of Paget’s Disease in the Human Temporal Bone

    DEFF Research Database (Denmark)

    Bloch, Sune Land; Sørensen, Mads Sølvsten

    2014-01-01

    remodeling around the inner ear space and to compare it with that of otosclerosis in a contemporary context of temporal bone dynamics. MATERIALS AND METHODS: From the temporal bone collection of Massachusetts Eye and Ear Infirmary, 15 of 29 temporal bones with Paget's disease were selected to obtain...... an independent sample. All volume distributions were obtained along the normal axis of capsular bone remodeling activity by the use of vector-based stereology. RESULTS: Pagetic bone remodeling was distributed centrifugally around the inner ear space at the individual and the general level. This pattern...

  3. Sampling strategy for estimating human exposure pathways to consumer chemicals

    Directory of Open Access Journals (Sweden)

    Eleni Papadopoulou

    2016-03-01

    Full Text Available Human exposure to consumer chemicals has become a worldwide concern. In this work, a comprehensive sampling strategy is presented, to our knowledge being the first to study all relevant exposure pathways in a single cohort using multiple methods for assessment of exposure from each exposure pathway. The selected groups of chemicals to be studied are consumer chemicals whose production and use are currently in a state of transition and are; per- and polyfluorinated alkyl substances (PFASs, traditional and “emerging” brominated flame retardants (BFRs and EBFRs, organophosphate esters (OPEs and phthalate esters (PEs. Information about human exposure to these contaminants is needed due to existing data gaps on human exposure intakes from multiple exposure pathways and relationships between internal and external exposure. Indoor environment, food and biological samples were collected from 61 participants and their households in the Oslo area (Norway on two consecutive days, during winter 2013-14. Air, dust, hand wipes, and duplicate diet (food and drink samples were collected as indicators of external exposure, and blood, urine, blood spots, hair, nails and saliva as indicators of internal exposure. A food diary, food frequency questionnaire (FFQ and indoor environment questionnaire were also implemented. Approximately 2000 samples were collected in total and participant views on their experiences of this campaign were collected via questionnaire. While 91% of our participants were positive about future participation in a similar project, some tasks were viewed as problematic. Completing the food diary and collection of duplicate food/drink portions were the tasks most frequent reported as “hard”/”very hard”. Nevertheless, a strong positive correlation between the reported total mass of food/drinks in the food record and the total weight of the food/drinks in the collection bottles was observed, being an indication of accurate performance

  4. Diagnostic Value of Ex-Vivo Three-Dimensional Micro-Computed Tomography Imaging of Primary Nonhematopoietic Human Bone Tumors: Osteosarcoma versus Chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Langheinrich, A. C.; Stolle, C.; Kampschulte, M.; Lommel, D.; Rau, W. S.; Bassaly, B. (Depts. of Radiology and Pathology, Univ. of Giessen, Giessen (Germany))

    2008-10-15

    Background: Osteosarcoma and chondrosarcoma are the most common nonhematopoietic primary malignancies of bone. However, unusual radiographic appearances can lead to delay in diagnosis and confusion with benign diseases. Purpose: To evaluate the feasibility of micro-computed tomography (CT) for the analysis of primary, nonhematopoietic human bone tumors ex vivo. Material and Methods: Samples from 12 human bone specimens (osteosarcoma, n=6; chondrosarcoma, n=6) obtained for diagnostic purposes were scanned using industrial X-ray film without amplifier foil and scanned with micro-CT (7- and 12-mum-cubic voxels). Trabecular bone CT 'density' and tumor matrix CT 'density' were determined, and results were compared with those obtained from a detailed conventional histopathologic analysis of corresponding cross-sections. The significance of differences in grayscale measurements was tested with analysis of variance. Results: Micro-CT provided quantitative information on bone morphology equivalent to histopathological analysis. We established grayscale measurements by which tumor matrices of chondrosarcoma and osteosarcoma could be radiographically categorized following histological classifications (P<0.001). Conclusion: Micro-CT is feasible for the analysis and differentiation of human osteosarcoma and chondrosarcoma

  5. Relative biological effectiveness of tritiated water on human chromosomes of lymphocytes and bone marrow cells

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Sawada, Shozo; Kamada, Nanao

    1992-01-01

    One of the major toxic effluent from nuclear power industries is tritiated water (HTO), which is released into the environment in large quantities. Low dose radiation effects and dose rate effects of HTO on human lymphocytes and bone marrow cells are not well studied. The present study was performed to investigate dose-response relationship for chromosome aberration frequencies in the human lymphocytes and bone marrow cells, by HTO in-vitro exposure at low dose ranges of 0.1 to 1 Gy. Go lymphocytes and bone marrow cells were incubated for 10 - 150 minutes with HTO at 2 cGy/min. Also 60 Co γ and 137 Cs γ rays were used as controls. Dicentric chromosomes were scored in 1,000 to 2,000 cells of each experimental series. The RBE values of HTO at low dose range for the induction of dicentric chromosomes and chromatid type aberrations were 2.7 in lymphocytes and approximately 3.8 in bone marrow cells with respect to 60 Co γ ray, respectively. Also lymphocytes were chronically exposed to HTO for 24 to 72 hrs at lower dose rates (0.2 and 0.05 cGy/min). The yields of dicentrics and rings decreased with the reduction in the dose rate of HTO, presenting a clear dose rate effects of HTO. These results provide an useful information for the assessment for health risk in humans exposed to low concentration level to HTO. (author)

  6. Detection of Campylobacter in human faecal samples in Fiji.

    Science.gov (United States)

    Devi, Aruna; Wilkinson, Jenny; Mahony, Timothy; Vanniasinkam, Thiru

    2014-01-01

    Data on campylobacteriosis in developed countries are well documented; in contrast, few studies on campylobacteriosis have been conducted in developing countries. This study was undertaken to test for Campylobacter in human faecal samples sent to the two major pathology laboratories in Fiji. A total of 408 diarrhoeal faecal samples were collected from the two major hospital pathology laboratories in Central Fiji (Suva) and Western Fiji (Lautoka) between December 2012 and February 2013 and from June to July 2013. Samples were analysed for the presence of Campylobacter using polymerase chain reaction (PCR) based methods. Campylobacter was detected in 241/408 (59.1%) of samples tested using PCR. Samples from children aged less than five accounted for 21.6% of positive cases. Campylobacter was detected in 59.1% of diarrhoeal samples collected from the two main laboratories in Fiji. A high proportion of children under five years with Campylobacter has been reported in other countries and could be due to parents being more likely to seek medical attention. Further studies are required to confirm the species of Campylobacter that are predominantly associated with gastroenteritis in Fiji.

  7. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

    Science.gov (United States)

    Zhang, Cui; Li, Liang; Jiang, Yuanda; Wang, Cuicui; Geng, Baoming; Wang, Yanqiu; Chen, Jianling; Liu, Fei; Qiu, Peng; Zhai, Guangjie; Chen, Ping; Quan, Renfu; Wang, Jinfu

    2018-03-13

    Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly

  8. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress.

    Science.gov (United States)

    Kraft, David Christian Evar; Bindslev, Dorth Arenholt; Melsen, Birte; Klein-Nulend, Jenneke

    2011-02-01

    For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular response via loading-induced flow of interstitial fluid. After surgical removal of ectopically impacted third molars, human dental pulp tissue is an easily accessible and interesting source of cells for mineralized tissue engineering. The aim of this study was to determine whether human dental pulp-derived cells (DPC) are responsive to mechanical loading by pulsating fluid flow (PFF) upon stimulation of mineralization in vitro. Human DPC were incubated with or without mineralization medium containing differentiation factors for 3 weeks. Cells were subjected to 1-h PFF (0.7 ± 0.3 Pa, 5 Hz) and the response was quantified by measuring nitric oxide (NO) and prostaglandin E₂ (PGE₂) production, and gene expression of cyclooxygenase (COX)-1 and COX-2. We found that DPC are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. PFF stimulated NO and PGE₂ production, and up-regulated COX-2 but not COX-1 gene expression. In DPC cultured under mineralizing conditions, the PFF-induced NO, but not PGE₂, production was significantly enhanced. These data suggest that human DPC, like osteogenic cells, acquire responsiveness to pulsating fluid shear stress in mineralizing conditions. Thus DPC might be able to perform bone-like functions during mineralized tissue remodeling in vivo, and therefore provide a promising new tool for mineralized tissue engineering to restore, for example, maxillofacial defects.

  9. Immunoreactive LH in long-term frozen human urine samples.

    Science.gov (United States)

    Singh, Gurmeet Kaur Surindar; Jimenez, Mark; Newman, Ron; Handelsman, David J

    2014-04-01

    Urine provides a convenient non-invasive alternative to blood sampling for measurement of certain hormones. Urinary luteinizing hormone (LH) measurements have been used for endocrinology research and anti-doping testing. However, the commercially available LH immunoassays are developed and validated for human blood samples but not urine so that LH assays intended for use with urine samples need thorough validation. Therefore, the present study evaluated the measurement of urinary LH immunoreactivity using previously validated immunofluorometric (IF) and immunochemiluminometric (ICL) LH assays after prolonged frozen storage. LH was measured in serial urine samples following administration of a single injection of one of two doses of recombinant human chorionic hormone (rhCG) with assays run at the end of study (2008) and again after four years of frozen (-20 °C) storage where samples were stored without adding preservatives. The ICL assay showed quantitatively reproducible LH measurements after prolonged -20 °C storage. However, the IF immunoassay gave consistently lower LH levels relative to ICL (2008) with a further proportionate reduction after four years of sample storage (2012). Yet, both the assays displayed similar patterns of the time-course of urine LH measurement both before and after four years of frozen storage. In conclusion, we found that both immunoassays are suitable for urinary LH measurements with ICL assay being more robust for quantitative urinary LH measurement such as for anti-doping purposes, whereas the IF could be applicable for research studies where urine LH levels are compared within-study but not in absolute terms. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics

    Science.gov (United States)

    Lockwood, Charles A; Lynch, John M; Kimbel, William H

    2002-01-01

    The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty-three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade. PMID:12489757

  11. Physico chemical study of the uptake of some radionuclides by the human bone powder

    International Nuclear Information System (INIS)

    Mohamed, S.A.

    1989-01-01

    Human bone femurs were freed from flesh and marrow, crushed and ground to a grain size below 50 in diameter. Fat was extracted from one third of the powder (FFB). protein was extracted from the second third (PFB) and the third portion was without any treatment as raw bone powder (RB). Physical and chemical properties of bone powder such as density, chemical composition, calcium content, and nitrogen content were investigated. Experimental procedures followed two techniques: - Schweitzer and Nehls technique (164) where a large reaction vessel was used. - Harrison et al technique (90) where the batch system was used. Counting systems applied were : beta counting for 89 Sr and gamma counting for 60 Co and 6 5 Zn

  12. Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells

    DEFF Research Database (Denmark)

    Ayesh Hafez Ali, Dalia; Abuelreich, Sarah; Alkeraishan, Nora

    2018-01-01

    during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor......Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling...... signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand...

  13. Early human bone response to laser metal sintering surface topography: a histologic report.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  14. The micro-architecture of human cancellous bone from fracture neck of femur patients in relation to the structural integrity and fracture toughness of the tissue

    Directory of Open Access Journals (Sweden)

    C. Greenwood

    2015-12-01

    Full Text Available Osteoporosis is clinically assessed from bone mineral density measurements using dual energy X-ray absorption (DXA. However, these measurements do not always provide an accurate fracture prediction, arguably because DXA does not grapple with ‘bone quality’, which is a combined result of microarchitecture, texture, bone tissue properties, past loading history, material chemistry and bone physiology in reaction to disease. Studies addressing bone quality are comparatively few if one considers the potential importance of this factor. They suffer due to low number of human osteoporotic specimens, use of animal proxies and/or the lack of differentiation between confounding parameters such as gender and state of diseased bone. The present study considers bone samples donated from patients (n = 37 who suffered a femoral neck fracture and in this very well defined cohort we have produced in previous work fracture toughness measurements (FT which quantify its ability to resist crack growth which reflects directly the structural integrity of the cancellous bone tissue. We investigated correlations between BV/TV and other microarchitectural parameters; we examined effects that may suggest differences in bone remodelling between males and females and compared the relationships with the FT properties. The data crucially has shown that TbTh, TbSp, SMI and TbN may provide a proxy or surrogate for BV/TV. Correlations between FT critical stress intensity values and microarchitecture parameters (BV/TV, BS/TV, TbN, BS/BV and SMI for osteoporotic cancellous tissue were observed and are for the first time reported in this study. Overall, this study has not only highlighted that the fracture model based upon BMD could potentially be improved with inclusion of other microarchitecture parameters, but has also given us clear clues as to which of them are more influential in this role.

  15. Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    M Mumme

    2012-09-01

    Full Text Available Inflammatory cytokines present in the milieu of the fracture site are important modulators of bone healing. Here we investigated the effects of interleukin-1β (IL-1β on the main events of endochondral bone formation by human bone marrow mesenchymal stromal cells (BM-MSC, namely cell proliferation, differentiation and maturation/remodelling of the resulting hypertrophic cartilage. Low doses of IL-1β (50 pg/mL enhanced colony-forming units-fibroblastic (CFU-f and -osteoblastic (CFU-o number (up to 1.5-fold and size (1.2-fold in the absence of further supplements and glycosaminoglycan accumulation (1.4-fold upon BM-MSC chondrogenic induction. In osteogenically cultured BM-MSC, IL-1β enhanced calcium deposition (62.2-fold and BMP-2 mRNA expression by differential activation of NF-κB and ERK signalling. IL-1β-treatment of BM-MSC generated cartilage resulted in higher production of MMP-13 (14.0-fold in vitro, mirrored by an increased accumulation of the cryptic cleaved fragment of aggrecan, and more efficient cartilage remodelling/resorption after 5 weeks in vivo (i.e., more TRAP positive cells and bone marrow, less cartilaginous areas, resulting in the formation of mature bone and bone marrow after 12 weeks. In conclusion, IL-1β finely modulates early and late events of the endochondral bone formation by BM-MSC. Controlling the inflammatory environment could enhance the success of therapeutic approaches for the treatment of fractures by resident MSC and as well as improve the engineering of implantable tissues.

  16. Identification of Rorβ targets in cultured osteoblasts and in human bone

    Energy Technology Data Exchange (ETDEWEB)

    Roforth, Matthew M., E-mail: roforth.matthew@mayo.edu; Khosla, Sundeep, E-mail: khosla.sundeep@mayo.edu; Monroe, David G., E-mail: monroe.david@mayo.edu

    2013-11-01

    Highlights: •We examine the gene expression patterns controlled by Rorβ in osteoblasts. •Genes involved in extracellular matrix regulation and proliferation are affected. •Rorβ mRNA levels increase in aged, human bone biopsies. •Rorβ may affect osteoblast activity by modulation of these pathways. -- Abstract: Control of osteoblastic bone formation involves the cumulative action of numerous transcription factors, including both activating and repressive functions that are important during specific stages of differentiation. The nuclear receptor retinoic acid receptor-related orphan receptor β (Rorβ) has been recently shown to suppress the osteogenic phenotype in cultured osteoblasts, and is highly upregulated in bone marrow-derived osteogenic precursors isolated from aged osteoporotic mice, suggesting Rorβ is an important regulator of osteoblast function. However the specific gene expression patterns elicited by Rorβ are unknown. Using microarray analysis, we identified 281 genes regulated by Rorβ in an MC3T3-E1 mouse osteoblast cell model (MC3T3-Rorβ-GFP). Pathway analysis revealed alterations in genes involved in MAPK signaling, genes involved in extracellular matrix (ECM) regulation, and cytokine-receptor interactions. Whereas the identified Rorβ-regulated ECM genes normally decline during osteoblastic differentiation, they were highly upregulated in this non-mineralizing MC3T3-Rorβ-GFP model system, suggesting that Rorβ may exert its anti-osteogenic effects through ECM disruption. Consistent with these in vitro findings, the expression of both RORβ and a subset of RORβ-regulated genes were increased in bone biopsies from postmenopausal women (73 ± 7 years old) compared to premenopausal women (30 ± 5 years old), suggesting a role for RORβ in human age-related bone loss. Collectively, these data demonstrate that Rorβ regulates known osteogenic pathways, and may represent a novel therapeutic target for age-associated bone loss.

  17. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    Science.gov (United States)

    Strobel, L. A.; Hild, N.; Mohn, D.; Stark, W. J.; Hoppe, A.; Gbureck, U.; Horch, R. E.; Kneser, U.; Boccaccini, A. R.

    2013-07-01

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

  18. Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia.

    Science.gov (United States)

    Almayahi, B A; Tajuddin, A A; Jaafar, M S

    2014-03-01

    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm(-2) and 0.061 ± 0.008 mBq cm(-2), whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm(-2) and 0.7700 ± 0.0282 mBq cm(-2), respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm(-2), whereas that of female teeth was 0.0199 ± 0.0010 mBq cm(-2). The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm(-2)) than in non-smokers (0.0179 ± 0.0008 mBq cm(-2)). Such difference was found statistically significant (p < 0.01). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2

    Directory of Open Access Journals (Sweden)

    Jung-Seok Lee

    2018-04-01

    Full Text Available This study aimed to determine the cellular characteristics and behaviors of human bone marrow stromal cells (hBMSCs expanded in media in a hypoxic or normoxic condition and with or without fibroblast growth factor-2 (FGF-2 treatment. hBMSCs isolated from the vertebral body and expanded in these four groups were evaluated for cellular proliferation/migration, colony-forming units, cell-surface characterization, in vitro differentiation, in vivo transplantation, and gene expression. Culturing hBMSCs using a particular environmental factor (hypoxia and with the addition of FGF-2 increased the cellular proliferation rate while enhancing the regenerative potential, modulated the multipotency-related processes (enhanced chondrogenesis-related processes/osteogenesis, but reduced adipogenesis, and increased cellular migration and collagen formation. The gene expression levels in the experimental samples showed activation of the hypoxia-inducible factor-1 pathway and glycolysis in the hypoxic condition, with this not being affected by the addition of FGF-2. The concurrent application of hypoxia and FGF-2 could provide a favorable condition for culturing hBMSCs to be used in clinical applications associated with bone tissue engineering, due to the enhancement of cellular proliferation and regenerative potential. Keywords: Bone marrow stromal cells, Hypoxia, Fibroblast growth factor, Tissue regeneration, Microenvironment interactions

  20. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, L. A. [University of Erlangen-Nuremberg Medical Center, Department of Plastic and Hand Surgery (Germany); Hild, N.; Mohn, D.; Stark, W. J. [ETH Zurich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering (Switzerland); Hoppe, A. [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany); Gbureck, U. [University of Wuerzburg, Department for Functional Materials in Medicine and Dentistry (Germany); Horch, R. E.; Kneser, U. [University of Erlangen-Nuremberg Medical Center, Department of Plastic and Hand Surgery (Germany); Boccaccini, A. R., E-mail: aldo.boccaccini@ww.uni-erlangen.de [University of Erlangen-Nuremberg, Department of Materials Science and Engineering, Institute of Biomaterials (Germany)

    2013-07-15

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 {mu}g/cm Superscript-Two (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 {mu}g/cm Superscript-Two , Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

  1. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    International Nuclear Information System (INIS)

    Strobel, L. A.; Hild, N.; Mohn, D.; Stark, W. J.; Hoppe, A.; Gbureck, U.; Horch, R. E.; Kneser, U.; Boccaccini, A. R.

    2013-01-01

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30–35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes

  2. Maturation disparity between hand-wrist bones in a Chinese sample of normal children: An analysis based on automatic boneXpert and manual Greulich and Pyle atlas assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ji; Dig, Xiao Yi [Dept. of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Lin, Fang Qin [Dept. of Radiology, Shanghai Children' s Hospital, Shanghai Jiao Tong University, Shanghai (China)

    2016-06-15

    To assess the maturation disparity of hand-wrist bones using the BoneXpert system and Greulich and Pyle (GP) atlas in a sample of normal children from China. Our study included 229 boys and 168 girls aged 2 - 14 years. The bones in the hand and wrist were divided into five groups: distal radius and ulna, metacarpals, proximal phalanges, middle phalanges and distal phalanges. Bone age (BA) was assessed separately using the automatic BoneXpert and GP atlas by two raters. Differences in the BA between the most advanced and retarded individual bones and bone groups were analyzed. In 75.8% of children assessed with the BoneXpert and 59.4% of children assessed with the GP atlas, the BA difference between the most advanced and most retarded individual bones exceeded 2.0 years. The BA mean differences between the most advanced and most retarded individual bones were 2.58 and 2.25 years for the BoneXpert and GP atlas methods, respectively. Furthermore, for both methods, the middle phalanges were the most advanced group. The most retarded group was metacarpals for BoneXpert, while metacarpals and the distal radius and ulna were the most retarded groups according to the GP atlas. Overall, the BAs of the proximal and distal phalanges were closer to the chronological ages than those of the other bone groups. Obvious and regular maturation disparities are common in normal children. Overall, the BAs of the proximal and distal phalanges are more useful for BA estimation than those of the other bone groups.

  3. Low radiation dose impact on human bone mineral density

    International Nuclear Information System (INIS)

    Zaichick, V.E.

    2002-01-01

    Immediately after the Chernobyl Nuclear Power Plant disaster it was assumed that osteoporosis would develop in a few young adult males (the so-called 'cleaners') who took part in the cleanup operations. The following factors were taken into consideration: Low external irradiation of whole body including skeleton; Non-uniform irradiation of thyroid and parathyroid glands by iodine radionuclides, as well as the different radiosensitivity of these organs (imbalance of parathormone and calcitonine); Intoxication from lead dropped from helicopters into the destroyed reactor as well as cadmium, a constituent of the nuclear reactor construction (a suppressive action of Pb and Cd on normal growth and the functioning of osteoblasts); Chronic stress arising in the cleaners following a huge amount of negative information from the mass media about the unhealthy consequences of exposure (imbalance of Ca-regulating hormones, including an excess of glucocorticoids). Despite substantiated assumption, all the efforts of national and international programs during the after-disaster period were mostly aimed at early diagnoses of thyroid and blood diseases. No attention was paid to osteoporosis problems of the cleaners. Only since 1997, the DXA method (Bone Densitometer LUNAR DPX-L) has been used to determine spinal and femoral BMD. To date, 162 men aged 30 to 50 have been examined, that is, those who were 18 to 35 years old during cleanup operations. In addition, the total body composition (tissue, fat, lean, BMD, BMC) as well as height and body mass was determined by DXA in every subject. A control group consisted of 188 randomly selected healthy men of the same age. Using the T score and the WHO recommendation changes in either spinal or femoral BMD that could be classified as osteopenia (77 cleaners, 47.5 %) and osteoporosis (9 cleaners, 5.6 %) were found in 86 of 162 cleaners. No great changes in height and body composition were found in cleaners. The incidence of osteopenia and

  4. Acetabular reconstruction with human and bovine freeze-dried bone grafts and a reinforcement device

    Directory of Open Access Journals (Sweden)

    Ricardo Rosito

    2008-01-01

    Full Text Available BACKGROUND: This is a cohort trial (1997-2005 of 49 patients submitted to an acetabular component revision of a total hip arthroplasty, using impacted human and bovine freeze-dried cancellous bone grafts (H&FDBG and a reinforcement device. OBJECTIVE: To compare clinical/radiographic graft incorporation capability between cancellous bone grafts. PATIENTS/METHODS: There were two groups: I (n=26 receiving human grafts and II (n=25 receiving bovine grafts. The average follow-up times were 55 and 49 months, respectively. Clinical analysis was based on the Merle d'Aubigné and Postel score, and the radiographic analysis involved an established score based on Conn's et al. criteria for radiographic bone incorporation. RESULTS: No clinical/radiographic differences were found between the groups and both showed an overall rate of 88.5% and 76% of graft incorporation (p=0.424. CONCLUSION: The results presented here are comparable to those in the literature with the use of deep-FG. Therefore, cancellous bone grafts can be safely and adequately used in acetabular component revision in total hip arthroplasty.

  5. Human histologic evaluation of anorganic bovine bone mineral combined with recombinant human platelet-derived growth factor BB in maxillary sinus augmentation: case series study.

    Science.gov (United States)

    Nevins, Myron; Garber, David; Hanratty, James J; McAllister, Bradley S; Nevins, Marc L; Salama, Maurice; Schupbach, Peter; Wallace, Steven; Bernstein, Simon M; Kim, David M

    2009-12-01

    The objective of this proof-of-principle study was to examine the potential for improved bone regenerative outcomes in maxillary sinus augmentation procedures when recombinant human platelet-derived growth factor BB (0.3 mg/mL) is combined with particulate anorganic bovine bone mineral. The surgical outcomes in all treated sites were uneventful at 6 to 8 months, with sufficient regenerated bone present to allow successful placement of maxillary posterior implants. Large areas of dense, well-formed lamellar bone were seen throughout the intact core specimens in more than half of the grafted sites. Abundant numbers of osteoblasts were noted in concert with significant osteoid in all sites, indicating ongoing osteogenesis. A number of cores demonstrated efficient replacement of the normally slowly resorbing anorganic bovine bone mineral matrix particles with newly formed bone when the matrix was saturated with recombinant human platelet-derived growth factor BB.

  6. Trace-element measurement in human blood samples

    International Nuclear Information System (INIS)

    Hamidian, M.R.; Ebrahimi-Fakhar, F.

    1992-01-01

    It is conceivable that some essential elements such as zinc, iron, calcium, copper, phosphorus, selenium, etc., have a major impact on biological and metabolical functions in the human body. The concentration of these elements is normally very minute and changes within a naturally set tolerance. The accurate measurement of these elements in biological samples, such as in blood, is one of the objectives of medical physics in diagnosis. There are many sophisticated methods to measure the accurate amount of each element in biological samples. The methods used in this project are a combination of proton-induced X-ray emission (PIXE) and neutron activation analysis (NAA). The PIXE and NAA are fast and reliable techniques for multielement analysis at the level of parts per million and less

  7. [In vitro activity of human bone marrow cells after cryopreservation in liquid nitrogen for 21 - 25 years].

    Science.gov (United States)

    Huang, You-Zhang; Shen, Jian-Liang; Gong, Li-Zhong; Zheng, Pei-Hao; Liu, Yi; Yin, Wen-Jie; Cen, Jian; Wang, Ning; Zhao, De-Feng

    2010-02-01

    The aim of this study was to investigate the best method to preserve human bone marrow cells and the effectiveness of long term cryopreservation at -80 degrees C. The human bone marrow cells in 20 samples were firstly frozen by a programmed freezer or -80 degrees C refrigerator, and then were preserved in liquid nitrogen with DMSO-AuP (10% dimethylsulfonamide, 10% autologous plasma) or DMSO-HES-HuA (5% dimethylsulfonamide, 6% hydroxyethyl starch, 4% human serum albumin) as cryoprotectant for 21 to 25 years. They were thawed in 38 degrees C. The cell sample frozen in -80 degrees C refrigerator was frozen at a low frozen speed of 1 degrees C/min which was the same as the programmed freezer before -30 degrees C. Before detection the bone marrow cells were taken from liquid nitrogen and were thawed in 38 degrees C, then the suspension of bone marrow cells was prepared for detection. The cell morphology and recovery rate of erythrocytes, nucleocytes and platelets; the recovery rate of hematopoietic stem progenitors cells, as well as mesenchymal stem cells were determined. The results showed that the protective effectiveness of DMSO-HES-HuA was better than DMSO-AuP. The mature erythrocytes were destroyed lightly [(3.5 +/- 1.5)% versus (12.6 +/- 4.8)%], the hemolysis rate was lower [(3.3 +/- 1.6)% versus (23.1 +/- 5.1)%]. Osmotic fragility of erythrocytes in the former was not changed, but was dropped in the latter. The recovery rates of red cell, platelet, granulocyte-macrophage colony forming units and long term culture-initiating cells were higher in the former than that in the latter [(96.1 +/- 1.8)%, (70.0 +/- 9.5)%, (49.2 +/- 10.9)%, (54.2 +/- 13.8)% versus (76.3 +/- 5.6)%, (52.7 +/- 8.1)%, (43.5 +/- 12.3)%, (47.2 +/- 13.6)% respectively]. With each kind of cryoprotectant or frozen method, the frozen MSC could keep the original growth properties. With the same cryoprotectant and different frozen method, the cryopreservative effectiveness was not different. The

  8. Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia

    International Nuclear Information System (INIS)

    Almayahi, B.A.; Tajuddin, A.A.; Jaafar, M.S.

    2014-01-01

    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm −2 and 0.061 ± 0.008 mBq cm −2 , whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm −2 and 0.7700 ± 0.0282 mBq cm −2 , respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm −2 , whereas that of female teeth was 0.0199 ± 0.0010 mBq cm −2 . The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm −2 ) than in non-smokers (0.0179 ± 0.0008 mBq cm −2 ). Such difference was found statistically significant (p < 0.01). - Highlights: • Alpha emission rates in teeth from smokers slightly higher than non-smokers. • Difference between alpha rates in male and female tooth not statistically significant. • Alpha particles have the same effect at any age. • Difference between alpha rates in bones was statistically significant

  9. Human Papillomavirus Detection from Human Immunodeficiency Virus-Infected Colombian Women's Paired Urine and Cervical Samples

    Science.gov (United States)

    Munoz, Marina; Camargo, Milena; Soto-De Leon, Sara C.; Sanchez, Ricardo; Parra, Diana; Pineda, Andrea C.; Sussmann, Otto; Perez-Prados, Antonio; Patarroyo, Manuel E.; Patarroyo, Manuel A.

    2013-01-01

    Infection, coinfection and type-specific human papillomavirus (HPV) distribution was evaluated in human immunodeficiency virus (HIV)-positive women from paired cervical and urine samples. Paired cervical and urine samples (n = 204) were taken from HIV-positive women for identifying HPV-DNA presence by using polymerase chain reaction (PCR) with three generic primer sets (GP5+/6+, MY09/11 and pU1M/2R). HPV-positive samples were typed for six high-risk HPV (HR-HPV) (HPV-16, -18, -31, -33, -45 and -58) and two low-risk (LR-HPV) (HPV-6/11) types. Agreement between paired sample results and diagnostic performance was evaluated. HPV infection prevalence was 70.6% in cervical and 63.2% in urine samples. HPV-16 was the most prevalent HPV type in both types of sample (66.7% in cervical samples and 62.0% in urine) followed by HPV-31(47.2%) in cervical samples and HPV-58 (35.7%) in urine samples. There was 55.4% coinfection (infection by more than one type of HPV) in cervical samples and 40.2% in urine samples. Abnormal Papanicolau smears were observed in 25.3% of the women, presenting significant association with HPV-DNA being identified in urine samples. There was poor agreement of cervical and urine sample results in generic and type-specific detection of HPV. Urine samples provided the best diagnosis when taking cytological findings as reference. In conclusion including urine samples could be a good strategy for ensuring adherence to screening programs aimed at reducing the impact of cervical cancer, since this sample is easy to obtain and showed good diagnostic performance. PMID:23418581

  10. Application of INAA in the assessment of selected elements in cancellous bone of human iliac crest

    International Nuclear Information System (INIS)

    Zaichick, V.

    2007-01-01

    The effect of age and sex was investigated on the concentration of chemical elements in intact cancellous bone of iliac crest of 74 relatively healthy, 15-55 years old women (n = 29) and men (n = 45). Concentrations of Ca, Cl, K, Mg, Mn, Na, P, and Sr in bone samples were determined by instrumental neutron activation analysis using short-lived radionuclides. Mean values (M±S.E.M.) of the mass fraction of the investigated elements (on dry weight basis) for female and male all together were: 127±4 g/kg, 1620±80 mg/kg, 1310±70 mg/kg, 1550±50 mg/kg, <0.32±0.02 mg/kg, 4240±110 mg/kg, 61.8±1.8 g/kg, and 235±18 mg/kg, respectively. The statistically significant (≤0.05) decrease of Ca, Mg, and P concentrations in the iliac cancellous bone with age was found only for women. Sex-related comparison has shown that the mean values of Mg mass fractions in male bone samples were less than in female ones. (author)

  11. Identification and Characterization of Plasma Cells in Normal Human Bone Marrow by High-Resolution Flow Cytometry

    NARCIS (Netherlands)

    Terstappen, Leonardus Wendelinus Mathias Marie; Johnsen, Steen; Segers-Nolten, Gezina M.J.; Loken, Michael R.

    1990-01-01

    The low frequency of plasma cells and the lack of specific cell surface markers has been a major obstacle for a detailed characterization of plasma cells in normal human bone marrow. Multiparameter flow cytometry enabled the identification of plasma cells in normal bone marrow aspirates. The plasma

  12. Comparison of naturally occurring and ligature-induced peri-implantitis bone defects in humans and dogs.

    NARCIS (Netherlands)

    Schwarz, F.; Herten, M. van; Sager, M.; Bieling, K.; Sculean, A.; Becker, J.

    2007-01-01

    OBJECTIVES: The aim of the present study was to evaluate and compare naturally occuring and ligature-induced peri-implantitis bone defects in humans and dogs. MATERIAL AND METHODS: Twenty-four partially and fully edentulous patients undergoing peri-implant bone augmentation procedures due to

  13. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures.

    Science.gov (United States)

    Amaral, M; Dias, A G; Gomes, P S; Lopes, M A; Silva, R F; Santos, J D; Fernandes, M H

    2008-10-01

    Nanocrystalline diamond (NCD) has a great potential for prosthetic implants coating. Nevertheless, its biocompatibility still has to be better understood. To do so, we employed several materials characterization techniques (SEM, AFM, micro-Raman spectroscopy) and cell culture assays using MG63 osteoblast-like and human bone marrow cells. Biochemical routines (MTT assays, Lowry's method, ALP activity) supported by SEM and confocal microscopy characterization were carried out. We used silicon nitride (Si3N4) substrates for NCD coatings based on a previous demonstration of the superior adhesion and tribological performance of these NCD coated ceramics. Results demonstrate an improved human osteoblast proliferation and the stimulation of differentiated markers, like ALP activity and matrix mineralization, compared with standard polystyrene tissue culture plates. The nanometric featuring of NCD, associated to its chemical affinity are key points for bone regeneration purposes.

  14. The Plastic Nature of the Human Bone-Periodontal Ligament-Tooth Fibrous Joint

    Science.gov (United States)

    Ho, Sunita P.; Kurylo, Michael P.; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I.; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q. (Jerry); Webb, Samuel; Marshall, Grayson W.; Curtis, Donald; Andrews, Joy C.; Pianetta, Piero

    2014-01-01

    This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano transmission X-ray microscopy (nano-TXM), and micro tomography (Micro XCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8 GPa) compared to lamellar bone (0.8-6 GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30 μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947

  15. ALP gene expression in cDNA samples from bone tissue engineering using a HA/TCP/Chitosan scaffold

    Science.gov (United States)

    Stephanie, N.; Katarina, H.; Amir, L. R.; Gunawan, H. A.

    2017-08-01

    This study examined the potential use of hydroxyapatite (HA)/tricalcium phosphate (TCP)/Chitosan as a bone tissue engineering scaffold. The potential for using HA/TCP/chitosan as a scaffold was analyzed by measuring expression of the ALP osteogenic gene in cDNA from bone biopsies from four Macaque nemestrina. Experimental conditions included control (untreated), treatment with HA/TCP 70:30, HA/TCP 50:50, and HA/TCP/chitosan. cDNA samples were measured quantitively with Real-Time PCR (qPCR) and semi-quantitively by gel electrophoresis. There were no significant differences in ALP gene expression between treatment subjects after two weeks, but the HA/TCP/chitosan treatment gave the highest level of expression after four weeks. The scaffold using the HA/TCP/chitosan combination induced a higher level of expression of the osteogenic gene ALP than did scaffold without chitosan.

  16. Effect of polygonimitin C on bone formation and resorption in human ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of polygonimitin C (PC) on bone formation and resorption in human osteoblast-like MG63 cells. Methods: MG63 cells were treated with PC at doses of 0, 20, 40 or 80 μg/mL for 48 h, with an untreated group as control. The effect of PC on alkaline phosphatase (ALP) activity in MG63 cells ...

  17. Neutrophil Extracellular Traps and Fibrin in Otitis Media: Analysis of Human and Chinchilla Temporal Bones.

    Science.gov (United States)

    Schachern, Patricia A; Kwon, Geeyoun; Briles, David E; Ferrieri, Patricia; Juhn, Steven; Cureoglu, Sebahattin; Paparella, Michael M; Tsuprun, Vladimir

    2017-10-01

    Bacterial resistance in acute otitis can result in bacterial persistence and biofilm formation, triggering chronic and recurrent infections. To investigate the middle ear inflammatory response to bacterial infection in human and chinchilla temporal bones. Six chinchillas underwent intrabullar inoculations with 0.5 mL of 106 colony-forming units (CFUs) of Streptococcus pneumoniae, serotype 2. Two days later, we counted bacteria in middle ear effusions postmortem. One ear from each chinchilla was processed in paraffin and sectioned at 5 µm. The opposite ear was embedded in epoxy resin, sectioned at a thickness of 1 µm, and stained with toluidine blue. In addition, we examined human temporal bones from 2 deceased donors with clinical histories of otitis media (1 with acute onset otitis media, 1 with recurrent infection). Temporal bones had been previously removed at autopsy, processed, embedded in celloidin, and cut at a thickness of 20 µm. Sections of temporal bones from both chinchillas and humans were stained with hematoxylin-eosin and immunolabeled with antifibrin and antihistone H4 antibodies. Histopatological and imminohistochemical changes owing to otitis media. Bacterial counts in chinchilla middle ear effusions 2 days after inoculation were approximately 2 logs above initial inoculum counts. Both human and chinchilla middle ear effusions contained bacteria embedded in a fibrous matrix. Some fibers in the matrix showed positive staining with antifibrin antibody, others with antihistone H4 antibody. In acute and recurrent otitis media, fibrin and neutrophil extracellular traps (NETs) are part of the host inflammatory response to bacterial infection. In the early stages of otitis media the host defense system uses fibrin to entrap bacteria, and NETs function to eliminate bacteria. In chronic otitis media, fibrin and NETs appear to persist.

  18. Morphological studies at subchondral bone structures in human early arthrosis. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    Quantitative histomorphometric studies using an image analysis system were performed simultaneously on hyaline cartilage, calcified cartilage and subchondral cancellous bone of human tibial heads for detailed information about the pathogenesis of arthrosis. Joint structures need to be fully detected in three dimensions since measurement values are more affected by topographical aspects than by either age, or sex, or arthrosin stage. Mechanical factors were found to affect essentially the initiation and progression of arthrosis. Results are demonstrated in detail. (orig.) [de

  19. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells

    OpenAIRE

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 week...

  20. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    OpenAIRE

    Ding Ding; Youtao Xie; Kai Li; Liping Huang; Xuebin Zheng

    2018-01-01

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were co...

  1. FANTOM5 CAGE profiles of human and mouse samples

    KAUST Repository

    Noguchi, Shuhei

    2017-08-29

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

  2. FANTOM5 CAGE profiles of human and mouse samples

    KAUST Repository

    Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro; Furuno, Masaaki; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Kaida, Kaoru; Kaiho, Ai; Kanamori-Katayama, Mutsumi; Kawashima, Tsugumi; Sakai, Mizuho; Simon, Christophe; Suzuki, Naoko; Tagami, Michihira; Watanabe, Shoko; Yoshida, Shigehiro; Arner, Peter; Axton, Richard A.; Babina, Magda; Baillie, J. Kenneth; Mummery, Christine L.; Barnett, Timothy C.; Beckhouse, Anthony G.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Carlisle, Ailsa J.; Clevers, Hans C.; Davis, Carrie A.; Nakachi, Yutaka; Detmar, Michael; Dohi, Taeko; Edge, Albert S.B.; Edinger, Matthias; Ehrlund, Anna; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Eslami, Afsaneh; Fagiolini, Michela; Nakahara, Fumio; Fairbairn, Lynsey; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley M.; Fujita, Rie; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gingeras, Thomas; Nakamura, Toshiyuki; Goldowitz, Daniel; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Hasegawa, Yuki; Herlyn, Meenhard; Heutink, Peter; Nakamura, Yukio; Hitchens, Kelly J.; Hume, David A.; Ikawa, Tomokatsu; Orlando, Valerio; Kai, Chieko; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Nozaki, Tadasuke; Khachigian, Levon M.; Kitamura, Toshio; Klein, Sarah; Klinken, S. Peter; Knox, Alan J.; Kojima, Soichi; Koseki, Haruhiko; Koyasu, Shigeo; Lee, Weonju; Lennartsson, Andreas; Ogishima, Soichi; Mackay-sim, Alan; Mejhert, Niklas; Mizuno, Yosuke; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Morris, Kelly J.; Motohashi, Hozumi; Ohkura, Naganari; Ohno, Hiroshi; Ohshima, Mitsuhiro; Kojima, Miki; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Pradhan-Bhatt, Swati; Qin, Xian-Yang; Rehli, Michael; Kubosaki, Atsutaka; Rizzu, Patrizia; Roy, Sugata; Sajantila, Antti; Sakaguchi, Shimon; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schmidl, Christian; Schneider, Claudio; Manabe, Ri-ichiroh; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sheng, Guojun; Shin, Jay W.; Sugiyama, Daisuke; Sugiyama, Takaaki; Summers, Kim M.; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Murata, Mitsuyoshi; Tatsukawa, Hideki; Tomoiu, Andru; Toyoda, Hiroo; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Nagao-Sato, Sayaka; Yamaguchi, Yoko; Yamamoto, Masayuki; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Yonekura, Yohei; Zhang, Peter G.; Zucchelli, Silvia; Abugessaisa, Imad; Arner, Erik; Harshbarger, Jayson; Nakazato, Kenichi; Kondo, Atsushi; Lassmann, Timo; Lizio, Marina; Sahin, Serkan; Sengstag, Thierry; Severin, Jessica; Shimoji, Hisashi; Suzuki, Masanori; Suzuki, Harukazu; Kawai, Jun; Ninomiya, Noriko; Kondo, Naoto; Itoh, Masayoshi; Daub, Carsten O.; Kasukawa, Takeya; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R.R.; Hayashizaki, Yoshihide; Nishiyori-Sueki, Hiromi; Noma, Shohei; Saijyo, Eri; Saka, Akiko

    2017-01-01

    In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

  3. Spectrophotometric assay of creatinine in human serum sample

    Directory of Open Access Journals (Sweden)

    Avinash Krishnegowda

    2017-05-01

    Full Text Available A new spectrophotometric method for the analysis of creatinine concentration in human serum samples is developed. The method explores the oxidation of p-methylamino phenol sulfate (Metol in the presence of copper sulfate and creatinine which yields an intense violet colored species with maximum absorbance at 530 nm. The calibration graph of creatinine by fixed time assay ranged from 4.4 to 620 μM. Recovery of creatinine in human serum samples varied from 101% to 106%. Limit of detection and limit of quantification were 0.145 μM and 0.487 μM respectively. Sandell’s sensitivity was 0.112 μg cm−2 and molar absorptivity was 0.101 × 104 L mol−1 cm−1. Within day precision was 2.5–4.8% and day-to-day precision range was 3.2–7.8%. The robustness and ruggedness of the method expressed in RSD values ranged from 0.78% to 2.12% and 1.32% to 3.46% respectively, suggesting that the developed method was rugged. This method provides good sensitivity and is comparable to standard Jaffe’s method with comparatively less interference from foreign substances.

  4. Diagnosis of visceral leishmaniasis by the polymerase chain reaction using blood, bone marrow and lymph node samples from patients from the Sudan

    DEFF Research Database (Denmark)

    Andresen, K; Gasim, S; Elhassan, A M

    1997-01-01

    We have evaluated the sensitivity of the polymerase chain reaction (PCR) as a diagnostic tool for Leishmania donovani using blood, bone marrow and lymph node samples from Sudanese patients with a confirmed infection. Forty patients were diagnosed by microscopic examination of bone marrow or lymph...

  5. Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry

    International Nuclear Information System (INIS)

    Hirata, Takafumi; Tanoshima, Mina; Suga, Akinobu; Tanaka, Yu-ki; Nagata, Yuichi; Shinohara, Atsuko; Chiba, Momoko

    2008-01-01

    The biological processing of Ca produces significant stable isotope fractionation. The level of isotopic fractionation can provide key information about the variation in dietary consumption or Ca metabolism. To investigate this, we measured the 43 Ca/ 42 Ca and 44 Ca/ 42 Ca ratios for bone and blood plasma samples collected from mice of various ages using multiple collector-ICP-mass spectrometry (MC-ICP-MS). The 44 Ca/ 42 Ca ratio in bones was significantly (0.44 - 0.84 per mille) lower than the corresponding ratios in the diet, suggesting that Ca was isotopically fractionated during Ca metabolism for bone formation. The resulting 44 Ca/ 42 Ca ratios for blood plasma showed almost identical, or slightly higher, values (0.03 - 0.2 per mille) than found in a corresponding diet. This indicates that a significant amount of Ca in the blood plasma was from dietary sources. Unlike that discovered for Fe, there were not significant differences in the measured 44 Ca/ 42 Ca ratios between female and male specimens (for either bone or blood plasma samples). Similarity, the 44 Ca/ 42 Ca ratios suggests that there were no significant differences in Ca dietary consumption or Ca metabolism between female and male specimens. In contrast, the 44 Ca/ 42 Ca ratios of blood plasma from mother mice during the lactation period were significantly higher than those for all other adult specimens. This suggests that Ca supplied to infants through lactation was isotopically lighter, and the preferential supply of isotropically lighter Ca resulted in isotopically heavier Ca in blood plasma of mother mice during the lactation period. The data obtained here clearly demonstrate that the Ca isotopic ratio has a potential to become a new tool for evaluating changes in dietary consumption, or Ca metabolism of animals. (author)

  6. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    Science.gov (United States)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  7. Trace elements distribution and post-mortem intake in human bones from Middle Age by total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Carvalho, M.L.; Marques, A.F.; Lima, M.T.; Reus, U.

    2004-01-01

    The purpose of the present work is to investigate the suitability of TXRF technique to study the distribution of trace elements along human bones of the 13th century, to conclude about environmental conditions and dietary habits of old populations and to study the uptake of some elements from the surrounding soil. In this work, we used TXRF to quantify and to make profiles of the elements through long bones. Two femur bones, one from a man and another from a woman, buried in the same grave were cross-sectioned in four different points at a distance of 1 cm. Microsamples of each section were taken at a distance of 1 mm from each other. Quantitative analysis was performed for Ca, Mn, Fe, Cu, Zn, Sr, Ba and Pb. Very high concentrations of Mn and Fe were obtained in the whole analysed samples, reaching values higher than 2% in some samples of trabecular tissue, very much alike to the concentrations in the burial soil. A sharp decrease for both elements was observed in cortical tissue. Zn and Sr present steady concentration levels in both kinds of bone tissues. Pb and Cu show very low concentrations in the inner tissue of cortical bone. However, these concentrations increase in the regions in contact to trabecular tissue and external surface in contact with the soil, where high levels of both elements were found. We suggest that contamination from the surrounding soil exists for Mn and Fe in the whole bone tissue. Pb can be both from post-mortem and ante-mortem origin. Inner compact tissue might represent in vivo accumulation and trabecular one corresponds to uptake during burial. The steady levels of Sr and Zn together with soil concentration lower levels for these elements may allow us to conclude that they are originated from in vivo incorporation in the hydroxyapatite bone matrix

  8. Instrumental activation and X-ray fluorescent analysis of human bone in health and disease

    International Nuclear Information System (INIS)

    Zaichick, V.Y.

    1994-01-01

    A complex of methods for the in-vitro and in-vivo bone analysis was developed. Among the in-vitro methods are: INAA with reactor and 14 MeV neutrons, IGAA with 25 MeV linear accelerator; XRF with 55 Fe, 109 Cd, 241 Am radionuclide sources. Twenty-five elements could be analyzed by it: N, F, Na, Mg, P, Cl, K, Ca, Sc, Cr, Mn, Fe, Co, Zn, Se, Br, Rb, Sr, Ag, Sb, Cs, Ba, Tb, Hg, and Pb. Among the in-vivo methods are: INAA of band, foot and spine Ca and limb bone tumour Ca, Na and Cl with 238 Pu-Be neutron sources; IGAA of N and P in limb bone tumours; XRF of tooth Ca, Zn, Sr and Pb with 109 Cs radionuclide sources. The methods developed were used both in clinical and experimental medicine for studying the healthy human and animal bone with different diseases and environmental influence. (author) 28 refs.; 7 tabs

  9. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    Science.gov (United States)

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  10. Changes of the proliferation kinetics of human bone marrow in vivo through hydroxyurea

    International Nuclear Information System (INIS)

    Ertl, E.

    1982-01-01

    A 10-hour oral continuous infusion with hydroxyurea (HU) at a non-toxic concentration was performed in 20 malignoma patients with undisturbed bone marrow. Bone marrow taken before, during and after HU-administration was examined for 3H-TdR incorporation by means of autoradiography and liquid scintimetry, for cell phase distribution by means of flow cytophotometry, morphologically and by means of CFUc. 3H-TdR incorporation into bone marrow cells dropped to 16% of the initial value under HU and rose to 156% 10 h after HU-effect terminated. Cytophotometry did not furnish any proof of a decrease of S-phase cells or increase of cells in G 1 -to-S-transition during HU. S-cells rise to 129% of the initial value 10 h after having fallen below minimum inhibition concentration. Under HU, there is an equal number of cells in S which incorporate much less 3H-thymidine; after HU more S-cells incorporate more 3H-thymidine than before HU. During HU action, DNA synthesis activity is reduced to 17% and reaches the initial value with 105% afterwards. In human bone marrow, hydroxyurea in non-toxic concentration causes a temporary DNA synthesis inhibition in terms of activity reduction and partial arrest in S. A stop-and-go of the cell cycle effected by HU does not occur; the effect is rather a slow-down of DNA synthesis. (orig./MG) [de

  11. Bone Morphogenetic Protein (BMP-7 expression is decreased in human hypertensive nephrosclerosis

    Directory of Open Access Journals (Sweden)

    Cohen Clemens D

    2010-11-01

    Full Text Available Abstract Background Bone Morphogenetic Protein (BMP-7 is protective in different animal models of acute and chronic kidney disease. Its role in human kidneys, and in particular hypertensive nephrosclerosis, has thus far not been described. Methods BMP-7 mRNA was quantified using real-time PCR and localised by immunostaining in tissue samples from normal and nephrosclerotic human kidneys. The impact of angiotensin (AT-II and the AT-II receptor antagonist telmisartan on BMP-7 mRNA levels and phosphorylated Smad 1/5/8 (pSmad 1/5/8 expression was quantified in proximal tubular cells (HK-2. Functional characteristics of BMP-7 were evaluated by testing its influence on TGF-β induced epithelial-to-mesenchymal transition (EMT, expression of TGF-β receptor type I (TGF-βRI and phosphorylated Smad 2 (pSmad 2 as well as on TNF-α induced apoptosis of proximal tubular cells. Results BMP-7 was predominantly found in the epithelia of the distal tubule and the collecting duct and was less abundant in proximal tubular cells. In sclerotic kidneys, BMP-7 was significantly decreased as demonstrated by real-time PCR and immunostaining. AT-II stimulation in HK-2 cells led to a significant decrease of BMP-7 and pSmad 1/5/8, which was partially ameliorated upon co-incubation with telmisartan. Only high concentrations of BMP-7 (100 ng/ml were able to reverse TNF-α-induced apoptosis and TGF-β-induced EMT in human proximal tubule cells possibly due to a decreased expression of TGF-βRI. In addition, BMP-7 was able to reverse TGF-β-induced phosphorylation of Smad 2. Conclusions The findings suggest a protective role for BMP-7 by counteracting the TGF-β and TNF-α-induced negative effects. The reduced expression of BMP-7 in patients with hypertensive nephrosclerosis may imply loss of protection and regenerative potential necessary to counter the disease.

  12. Effect of boron on osteogenic differentiation of human bone marrow stromal cells.

    Science.gov (United States)

    Ying, Xiaozhou; Cheng, Shaowen; Wang, Wei; Lin, Zhongqin; Chen, Qingyu; Zhang, Wei; Kou, Dongquan; Shen, Yue; Cheng, Xiaojie; Rompis, Ferdinand An; Peng, Lei; Zhu Lu, Chuan

    2011-12-01

    Bone marrow stromal cells (BMSCs) have been well established as an ideal source of cell-based therapy for bone tissue engineering applications. Boron (B) is a notable trace element in humans; so far, the effects of boron on the osteogenic differentiation of BMSCs have not been reported. The aim of this study was to evaluate the effects of boron (0, 1, 10,100, and 1,000 ng/ml) on osteogenic differentiation of human BMSCs. In this study, BMSCs proliferation was analyzed by cell counting kit-8 (CCK8) assay, and cell osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity assay, Von Kossa staining, and real-time PCR. The results indicated that the proliferation of BMSCs was no different from the control group when added with B at the concentration of 1, 10, and 100 ng/ml respectively (P > 0.05); in contrast, 1,000 ng/ml B inhibited the proliferation of BMSCs at days 4, 7, and 14 (P < 0.05). By ALP staining, we discovered that BMSCs treated with 10 and 100 ng/ml B presented a higher ALP activity compared with control (P < 0.05). By real-time PCR, we detected the messenger RNA expression of ALP, osteocalcin, collagen type I, and bone morphogenetic proteins 7 were also increased in 10 and 100 ng/ml B treatment groups (P < 0.05). The calcium depositions were increased in 1 and 10 ng/ml B treatment groups (P < 0.05). Taken all together, it was the first time to report that B could increase osteogenic effect by stimulating osteogenic differentiation-related marker gene synthesis during the proliferation and differentiation phase in human BMSCs and could be a promising approach for enhancing osteogenic capacity of cell-based construction in bone tissue engineering.

  13. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    International Nuclear Information System (INIS)

    Tsuno, Hiroaki; Yoshida, Toshiko; Nogami, Makiko; Koike, Chika; Okabe, Motonori; Noto, Zenko; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2012-01-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAMα cells and induced to osteogenic status—their in vivo osteogenesis was subsequently investigated in rats. It was found that HAMα cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAMα cells. The expression of osteocalcin mRNA was increased in HAMα cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAMα cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: ► Human amniotic mesenchymal cells include cells (HAMα cells) that have the properties of MSCs. ► HAMα cells have excellent osteogenic differentiation potential. ► Osteogenic differentiation ability of HAMα was amplified by calcium phosphate scaffolds. ► HAMα cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  14. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: tnikaido@med.u-toyama.ac.jp [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)

    2012-12-01

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  15. Human periodontal ligament stem cells cultured onto cortico-cancellous scaffold drive bone regenerative process

    Directory of Open Access Journals (Sweden)

    F Diomede

    2016-09-01

    Full Text Available The purpose of this work was to test, in vitro and in vivo, a new tissue-engineered construct constituted by porcine cortico-cancellous scaffold (Osteobiol Dual Block (DB and xeno-free ex vivo culture of human Periodontal Ligament Stem Cells (hPDLSCs. hPDLSCs cultured in xeno-free media formulation preserved the stem cells’ morphological features, the expression of stemness and pluripotency markers, and their ability to differentiate into mesenchymal lineage. Transmission electron microscopy analysis suggested that after one week of culture, both noninduced and osteogenic differentiation induced cells joined and grew on DB secreting extracellular matrix (ECM that in osteogenic induced samples was hierarchically assembled in fibrils. Quantitative RT-PCR (qRT-PCR showed the upregulation of key genes involved in the bone differentiation pathway in both differentiated and undifferentiated hPDLSCs cultured with DB (hPDLSCs/DB. Functional studies revealed a significant increased response of calcium transients in the presence of DB, both in undifferentiated and differentiated cells stimulated with calcitonin and parathormone, suggesting that the biomaterial could drive the osteogenic differentiation process of hPDLSCs. These data were confirmed by the increase of gene expression of L-type voltage-dependent Ca2+ (VDCCL, subunits α1C and α2D1 in undifferentiated cells in the presence of DB. In vivo implantation of the hPDLSCs/DB living construct in the mouse calvaria evidenced a precocious osteointegration and vascularisation process. Our results suggest consideration of DB as a biocompatible, osteoinductive and osteoconductive biomaterial, making it a promising tool to regulate cell activities in biological environments and for a potential use in the development of new custom-made tissue engineering.

  16. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types.

    Science.gov (United States)

    Loh, Kyle M; Chen, Angela; Koh, Pang Wei; Deng, Tianda Z; Sinha, Rahul; Tsai, Jonathan M; Barkal, Amira A; Shen, Kimberle Y; Jain, Rajan; Morganti, Rachel M; Shyh-Chang, Ng; Fernhoff, Nathaniel B; George, Benson M; Wernig, Gerlinde; Salomon, Rachel E A; Chen, Zhenghao; Vogel, Hannes; Epstein, Jonathan A; Kundaje, Anshul; Talbot, William S; Beachy, Philip A; Ang, Lay Teng; Weissman, Irving L

    2016-07-14

    Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  18. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    International Nuclear Information System (INIS)

    Eneh, C. T. M.; Töyräs, J.; Jurvelin, J. S.; Malo, M. K. H.; Liukkonen, J.; Karjalainen, J. P.

    2016-01-01

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R"2 ≥ 0.493, p < 0.01 and R"2 ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo

  19. Sequencing analysis of mutations induced by N-ethyl-N-nitrosourea at different sampling times in mouse bone marrow.

    Science.gov (United States)

    Wang, Jianyong; Chen, Tao

    2010-03-01

    In our previous study (Wang et al., 2004, Toxicol. Sci. 82: 124-128), we observed that the cII gene mutant frequency (MF) in the bone marrow of Big Blue mice showed significant increase as early as day 1, reached the maximum at day 3 and then decreased to a plateau by day 15 after a single dose of carcinogen N-ethyl-N-nitrosourea (ENU) treatment, which is different from the longer mutation manifestation time and the constancy of MFs after reaching their maximum in some other tissues. To determine the mechanism underlying the quick increase in MF and the peak formation in the mutant manifestation, we examined the mutation frequencies and spectra of the ENU-induced mutants collected from different sampling times in this study. The cII mutants from days 1, 3 and 120 after ENU treatment were randomly selected from different animals. The mutation frequencies were 33, 217, 305 and 144 x 10(-6) for control, days 1, 3, and 120, respectively. The mutation spectra at days 1 and 3 were significantly different from that at day 120. Considering that stem cells are responsible for the ultimate MF plateau (day 120) and transit cells are accountable for the earlier MF induction (days 1 or 3) in mouse bone marrow, we conclude that transit cells are much more sensitive to mutation induction than stem cells in mouse bone marrow, which resulted in the specific mutation manifestation induced by ENU.

  20. An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells.

    Science.gov (United States)

    Yoshizawa, Sayuri; Chaya, Amy; Verdelis, Kostas; Bilodeau, Elizabeth A; Sfeir, Charles

    2015-12-01

    human bone marrow stromal cells seeded on collagen sponge subcutaneously in mice. After 8 weeks, samples were analyzed by microcomputed tomography and histological staining. Our data show that degrading Mg alloys are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws.

    Science.gov (United States)

    Götz, Werner; Gerber, Thomas; Michel, Barbara; Lossdörfer, Stefan; Henkel, Kai-Olaf; Heinemann, Friedhelm

    2008-10-01

    Bone substitute biomaterials may be osteogenic, osteoconductive or osteoinductive. To test for these probable characteristics in a new nanoporous grafting material consisting of nanocrystalline hydroxyapatite embedded in a porous silica gel matrix (NanoBone(s)), applied in humans, we studied biopsies from 12 patients before dental implantation following various orofacial augmentation techniques with healing times of between 3.5 and 12 months. Sections from decalcified specimens were investigated using histology, histochemistry [periodic acid Schiff, alcian blue staining and tartrate-resistant acid phosphatase (TRAP)] and immunohistochemistry, with markers for osteogenesis, bone remodelling, resorption and vessel walls (alkaline phosphatase, bone morphogenetic protein-2, collagen type I, ED1, osteocalcin, osteopontin, runx2 and Von-Willebrand factor). Histologically, four specific stages of graft transformation into lamellar bone could be characterized. During early stages of healing, bone matrix proteins were absorbed by NanoBone(s) granules, forming a proteinaceous matrix, which was invaded by small vessels and cells. We assume that the deposition of these molecules promotes early osteogenesis in and around NanoBone(s) and supports the concomitant degradation probably by osteoclast-like cells. TRAP-positive osteoclast-like cells were localized directly on the granular surfaces. Runx2-immunoreactive pre-osteoblasts, which are probably involved in direct osteogenesis forming woven bone that is later transformed into lamellar bone, were attracted. Graft resorption and bone apposition around the graft granules appear concomitantly. We postulate that NanoBone(s) has osteoconductive and biomimetic properties and is integrated into the host's physiological bone turnover at a very early stage.

  2. Identification of transcriptional macromolecular associations in human bone using browser based in silico analysis in a giant correlation matrix.

    Science.gov (United States)

    Reppe, Sjur; Sachse, Daniel; Olstad, Ole K; Gautvik, Vigdis T; Sanderson, Paul; Datta, Harish K; Berg, Jens P; Gautvik, Kaare M

    2013-03-01

    Intracellular signaling is critically dependent on gene regulatory networks comprising physical molecular interactions. Presently, there is a lack of comprehensive databases for most human tissue types to verify such macromolecular interactions. We present a user friendly browser which helps to identify functional macromolecular interactions in human bone as significant correlations at the transcriptional level. The molecular skeletal phenotype has been characterized by transcriptome analysis of iliac crest bone biopsies from 84 postmenopausal women through quantifications of ~23,000 mRNA species. When the signal levels were inter-correlated, an array containing >260 million correlations was generated, thus recognizing the human bone interactome at the RNA level. The matrix correlation and p values were made easily accessible by a freely available online browser. We show that significant correlations within the giant matrix are reproduced in a replica set of 13 male vertebral biopsies. The identified correlations differ somewhat from transcriptional interactions identified in cell culture experiments and transgenic mice, thus demonstrating that care should be taken in extrapolating such results to the in vivo situation in human bone. The current giant matrix and web browser are a valuable tool for easy access to the human bone transcriptome and molecular interactions represented as significant correlations at the RNA-level. The browser and matrix should be a valuable hypothesis generating tool for identification of regulatory mechanisms and serve as a library of transcript relationships in human bone, a relatively inaccessible tissue. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Preliminary Study to Test the Feasibility of Sex Identification of Human (Homo sapiens) Bones Based on Differences in Elemental Profiles Determined by Handheld X-ray Fluorescence.

    Science.gov (United States)

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Mahakkanukrauh, Pasuk

    2016-09-01

    Sex assignment of human remains is a crucial step in forensic anthropological studies. The aim of this study was to examine elemental differences between male and female bones using X-ray fluorescence (XRF) and determine if elemental profiling could be used for sex discrimination. Cranium, humerus, and os coxae of 60 skeletons (30 male, 30 female) from the Chiang Mai University Skeletal Collection were scanned by XRF and differences in elemental profiles between male and female bones determined using discriminant analysis. In the cranium, three elements (S, Ca, Pb) were significantly higher in males and five elements (Si, Mn, Fe, Zn, Ag) plus light elements (atomic number lower than 12) were higher in females. In humerus and os coxae, nine elements were significantly higher in male and one element was higher in female samples. The accuracy rate for sex estimation was 60, 63, and 61 % for cranium, humerus, and os coxae, respectively, and 67 % when data for all three bones were combined. We conclude that there are sex differences in bone elemental profiles; however, the accuracy of XRF analyses for discriminating between male and female samples was low compared to standard morphometric and molecular methods. XRF could be used on small samples that cannot be sexed by traditional morphological methods, but more work is needed to increase the power of this technique for gender assignment.

  4. Radiographic and Histologic Evaluation of a Bone Void that Formed After Recombinant Human Bone Morphogenetic Protein-2-Mediated Sinus Graft Augmentation: A Case Report.

    Science.gov (United States)

    Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.

  5. A high concentration of recombinant human bone morphogenetic protein-2 induces low-efficacy bone regeneration in sinus augmentation: a histomorphometric analysis in rabbits.

    Science.gov (United States)

    Hong, Ji-Youn; Kim, Min-Soo; Lim, Hyun-Chang; Lee, Jung-Seok; Choi, Seong-Ho; Jung, Ui-Won

    2016-12-01

    The aim of the study was to elucidate the efficacy of bone regeneration at the early stage of healing in rabbit sinuses grafted with a biphasic calcium phosphate (BCP) carrier soaked in a high concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2). Both maxillary sinuses of eight male rabbits were used. The sinus on one side (assigned randomly) was grafted with BCP loaded with rhBMP-2 (1.5 mg/ml; test group) using a soaking method, while the other was grafted with saline-soaked BCP (control group). After a 2-week healing period, the sinuses were analyzed by micro-computed tomography and histomorphometry. The total augmented area and soft tissue space were significantly larger in the test group than in the control group, whereas the opposite was true for the area of residual material and newly formed bone. Most of the new bone in the test group was localized to the Schneiderian membrane (SM), while very little bone formation was observed in the window and center regions of the sinus. New bone was distributed evenly in the control group sinuses. Within the limitations of this study, it appeared that application of a high concentration of rhBMP-2 soaked onto a BCP carrier inhibited bone regeneration from the pristine bone and increased soft tissue swelling and inflammatory response at the early healing stage of sinus augmentation, although osteoinductive potential was found along the SM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Antinociceptive effect of intrathecal microencapsulated human pheochromocytoma cell in a rat model of bone cancer pain.

    Science.gov (United States)

    Li, Xiao; Li, Guoqi; Wu, Shaoling; Zhang, Baiyu; Wan, Qing; Yu, Ding; Zhou, Ruijun; Ma, Chao

    2014-07-08

    Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l) lysine-alginate (APA) microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  7. Antinociceptive Effect of Intrathecal Microencapsulated Human Pheochromocytoma Cell in a Rat Model of Bone Cancer Pain

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2014-07-01

    Full Text Available Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l lysine-alginate (APA microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  8. Telomerase reverse transcriptase mediated immortalization of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Yong Teng

    2014-02-01

    Full Text Available Primary human bone marrow stromal cells (hMSCs were transfected with human telomerase reverse transcriptase (hTERT gene with lipofection method. The hTERT transfected hMSCs of passage 100 underwent chondrogenesis induction with dexamethasone, transforming the growth factor β and vitamin C, osteogenesis induction with dexamethasone, β glycerophosphoric acid and vitamin C, and cardiomyocyte induction with 5-azacytidine. After 7, 14, 21 and 28 days of induction, immunocytochemistry was performed to detect the expressions of type I and II collagen and osteocalcin, and alizarin red staining was performed to detect the bone nodule formation in osteogenesis induction. Immunocytochemistry was carried out to detect the striated muscle actin expression in cardiomyocytes. The hMSCs undergoing successful transfection were positive for the hTERT. The hTERT transfected cells were grown in vitro successfully and passaged for 136 generations. Results showed that these cells could be induced to differentiate into chondrocytes, bone and myocardial cells. Introduction of exogenous hTERT into hMSCs could achieve immortalized hMSCs with the potential of multi-directional differentiation. Thus, these cells could be applied as seed cells in tissue engineering.

  9. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone.

    Science.gov (United States)

    Kim, Do-Gyoon; Shertok, Daniel; Ching Tee, Boon; Yeni, Yener N

    2011-06-03

    Creep is a time-dependent viscoelastic deformation observed under a constant prolonged load. It has been indicated that progressive vertebral deformation due to creep may increase the risk of vertebral fracture in the long-term. The objective of this study was to examine the relationships of creep with trabecular architecture and tissue mineral density (TMD) parameters in human vertebral cancellous bone at a physiological static strain level. Architecture and TMD parameters of cancellous bone were analyzed using microcomputerized tomography (micro-CT) in specimens cored out of human vertebrae. Then, creep and residual strains of the specimens were measured after a two-hour physiological compressive constant static loading and unloading cycle. Creep developed (3877 ± 2158 με) resulting in substantial levels of non-recoverable post-creep residual strain (1797 ± 1391 με). A strong positive linear correlation was found between creep and residual strain (r = 0.94, p creep rate. The TMD variability (GL(COV)) was the strongest correlate of creep rate (r = 0.79, p < 0.001). This result suggests that TMD variability may be a useful parameter for estimating the long-term deformation of a whole vertebral body. The results further suggest that the changes in TMD variability resulting from bone remodeling are of importance and may provide an insight into the understanding of the mechanisms underlying progressive failure of vertebral bodies and development of a clinical fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The evaluation of lyophilized polymer matrices for administering recombinant human bone morphogenetic protein-2.

    Science.gov (United States)

    Duggirala, S S; Rodgers, J B; DeLuca, P P

    1996-07-01

    Novel unitary devices, prepared by lyophilization of viscous solutions of sodium carboxymethylcellulose (CMC) and methylcellulose (MC), were evaluated as sustained-release delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). In vitro characterization of the unitary devices, which contained rhBMP-2-loaded poly (d,l lactide-co-glycolide) (PLGA) bioerodible particles (BEPs), was conducted over a 2-month period. Determinations included buffer uptake, mass and molecular weight loss and rhBMP-2 release from the unitary devices. CMC devices imbibed approximately 16 times their weight of buffer, while with MC, equilibrium uptake was approximately 6 times the dry weight of the devices. Overall mass loss percentages were approximately 55 and 35%, respectively, for CMC and MC devices. rhBMP-2 release from the devices was essentially a triphasic process: an initial phase during which "free" protein (rhBMP-2 present on the surface and within the pores of the PLGA BEPs) was released, a lag period during which no release was discerned, and then release of "bound" rhBMP-2 (protein adsorbed to the BEPs). The release of bound protein correlated with the mass loss of the polymer which began after 3 weeks. Release from the unitary devices was lower than that from the BEPs alone, due to a retardation effect of the gelled CMC/MC polymers. In rabbits in which full-thickness cranial bone defects were created, the implants were well tolerated and induced significant new bone growth during an 8-week evaluation period. The CMC devices appear to have induced bone earlier (at 2 weeks), but this did not affect eventual 8-week results. CMC devices without rhBMP-2 appeared to provide some bone conduction, in contrast to the blank MC devices.

  11. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.

    Science.gov (United States)

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T

    2011-03-01

    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Sample handling for mass spectrometric proteomic investigations of human urine.

    Science.gov (United States)

    Petri, Anette Lykke; Høgdall, Claus; Christensen, Ib Jarle; Simonsen, Anja Hviid; T'jampens, Davy; Hellmann, Marja-Leena; Kjaer, Susanne Krüger; Fung, Eric T; Høgdall, Estrid

    2008-09-01

    Because of its non-invasive sample collection method, human urine is an attractive biological material both for discovering biomarkers and for use in future screening trials for different diseases. Before urine can be used for these applications, standardized protocols for sample handling that optimize protein stability are required. In this explorative study, we examine the influence of different urine collection methods, storage temperatures, storage times, and repetitive freeze-thaw procedures on the protein profiles obtained by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Prospectively collected urine samples from 11 women were collected as either morning or midday specimens. The effects of storage temperature, time to freezing, and freeze-thaw cycles were assessed by calculating the number, intensity, and reproducibility of peaks visualized by SELDI-TOF-MS. On the CM10 array, 122 peaks were detected and 28 peaks were found to be significantly different between urine types, storage temperature and time to freezing. On the IMAC-Cu array, 65 peaks were detected and 1 peak was found to be significantly different according to time to freezing. No significant differences were demonstrated for freeze-thaw cycles. Optimal handling and storage conditions are necessary in clinical urine proteomic investigations. Collection of urine with a single and consistently performed protocol is needed to reduce analytical bias. Collecting only one urine type, which is stored for a limited period at 4°C until freezing at -80°C prior to analysis will provide the most stable profiles. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Histologic and histomorphometric evaluation of bone regeneration using nanocrystalline hydroxyapatite and human freeze-dried bone graft : An experimental study in rabbit.

    Science.gov (United States)

    Sadeghi, Rokhsareh; Najafi, Mohammad; Semyari, Hassan; Mashhadiabbas, Fatemeh

    2017-03-01

    Bone regeneration is an important concern in periodontal treatment and implant dentistry. Different biomaterials and surgical techniques have been used for this purpose. The aim of the present study was to compare the effect of nanocrystalline hydroxyapatite and human freeze-dried bone graft (FDBG) in regeneration of rabbit calvarium bony defects by histologic and histomorphometric evaluation. In this experimental study, three similar defects, measuring 8 mm in diameter, were created in the calvaria of 16 white New Zealand rabbits. Two defects were filled with FDBG and nanocrystalline hydroxyapatite silica gel, while the other one remained unfilled to be considered as control. All the defects were covered with collagen membranes. During the healing period, two animals perished; so 14 rabbits were divided into two groups: half of them were euthanized after 6 weeks of healing and the other half after 12 weeks. The specimens were subjected to histologic and histomorphometric examinations for assessment of the following variables: percentage of bone formation and residual graft material, inflammation scores, patterns of bone formation and type of newly formed bone. The percentages of new bone formation after 6 weeks were 14.22 ± 7.85, 21.57 ± 6.91, and 20.54 ± 10.07% in FDBG, NanoBone, and control defects. These values were 27.54 ± 20.19, 23.86 ± 6.27, and 26.48 ± 14.18% in 12-week specimens, respectively. No significant differences were found in the amount of bone formation between the groups. With regard to inflammation, the control and NanoBone groups showed significantly less inflammation compared to FDBG at the 6-week healing phase (P = 0.04); this difference was not significant in the 12-week specimens. Based on the results of this experimental study, both NanoBone and FDBG exhibited a similar effect on bone formation.

  14. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    Science.gov (United States)

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  15. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries

    Directory of Open Access Journals (Sweden)

    Irmgard Tegeder

    2016-12-01

    Full Text Available Progranulin deficiency in humans is associated with neurodegeneration. Its mechanisms are not yet fully understood. We performed a Yeast-2-Hybrid screen using human full-length progranulin as bait to assess the interactions of progranulin. Progranulin was screened against human fetal brain and human bone marrow libraries using the standard Matchmaker technology (Clontech. This article contains the full Y2H data table, including blast results and sequences, a sorted table according to selection criteria for likely positive, putatively positive, likely false and false preys, and tables showing the gene ontology terms associated with the likely and putative preys of the brain and bone marrow libraries. The interactions with autophagy proteins were confirmed and functionally analyzed in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016 [1].

  16. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries.

    Science.gov (United States)

    Tegeder, Irmgard

    2016-12-01

    Progranulin deficiency in humans is associated with neurodegeneration. Its mechanisms are not yet fully understood. We performed a Yeast-2-Hybrid screen using human full-length progranulin as bait to assess the interactions of progranulin. Progranulin was screened against human fetal brain and human bone marrow libraries using the standard Matchmaker technology (Clontech). This article contains the full Y2H data table, including blast results and sequences, a sorted table according to selection criteria for likely positive, putatively positive, likely false and false preys, and tables showing the gene ontology terms associated with the likely and putative preys of the brain and bone marrow libraries. The interactions with autophagy proteins were confirmed and functionally analyzed in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].

  17. Interleukin-3 Does Not Affect the Differentiation of Mast Cells Derived from Human Bone Marrow Progenitors

    Science.gov (United States)

    Shimizu, Yuji; Matsumoto, Kenji; Okayama, Yoshimichi; Kentaro, Sakai; Maeno, Toshitaka; Suga, Tatsuo; Miura, Toru; Takai, Shinji; Kurabayashi, Masahiko; Saito, Hirohisa

    2008-01-01

    Although IL-3 is commonly used for culture of human progenitor-derived mast cells together with Stem cell factor (SCF) and IL-6, the effect of IL-3 on human mast cell differentiation has not been well elucidated. Human bone marrow CD34+ progenitors were cultured for up to 12 weeks in the presence of rhSCF and rhIL-6 either with rhIL-3 (IL-3 (+)) or without rhIL-3 (IL-3 (−)) for the initial 1-week of culture. Total cell number increased at 2 weeks in IL-3 (+), as compared to IL-3 (−), but changes in the appearance of mast cells were delayed. When IL-3 was present for the initial 1-week culture, granules looked more mature with IL-3 than without IL-3. However, tryptase and chymase contents, and surface antigen expression (CD18, CD51, CD54, and CD117) were not altered by IL-3. Surface expression and mRNA level of FcεRIα and histamine release by crosslinking of FcεRIα did not differ from one preparation to the next. GeneChip analysis revealed that no significant differences were observed between IL-3 (+) and IL-3 (−) cells either when inactivated or activated by aggregation of FcεRIα. These findings indicate that initial incubation of human bone marrow CD34+ progenitors with IL-3 does not affect the differentiation of mast cells. PMID:18214796

  18. Theobromine Upregulates Osteogenesis by Human Mesenchymal Stem Cells In Vitro and Accelerates Bone Development in Rats.

    Science.gov (United States)

    Clough, Bret H; Ylostalo, Joni; Browder, Elizabeth; McNeill, Eoin P; Bartosh, Thomas J; Rawls, H Ralph; Nakamoto, Tetsuo; Gregory, Carl A

    2017-03-01

    Theobromine (THB) is one of the major xanthine-like alkaloids found in cacao plant and a variety of other foodstuffs such as tea leaves, guarana and cola nuts. Historically, THB and its derivatives have been utilized to treat cardiac and circulatory disorders, drug-induced nephrotoxicity, proteinuria and as an immune-modulator. Our previous work demonstrated that THB has the capacity to improve the formation of hydroxyl-apatite during tooth development, suggesting that it may also enhance skeletal development. With its excellent safety profile and resistance to pharmacokinetic elimination, we reasoned that it might be an excellent natural osteoanabolic supplement during pregnancy, lactation and early postnatal growth. To determine whether THB had an effect on human osteoprogenitors, we subjected primary human bone marrow mesenchymal stem cells (hMSCs) to osteogenic assays after exposure to THB in vitro and observed that THB exposure increased the rate of osteogenesis and mineralization by hMSCs. Moreover, THB exposure resulted in a list of upregulated mRNA transcripts that best matched an osteogenic tissue expression signature as compared to other tissue expression signatures archived in several databases. To determine whether oral administration of THB resulted in improved skeletal growth, we provided pregnant rats with chow supplemented with THB during pregnancy and lactation. After weaning, offspring received THB continuously until postnatal day 50 (approximately 10 mg kg -1 day -1 ). Administration of THB resulted in neonates with larger bones, and 50-day-old offspring accumulated greater body mass, longer and thicker femora and superior tibial trabecular parameters. The accelerated growth did not adversely affect the strength and resilience of the bones. These results indicate that THB increases the osteogenic potential of bone marrow osteoprogenitors, and dietary supplementation of a safe dose of THB to expectant mothers and during the postnatal period

  19. In-vivo tissue uptake and retention of Sn-117m(4+)DTPA in a human subject with metastatic bone pain and in normal mice

    International Nuclear Information System (INIS)

    Swailem, Fayez M.; Krishnamurthy, Gerbail T.; Srivastava, Suresh C.; Aguirre, Maria L.; Ellerson, Dawn L.; Walsh, T. Kent; Simpson, Laura

    1998-01-01

    Organ and tissue uptake and retention of Sn-117m(4+)DTPA were studied in a human subject treated for metastatic bone pain, and the results were compared with the biodistribution studies in five normal mice. The explanted organs from a patient who received a therapy dose of 18.6 mCi (688.2 MBq) Sn-117m(4+)DTPA and who died 47 days later were imaged with a γ-camera, and tissue samples were counted and also autoradiographed. Bone, muscle, liver, fat, lungs, kidneys, spleen, heart and pancreas tissue samples were assayed in a well counter for radioactivity. Regions of interest were drawn over bone and major organs to calculate and quantify clearance times using three in vivo Sn-117m(4+)DTPA whole-body scintigrams acquired at 1, 24 and 168 h after injection. Five normal mice injected with the same batch of Sn-117m(4+)DTPA as used for the human subject were sacrificed at 24 h, and tissue samples were collected and assayed for radioactivity for comparison with the human data. For the human subject, whole-body retention at 47 days postinjection was 81% of the injected dose, and the rest (19%) was excreted in urine. Of the whole-body retained activity at 47 days, 82.4% was in bone, 7.8% in the muscle and 1.5% in the liver, and the rest was distributed among other tissues. γ-Ray scintigrams and electron autoradiographs of coronal slices of the thoracolumbar vertebral body showed heterogenous metastatic involvement with normal bone between metastatic lesions. There was nonuniform distribution of radioactivity even within a single vertebral body, indicating normal bone between metastatic lesions. Lesion-to-nonlesion ratios ranged from 3 to 5. However, the osteoid-to-marrow cavity deposition ratio, from the microautoradiographs, was 11:1. The peak uptake in the human bone was seen at 137 h with no biological clearance. Soft tissues showed peak uptake at 1 h and exhibited three compartmental clearance components. Whole-body retention in normal mice was 38.7% of the injected

  20. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces

    Directory of Open Access Journals (Sweden)

    Stoddart Robert W

    2006-06-01

    Full Text Available Abstract Background The chondro-osseous junctional region of diarthrodial joints is peculiarly complex and may be considered to consist of the deepest layer of non-calcified cartilage, the tidemark, the layer of calcified cartilage, a thin cement line (between the calcified cartilage and the subchondral bone and the subchondral bone. A detailed knowledge of the structure, function and pathophysiology of the normal chondro-osseous junction is essential for an understanding of the pathogenesis of osteoarthrosis. Methods Full thickness samples from human knee joints were processed and embedded in paraffin wax. One hundred serial sections (10 μm thick were taken from the chondro-osseous junctional region of a block from the medial tibial plateau of a normal joint. They were stained with haematoxylin and eosin and photographed. For a simple physical reconstruction images of each 10th sequential tissue section were printed and the areas of the photomicrographs containing the chondro-osseous junctional region were cut out and then overlaid so as to create a three-dimensional (3D model of this region. A 3D reconstruction was also made using computer modelling. Results Histochemical staining revealed some instances where prolongations of uncalcified cartilage, delineated by the tidemark, dipped into the calcified cartilage and, in places, abutted onto subchondral bone and marrow spaces. Small areas of uncalcified cartilage containing chondrocytes (virtual islands were seen, in two-dimensional (2D sections, to be apparently entombed in calcified matrix. The simple physical 3D reconstruction confirmed that these prolongations of uncalcified cartilage were continuous with the cartilage of zone IV and demonstrated that the virtual islands of uncalcified cartilage were cross-sections of these prolongations. The computer-generated 3D reconstructions clearly demonstrated that the uncalcified prolongations ran through the calcified cartilage to touch bone and

  1. Monitoring Dynamic Interactions between Breast Cancer Cells and Human Bone Tissue in a Co-Culture Model

    Science.gov (United States)

    Contag, Christopher H.; Lie, Wen-Rong; Bammer, Marie C.; Hardy, Jonathan W.; Schmidt, Tobi L.; Maloney, William J.; King, Bonnie L.

    2015-01-01

    Purpose Bone is a preferential site of breast cancer metastasis and models are needed to study this process at the level of the microenvironment. We have used bioluminescence imaging (BLI) and multiplex biomarker immunoassays to monitor dynamic breast cancer cell behaviors in co-culture with human bone tissue. Procedures Femur tissue fragments harvested from hip replacement surgeries were co-cultured with luciferase-positive MDA-MB-231-fLuc cells. BLI was performed to quantify breast cell division and track migration relative to bone tissue. Breast cell colonization of bone tissues was assessed with immunohistochemistry. Biomarkers in co-culture supernatants were profiled with MILLIPLEX® immunoassays. Results BLI demonstrated increased MDA-MB-231-fLuc proliferation (pbones, and revealed breast cell migration toward bone. Immunohistochemistry illustrated MDA-MB-231-fLuc colonization of bone, and MILLIPLEX® profiles of culture supernatants suggested breast/bone crosstalk. Conclusions Breast cell behaviors that facilitate metastasis occur reproducibly in human bone tissue co-cultures and can be monitored and quantified using BLI and multiplex immunoassays. PMID:24008275

  2. Integrin expression by human osteoblasts cultured on degradable polymeric materials applicable for tissue engineered bone.

    Science.gov (United States)

    El-Amin, Saadiq F; Attawia, Mohamed; Lu, Helen H; Shah, Asist K; Chang, Richard; Hickok, Noreen J; Tuan, Rocky S; Laurencin, Cato T

    2002-01-01

    The use of biodegradable polymers in the field of orthopaedic surgery has gained increased popularity, as surgical pins and screws, and as potential biological scaffolds for repairing cartilage and bone defects. One such group of polymers that has gained considerable attention are the polyesters, poly(lactide-co-glycolide) (PLAGA) and polylactic acid (PLA), because of their minimal tissue inflammatory response, favorable biocompatibility and degradation characteristics. The objective of this study was to evaluate human osteoblastic cell adherence and growth on PLAGA and PLA scaffolds by examining integrin receptor (alpha2, alpha3, alpha4, alpha5, alpha6 and beta1) expression. Primary human osteoblastic cells isolated from trabecular bone adhered efficiently to both PLAGA and PLA, with the rate of adherence on PLAGA comparable to that of control tissue culture polystyrene (TCPS), and significantly higher than on PLA polymers at 3, 6 and 12 h. Human osteoblastic phenotypic expression, alkaline phosphatase (ALP) activity was positive on both degradable matrices, whereas osteocalcin levels were significantly higher on cells grown on PLAGA than on PLA composites. Interestingly, the integrin subunits, alpha2, alpha3, alpha4, alpha5, alpha6 and beta1 were all expressed at higher levels by osteoblasts cultured on PLAGA than those on PLA as analyzed by westerns blots and by flow cytometry. Among the integrins, alpha2, beta5 and beta1 showed the greatest difference in levels between the two surfaces. Thus, both PLA and PLAGA support osteoblastic adhesion and its accompanying engagement of integrin receptor and expression of osteocalcin and ALP. However PLAGA consistently appeared to be a better substrate for osteoblastic cells based on these parameters. This study is one of the first to investigate the ability of primary human osteoblastic cells isolated from trabecular bone to adhere to the biodegradable polymers PLAGA and PLA, and to examine the expression of their key

  3. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review.

    Science.gov (United States)

    Chavda, Suraj; Levin, Liran

    2018-02-01

    Alveolar ridge augmentation can be completed with various types of bone augmentation materials (autogenous, allograft, xenograft, and alloplast). Currently, autogenous bone is labeled as the "gold standard" because of faster healing times and integration between native and foreign bone. No systematic review has currently determined whether there is a difference in implant success between various bone augmentation materials. The purpose of this article was to systematically review comparative human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials (autogenous, allograft, xenograft, and alloplast). A MEDLINE search was conducted under the 3 search concepts of bone augmentation, dental implants, and alveolar ridge augmentation. Studies pertaining to socket grafts or sinus lifts were excluded. Case reports, small case series, and review papers were excluded. A bias assessment tool was applied to the final articles. Overall, 219 articles resulted from the initial search, and 9 articles were included for final analysis. There were no discernible differences in implant success between bone augmentation materials. Generally, patients preferred nonautogenous bone sources as there were fewer hospital days, less pain, and better recovery time. Two articles had industrial support; however, conclusions of whether that support influenced the outcomes could not be determined. Future comparative studies should compare nonautogenous bone sources and have longer follow-up times.

  4. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    Science.gov (United States)

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Sugar cane consumption on Rapanui (Easter Island) and the indicence of caries : evidence from stable isotope values of human bone

    International Nuclear Information System (INIS)

    Leach, B.F.; Quinn, C.J.; Seelenfreund, A.

    2017-01-01

    Pre-European people on Rapanui are known to have had a high rate of dental caries. One proposed explanation for this is that the people consumed a considerable amount of sugar cane, as a thirst quencher, since fresh water is scarce on the island. Human bone samples were analysed by isotope analysis to see if this explanation could be sustained. Results for three isotopes δ"1"3C, δ"1"5N and δ"3"4S were then used in a stochastic model to estimate the proportions of five main food types in the diet of these people. This indicated that daily consumption of dry raw sugar cane was only about 32 to 42 g per day. This is very low and sugar cane consumption is therefore unlikely to be the only cause of the high rate of dental caries. (author).

  6. Quantification of bone quality using different cone beam computed tomography devices: Accuracy assessment for edentulous human mandibles.

    Science.gov (United States)

    Van Dessel, Jeroen; Nicolielo, Laura Ferreira Pinheiro; Huang, Yan; Slagmolen, Pieter; Politis, Constantinus; Lambrichts, Ivo; Jacobs, Reinhilde

    To determine the accuracy of the latest cone beam computed tomography (CBCT) machines in comparison to multi-slice computer tomography (MSCT) and micro computed tomography (micro-CT) for objectively assessing trabecular and cortical bone quality prior to implant placement. Eight edentulous human mandibular bone samples were scanned with seven CBCT scanners (3D Accuitomo 170, i-CAT Next Generation, ProMax 3D Max, Scanora 3D, Cranex 3D, Newtom GiANO and Carestream 9300) and one MSCT system (Somatom Definition Flash) using the clinical exposure protocol with the highest resolution. Micro-CT (SkyScan 1174) images served as a gold standard. A volume of interest (VOI) comprising trabecular and cortical bone only was delineated on the micro-CT. After spatial alignment of all scan types, micro-CT VOIs were overlaid on the CBCT and MSCT images. Segmentation was applied and morphometric parameters were calculated for each scanner. CBCT and MSCT morphometric parameters were compared with micro-CT using mixed-effect models. Intraclass correlation analysis was used to grade the accuracy of each scanner in assessing trabecular and cortical quality in comparison with the gold standard. Bone structure patterns of each scanner were compared with micro-CT in 2D and 3D to facilitate the interpretation of the morphometric analysis. Morphometric analysis showed an overestimation of the cortical and trabecular bone quantity during CBCT and MSCT evaluation compared to the gold standard micro-CT. The trabecular thickness (Tb.Th) was found to be significantly (P 3D Max (180 µm), followed by the 3D Accuitomo 170 (200 µm), Carestream 9300 (220 µm), Newtom GiANO (240 µm), Cranex 3D (280 µm), Scanora 3D (300 µm), high resolution MSCT (310 µm), i-CAT Next Generation (430 µm) and standard resolution MSCT (510 µm). The underestimation of the cortical thickness (Ct.Th) in ProMax 3D Max (-10 µm), the overestimation in Newtom GiANO (10 µm) and the high resolution

  7. Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration.

    Directory of Open Access Journals (Sweden)

    Junjie Guan

    Full Text Available Bone tissue engineering requires highly proliferative stem cells that are easy to isolate. Human urine stem cells (USCs are abundant and can be easily harvested without using an invasive procedure. In addition, in our previous studies, USCs have been proved to be able to differentiate into osteoblasts, chondrocytes, and adipocytes. Therefore, USCs may have great potential and advantages to be applied as a cell source for tissue engineering. However, there are no published studies that describe the interactions between USCs and biomaterials and applications of USCs for bone tissue engineering. Therefore, the objective of the present study was to evaluate the interactions between USCs with a typical bone tissue engineering scaffold, beta-Tricalcium Phosphate (β-TCP, and to determine whether the USCs seeded onto β-TCP scaffold can promote bone regeneration in a segmental femoral defect of rats. Primary USCs were isolated from urine and seeded on β-TCP scaffolds. Results showed that USCs remained viable and proliferated within β-TCP. The osteogenic differentiation of USCs within the scaffolds was demonstrated by increased alkaline phosphatase activity and calcium content. Furthermore, β-TCP with adherent USCs (USCs/β-TCP were implanted in a 6-mm critical size femoral defect of rats for 12 weeks. Bone regeneration was determined using X-ray, micro-CT, and histologic analyses. Results further demonstrated that USCs in the scaffolds could enhance new bone formation, which spanned bone defects in 5 out of 11 rats while β-TCP scaffold alone induced modest bone formation. The current study indicated that the USCs can be used as a cell source for bone tissue engineering as they are compatible with bone tissue engineering scaffolds and can stimulate the regeneration of bone in a critical size bone defect.

  8. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation....... We also assessed bone formation by DPCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Results: We found that DPCs are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. Implantation of DPCs resulted...... remodeling in vivo, and therefore provide a promising new tool for regenerative dentistry, for example mineralized tissue engineering to restore bone defects in relation to periodontitis, periimplantatis and orofacial surgery. Experiments in progress have proven that DPCSs are also useful for assessing...

  9. Human talus bones from the Middle Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain).

    Science.gov (United States)

    Pablos, Adrián; Martínez, Ignacio; Lorenzo, Carlos; Gracia, Ana; Sala, Nohemi; Arsuaga, Juan Luis

    2013-07-01

    Here we present and describe comparatively 25 talus bones from the Middle Pleistocene site of the Sima de los Huesos (SH) (Sierra de Atapuerca, Burgos, Spain). These tali belong to 14 individuals (11 adult and three immature). Although variation among Middle and Late Pleistocene tali tends to be subtle, this study has identified unique morphological characteristics of the SH tali. They are vertically shorter than those of Late Pleistocene Homo sapiens, and show a shorter head and a broader lateral malleolar facet than all of the samples. Moreover, a few shared characters with Neanderthals are consistent with the hypothesis that the SH population and Neanderthals are sister groups. These shared characters are a broad lateral malleolar facet, a trochlear height intermediate between modern humans and Late Pleistocene H. sapiens, and a short middle calcaneal facet. It has been possible to propose sex assignment for the SH tali based on their size. Stature estimates based on these fossils give a mean stature of 174.4 cm for males and 161.9 cm for females, similar to that obtained based on the long bones from this same site. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The 'temporal effect' in hominids: Reinvestigating the nature of support for a chimp-human clade in bone morphology.

    Science.gov (United States)

    Pearson, Alannah; Groves, Colin; Cardini, Andrea

    2015-11-01

    In 2004, an analysis by Lockwood and colleagues of hard-tissue morphology, using geometric morphometrics on the temporal bone, succeeded in recovering the correct phylogeny of living hominids without resorting to potentially problematic methods for transforming continuous shape variables into meristic characters. That work has increased hope that by using modern analytical methods and phylogenetically informative anatomical data we might one day be able to accurately infer the relationships of hominins, including the closest extinct relatives of modern humans. In the present study, using 3D virtually generated models of the hominid temporal bone and a larger suite of geometric morphometric and comparative techniques, we have re-examined the evidence for a Pan-Homo clade. Despite differences in samples, as well as the type of raw data, the effect of measurement error (and especially landmark digitization by a different operator), but also a broader perspective brought in by our diverse set of approaches, our reanalysis largely supports Lockwood and colleagues' original results. However, by focusing not only mainly on shape (as in the original 2004 analysis) but also on size and 'size-corrected' (non-allometric) shape, we demonstrate that the strong phylogenetic signal in the temporal bone is largely related to similarities in size. Thus, with this study, we are not suggesting the use of a single 'character', such as size, for phylogenetic inference, but we do challenge the common view that shape, with its highly complex and multivariate nature, is necessarily more phylogenetically informative than size and that actually size and size-related shape variation (i.e., allometry) confound phylogenetic inference based on morphology. This perspective may in fact be less generalizable than often believed. Thus, while we confirm the original findings by Lockwood et al., we provide a deep reinterpretation of their nature and potential implications for hominid phylogenetics

  11. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density.

    Science.gov (United States)

    Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew; Nardo, Lorenzo; Facchetti, Luca; Pasco, Courtney; Zhang, Chiyuan A; Han, Misung; Parrott, Amanda Hutton; Tien, Phyllis; Krug, Roland

    2018-02-01

    There is evidence that human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are independent risk factors for osteoporosis and fracture which is not solely explained by changes in bone mineral density. Thus, we hypothesized that the assessment of trabecular microstructure might play an important role for bone quality in this population and might explain the increased fracture risk. In this study, we have assessed bone microstructure in the proximal femur using high-resolution magnetic resonance imaging (MRI) as well as in the extremities using high resolution peripheral quantitative computed tomography (HR-pQCT) in HIV-infected men and healthy controls and compared these findings to those based on areal bone mineral density (aBMD) derived from dual X-ray absorptiometry (DXA) which is the standard clinical parameter for the diagnosis of osteoporosis. Eight HIV-infected men and 11 healthy age-matched controls were recruited and informed consent was obtained before each scan. High-resolution MRI of the proximal femur was performed using fully balanced steady state free precession (bSSFP) on a 3T system. Three volumes of interest at corresponding anatomic locations across all subjects were defined based on registrations of a common template. Four MR-based trabecular microstructural parameters were analyzed at each region: fuzzy bone volume fraction (f-BVF), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp). In addition, the distal radius and distal tibia were imaged with HR-pQCT. Four HR-pQCT-based microstructural parameters were analyzed: trabecular bone volume fraction (BV/TV), Tb.N, Tb.Th, and Tb.Sp. Total hip and spine aBMD were determined from DXA. Microstructural bone parameters derived from MRI at the proximal femur and from HR-pQCT at the distal tibia showed significantly lower bone quality in HIV-infected patients compared to healthy controls. In contrast, DXA aBMD data showed no significant differences between HIV

  12. NOTE: A preliminary study for non-invasive quantification of manganese in human hand bones

    Science.gov (United States)

    Aslam; Pejović-Milić, A.; Chettle, D. R.; McNeill, F. E.; Pysklywec, M. W.; Oudyk, J.

    2008-10-01

    Manganese (Mn) is a nutrient essential for regulating neurological and skeletal functions in the human body, but it is also toxic when humans are excessively exposed to Mn. Blood (or serum/plasma) and other body fluids reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive measurement of Mn stored in bone, using in vivo neutron activation analysis. Following feasibility studies, a first pilot study, using neutron activation analysis to measure Mn in the bones of the hand of ten healthy male human subjects, was conducted with the approval of the concerned research ethics boards. The participants of this study had no known history of exposure to Mn. Two volunteers were excluded from this study due to technical problems with their measurements. The inverse variance weighted mean value of Mn/Ca for the participants of this study is 0.12 ± 0.68 µg Mn/g Ca which is comparable within uncertainties with the estimated range of 0.16 0.78 µg Mn/g Ca and mean value of 0.63 ± 0.30 µg Mn/g Ca derived from cadaver data. It is recommended to investigate the use of the diagnostic technique for in vivo measurements of workers exposed occupationally to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. The technique needs further development to improve the precision of in vivo measurements in the non-exposed population.

  13. Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Noh, Minsoo

    2012-03-01

    Lineage commitment of human bone marrow mesenchymal stem cells (hBM-MSCs) to adipocytes or osteoblasts has been suggested as a model system to study the relationship between type II diabetes and abnormal bone metabolism. Leptin and IL-17A inhibit adipogenesis whereas they promote osteogenesis in MSCs. Due to pathophysiologic roles of IL-17A in human metabolic diseases and bone metabolism, it was evaluated whether IL-17A-dependent inverse regulation on adipogenesis and osteogenesis was related to endogenous leptin production in hBM-MSCs. In the analysis of adiponectin and leptin secretion profiles of hBM-MSCs in response to various combinations of differentiation inducing factors, it was found that dexamethasone, a common molecule used for both adipogenesis and osteogenesis, increased leptin production in hBM-MSCs. Importantly, the level of leptin production during osteogenesis in hBM-MSCs was higher than that during adipogenesis, implicating a significant leptin production in extra-adipose tissues. IL-17A increased leptin production in hBM-MSCs and also under the condition of osteogenesis. In spite of direct inhibition on adipogenesis, IL-17A up-regulated leptin production in hBM-MSC-derived adipocytes. Anti-leptin antibody treatment partially antagonized the IL-17A dependent inhibition of adipogenesis in hBM-MSCs, suggesting a role of leptin in mediating the inverse regulation of IL-17A on osteogenesis and adipogenesis in hBM-MSCs. Therefore, the IL-17A-induced leptin production may provide a key clue to understand a molecular mechanism on the lineage commitment of hBM-MSCs into adipocytes or osteoblasts. In addition, leptin production in extra-adipose tissues like MSCs and osteoblasts should be considered in future studies on leptin-associated human diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A preliminary study for non-invasive quantification of manganese in human hand bones

    International Nuclear Information System (INIS)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E; Pysklywec, M W; Oudyk, J

    2008-01-01

    Manganese (Mn) is a nutrient essential for regulating neurological and skeletal functions in the human body, but it is also toxic when humans are excessively exposed to Mn. Blood (or serum/plasma) and other body fluids reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive measurement of Mn stored in bone, using in vivo neutron activation analysis. Following feasibility studies, a first pilot study, using neutron activation analysis to measure Mn in the bones of the hand of ten healthy male human subjects, was conducted with the approval of the concerned research ethics boards. The participants of this study had no known history of exposure to Mn. Two volunteers were excluded from this study due to technical problems with their measurements. The inverse variance weighted mean value of Mn/Ca for the participants of this study is 0.12 ± 0.68 μg Mn/g Ca which is comparable within uncertainties with the estimated range of 0.16-0.78 μg Mn/g Ca and mean value of 0.63 ± 0.30 μg Mn/g Ca derived from cadaver data. It is recommended to investigate the use of the diagnostic technique for in vivo measurements of workers exposed occupationally to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. The technique needs further development to improve the precision of in vivo measurements in the non-exposed population. (note)

  15. The petrous bone

    DEFF Research Database (Denmark)

    Jørkov, Marie Louise Schjellerup; Heinemeier, Jan; Lynnerup, Niels

    2009-01-01

    Intraskeletal variation in the composition of carbon (delta(13)C) and nitrogen (delta(15)N) stable isotopes measured in collagen is tested from various human bones and dentine. Samples were taken from the femur, rib, and petrous part of the temporal bone from well-preserved skeletons of both adults...... (n = 34) and subadults (n = 24). Additional samples of dentine from the root of 1st molars were taken from 16 individuals. The skeletal material is from a medieval cemetery (AD 1200-1573) in Holbaek, Denmark. Our results indicate that the petrous bone has an isotopic signal that differs significantly...... from that of femur and rib within the single skeleton (P bone and the 1st molar. The intraskeletal variation may reflect differences...

  16. Characterization of human erythroid burst-promoting activity derived from bone marrow conditioned media

    International Nuclear Information System (INIS)

    Porter, P.N.; Ogawa, M.

    1982-01-01

    Bone marrow conditioned media (BMCM) increases burst number and the incorporation of 59 Fe into heme by bursts when peripheral blood or bone marrow cells are cultured at limiting serum concentrations. Burst-promoting activity (BPA) has now been purified approximately 300-fold from this source by ion-exchange chromatography on DEAE-Sephadex and absorption chromatography on hydroxyapatite agarose gel. Marrow BPA increased burst number and hemoglobin (Hb) synthesis in a dose-dependent manner. A larger increase in Hb synthesis than in burst number was consistently observed, which was probably a consequence of the increase in the number of cells per burst that occurs in the presence of BPA. The role of BPA in culture could be distinguished from erythropoietin (Ep), since no bursts grew in the absence of Ep, whether or not BPA was present, and since it had no effect on the growth of erythroid colonies scored at day 5 of culture. Our purified fraction did not support the growth of CFU-C in culture. Activity was stable at temperatures of 70 degrees C or lower for 10 min; exposure to 80 degrees C resulted in approximately 50% loss of activity. BPA was completely inactivated by treatment at 100 degrees C for 10 min. Thus, human bone marrow cells produce a heat-sensitive factor that specifically promotes the growth of early erythroid progenitors in culture

  17. [Consensus statement: recommendations for the management of metabolic bone disease in human immunodeficiency virus patients].

    Science.gov (United States)

    Martínez, Esteban; Jódar Gimeno, Esteban; Reyes García, Rebeca; Carpintero, Pedro; Casado, José Luis; Del Pino Montes, Javier; Domingo Pedrol, Pere; Estrada, Vicente; Maalouf, Jorge; Negredo, Eugenia; Ocampo, Antonio; Muñoz-Torres, Manuel

    2014-04-01

    To provide practical recommendations for the evaluation and treatment of metabolic bone disease in human immunodeficiency virus (HIV) patients. Members of scientific societies related to bone metabolism and HIV: Grupo de Estudio de Sida (GeSIDA), Sociedad Española de Endocrinología y Nutrición (SEEN), Sociedad Española de Investigación Ósea y del Metabolismo Mineral (SEIOMM), and Sociedad Española de Fractura Osteoporótica (SEFRAOS). A systematic search was carried out in PubMed, and papers in English and Spanish with a publication date before 28 May 2013 were included. Recommendations were formulated according to GRADE system (Grading of Recommendations, Assessment, Development, and Evaluation) setting both their strength and the quality of supporting evidence. Working groups were established for each major part, and the final resulting document was later discussed in a face-to-face meeting. All the authors reviewed the final written document and agreed with its content. The document provides evidence-based practical recommendations on the detection and treatment of bone disease in HIV-infected patients. Copyright © 2013 Elsevier España, S.L. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  18. What do bones tell us? The study of human skeletons from the perspective of forensic anthropology.

    Science.gov (United States)

    Corrieri, Brigida; Márquez-Grant, Nicholas

    2015-01-01

    Human remains are present in a number of contexts. Some of these are archaeological burial sites, which can comprise individual or mass graves burials. Human remains are usually found buried (or cremated), but they can also be found in museums and in universities, as part of their anatomical collections. Human remains can be found in churches as relics, in ossuaries, and as part of objects. Hence human remains refer to not just a complete skeleton, but also apart of a bone or tooth, hair and mummified remains. In more recent forensic, police or medico-legal cases, human skeletal remains can be found in a number of contexts, such as fire scenes, natural disasters, clandestine graves, or on the surface in open areas (e.g. a woodland). One aspect ofphysical anthropology is that which studies human skeletal remains in order to reconstruct the past, understand human variation, and provide information about the deceased individuals, such as their age at death, sex, ancestry, stature, pathological conditions or traumatic injuries; the remains from medico-legal or police cases fall under the branch offorensic anthropology.

  19. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  20. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy

    International Nuclear Information System (INIS)

    Farzam, Parisa; Zirak, Peyman; Durduran, Turgut; Binzoni, Tiziano

    2013-01-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion. (paper)

  1. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.

    Science.gov (United States)

    Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut

    2013-08-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.

  2. Bone Marrow Derived Mesenchymal Stromal Cells Harness Purinergenic Signaling to Tolerize Human Th1 Cells In Vivo

    Science.gov (United States)

    Amarnath, Shoba; Foley, Jason E.; Farthing, Don E.; Gress, Ronald E.; Laurence, Arian; Eckhaus, Michael A.; Métais, Jean-Yves; Rose, Jeremy J.; Hakim, Frances T.; Felizardo, Tania C.; Cheng, Austin V.; Robey, Pamela G.; Stroncek, David E.; Sabatino, Marianna; Battiwalla, Minoo; Ito, Sawa; Fowler, Daniel H.; Barrett, Austin J.

    2014-01-01

    The use of bone marrow derived mesenchymal stromal cells (BMSC) in the treatment of alloimmune and autoimmune conditions has generated much interest, yet an understanding of the therapeutic mechanism remains elusive. We therefore explored immune modulation by a clinical-grade BMSC product in a model of human-into-mouse xenogeneic GVHD (x-GVHD) mediated by human CD4+ Th1 cells. BMSC reversed established, lethal x-GVHD through marked inhibition of Th1 cell effector function. Gene marking studies indicated BMSC engraftment was limited to the lung; further, there was no increase in regulatory T cells, thereby suggesting a paracrine mechanism of BMSC action. BMSC recipients had increased serum CD73 expressing exosomes that promoted adenosine accumulation ex vivo. Importantly, immune modulation mediated by BMSC was fully abrogated by pharmacologic therapy with an adenosine A2A receptor antagonist. To investigate the potential clinical relevance of these mechanistic findings, patient serum samples collected pre- and post-BMSC treatment were studied for exosome content: CD73 expressing exosomes promoting adenosine accumulation were detected in post-BMSC samples. In conclusion, BMSC effectively modulate experimental GVHD through a paracrine mechanism that promotes adenosine-based immune suppression. PMID:25532725

  3. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  4. Increased bone marrow blood flow in sickle cell anemia demonstrated by thallium-201 and Tc-99m human albumin microspheres

    International Nuclear Information System (INIS)

    Thrall, J.H.; Rucknagel, D.L.

    1978-01-01

    Lower extremity vascularity in nine patients with sickle cell anemia was studied by intra-arterial /sup 99m/Tc human albumin microspheres or intravenous thallium-201. In eight patients, the normal pattern of greater muscle than bone activity was reversed with marked tracer localization in skeletal parts usually not visualized. In four cases, there were distinct focal abnormalities in the femurs and tibias which correlated with defects on /sup 99m/Tc sulfur colloid marrow scans. TC-99m pyrophosphate bone scans demonstrated normal uptake in the same areas. The scintigraphic findings indicate a markedly increased relative bone marrow blood flow

  5. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model.

    Directory of Open Access Journals (Sweden)

    Matthew B Greenblatt

    Full Text Available Mice bearing a "humanized" immune system are valuable tools to experimentally manipulate human cells in vivo and facilitate disease models not normally possible in laboratory animals. Here we describe a form of GVHD that develops in NOD/SCID mice reconstituted with human fetal bone marrow, liver and thymus (NS BLT mice. The skin, lungs, gastrointestinal tract and parotid glands are affected with progressive inflammation and sclerosis. Although all mice showed involvement of at least one organ site, the incidence of overt clinical disease was approximately 35% by 22 weeks after reconstitution. The use of hosts lacking the IL2 common gamma chain (NOD/SCID/γc(-/- delayed the onset of disease, but ultimately did not affect incidence. Genetic analysis revealed that particular donor HLA class I alleles influenced the risk for the development of GVHD. At a cellular level, GVHD is associated with the infiltration of human CD4+ T cells into the skin and a shift towards Th1 cytokine production. GVHD also induced a mixed M1/M2 polarization phenotype in a dermal murine CD11b+, MHC class II+ macrophage population. The presence of xenogenic GVHD in BLT mice both presents a major obstacle in the use of humanized mice and an opportunity to conduct preclinical studies on GVHD in a humanized model.

  6. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  7. Comparison of in vitro biocompatibility of NanoBone(®) and BioOss(®) for human osteoblasts.

    Science.gov (United States)

    Liu, Qin; Douglas, Timothy; Zamponi, Christiane; Becker, Stephan T; Sherry, Eugene; Sivananthan, Sureshan; Warnke, Frauke; Wiltfang, Jörg; Warnke, Patrick H

    2011-11-01

    Scaffolds for bone tissue engineering seeded with the patient's own cells might be used as a preferable method to repair bone defects in the future. With the emerging new technologies of nanostructure design, new synthetic biomaterials are appearing on the market. Such scaffolds must be tested in vitro for their biocompatibility before clinical application. However, the choice between a natural or a synthetic biomaterial might be challenging for the doctor and the patient. In this study, we compared the biocompatibility of a synthetic bone substitute, NanoBone(®) , to the widely used natural bovine bone replacement material BioOss(®) . The in vitro behaviour of human osteoblasts on both materials was investigated. Cell performance was determined using scanning electron microscopy (SEM), cell vitality staining and four biocompatibility tests (LDH, MTT, WST, BrdU). We found that both materials showed low cytotoxicity and good biocompatibility. The MTT proliferation test was superior for Nanobone(®) . Both scaffolds caused only little damage to human osteoblasts and justify their clinical application. However, NanoBone(®) was able to support and promote proliferation of human osteoblasts slightly better than BioOss(®) in our chosen test set-up. The results may guide doctors and patients when being challenged with the choice between a natural or a synthetic biomaterial. Further experiments are necessary to determine the comparison of biocompatibility in vivo. © 2011 John Wiley & Sons A/S.

  8. Compact DD generator based in vivo neutron activation analysis (IVNAA) system to determine sodium concentrations in human bone.

    Science.gov (United States)

    Coyne, Mychaela Dawn; Neumann, Colby R; Zhang, Xinxin; Byrne, Patrick; Liu, Yingzi; Weaver, Connie M; Nie, Linda Huiling

    2018-04-16

    This study presents the development of a non-invasive method for monitoring Na in human bone. Many diseases, such as hypertension and osteoporosis, are closely associated with sodium (Na) retention in the human body. Na retention is generally evaluated by calculating the difference between dietary intake and excretion. There is currently no method to directly quantify Na retained in the body. Bone is a storage for many elements, including Na, which renders bone Na an ideal biomarker to study Na metabolism and retention. Approach: A customized compact deuterium-deuterium (DD) neutron generator was used to produce neutrons for in vivo neutron activation analysis (IVNAA), with a moderator/ reflector/ shielding assembly optimized for human hand irradiation in order to maximize the thermal neutron flux inside the irradiation cave and to limit radiation exposure to the hand and the whole body. Main Results: The experimental results show that the system is able to detect sodium levels in the bone as low as 12 g Na/g dry bone with an effective dose to the body of about 27 μSv. The simulation results agree with the numbers estimated from the experiment. Significance: This is expected to be a feasible method for measuring the change of Na in bone. The low detection limit indicates this will be a useful system to study the association between Na retention and related diseases. © 2018 Institute of Physics and Engineering in Medicine.

  9. "Interred with their bones" - linking soil micromorphology and chemistry to unlock the hidden archive of archaeological human burials

    Science.gov (United States)

    Brothwell, Don; Usai, Maria-Raimonda; Keely, Brendan; Pickering, Matt; Wilson, Clare

    2010-05-01

    "Interred with their bones" Acronym: InterArChive - an ERC-funded project *** " Friends, Romans, countrymen, lend me your ears; " I come to bury Caesar, not to praise him. " The evil that men do lives after them; " The good is oft 'interred with their bones'; " So let it be with Caesar. William Shakespeare, Julius Caesar, Act III, Scene 2. *** Background The state of decay within soils in archaeological graves is often such that degradable objects are not preserved in a condition that can be visually recognised. However, microscopic soil features, inorganic element distributions and organic residues can be measured. Thus, archaeological burial soils have the potential to reveal signatures of decay; pre-burial treatment; presence and nature of associated clothing and perishable artefacts; diet of the individual; cause of death; evidence of morbidity and drug-use. Aims • To develop and test a multidisciplinary approach linking soil micromorphology and chemistry to recover environmental and cultural information; • Revealing the hidden archaeological archive within the burial soil • Developing soil sampling and analysis recommendations for archaeological human burials Methods 1: Sampling and soil field description from archaeological sites contrasting in soil, geology, age, and culture and from experimental piglet burials 2: Microscopic/micromorphological analysis (micro-scale observations) of remains and features in burial soils. We will establish the order of occurrence, spatial patterns, displacement, mode of formation and decay of micromorphological features including exotic components, parasites, hair and remnants of footwear and clothing [cf. pilot study of soils from Yemen]; microfabrics and textural pedofeatures, also to facilitate resolution of body decay products from other accumulations. 3: Microprobe analysis (nano-scale) will generate elemental maps of soil thin sections, allowing identification of features with distinct chemical signatures

  10. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Ryu, Eunsook; Hong, Su; Kang, Jaeku; Woo, Junghoon; Park, Jungjun; Lee, Jongho; Seo, Jeong-Sun

    2008-01-01

    Human bone marrow mesenchymal stem cells (hBMMSCs) are multipotent stem cells that can differentiate into several specialized cell types, including bone, cartilage, and fat cells. The proliferative capacity of hBMMSCs paves the way for the development of regenerative medicine and tissue engineering. However, long-term in vitro culture of hBMMSCs leads to a reduced life span of the cells due to senescence, which leads eventually to growth arrest. To investigate the molecular mechanism behind the cellular senescence of hBMMSCs, microarray analysis was used to compare the expression profiles of early passage hBMMSCs, late passage hBMMSCs and hBMMSCs ectopically expressing human telomerase reverse transcriptase (hTERT). Using an intersection analysis of 3892 differentially expressed genes (DEGs) out of 27,171 total genes analyzed, we identified 338 senescence-related DEGs. GO term categorization and pathway network analysis revealed that the identified genes are strongly related to known senescence pathways and mechanisms. The genes identified using this approach will facilitate future studies of the mechanisms underlying the cellular senescence of hBMMSCs

  11. Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells.

    Science.gov (United States)

    Zhou, Junjie; Yu, Guangrong; Cao, Chengfu; Pang, Jinhui; Chen, Xianqi

    2011-06-01

    Bone morphogenetic proteins (BMPs) play important roles at multiple stages of chondrogenesis. This study was undertaken to investigate the potential role of bone morphogenetic protein-7 (BMP-7) in the differentiation of chondrocytes using tissue engineering techniques. The impact of BMP-7 on human amniotic epithelial cells (hAECs) was tested. The hAECs were treated either with recombinant human BMP-7 cDNA or with transforming growth factor beta 1 (TGF-β1) as a positive control for three weeks in vitro. Cartilaginous differentiation and proliferation were assayed by quantitative RT-PCR, histology, and in situ hybridization. Our results were such that hAECs treated with either BMP-7 or TGF-β1 expressed cartilage markers (aggrecan, Sox9, CEP-68, and type II and X collagens) within three weeks. Compared with a control vector, BMP-7 induced a decrease in type I collagen expression, while the transcription of the cartilage-specific type II collagen remained stable. In induction experiments, BMP-7 transgenic hAECs exhibited the largest amount of matrix synthesis. In conclusion, these data indicate that BMP-7 plays an important role in inducing the production of cartilage by hAECs in vitro. Cartilage differentiation and matrix maturation can be promoted by BMPs in a cartilage engineering paradigm. These properties make BMPs promising tools in the engineering of cartilaginous joint bio-prostheses and as candidate biological agents or genes for cartilage stabilisation.

  12. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells.

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-04-03

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  13. ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs.

    Science.gov (United States)

    Lee, Michelle H; Goralczyk, Anna G; Kriszt, Rókus; Ang, Xiu Min; Badowski, Cedric; Li, Ying; Summers, Scott A; Toh, Sue-Anne; Yassin, M Shabeer; Shabbir, Asim; Sheppard, Allan; Raghunath, Michael

    2016-02-17

    Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced 'browning' in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.

  14. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Ding Ding

    2018-04-01

    Full Text Available Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs, a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM, X-ray diffraction (XRD as well as transmission electron microscopy (TEM. The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  15. HSP10 selective preference for myeloid and megakaryocytic precursors in normal human bone marrow

    Directory of Open Access Journals (Sweden)

    F Cappello

    2009-06-01

    Full Text Available Heat shock proteins (HSPs constitute a heterogeneous family of proteins involved in cell homeostasis. During cell life they are involved in harmful insults, as well as in immune and inflammatory reactions. It is known that they regulate gene expression, and cell proliferation, differentiation and death. HSP60 is a mitochondrial chaperonin, highly preserved during evolution, responsible of protein folding. Its function is strictly dependent on HSP10 in both prokaryotic and eukaryotic elements. We investigated the presence and the expression of HSP60 and HSP10 in a series of 20 normal human bone marrow specimens (NHBM by the means of immunohistochemistry. NHBM showed no expression of HSP60, probably due to its being below the detectable threshold, as already demonstrated in other normal human tissues. By contrast, HSP10 showed a selective positivity for myeloid and megakaryocytic lineages. The positivity was restricted to precursor cells, while mature elements were constantly negative.We postulate that HSP10 plays a role in bone marrow cell differentiation other than being a mitochondrial co-chaperonin. The present data emphasize the role of HSP10 during cellular homeostasis and encourage further investigations in this field.

  16. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability.

    Science.gov (United States)

    Szulc, P; Naylor, K; Hoyle, N R; Eastell, R; Leary, E T

    2017-09-01

    The National Bone Health Alliance (NBHA) recommends standardized sample handling and patient preparation for C-terminal telopeptide of type I collagen (CTX-I) and N-terminal propeptide of type I procollagen (PINP) measurements to reduce pre-analytical variability. Controllable and uncontrollable patient-related factors are reviewed to facilitate interpretation and minimize pre-analytical variability. The IOF and the International Federation of Clinical Chemistry (IFCC) Bone Marker Standards Working Group have identified PINP and CTX-I in blood to be the reference markers of bone turnover for the fracture risk prediction and monitoring of osteoporosis treatment. Although used in clinical research for many years, bone turnover markers (BTM) have not been widely adopted in clinical practice primarily due to their poor within-subject and between-lab reproducibility. The NBHA Bone Turnover Marker Project team aim to reduce pre-analytical variability of CTX-I and PINP measurements through standardized sample handling and patient preparation. Recommendations for sample handling and patient preparations were made based on review of available publications and pragmatic considerations to reduce pre-analytical variability. Controllable and un-controllable patient-related factors were reviewed to facilitate interpretation and sample collection. Samples for CTX-I must be collected consistently in the morning hours in the fasted state. EDTA plasma is preferred for CTX-I for its greater sample stability. Sample collection conditions for PINP are less critical as PINP has minimal circadian variability and is not affected by food intake. Sample stability limits should be observed. The uncontrollable aspects (age, sex, pregnancy, immobility, recent fracture, co-morbidities, anti-osteoporotic drugs, other medications) should be considered in BTM interpretation. Adopting standardized sample handling and patient preparation procedures will significantly reduce controllable pre

  17. Bones and humanity. On Forensic Anthropology and its constitutive power facing forced disappearance

    Directory of Open Access Journals (Sweden)

    Anne Huffschmid

    2015-11-01

    Full Text Available Forensic anthropologists seek to decipher traces of anonymous dead, to restitute identities of human remains and to provide their families with the possibility to conclude mourning and even of justice. The article explores the contributions and meanings of forensic anthropology as state-independent practice beyond a mereley criminalistic approach, as it was conceptualized by the Argentine pioneers after the last dictatorship in this nation. I conceive this practice as a sort of arqueology of contemporary terror that seeks to confront a specific violence as the forced disappearance of persons and the deshumanization of their dead bodies. The article proposes reading forensic anthropology as a 'situated cience', with its complexities and ambigueties, that operates between nameless bones (the human remains and names without bodies (the so-called disappeared in settings of violent pasts such as Argentina or Guatemala, and especially in Mexico, where mass graves became the new symbol of a horrified present.

  18. Analysis of human bone alkaline phosphatase isoforms: comparison of isoelectric focusing and ion-exchange high-performance liquid chromatography.

    Science.gov (United States)

    Sharp, Christopher A; Linder, Cecilia; Magnusson, Per

    2007-04-01

    Several isoforms of alkaline phosphatase (ALP) can be identified in human tissues and serum after separation by anion-exchange HPLC and isoelectric focusing (IEF). We purified four soluble bone ALP (BALP) isoforms (B/I, B1x, B1 and B2) from human SaOS-2 cells, determined their specific pI values by broad range IEF (pH 3.5-9.5), compared these with commercial preparations of bone, intestinal and liver ALPs and established the effects of neuraminidase and wheat germ lectin (WGA) on enzyme activity. Whilst the isoforms B1x (pI=4.48), B1 (pI=4.32) and B2 (pI=4.12) resolved as well-defined bands, B/I resolved as a complex (pI=4.85-6.84). Neuraminidase altered the migration of all BALP isoforms to pI=6.84 and abolished their binding to the anion-exchange matrix, but increased their enzymatic activities by 11-20%. WGA precipitated the BALP isoforms in IEF gels and the HPLC column and attenuated their enzymatic activities by 54-73%. IEF resolved the commercial BALP into 2 major bands (pI=4.41 and 4.55). Migration of BALP isoforms is similar in IEF and anion-exchange HPLC and dependent on sialic acid content. HPLC is preferable in smaller scale research applications where samples containing mixtures of BALP isoforms are analysed. Circulating liver ALP (pI=3.85) can be resolved from BALP by either method. IEF represents a simpler approach for routine purposes even though some overlapping of the isoforms may occur.

  19. Scanning Electron Microscope (SEM Evaluation of the Interface between a Nanostructured Calcium-Incorporated Dental Implant Surface and the Human Bone

    Directory of Open Access Journals (Sweden)

    Francesco Mangano

    2017-12-01

    Full Text Available Purpose. The aim of this scanning electron microscope (SEM study was to investigate the interface between the bone and a novel nanostructured calcium-incorporated dental implant surface in humans. Methods. A dental implant (Anyridge®, Megagen Implant Co., Gyeongbuk, South Korea with a nanostructured calcium-incorporated surface (Xpeed®, Megagen Implant Co., Gyeongbuk, South Korea, which had been placed a month earlier in a fully healed site of the posterior maxilla (#14 of a 48-year-old female patient, and which had been subjected to immediate functional loading, was removed after a traumatic injury. Despite the violent trauma that caused mobilization of the fixture, its surface appeared to be covered by a firmly attached, intact tissue; therefore, it was subjected to SEM examination. The implant surface of an unused nanostructured calcium-incorporated implant was also observed under SEM, as control. Results. The surface of the unused implant showed a highly-structured texture, carved by irregular, multi-scale hollows reminiscent of a fractal structure. It appeared perfectly clean and devoid of any contamination. The human specimen showed trabecular bone firmly anchored to the implant surface, bridging the screw threads and filling the spaces among them. Conclusions. Within the limits of this human histological report, the sample analyzed showed that the nanostructured calcium-incorporated surface was covered by new bone, one month after placement in the posterior maxilla, under an immediate functional loading protocol.

  20. Bone marrow extract as a growth supplement for human iliac apophyseal chondrocyte culture

    Directory of Open Access Journals (Sweden)

    Balasubramanian Balakumar

    2016-01-01

    Full Text Available Background & objectives: Human bone marrow is rich in various growth factors which may support the chondrocyte growth. This study was conducted to compare the culture characteristics of human growth plate chondrocyte in foetal bovine serum (FBS and human autologous bone marrow extract (BME in monolayer culture. Methods: Iliac crest apophyseal cartilage was harvested from four donors, aged between two and nine years, undergoing hip surgery. Chondrocytes were propagated under two culture conditions, with 10 per cent FBS and 10 per cent autologous BME harvested from the same donors. Cells were harvested at 7, 14 and 21 days to assess viability, morphology, cell count and immunocytochemistry. Results: With an initial seeding density of 2500 cells/cm 2 , the average yield in monolayer cultured with FBS was 3.35 × 10 5 , 5.9 × 10 5 , 14.1 × 10 5 and BME was 0.66 × 10 5 , 1.57 × 10 5 and 3.48 × 10 5 at 7, 14 and 21 days, respectively. Viability was 98.21 per cent with FBS and 97.45 per cent with BME at 21 days. In BME supplemented cultures, hyaline phenotype was maintained up to 21 days. The yield was higher in the FBS supplemented group; however, the phenotype could not be maintained by the FBS group as long as BME group. Interpretation & conclusions: Autologous BME was found to be a safer alternative to FBS for human studies. BME could maintain the hyaline phenotype for a longer time. Ways to enhance the cell yield needs to be explored in future studies.

  1. Intraskeletal variation in human cortical osteocyte lacunar density: Implications for bone quality assessment

    Directory of Open Access Journals (Sweden)

    Randee L. Hunter

    2016-12-01

    Full Text Available Osteocytes and their lacunocanalicular network have been identified as the regulator of bone quality and function by exerting extensive influence over metabolic processes, mechanical adaptation, and mineral homeostasis. Recent research has shown that osteocyte apoptosis leads to a decrease in bone quality and increase in bone fragility mediated through its effects on remodeling. The purpose of this study is to investigate variation in cortical bone osteocyte lacunar density with respect to major factors including sex, age, and intracortical porosity to establish both regional and systemic trends. Samples from the midshaft femur, midshaft rib and distal one-third diaphysis of the radius were recovered from 30 modern cadaveric individuals (15 males and 15 females ranging from 49 to 100 years old. Thick ground undecalcified histological (80 μm cross-sections were made and imaged under bright field microscopy. Osteocyte lacunar density (Ot.Lc.N/B.Ar and intracortical porosity (%Po.Ar were quantified. No significant sex differences in Ot.Lc.N/B.Ar or %Po.Ar were found in any element. Linear regressions demonstrated a significant decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar and increase in intracortical porosity (%Po.Ar with age for the sex-pooled sample in the femur (R2 = 0.208, 0.297 respectively and radius (R2 = 0.108, 0.545 respectively. Age was unable to significantly predict osteocyte lacunar density or intracortical porosity in the rib (R2 = 0.058, 0.114 respectively. Comparisons of regression coefficients demonstrated a systemic trend in the decrease in osteocyte lacunar density (Ot.Lc.N/B.Ar and increase in intracortical porosity (%Po.Ar with age. In each element, intracortical porosity was significantly negatively correlated with lacunar density for which the radius demonstrated the strongest relationship (r = −0.746. Using pore number (Po.N as a proxy for available vascularity to support the osteocyte population, Po

  2. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress

    NARCIS (Netherlands)

    Kraft, D.C.E.; Bindslev, D.A.; Melsen, B.; Klein-Nulend, J.

    2011-01-01

    Background aims. For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular

  3. Proteome profiling analysis of human ovarian cancer serum samples

    International Nuclear Information System (INIS)

    Cognetti, F.; Citro, G.

    2009-01-01

    Mass Spectrometry represents a powerful tool in cancer research to discovery of potential bio markers through peak identification from serum profiling. By using high resolution MALDITOF and bioinformatic analysis almost 400 serum sample homogeneously distributed between biopsy confirmed ovarian cancer and high risk serum samples were analyzed. Each serum sample run in duplicate and whole serum sample preparation procedure has been performed by Hamilton Star Robot in order to reduce bias and the replicates with a low Pearson coefficient are removed. After automated reverse phase magnetic beads separation the samples were tested in MALDI-TOF

  4. Modeling elemental strontium in human bone based on in vivo x-ray fluorescence measurements in osteoporotic females self-supplementing with strontium citrate

    International Nuclear Information System (INIS)

    Moise, H; Chettle, D R; Pejović-Milić, A

    2016-01-01

    An in-house custom I-125 excited in vivo x-ray fluorescence (IVXRF) system was used to perform bone strontium (Sr) measurements in individuals suffering from osteoporosis and/or osteopenia. These individuals, who were self-administering with Sr supplements of their choice, were measured frequently, ranging from weekly to biweekly to monthly, over four years, as part of the Ryerson and McMaster Sr in Bone Research Study. Based on these data collected, data from eight subjects were used to perform kinetic modeling of Sr in human bone. Power and exponential models were used to model the data based on one and two compartmental systems. Model parameters included: mean normalized baseline bone Sr signal, half-life and bone Sr uptake. A one compartmental exponential model applied to finger and ankle bone measurements gave half-lives of (508  ±  331) d and (232  ±  183) d, respectively, but did not show statistically significant differences (p  =  0.087 96). However, the values fall within literature estimates. When a two compartmental model was applied to finger bone measurements, half-lives of (300  ±  163) d and (2201  ±  1662) d were observed. Ankle bone data gave half-lives of (156  ±  117) d and (1681  ±  744) d. A two sample t-test, assuming unequal variances, showed these half-lives to be statistically different in both the finger and ankle bone measurements (p  =  0.0147 and p  =  0.00711, respectively). Common kinetic parameters amongst the different subjects could not be unambiguously identified due to the wide scatter of data, leading to an inconclusive kinetic model. The wide distribution of data is suggested to be physiological since technical and positioning factors were eliminated as possible causes. This outcome indicates the need for a more controlled study and further understanding of the physiological mechanism of Sr absorption. (paper)

  5. White-tailed Deer as a Taphonomic Agent: Photographic Evidence of White-tailed Deer Gnawing on Human Bone.

    Science.gov (United States)

    Meckel, Lauren A; McDaneld, Chloe P; Wescott, Daniel J

    2018-01-01

    Ungulate gnawing on bone has been reported in the taphonomic and zooarchaeological literature, but there are no known reports of ungulates altering human remains. Herein, we report on the first known photographic evidence of deer gnawing human remains. As described in nonhuman scavenging literature, forking of the bone characterizes the taphonomic effect of deer gnawing in this case, which is distinct from the effect caused by other scavengers. This type of osteophagia during the winter season is consistent with previously documented behavior of deer gnawing on nonhuman bone, possibly to obtain minerals absent in their diet. In this study, we briefly discuss the distinguishing features of ungulate gnawing, the reasons for this behavior, and possible confusion with other common types of scavenging and modification. This report contributes to taphonomic literature covering the range of animal interactions with human skeletal remains. © 2017 American Academy of Forensic Sciences.

  6. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization

    DEFF Research Database (Denmark)

    Stenderup, Karin; Rosada, Cecilia; Justesen, J

    2004-01-01

    Age-related decreased osteoblast function is a well-known but poorly understood phenomenon. Previous studies that examined the effects of donor age on osteoblast functions employed in vitro assays that may not reflect the true osteoblast capacity for bone formation. Thus, we have developed an in ...

  7. Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue.

    Science.gov (United States)

    Nyman, Jeffry S; Roy, Anuradha; Acuna, Rae L; Gayle, Heather J; Reyes, Michael J; Tyler, Jerrod H; Dean, David D; Wang, Xiaodu

    2006-12-01

    Collagen crosslinks are important to the quality of bone and may be contributors to the age-related increase in bone fracture. This study was performed to investigate whether age and gender effects on collagen crosslinks are similar in osteonal and interstitial bone tissues. Forty human cadaveric femurs were collected and divided into two age groups: middle-aged (42-63 years of age) and elderly (69-90 years of age) with ten males and ten females in each group (n = 10). Micro-cores of bone tissue from both secondary osteons and interstitial regions in the medial quadrant of the diaphysis were extracted using a custom-modified, computer-controlled milling machine. The bone specimens were then analyzed using high performance liquid chromatography to determine the effects of age and gender on the concentration of mature, enzymatic crosslinks (hydroxylysyl-pyridinoline-HP and lysyl-pyridinoline-LP) and a non-enzymatic crosslink (pentosidine-PE) at these two microstructural sites. The results indicate that age has a significant effect on the concentration of LP and PE, while gender has a significant effect on HP and LP. In addition, the concentration of the crosslinks in the secondary osteons is significantly different from that in the interstitial bone regions. These results suggest that the amount of non-enzymatic crosslinking may increase while that of mature enzymatic crosslinking may decrease with age. Such changes could potentially reduce the inherent quality of the bone tissue in the elderly skeleton.

  8. Safety of recombinant human platelet-derived growth factor-BB in Augment® Bone Graft

    Directory of Open Access Journals (Sweden)

    Luis A Solchaga

    2012-12-01

    Full Text Available This article discusses nonclinical and clinical data regarding the safety of recombinant human platelet-derived growth factor-BB as a component of the Augment® Bone Graft (Augment. Augment is a bone graft substitute intended to be used as an alternative to autologous bone graft in the fusion of hindfoot and ankle joints. Nonclinical studies included assessment of the pharmacokinetic profile of intravenously administered recombinant human platelet-derived growth factor-BB in rat and dog, effects of intravenous administration of recombinant human platelet-derived growth factor-BB in a reproductive and development toxicity study in rats, and chronic toxicity and carcinogenicity of Augment in a 12-month implantation model. These studies showed that systemic exposure was brief and clearance was rapid. No signs of toxicity, carcinogenicity, or tumor promotion were observed even with doses far exceeding the maximum clinical dose. Results of clinical trials (605 participants and commercial use of recombinant human platelet-derived growth factor-BB containing products indicate that these products are not associated with increased incidence of adverse events or cancer. The safety data presented provide evidence that recombinant human platelet-derived growth factor-BB is a safe therapeutic when used in combination products as a single administration during surgical procedures for bone repair and fusion. There is no evidence associating use of recombinant human platelet-derived growth factor-BB in Augment with chronic toxicity, carcinogenicity, or tumor promotion.

  9. Laterality and grip strength influence hand bone micro-architecture in modern humans, an HRpQCT study.

    Science.gov (United States)

    Reina, Nicolas; Cavaignac, Etienne; Trousdale, William H; Laffosse, Jean-Michel; Braga, José

    2017-06-01

    It is widely hypothesized that mechanical loading, specifically repetitive low-intensity tasks, influences the inner structure of cancellous bone. As such, there is likely a relationship between handedness and bone morphology. The aim of this study is to determine patterns in trabecular bone between dominant and non-dominant hands in modern humans. Seventeen healthy patients between 22 and 32 years old were included in the study. Radial carpal bones (lunate, capitate, scaphoid, trapezium, trapezoid, 1st, 2nd and 3rd metacarpals) were analyzed with high-resolution micro-computed tomography. Additionally, crush and pinch grip were recorded. Factorial analysis indicated that bone volume ratio, trabeculae number (Tb.N), bone surface to volume ratio (BS.BV), body weight, stature and crush grip were all positively correlated with principal components 1 and 2 explaining 78.7% of the variance. Volumetric and trabecular endostructural parameters (BV/TV, BS/BV or Tb.Th, Tb.N) explain the observed inter-individual variability better than anthropometric or clinical parameters. Factors analysis regressions showed correlations between these parameters and the dominant side for crush strength for the lunate (r 2 = 0.640, P modern human wrist. © 2017 Anatomical Society.

  10. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2017-08-01

    Full Text Available Background/Aims: Mesenchymal stem/stromal cells (MSCs are known to home to sites of tumor microenvironments where they participate in the formation of the tumor microenvironment and to interplay with tumor cells. However, the potential functional effects of MSCs on tumor cell growth are controversial. Here, we, from the view of bone marrow MSC-derived exosomes, study the molecular mechanism of MSCs on the growth of human osteosarcoma and human gastric cancer cells. Methods: MSCs derived from human bone marrow (hBMSCs were isolated and cultured in complete DMEM/F12 supplemented with 10% exosome-depleted fetal bovine serum and 1% penicillin-streptomycin, cell culture supernatants containing exosomes were harvested and exosome purification was performed by ultracentrifugation. Osteosarcoma (MG63 and gastric cancer (SGC7901 cells, respectively, were treated with hBMSC-derived exosomes in the presence or absence of a small molecule inhibitor of Hedgehog pathway. Cell viability was measured by transwell invasion assay, scratch migration assay and CCK-8 test. The expression of the signaling molecules Smoothened, Patched-1, Gli1 and the ligand Shh were tested by western blot and RT-PCR. Results: In this study, we found that hBMSC-derived exosomes promoted MG63 and SGC7901 cell growth through the activation of Hedgehog signaling pathway. Inhibition of Hedgehog signaling pathway significantly suppressed the process of hBMSC-derived exosomes on tumor growth. Conclusion: Our findings demonstrated the new roles of hedgehog signaling pathway in the hBMSCs-derived exosomes induced tumor progression.

  11. Random vs. systematic sampling from administrative databases involving human subjects.

    Science.gov (United States)

    Hagino, C; Lo, R J

    1998-09-01

    Two sampling techniques, simple random sampling (SRS) and systematic sampling (SS), were compared to determine whether they yield similar and accurate distributions for the following four factors: age, gender, geographic location and years in practice. Any point estimate within 7 yr or 7 percentage points of its reference standard (SRS or the entire data set, i.e., the target population) was considered "acceptably similar" to the reference standard. The sampling frame was from the entire membership database of the Canadian Chiropractic Association. The two sampling methods were tested using eight different sample sizes of n (50, 100, 150, 200, 250, 300, 500, 800). From the profile/characteristics, summaries of four known factors [gender, average age, number (%) of chiropractors in each province and years in practice], between- and within-methods chi 2 tests and unpaired t tests were performed to determine whether any of the differences [descriptively greater than 7% or 7 yr] were also statistically significant. The strengths of the agreements between the provincial distributions were quantified by calculating the percent agreements for each (provincial pairwise-comparison methods). Any percent agreement less than 70% was judged to be unacceptable. Our assessments of the two sampling methods (SRS and SS) for the different sample sizes tested suggest that SRS and SS yielded acceptably similar results. Both methods started to yield "correct" sample profiles at approximately the same sample size (n > 200). SS is not only convenient, it can be recommended for sampling from large databases in which the data are listed without any inherent order biases other than alphabetical listing by surname.

  12. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells.

    Science.gov (United States)

    Nishigaki, Masaru; Yamamoto, Toshiro; Ichioka, Hiroaki; Honjo, Ken-Ichi; Yamamoto, Kenta; Oseko, Fumishige; Kita, Masakazu; Mazda, Osam; Kanamura, Narisato

    2013-07-01

    β-cryptoxanthin (β-cry) is a type of carotenoid found in certain fruits and vegetables. Although it has been shown that β-cry inhibits alveolar bone resorption, the molecular mechanisms for this have not yet been clarified. In the present study, we investigated the effects of β-cry on bone resorption related-cytokine production in human periodontal ligament (hPDL) cells. hPDL cells were stimulated with β-cry (1×10(-7)mol/l), mechanical stress (1 or 6MPa), and P. gingivalis. The production of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by RT-PCR and ELISA. The production of IL-1β, IL-6, IL-8, and TNF-α was not induced in hPDL cells after stimulation with β-cry, although these cytokines were produced after stimulation with P. gingivalis. On the other hand, IL-6 and IL-8 were produced after exposure to 6MPa of mechanical stress. The production of IL-6 and IL-8 was significantly decreased by the addition of β-cry. Furthermore, β-cry up-regulated the production of OPG, but not RANKL. β-cry inhibited the production of IL-6 and IL-8 induced by mechanical stress and periodontopathogenic bacteria in hPDL cells. Moreover, β-cry up-regulated OPG production. These results suggest that β-cry may prevent bone resorption in periodontitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Analysing of 228Th, 232Th, 228Ra in human bone tissues for the purpose of determining the post mortal interval

    International Nuclear Information System (INIS)

    Kandlbinder, R.; Geissler, V.; Schupfner, R.; Wolfbeis, O.; Zinka, B.

    2009-01-01

    Bone tissues of thirteen deceased persons were analyzed to determine the activity concentration of the radionuclides 228 Ra, 228 Th, 232 Th and 2 30 Th. The activity ratios enable to assess the post-mortem-interval PMI). The samples were prepared for analysis by incinerating and pulverizing. 228 Ra was directly detected by γ-spectrometry. 2 28 Th, 230 Th, 232 Th were detected by α-spectrometry after radiochemical purification and electrodeposition. It is shown that the method s principally suited to determine the PMI. A minimum of 300 g (wet weight) f human bone tissue is required for the analysis. Counting times are in the range of one to two weeks. (author)

  14. Bone banking.

    Science.gov (United States)

    Howard, W

    1999-04-01

    The use of human organs and tissues for transplantation in Australia has increased significantly over the past 30 years. In 1997, the Australian Coordinating Committee on Organ Registries and Donation (ACCORD) reported a total number of 190 organ donors, 636 corneal donors and 1509 bone donors Australia wide. Of the 1509 bone donations, 143 came from cadaveric sources and 1366 were made by living donors. Bone transplantation is not as widely recognised as solid organ or corneal transplantation. Due to improved technology and surgical skills, the demand for bone transplantation has increased markedly. This Clinical Update will provide an overview of the physiological aspects of bone transplantation and explore bone banking, a key step in the complex and critical process of bone transplantation.

  15. Finite element analysis of trabecular bone structures : a comparison of image-based meshing techniques

    NARCIS (Netherlands)

    Ulrich, D.; Rietbergen, van B.; Weinans, H.; Rüegsegger, P.

    1998-01-01

    In this study, we investigate if finite element (FE) analyses of human trabecular bone architecture based on 168 microm images can provide relevant information about the bone mechanical characteristics. Three human trabecular bone samples, one taken from the femoral head, one from the iliac crest,

  16. Genetic and evolutionary analyses of the human bone morphogenetic protein receptor 2 (BMPR2 in the pathophysiology of obesity.

    Directory of Open Access Journals (Sweden)

    Dorit Schleinitz

    2011-02-01

    Full Text Available Human bone morphogenetic protein receptor 2 (BMPR2 is essential for BMP signalling and may be involved in the regulation of adipogenesis. The BMPR2 locus has been suggested as target of recent selection in human populations. We hypothesized that BMPR2 might have a role in the pathophysiology of obesity.Evolutionary analyses (dN/dS, Fst, iHS were conducted in vertebrates and human populations. BMPR2 mRNA expression was measured in 190 paired samples of visceral and subcutaneous adipose tissue. The gene was sequenced in 48 DNA samples. Nine representative single nucleotide polymorphisms (SNPs were genotyped for subsequent association studies on quantitative traits related to obesity in 1830 German Caucasians. An independent cohort of 925 Sorbs was used for replication. Finally, relation of genotypes to mRNA in fat was examined.The evolutionary analyses indicated signatures of selection on the BMPR2 locus. BMPR2 mRNA expression was significantly increased both in visceral and subcutaneous adipose tissue of 37 overweight (BMI>25 and 30 kg/m² compared with 44 lean subjects (BMI< 25 kg/m² (P<0.001. In a case-control study including lean and obese subjects, two intronic SNPs (rs6717924, rs13426118 were associated with obesity (adjusted P<0.05. Combined analyses including the initial cohort and the Sorbs confirmed a consistent effect for rs6717924 (combined P = 0.01 on obesity. Moreover, rs6717924 was associated with higher BMPR2 mRNA expression in visceral adipose tissue.Combined BMPR2 genotype-phenotype-mRNA expression data as well as evolutionary aspects suggest a role of BMPR2 in the pathophysiology of obesity.

  17. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  19. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas

    2007-01-01

    The bone-related protein osteoprotegerin (OPG) may be involved in the development of vascular calcifications, especially in diabetes, where it has been found in increased amounts in the arterial wall. Experimental studies suggest that members of the TGF-superfamily are involved in the transformat......The bone-related protein osteoprotegerin (OPG) may be involved in the development of vascular calcifications, especially in diabetes, where it has been found in increased amounts in the arterial wall. Experimental studies suggest that members of the TGF-superfamily are involved...... in the transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL......) and TNF-related apoptosis-inducing ligand (TRAIL) in HVSMC. All three growth factors decreased OPG protein production significantly; these results were paralleled by reduced OPG mRNA expression. TRAIL mRNA levels were also decreased. RANKL mRNA expression declined when treated with TGF-beta1 but were...

  20. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  1. Direct estimation of human trabecular bone stiffness using cone beam computed tomography.

    Science.gov (United States)

    Klintström, Eva; Klintström, Benjamin; Pahr, Dieter; Brismar, Torkel B; Smedby, Örjan; Moreno, Rodrigo

    2018-04-10

    The aim of this study was to evaluate the possibility of estimating the biomechanical properties of trabecular bone through finite element simulations by using dental cone beam computed tomography data. Fourteen human radius specimens were scanned in 3 cone beam computed tomography devices: 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan), NewTom 5 G (QR Verona, Verona, Italy), and Verity (Planmed, Helsinki, Finland). The imaging data were segmented by using 2 different methods. Stiffness (Young modulus), shear moduli, and the size and shape of the stiffness tensor were studied. Corresponding evaluations by using micro-CT were regarded as the reference standard. The 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan) showed good performance in estimating stiffness and shear moduli but was sensitive to the choice of segmentation method. NewTom 5 G (QR Verona, Verona, Italy) and Verity (Planmed, Helsinki, Finland) yielded good correlations, but they were not as strong as Accuitomo 80 (J. Morita MFG., Kyoto, Japan). The cone beam computed tomography devices overestimated both stiffness and shear compared with the micro-CT estimations. Finite element-based calculations of biomechanics from cone beam computed tomography data are feasible, with strong correlations for the Accuitomo 80 scanner (J. Morita MFG., Kyoto, Japan) combined with an appropriate segmentation method. Such measurements might be useful for predicting implant survival by in vivo estimations of bone properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A Mechatronic Loading Device to Stimulate Bone Growth via a Human Knee.

    Science.gov (United States)

    Prabhala, Sai Krishna; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel

    2016-09-29

    This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC) motor and provides uniform and cyclic force. The functionality of the device was simulated in a