WorldWideScience

Sample records for human body systems

  1. A Human Body Analysis System

    Directory of Open Access Journals (Sweden)

    Girondel Vincent

    2006-01-01

    Full Text Available This paper describes a system for human body analysis (segmentation, tracking, face/hands localisation, posture recognition from a single view that is fast and completely automatic. The system first extracts low-level data and uses part of the data for high-level interpretation. It can detect and track several persons even if they merge or are completely occluded by another person from the camera's point of view. For the high-level interpretation step, static posture recognition is performed using a belief theory-based classifier. The belief theory is considered here as a new approach for performing posture recognition and classification using imprecise and/or conflicting data. Four different static postures are considered: standing, sitting, squatting, and lying. The aim of this paper is to give a global view and an evaluation of the performances of the entire system and to describe in detail each of its processing steps, whereas our previous publications focused on a single part of the system. The efficiency and the limits of the system have been highlighted on a database of more than fifty video sequences where a dozen different individuals appear. This system allows real-time processing and aims at monitoring elderly people in video surveillance applications or at the mixing of real and virtual worlds in ambient intelligence systems.

  2. Visuals and Visualisation of Human Body Systems

    Science.gov (United States)

    Mathai, Sindhu; Ramadas, Jayashree

    2009-01-01

    This paper explores the role of diagrams and text in middle school students' understanding and visualisation of human body systems. We develop a common framework based on structure and function to assess students' responses across diagram and verbal modes. Visualisation is defined in terms of understanding transformations on structure and relating…

  3. Auto-measuring System of 3- Dimensional Human Body

    Institute of Scientific and Technical Information of China (English)

    李勇; 尚保平; 付小莉; 尚会超

    2001-01-01

    To realize the automation of fashion industry measuring,designing and manufacturing, the auto-measurement of 3D size of human body is of great importance. The auto measurement system of 3D human body based on Charge Coupled Devices (CCD) and infrared sensors is presented in this paper. The system can measure the bare size of human body that excludes the effect of clothing quickly and accurately.

  4. High School Students' Understanding of the Human Body System

    Science.gov (United States)

    Assaraf, Orit Ben-Zvi; Dodick, Jeff; Tripto, Jaklin

    2013-01-01

    In this study, 120 tenth-grade students from 8 schools were examined to determine the extent of their ability to perceive the human body as a system after completing the first stage in their biology curriculum--"The human body, emphasizing homeostasis". The students' systems thinking was analyzed according to the STH thinking model, which roughly…

  5. A REVIEW ON LOWER APPENDICULAR MUSCULOSKELETAL SYSTEM OF HUMAN BODY

    Directory of Open Access Journals (Sweden)

    M. Akhtaruzzaman

    2016-04-01

    Full Text Available Rehabilitation engineering plays an important role in designing various autonomous robots to provide better therapeutic exercise to disabled patients. Hence it is necessary to study human musculoskeletal system and also needs to be presented in scientific manner in order to describe and analyze the biomechanics of human body motion. This review focuses on lower appendicular musculoskeletal structure of human body to represent joints and links architectures; to identify muscle attachments and functions; and to illustrate muscle groups which are responsible for a particular joint movement. Firstly, human lower skeletal structure, linking systems, joint mechanisms, and their functions are described with a conceptual representation of joint architecture of human skeleton. This section also represents joints and limbs by comparing with mechanical systems. Characteristics of ligaments and their functions to construct skeletal joints are also discussed briefly in this part. Secondly, the study focuses on muscular system of human lower limbs where muscle structure, functions, roles in moving endoskeleton structure, and supporting mechanisms are presented ellaborately. Thirdly, muscle groups are tabulated based on functions that provide mobility to different joints of lower limbs. Finally, for a particular movement action of lower extremity, muscles are also grouped and tabulated to have a better understanding on functions of individual muscle. Basically the study presents an overview of the structure of human lower limbs by characterizing and classifying skeletal and muscular systems.KEYWORDS:   Musculoskeletal system; Human lower limbs; Muscle groups; Joint motion; Biomechatronics; Rehabilitation.

  6. Robot and Human Surface Operations on Solar System Bodies

    Science.gov (United States)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  7. On the Interaction between a Nanoparticulate System and the Human Body in Body Area Nanonetworks

    Directory of Open Access Journals (Sweden)

    Valeria Loscrí

    2015-08-01

    Full Text Available In this work, we investigate the interaction of a nanoparticulate system for nanomedicine applications with the biological environment, i.e., the human body. Following the molecular communication paradigm, we assess how our nanoparticulate system model is suitable for coexistence in a biological environment. Specifically, we assume the presence of the human immune system that can affect the optimal behavior of nanoparticles, aiming to locally deliver drug inside the human body. When a flow of nanoparticles is injected into the blood, the interference due to the immune system can provide a strong decrease of the nanoparticle concentration, by means of “humoral immunity”, the phagocytosis process, etc. As a consequence, the correct drug delivery will occur with a lower probability. Since the mechanism behind the biological immune system is very complicated, in this paper, we start from a simplistic nanoparticulate model, where the nanoparticles and the cells of the immune system are subject to the diffusion laws. Finally, we derive the end-to-end physical model of our nanoparticulate nanomedicine system with the presence of the human immune system cells. The error analysis is then investigated in terms of how these errors can affect the performance of the system, i.e., nanoparticle survival probability.

  8. A New Approach and Analysis of Modeling the Human Body in RFID-Enabled Body-Centric Wireless Systems

    Directory of Open Access Journals (Sweden)

    Karoliina Koski

    2014-01-01

    Full Text Available Body-centric wireless systems demand wearable sensor and tag antennas that have robust impedance matching and provide enough gain for a reliable wireless communication link. In this paper, we discuss a novel and practical technique for the modeling of the human body in UHF RFID body-centric wireless systems. What makes this technique different is that we base the human model on measured far-field response from a reference tag attached to the human body. Hereby, the human body model accounts for the encountered human body effects on the tag performance. The on-body measurements are fast, which allows establishing a catalog of human body models for different tag locations and human subjects. Such catalog would provide a ready simulation model for a wide range of wireless body-centric applications in order to initiate a functional design. Our results demonstrate that the suggested modeling technique can be used in the design and optimization of wearable antennas for different real-case body-centric scenarios.

  9. Human growth and body weight dynamics: an integrative systems model.

    Science.gov (United States)

    Rahmandad, Hazhir

    2014-01-01

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and capturing changes in body weight, composition and height. Integrating previous empirical and modeling findings and validated against several additional empirical studies, the model replicates key trends in human growth including A) Changes in energy requirements from birth to old ages. B) Short and long-term dynamics of body weight and composition. C) Stunted growth with chronic malnutrition and potential for catch up growth. From obesity policy analysis to treating malnutrition and tracking growth trajectories, the model can address diverse policy questions. For example I find that even without further rise in obesity, the gap between healthy and actual Body Mass Indexes (BMIs) has embedded, for different population groups, a surplus of 14%-24% in energy intake which will be a source of significant inertia in obesity trends. In another analysis, energy deficit percentage needed to reduce BMI by one unit is found to be relatively constant across ages. Accompanying documented and freely available simulation model facilitates diverse applications customized to different sub-populations.

  10. Investigation of human body potential measured by a non-contact measuring system.

    Science.gov (United States)

    Ichikawa, Norimitsu

    2016-12-07

    A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.

  11. 3D and 4D atlas system of living human body structure.

    Science.gov (United States)

    Suzuki, N; Takatsu, A; Hattori, A; Ezumi, T; Oda, S; Yanai, T; Tominaga, H

    1998-01-01

    A reference system for accessing anatomical information from a complete 3D structure of the whole body "living human", including 4D cardiac dynamics, was reconstructed with 3D and 4D data sets obtained from normal volunteers. With this system, we were able to produce a human atlas in which sectional images can be accessed from any part of the human body interactively by real-time image generation.

  12. [Human body meridian spatial decision support system for clinical treatment and teaching of acupuncture and moxibustion].

    Science.gov (United States)

    Wu, Dehua

    2016-01-01

    The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.

  13. Wearable human body joint and posture measuring system

    NARCIS (Netherlands)

    Dunias, P.; Gransier, R.; Jin, A.; Statham, A.; Willems, P.

    2011-01-01

    In many medical applications, especially the orthopaedic setting, ambulatory, monitoring of human joint angles could be of substantial value to improving rehabilitation strategies and unravelling the pathomechanics of many degenerative joint diseases (e.g. knee osteoarthritis). With the ageing of th

  14. Exploring the human body space: A geographical information system based anatomical atlas

    Directory of Open Access Journals (Sweden)

    Antonio Barbeito

    2016-06-01

    Full Text Available Anatomical atlases allow mapping the anatomical structures of the human body. Early versions of these systems consisted of analogical representations with informative text and labeled images of the human body. With computer systems, digital versions emerged and the third and fourth dimensions were introduced. Consequently, these systems increased their efficiency, allowing more realistic visualizations with improved interactivity and functionality. The 4D atlases allow modeling changes over time on the structures represented. The anatomical atlases based on geographic information system (GIS environments allow the creation of platforms with a high degree of interactivity and new tools to explore and analyze the human body. In this study we expand the functions of a human body representation system by creating new vector data, topology, functions, and an improved user interface. The new prototype emulates a 3D GIS with a topological model of the human body, replicates the information provided by anatomical atlases, and provides a higher level of functionality and interactivity. At this stage, the developed system is intended to be used as an educational tool and integrates into the same interface the typical representations of surface and sectional atlases.

  15. On the dynamics of chain systems. [applications in manipulator and human body models

    Science.gov (United States)

    Huston, R. L.; Passerello, C. E.

    1974-01-01

    A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.

  16. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.

    Science.gov (United States)

    Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W

    2002-09-01

    Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0

  17. Preventive Biomechanics Optimizing Support Systems for the Human Body in the Lying and Sitting Position

    CERN Document Server

    Silber, Gerhard

    2013-01-01

    How can we optimize a bedridden patient’s mattress? How can we make a passenger seat on a long distance flight or ride more comfortable? What qualities should a runner’s shoes have? To objectively address such questions using engineering and scientific methods, adequate virtual human body models for use in computer simulation of loading scenarios are required. The authors have developed a novel method incorporating subject studies, magnetic resonance imaging, 3D-CAD-reconstruction, continuum mechanics, material theory and the finite element method. The focus is laid upon the mechanical in vivo-characterization of human soft tissue, which is indispensable for simulating its mechanical interaction with, for example, medical bedding or automotive and airplane seating systems. Using the examples of arbitrary body support systems, the presented approach provides visual insight into simulated internal mechanical body tissue stress and strain, with the goal of biomechanical optimization of body support systems. ...

  18. Interface of data transmission for a transcutaneous communication system using the human body as transmission medium.

    Science.gov (United States)

    Okamoto, Eiji; Kato, Yoshikuni; Seino, Kazuyuki; Mitamura, Yoshinori

    2012-03-01

    We have been developing a new transcutaneous communication system (TCS) that uses the human body as an electrical conductive medium. We studied an interface circuit of the TCS in order to optimize the leading data current into the human body effectively. Two types of LC circuits were examined for the interface circuit, one was an LC series-parallel circuit, and the other was a parallel-connected LC circuit. The LC series-parallel circuit connected to the body could be tuned to a resonant frequency, and the frequency was determined by the values of an external inductor and an external capacitor. Permittivity of the body did not influence the electrical resonance. Connection of the LC series-parallel circuit to the body degraded the quality factor Q because of the conductivity of the body. However, the LC parallel-connected circuit when connected to the body did not indicate electrical resonance. The LC series-parallel circuit restricts a direct current and a low-frequency current to flow into the body; thus, it can prevent a patient from getting a shock. According to the above results, an LC series-parallel circuit is an optimum interface circuit between the TCS and the body for leading data current into the body effectively and safely.

  19. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.

    Science.gov (United States)

    Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W

    2003-01-01

    Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the

  20. RELIABLE ROBUST CONTROLLER FOR HALF-CAR ACTIVE SUSPENSION SYSTEMS BASED ON HUMAN-BODY DYNAMICS

    Directory of Open Access Journals (Sweden)

    Mohammad Gudarzi

    2016-08-01

    Full Text Available The paper investigates a non-fragile robust control strategy for a half-car active suspension system considering human-body dynamics. A 4-DoF uncertain vibration model of the driver’s body is combined with the car’s model in order to make the controller design procedure more accurate. The desired controller is obtained by solving a linear matrix inequality formulation. Then the performance of the active suspension system with the designed controller is compared to the passive one in both frequency and time domain simulations. Finally, the effect of the controller gain variations on the closed-loop system performance is investigated numerically.

  1. Evaluation of Human Body Tracking System for Gesture-based Programming of Industrial Robots

    DEFF Research Database (Denmark)

    Høilund, Carsten; Krüger, Volker; Moeslund, Thomas B.

    2012-01-01

    Is low-cost tracking precise enough for recognition of pointing actions? We investigate the quality of the human body tracking available with a Kinect camera by comparing it to a state-of-the-art motion capture system. The application is action recognition with parametric hidden Markov Models...

  2. Action recognition system based on human body tracking with depth images

    Directory of Open Access Journals (Sweden)

    M. Martínez-Zarzuela

    Full Text Available When tracking a human body, action recognition tasks can be performed to determine what kind of movement the person is performing. Although a lot of implementations have emerged, state-of-the-art technology such as depth cameras and intelligent systems ca ...

  3. Human body communication performance simulations

    OpenAIRE

    Mufti, H. (Haseeb)

    2016-01-01

    Human Body Communication (HBC) is a novel communication method between devices which use human body as a transmission medium. This idea is mostly based on the concept of wireless biomedical monitoring system. The on-body sensor nodes can monitor vital signs of a human body and use the body as a transmission medium. This technology is convenient for long durations of clinical monitoring with the option of more mobility and freedom for the user. In this thesis, IEEE 802.15.6-2012 phy...

  4. How do precision medicine and system biology response to human body's complex adaptability?

    Science.gov (United States)

    Yuan, Bing

    2016-12-01

    In the field of life sciences, although system biology and "precision medicine" introduce some complex scientifific methods and techniques, it is still based on the "analysis-reconstruction" of reductionist theory as a whole. Adaptability of complex system increase system behaviour uncertainty as well as the difficulties of precise identifification and control. It also put systems biology research into trouble. To grasp the behaviour and characteristics of organism fundamentally, systems biology has to abandon the "analysis-reconstruction" concept. In accordance with the guidelines of complexity science, systems biology should build organism model from holistic level, just like the Chinese medicine did in dealing with human body and disease. When we study the living body from the holistic level, we will fifind the adaptability of complex system is not the obstacle that increases the diffificulty of problem solving. It is the "exceptional", "right-hand man" that helping us to deal with the complexity of life more effectively.

  5. An Augmented γ-Spray System to Visualize Biological Effects for Human Body

    Science.gov (United States)

    Manabe, Seiya; Tenzou, Hideki; Kasuga, Takaaki; Iwakura, Yukiko; Johnston, Robert

    2017-09-01

    The purpose of this study was to develop a new educational system with an easy-to-use interface in order to support comprehension of the biological effects of radiation on the human body within a short period of time. A paint spray-gun was used as a gamma rays source mock-up for the system. The application screen shows the figure of a human body for radiation deposition using the γ-Sprayer, a virtual radiation source, as well as equivalent dosage and a panel for setting the irradiation conditions. While the learner stands in front of the PC monitor, the virtual radiation source is used to deposit radiation on the graphic of the human body that is displayed. Tissue damage is calculated using an interpolation method from the data calculated by the PHITS simulation code in advance while the learner is pulling the trigger with respect to the irradiation time, incident position, and distance from the screen. It was confirmed that the damage was well represented by the interpolation method. The augmented ?-Spray system was assessed by questionnaire. Pre-post questionnaire was taken for our 41 students in National Institute of Technology, Kagawa College. It was also confirmed that the system has a capability of teaching the basic radiation protection concept, quantitative feeling of the radiation dose, and the biological effects

  6. Three-dimensional modeling of supine human and transport system under whole-body vibration.

    Science.gov (United States)

    Wang, Yang; Rahmatalla, Salam

    2013-06-01

    The development of predictive computer human models in whole-body vibration has shown some success in predicting simple types of motion, mostly for seated positions and in the uniaxial vertical direction. The literature revealed only a handful of papers that tackled supine human modeling in response to vertical vibration. The objective of this work is to develop a predictive, multibody, three-dimensional human model to simulate the supine human and underlying transport system in response to multidirectional whole-body vibration. A three-dimensional dynamic model of a supine human and its underlying transport system is presented in this work to predict supine-human biodynamic response under three-dimensional input random whole-body vibration. The proposed supine-human model consists of three interconnected segments representing the head, torso-arms, and pelvis-legs. The segments are connected via rotational and translational joints that have spring-damper components simulating the three-dimensional muscles and tissuelike connecting elements in the three x, y, and z directions. Two types of transport systems are considered in this work, a rigid support and a long spinal board attached to a standard military litter. The contact surfaces between the supine human and the underlying transport system are modeled using spring-damper components. Eight healthy supine human subjects were tested under combined-axis vibration files with a magnitude of 0.5 m/s2 (rms) and a frequency content of 0.5-16 Hz. The data from seven subjects were used in parameter identification for the dynamic model using optimization schemes in the frequency domain that minimize the differences between the magnitude and phase of the predicted and experimental transmissibility. The predicted accelerations in the time and frequency domains were comparable to those gathered from experiments under different anthropometric, input vibration, and transport conditions under investigation. Based on the

  7. Human-Friendly Design of Virtual System “female Body-dress”

    Directory of Open Access Journals (Sweden)

    Guo Mengna

    2015-03-01

    Full Text Available Recently, the development efforts focused on the computer simulation of garments, which depend on the material's physico-mechanical properties. It intends to achieve the best possible and realistic simulations of garments, which are available for pressure prediction. In this manner, 3D garment virtual technology improvements allow the visualization of pressure areas with values where the fabric might be too tight against the body. Although the purposes of simulation graphics were acceptable, the accuracy for apparel shaping is not enough to meet the needs of Virtual Prototyping and CAD utilization especially while the fabric properties system design was inadequate. Moreover, the existing pressure simulation is intended to simply predict the pressure index or how the textile deformation extend, which are deficient in real human's perception. In this research, the 3D shapes belonging to typical female bodies and dresses made of different fabrics were obtained by 3D body scanners (ScanWorX and TELMAT. Through reconstruction for the 3D torso shapes, the volumetric eases between body and dress were calculated by means of a software Rhinoceros. A new approach for the selection of textile properties based on the Kawabata Evaluation System (KES was proposed to investigate its relations with dress shaping and pressure comfort. Finally, fabric properties tested by the KES-F system were compared with volumetric eases, objective pressure indexes and subjective comfort scores to reveal the relations how the fabric properties have impacts on dress outside shaping and inside pressure comfort of a female body. In this manner, the human-friendly CAD instead of mechanical approach existing before has been presented as a new approach to promote the construction of a realistic system for the 3D simulation optimization.

  8. Automatic human body modeling for vision-based motion capture system using B-spline parameterization of the silhouette

    Science.gov (United States)

    Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Mas, Ramon; Perales, Francisco J.

    2012-02-01

    Human motion capture has a wide variety of applications, and in vision-based motion capture systems a major issue is the human body model and its initialization. We present a computer vision algorithm for building a human body model skeleton in an automatic way. The algorithm is based on the analysis of the human shape. We decompose the body into its main parts by computing the curvature of a B-spline parameterization of the human contour. This algorithm has been applied in a context where the user is standing in front of a camera stereo pair. The process is completed after the user assumes a predefined initial posture so as to identify the main joints and construct the human model. Using this model, the initialization problem of a vision-based markerless motion capture system of the human body is solved.

  9. Study on the Gas Detonation Experimental System of Human Body Electrostatic Discharge

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>The modeling system of the gas detonation by the human body electrostatic discharge(ESD)in coal mine is developed successfully,and the body’s dynamic ESD model is established.To obtain a gas concentration causes by the explosions most easily in coal mine environment.The results provide an academic and experimental evidence for the safe electrostatic production and management in coal mine.The system adopts 77E58 as control core and the circuit optimized design,to take dual protection to the gas path and circuit of the system,systematic operation is safe and reliable.The experimental results show that the system can be carried out series of experiments of the human body ESD model detonating mixed gas,the measuring accuracy of gas concentration is 0.1%.And draws a conclusion that the gas concentration which causes the explosions most easily is 8.7%,but not the higher gas concentration is,the more explosive is.

  10. Physics of the Human Body

    CERN Document Server

    Herman, Irving P

    2007-01-01

    Physics of the Human Body comprehensively addresses the physical and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the materials properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to understand physical issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the necessary physical principles. There are problems at the end of each chapter; solutions to selected problems are also provided. This text is geared t...

  11. Equivalent dynamical complexity in a many-body quantum and collective human system

    Directory of Open Access Journals (Sweden)

    Neil F. Johnson

    2011-03-01

    Full Text Available Proponents of Complexity Science believe that the huge variety of emergent phenomena observed throughout nature, are generated by relatively few microscopic mechanisms. Skeptics however point to the lack of concrete examples in which a single mechanistic model manages to capture relevant macroscopic and microscopic properties for two or more distinct systems operating across radically different length and time scales. Here we show how a single complexity model built around cluster coalescence and fragmentation, can cross the fundamental divide between many-body quantum physics and social science. It simultaneously (i explains a mysterious recent finding of Fratini et al. concerning quantum many-body effects in cuprate superconductors (i.e. scale of 10−9 − 10−4 meters and 10−12 − 10−6 seconds, (ii explains the apparent universality of the casualty distributions in distinct human insurgencies and terrorism (i.e. scale of 103 − 106 meters and 104 − 108 seconds, (iii shows consistency with various established empirical facts for financial markets, neurons and human gangs and (iv makes microscopic sense for each application. Our findings also suggest that a potentially productive shift can be made in Complexity research toward the identification of equivalent many-body dynamics in both classical and quantum regimes.

  12. Thermoelectric generator placed on the human body: system modeling and energy conversion improvements

    Science.gov (United States)

    Lossec, M.; Multon, B.; Ben Ahmed, H.; Goupil, C.

    2010-10-01

    This paper focuses on the production of electricity using a thermoelectric generator placed on the human body connected to a dc-dc converter. The small difference in temperature between the hot heat source (e.g. the human body, Tb = 37 °C) and the cold heat source (e.g. ambient air, Ta = 22 °C), associated with a poor quality thermal coupling (mainly with the cold source), leads to a very low temperature gradient at the thermoelectric generator terminals and hence low productivity. Under these use conditions, the present article proposes an analysis of various ways to improve productivity given a surface capture system. Furthermore, we demonstrated, in this particular context, that maximizing the recovered electric power proves to be a different problem from that of maximizing efficiency, e.g. the figure of merit Z. We therefore define a new factor ZE, depending on the physical characteristics of thermoelectric materials, that maximizes electric power in the particular case where the thermal coupling is poor. Finally, this study highlights the benefit of sub-optimization of the power extracted from the thermoelectric generator to further improve efficiency of the overall system. We show that, given the conversion efficiency of the dc-dc converter, the maximum power point of the overall system is no more reached when the output voltage of the thermoelectric generator is equal to half of its electromotive force.

  13. Multichannel Human Body Communication

    Science.gov (United States)

    Przystup, Piotr; Bujnowski, Adam; Wtorek, Jerzy

    2016-01-01

    Human Body Communication is an attractive alternative for traditional wireless communication (Bluetooth, ZigBee) in case of Body Sensor Networks. Low power, high data rates and data security makes it ideal solution for medical applications. In this paper, signal attenuation for different frequencies, using FR4 electrodes, has been investigated. Performance of single and multichannel transmission with frequency modulation of analog signal has been tested. Experiment results show that HBC is a feasible solution for transmitting data between BSN nodes.

  14. An advanced computational bioheat transfer model for a human body with an embedded systemic circulation.

    Science.gov (United States)

    Coccarelli, Alberto; Boileau, Etienne; Parthimos, Dimitris; Nithiarasu, Perumal

    2016-10-01

    In the present work, an elaborate one-dimensional thermofluid model for a human body is presented. By contrast to the existing pure conduction-/perfusion-based models, the proposed methodology couples the arterial fluid dynamics of a human body with a multi-segmental bioheat model of surrounding solid tissues. In the present configuration, arterial flow is included through a network of elastic vessels. More than a dozen solid segments are employed to represent the heat conduction in the surrounding tissues, and each segment is constituted by a multilayered circular cylinder. Such multi-layers allow flexible delineation of the geometry and incorporation of properties of different tissue types. The coupling of solid tissue and fluid models requires subdivision of the arterial circulation into large and small arteries. The heat exchange between tissues and arterial wall occurs by convection in large vessels and by perfusion in small arteries. The core region, including the heart, provides the inlet conditions for the fluid equations. In the proposed model, shivering, sweating, and perfusion changes constitute the basis of the thermoregulatory system. The equations governing flow and heat transfer in the circulatory system are solved using a locally conservative Galerkin approach, and the heat conduction in the surrounding tissues is solved using a standard implicit backward Euler method. To investigate the effectiveness of the proposed model, temperature field evolutions are monitored at different points of the arterial tree and in the surrounding tissue layers. To study the differences due to flow-induced convection effects on thermal balance, the results of the current model are compared against those of the widely used modelling methodologies. The results show that the convection significantly influences the temperature distribution of the solid tissues in the vicinity of the arteries. Thus, the inner convection has a more predominant role in the human body heat

  15. Assessment of physical activity of the human body considering the thermodynamic system.

    Science.gov (United States)

    Hochstein, Stefan; Rauschenberger, Philipp; Weigand, Bernhard; Siebert, Tobias; Schmitt, Syn; Schlicht, Wolfgang; Převorovská, Světlana; Maršík, František

    2016-01-01

    Correctly dosed physical activity is the basis of a vital and healthy life, but the measurement of physical activity is certainly rather empirical resulting in limited individual and custom activity recommendations. Certainly, very accurate three-dimensional models of the cardiovascular system exist, however, requiring the numeric solution of the Navier-Stokes equations of the flow in blood vessels. These models are suitable for the research of cardiac diseases, but computationally very expensive. Direct measurements are expensive and often not applicable outside laboratories. This paper offers a new approach to assess physical activity using thermodynamical systems and its leading quantity of entropy production which is a compromise between computation time and precise prediction of pressure, volume, and flow variables in blood vessels. Based on a simplified (one-dimensional) model of the cardiovascular system of the human body, we develop and evaluate a setup calculating entropy production of the heart to determine the intensity of human physical activity in a more precise way than previous parameters, e.g. frequently used energy considerations. The knowledge resulting from the precise real-time physical activity provides the basis for an intelligent human-technology interaction allowing to steadily adjust the degree of physical activity according to the actual individual performance level and thus to improve training and activity recommendations.

  16. Computational human body models

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Happee, R.; Dommelen, J.A.W. van

    2005-01-01

    Computational human body models are widely used for automotive crashsafety research and design and as such have significantly contributed to a reduction of traffic injuries and fatalities. Currently crash simulations are mainly performed using models based on crash-dummies. However crash dummies dif

  17. Computational human body models

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Happee, R.; Dommelen, J.A.W. van

    2005-01-01

    Computational human body models are widely used for automotive crashsafety research and design and as such have significantly contributed to a reduction of traffic injuries and fatalities. Currently crash simulations are mainly performed using models based on crash-dummies. However crash dummies

  18. Physics of the human body

    CERN Document Server

    Herman, Irving P

    2016-01-01

    This book comprehensively addresses the physics and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the mechanical properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to clearly explain the physics issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the underlying physics. There are problems at the end of each chapter; solutions to selected problems are also provided. This second edition enhances the treat...

  19. Equivalent dynamical complexity in a many-body quantum and collective human system

    CERN Document Server

    Johnson, Neil F; Zhao, Zhenyuan; Quiroga, Luis

    2010-01-01

    Proponents of Complexity Science believe that the huge variety of emergent phenomena observed throughout nature, are generated by relatively few microscopic mechanisms [1-7]. Skeptics however point to the lack of concrete examples in which a single mechanistic model manages to capture relevant macroscopic and microscopic properties for two or more distinct systems operating across radically different length and time scales. Here we show how a single complexity model built around cluster coalescence and fragmentation, can cross the fundamental divide between many-body quantum physics and social science. It simultaneously (i) explains a mysterious recent finding concerning quantum many-body effects in cuprate superconductors [8,9] (i.e. scale of 10^{-9}-10^{-4} meters and 10^{-12}-10^{-6} seconds), (ii) explains the apparent universality of the casualty distributions in distinct human insurgencies and terrorism [10] (i.e. scale of 10^{3}-10^{6} meters and 10^{4}-10^{8} seconds), (iii) shows consistency with var...

  20. Evaluation and Verification of Channel Transmission Characteristics of Human Body for Optimizing Data Transmission Rate in Electrostatic-Coupling Intra Body Communication System: A Comparative Analysis.

    Directory of Open Access Journals (Sweden)

    Yuhwai Tseng

    Full Text Available Intra-body communication is a new wireless scheme for transmitting signals through the human body. Understanding the transmission characteristics of the human body is therefore becoming increasingly important. Electrostatic-coupling intra-body communication system in a ground-free situation that integrate electronic products that are discretely located on individuals, such as mobile phones, PDAs, wearable computers, and biomedical sensors, are of particular interest.The human body is modeled as a simplified Resistor-Capacitor network. A virtual ground between the transmitter and receiver in the system is represented by a resister-capacitor network. Value of its resistance and capacitance are determined from a system perspective. The system is characterized by using a mathematical unit step function in digital baseband transmission scheme with and without Manchester code. As a result, the signal-to-noise and to-intersymbol-interference ratios are improved by manipulating the load resistor. The data transmission rate of the system is optimized. A battery-powered transmitter and receiver are developed to validate the proposal.A ground-free system fade signal energy especially for a low-frequency signal limited system transmission rate. The system transmission rate is maximized by simply manipulating the load resistor. Experimental results demonstrate that for a load resistance of 10k-50k Ω, the high-pass 3 dB frequency of the band-pass channel is 400kHz-2MHz in the worst-case scenario. The system allows a Manchester-coded baseband signal to be transmitted at speeds of up to 20M bit per second with signal-to-noise and signal-to-intersymbol-interference ratio of more than 10 dB.The human body can function as a high speed transmission medium with a data transmission rate of 20Mbps in an electrostatic-coupling intra-body communication system. Therefore, a wideband signal can be transmitted directly through the human body with a good signal

  1. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    Science.gov (United States)

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  2. Investigation of a Switchable Textile Communication System on the Human Body

    Directory of Open Access Journals (Sweden)

    Qiang Bai

    2014-08-01

    Full Text Available In this paper, a switchable textile communication system working at 2.45 GHz ISM band is presented and studied for different locations within a realistic on-body environment. A 3D laser scanner is used to generate a numerical phantom of the measured subject to improve the accuracy of the simulations which are carried out for different body postures. For the off-body communications, the system is acting as an aperture coupled microstrip patch antenna with a boresight gain of 1.48 dBi. On-body communication is achieved by using a textile stripline, which gives approximately 5 dB transmission loss over 600 mm distance. The system is switched between on and off-body modes by PIN diodes. Common issues, such as shape distortion and body detuning effects which the textile antenna may experience in realistic use are fully discussed. Robust antenna performance is noted in the on-body tests, and an additional 3 dB transmission coefficient deduction was noticed in the most severe shape distortion case.

  3. Vital Signs Evaluation of Human Behaviour via an Autonomous Body Area Network System

    Science.gov (United States)

    Hussin, S.; Takayama, S.

    2016-11-01

    Enhancing Quality of Life (QOL) has long been an explicit and implicit goal for individuals, nations, and the world. QOL involves diverse multidimensional factors spanning wealth, physical health, social well-being, and international relationships. This study presents a definition of QOL combining the measurement of health-related QOL with an autonomous Body Area Network System (BANs). A method of evaluating vital signs is performed and linked to physical intensity assistance in exercise. Specifically, BAN acts as a supportive system which can assist a user in monitoring his or her body's parameters, providing real-time feedbacks and dynamically sharing information from any location to one or more users.

  4. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.

    Science.gov (United States)

    Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad

    2016-02-01

    Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.

  5. Fluid and electrolyte control systems in the human body: A study report

    Science.gov (United States)

    White, R. J.

    1973-01-01

    Research in the area of modeling of the fluid and electrolyte system is briefly reviewed and a model of this system, which is adequate for a basic description of the requisite physiological processes, is presented. The use of this model as an individual subsystem model and as a component of a more complete human model is discussed.

  6. Modeling Forces on the Human Body.

    Science.gov (United States)

    Pagonis, Vasilis; Drake, Russel; Morgan, Michael; Peters, Todd; Riddle, Chris; Rollins, Karen

    1999-01-01

    Presents five models of the human body as a mechanical system which can be used in introductory physics courses: human arms as levers, humans falling from small heights, a model of the human back, collisions during football, and the rotating gymnast. Gives ideas for discussions and activities, including Interactive Physics (TM) simulations. (WRM)

  7. Development of Four Dimensional Human Model that Enables Deformation of Skin, Organs and Blood Vessel System During Body Movement - Visualizing Movements of the Musculoskeletal System.

    Science.gov (United States)

    Suzuki, Naoki; Hattori, Asaki; Hashizume, Makoto

    2016-01-01

    We constructed a four dimensional human model that is able to visualize the structure of a whole human body, including the inner structures, in real-time to allow us to analyze human dynamic changes in the temporal, spatial and quantitative domains. To verify whether our model was generating changes according to real human body dynamics, we measured a participant's skin expansion and compared it to that of the model conducted under the same body movement. We also made a contribution to the field of orthopedics, as we were able to devise a display method that enables the observer to more easily observe the changes made in the complex skeletal muscle system during body movements, which in the past were difficult to visualize.

  8. What is a Human Body?

    DEFF Research Database (Denmark)

    Nissen, Ulrik Becker

    2016-01-01

    The essay offers an overview of different understandings of what a body is. As such, it can be read as an overview of what we mean, when we speak of a “human body”. However, the article also goes a step further; in the last section, a responsive understanding of the human body is outlined....... This is understood as responsiveness in three ways: viz an embodied self that responds to natural life, other human beings and, ultimately, to God....

  9. How does the body representation system develop in the human brain?

    Directory of Open Access Journals (Sweden)

    Aurelie Fontan

    2017-04-01

    Full Text Available Exploration of the body representation system (BRS from kinaesthetic illusions in fMRI has revealed a complex network composed of sensorimotor and frontoparietal components. Here, we evaluated the degree of maturity of this network in children aged 7–11 years, and the extent to which structural factors account for network differences with adults. Brain activation following tendon vibration at 100 Hz (‘illusion’ and 30 Hz (‘no illusion’ were analysed using the two-stage random effects model, with or without white and grey matter covariates. The BRS was already well established in children as revealed by the contrast ‘illusion’ vs ‘no illusion’, although still immature in some aspects. This included a lower level of activation in primary somatosensory and posterior parietal regions, and the exclusive activation of the frontopolar cortex (FPC in children compared to adults. The former differences were related to structure, while the latter difference reflected a functional strategy where the FPC may serve as the ‘top’ in top-down modulation of the activity of the other BRS regions to facilitate the establishment of body representations. Hence, the development of the BRS not only relies on structural maturation, but also involves the disengagement of an executive region not classically involved in body processing.

  10. Modified Titanium Implant as a Gateway to the Human Body: The Implant Mediated Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Young-Seok Park

    2014-01-01

    Full Text Available The aim of this study was to investigate the efficacy of a proposed new implant mediated drug delivery system (IMDDS in rabbits. The drug delivery system is applied through a modified titanium implant that is configured to be implanted into bone. The implant is hollow and has multiple microholes that can continuously deliver therapeutic agents into the systematic body. To examine the efficacy and feasibility of the IMDDS, we investigated the pharmacokinetic behavior of dexamethasone in plasma after a single dose was delivered via the modified implant placed in the rabbit tibia. After measuring the plasma concentration, the areas under the curve showed that the IMDDS provided a sustained release for a relatively long period. The result suggests that the IMDDS can deliver a sustained release of certain drug components with a high bioavailability. Accordingly, the IMDDS may provide the basis for a novel approach to treating patients with chronic diseases.

  11. Sustained embryoid body formation and culture in a non-laborious three dimensional culture system for human embryonic stem cells.

    Science.gov (United States)

    Stenberg, Johan; Elovsson, Maria; Strehl, Raimund; Kilmare, Eva; Hyllner, Johan; Lindahl, Anders

    2011-05-01

    Pluripotent human embryonic stem cell (hESC) lines are a promising model system in developmental and tissue regeneration research. Differentiation of hESCs towards the three germ layers and finally tissue specific cell types is often performed through the formation of embryoid bodies (EBs) in suspension or hanging droplet culture systems. However, these systems are inefficient regarding embryoid body (EB) formation, structural support to the EB and long term differentiation capacity. The present study investigates if agarose, as a semi solid matrix, can facilitate EB formation and support differentiation of hESC lines. The results showed that agarose culture is able to enhance EB formation efficiency with 10% and increase EB growth by 300%. The agarose culture system was able to maintain expression of the three germ layers over 8 weeks of culture. All of the four hESC lines tested developed EBs in the agarose system although with a histological heterogeneity between cell lines as well as within cell lines. In conclusion, a 3-D agarose culture of spherical hESC colonies improves EB formation and growth in a cost effective, stable and non-laborious technique.

  12. [Principles of functioning of various systems of the human body in the post-aggressive period].

    Science.gov (United States)

    Chumakov, V I; Soldatov, A A; Goncharov, V G; Kuts, M Iu; Dymochkin, V N

    1998-01-01

    The authors' investigations provide the conclusion that in a post-aggressive period there are organized cyclic fluctuations in the body hormones, penetrability of vessels, electrolytes and blood cells. The cycle takes 48 hours.

  13. Interactions of the human cardiopulmonary, hormonal and body fluid systems in parabolic flight.

    Science.gov (United States)

    Limper, U; Gauger, P; Beck, P; Krainski, F; May, F; Beck, L E J

    2014-06-01

    Commercial parabolic flights accessible to customers with a wide range of health states will become more prevalent in the near future because of a growing private space flight sector. However, parabolic flights present the passengers' cardiovascular system with a combination of stressors, including a moderately hypobaric hypoxic ambient environment (HH) and repeated gravity transitions (GT). Thus, the aim of this study was to identify unique and combined effects of HH and GT on the human cardiovascular, pulmonary and fluid regulation systems. Cardiac index was determined by inert gas rebreathing (CI(rb)), and continuous non-invasive finger blood pressure (FBP) was repeatedly measured in 18 healthy subjects in the standing position while they were in parabolic flight at 0 and 1.8 G(z). Plasma volume (PV) and fluid regulating blood hormones were determined five times over the flight day. Eleven out of the 18 subjects were subjected to an identical test protocol in a hypobaric chamber in ambient conditions comparable to parabolic flight. CI(rb) in 0 G(z) decreased significantly during flight (early, 5.139 ± 1.326 L/min; late, 4.150 ± 1.082 L/min) because of a significant decrease in heart rate (HR) (early, 92 ± 15 min(-1); late, 78 ± 12 min(-1)), even though the stroke volume (SV) remained the same. HH produced a small decrease in the PV, both in the hypobaric chamber and in parabolic flight, indicating a dominating HH effect without a significant effect of GT on PV (-52 ± 34 and -115 ± 32 ml, respectively). Pulmonary tissue volume decreased in the HH conditions because of hypoxic pulmonary vasoconstriction (0.694 ± 0.185 and 0.560 ± 0.207 ml) but increased at 0 and 1.8 G(z) in parabolic flight (0.593 ± 0.181 and 0.885 ± 0.458 ml, respectively), indicating that cardiac output and arterial blood pressure rather than HH are the main factors affecting pulmonary vascular regulation in parabolic flight. HH and GT each lead to specific responses of the

  14. Variability in human body size

    Science.gov (United States)

    Annis, J. F.

    1978-01-01

    The range of variability found among homogeneous groups is described and illustrated. Those trends that show significantly marked differences between sexes and among a number of racial/ethnic groups are also presented. Causes of human-body size variability discussed include genetic endowment, aging, nutrition, protective garments, and occupation. The information is presented to aid design engineers of space flight hardware and equipment.

  15. Transcutaneous communication system using the human body as conductive medium: influence of transmission data current on the heart.

    Science.gov (United States)

    Okamoto, Eiji; Kikuchi, Sakiko; Miura, Hidekazu; Shiraishi, Yasuyuki; Yambe, Tomoyuki; Mitamura, Yoshinori

    2013-01-01

    We developed a new transcutaneous communication system (TCS) that uses the human body as a conductive medium for monitoring and controlling artificial hearts and other artificial organs in the body.In this study, the physiological effect of data current discharged into the body during data transmission was evaluated by an animal experiment using a goat. The external and internal units of the new TCS each mainly consist of a data transmitter and a data receiver. The data transmitter has an amplitude shift keying (ASK) modulator (carrier frequencies: 4 and 10 MHz) and an electrode.The internal unit of the TCS was fixed on the pericardium and the external unit was placed on the left ear, and each transmitter discharged an ASK-modulated current of 7 mA (RMS) into the conscious goat. The TCS was able to transmit data for 4 weeks under full duplex communication with a transmission rate of 115 kbps. On the 28th postoperative day, an electrocardiogram was measured during data transmission. Cardiac rhythm and waveform of the electrocardiogram were not changed before and during bidirectional data transmission. Also, no adverse effect on the heart was observed by autopsy.

  16. A novel system for transcutaneous application of carbon dioxide causing an "artificial Bohr effect" in the human body.

    Directory of Open Access Journals (Sweden)

    Yoshitada Sakai

    Full Text Available BACKGROUND: Carbon dioxide (CO(2 therapy refers to the transcutaneous administration of CO(2 for therapeutic purposes. This effect has been explained by an increase in the pressure of O(2 in tissues known as the Bohr effect. However, there have been no reports investigating the oxygen dissociation of haemoglobin (Hb during transcutaneous application of CO(2in vivo. In this study, we investigate whether the Bohr effect is caused by transcutaneous application of CO2 in human living body. METHODS: We used a novel system for transcutaneous application of CO(2 using pure CO(2 gas, hydrogel, and a plastic adaptor. The validity of the CO(2 hydrogel was confirmed in vitro using a measuring device for transcutaneous CO(2 absorption using rat skin. Next, we measured the pH change in the human triceps surae muscle during transcutaneous application of CO(2 using phosphorus-31 magnetic resonance spectroscopy ((31P-MRS in vivo. In addition, oxy- and deoxy-Hb concentrations were measured with near-infrared spectroscopy in the human arm with occulted blood flow to investigate O2 dissociation from Hb caused by transcutaneous application of CO(2. RESULTS: The rat skin experiment showed that CO(2 hydrogel enhanced CO(2 gas permeation through the rat skin. The intracellular pH of the triceps surae muscle decreased significantly 10 min. after transcutaneous application of CO(2. The NIRS data show the oxy-Hb concentration decreased significantly 4 min. after CO(2 application, and deoxy-Hb concentration increased significantly 2 min. after CO(2 application in the CO(2-applied group compared to the control group. Oxy-Hb concentration significantly decreased while deoxy-Hb concentration significantly increased after transcutaneous CO(2 application. CONCLUSIONS: Our novel transcutaneous CO(2 application facilitated an O(2 dissociation from Hb in the human body, thus providing evidence of the Bohr effect in vivo.

  17. [Wireless human body communication technology].

    Science.gov (United States)

    Sun, Lei; Zhang, Xiaojuan

    2014-12-01

    The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference.

  18. A Model of Human Orientation and Self Motion Perception during Body Acceleration: The Orientation Modeling System

    Science.gov (United States)

    2016-09-28

    Aviation accident investigators often conduct qualitative perceptual analyses of mishaps when spatial disorientation is inferred as a cause. We have...developed a quantitative perceptual model of human spatial orientation and have employed it to evaluate data from a variety of acceleration situations, in...Research and Material Command (USAMRMC; In-House Laboratory Independent Research), Small Business Innovative Research program (PEO Aviation), and the

  19. The effect of human-body shadowing on indoor UWB TOA-based ranging systems

    NARCIS (Netherlands)

    Kilic, Y.; Ali, Ameenulla J.; Meijerink, Arjan; Bentum, Marinus Jan; Scanlon, W.G.

    2012-01-01

    Because of its superior time resolution, ultra-wide bandwidth (UWB) transmission can be a highly accurate technique for ranging in indoor localization systems. Nevertheless, the presence of obstructions may deteriorate the ranging performance of the system. Indoor environments are often densely

  20. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models

  1. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models b

  2. Simulations and Measurements of Human Middle Ear Vibrations Using Multi-Body Systems and Laser-Doppler Vibrometry with the Floating Mass Transducer

    OpenAIRE

    Tobias Strenger; Stefan Lehner; Frank Böhnke; Theodor Bretan

    2013-01-01

    The transfer characteristic of the human middle ear with an applied middle ear implant (floating mass transducer) is examined computationally with a Multi-body System approach and compared with experimental results. For this purpose, the geometry of the middle ear was reconstructed from μ-computer tomography slice data and prepared for a Multi-body System simulation. The transfer function of the floating mass transducer, which is the ratio of the input voltage and the generated force, is deri...

  3. Quantum many body systems

    Energy Technology Data Exchange (ETDEWEB)

    Rivasseau, Vincent [Paris-Sud Univ. Orsay (France). Laboratoire de Physique Theorique; Seiringer, Robert [McGill Univ., Montreal, QC (Canada). Dept. of Mathematics and Statistics; Solovej, Jan Philip [Copenhagen Univ. (Denmark). Dept. of Mathematics; Spencer, Thomas [Institute for Advanced Study, Princeton, NJ (United States). School of Mathematics

    2012-11-01

    The book is based on the lectures given at the CIME school ''Quantum many body systems'' held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.

  4. Scandinavian Semantics and the Human Body

    DEFF Research Database (Denmark)

    Levisen, Carsten

    2015-01-01

    , it is demonstrated that Scandinavian and English systems differ significantly in some aspects of the way in which the construe the human body with words. The study ventures an innovative combination of methods, pairing the Natural Semantic Metalanguage (NSM) approach to linguistic and conceptual analysis...... in closely related languages can differ substantially in their semantics. In related languages, where shared lexical form does not always mean shared semantics, ethnolinguistic studies in semantic change and shifts in polysemy patterns can help to reveal and explain the roots of semantic diversity.......This paper presents an ethnolinguistic analysis of how the space between the head and the body is construed in Scandinavian semantic systems vis-a-vis the semantic system of English. With an extensive case study of neck-related meanings in Danish, and with cross-Scandinavian reference...

  5. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body.

    Science.gov (United States)

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-07-21

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  6. Neural correlates of human body perception.

    Science.gov (United States)

    Aleong, Rosanne; Paus, Tomás

    2010-03-01

    The objective of this study was to investigate potential sex differences in the neural response to human bodies using fMRI carried out in healthy young adults. We presented human bodies in a block-design experiment to identify body-responsive regions of the brain, namely, extrastriate body area (EBA) and fusiform body area (FBA). In a separate event-related "adaptation" experiment, carried out in the same group of subjects, we presented sets of four human bodies of varying body size and shape. Varying levels of body morphing were introduced to assess the degree of morphing required for adaptation release. Analysis of BOLD signal in the block-design experiment revealed significant Sex x Hemisphere interactions in the EBA and the FBA responses to human bodies. Only women showed greater BOLD response to bodies in the right hemisphere compared with the left hemisphere for both EBA and FBA. The BOLD response in right EBA was higher in women compared with men. In the adaptation experiment, greater right versus left hemisphere response for EBA and FBA was also identified among women but not men. These findings are particularly novel in that they address potential sex differences in the lateralization of EBA and FBA responses to human body images. Although previous studies have found some degree of right hemisphere dominance in body perception, our results suggest that such a functional lateralization may differ between men and women.

  7. Electric Shock and the Human Body.

    Science.gov (United States)

    Brown, Colin

    1986-01-01

    Discusses electricity's documented effects on the human body, including both the dangers to human health and the medical application of electrical stimulation to heart problems. Discusses the teaching of such physics topics to potential medical students. (TW)

  8. Mathematical equations and system identification models for a portable pneumatic bladder system designed to reduce human exposure to whole body shock and vibration

    Science.gov (United States)

    Aziz Ayyad, Ezzat

    A mathematical representation is sought to model the behavior of a portable pneumatic foam bladder designed to mitigate the effects of human exposure to shock and whole body random vibration. Fluid Dynamics principles are used to derive the analytic differential equations used for the physical equations Model. Additionally, combination of Wiener and Hammerstein block oriented representation techniques have been selected to create system identification (SID) block oriented models. A number of algorithms have been iterated to obtain numerical solutions for the system of equations which was found to be coupled and non-linear, with no analytic closed form solution. The purpose is to be able to predict the response of such system due to random vibrations and shock within reasonable margin of error. The constructed models were found to be accurate within accepted confidence level. Beside the analytic set of physical equations model representation, a linear SID model was selected to take advantage of the available vast amount of mathematical tools available to further analyze and redesign the bladder as a dynamic system. Measured field-test and lab test data have been collected from several helicopter and land terrain vehicle experiments. Numerous excitation and response acceleration measurement records were collected and used to prove the agreement with predictions. The estimation of two selected models were later applied to standard metrics in the frequency domain realization and compared with measurement responses. The collected test records are obtained from measured data at the US Army fields and facilities and at UNLV-CMEST environmental lab. The emerged models have been validated for conformity with actual accelerometer measurement responses and found within accepted error tolerance that is in both time and frequency domains. Further, standard metrics have been used to further confirm the confidence in the validation results. When comparing model prediction with

  9. Design of a loop resonator with a split-ring-resonator (SRR) for a human-body coil in 3 T MRI systems

    Science.gov (United States)

    Son, Hyeok Woo; Cho, Young Ki; Kim, Byung Mun; Back, Hyun Man; Yoo, Hyoungsuk

    2016-04-01

    A new radio-frequency (RF) resonator for Nuclear Magnetic Resonance (NMR) imaging at clinical magnetic resonance imaging (MRI) systems is proposed in this paper. An approach based on the effects of the properties of metamaterials in split-ring resonators (SRRs) is used to design a new loop resonator with a SRR for NMR imaging. This loop resonator with a SRR is designed for NMR imaging at 3 T MRI systems. The 3D electromagnetic simulation was used to optimize the design of the proposed RF resonator and analyze it's performance at 3 T MRI systems. The proposed RF resonator provides strong penetrating magnetic fields at the center of the human phantom model, approximately 10%, as compared to the traditional loop-type RF resonator used for NMR imaging at clinical MRI systems. We also designed an 8-channel body coil for human-body NMR imaging by using the proposed loop resonator with a SRR. This body coil also produces more homogeneous and highly penetrating magnetic fields into the human phantom model.

  10. Human Body Motion Detective Home Security System with Automatic Lamp and User Programmable Text Alert GSM Mobile Phone Number, Unique PIN to Allow Universal Users Using PIR Sensor

    Directory of Open Access Journals (Sweden)

    Oyebola B. O

    2015-06-01

    Full Text Available Insecurity is not a credit to any responsible society, and the conventional use of watch-man has drawbacks of huge risk of life and cost intensive. The use home security system with user programmable text alert GSM mobile phone number with unique PIN to allow universal users with human body motion detective can overcome these limitations. This paper presents reliable security system that is able to recognize human body motion and send an alert message to inform the owner(at any location in the world where there is GSM mobile network coverage of the house through an SMS alert when an unwanted visitor or thief enters the range of the sensor. The system design is in three main phases: the sensitivity, central processing and action. The sensitivity is the perception section that is done through PIR sensor mounted at watch-area, central processing is performed by a programmed microcontroller, and the action (task is done through an interaction of an attached on-board GSM module to the processor (the microcontroller which then send an SMS alert to the user or owner mobile phone number. This system is design to only detect only (or part of human body motion.

  11. Ultrasonic range measurements on the human body

    NARCIS (Netherlands)

    Weenk, D.; Beijnum, van B.J.F.; Droog, A.; Hermens, H.J.; Veltink, P.H.

    2013-01-01

    Ambulatory range estimation on the human body is important for the assessment of the performance of upper- and lower limb tasks outside a laboratory. In this paper an ultrasound sensor for estimating ranges on the human body is presented and validated during gait. The distance between the feet is e

  12. Ultrasonic range measurements on the human body

    NARCIS (Netherlands)

    Weenk, D.; van Beijnum, Bernhard J.F.; Droog, Adriaan; Hermens, Hermanus J.; Veltink, Petrus H.

    2013-01-01

    Ambulatory range estimation on the human body is important for the assessment of the performance of upper- and lower limb tasks outside a laboratory. In this paper an ultrasound sensor for estimating ranges on the human body is presented and validated during gait. The distance between the feet is

  13. Teaching exploration and practice of the human body structure course

    Institute of Scientific and Technical Information of China (English)

    Feng LI; Ming-feng CHEN; Wen-long DING

    2015-01-01

    In the 21 st century,the medical model has transformed from the biological model to the biopsycho-social medical model. The transformation of medical model raises higher requirements for the training of medical staff. Comprehensive promotion of the reform of medical education has become the consensus and trend,which breeds the integrated medical teaching that is based on modules and organ systems. As one of eight integrated modules,the human body structure course of Shanghai Jiao Tong University School of Medicine introduces morphological structures of normal human organs according to function systems( such as locomotor system,digestive system,angiological system,and nervous system) of human organs and parts of human body. This course endeavors to integrate theories with practices,contents of disciplines of basic medicine,and basic medicine with clinical medicine. The human body structure course combines basic medicine with clinical medicine and is an important part of medical science.

  14. Biodynamics of deformable human body motion

    Science.gov (United States)

    Strauss, A. M.; Huston, R. L.

    1976-01-01

    The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.

  15. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    Science.gov (United States)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-07

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  16. Optimization-based human motion prediction using an inverse-inverse dynamics technique implemented in the AnyBody Modeling System

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi; Andersen, Michael Skipper; de Zee, Mark

    2012-01-01

    derived from the detailed musculoskeletal analysis. The technique is demonstrated on a human model pedaling a bicycle. We use a physiology-based cost function expressing the mean square of all muscle activities over the cycle to predict a realistic motion pattern. Posture and motion prediction......This paper presents an optimization-based human movement prediction using the AnyBody modeling system (AMS). It is explained how AMS can enables prediction of a realistic human movement by means of a computationally efficient optimization-based algorithm. The human motion predicted in AMS is based......, the parameters of these functions are optimized to produce an optimum posture or movement according to a user-defined cost function and constraints. The cost function and the constraints are typically express performance, comfort, injury risk, fatigue, muscle load, joint forces and other physiological properties...

  17. Earthing the human body influences physiologic processes.

    Science.gov (United States)

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  18. New Window into the Human Body

    Science.gov (United States)

    1985-01-01

    Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.

  19. Globalization and the trade in human body parts.

    Science.gov (United States)

    Harrison, T

    1999-02-01

    Since the early 1980s, the number and variety of organ transplantations has increased enormously worldwide. Accompanying this increase has been the emergence of a market for human body parts. This paper argues that, while the trade in human body parts is conditioned by technological advances, it must be understood in the broader context of globalization, specifically the extension and intensification of a capitalist mode of exchange. In this regard, it is argued that the trade in human body parts mirrors the "normal" system of unequal exchanges that mark other forms of trade between the developed and undeveloped regions of the world.

  20. Light bodies in human pituitary adenomas

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1987-01-01

    Light bodies are large cytoplasmic granules originally described in the gonadotrophic cells of the rat pituitary gland. In order to determine whether similar bodies occur in the human anterior pituitary gland, 89 pituitary adenomas and periadenomatous tissue from 20 cases were examined by transmi......Light bodies are large cytoplasmic granules originally described in the gonadotrophic cells of the rat pituitary gland. In order to determine whether similar bodies occur in the human anterior pituitary gland, 89 pituitary adenomas and periadenomatous tissue from 20 cases were examined...... by transmission electron microscopy. Double membrane bound bodies with filamentous internal structure identical to rodent light bodies were identified in 10 hormone-producing adenomas: 5 PRL, 1 PRL-GH, 2 GH, and 2 ACTH-producing tumours. No light bodies were found in the remaining 79 tumours nor in the pituitary...... cells in periadenomatous tissue from 20 cases. These results show that some human pituitary adenomas may contain light bodies identical to those seen in gonadotrophs of rat pituitary....

  1. Simulations and Measurements of Human Middle Ear Vibrations Using Multi-Body Systems and Laser-Doppler Vibrometry with the Floating Mass Transducer

    Directory of Open Access Journals (Sweden)

    Tobias Strenger

    2013-10-01

    Full Text Available The transfer characteristic of the human middle ear with an applied middle ear implant (floating mass transducer is examined computationally with a Multi-body System approach and compared with experimental results. For this purpose, the geometry of the middle ear was reconstructed from μ-computer tomography slice data and prepared for a Multi-body System simulation. The transfer function of the floating mass transducer, which is the ratio of the input voltage and the generated force, is derived based on a physical context. The numerical results obtained with the Multi-body System approach are compared with experimental results by Laser Doppler measurements of the stapes footplate velocities of five different specimens. Although slightly differing anatomical structures were used for the calculation and the measurement, a high correspondence with respect to the course of stapes footplate displacement along the frequency was found. Notably, a notch at frequencies just below 1 kHz occurred. Additionally, phase courses of stapes footplate displacements were determined computationally if possible and compared with experimental results. The examinations were undertaken to quantify stapes footplate displacements in the clinical practice of middle ear implants and, also, to develop fitting strategies on a physical basis for hearing impaired patients aided with middle ear implants.

  2. Dark Matter collisions with the Human Body

    CERN Document Server

    Freese, Katherine

    2012-01-01

    We investigate the interactions of Weakly Interacting Massive Particles (WIMPs) with nuclei in the human body. We are motivated by the fact that WIMPs are excellent candidates for the dark matter in the Universe. Our estimates use a 70 kg human and a variety of WIMP masses and cross-sections. The contributions from individual elements in the body are presented and it is found that the dominant contribution is from scattering off of oxygen (hydrogen) nuclei for the spin-independent (spin-dependent) interactions. For the case of 60 GeV WIMPs, we find that, of the billions of WIMPs passing through a human body per second, roughly ~10 WIMPs hit one of the nuclei in the human body in an average year, if the scattering is at the maximum consistent with current bounds on WIMP interactions. We also study the 10-20 GeV WIMPs with much larger cross-sections that best fit the DAMA, COGENT, and CRESST data sets and find much higher rates: in this case as many as $10^5$ WIMPs hit a nucleus in the human body in an average ...

  3. Dynamic Human Body Modeling Using a Single RGB Camera

    Directory of Open Access Journals (Sweden)

    Haiyu Zhu

    2016-03-01

    Full Text Available In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  4. Dynamic Human Body Modeling Using a Single RGB Camera.

    Science.gov (United States)

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  5. [Copper and the human body].

    Science.gov (United States)

    Krízek, M; Senft, V; Motán, J

    1997-11-19

    Copper is one of the essential trace elements. It is part of a number of enzymes. Deficiency of the element is manifested by impaired haematopoesis, bone metabolism, disorders of the digestive, cardiovascular and nervous system. Deficiency occurs in particular in patients suffering from malnutrition, malabsorption, great copper losses during administration of penicillamine. Sporadically copper intoxications are described (suicidal intentions or accidental ingestion of beverages with a high copper content). Acute exposure to copper containing dust is manifested by metal fume fever. Copper salts can produce local inflammations. Wilson's disease is associated with inborn impaired copper metabolism. In dialyzed patients possible contaminations of the dialyzate with copper must be foreseen as well as the possible release of copper from some dialyzation membranes. With the increasing amount of copper in the environment it is essential to monitor the contamination of the environment.

  6. Accurate upper body rehabilitation system using kinect.

    Science.gov (United States)

    Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit

    2016-08-01

    The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

  7. Electric fan control system with human body and temperature induction%人体及温度感应式电风扇控制系统

    Institute of Scientific and Technical Information of China (English)

    付丽; 吴春鲜; 杨隽莹; 吴友鑫

    2014-01-01

    设计出一种能感应人体及环境温度的电风扇控制系统。单片机处理器AT89C51为系统的检测和控制核心,热释电红外传感器检测人体,DS18B20数字温度传感器感应环境温度。采用继电器代替传统电风扇的档位开关,根据人体红外感应信息控制风扇的开启和关闭,依据环境温度控制相应的继电器处于吸合状态,使风扇输出对应的风速。该系统集成到传统电风扇中,测试结果表明,系统实现了对风扇的自动启停及自动调速控制,具有推广应用价值。%In order to enhance the intelligence of the electric fans and reduce energy consumption ,an electric fan control system which can detect the human body and the environmental temperature is designed .The core of detection and control of this system is the AT89C51 MCU .The pyroelectric infrared sensor is used to detect the human body ,and the DS18B20 digital temperature sensor is used to test the environment temperature .The relays replace gear switches of the traditional electric fan . The opening and closing of the electric fan are controlled according to the human body infrared sensor information .The corresponding relay is controlled in a closed state in accordance with environment temperature size . Consequently , it makes the fan output correspond with the wind speed .The system is integrated to the traditional electric fans and is tested .The experimental results show that the system realizes the automatic start-stop and speed control function of the electric fan ,and has the application value to be spread .

  8. [The solidarity of the human body].

    Science.gov (United States)

    Bioy, Xavier

    2014-06-01

    The legal and bioethical regulation of the uses of the elements of the human body can be described by means of the concept of solidarity. From the French example, we can so show that the State tries to frame solidarities which already exist, for example between people who share the same genome, in the family, or, on the contrary, tent to impose or to direct the sharing of the human biological resources (organs, tissues, gametes, stem cell...).

  9. Human bipedalism and body-mass index.

    Science.gov (United States)

    Yi, Su Do; Noh, Jae Dong; Minnhagen, Petter; Song, Mi-Young; Chon, Tae-Soo; Kim, Beom Jun

    2017-06-16

    Body-mass index, abbreviated as BMI and given by M/H (2) with the mass M and the height H, has been widely used as a useful proxy to measure a general health status of a human individual. We generalise BMI in the form of M/H (p) and pursue to answer the question of the value of p for populations of animal species including human. We compare values of p for several different datasets for human populations with the ones obtained for other animal populations of fish, whales, and land mammals. All animal populations but humans analyzed in our work are shown to have p ≈ 3 unanimously. In contrast, human populations are different: As young infants grow to become toddlers and keep growing, the sudden change of p is observed at about one year after birth. Infants younger than one year old exhibit significantly larger value of p than two, while children between one and five years old show p ≈ 2, sharply different from other animal species. The observation implies the importance of the upright posture of human individuals. We also propose a simple mechanical model for a human body and suggest that standing and walking upright should put a clear division between bipedal human (p ≈ 2) and other animals (p ≈ 3).

  10. Human body modeling in injury biomechanics

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Horst, M.J. van der; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling is widely used for crash-safety research and design. However, most occupant models used in crash simulations are based on crash dummies and thereby inherit their apparent limitations. This paper describes a mathematical model of the real human body for impact loading. A combin

  11. Discrimination of Body Odor Using Odor Sieving Sensor System

    Science.gov (United States)

    Takamizawa, Tadashi; Miyagi, Kazuki; Miyauchi, Hitoshi; Imahashi, Masahiro; Hayashi, Kenshi

    2011-09-01

    We have been focusing on sebum for discriminating human body odor. In this study, we examined body odor sampled from 12 male examinees. Through the experiment, we detected statistically-significant differences between 56 pairs of examinees out of 66 pairs (approximately 85%). This result shows that our system and principle enabled discrimination of body odor between examinees to a certain extent.

  12. [Microbiota and representations of the human body].

    Science.gov (United States)

    Dodet, Betty

    2016-11-01

    Although the presence of an intestinal flora has been known for a long time, the discovery of the role of gut microbiota in human health and disease has been widely recognized as one of the most important advances in the recent years. Chronic diseases may result from dysbiosis, i.e. a disruption of the balance within the bacterial population hosted by the human body. These developments open new prospects in terms of prevention and treatment, including the design of adapted diets, the development of functional foods and fecal transplantation. These discoveries have profoundly altered our view of microbes, of health and disease, of self and non-self, as well as our representations of the body and its relationship with its ecosystem. Gut microbiota is now generally considered as an organ in its own right. A model of the "microbiotic person" thus arises, in which the human organism is defined as an ecosystem, a chimeric superorganism with a double genome, both human and microbial. Thought should be given to the way in which these new paradigms modify lay perceptions of the human body.

  13. Towards Whole Body Fatigue Assessment of Human Movement: A Fatigue-Tracking System Based on Combined sEMG and Accelerometer Signals

    Directory of Open Access Journals (Sweden)

    Haiwei Dong

    2014-01-01

    Full Text Available This paper proposes a method to assess the overall fatigue of human body movement. First of all, according to previous research regarding localized muscular fatigue, a linear relation is assumed between the mean frequency and the muscular working time when the muscle is experiencing fatigue. This assumption is verified with a rigorous statistical analysis. Based on this proven linearity, localized muscular fatigue is simplified as a linear model. Furthermore, localized muscular fatigue is considered a dynamic process and, hence, the localized fatigue levels are tracked by updating the parameters with the most current surface electromyogram (sEMG measurements. Finally, an overall fatigue level is computed by fusing localized muscular fatigue levels. The developed fatigue-tracking system is evaluated with two fatigue experiments (in which 10 male subjects and seven female subjects participated, including holding self-weight (dip start position training and lifting weight with one arm (arm curl training.

  14. Relationship between alertness, performance, and body temperature in humans

    Science.gov (United States)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  15. [An interactive three-dimensional model of the human body].

    Science.gov (United States)

    Liem, S L

    2009-01-01

    Driven by advanced computer technology, it is now possible to show the human anatomy on a computer. On the internet, the Visible Body programme makes it possible to navigate in all directions through the anatomical structures of the human body, using mouse and keyboard. Visible Body is a wonderful tool to give insight in the human structures, body functions and organs.

  16. Small-bodied humans from Palau, Micronesia.

    Directory of Open Access Journals (Sweden)

    Lee R Berger

    Full Text Available UNLABELLED: Newly discovered fossil assemblages of small bodied Homo sapiens from Palau, Micronesia possess characters thought to be taxonomically primitive for the genus Homo. BACKGROUND: Recent surface collection and test excavation in limestone caves in the rock islands of Palau, Micronesia, has produced a sizeable sample of human skeletal remains dating roughly between 940-2890 cal ybp. PRINCIPLE FINDINGS: Preliminary analysis indicates that this material is important for two reasons. First, individuals from the older time horizons are small in body size even relative to "pygmoid" populations from Southeast Asia and Indonesia, and thus may represent a marked case of human insular dwarfism. Second, while possessing a number of derived features that align them with Homo sapiens, the human remains from Palau also exhibit several skeletal traits that are considered to be primitive for the genus Homo. SIGNIFICANCE: These features may be previously unrecognized developmental correlates of small body size and, if so, they may have important implications for interpreting the taxonomic affinities of fossil specimens of Homo.

  17. Small solar system bodies as granular systems

    Science.gov (United States)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  18. Small solar system bodies as granular systems

    Directory of Open Access Journals (Sweden)

    Hestroffer Daniel

    2017-01-01

    Full Text Available Asteroids and other Small Solar System Bodies (SSSBs are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining. In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  19. The Human-Body-in-Coordination as Perceptual Instrument

    Directory of Open Access Journals (Sweden)

    Harrison Steven J.

    2011-12-01

    Full Text Available Recent evidence suggests that the human body in locomotor coordination performs dual roles, acting to propel the body over the surface of support, and embodying haptic information arising from and specific to the movement of the body as a whole with respect to the substrate. Here we show that blindfolded human subjects, trained to crawl using gait patterns that differed in the spatio-temporal symmetries defined with respect to the arms and legs in coordination, perceived distance travelled quadrupedally. These results suggest that 1 the body in coordination gives rise to a haptic measure of how one is moving through the world relative to the substrate and 2 that the measure that results is specific to the softly assembled global organization of the locomotor action system.

  20. Scanning 3D full human bodies using Kinects.

    Science.gov (United States)

    Tong, Jing; Zhou, Jin; Liu, Ligang; Pan, Zhigeng; Yan, Hao

    2012-04-01

    Depth camera such as Microsoft Kinect, is much cheaper than conventional 3D scanning devices, and thus it can be acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of extreme low quality. In this paper, we present a novel scanning system for capturing 3D full human body models by using multiple Kinects. To avoid the interference phenomena, we use two Kinects to capture the upper part and lower part of a human body respectively without overlapping region. A third Kinect is used to capture the middle part of the human body from the opposite direction. We propose a practical approach for registering the various body parts of different views under non-rigid deformation. First, a rough mesh template is constructed and used to deform successive frames pairwisely. Second, global alignment is performed to distribute errors in the deformation space, which can solve the loop closure problem efficiently. Misalignment caused by complex occlusion can also be handled reasonably by our global alignment algorithm. The experimental results have shown the efficiency and applicability of our system. Our system obtains impressive results in a few minutes with low price devices, thus is practically useful for generating personalized avatars for everyday users. Our system has been used for 3D human animation and virtual try on, and can further facilitate a range of home–oriented virtual reality (VR) applications.

  1. Optimization study of using PTC for human body heating dissipation

    Directory of Open Access Journals (Sweden)

    Tiberiu Adrian SALAORU

    2014-06-01

    Full Text Available A better knowledge of the human body heat loses mechanisms is important for both diminishing the number of deaths during the surgical procedures of the patients under effect of full anaesthesia and increasing the efficiency of the Heating, Ventilation and Air Conditioning (HVAC systems. For these studies it is necessary to manufacture a human body mannequin having its surface temperature maintained on a value close to the real human body temperature. A number of PTC (Positive Temperature Coefficient thermistors placed on the entire external surface of the mannequin can be used for this purpose. This paper presents a study of the transient heating regime and the stability of the maintained temperature, performed on these devices.

  2. In-to-out body path loss for wireless radio frequency capsule endoscopy in a human body.

    Science.gov (United States)

    Vermeeren, G; Tanghe, E; Thielens, A; Martens, L; Joseph, W; Vermeeren, G; Tanghe, E; Thielens, A; Martens, L; Joseph, W; Tanghe, E; Thielens, A; Martens, L; Vermeeren, G; Joseph, W

    2016-08-01

    Physical-layer characterization is important for design of in-to-out body communication for wireless body area networks (WBANs). This paper numerically investigates the path loss of an in-to-out body radio frequency (RF) wireless link between an endoscopy capsule and a receiver outside the body using a 3D electromagnetic solver. A spiral antenna in the endoscopy capsule is tuned to operate in the Medical Implant Communication Service (MICS) band at 402 MHz, accounting for the properties of the human body. The influence of misalignment, rotation of the capsule, and human body model are investigated. Semi-empirical path loss models for various homogeneous tissues and 3D realistic human body models are provided for manufacturers to evaluate the performance of in-to-out-body WBAN systems.

  3. Disorder in Complex Human System

    Science.gov (United States)

    Akdeniz, K. Gediz

    2011-11-01

    Since the world of human and whose life becomes more and more complex every day because of the digital technology and under the storm of knowledge (media, internet, governmental and non-governmental organizations, etc...) the simulation is rapidly growing in the social systems and in human behaviors. The formation of the body and mutual interactions are left to digital technological, communication mechanisms and coding the techno genetics of the body. Deconstruction begins everywhere. The linear simulation mechanism with modern realities are replaced by the disorder simulation of human behaviors with awareness realities. In this paper I would like to introduce simulation theory of "Disorder Sensitive Human Behaviors". I recently proposed this theory to critique the role of disorder human behaviors in social systems. In this theory the principle of realty is the chaotic awareness of the complexity of human systems inside of principle of modern thinking in Baudrillard's simulation theory. Proper examples will be also considered to investigate the theory.

  4. Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and reproductive and thyroid hormone levels in humans

    DEFF Research Database (Denmark)

    Janjua, Nadeem Rezaq; Mortensen, Gerda Krogh; Andersson, Anna-Maria

    2007-01-01

    reproductive and thyroid hormone levels in humans after topical application. In a two-week single-blinded study, 26 healthy young male volunteers were assigned to daily whole-body topical application of 2 mg/cm2 basic cream formulation each without (week one) and with (week two) the three 2% (w/w) compounds...

  5. [The human body in Michelangelo's Moses].

    Science.gov (United States)

    Figueroa, Gustavo

    2013-10-01

    What grips us so powerfully to a work of art is the artist's intention, if he succeeds to express it in his work and we are able to understand it. Michelangelo's Moses established the essential structures of an animate organism and the embodiment of consciousness in the world. Since the body is an expressive unit, it is possible to reconstruct a highly feasible sequence of movements that might have preceded the moment caught in the statue. It is an expression of the highest ideal of mental and spiritual achievement through the controlled tension between action and restraint. The phenomenon of embodiment and feeling the body as own is the basis of concrete human existence.

  6. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  7. MULTIPLE TARGET DETECTION AND TRACKING METHOD BASED ON HUMAN BODY PARTS IN THE REHABILITATION PHYSIOTHERAPY SYSTEM%在康复理疗系统中基于人体部位的多人检测跟踪方法

    Institute of Scientific and Technical Information of China (English)

    李海军

    2014-01-01

    针对在当前康复理疗系统中人体跟踪存在的问题,需要实时观测被监视场景中的运动目标,分析描述他们的行为,通过对人体行为的理解和判断,才能得到相应的结论并做出相应的决策。提出一种基于人体部位的支持向量机分类器的方法,实现人体跟踪。这种方法能够捕捉在人体姿态和背景变化时的人体关节部位,利用训练的人体部位模型能够在人相互遮挡时正确检测人体部位。在检测阶段,选择一个人体部位子集,最大限度地提高检测概率,大大提高了在多人场景中的检测性能。在跟踪阶段,利用SVM分类器实现人体的有效跟踪。实验表明该方法能够在人体相互遮挡情况下,正确检测和跟踪人体。%In view of the problems that exist in human body tracking in the present rehabilitation physiotherapy system,it needs real-time observation of the moving target in the scene under monitoring,analyze and describe their behaviors.Only by understanding and judgment of human body behaviors can people obtain corresponding conclusions and make corresponding decisions.The paper proposes an SVMclassifier method based on human body parts to realize human body tracking.The method can capture human body joints when human posture or background changes.By referring to the trained human body model it can correctly detect human body parts even when they block each other. In the detection stage,it selects a human body part subset to ultimately improve the detection probability,so that it greatly enhances its detection performance in scenes where there are multiple people.In the tracking stage,it utilizes SVM classifier to realize effective human body tracking.Experiment show the method can correctly detect and track human bodies when they block each other.

  8. Human body region enhancement method based on Kinect infrared imaging

    Science.gov (United States)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  9. Intellectual property rights and detached human body parts.

    Science.gov (United States)

    Pila, Justine

    2014-01-01

    This paper responds to an invitation by the editors to consider whether the intellectual property (IP) regime suggests an appropriate model for protecting interests in detached human body parts. It begins by outlining the extent of existing IP protection for body parts in Europe, and the relevant strengths and weaknesses of the patent system in that regard. It then considers two further species of IP right of less obvious relevance. The first are the statutory rights of ownership conferred by domestic UK law in respect of employee inventions, and the second are the economic and moral rights recognised by European and international law in respect of authorial works. In the argument made, both of these species of IP right may suggest more appropriate models of sui generis protection for detached human body parts than patent rights because of their capacity better to accommodate the relevant public and private interests in respect of the same.

  10. A low power wearable transceiver for human body communication.

    Science.gov (United States)

    Huang, Jin; Chen, Lian-Kang; Zhang, Yuan-Ting

    2009-01-01

    This paper reports a low power transceiver designed for wearable medical healthcare system. Based on a novel energy-efficient wideband wireless communication scheme that uses human body as a transmission medium, the transceiver can achieve a maximum 15 Mbps data rate with total receiver sensitivity of -30 dBm. The chip measures only 0.56 mm(2) and was fabricated in the SMIC 0.18um 1P6M RF CMOS process. The RX consumes 5mW and TX dissipates 1mW with delivering power up to 10uW, which is suitable for the body area network short range application. Real-time medical information collecting through the human body is fully simulated. Architecture of the chip together with the detail characterizes from its wireless analog front-end are presented.

  11. A modular approach to numerical human body modeling

    NARCIS (Netherlands)

    Forbes, P.A.; Griotto, G.; Rooij, L. van

    2007-01-01

    The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body mod

  12. A modular approach to numerical human body modeling

    NARCIS (Netherlands)

    Forbes, P.A.; Griotto, G.; Rooij, L. van

    2007-01-01

    The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body

  13. A system and method for imaging body areas

    NARCIS (Netherlands)

    Goethals, F.P.C.

    2013-01-01

    The invention relates to a system for imaging one or more external human body areas comprising a photographic device configured to acquire, store and output an image or images of the one or more body areas. The invention also relates to a method for determining a probable disease state of an externa

  14. Isomap transform for segmenting human body shapes.

    Science.gov (United States)

    Cerveri, P; Sarro, K J; Marchente, M; Barros, R M L

    2011-09-01

    Segmentation of the 3D human body is a very challenging problem in applications exploiting volume capture data. Direct clustering in the Euclidean space is usually complex or even unsolvable. This paper presents an original method based on the Isomap (isometric feature mapping) transform of the volume data-set. The 3D articulated posture is mapped by Isomap in the pose of Da Vinci's Vitruvian man. The limbs are unrolled from each other and separated from the trunk and pelvis, and the topology of the human body shape is recovered. In such a configuration, Hoshen-Kopelman clustering applied to concentric spherical shells is used to automatically group points into the labelled principal curves. Shepard interpolation is utilised to back-map points of the principal curves into the original volume space. The experimental results performed on many different postures have proved the validity of the proposed method. Reliability of less than 2 cm and 3° in the location of the joint centres and direction axes of rotations has been obtained, respectively, which qualifies this procedure as a potential tool for markerless motion analysis.

  15. Human and animal sounds influence recognition of body language.

    Science.gov (United States)

    Van den Stock, Jan; Grèzes, Julie; de Gelder, Beatrice

    2008-11-25

    In naturalistic settings emotional events have multiple correlates and are simultaneously perceived by several sensory systems. Recent studies have shown that recognition of facial expressions is biased towards the emotion expressed by a simultaneously presented emotional expression in the voice even if attention is directed to the face only. So far, no study examined whether this phenomenon also applies to whole body expressions, although there is no obvious reason why this crossmodal influence would be specific for faces. Here we investigated whether perception of emotions expressed in whole body movements is influenced by affective information provided by human and by animal vocalizations. Participants were instructed to attend to the action displayed by the body and to categorize the expressed emotion. The results indicate that recognition of body language is biased towards the emotion expressed by the simultaneously presented auditory information, whether it consist of human or of animal sounds. Our results show that a crossmodal influence from auditory to visual emotional information obtains for whole body video images with the facial expression blanked and includes human as well as animal sounds.

  16. Design of a Dual-Band On-Body Antenna for a Wireless Body Area Network Repeater System

    Directory of Open Access Journals (Sweden)

    Kyeol Kwon

    2012-01-01

    Full Text Available A dual-band on-body antenna for a wireless body area network repeater system is proposed. The designed dual-band antenna has the maximum radiation directed toward the inside of the human body in the medical implantable communication service (MICS band in order to collect vital information from the human body and directed toward the outside in the industrial, scientific, and medical (ISM band to transmit that information to a monitoring system. In addition, the return loss property of the antenna is insensitive to human body effects by utilizing the epsilon negative zeroth-order resonance property.

  17. Remarks on 3D human body posture reconstruction from multiple camera images

    Science.gov (United States)

    Nagasawa, Yusuke; Ohta, Takako; Mutsuji, Yukiko; Takahashi, Kazuhiko; Hashimoto, Masafumi

    2007-12-01

    This paper proposes a human body posture estimation method based on back projection of human silhouette images extracted from multi-camera images. To achieve real-time 3D human body posture estimation, a server-client system is introduced into the multi-camera system, improvements of the background subtraction and back projection are investigated. To evaluate the feasibility of the proposed method, 3D estimation experiments of human body posture are carried out. The experimental system with six CCD cameras is composed and the experimental results confirm both the feasibility and effectiveness of the proposed system in the 3D human body posture estimation in real-time. By using the 3D reconstruction of human body posture, the simple walk-through application of virtual reality system is demonstrated.

  18. Forward dynamics simulation of human body under tilting perturbations

    Science.gov (United States)

    Naderi, D.; Pasha Zanoosi, A. A.; Sadeghi-Mehr, M.

    2012-02-01

    Human body uses different strategies to maintain its stability and these strategies vary from fixed-foot strategies to strategies which foot is moved in order to increase the support base. Tilting movement of foot is one type of the perturbations usually is exposed to human body. In the presence of such perturbations human body must employ appropriate reactions to prevent threats like falling. But it is not clear that how human body maintains its stability by central nervous system (CNS). At present study it is tried that by presenting a musculoskeletal model of human lower extremity with four links, three degrees of freedom (DOF) and eight skeletal muscles, the level of muscle activations causes the maintenance of stability, be investigated. Using forward dynamics solution, leads to a more general problem, rather than inverse dynamics. Hence, forward dynamics solution by forward optimization has been used for solving this highly nonlinear problem. To this end, first the system's equations of motion has been derived using lagrangian dynamics. Eight Hill-type muscles as actuators of the system were modeled. Because determination of muscle forces considering their number is an undetermined problem, optimization of an appropriate goal function should be practiced. For optimization problem, the characteristics of genetic algorithms as a method based on direct search, and the direct collocation method, has been profited. Also by considering requirements of problem, some constraints such as conservation of model stability are entered into optimization procedure. Finally to investigate validation of model, the results from optimization and experimental data are compared and good agreements are obtained.

  19. Standoff Human Identification Using Body Shape

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, Shari; Heredia-Langner, Alejandro; Amidan, Brett G.; Boettcher, Evelyn J.; Lochtefeld, Darrell; Webb, Timothy

    2015-09-01

    The ability to identify individuals is a key component of maintaining safety and security in public spaces and around critical infrastructure. Monitoring an open space is challenging because individuals must be identified and re-identified from a standoff distance nonintrusively, making methods like fingerprinting and even facial recognition impractical. We propose using body shape features as a means for identification from standoff sensing, either complementing other identifiers or as an alternative. An important challenge in monitoring open spaces is reconstructing identifying features when only a partial observation is available, because of the view-angle limitations and occlusion or subject pose changes. To address this challenge, we investigated the minimum number of features required for a high probability of correct identification, and we developed models for predicting a key body feature—height—from a limited set of observed features. We found that any set of nine randomly selected body measurements was sufficient to correctly identify an individual in a dataset of 4426 subjects. For predicting height, anthropometric measures were investigated for correlation with height. Their correlation coefficients and associated linear models were reported. These results—a sufficient number of features for identification and height prediction from a single feature—contribute to developing systems for standoff identification when views of a subject are limited.

  20. Putting mind and body back together: a human-systems approach to the integration of the physical and cognitive dimensions of task design and operations.

    Science.gov (United States)

    Marras, W S; Hancock, P A

    2014-01-01

    As human factors and ergonomics professionals we should be considering the total context within which the person must operate when performing a task, providing a service, or using a product. We have traditionally thought of the person as having a cognitive system and a physical system and much of our scientific literature has been myopically focused on one or the other of these systems while, in general, totally ignoring the other. However, contemporary efforts have begun to recognize the rich interactions occurring between these systems that can have a profound influence on performance and dictate overall system output. In addition, modern efforts are beginning to appreciate the many interactions between the various elements of the environment that can influence the components of the human systems. The next level of sophistication in the practice of human factors and ergonomics must begin to consider the totality of the human-system behavior and performance and must consider systems design interactions which result from these collective effects. Only then will we be able to truly optimize systems for human use. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Development of highly sensitive and specific mRNA multiplex system (XCYR1) for forensic human body fluids and tissues identification.

    Science.gov (United States)

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples.

  2. Critical stability of few-body systems

    CERN Document Server

    Karmanov, V A

    2013-01-01

    When a two-body system is bound by a zero-range interaction, the corresponding three-body system -- considered in a non-relativistic framework -- collapses, that is its binding energy is unbounded from below. In a paper by J.V. Lindesay and H.P. Noyes it was shown that the relativistic effects result in an effective repulsion in such a way that three-body binding energy remains also finite, thus preventing the three-body system from collapse. Later, this property was confirmed in other works based on different versions of relativistic approaches. However, the three-body system exists only for a limited range of two-body binding energy values. For stronger two-body interaction, the relativistic three-body system still collapses. A similar phenomenon was found in a two-body systems themselves: a two-fermion system with one-boson exchange interaction in a state with zero angular momentum J=0 exists if the coupling constant does not exceed some critical value but it also collapses for larger coupling constant. Fo...

  3. The two-way feedback and passing-way of human body

    Institute of Scientific and Technical Information of China (English)

    Zhang Liang; Zhang Kui; Zhang Renxiang

    2008-01-01

    Two-way feedback of human body was published in 1992. The sensation of two-way feedback of body is a spe-cial system of human reaction, which maintains and regulates symmetry and balance of human body. The human two-way feedback reacts to human health. For human overall health and delay decrepitude, it is necessary to pay attention to the stimulations (passive acceptance and initiative interventions) and relevant influences in human body and the stimu-lative effect. In this paper, the experimental research of stimulation and an example of two-way feedback in human body are given. And lay a foundation of prevention, medical treatment and hygiene of human overall health.

  4. Origins and early development of human body knowledge.

    Science.gov (United States)

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial

  5. Perspective of the Human Body in Sasang Constitutional Medicine

    Directory of Open Access Journals (Sweden)

    Junhee Lee

    2009-01-01

    Full Text Available The Sasang constitutional medicine (SCM, a medical tradition originating from Korea, is distinguished from the traditional Chinese medicine in its philosophical background, theoretical development and especially, the fundamental rationale that analyzes the structure and function of the human body within a quadrifocal scheme. In SCM, the structure of the body is comprehended within the Sasang quadrifocal scheme, and the function of the body is understood within the context of the energy-fluid metabolism and the water-food metabolism controlled by the four main organs (lung, spleen, liver and kidney. Also, the concept of Seong-Jeong is used to explain the structural and functional variations between different constitutional types that arise from the constitutional variations in organ system scheme, which are in turn caused by deviations in the constitutional Seong-Jeong. Therefore, understanding the SCM perspective of the human body is essential in order to fully appreciate the advantages of the constitutional typological system (which focuses on individual idiosyncrasies found in SCM.

  6. Perspective of the human body in sasang constitutional medicine.

    Science.gov (United States)

    Lee, Junhee; Jung, Yongjae; Yoo, Junghee; Lee, Euiju; Koh, Byunghee

    2009-09-01

    The Sasang constitutional medicine (SCM), a medical tradition originating from Korea, is distinguished from the traditional Chinese medicine in its philosophical background, theoretical development and especially, the fundamental rationale that analyzes the structure and function of the human body within a quadrifocal scheme. In SCM, the structure of the body is comprehended within the Sasang quadrifocal scheme, and the function of the body is understood within the context of the energy-fluid metabolism and the water-food metabolism controlled by the four main organs (lung, spleen, liver and kidney). Also, the concept of Seong-Jeong is used to explain the structural and functional variations between different constitutional types that arise from the constitutional variations in organ system scheme, which are in turn caused by deviations in the constitutional Seong-Jeong. Therefore, understanding the SCM perspective of the human body is essential in order to fully appreciate the advantages of the constitutional typological system (which focuses on individual idiosyncrasies) found in SCM.

  7. Human Body Image Edge Detection Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    李勇; 付小莉

    2003-01-01

    Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.

  8. On the dynamics of a human body model.

    Science.gov (United States)

    Huston, R. L.; Passerello, C. E.

    1971-01-01

    Equations of motion for a model of the human body are developed. Basically, the model consists of an elliptical cylinder representing the torso, together with a system of frustrums of elliptical cones representing the limbs. They are connected to the main body and each other by hinges and ball and socket joints. Vector, tensor, and matrix methods provide a systematic organization of the geometry. The equations of motion are developed from the principles of classical mechanics. The solution of these equations then provide the displacement and rotation of the main body when the external forces and relative limb motions are specified. Three simple example motions are studied to illustrate the method. The first is an analysis and comparison of simple lifting on the earth and the moon. The second is an elementary approach to underwater swimming, including both viscous and inertia effects. The third is an analysis of kicking motion and its effect upon a vertically suspended man such as a parachutist.

  9. A topological multilayer model of the human body.

    Science.gov (United States)

    Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João

    2015-11-04

    Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.

  10. Human body composition models and methodology: theory and experiment.

    NARCIS (Netherlands)

    Wang, Z.M.

    1997-01-01

    The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors. Accordingly, the study of human

  11. Human Resource Accounting System

    Science.gov (United States)

    Cerullo, Michael J.

    1974-01-01

    Main objectives of human resource accounting systems are to satisfy the informational demands made by investors and by operating managers. The paper's main concern is with the internal uses of a human asset system. (Author)

  12. Human Resource Management System

    OpenAIRE

    Navaz, A. S. Syed; Fiaz, A. S. Syed; Prabhadevi, C.; V.Sangeetha; Gopalakrishnan,S.

    2013-01-01

    The paper titled HUMAN RESOURCE MANAGEMENT SYSTEM is basically concerned with managing the Administrator of HUMAN RESOURCE Department in a company. A Human Resource Management System, refers to the systems and processes at the intersection between human resource management and information technology. It merges HRM as a discipline and in particular its basic HR activities and processes with the information technology field, whereas the programming of data processing systems evolved into standa...

  13. Mathematical description of human body constitution and fatness.

    Science.gov (United States)

    Sheikh-Zade, Yu R; Galenko-Yaroshevskii, P A; Cherednik, I L

    2014-02-01

    Using mathematical modeling of human body, we demonstrated logical drawbacks of body mass index (BMI1 = M/H(2); A. Quetelet, 1832) and proposed more precise body mass index (BMI2 = M/H(3)) as well as body constitution index (BCI = (M/H(3))(1/2)) and fatness index (FI = M/HC(2)), where M, H, and C are body weight, height, and wrist circumference of the individual.

  14. The Role of Human Body Movements in Mate Selection

    Directory of Open Access Journals (Sweden)

    Nadine Hugill

    2010-01-01

    Full Text Available It is common scientific knowledge, that most of what we say within a conversation is not only expressed by the words' meaning alone, but also through our gestures, postures, and body movements. This non-verbal mode is possibly rooted firmly in our human evolutionary heritage, and as such, some scientists argue that it serves as a fundamental assessment and expression tool for our inner qualities. Studies of nonverbal communication have established that a universal, culture-free, non-verbal sign system exists, that is available to all individuals for negotiating social encounters. Thus, it is not only the kind of gestures and expressions humans use in social communication, but also the way these movements are performed, as this seems to convey key information about an individual's quality. Dance, for example, is a special form of movement, which can be observed in human courtship displays. Recent research suggests that people are sensitive to the variation in dance movements, and that dance performance provides information about an individual's mate quality in terms of health and strength. This article reviews the role of body movement in human non-verbal communication, and highlights its significance in human mate preferences in order to promote future work in this research area within the evolutionary psychology framework.

  15. Microwave non-contact imaging of subcutaneous human body tissues

    Science.gov (United States)

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  16. Human body capacitance: static or dynamic concept? [ESD

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1998-01-01

    A standing human body insulated from ground by footwear and/or floor covering is in principle an insulated conductor and has, as such, a capacitance, i.e. the ability to store a charge and possibly discharge the stored energy in a spark discharge. In the human body, the human body capacitance (HBC...... when a substantial part of the flux extends itself through badly defined stray fields. Since the concept of human body capacitance is normally used in a static (electric) context, it is suggested that the HBC be determined by a static method. No theoretical explanation of the observed differences...

  17. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  18. Representational Momentum for the Human Body: Awkwardness Matters, Experience Does Not

    Science.gov (United States)

    Wilson, Margaret; Lancaster, Jessy; Emmorey, Karen

    2010-01-01

    Perception of the human body appears to involve predictive simulations that project forward to track unfolding body-motion events. Here we use representational momentum (RM) to investigate whether implicit knowledge of a learned arbitrary system of body movement such as sign language influences this prediction process, and how this compares to…

  19. Electromagnetic wave propagation of wireless capsule endoscopy in human body

    Institute of Scientific and Technical Information of China (English)

    LIM; Eng-Gee; 王炤; 陈瑾慧; TILLO; Tammam; MAN; Ka-lok

    2013-01-01

    Wireless capsule endoscopy(WCE) is a promising technique which has overcome some limitations of traditional diagnosing tools, such as the comfortlessness of the cables and the inability of examining small intestine section. However, this technique is still far from mature and asks for the feasible improvements. For example, the relatively low transmission data rate and the absence of the real-time localization information of the capsule are all important issues. The studies of them rely on the understanding of the electromagnetic wave propagation in human body. Investigation of performance of WCE communication system was carried out by studying electromagnetic(EM) wave propagation of the wireless capsule endoscopy transmission channel. Starting with a pair of antennas working in a human body mimic environment, the signal transmissions and attenuations were examined. The relationship between the signal attenuation and the capsule(transmitter) position, and direction was also evaluated. These results provide important information for real-time localization of the capsule. Moreover, the pair of antennas and the human body were treated as a transmission channel, on which the binary amplitude shift keying(BASK) modulation scheme was used. The relationship between the modulation scheme, data rate and bit error rate was also determined in the case of BASK. With the obtained studies, it make possible to provide valuable information for further studies on the selection of the modulation scheme and the real-time localization of the capsules.

  20. Impact injury prediction by FE human body model

    Directory of Open Access Journals (Sweden)

    Hynčík L.

    2008-12-01

    Full Text Available The biomechanical simulations as powerful instruments are used in many areas such as traffic, medicine, sport, army etc. The simulations are often performed with models, which are based on the Finite Element Method. The great ability of FE deformable models of human bodies is to predict the injuries during accidents. Due to its modular implementation of thorax and abdomen FE models, human articulated rigid body model ROBBY, which was previously developed at the University of West Bohemia in cooperation with ESI Group (Engineering Simulation for Industry, can be used for this purpose. ROBBY model representing average adult man is still being improved to obtain more precise model of human body with the possibility to predict injuries during accidents. Recently, new generated thoracic model was embedded into ROBBY model and this was subsequently satisfactorily validated. In this study the updated ROBBY model was used and injury of head and thorax were investigated during frontal crashes simulated by virtue of two types of sled tests with various types of restraint system (shoulder belt, lap belt and airbag. The results of the simulation were compared with the experimental ones.

  1. [The gift of human body's products: philosophical and ethical aspects].

    Science.gov (United States)

    Baertschi, B

    2014-09-01

    In continental Europe, there is a very strong moral condemnation against putting parts or products of the human body on sale-and, consequently, against putting sperms and oocytes on sale. Only a gift is morally permissible. The situation is different in Anglo-Saxon countries. Who is right? Above all, it must be noticed that two views of the human body are facing each other here: for the first, the human body is a part of the person (so, it partakes of the person's dignity), whereas for the second, the human body is a possession of the person (the person is the owner of his/her body). In my opinion, the argument of dignity comes up against serious objections, and the property argument is more consistent. However, it does not follow that it would be judicious to put parts and products of the human body for sale on a market.

  2. Construction of a mathematical model of the human body, taking the nonlinear rigidity of the spine into account

    Science.gov (United States)

    Glukharev, K. K.; Morozova, N. I.; Potemkin, B. A.; Solovyev, V. S.; Frolov, K. V.

    1973-01-01

    A mathematical model of the human body was constructed, under the action of harmonic vibrations, in the 2.5-7 Hz frequency range. In this frequency range, the model of the human body as a vibrating system, with concentrated parameters is considered. Vertical movements of the seat and vertical components of vibrations of the human body are investigated.

  3. Brazilian legal and bioethical approach about donation for research and patents of human body parts.

    Science.gov (United States)

    Fernandes, Márcia Santana; Silla, Lúcia; Goldim, José Roberto; Martins-Costa, Judith

    2017-07-01

    The aim of this paper is to explain why the Brazilian legal system does not accept commercialization or commodification of human body parts, including genes or cells. As a consequence, in Brazil, the donation of human body parts for research-including basic or translational-must be made altruistically. For the same reason, the Brazilian patent system cannot be applied to human parts, cells or genes. Here, we present a qualitative analysis of juridical, bioethical, and social reasoning related to the legal status of human body parts especially in biobanks, as well as a description of the Brazilian legal system for clarification. Our aim is to discuss the responsibility of researchers for making available the scientific information resulting from scientific research and biobank storage of human body parts and to ensure the free utilization of knowledge in human health research.

  4. Human body and head characteristics as a communication medium for Body Area Network.

    Science.gov (United States)

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  5. Specialised structural descriptions for human body parts: Evidence from autotopagnosia.

    Science.gov (United States)

    Buxbaum, L J; Coslett, H B

    2001-06-01

    Previous accounts of autotopagnosia (e.g., Ogden, 1985; Pick, 1908; Semenza, 1988) propose that the disorder is attributable to deficits in "mental images," visual body schema, or semantic representations. A recent account (Sirigu, Grafman, Bressler, & Sunderland, 1991b) posits deficits in visual structural descriptions of the human body and its parts, in the context of spared semantic and proprioceptivespatio-motor body representations, but provides no evidence bearing on the nature or format of the putatively damaged representation. We report data from a man with autotopagnosia consequent to lefthemisphere brain damage which bear directly on the nature of the representation impaired in the disorder. The subject, GL, is unable to localise body parts on himself or others, whether cued by verbal or visual input. In contrast, he uses body parts precisely in reaching and grasping tasks, correctly matches items of clothing to body parts, and localises the parts of animals and man-made objects without error. We also demonstrate that GL is unable to match pictured or real human body parts across shifts in orientation or changes in visual appearance, but can perform analogous matching tasks with animal body parts and man-made object parts. The data extend the account of Sirigu et al. (1991b) in suggesting that human body part localisation depends upon structural descriptions of human (but not animal) bodies that enable viewpoint-independent body part recognition and participate in the calculation of equivalence between the body parts of self and others across transformations in orientation.

  6. Development of Preferences for the Human Body Shape in Infancy.

    Science.gov (United States)

    Slaughter, Virginia; Heron, Michelle; Sim, Susan

    2002-01-01

    Two studies investigated development of infants' visual preferences for the human body shape. Results indicated that 18-month-olds had a reliable preference for scrambled body shapes over typical body shapes in line drawings, while 12- and 15-month-olds did not respond differentially. In condition using photographs, only 18-month-olds had reliable…

  7. Water and electrolytes. [in human bodies

    Science.gov (United States)

    Greenleaf, J. E.; Harrison, M. H.

    1986-01-01

    It has been found that the performance of the strongest and fittest people will deteriorate rapidly with dehydration. The present paper is concerned with the anatomy of the fluid spaces in the body, taking into account also the fluid shifts and losses during exercise and their effects on performance. Total body water is arbitrarily divided into that contained within cells (cellular) and that located outside the cells (extracellular). The anatomy of body fluid compartments is considered along with the effects of exercise on body water, fluid shifts with exercise, the consequences of sweating, dehydration and exercise, heat acclimatization and endurance training, the adverse effects of dehydration, thirst and drinking during exercise, stimuli for drinking, and water, electrolyte, and carbohydrate replacement during exercise. It is found that the deterioration of physical exercise performance due to dehydration begins when body weight decreases by about 1 percent.

  8. Tracking human position and lower body parts using Kalman and particle filters constrained by human biomechanics.

    Science.gov (United States)

    Martinez del Rincon, Jesús; Makris, Dimitrios; Orrite Urunuela, Carlos; Nebel, Jean-Christophe

    2011-02-01

    In this paper, a novel framework for visual tracking of human body parts is introduced. The approach presented demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera by using a limb-tracking system based on a 2-D articulated model and a double-tracking strategy. Its key contribution is that the 2-D model is only constrained by biomechanical knowledge about human bipedal motion, instead of relying on constraints that are linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on a set of indoor and outdoor sequences demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented.

  9. Human Body Orientation Estimation using a Committee based Approach

    NARCIS (Netherlands)

    Ichim, M; Tan, R.T.; van der Aa, N.P.; Veltkamp, R.C.

    2014-01-01

    Human body orientation estimation is useful for analyzing the activities of a single person or a group of people. Estimating body orientation can be subdivided in two tasks: human tracking and orientation estimation. In this paper, the second task of orientation estimation is accomplished by using H

  10. Human body composition models and methodology : theory and experiment

    NARCIS (Netherlands)

    Wang, Z.M.

    1997-01-01


    The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors.

  11. Imaging of Ultraweak Spontaneous Photon Emission from Human Body Displaying Diurnal Rhythm

    OpenAIRE

    Masaki Kobayashi; Daisuke Kikuchi; Hitoshi Okamura

    2009-01-01

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. T...

  12. Human physiome based on the high-resolution dataset of human body structure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Physiome Project, as a new concept, is proceeding rapidly with the great advancement of genomics, physiological experiment, biologic modeling and computer simulation technique. The project seeks to provide a quantitative framework for modeling of the human physio- logical system using computational approaches, which is able to integrate the knowledge of molecular biology, biochemical, biophysical and anatomical information on different levels, including cell, tissue, organ, system and organism. This paper reviews the development of the Physiome Project in the past decade. The role of high-resolution datasets of human body structure in Physiome Project is discussed. The future plan and applications of the high-resolution datasets of human body structure to Physiome Project are discussed as well.

  13. Shared body representations and the 'Whose' system.

    Science.gov (United States)

    de Vignemont, Frédérique

    2014-03-01

    Mirroring has been almost exclusively analysed in motor terms with no reference to the body that carries the action. According to the standard view, one activates motor representations upon seeing other people moving. However, one does not only see movements, one also sees another individual's body. The following questions then arise. To what extent does one recruit body representations in social context? And does it imply that body representations are shared between self and others? This latter question is all the more legitimate since recent evidence indicates the existence of shared cortical networks for bodily sensations, including pain (e.g., Singer et al., 2004) and touch (e.g., Keysers et al., 2004; Blakemore, Bristow, Bird, Frith, & Ward, 2005). But if body representations are shared, then it seems that their activation cannot suffice to discriminate between one's body and other people's bodies. Does one then need a 'Whose' system to recognise one's body as one's own, in the same way that Jeannerod argues that one needs a 'Who' system to recognise one's actions as one's own? © 2013 Published by Elsevier Ltd.

  14. [BODY AND CORPORALITY IN THE HUMAN BEING: SOME INTERDISCIPLINARY REFLECTIONS].

    Science.gov (United States)

    Giménez Amaya, JosÉ Manuel

    2014-01-01

    The major purpose of this contribution is to illustrate some differential aspects between the human and the animal bodies, in order to understand the main distinctive characteristic of the human being: his or her rationality. Thus, we firstly deal with some considerations about the general anthropological framework in which the human body is going to be analysed. Next, we briefly explain the importance of the body for an adequate understanding of the intimacy and the biographical perspectives of the person. Here we show some examples of the altered human corporality to stress the importance of the relation to oneself and others as a key and fundamental aspect to look at our rational corporality.

  15. In vivo transplantation of neurosphere-like bodies derived from the human postnatal and adult enteric nervous system: a pilot study.

    Directory of Open Access Journals (Sweden)

    Susan Hetz

    Full Text Available Recent advances in the in vitro characterization of human adult enteric neural progenitor cells have opened new possibilities for cell-based therapies in gastrointestinal motility disorders. However, whether these cells are able to integrate within an in vivo gut environment is still unclear. In this study, we transplanted neural progenitor-containing neurosphere-like bodies (NLBs in a mouse model of hypoganglionosis and analyzed cellular integration of NLB-derived cell types and functional improvement. NLBs were propagated from postnatal and adult human gut tissues. Cells were characterized by immunohistochemistry, quantitative PCR and subtelomere fluorescence in situ hybridization (FISH. For in vivo evaluation, the plexus of murine colon was damaged by the application of cationic surfactant benzalkonium chloride which was followed by the transplantation of NLBs in a fibrin matrix. After 4 weeks, grafted human cells were visualized by combined in situ hybridization (Alu and immunohistochemistry (PGP9.5, GFAP, SMA. In addition, we determined nitric oxide synthase (NOS-positive neurons and measured hypertrophic effects in the ENS and musculature. Contractility of treated guts was assessed in organ bath after electrical field stimulation. NLBs could be reproducibly generated without any signs of chromosomal alterations using subtelomere FISH. NLB-derived cells integrated within the host tissue and showed expected differentiated phenotypes i.e. enteric neurons, glia and smooth muscle-like cells following in vivo transplantation. Our data suggest biological effects of the transplanted NLB cells on tissue contractility, although robust statistical results could not be obtained due to the small sample size. Further, it is unclear, which of the NLB cell types including neural progenitors have direct restoring effects or, alternatively may act via 'bystander' mechanisms in vivo. Our findings provide further evidence that NLB transplantation can be

  16. Optimal frequency range for medical radar measurements of human heartbeats using body-contact radar.

    Science.gov (United States)

    Brovoll, Sverre; Aardal, Øyvind; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-01-01

    In this paper the optimal frequency range for heartbeat measurements using body-contact radar is experimentally evaluated. A Body-contact radar senses electromagnetic waves that have penetrated the human body, but the range of frequencies that can be used are limited by the electric properties of the human tissue. The optimal frequency range is an important property needed for the design of body-contact radar systems for heartbeat measurements. In this study heartbeats are measured using three different antennas at discrete frequencies from 0.1 - 10 GHz, and the strength of the received heartbeat signal is calculated. To characterize the antennas, when in contact with the body, two port S-parameters(†) are measured for the antennas using a pork rib as a phantom for the human body. The results shows that frequencies up to 2.5 GHz can be used for heartbeat measurements with body-contact radar.

  17. Chaotic dynamics in N-body systems

    NARCIS (Netherlands)

    Boekholt, Tjarda Coenraad Nico

    2015-01-01

    Ever since Isaac Newton in 1687 posed the N-body problem, astronomers have been looking for its solutions in order to understand the evolution of dynamical systems, such as our own solar system, star clusters and galaxies. The main difficulty is that small errors grow exponentially, so that numerica

  18. Chaotic dynamics in N-body systems

    NARCIS (Netherlands)

    Boekholt, Tjarda Coenraad Nico

    2015-01-01

    Ever since Isaac Newton in 1687 posed the N-body problem, astronomers have been looking for its solutions in order to understand the evolution of dynamical systems, such as our own solar system, star clusters and galaxies. The main difficulty is that small errors grow exponentially, so that

  19. Electromagnetics of body area networks antennas, propagation, and RF systems

    CERN Document Server

    Werner, Douglas H

    2016-01-01

    The book is a comprehensive treatment of the field, covering fundamental theoretical principles and new technological advancements, state-of-the-art device design, and reviewing examples encompassing a wide range of related sub-areas. In particular, the first area focuses on the recent development of novel wearable and implantable antenna concepts and designs including metamaterial-based wearable antennas, microwave circuit integrated wearable filtering antennas, and textile and/or fabric material enabled wearable antennas. The second set of topics covers advanced wireless propagation and the associated statistical models for on-body, in-body, and off-body modes. Other sub-areas such as efficient numerical human body modeling techniques, artificial phantom synthesis and fabrication, as well as low-power RF integrated circuits and related sensor technology are also discussed. These topics have been carefully selected for their transformational impact on the next generation of body-area network systems and beyo...

  20. "Scientific peep show": the human body in contemporary science museums.

    Science.gov (United States)

    Canadelli, Elena

    2011-01-01

    The essay focuses on the discourse about the human body developed by contemporary science museums with educational and instructive purposes directed at the general public. These museums aim mostly at mediating concepts such as health and prevention. The current scenario is linked with two examples of past museums: the popular anatomical museums which emerged during the 19th century and the health museums thrived between 1910 and 1940. On the museological path about the human body self-care we went from the emotionally involving anatomical Venuses to the inexpressive Transparent Man, from anatomical specimens of ill organs and deformed subjects to the mechanical and electronic models of the healthy body. Today the body is made transparent by the new medical diagnostics and by the latest discoveries of endoscopy. The way museums and science centers presently display the human body involves computers, 3D animation, digital technologies, hands-on models of large size human parts.

  1. Human body motion tracking based on quantum-inspired immune cloning algorithm

    Science.gov (United States)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  2. Human body segmentation via data-driven graph cut.

    Science.gov (United States)

    Li, Shifeng; Lu, Huchuan; Shao, Xingqing

    2014-11-01

    Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.

  3. 三维试衣系统人体建模方法总结与系统前景展望%Summary of 3D Clothing Fitting System's Human Body Modeling and System Prospecting

    Institute of Scientific and Technical Information of China (English)

    王建一; 郝慧

    2011-01-01

    In this paper, the methods of creating 3D human body and data access in 3D clothing fitting system are summarized. And then talk about the present limitations and future prospects: deeper integration with virtual reality technology, so that consumers are free to travel and exchange ideas. And in this way people can also feel the whole features of clothes through watching, touching and smelling and even all of humans' senses.%本文主要针对三维试衣系统中三维人体的创建以及三维人体数据的获取方式进行总结,进而得出目前三维试衣系统的局限与未来发展的展望:深度融合虚拟现实技术,让消费者可以自由游走与交流,从视觉、嗅觉、味觉等全方位感受服装的特性.

  4. Automatic Modeling of Virtual Humans and Body Clothing

    Institute of Scientific and Technical Information of China (English)

    Nadia Magnenat-Thalmann; Hyewon Seo; Frederic Cordier

    2004-01-01

    Highly realistic virtual human models are rapidly becoming commonplace in computer graphics.These models, often represented by complex shape and requiring labor-intensive process, challenge the problem of automatic modeling. The problem and solutions to automatic modeling of animatable virtual humans are studied. Methods for capturing the shape of real people, parameterization techniques for modeling static shape (the variety of human body shapes) and dynamic shape (how the body shape changes as it moves) of virtual humans are classified, summarized and compared. Finally, methods for clothed virtual humans are reviewed.

  5. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans

    DEFF Research Database (Denmark)

    Mortensen, S.P.; Damsgaard, R.; Dawson, E.A.

    2008-01-01

    supramaximal cycling (498 +/- 16 W; 110% of peak power; mean +/- S.E.M.) in addition to both incremental cycling and knee-extensor exercise to exhaustion in 13 trained males. During supramaximal cycling, cardiac output (Q), leg blood flow (LBF), and systemic and leg O(2) delivery and reached peak values after...... 60-90 s and thereafter levelled off at values similar to or approximately 6% (P cycling, while upper body blood flow remained unchanged (approximately 5.5 l min(-1)). In contrast, Q and LBF increased linearly until exhaustion during one-legged knee-extensor exercise accompanying...... increases in non-locomotor tissue blood flow to approximately 12 l min(-1). At exhaustion during cycling compared to knee-extensor exercise, Q, LBF, leg vascular conductance, leg O(2) delivery and leg for a given power were reduced by 32-47% (P

  6. Moving human full body and body parts detection, tracking, and applications on human activity estimation, walking pattern and face recognition

    Science.gov (United States)

    Chen, Hai-Wen; McGurr, Mike

    2016-05-01

    We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance

  7. Research on Dynamic Model of the Human Body

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-lin; WANG Guang-quan; LU Dun-yong

    2005-01-01

    After summarizing the current situation of the research on human body modeling, a new dynamic model containing 5 equivalent masses has been proposed and the corresponding dynamic equations has been deduced too. By using this new model, more detailed information about the situation of the human body under impact and vibration can be obtained. The new model solves the problem that transmission functions of forces inside the human body can't be deduced by using 3-equivalent-mass model. It will find its usage in many applications.

  8. Level rearrangement in three-body systems

    CERN Document Server

    Richard, Jean-Marc

    2016-01-01

    We study systems of three bosons bound by a long-range interaction supplemented by a short-range potential of variable strength. This generalizes the usual two-body exotic atoms where the Coulomb interaction is modified by nuclear forces at short distances. The energy shift due to the short-range part of the interaction combines two-body terms similar to the ones entering the Trueman-Deser formula, and three-body contributions. A phenomenon of level rearrangement is observed, similar to the Zel'dovich effect, by the onset of an additional stable level which is eventually absorbed by the two-body threshold energy, and can be interpreted as an Efimov-like state of the short-range potential.

  9. Composition of Solar System Small Bodies

    CERN Document Server

    Vernazza, Pierre

    2016-01-01

    The aim of the chapter is to summarize our understanding of the compositional distribution across the different reservoirs of small bodies (main belt asteroids, giant planet trojans, irregular satellites of the giant planets, TNOs, comets). We then use this information to i) discuss current dynamical models (Nice and Grand Tack models), ii) mention possible caveats in these models if any, and iii) draw a preliminary version of the primordial compositional gradient across the solar system before planetary migrations occured. Note that the composition of both planetary satellites (the regular ones) and that of the transient populations (NEOs, centaurs) is not discussed here. We strictly focus on the composition of the main reservoirs of small bodies. The manuscript's objective is to provide a global and synthetic view of small bodies' compositions rather than a very detailed one, for specific reviews regarding the composition of small bodies, see papers by Burbine (2014) for asteroids, Emery et al. (2015) for J...

  10. Gender Recognition from Unconstrained and Articulated Human Body

    Directory of Open Access Journals (Sweden)

    Qin Wu

    2014-01-01

    human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  11. A Geology Sampling System for Small Bodies

    Science.gov (United States)

    Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  12. A Geology Sampling System for Microgravity Bodies

    Science.gov (United States)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  13. Use of a cell-free system to determine UDP-N-acetylglucosamine 2-epimerase and N-acetylmannosamine kinase activities in human hereditary inclusion body myopathy.

    Science.gov (United States)

    Sparks, Susan E; Ciccone, Carla; Lalor, Molly; Orvisky, Eduard; Klootwijk, Riko; Savelkoul, Paul J; Dalakas, Marinos C; Krasnewich, Donna M; Gahl, William A; Huizing, Marjan

    2005-11-01

    Hereditary inclusion body myopathy (HIBM) is an autosomal recessive neuromuscular disorder associated with mutations in uridine diphosphate (UDP)-N-acetylglucosamine (GlcNAc) 2-epimerase (GNE)/N-acetylmannosamine (ManNAc) kinase (MNK), the bifunctional and rate-limiting enzyme of sialic acid biosynthesis. We developed individual GNE and MNK enzymatic assays and determined reduced activities in cultured fibroblasts of patients, with HIBM harboring missense mutations in either or both the GNE and MNK enzymatic domains. To assess the effects of individual mutations on enzyme activity, normal and mutated GNE/MNK enzymatic domains were synthesized in a cell-free in vitro transcription-translation system and subjected to the GNE and MNK enzymatic assays. This cell-free system was validated for both GNE and MNK activities, and it revealed that mutations in one enzymatic domain (in GNE, G135V, V216A, and R246W; in MNK, A631V, M712T) affected not only that domain's enzyme activity, but also the activity of the other domain. Moreover, studies of the residual enzyme activity associated with specific mutations revealed a discrepancy between the fibroblasts and the cell-free systems. Fibroblasts exhibited higher residual activities of both GNE and MNK than the cell-free system. These findings add complexity to the tightly regulated system of sialic acid biosynthesis. This cell-free approach can be applied to other glycosylation pathway enzymes that are difficult to evaluate in whole cells because their substrate specificities overlap with those of ancillary enzymes.

  14. Channel Modeling of Human Somatosensory Nanonetwork: Body Discriminative Touch and Proprioception Perspective

    Directory of Open Access Journals (Sweden)

    Partha Pratim Ray

    2013-10-01

    Full Text Available Nanonetwork design and analysis has become a very interesting topic in recent years. Though this area of research is in its formative stage, it definitely posses a strong integrity in finding out numerous applications in medical and allied sciences. Nanonetworking is indeed a nature built foundation which comprises human intra body communications. Somatosensory system is the one of the critical and must have systems of human body. This literature concentrates on the body discriminative touch and proprioception mechanism of somatosensory system. This particular system is well architecture by medial lemniscal pathway, in human body for transduction of touch and proprioceptive information. This paper seeks out the novel communication channel model of somatosensory system. The working principle of the channel model is established by an equivalent Moore machine. A novel algorithm MLP is proposed after its name, medial lemniscal pathway. A novel naomachine and appropriate processing unit are also devised, based on the automaton.

  15. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    Directory of Open Access Journals (Sweden)

    Masashi Kato

    Full Text Available Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L and coexposure to barium (137 µg/L and arsenic (225 µg/L. The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L and barium (700 µg/L, but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium, in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  16. Comparison of Barium and Arsenic Concentrations in Well Drinking Water and in Human Body Samples and a Novel Remediation System for These Elements in Well Drinking Water.

    Science.gov (United States)

    Kato, Masashi; Kumasaka, Mayuko Y; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro

    2013-01-01

    Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.

  17. The functional architecture of the human body: assessing body representation by sorting body parts and activities.

    Science.gov (United States)

    Bläsing, Bettina; Schack, Thomas; Brugger, Peter

    2010-05-01

    We investigated mental representations of body parts and body-related activities in two subjects with congenitally absent limbs (one with, the other without phantom sensations), a wheelchair sports group of paraplegic participants, and two groups of participants with intact limbs. To analyse mental representation structures, we applied Structure Dimensional Analysis. Verbal labels indicating body parts and related activities were presented in randomized lists that had to be sorted according to a hierarchical splitting paradigm. Participants were required to group the items according to whether or not they were considered related, based on their own body perception. Results of the groups of physically intact and paraplegic participants revealed separate clusters for the lower body, upper body, fingers and head. The participant with congenital phantom limbs also showed a clear separation between upper and lower body (but not between fingers and hands). In the participant without phantom sensations of the absent arms, no such modularity emerged, but the specific practice of his right foot in communication and daily routines was reflected. Sorting verbal labels of body parts and activities appears a useful method to assess body representation in individuals with special body anatomy or function and leads to conclusions largely compatible with other assessment procedures.

  18. Numerical Modeling of Electromagnetic Field Effects on the Human Body

    Directory of Open Access Journals (Sweden)

    Zuzana Psenakova

    2006-01-01

    Full Text Available Interactions of electromagnetic field (EMF with environment and with tissue of human beings are still under discussion and many research teams are investigating it. The human simulation models are used for biomedical research in a lot of areas, where it is advantage to replace real human body (tissue by the numerical model. Biological effects of EMF are one of the areas, where numerical models are used with many advantages. On the other side, this research is very specific and it is always quite hard to simulate realistic human tissue. This paper deals with different possibilities of numerical modelling of electromagnetic field effects on the human body (especially calculation of the specific absorption rate (SAR distribution in human body and thermal effect.

  19. Human body motion capture from multi-image video sequences

    Science.gov (United States)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points

  20. The biokinetics of inorganic cobalt in the human body.

    Science.gov (United States)

    Leggett, R W

    2008-01-25

    This paper reviews information on the biological behavior of inorganic cobalt in humans and laboratory animals and proposes a model of the systemic biokinetics of inorganic cobalt in adult humans. The model was developed as part of an effort to update the models of the International Commission on Radiological Protection (ICRP) for addressing intakes of radionuclides by workers but is also applicable to environmental or medical exposures to inorganic forms of radiocobalt. The model can be used in conjunction with any respiratory, gastrointestinal, or wound model that provides predictions of the time-dependent feed of cobalt to blood. In contrast to the ICRP's current systemic model for cobalt, which is a simple open catenary system, the proposed model is constructed within a physiologically realistic framework that depicts recycling of cobalt between blood and tissues and transfer from blood to excretion pathways. Compared with the ICRP's current model, the proposed model yields similar predictions of whole-body retention but substantially different predictions of the systemic distribution of cobalt as a function of time after uptake to blood.

  1. Gender Recognition from Unconstrained and Articulated Human Body

    OpenAIRE

    Qin Wu; Guodong Guo

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, ho...

  2. Individualized Human CAD Models: Anthropmetric Morphing and Body Tissue Layering

    Science.gov (United States)

    2014-07-31

    torso sub-assembly may have more fat in the abdomen than in the chest. A study 18 that could help refine this feature is being developed by the US...responses to various ensembles being developed, taking 3 into account human characteristics (height, weight, body fat , etc.), physical activity levels...model of the human body in a CAD (Computer- Aided Design) format which includes both surface features as well as internal composition, e.g., the fat

  3. [Research progress on free radicals in human body].

    Science.gov (United States)

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  4. A Circuit Model of Real Time Human Body Hydration.

    Science.gov (United States)

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration.

  5. Fundamentals of systems ergonomics/human factors.

    Science.gov (United States)

    Wilson, John R

    2014-01-01

    Ergonomics/human factors is, above anything else, a systems discipline and profession, applying a systems philosophy and systems approaches. Many things are labelled as system in today's world, and this paper specifies just what attributes and notions define ergonomics/human factors in systems terms. These are obviously a systems focus, but also concern for context, acknowledgement of interactions and complexity, a holistic approach, recognition of emergence and embedding of the professional effort involved within organization system. These six notions are illustrated with examples from a large body of work on rail human factors.

  6. Electric Wheelchair Controlled by Human Body Motion Interface

    Science.gov (United States)

    Yokota, Sho; Hashimoto, Hiroshi; Ohyama, Yasuhiro; She, Jin-Hua

    This research studies the possibility of an intuitive interface for an electric wheelchair by using human body except hands. For this purpose, we focused on the human body motion which has relation to actions or behavior. This motion comes from the human stabilization function for holding expectable collapsing caused by voluntary motion. Thus this motion is considered as a kind of characteristics of human motion, and is linked to intentions unconsciously. Therefore, the interface which does not require conscious and complex motion is realized by applying this human body motion to the interface of electric wheelchair. In this paper, first, we did experiment to search a part which vividly shows the pressure change on the seat. As a result, it was confirmed that pressure change of the seat back vividly shows the human body motion. Next, we designed the prototype based on this evidence. Finally, experiment was conducted by using 10 subjects and SD method to evaluate feeling of operation. For this result, it was turned out that all subjects feel that proposed interface was intuitive, or to control at their direction. Therefore it was confirmed that human body motion interface has a possibility to be used for an interface of electric wheelchair.

  7. Estimation of Human Body Shape and Posture Under Clothing

    OpenAIRE

    Wuhrer, Stefanie; Pishchulin, Leonid; Brunton, Alan; Shu, Chang; Lang, Jochen

    2013-01-01

    Estimating the body shape and posture of a dressed human subject in motion represented as a sequence of (possibly incomplete) 3D meshes is important for virtual change rooms and security. To solve this problem, statistical shape spaces encoding human body shape and posture variations are commonly used to constrain the search space for the shape estimate. In this work, we propose a novel method that uses a posture-invariant shape space to model body shape variation combined with a skeleton-bas...

  8. Response to Jakobsson on Human Body Shields

    Directory of Open Access Journals (Sweden)

    Walter E. Block

    2010-10-01

    Full Text Available A grabs B and uses him as a body shield. That is, A hides behind B (A renders B helpless to resist his grasp, and from that vantage point, shoots at C. According to libertarian theory, may B shoot at C, or, is it proper that C pull the trigger at B? In the view of Rothbard (1984, the former is correct: B is entitled to gun down C. In my (Block, forthcoming view, this is incorrect. Rather, it would be lawful to C to properly kill B. (Both Rothbard and I assume that neither B nor C can end A’s reign of terror. Jakobsson (2010 supports the Rothbardian position. The present paper is at an attempt of mine to refute Jakobsson, and, thus, also, Rothbard (1984, once again.

  9. Chronobiological methods of human body self-regulation reserve evaluation

    Directory of Open Access Journals (Sweden)

    Sergey N. Zaguskin

    2013-05-01

    Full Text Available Aims Chronodiagnostical methods for evaluating reserve and unfavourable responses of human cardiac function and under prolonged stress load. Materials and methods 24-h ECG R–R interval recording of Holter-monitoring ECG recording and 1-h IPI and RespI recordings of healthy young and elderly subjects, post- MI patients, subjects suffered from chronic cerebral ischemia leading to a cognitive decline, healthy subjects following post-stress load, as well as R– R intervals recordings of the AHA ECG database of heart failure and AF. Chronodiagnostics, using non-linear symbolic dynamics method and redundancy quotient of ECG PI, RespI and R– R intervals; differential temperature survey to evaluate cellular immunity; biocontrolled laser therapy. Results Self-regulation reserve reduction of oxygen transfer body systems and increase in unfavourable response probability under stress load are accompanied by the amplitude and fluctuation increase of redundancy quotient in the ECG IPI, RespI and R–R intervals, as well as increase of hierarchical desynchronosis with dominating sympathicotonia and vagotonia, decrease in cellular immunity, reduction in rate spectrum of the ECG IPI and R–R intervals. Conclusion Symbolic dynamics method provides distinction between age-related and abnormal changes in hierarchy of cardiac rhythms. The amplitude and fluctuation increase of redundancy quotient indicates the increase of control intensity with oxygen transfer body systems and predicts the reduction of self-regulation reserve in cardiac rhythms and unfavourable response probability.

  10. Human Emotion Recognition System

    Directory of Open Access Journals (Sweden)

    Dilbag Singh

    2012-08-01

    Full Text Available This paper discusses the application of feature extraction of facial expressions with combination of neural network for the recognition of different facial emotions (happy, sad, angry, fear, surprised, neutral etc... Humans are capable of producing thousands of facial actions during communication that vary in complexity, intensity, and meaning. This paper analyses the limitations with existing system Emotion recognition using brain activity. In this paper by using an existing simulator I have achieved 97 percent accurate results and it is easy and simplest way than Emotion recognition using brain activity system. Purposed system depends upon human face as we know face also reflects the human brain activities or emotions. In this paper neural network has been used for better results. In the end of paper comparisons of existing Human Emotion Recognition System has been made with new one.

  11. Tool-Body Assimilation Model Based on Body Babbling and Neurodynamical System

    Directory of Open Access Journals (Sweden)

    Kuniyuki Takahashi

    2015-01-01

    Full Text Available We propose the new method of tool use with a tool-body assimilation model based on body babbling and a neurodynamical system for robots to use tools. Almost all existing studies for robots to use tools require predetermined motions and tool features; the motion patterns are limited and the robots cannot use novel tools. Other studies fully search for all available parameters for novel tools, but this leads to massive amounts of calculations. To solve these problems, we took the following approach: we used a humanoid robot model to generate random motions based on human body babbling. These rich motion experiences were used to train recurrent and deep neural networks for modeling a body image. Tool features were self-organized in parametric bias, modulating the body image according to the tool in use. Finally, we designed a neural network for the robot to generate motion only from the target image. Experiments were conducted with multiple tools for manipulating a cylindrical target object. The results show that the tool-body assimilation model is capable of motion generation.

  12. Representational Momentum for the Human Body: Awkwardness Matters, Experience Does Not

    OpenAIRE

    Wilson, Margaret; Lancaster, Jessy; Emmorey, Karen

    2010-01-01

    Perception of the human body appears to involve predictive simulations that project forward to track unfolding body-motion events. Here we use representational momentum (RM) to investigate whether implicit knowledge of a learned arbitrary system of body movement such as sign language influences this prediction process, and how this compares to implicit knowledge of biomechanics. Experiment 1 showed greater RM for sign language stimuli in the correct direction of the sign than in the reverse d...

  13. Subjective thermal sensation and human body exergy consumption rate: analysis and correlation

    DEFF Research Database (Denmark)

    Simone, Angela; Dovjak, M.; Kolarik, Jakub

    2011-01-01

    The exergy approach to design and operation of climate conditioning systems is relatively well established, while its exploitation in connection to human perception of the indoor environment is relatively rare. As a building should provide healthy and comfortable environment for its occupants......, it is reasonable to consider both the exergy flows in building and those within the human body. There is a need to verify the human-body exergy model with the Thermal-Sensation (TS) response of subjects exposed to different combinations of indoor climate parameters (temperature, humidity, etc.). First results...... available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation showed that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to slightly cool side of thermal sensation. By applying...

  14. Subjective thermal sensation and human body exergy consumption rate: analysis and correlation

    DEFF Research Database (Denmark)

    Simone, Angela; Dovjak, M.; Kolarik, Jakub

    2011-01-01

    The exergy approach to design and operation of climate conditioning systems is relatively well established, while its exploitation in connection to human perception of the indoor environment is relatively rare. As a building should provide healthy and comfortable environment for its occupants......, it is reasonable to consider both the exergy flows in building and those within the human body. There is a need to verify the human-body exergy model with the Thermal-Sensation (TS) response of subjects exposed to different combinations of indoor climate parameters (temperature, humidity, etc.). First results...... available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation showed that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to slightly cool side of thermal sensation. By applying...

  15. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  16. Categorical discrimination of human body parts by magnetoencephalography.

    Science.gov (United States)

    Nakamura, Misaki; Yanagisawa, Takufumi; Okamura, Yumiko; Fukuma, Ryohei; Hirata, Masayuki; Araki, Toshihiko; Kamitani, Yukiyasu; Yorifuji, Shiro

    2015-01-01

    Humans recognize body parts in categories. Previous studies have shown that responses in the fusiform body area (FBA) and extrastriate body area (EBA) are evoked by the perception of the human body, when presented either as whole or as isolated parts. These responses occur approximately 190 ms after body images are visualized. The extent to which body-sensitive responses show specificity for different body part categories remains to be largely clarified. We used a decoding method to quantify neural responses associated with the perception of different categories of body parts. Nine subjects underwent measurements of their brain activities by magnetoencephalography (MEG) while viewing 14 images of feet, hands, mouths, and objects. We decoded categories of the presented images from the MEG signals using a support vector machine (SVM) and calculated their accuracy by 10-fold cross-validation. For each subject, a response that appeared to be a body-sensitive response was observed and the MEG signals corresponding to the three types of body categories were classified based on the signals in the occipitotemporal cortex. The accuracy in decoding body-part categories (with a peak at approximately 48%) was above chance (33.3%) and significantly higher than that for random categories. According to the time course and location, the responses are suggested to be body-sensitive and to include information regarding the body-part category. Finally, this non-invasive method can decode category information of a visual object with high temporal and spatial resolution and this result may have a significant impact in the field of brain-machine interface research.

  17. Representational Similarity of Body Parts in Human Occipitotemporal Cortex.

    Science.gov (United States)

    Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V

    2015-09-23

    Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex

  18. Quantum scaling in many-body systems

    CERN Document Server

    Continentino, Mucio A

    2001-01-01

    This book on quantum phase transitions has been written by one of the pioneers in the application of scaling ideas to many-body systems - a new and exciting subject that has relevance to many areas of condensed matter and theoretical physics. One of the few books on the subject, it emphasizes strongly correlated electronic systems. Although dealing with complex problems in statistical mechanics, it does not lose sight of the experiments and the actual physical systems which motivate the theoretical work. The book starts by presenting the scaling theory of quantum critical phenomena. Critical e

  19. Lipid body formation during maturation of human mast cells.

    Science.gov (United States)

    Dichlberger, Andrea; Schlager, Stefanie; Lappalainen, Jani; Käkelä, Reijo; Hattula, Katarina; Butcher, Sarah J; Schneider, Wolfgang J; Kovanen, Petri T

    2011-12-01

    Lipid droplets, also called lipid bodies (LB) in inflammatory cells, are important cytoplasmic organelles. However, little is known about the molecular characteristics and functions of LBs in human mast cells (MC). Here, we have analyzed the genesis and components of LBs during differentiation of human peripheral blood-derived CD34(+) progenitors into connective tissue-type MCs. In our serum-free culture system, the maturing MCs, derived from 18 different donors, invariably developed triacylglycerol (TG)-rich LBs. Not known heretofore, the MCs transcribe the genes for perilipins (PLIN)1-4, but not PLIN5, and PLIN2 and PLIN3 display different degrees of LB association. Upon MC activation and ensuing degranulation, the LBs were not cosecreted with the cytoplasmic secretory granules. Exogenous arachidonic acid (AA) enhanced LB genesis in Triacsin C-sensitive fashion, and it was found to be preferentially incorporated into the TGs of LBs. The large TG-associated pool of AA in LBs likely is a major precursor for eicosanoid production by MCs. In summary, we demonstrate that cultured human MCs derived from CD34(+) progenitors in peripheral blood provide a new tool to study regulatory mechanisms involving LB functions, with particular emphasis on AA metabolism, eicosanoid biosynthesis, and subsequent release of proinflammatory lipid mediators from these cells.

  20. [How does music affect the human body?].

    Science.gov (United States)

    Myskja, A; Lindbaek, M

    2000-04-10

    Music therapy has developed its practice and research approaches within a qualitative framework more related to humanistic traditions than to medical science. Music medicine has therefore developed as a separate discipline, endeavouring to incorporate the legitimate therapeutic use of music within a medical framework. This paper argues that more extensive communication and collaboration between the methods developed within the music therapy community, and research based on medical science, could lead to a better understanding of the place of music as a therapeutic tool, both as regards its efficacy and its limits. Research has shown that music may influence central physiological variables like blood pressure, heart rate, respiration, EEG measurements, body temperature and galvanic skin response. Music influences immune and endocrine function. The existing research literature shows growing knowledge of how music can ameliorate pain, anxiety, nausea, fatigue and depression. There is less research done on how music, and what type of music, is utilized and administered specifically for optimum effect in specific clinical situations.

  1. Human immune system variation.

    Science.gov (United States)

    Brodin, Petter; Davis, Mark M

    2017-01-01

    The human immune system is highly variable between individuals but relatively stable over time within a given person. Recent conceptual and technological advances have enabled systems immunology analyses, which reveal the composition of immune cells and proteins in populations of healthy individuals. The range of variation and some specific influences that shape an individual's immune system is now becoming clearer. Human immune systems vary as a consequence of heritable and non-heritable influences, but symbiotic and pathogenic microbes and other non-heritable influences explain most of this variation. Understanding when and how such influences shape the human immune system is key for defining metrics of immunological health and understanding the risk of immune-mediated and infectious diseases.

  2. Size variation in small-bodied humans from palau, micronesia.

    Directory of Open Access Journals (Sweden)

    Andrew Gallagher

    Full Text Available BACKGROUND: Recent discoveries on Palau are claimed to represent the remains of small-bodied humans that may display evidence insular size reduction. This claim has yet to be statistically validated METHODOLOGY/PRINCIPAL FINDINGS: Published postcranial specimens (n = 16 from Palau were assessed relative to recent small-bodied comparative samples. Resampling statistical approaches were employed to test specific hypotheses relating to body size in the Palau sample. Results confirm that the Palau postcranial sample is indisputably small-bodied. CONCLUSIONS/SIGNIFICANCE: A single, homogenous body size morph is represented in early prehistoric postcrania from Palau. Small body size in early Palauans is an ancestral characteristic and was likely not a consequence of in-situ size reduction. Specimens from Palau have little bearing upon hypothesised insular size reduction in the ancestral lineage of Homo floresiensis.

  3. Natural User Interface Sensors for Human Body Measurement

    Science.gov (United States)

    Boehm, J.

    2012-08-01

    The recent push for natural user interfaces (NUI) in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  4. Development of a computational system for monitoring data management in vivo of the radionuclides in human body; Desenvolvimento de um sistema computacional para gerenciamento de dados de monitoracao in vivo de radionuclideos no corpo humano

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Arlene A. dos; Lucena, Eder A. de; Dantas, Ana Leticia A.; Dantas, Bernardo M., E-mail: arlene@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The management of in vivo monitoring process of internal contamination by radionuclides in human beings request a set of steps ranging from the spectrum acquisition to reporting. The spectrum analysis is the identification and quantification of radioactive materials present in organs and individual's body tissues submitted to monitoring procedures. The Body Counter Unit of IRD performs in vivo measurements emitting radionuclide photons in the 10-3000 keV energy range, using NaI type scintillation detectors (Tl) 8” x 4” and 3” x 3” and as semiconductor detectors type HPGe. The measuring system uses the Canberra Genie 2000 software for the acquisition of spectra with 1024 channels related to their respective energies. The counting are distributed in the spectrum due to the energy of the photons emitted by radionuclides of interest. The SIGMIV program (System for Management of in vivo monitoring), developed in MS Visual Basic 2010 accesses the spectrum after it is converted into an EXCEL spreadsheet. This program uses a bank Data developed in MS-Access to store information associated with each measurement, as counting and calibration parameters. SIGMIV generates a report containing personal information, activity and radionuclides of interest present in the body, associated with respective uncertainties and minimum activity detectable. The program SIGMIV optimized monitoring procedures 'in vivo', showing that is flexible, reliable and easy to handle, thus becoming an important tool for development routine in In vivo Monitoring Laboratory of IRD.

  5. Body mass estimates of hominin fossils and the evolution of human body size.

    Science.gov (United States)

    Grabowski, Mark; Hatala, Kevin G; Jungers, William L; Richmond, Brian G

    2015-08-01

    Body size directly influences an animal's place in the natural world, including its energy requirements, home range size, relative brain size, locomotion, diet, life history, and behavior. Thus, an understanding of the biology of extinct organisms, including species in our own lineage, requires accurate estimates of body size. Since the last major review of hominin body size based on postcranial morphology over 20 years ago, new fossils have been discovered, species attributions have been clarified, and methods improved. Here, we present the most comprehensive and thoroughly vetted set of individual fossil hominin body mass predictions to date, and estimation equations based on a large (n = 220) sample of modern humans of known body masses. We also present species averages based exclusively on fossils with reliable taxonomic attributions, estimates of species averages by sex, and a metric for levels of sexual dimorphism. Finally, we identify individual traits that appear to be the most reliable for mass estimation for each fossil species, for use when only one measurement is available for a fossil. Our results show that many early hominins were generally smaller-bodied than previously thought, an outcome likely due to larger estimates in previous studies resulting from the use of large-bodied modern human reference samples. Current evidence indicates that modern human-like large size first appeared by at least 3-3.5 Ma in some Australopithecus afarensis individuals. Our results challenge an evolutionary model arguing that body size increased from Australopithecus to early Homo. Instead, we show that there is no reliable evidence that the body size of non-erectus early Homo differed from that of australopiths, and confirm that Homo erectus evolved larger average body size than earlier hominins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Skin Sensitive Difference of Human Body Sections under Clothing --Comparative Judging of Body Sections' Cold Sensitivity Sequence

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WANG Yun-yi; WU Hai-yan

    2005-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design. By a new psychological & physical researching method, the subjective psychological perception of human body sections affected by the same cold stimulus are studied, and with Thurstone comparative judgement the main human body sections' cold sensitivity sequences are obtained. Furthermore the physiological causes for skin sensitive difference of human body sections under clothing are suggested.

  7. Development of the ventral body wall in the human embryo.

    Science.gov (United States)

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Köhler, S Eleonore; Lamers, Wouter H

    2015-11-01

    Migratory failure of somitic cells is the commonest explanation for ventral body wall defects. However, the embryo increases ~ 25-fold in volume in the period that the ventral body wall forms, so that differential growth may, instead, account for the observed changes in topography. Human embryos between 4 and 10 weeks of development were studied, using amira reconstruction and cinema 4D remodeling software for visualization. Initially, vertebrae and ribs had formed medially, and primordia of sternum and hypaxial flank muscle primordium laterally in the body wall at Carnegie Stage (CS)15 (5.5 weeks). The next week, ribs and muscle primordium expanded in ventrolateral direction only. At CS18 (6.5 weeks), separate intercostal and abdominal wall muscles differentiated, and ribs, sterna, and muscles began to expand ventromedially and caudally, with the bilateral sternal bars fusing in the midline after CS20 (7 weeks) and the rectus muscles reaching the umbilicus at CS23 (8 weeks). The near-constant absolute distance between both rectus muscles and approximately fivefold decline of this distance relative to body circumference between 6 and 10 weeks identified dorsoventral growth in the dorsal body wall as determinant of the 'closure' of the ventral body wall. Concomitant with the straightening of the embryonic body axis after the 6th week, the abdominal muscles expanded ventrally and caudally to form the infraumbilical body wall. Our data, therefore, show that the ventral body wall is formed by differential dorsoventral growth in the dorsal part of the body.

  8. Earth system multi-body restriction dynamics model research

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Qingxian; BI; Siwen; GONG; Huili

    2006-01-01

    Research provides a theoretical basis for an Earth system multi-body mechanics model and its dynamics, including the Earth system multi-body restriction function and its power, Earth system multi-body restriction under decreasing generalized velocity and decreasing partial palstance, the Earth system multi-body decreasing generalized force, a moving mechanics function, and the Earth system multi-body restriction's wattful and wattless forces.

  9. The commerce of human body parts: an Eastern Orthodox response.

    Science.gov (United States)

    Reardon, P H

    2000-08-01

    The Orthodox Church teaches that the bodies of those in Christ are to be regarded as sanctified by the hearing of the Word and faithful participation in the Sacraments, most particularly the Holy Eucharist; because of the indwelling of the Holy Spirit the consecrated bodies of Christians do not belong to them but to Christ; with respect to the indwelling Holy Spirit there is no difference between the bodies of Christians before and after death; whether before or after death, the Christian body is also to receive the same veneration; and notwithstanding the physical corruptions that the body endures by reason of death, there remains a strict continuity between the body in which the Christian dies and the body in which the Christian will rise again. That is to say, it is the very same reality that is sown in corruption and will be raised in incorruption. Given such consideration, the notion of "selling" and integral part of a human being is simply outside the realm of rational comprehension. Indeed, it is profoundly repugnant to those Orthodox Christian sentiments that are formed and nourished by the Church's sacramental teaching and liturgical worship. One does not sell or purchase that which has been consecrated in those solemn ways that the Church consecrates the human body.

  10. Human Systems Design Criteria

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1982-01-01

    the necessary functional qualities but also the needed human qualities. The author's main argument is, that the design process should be a dialectical synthesis of the two points of view: Man as a System Component, and System as Man's Environment. Based on a man's presentation of the state of the art a set...... of design criteria is suggested and their relevance discussed. The point is to focus on the operator rather than on the computer. The crucial question is not to program the computer to work on its own conditions, but to “program” the operator to function on human conditions.......This paper deals with the problem of designing more humanised computer systems. This problem can be formally described as the need for defining human design criteria, which — if used in the design process - will secure that the systems designed get the relevant qualities. That is not only...

  11. Location tracking system using wearable on-body GPS antenna

    Directory of Open Access Journals (Sweden)

    Sabapathy Thennarasan

    2017-01-01

    Full Text Available An on-body location tracking system is developed and integrated with a wearable GPS antenna. Such system is beneficial in human location tracking of patients and elderly within a radius of 1 km. The system consists of a wearable antenna, a GPS module, a low cost microcontroller, two RF modules and a local monitoring system. A user equipped with the GPS antenna, GPS module and a RF transmitter is able send his/her location to the local monitoring system via a RF receiver. The proposed wearable antenna is validated to be safe for human use in terms of specific absorption rate (SAR. This antenna was then incorporated into the complete prototype and tested. Several suggestions for future improvements are also proposed and discussed.

  12. An attempt to model the human body as a communication channel.

    Science.gov (United States)

    Wegmueller, Marc Simon; Kuhn, Andreas; Froehlich, Juerg; Oberle, Michael; Felber, Norbert; Kuster, Niels; Fichtner, Wolfgang

    2007-10-01

    Using the human body as a transmission medium for electrical signals offers novel data communication in biomedical monitoring systems. In this paper, galvanic coupling is presented as a promising approach for wireless intra-body communication between on-body sensors. The human body is characterized as a transmission medium for electrical current by means of numerical simulations and measurements. Properties of dedicated tissue layers and geometrical body variations are investigated, and different electrodes are compared. The new intra-body communication technology has shown its feasibility in clinical trials. Excellent transmission was achieved between locations on the thorax with a typical signal-to-noise ratio (SNR) of 20 dB while the attenuation increased along the extremities.

  13. Superconductivity in human body; myth or necessity.

    Science.gov (United States)

    Alexiou, Athanasios; Rekkas, John

    2015-01-01

    During the last years there is an increasing trend on the study of mitochondrial populations mainly in neural cells, due to their association with neurological disorders like Alzheimer's disease, Parkinson's disease, Autism, and CMT2A. Several studies concerning modeling of mitochondrial protein pathways, simulation of mitochondrial dynamics, biomarkers associated with Reactive Oxygen Species and many other related topics are already published. In this study we establish the idea of natural superconductivity in mitochondrial level as a necessary theoretical framework for the normal production of ATP and the avoidance of adverse reactions in Central Neural System.

  14. 引入人体红外释热探测的救援机器人感知系统%A Rescue Robot Perception System with Introduction of Infrared Heat Release Detection in Human Body

    Institute of Scientific and Technical Information of China (English)

    陆兴华; 陈锐俊; 池坤丹

    2016-01-01

    救援机器人通过对人体释放的热量进行智能采集和信息感知,执行救援任务。采用嵌入式架构下的人体红外释热探测方法进行智能救援机器人设计,在前期的功能模块化设计的基础上,设计救援机器人的人体红外释热探测感知系统。进行了救援机器人对人体的红外释热感知原理分析和系统总体结构设计,基于波束阵列形成算法进行人体红外释热探测算法改进,采用 VXI 总线模块技术进行系统的硬件设计。系统测试结果表明,采用该系统进行救援机器人的信息感知,能有效探测到人体红外释热信息,对热源的感知灵敏度和准确度较高,波束主瓣聚集性能较好,提高机器人准确探测救援目标的能力,将在海上救援等任务中具有较好的应用价值。%The rescue robot implements rescue misson through the collection and information awareness of heat released by human body .In the embedded system ,the infrared thermal release detection method of human body is designed ,which is based on the functional modular design of the early stage .The infrared thermal sensing principle analysis and system design of the rescue robot are carried out ,and the infrared thermal detection algorithm based on beamforming algorithm is im -proved .The hardware design of the system is carried out by using VXI bus module .System test results show that the system can effectively detect the infrared heat release information of human body ,and can improve the accuracy of the beam ,and the robot .

  15. Governing the postmortem procurement of human body material for research.

    Science.gov (United States)

    Van Assche, Kristof; Capitaine, Laura; Pennings, Guido; Sterckx, Sigrid

    2015-03-01

    Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent.

  16. Body futures: the case against marketing human organs.

    Science.gov (United States)

    Dougherty, C J

    1987-06-01

    Creation of a market for the buying and selling of human organs for transplantation, even if it did allow supply to match demand, would be a serious mistake. Even if the market were fairly constructed, it might not dramatically increase the supply of transplantable organs, since donations likely would decrease if selling were allowed. Such a market would create a relative disadvantage for the poor, who would feel disproportionately greater pressure to sell their organs than would the wealthy. The possibility of realizing a profit from the organs of the dead could provide an incentive for murder or for doing less than we might to save lives. An organ market, where parts of a person are viewed as commodities, could lead to a general cheapening and coarsening of human relationships. Any organ selling system would create an economic relationship between buyer and seller, rather than a charitable one, raising quality control problems. The economic system, would drive out the volunteer donor system, sapping the altruistic bond that draws people together. Finally, an organ market presents a metaphysical threat in that it demeans our bodies to the status of articles to trade. An alternative to the current voluntary donor system and an organ market is to presume passive consent to organ donation with the right to informed refusal. Unless a record of the decedent's opposition to organ removal exists, the next of kin objects on being informed of the intent to remove organs, or the decedent was a member of a group known to oppose organ removal, we should presume a person's willingness to donate organs after death to save another person's life.

  17. Segmentation of human upper body movement using multiple IMU sensors.

    Science.gov (United States)

    Aoki, Takashi; Lin, Jonathan Feng-Shun; Kulic, Dana; Venture, Gentiane

    2016-08-01

    This paper proposes an approach for the segmentation of human body movements measured by inertial measurement unit sensors. Using the angular velocity and linear acceleration measurements directly, without converting to joint angles, we perform segmentation by formulating the problem as a classification problem, and training a classifier to differentiate between motion end-point and within-motion points. The proposed approach is validated with experiments measuring the upper body movement during reaching tasks, demonstrating classification accuracy of over 85.8%.

  18. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  19. Gender recognition from unconstrained and articulated human body.

    Science.gov (United States)

    Wu, Qin; Guo, Guodong

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  20. Identification of rheological properties of human body surface tissue.

    Science.gov (United States)

    Benevicius, Vincas; Gaidys, Rimvydas; Ostasevicius, Vytautas; Marozas, Vaidotas

    2014-04-11

    According to World Health Organization obesity is one of the greatest public health challenges of the 21st century. It has tripled since the 1980s and the numbers of those affected continue to rise at an alarming rate, especially among children. There are number of devices that act as a prevention measure to boost person's motivation for physical activity and its levels. The placement of these devices is not restricted thus the measurement errors that appear because of the body rheology, clothes, etc. cannot be eliminated. The main objective of this work is to introduce a tool that can be applied directly to process measured accelerations so human body surface tissue induced errors can be reduced. Both the modeling and experimental techniques are proposed to identify body tissue rheological properties and prelate them to body mass index. Multi-level computational model composed from measurement device model and human body surface tissue rheological model is developed. Human body surface tissue induced inaccuracies can increase the magnitude of measured accelerations up to 34% when accelerations of the magnitude of up to 27 m/s(2) are measured. Although the timeframe of those disruptions are short - up to 0.2 s - they still result in increased overall measurement error.

  1. More-Realistic Digital Modeling of a Human Body

    Science.gov (United States)

    Rogge, Renee

    2010-01-01

    A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.

  2. Emergency Handling for MAC Protocol in Human Body Communication

    Directory of Open Access Journals (Sweden)

    Kwon Youngmi

    2011-01-01

    Full Text Available The human body communication (HBC is a technology that enables short range data communication using the human body as a medium, like an electrical wire. Thus it removes the need for a traditional antenna. HBC may be used as a type of data communication in body area network (BAN, while the devices are being in contact with body. One of important issues in BAN is an emergency alarm because it may be closely related to human life. For emergency data communication, the most critical factor is the time constraint. IEEE 802.15.6 specifies that the emergency alarm for the BAN must be notified in less than 1 sec and must provide prioritization mechanisms for emergency traffic and notification. As one type of BAN, the HBC must follow this recommendation, too. Existing emergency handling methods in BAN are based on the carrier sensing capability on radio frequencies to detect the status of channels. However, PHY protocol in HBC does not provide the carrier sensing. So the previous methods are not well suitable for HBC directly. Additionally, in the environment that the emergency rate is very low, the allocation of dedicated slot(s for emergency in each superframe is very wasteful. In this work, we proposed specific emergency handling operation for human body communication's medium access control (HBC-MAC protocol to meet the emergency requirements for BAN. We also showed the optimal number of emergency slots for the various combinations of beacon intervals and emergency rates.

  3. Review of capacitive coupling human body communications based on digital transmission

    Directory of Open Access Journals (Sweden)

    Taewook Kang

    2016-12-01

    Full Text Available Human body communications (HBC have been studied as an enabling technology to meet the recently increased demands for low-power and high-simplicity in wireless body area networks for wearable-device applications. Previous works on HBC focused mainly on channel modeling with a measurement method, signal transmission scheme, and transceiver implementation. In particular, the digital transmission, invented as a customized approach for the human body channel, has contributed to develope low-complexity HBC systems. This paper addresses on-going research on capacitive coupling HBC based on digital transmission by exploring recent literature.

  4. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    Science.gov (United States)

    Kobayashi, Masaki; Kikuchi, Daisuke; Okamura, Hitoshi

    2009-07-16

    The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  5. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm.

    Directory of Open Access Journals (Sweden)

    Masaki Kobayashi

    Full Text Available The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.

  6. Biostereometric Data Processing In ERGODATA: Choice Of Human Body Models

    Science.gov (United States)

    Pineau, J. C.; Mollard, R.; Sauvignon, M.; Amphoux, M.

    1983-07-01

    The definition of human body models was elaborated with anthropometric data from ERGODATA. The first model reduces the human body into a series of points and lines. The second model is well adapted to represent volumes of each segmentary element. The third is an original model built from the conventional anatomical points. Each segment is defined in space by a tri-angular plane located with its 3-D coordinates. This new model can answer all the processing possibilities in the field of computer-aided design (C.A.D.) in ergonomy but also biomechanics and orthopaedics.

  7. Measurement of caesium-137 in the human body using a whole body counter

    Science.gov (United States)

    Elessawi, Elkhadra Abdulmula

    Gamma radiation in the environment is mainly due to naturally occurring radionuclides. However, there is also a contribution from anthropogenic radionuclides such as 137Cs which originate from nuclear fission processes. Since 1986, the accident at the Chernobyl power plant has been a significant source of artificial environmental radioactivity. In order to assess the radiological impact of these radionuclides, it is necessary to measure their activities in samples drawn from the environment and in plants and animals including human populations. The whole body counter (WBC) at the University Hospital of Wales in Cardiff makes in vivo measurements of gamma emitting radionuclides using a scanning ring of six large-volume thallium-doped sodium iodide (Nal(Tl)) scintillation detectors. In this work the WBC was upgraded by the addition of two high purity germanium (HPGe) detectors. The performance and suitability of the detection systems were evaluated by comparing the detection limits for Cs. Sensitivities were measured using sources of known activity in a water filled anthropomorphic phantom and theoretical minimum detectable count-rates were estimated from phantom background pulse height spectra. The theoretical minimum detectable activity was about 24 Bq for the combination of six Nal(Tl) detectors whereas for the individual HPGe detectors it was 64 Bq and 65 Bq, despite the much improved energy resolution Activities of 137Cs in the human body between 1993 and 2007 were estimated from the background Nal(Tl) spectra of 813 patients and compared with recent measurements in 14 volunteers. The body burden of Cs in Cardiff patients increased from an average of about 60 Bq in the early and mid 1990s to a maximum of about 100 Bq in 2000. By 2007 it had decreased to about 40 Bq. This latter value was similar to that of Cardiff residents at the time of the Chernobyl accident and to that of the volunteers measured in 2007 (51 Bq). However, it was less than the mean activity of

  8. The Reconfigured Body. Human-animal relations in xenotransplantation

    Directory of Open Access Journals (Sweden)

    Kristofer Hansson

    2011-12-01

    Full Text Available The article explores issues concerning the reconfiguration of human and animal bodies in modern biotechnology. The examples are based on xenotransplantation: Transplantation of cells, tissue and organs from animals to humans. Three thematic issues that emerged from xenotransplantation research in Sweden in the 1990s and early 2000s are examined in the article. The first issue concerns how the pig was introduced as a donor animal in xenotransplantation and, at the same time, dehumanized in relation to what is human. Baboons and chimpanzees that had previously been used in xenotransplantation now became an ethically problematic choice, and were in stead humanized. The second issue concerns the introduction of transgenic and cloned pigs as commoditized objects. The biotechnological development reconfigured the pig’s cells, tissue and organs to become more human-like. The third issue concerns the risk that pigs contain retrovirus that could infect the transplanted patients. The human body became part of a network of both animal and retrovirus. Boundlessness between human and animal bodies appears in these three thematic phases and is analysed from a cultural perspective.

  9. Inclusion bodies in loggerhead erythrocytes are associated with unstable hemoglobin and resemble human Heinz bodies.

    Science.gov (United States)

    Basile, Filomena; Di Santi, Annalisa; Caldora, Mercedes; Ferretti, Luigi; Bentivegna, Flegra; Pica, Alessandra

    2011-08-01

    The aim of this study was to clarify the role of the erythrocyte inclusions found during the hematological screening of loggerhead population of the Mediterranean Sea. We studied the erythrocyte inclusions in blood specimens collected from six juvenile and nine adult specimens of the loggerhead turtle, Caretta caretta, from the Adriatic and Tyrrhenian Seas. Our study indicates that the percentage of mature erythrocytes containing inclusions ranged from 3 to 82%. Each erythrocyte contained only one round inclusion body. Inclusion bodies stained with May Grünwald-Giemsa show that their cytochemical and ultrastructure characteristics are identical to those of human Heinz bodies. Because Heinz bodies originate from the precipitation of unstable hemoglobin (Hb) and cause globular osmotic resistance to increase, we analyzed loggerhead Hb using electrophoresis and high-performance liquid chromatography to detect and quantitate Hb fractions. We also tested the resistance of Hb to alkaline pH, heat, isopropanol denaturation, and globular osmosis. Our hemogram results excluded the occurrence of any infection, which could be associated with an inclusion body, in all the specimens. Negative Feulgen staining indicated that the inclusion bodies are not derived from DNA fragmentation. We hypothesize that amino acid substitutions could explain why loggerhead Hb precipitates under normal physiologic conditions, forming Heinz bodies. The identification of inclusion bodies in loggerhead erythrocytes allow us to better understand the haematological characteristics and the physiology of these ancient reptiles, thus aiding efforts to conserve such an endangered species. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  10. BODY PRESSURE DISTRIBUTION OF AUTOMOBILE DRIVING HUMAN MACHINE CONTACT INTERFACE

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; HONG Jun; ZHANG E; LIANG Jian; LU Bingheng

    2007-01-01

    Aiming at the fatigue and comfort issues of human-machine contact Interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic Indexes are mapped to biomechanical Indexes like muscle stress-strain, the compression deformation of Wood vessels and nerves etc.from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive lest platform for sitting comfort of 3D adjustable contact Interface is constructed. The lest of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical Indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface.

  11. Research on the coupling heart electric field using passive human body detection system%被动式人体探测系统的双人体耦合心电场分析

    Institute of Scientific and Technical Information of China (English)

    张燕; 徐立新

    2012-01-01

    An analysis of the coupling heart electric field is a pivotal step in the human body detection system which target is the heart coupling electric field between the operator and the detected living human. In this paper, the double-human heart coupling electric field is discussed and the Three-dimensional finite element method is used to analytically solve that problem. Firstly,we described the principle of the single human heart electric field based on the cardiact electric dipoles. Then,the double-human coupling heart electric field is analysised. Finally,the Three-dimensional finite element method is used to simulat and calculate the coupling heart electric field. The three different typical coupling heart electric field is shown in the result. Through comparing with the single human heart electric field,it has obvious advantages. The conclusion of this paper is the most significant studies of the passive electrostatic human body detection technique.%在利用以被探测者与探测者双人体心脏耦合电场为探测目标的人体探测系统中,对目标电场的分析是整个研究过程的关键环节.重点讨论了双人体心电偶极子所产生的耦合电场问题,并利用有限元方法对其进行分析.文中首先阐述了以心电偶极子为电场源的人体心电场产生原理;其次,分析了双人体心脏耦合电场模型及特性;最后,利用三维有限元方法对耦合电场进行建模与仿真,并且将其与单人体心电场进行比较.据此进行的仿真结果清晰展示了双人体耦合心电场的特性与优点,且与理论分析相一致.研究的结论为以人体心电场为探测目标的静电探测系统建立了有效的电场模型,对人体探测技术的进一步研究具有重要意义.

  12. Dance recognition system using lower body movement.

    Science.gov (United States)

    Simpson, Travis T; Wiesner, Susan L; Bennett, Bradford C

    2014-02-01

    The current means of locating specific movements in film necessitate hours of viewing, making the task of conducting research into movement characteristics and patterns tedious and difficult. This is particularly problematic for the research and analysis of complex movement systems such as sports and dance. While some systems have been developed to manually annotate film, to date no automated way of identifying complex, full body movement exists. With pattern recognition technology and knowledge of joint locations, automatically describing filmed movement using computer software is possible. This study used various forms of lower body kinematic analysis to identify codified dance movements. We created an algorithm that compares an unknown move with a specified start and stop against known dance moves. Our recognition method consists of classification and template correlation using a database of model moves. This system was optimized to include nearly 90 dance and Tai Chi Chuan movements, producing accurate name identification in over 97% of trials. In addition, the program had the capability to provide a kinematic description of either matched or unmatched moves obtained from classification recognition.

  13. Chemical evolution of primitive solar system bodies

    Science.gov (United States)

    Oro, J.; Mills, T.

    1989-01-01

    Observations on organic molecules and compounds containing biogenic elements in the interstellar medium and in the primitive bodies of the solar system are reviewed. The discovery of phosphorus molecular species in dense interstellar clouds, the existence of organic ions in the dust and gas phase of the comas of Comet Halley, and the presence of presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites are discussed. The relationships between comets, dark asteroids, and carbonaceous chondrites are examined. Also, consideration is given to the chemical evolution of Titan, the primitive earth, and early Mars.

  14. A long term model of circulation. [human body

    Science.gov (United States)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  15. RF Device for Acquiring Images of the Human Body

    Science.gov (United States)

    Gaier, Todd C.; McGrath, William R.

    2010-01-01

    A safe, non-invasive method for forming images through clothing of large groups of people, in order to search for concealed weapons either made of metal or not, has been developed. A millimeter wavelength scanner designed in a unique, ring-shaped configuration can obtain a full 360 image of the body with a resolution of less than a millimeter in only a few seconds. Millimeter waves readily penetrate normal clothing, but are highly reflected by the human body and concealed objects. Millimeter wave signals are nonionizing and are harmless to human tissues when used at low power levels. The imager (see figure) consists of a thin base that supports a small-diameter vertical post about 7 ft (=2.13 m) tall. Attached to the post is a square-shaped ring 2 in. (=5 cm) wide and 3 ft (=91 cm) on a side. The ring is oriented horizontally, and is supported halfway along one side by a connection to a linear bearing on the vertical post. A planar RF circuit board is mounted to the inside of each side of the ring. Each circuit board contains an array of 30 receivers, one transmitter, and digitization electronics. Each array element has a printed-circuit patch antenna coupled to a pair of mixers by a 90 coupler. The mixers receive a reference local oscillator signal to a subharmonic of the transmitter frequency. A single local oscillator line feeds all 30 receivers on the board. The resulting MHz IF signals are amplified and carried to the edge of the board where they are demodulated and digitized. The transmitted signal is derived from the local oscillator at a frequency offset determined by a crystal oscillator. One antenna centrally located on each side of the square ring provides the source illumination power. The total transmitted power is less than 100 mW, resulting in an exposure level that is completely safe to humans. The output signals from all four circuit boards are fed via serial connection to a data processing computer. The computer processes the approximately 1-MB

  16. A procedure to estimate the electric field induced in human body exposed to unknown magnetic sources.

    Science.gov (United States)

    Wang, Wencui; Bottauscio, Oriano; Chiampi, Mario; Giordano, Domenico; Zilberti, Luca

    2013-04-01

    The paper proposes and discusses a boundary element procedure able to predict the distribution of the electric field induced in a human body exposed to a low-frequency magnetic field produced by unknown sources. As a first step, the magnetic field on the body surface is reconstructed starting from the magnetic field values detected on a closed surface enclosing the sources. Then, the solution of a boundary value problem provides the electric field distribution inside the human model. The procedure is tested and validated by considering different non-uniform magnetic field distributions generated by a Helmholtz coil system as well as different locations of the human model.

  17. Fusion of Multiple Pyroelectric Characteristics for Human Body Identification

    Directory of Open Access Journals (Sweden)

    Wanchun Zhou

    2014-12-01

    Full Text Available Due to instability and poor identification ability of single pyroelectric infrared (PIR detector for human target identification, this paper proposes a new approach to fuse the information collected from multiple PIR sensors for human identification. Firstly, Fast Fourier Transform (FFT, Short Time Fourier Transform (STFT, Wavelet Transform (WT and Wavelet Packet Transform (WPT are adopted to extract features of the human body, which can be achieved by single PIR sensor. Then, we apply Principal Component Analysis (PCA and Support Vector Machine (SVM to reduce the characteristic dimensions and to classify the human targets, respectively. Finally, Fuzzy Comprehensive Evaluation (FCE is utilized to fuse recognition results from multiple PIR sensors to finalize human identification. The pyroelectric characteristics under scenarios with different people and/or different paths are analyzed by various experiments, and the recognition results with/without fusion procedure are also shown and compared. The experimental results demonstrate our scheme has improved efficiency for human identification.

  18. Medical Sequencing at the extremes of Human Body Mass

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy; Ustaszewski,Anna; Martin, Joes; Hebert, Sybil; Doelle, Heather; Ersoy, Baran; Kryukov, Gregory; Schmidt, Steffen; Yosef, Nir; Ruppin, Eytan; Sharan,Roded; Vaisse, Christian; Sunyaev, Shamil; Dent, Robert; Cohen, Jonathan; McPherson, Ruth; Pennacchio, Len A.

    2006-09-01

    Body weight is a quantitative trait with significantheritability in humans. To identify potential genetic contributors tothis phenotype, we resequenced the coding exons and splice junctions of58 genes in 379 obese and 378 lean individuals. Our 96Mb survey included21 genes associated with monogenic forms of obesity in humans or mice, aswell as 37 genes that function in body weight-related pathways. We foundthat the monogenic obesity-associated gene group was enriched for rarenonsynonymous variants unique to the obese (n=46) versus lean (n=26)populations. Computational analysis further predicted a significantlygreater fraction of deleterious variants within the obese cohort.Consistent with the complex inheritance of body weight, we did notobserve obvious familial segregation in the majority of the 28 availablekindreds. Taken together, these data suggest that multiple rare alleleswith variable penetrance contribute to obesity in the population andprovide a deep medical sequencing based approach to detectthem.

  19. Mechanism of toppling instability of the human body in floodwaters

    Science.gov (United States)

    Shu, C. W.; Han, S. S.; Kong, W. N.; Dong, B. L.

    2016-08-01

    Extreme urban flood events occur frequently in China, often leading to heavy casualties. Thus, it is of great importance to study the mechanism of the instability of the human body in floodwaters. The results of such research can provide scientific reference for city flood control standards. In this paper, a formula for the incipient velocity of the human body, during toppling instability in floodwaters, was derived based on mechanical characteristics, instability mechanism, and critical conditions during instability. A series of flume experiments were conducted to investigate the incipient velocity of two 3D printed human body models of different sizes; the resultant experimental data was used to determine parameters in the derived formula. Additionally, grip strength was taken as a standard of a person's ability to withstand floodwaters. Finally, crowd factors were introduced, and based on this study, a criterion for the toppling instability of different subjects in floodwaters was proposed. Compared to the results of previous studies, the proposed formula can better predict the instability of the human body in floodwaters.

  20. Language Functions and Medical Communication: The Human Body as Text

    Science.gov (United States)

    Kantz, Deirdre; Marenzi, Ivana

    2016-01-01

    This article presents the findings of a field experiment in medical English with first-year medical students at the University of Pavia, Northern Italy. Working in groups of 8-10, the students were asked to produce a corpus of medical texts in English demonstrating how the human body is itself a meaningful text (Baldry and Thibault 2006: Ch. 1).…

  1. Of Human Bodies in Scientific Communication and Enculturation

    Science.gov (United States)

    Hwang, SungWon; Roth, Wolff-Michael

    2008-01-01

    How do students become enculturated and come to enact culture in ways that are new to them? This study probes the dialectical processes of enculturation, the central aspect of which is the role of human bodies in communication. For students, as for any individual, culture exists in terms of action possibilities that presuppose their…

  2. Students' Conceptions about Energy and the Human Body

    Science.gov (United States)

    Mann, Michael; Treagust, David F.

    2010-01-01

    Students' understanding of energy has been primarily within the domain of physics. This study sought to examine students' understanding of concepts relating to energy and the human body using pencil and paper questionnaires administered to 610 students in Years 8-12. From students' responses to the questionnaires, conceptual patterns were…

  3. Science Teachers' Drawings of What Is inside the Human Body

    Science.gov (United States)

    Patrick, Patricia G.; Tunnicliffe, Sue Dale

    2010-01-01

    The purpose of this study was to report United States of America (USA) science teachers' understandings of the internal structures of the human body. The 71 science teachers who participated in this study attended a frog/pig, two-hour dissection workshop at the 2004 National Science Teachers Association (NSTA) conference in Atlanta, Georgia. The…

  4. Mechanical impedance of the human body in vertical direction.

    Science.gov (United States)

    Holmlund, P; Lundström, R; Lindberg, L

    2000-08-01

    The mechanical impedance of the human body in sitting posture and vertical direction was measured during different experimental conditions, such as vibration level (0.5-1.4 m/s2), frequency (2-100 Hz), body weight (57-92 kg), relaxed and erect upper body posture. The outcome shows that impedance increases with frequency up to a peak at about 5 Hz after which it decreases in a complex manner which includes two additional peaks. The frequency at which the first and second impedance peak occurs decreases with higher vibration level. Erect, compared with relaxed body posture resulted in higher impedance magnitudes and with peaks located at somewhat higher frequencies. Heavy persons show higher impedance magnitudes and peaks at lower frequencies.

  5. [Mechanism of heat transfer in various regions of human body].

    Science.gov (United States)

    Luchakov, Iu I; Nozdrachev, A D

    2009-01-01

    The processes of heat transfer in a human body were studied with the use of a mathematical model. It has been shown that only conductive or only convective heat transfer may occur in different body areas. The rate of blood-mediated heat transfer in the presence of blood circulation is many times higher than heat transfer due to temperature gradient; therefore, the convective process prevails over the conductive process. The body core contains a variety of blood vessels, and the bulk of blood concentrates there in the norm. Hence, heat transfer in it is mainly convective. In surface tissues, where the rate of blood circulation is lower and the vasculature has certain specific features, heat transfer is mainly conductive. Hence, the core and surface tissues are absolutely different body zones in terms of heat transfer.

  6. Combined volatolomics for monitoring of human body chemistry.

    Science.gov (United States)

    Broza, Yoav Y; Zuri, Liat; Haick, Hossam

    2014-04-09

    Analysis of volatile organic compounds (VOCs) is a promising approach for non-invasive, fast and potentially inexpensive diagnostics. Here, we present a new methodology for profiling the body chemistry by using the volatile fraction of molecules in various body fluids. Using mass spectrometry and cross-reactive nanomaterial-based sensors array, we demonstrate that simultaneous VOC detection from breath and skin would provide complementary, non-correlated information of the body's volatile metabolites profile. Eventually with further wide population validation studies, such a methodology could provide more accurate monitoring of pathological changes compared to the information provided by a single body fluid. The qualitative and quantitative methods presented here offers a variety of options for novel mapping of the metabolic properties of complex organisms, including humans.

  7. Upper Body Venous Compliance Exceeds Lower Body Venous Compliance in Humans

    Science.gov (United States)

    Watenpaugh, Donald E.

    1996-01-01

    Human venous compliance hypothetically decreases from upper to lower body as a mechanism for maintenance of the hydrostatic indifference level 'headward' in the body, near the heart. This maintains cardiac filling pressure, and thus cardiac output and cerebral perfusion, during orthostasis. This project entailed four steps. First, acute whole-body tilting was employed to alter human calf and neck venous volumes. Subjects were tilted on a tilt table equipped with a footplate as follows: 90 deg, 53 deg, 30 deg, 12 deg, O deg, -6 deg, -12 deg, -6 deg, O deg, 12 deg, 30 deg, 53 deg, and 90 deg. Tilt angles were held for 30 sec each, with 10 sec transitions between angles. Neck volume increased and calf volume decreased during head-down tilting, and the opposite occurred during head-up tilt. Second, I sought to cross-validate Katkov and Chestukhin's (1980) measurements of human leg and neck venous pressures during whole-body tilting, so that those data could be used with volume data from the present study to calculate calf and neck venous compliance (compliance = (Delta)volume/(Delta)pressure). Direct measurements of venous pressures during postural chances and whole-body tilting confirmed that the local changes in venous pressures seen by Katkov and Chestukhin (1980) are valid. The present data also confirmed that gravitational changes in calf venous pressure substantially exceed those changes in upper body venous pressure. Third, the volume and pressure data above were used to find that human neck venous compliance exceeds calf venous compliance by a factor of 6, thereby upholding the primary hypothesis. Also, calf and neck venous compliance correlated significantly with each other (r(exp 2) = 0.56). Fourth, I wished to determine whether human calf muscle activation during head-up tilt reduces calf venous compliance. Findings from tilting and from supine assessments of relaxed calf venous compliance were similar, indicating that tilt-induced muscle activation is

  8. Investigation of the effects of human body stability on joint angles’ prediction

    Energy Technology Data Exchange (ETDEWEB)

    Pasha Zanoosi, A. A., E-mail: aliakbar.pasha@yahoo.com, E-mail: aliakbar.pasha@qiau.ac.ir [Islamic Azad University, Faculty of Industrial & Mechanical Engineering, Qazvin Branch (Iran, Islamic Republic of); Naderi, D.; Sadeghi-Mehr, M.; Feri, M. [Bu Ali-Sina University, Mechanical Engineering Department, Faculty of Engineering (Iran, Islamic Republic of); Beheshtiha, A. Sh. [Leibniz Universität Hannover, Institute of Mechanics and Computational Mechanics (Germany); Fallahnejad, K. [Flinders University, Discipline of Mechanical Engineering, School of Computer Science, Engineering and Mathematics (Australia)

    2015-10-15

    Loosing stability control in elderly or paralyzed has motivated researchers to study how a stability control system works and how to determine its state at every time instant. Studying the stability of a human body is not only an important problem from a scientific viewpoint, but also finally leads to new designs of prostheses and orthoses and rehabilitation methods. Computer modeling enables researchers to study and describe the reactions and propose a suitable and optimized motion pattern to strengthen the neuromuscular system and helps a human body maintain its stability. A perturbation as a tilting is exposed to an underfoot plate of a musculoskeletal model of the body to study the stability. The studied model of a human body included four links and three degrees of freedom with eight muscles in the sagittal plane. Lagrangian dynamics was used for deriving equations of motion and muscles were modeled using Hill’s model. Using experimental data of joint trajectories for a human body under tilting perturbation, forward dynamics has been applied to predict joint trajectories and muscle activation. This study investigated the effects of stability on predicting body joints’ motion. A new stability function for a human body, based on the zero moment point, has been employed in a forward dynamics procedure using a direct collocation method. A multi-objective optimization based on genetic algorithm has been proposed to employ stability as a robotic objective function along with muscle stresses as a biological objective function. The obtained results for joints’ motion were compared to experimental data. The results show that, for this type of perturbations, muscle stresses are in conflict with body stability. This means that more body stability requires more stresses in muscles and reverse. Results also show the effects of the stability objective function in better prediction of joint trajectories.

  9. Equivalent dose rate by muons to the human body.

    Science.gov (United States)

    Băcioiu, I

    2011-11-01

    In this paper, the relative sensitivity from different human tissues of the human body, at a ground level, from muon cosmic radiation has been studied. The aim of this paper was to provide information on the equivalent dose rates received from atmospheric muons to human body, at the ground level. The calculated value of the effective dose rate by atmospheric muons plus the radiation levels of the natural annual background radiation dose, at the ground level, in the momentum interval of cosmic ray muon (0.2-120.0 GeV/c) is about 2.106±0.001 mSv/y, which is insignificant in comparison with the values of the doses from the top of the atmosphere.

  10. Human males and females body thermoregulation: perfusion effect analysis.

    Science.gov (United States)

    Acharya, Saraswati; Gurung, D B; Saxena, V P

    2014-10-01

    Skin temperature is a common physiological parameter that reflects thermal responses. Blood perfusion is an important part of the physiological processes that the human body undergoes in order to maintain homeostasis. This study focuses on the effect of perfusion on the temperature distribution in human males and females body in different thermal environment. The study has been carried out for one dimensional steady cases using finite element method. The input parameter of the model is the blood perfusion or volumetric flow rate within the tissue. The appropriate physical and physiological parameters together with suitable boundary conditions that affect the heat regulations have been incorporated in the model. The study is to have a better understanding that how does thermoregulation change in human males and females skin layered due to perfusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Digitization of the human body in the present-day economy

    Science.gov (United States)

    D'Apuzzo, Nicola

    2005-01-01

    In this paper we report on the historic development of human body digitization and on the actual state of commercially available technology. Complete systems for the digitization of the human body exist since more than ten years. One of the main users of this technology was the entertainment industry. Every new movie excited with attractive visual effects, but only few people knew that the most thrilling cuts were realized by using virtual persons. The faces and bodies of actors were digitized and the "virtual twin" replaced the actor in the movie. Nowadays, the state of the human body digitization is so high that it is not possible any more to distinguish the real actor from the virtual one. Indeed, for the rush technical development has to be thanked the movie industry, which was one of the strong economic motors for this technology. Today, with the possibility of a massive cost reduction given by new technologies, methods for digitization of the human body are used also in other fields of application, such as ergonomics, medical applications, computer games, biometry and anthropometrics. With the time, this technology becomes interesting also for sport, fitness, fashion and beauty. A large expansion of human body digitization is expected in the near future. To date, different technologies are used commercially for the measurement of the human body. They can be divided into three distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their differences and characteristics and expresses clues for the selection of the adequate method. Practical examples of commercial exploitation of human body digitization are also presented and new interesting perspectives are introduced.

  12. Study on Virtual Human Skeleton System

    Institute of Scientific and Technical Information of China (English)

    郭巧; 李亦

    2004-01-01

    A solution of virtual human skeleton system is proposed. Some issues on integration of anatomical geometry, biodynamics and computer animation are studied. The detailed skeleton system model that incorporates the biodynamic and geometric characteristics of a human skeleton system allows some performance studies in greater detail than that performed before. It may provide an effective and convenient way to analyze and evaluate the movement performance of a human body when the personalized anatomical data are used in the models. An example shows that the proposed solution is effective for the stated problems.

  13. Integrable systems, toric degenerations and Okounkov bodies

    CERN Document Server

    Harada, Megumi

    2012-01-01

    Let X be a smooth projective variety of dimension n over C equipped with a very ample line bundle L. Using the theory of Okounkov bodies and an associated toric degeneration, we construct -- under a mild technical hypothesis on X -- an integrable system on X in the sense of symplectic geometry. More precisely, we construct a collection of real-valued functions {H_1, ..., H_n} on X which are continuous on all of X, smooth on an open dense subset U of X, and pairwise Poisson-commute on U. Here the symplectic structure on X is the pullback of the Fubini-Study form on P(H^0(X, L)^*) via the Kodaira embedding. The image of the `moment map' (H_1, ..., H_n): X to R^n is precisely the Okounkov body \\Delta = \\Delta(R, v) associated to the homogeneous coordinate ring R of X, and an appropriate choice of valuation v on R. Our main technical tools come from algebraic geometry, differential (Kaehler) geometry, and analysis. Specifically, we use: a toric degeneration of X to a (not necessarily normal) toric variety X_0, th...

  14. Ambulatory assessment of human body kinematics and kinetics

    NARCIS (Netherlands)

    Schepers, H. Martin

    2009-01-01

    Traditional human movement analysis systems consist of an optical position measurement system with one or more 6D force plates mounted in a laboratory. Although clinically accepted as `the golden standard' for the assessment of human movement, the restriction to a laboratory environment with its

  15. Human++: Wireless autonomous sensor technology for body area networks

    NARCIS (Netherlands)

    Pop, V.; Francisco, R. de; Pflug, H.; Santana, J.; Visser, H.; Vullers, R.; Groot, H. de; Gyselinckx, B.

    2011-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body wireless autonomous transducer solutions (WATS) a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper deals

  16. Signal transmission in a human body medium-based body sensor network using a Mach-Zehnder electro-optical sensor.

    Science.gov (United States)

    Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He

    2012-11-30

    The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  17. Signal Transmission in a Human Body Medium-Based Body Sensor Network Using a Mach-Zehnder Electro-Optical Sensor

    Directory of Open Access Journals (Sweden)

    Yong Song

    2012-11-01

    Full Text Available The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  18. Convective heat transfer area of the human body.

    Science.gov (United States)

    Kurazumi, Yoshihito; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2004-12-01

    In order to clarify the heat transfer area involved in convective heat exchange for the human body, the total body surface area of six healthy subjects was measured, and the non-convective heat transfer area and floor and chair contact areas for the following nine common body positions were measured: standing, sitting on a chair, sitting in the seiza position, sitting cross-legged, sitting sideways, sitting with both knees erect, sitting with a leg out, and the lateral and supine positions. The main non-convective heat transfer areas were: the armpits (contact between the upper arm and trunk regions), contact between the two legs, contacts between the fingers and toes, and contact between the hands and the body surface. Also, when sitting on the floor with some degree of leg contact (sitting in the seiza position, cross-legged, or sideways), there was a large non-convective heat transfer area on the thighs and legs. Even when standing or sitting in a chair, about 6-8% of the body surface did not transfer heat by convection. The results showed that the effective thermal convective area factor for the naked whole body in the standing position was 0.942. While sitting in a chair this factor was 0.860, while sitting in a chair but excluding the chair contact area it was 0.918, when sitting in the seiza position 0.818, when sitting cross-legged 0.843, in the sideways sitting position 0.855, when sitting with both knees erect 0.887, in the leg-out sitting position 0.906, while in the lateral position it was 0.877 and the supine position 0.844. For all body positions, the effective thermal convective area factor was greater than the effective thermal radiation area factor, but smaller than the total body surface area.

  19. Vanadium in foods and in human body fluids and tissues.

    Science.gov (United States)

    Byrne, A R; Kosta, L

    1978-07-01

    Using neutron activation analysis, vanadium was analysed in a range of foods, human body fluids and tissues. On the basis of these results and those of other workers, it was concluded that daily dietary intake amounts to some tens of micrograms. Analysis of body fluids (including milk, blood and excreta) and organs and tissues provided an estimate for the total body pool of vanadium in man of about 100 microgram. Vanadium was not detectable in blood and urine at the level of 0.3 ng/g, while low levels were found in muscle, fat, bone, teeth and other tissues. The relationship between dietary intake to pulmonary absorption is discussed in relation to the occurrence of vanadium in man-made air particulates. The very low levels found in milks and eggs suggest minimal vanadium requirements in growth. The findings are discussed in the light of previous results and also in relation to the possible essentiality of vanadium.

  20. EFFECTS OF LOW FREQUENCY ELECTROMAGNETIC FIELDON THE HUMAN BODY

    Directory of Open Access Journals (Sweden)

    PETRICA POPOV

    2016-06-01

    Full Text Available International standardization institutions, which play an important role in assessing the effects o f the field and determining the need to take protective measures for the human factor, developed safety standards on human exposure to electromagnetic field, differentiated for electric and magnetic fields of low frequency ( near fields, as well as to ele ctromagnetic radiation fields (far fields. Until recently, many studies has shown that the main harmful effect on the human body was produced by high frequency electromagnetic field, but in recent years, more and more information also reveals that the serious damage can be caused by low frequency electric and magnetic fields. These low -frequency electromagnetic fields interact with human tissue causing harmful effects, the degree of destruction depending on factors such as: intensity, frequency, energy f ield level and duration of exposure.

  1. Eucharist and Human Body in George Herbert’s Poetry

    Institute of Scientific and Technical Information of China (English)

    黄燕

    2013-01-01

    George Herbert is one of the great metaphysical and religious poets in the seventeenth-century history of British litera-ture. Herbert becomes well-known for his devotional religious poems, his famous collection of devotional lyrics, The Temple in which Herbert expresses his piety towards God and manifests that the love of God is an everlasting subject for verse, has won en-during popularity among readers since its publication in 1633. The present paper will focus on Eucharist and human body show-ing in Herbert’s poetry, and attempts to explore the deeper implications existing behind Eucharist and human body with refer-ence to some specific poems which are chosen from The Temple in detail.

  2. A Managerial Approach To A Controversial Exhibition: The Human Body

    Directory of Open Access Journals (Sweden)

    Viorica Aura Păuş

    2013-12-01

    Full Text Available This paper will analyse the reception of the Human Body exhibition of 2013 in Romania, from a managerial point of view. The research is based on the exhibition visitors’ book, to which a content analysis was applied. The main aim of the paper is to investigate how the ‘Grigore Antipa’ Museum (Romania constructed the cultural context in which the scientific arguments prevailed over the religious ones, turning the exhibition of plastinated human bodies into an accepted public event, with a strong emphasis on education and science (medicine. At the same time, ethical concerns and religious criticism were downplayed by maintaining the focus on the ‘education for health’ frame.

  3. [Anatomia sacra. Religiously motivated interventions on human or animal bodies].

    Science.gov (United States)

    Gladigow, B

    1995-01-01

    Controlled surgery in the interior of human or animal bodies in classical antiquity was allowed only under certain circumstances. Bloody animal sacrifice and its rules for the interpretation of entrails as well as the rare examples of 'ritual anatomy' presented a religious framework for the opening of bodies. Greek mythology provided several examples of medical operations, for example, the Caesarean section, transplantations and plastic surgery. Great cultic significance was given to organ votives or reproductions of human inner organs which were offered in temples ex voto or with request for their curing. The anatomical knowledge transported along with these offerings represents a separate tradition different from the state of anatomical knowledge found in medical literature of the period.

  4. Property and the human body: a proposal for posthumous conception.

    Science.gov (United States)

    Ball, Eli Byron Stuart

    2008-02-01

    There is no greater error in law and bioethics than the continuing opposition to applying the concept of property to posthumous conception cases and the human body generally. The aim of this article is to challenge this error and the assumptions underpinning it. The language of property, conceived of as a "web of interests", can be used to capture and identify the social, moral and ethical concerns that arise in cases concerning the human body, a position that finds support from a correct reading of the early High Court of Australia's decision in Doodeward v Spence (1908) 6 CLR 406. However, a key issue on which the language of property is silent is how to quantify the various competing interests in the posthumous conception case: the concept is useful only insofar as it provides the device for capturing the entirety of the posthumous conception problem.

  5. Telomerase RNA accumulates in Cajal bodies in human cancer cells.

    Science.gov (United States)

    Zhu, Yusheng; Tomlinson, Rebecca L; Lukowiak, Andrew A; Terns, Rebecca M; Terns, Michael P

    2004-01-01

    Telomerase synthesizes telomeric DNA repeats at the ends of eukaryotic chromosomes. The RNA component of the enzyme (hTR) provides the template for telomere synthesis, which is catalyzed by telomerase reverse transcriptase (hTERT). Little is known regarding the subcellular localization of hTR and hTERT and the pathway by which telomerase is assembled. Here we report the first glimpse of the detailed subcellular localization of endogenous hTR in human cells, which we obtained by fluorescence in situ hybridization (FISH). Our studies have revealed a distinctive hTR localization pattern in cancer cells. We have found that hTR accumulates within intranuclear foci called Cajal bodies in all typical tumor-derived cell lines examined (in which telomerase is active), but not in primary or ALT cells (where little or no hTERT is present). Accumulation of hTR in the Cajal bodies of primary cells is induced when hTERT is ectopically expressed. Moreover, we report that hTERT is also found in Cajal bodies. Our data suggest that Cajal bodies are involved in the assembly and/or function of human telomerase.

  6. [Meteorology and the human body: two hundred years of history].

    Science.gov (United States)

    Forrai, Judit

    2010-07-04

    Modern meteorology was started in the 18th century, with the establishment of observer networks through countries. Since then, temperature, pressure and purity of air, quantity of powder have been measured and the effects of changes on the human body have been studied. New theories have been set relating to the atmospheric properties of microorganisms. Changes of pathogens in the context of climatic changes have been also studied.

  7. Electromagnetic Fields at the Surface of Human-Body Cylinders

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2016-01-01

    transverse electric and transverse magnetic polarization. The results show that the material assumption when modeling the human body as a homogeneous material is very important. Furthermore, it is shown that one assumption might lead to higher fields for a specific polarization, angle of incidence...... and frequency, but that does not translate to similar relative performance at another polarization, angle of incidence, and frequency....

  8. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.

    Science.gov (United States)

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-12-02

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  9. Retrieval and Clustering from a 3D Human Database based on Body and Head Shape

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper, we describe a framework for similarity based retrieval and clustering from a 3D human database. Our technique is based on both body and head shape representation and the retrieval is based on similarity of both of them. The 3D human database used in our study is the CAESAR anthropometric database which contains approximately 5000 bodies. We have developed a web-based interface for specifying the queries to interact with the retrieval system. Our approach performs the similarity based retrieval in a reasonable amount of time and is a practical approach.

  10. Interactive Structure (EUCLID) For Static And Dynamic Representation Of Human Body

    Science.gov (United States)

    Renaud, Ch.; Steck, R.

    1983-07-01

    A specific software (EUCLID) for static and dynamic representation of human models is described. The data processing system is connected with ERGODATA and used in interactive mode by intrinsic or specific functions. More or less complex representations in 3-D view of models of the human body are developed. Biostereometric and conventional anthropometric raw data from the data bank are processed for different applications in ergonomy.

  11. Metagenomic Systems Biology of the Human Microbiome

    DEFF Research Database (Denmark)

    Bonde, Ida

    The human microbiome is an integrated part of the human body, outnumbering the human cells by approximately a factor 10. These microorganisms are very important for human health, hence knowledge about this, ”our other genome”, has been growing rapidly in recent years. This is manly due to the adv......The human microbiome is an integrated part of the human body, outnumbering the human cells by approximately a factor 10. These microorganisms are very important for human health, hence knowledge about this, ”our other genome”, has been growing rapidly in recent years. This is manly due...... in the system. Applying the CAG clustering method to data from the human gut microbiome, we identified dependency-associations between plasmids, phages and clone-specific gene sets to their bacterial host. Connections between CRISPR-elements and phages were also observed. Additionally, the persistence of some...... bacterial species in the human gut could be predicted based on absence or presence of specific genetic modules. Based on the same CAG clustering of the human gut microbiome data, the link between bile acid degradation of bacteria in the gut and obesity was investigated. There seemed to be a slight...

  12. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    Science.gov (United States)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team

  13. Principle of relative positioning of structures in the human body

    Institute of Scientific and Technical Information of China (English)

    Buliang Meng; Ailan Pang; Ming Li

    2013-01-01

    The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.

  14. Principle of relative positioning of structures in the human body.

    Science.gov (United States)

    Meng, Buliang; Pang, Ailan; Li, Ming

    2013-03-25

    The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.

  15. Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras.

    Science.gov (United States)

    Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-03-16

    The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.

  16. Body Topography Parcellates Human Sensory and Motor Cortex.

    Science.gov (United States)

    Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S

    2017-07-01

    The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.

  17. Two-body coordinate system generation using body-fitted coordinate system and complex variable transformation. M.S. Thesis

    Science.gov (United States)

    Long, W. S.

    1977-01-01

    Attempts are made to generate acceptable coordinate systems for two-body configurations. The first method to be tried was to use the body-fitted coordinate system technique to obtain the best system. This technique alone did not produce very good results, so another approach was investigated. This new approach involved using a combination of the body fitted coordinate system procedure and a complex variable transformation method that was used successfully in conformal mapping.

  18. Investigation and analysis of human body thermal comfort in classroom

    Science.gov (United States)

    Zhai, Xue

    2017-05-01

    In this survey, we selected the 11th building of North China Electric Power University as the research object. Data were measured and distributed on each floor. We record the temperature of the classroom, humidity, wind speed, average radiation temperature and other environmental parameters. And we used spare time to create a questionnaire survey of the subjective feeling of the survey, to get everyone in the classroom TSV (hot feeling vote value) and TCV (thermal comfort vote). We analyzed the test data and survey data. What's more we discuss and reflect on the thermal comfort of the human body in different indoor temperature atmospheres.

  19. Secondary lead poisoning a projectile housed in the human body

    Directory of Open Access Journals (Sweden)

    Juan Bernardo Gerstner Garcés

    2012-09-01

    Full Text Available 72 1024x768 Normal 0 21 false false false ES X-NONE X-NONE With the increase of violence and use of firearms in Colombia, we may see more cases of lead poisoning in our environment, and must be prepared to diagnose and treat them. Subtle signs and symptoms as unexplained anemia, gastro-intestinal discomfort and abdominal cramps, and severe as changes in behavior and neurological status, nephropathy, and unexplained death, may be associated with a history of gunshot wounds and projectiles in the human body, and must offer the patient knowledge and management strategies of pathology.

  20. Body Basics

    Science.gov (United States)

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System Heart and Circulatory System Immune ...

  1. Analysis of an idealized body-vortex systems

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2008-01-01

    We explore the class of dynamical systems consisting of a body, N point vortices, and one or more passive particles in an ideal, unbounded, planar fluid. The body is represented by a closed curve and is free to move in response to the fluid motion. The vortices have fixed strengths and are intended...... in hand. They can be analyzed using techniques from the theory of dynamical systems with a finite number of degrees of freedom. The simplest such system, a single point vortex and a circular body, is integrable. If we add vortices, or change other features of the system such as the body shape, the motion...

  2. Human body micro-environment: The benefits of controlling airflow interaction

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2015-01-01

    This paper focuses on the micro-environment around a human body, and especially on its interaction with the surrounding environment. Research on the free convection flow generated by a human body (including the convective boundary layer around the body and the thermal plume above the body), its...

  3. Health Monitoring System Based on Intra-Body Communication

    Science.gov (United States)

    Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2015-11-01

    This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model

  4. Review on modeling heat transfer and thermoregulatory responses in human body.

    Science.gov (United States)

    Fu, Ming; Weng, Wenguo; Chen, Weiwang; Luo, Na

    2016-12-01

    Several mathematical models of human thermoregulation have been developed, contributing to a deep understanding of thermal responses in different thermal conditions and applications. In these models, the human body is represented by two interacting systems of thermoregulation: the controlling active system and the controlled passive system. This paper reviews the recent research of human thermoregulation models. The accuracy and scope of the thermal models are improved, for the consideration of individual differences, integration to clothing models, exposure to cold and hot conditions, and the changes of physiological responses for the elders. The experimental validated methods for human subjects and manikin are compared. The coupled method is provided for the manikin, controlled by the thermal model as an active system. Computational Fluid Dynamics (CFD) is also used along with the manikin or/and the thermal model, to evaluate the thermal responses of human body in various applications, such as evaluation of thermal comfort to increase the energy efficiency, prediction of tolerance limits and thermal acceptability exposed to hostile environments, indoor air quality assessment in the car and aerospace industry, and design protective equipment to improve function of the human activities.

  5. Three-dimensional surface imaging system for assessing human obesity

    Science.gov (United States)

    Xu, Bugao; Yu, Wurong; Yao, Ming; Pepper, M. Reese; Freeland-Graves, Jeanne H.

    2009-10-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable, and economical tool for assessment of this condition. Three-dimensional (3-D) body surface imaging has emerged as an exciting technology for the estimation of body composition. We present a new 3-D body imaging system, which is designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology is used to satisfy the requirement for a simple hardware setup and fast image acquisition. The portability of the system is created via a two-stand configuration, and the accuracy of body volume measurements is improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3-D body imaging. Body measurement functions dedicated to body composition assessment also are developed. The overall performance of the system is evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  6. A 3D surface imaging system for assessing human obesity

    Science.gov (United States)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  7. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  8. Human Exposure Database System (HEDS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Human Exposure Database System (HEDS) provides public access to data sets, documents, and metadata from EPA on human exposure. It is primarily intended for...

  9. Fermi golden rule for $N$-body systems in a black-body radiation

    CERN Document Server

    Ostilli, Massimo

    2016-01-01

    We review the calculation of the Fermi golden rule for a system of $N$-body dipoles, magnetic or electric, weakly interacting with a black-body radiation. By using the magnetic or electric field-field correlation function evaluated in the 1960s for the black body radiation, we deduce a general formula for the transition rates and study its limiting, fully coherent or fully incoherent, regimes.

  10. Visualizing Astrophysical N-body Systems

    CERN Document Server

    Dubinski, John

    2008-01-01

    I begin with a brief history of N-body simulation and visualization and then go on to describe various methods for creating images and animations of modern simulations in cosmology and galactic dynamics. These techniques are incorporated into a specialized particle visualization software library called MYRIAD that is designed to render images within large parallel N-body simulations as they run. I present several case studies that explore the application of these methods to animations of star clusters, interacting galaxies and cosmological structure formation.

  11. Dynamical Configurations of Celestial Systems Comprised of Multiple Irregular Bodies

    CERN Document Server

    Jiang, Yu; Baoyin, Hexi; Li, Junfeng

    2016-01-01

    This manuscript considers the main features of the nonlinear dynamics of multiple irregular celestial body systems. The gravitational potential, static electric potential, and magnetic potential are considered. Based on the three established potentials, we show that three conservative values exist for this system, including a Jacobi integral. The equilibrium conditions for the system are derived and their stability analyzed. The equilibrium conditions of a celestial system comprised of n irregular bodies are reduced to 12n minus 9 equations. The dynamical results are applied to simulate the motion of multiple-asteroid systems. The simulation is useful for the study of the stability of multiple irregular celestial body systems and for the design of spacecraft orbits to triple asteroid systems discovered in the solar system. The dynamical configurations of the five triple-asteroid systems 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC, and the six-body system 134340 Pluto are calculated and...

  12. Dynamic Propagation Channel Characterization and Modeling for Human Body Communication

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2012-12-01

    Full Text Available This paper presents the first characterization and modeling of dynamic propagation channels for human body communication (HBC. In-situ experiments were performed using customized transceivers in an anechoic chamber. Three HBC propagation channels, i.e., from right leg to left leg, from right hand to left hand and from right hand to left leg, were investigated under thirty-three motion scenarios. Snapshots of data (2,800,000 were acquired from five volunteers. Various path gains caused by different locations and movements were quantified and the statistical distributions were estimated. In general, for a given reference threshold è = −10 dB, the maximum average level crossing rate of the HBC was approximately 1.99 Hz, the maximum average fade time was 59.4 ms, and the percentage of bad channel duration time was less than 4.16%. The HBC exhibited a fade depth of −4 dB at 90% complementary cumulative probability. The statistical parameters were observed to be centered for each propagation channel. Subsequently a Fritchman model was implemented to estimate the burst characteristics of the on-body fading. It was concluded that the HBC is motion-insensitive, which is sufficient for reliable communication link during motions, and therefore it has great potential for body sensor/area networks.

  13. Dynamic propagation channel characterization and modeling for human body communication.

    Science.gov (United States)

    Nie, Zedong; Ma, Jingjing; Li, Zhicheng; Chen, Hong; Wang, Lei

    2012-12-18

    This paper presents the first characterization and modeling of dynamic propagation channels for human body communication (HBC). In-situ experiments were performed using customized transceivers in an anechoic chamber. Three HBC propagation channels, i.e., from right leg to left leg, from right hand to left hand and from right hand to left leg, were investigated under thirty-three motion scenarios. Snapshots of data (2,800,000) were acquired from five volunteers. Various path gains caused by different locations and movements were quantified and the statistical distributions were estimated. In general, for a given reference threshold è = -10 dB, the maximum average level crossing rate of the HBC was approximately 1.99 Hz, the maximum average fade time was 59.4 ms, and the percentage of bad channel duration time was less than 4.16%. The HBC exhibited a fade depth of -4 dB at 90% complementary cumulative probability. The statistical parameters were observed to be centered for each propagation channel. Subsequently a Fritchman model was implemented to estimate the burst characteristics of the on-body fading. It was concluded that the HBC is motion-insensitive, which is sufficient for reliable communication link during motions, and therefore it has great potential for body sensor/area networks.

  14. Relationship among serum taurine, serum adipokines, and body composition during 8-week human body weight control program.

    Science.gov (United States)

    You, Jeong Soon; Park, Ji Yeon; Zhao, Xu; Jeong, Jin Seok; Choi, Mi Ja; Chang, Kyung Ja

    2013-01-01

    Human adipose tissue is not only a storage organ but also an active endocrine organ to release adipokines. This study was conducted to investigate the relationship among serum taurine and adipokine levels, and body composition during 8-week human body weight control program in obese female college students. The program consisted of diet therapy, exercise, and behavior modification. After the program, body weight, body fat mass, percent body fat, and body mass index (BMI) were significantly decreased. Serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased. Also serum adiponectin level was significantly increased and serum leptin level was significantly decreased. There were no differences in serum taurine and homocysteine levels. The change of serum adiponectin level was positively correlated with change of body fat mass and percent body fat. These results may suggest that body fat loss by human body weight control program is associated with an increase in serum adiponectin in obese female college students. Therefore, further study such as taurine intervention study is needed to know more exact correlation between dietary taurine intake and serum adipokines or body composition.

  15. [Morphometric evaluation of relative adipose tissue content in the human body].

    Science.gov (United States)

    Sheikh-Zade, Yu R

    2012-01-01

    Analysis of the mathematical models of the human body composition revealed main shortcomings of body mass index (A. Quetelet, 1832). This allowed to offer more accurate body mass index (BMI = M/H3), body build index [BBI = (BMI)1/2] and body fatness index (BFI = M/HC2), where (M), (H) and (C) signified the mass, height and wrist circumference correspondingly.

  16. Dissection of human vitreous body elements for proteomic analysis.

    Science.gov (United States)

    Skeie, Jessica M; Mahajan, Vinit B

    2011-01-23

    The vitreous is an optically clear, collagenous extracellular matrix that fills the inside of the eye and overlies the retina. (1,2) Abnormal interactions between vitreous substructures and the retina underlie several vitreoretinal diseases, including retinal tear and detachment, macular pucker, macular hole, age-related macular degeneration, vitreomacular traction, proliferative vitreoretinopathy, proliferative diabetic retinopathy, and inherited vitreoretinopathies. (1,2) The molecular composition of the vitreous substructures is not known. Since the vitreous body is transparent with limited surgical access, it has been difficult to study its substructures at the molecular level. We developed a method to separate and preserve these tissues for proteomic and biochemical analysis. The dissection technique in this experimental video shows how to isolate vitreous base, anterior hyaloid, vitreous core, and vitreous cortex from postmortem human eyes. One-dimensional SDS-PAGE analyses of each vitreous component showed that our dissection technique resulted in four unique protein profiles corresponding to each substructure of the human vitreous body. Identification of differentially compartmentalized proteins will reveal candidate molecules underlying various vitreoretinal diseases.

  17. Classifying Human Body Acceleration Patterns Using a Hierarchical Temporal Memory

    Science.gov (United States)

    Sassi, Federico; Ascari, Luca; Cagnoni, Stefano

    This paper introduces a novel approach to the detection of human body movements during daily life. With the sole use of one wearable wireless triaxial accelerometer attached to one's chest, this approach aims at classifying raw acceleration data robustly, to detect many common human behaviors without requiring any specific a-priori knowledge about movements. The proposed approach consists of feeding sensory data into a specifically trained Hierarchical Temporal Memory (HTM) to extract invariant spatial-temporal patterns that characterize different body movements. The HTM output is then classified using a Support Vector Machine (SVM) into different categories. The performance of this new HTM+SVM combination is compared with a single SVM using real-word data corresponding to movements like "standing", "walking", "jumping" and "falling", acquired from a group of different people. Experimental results show that the HTM+SVM approach can detect behaviors with very high accuracy and is more robust, with respect to noise, than a classifier based solely on SVMs.

  18. Fate of pathogenic bacteria in microcosms mimicking human body sites.

    Science.gov (United States)

    Castellani, Francesco; Ghidini, Valentina; Tafi, Maria Carla; Boaretti, Marzia; Lleo, Maria M

    2013-07-01

    During the infectious process, pathogens may reach anatomical sites where they are exposed to substances interfering with their growth. These substances can include molecules produced by the host, and his resident microbial population, as well as exogenous antibacterial drugs. Suboptimal concentrations of inhibitory molecules and stress conditions found in vivo (high or low temperatures, lack of oxygen, extreme pH) might induce in bacteria the activation of survival mechanisms blocking their division capability but allowing them to stay alive. These "dormant" bacteria can be reactivated in particular circumstances and would be able to express their virulence traits. In this study, it was evaluated the effect of some environmental conditions, such as optimal and suboptimal temperatures, direct light and antibiotic sub-inhibitory concentrations doses of antibiotic, on the human pathogens Escherichia coli and Enterococcus faecalis when incubated in fluids accumulated in the body of patients with different pathologies. It is shown that inoculation in a number of accumulated body fluids and the presence of gentamicin, reliable conditions encountered during pathological states, induce stress-responding strategies enabling bacteria to persist in microcosms mimicking the human body. Significant differences were detected in Gram-negative and Gram-positive species with E. faecalis surviving, as starved or viable but non-culturable forms, in any microcosm and condition tested and E. coli activating a viable but non-culturable state only in some clinical samples. The persistence of bacteria under these conditions, being non-culturable, might explain some recurrent infections without isolation of the causative agent after application of the standard microbiological methods.

  19. Topography of Lymphatic Markers in Human Iris and Ciliary Body.

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schrödl, Falk; Trost, Andrea; Strohmaier, Clemens; Bogner, Barbara; Runge, Christian; Motloch, Karolina; Bruckner, Daniela; Laimer, Martin; Schlereth, Simona L; Heindl, Ludwig M; Reitsamer, Herbert A

    2015-07-01

    Reports of lymphatics in the anterior human uvea are contradictory. This might be caused due to a certain topography, which has not been considered yet. Therefore, here we systematically analyze iris and adjacent ciliary body with immunohistochemistry by combining various lymphatic markers. Human iris and ciliary body were obtained from cornea donors and prepared for cryosectioning. Cross sections of tissue blocks at 12/3/6/9 o'clock position and at corresponding intersections (1:30/4:30/7:30/10:30) were processed for immunohistochemistry of LYVE-1, PDPN, PROX1, FOXC2, VEGFR3, and CCL21, and when necessary, these lymphatic markers were combined with CD31, α-smooth muscle-actin, CD68, and 4',6-diamidino-2 phenylindole dihydrochloride (DAPI). Double, triple, and quadruple marker combinations were documented using confocal microscopy. Numerous podoplanin+ cells were mainly located at the anterior border of the iris while LYVE-1+ cells were distributed throughout the nonpigmented part. Both cell populations were PROX1/FOXC2/CCL21/VEGFR3-. Blood vessels, iris smooth muscles, and individual cells were VEGFR3+. While PDPN+ cells were rarely detected posteriorly of the iris root, many LYVE-1+ cells were present within the ciliary body muscle and villi. Within the muscle, occasionally PDPN+ vessel-like structures were detectable, but these were never colocalized with LYVE-1. Similar vessel-like structures were VEGFR3+/PROX1-/CCL21-, but CD31+. Further, ciliary muscle fibers and ciliary epithelium were immunoreactive for VEGFR3/CCL21, but were LYVE-1/PDPN-. A certain topography of structures at the various uvea-positions investigated was not obvious. The majority of LYVE-1+ cells displayed immunoreactivity for CD68. Lymphatic vessels colocalizing for at least two lymphatic markers were not detectable. Therefore, if present, putative lymphatic channels of the anterior uvea might display a different marker panel than generally presumed.

  20. The relationship between the stomatognathic system and body posture

    OpenAIRE

    Antonino Cuccia; Carola Caradonna

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. ...

  1. Identification of Motive Forces on the Whole Body System during Walking

    Directory of Open Access Journals (Sweden)

    Raghdan J. AlKhoury

    2010-01-01

    Full Text Available Motive forces by muscles are applied to different parts of the human body in a periodic fashion when walking at a uniform rate. In this study, the whole human body is modeled as a multidegree of freedom (MDOF system with seven degrees of freedom. In view of the changing contact conditions with the ground due to alternating feet movements, the system under study is considered piecewise time invariant for each half-period when one foot is in contact with the ground. Forces transmitted from the body to the ground while walking at a normal pace are experimentally measured and numerically simulated. Fourth-order Runge-Kutta method is employed to numerically simulate the forces acting on different masses of the body. An optimization problem is formulated with the squared difference between the measured and simulated forces transmitted to the ground as the objective function, and the motive forces on the body masses as the design variables to solve.

  2. Rapid three-dimensional chromoscan system of body surface based on digital fringe projection

    Science.gov (United States)

    Wei, Bin; Liang, Jin; Li, Jie; Ren, Maodong

    2015-09-01

    This paper proposes a rapid body scanning system that uses optical digital fringe projection method. Twelve cameras and four digital projectors are placed around the human body from four different directions, so that the body surface threedimensional( 3D) point cloud data can be scanned in 5~8 seconds. It can overcome many difficulties in a traditional measurement method, such as laser scanning causes damage to human eye and low splicing accuracy using structured white light scanning system. First, an accurate calibration method based on close-range photogrammetry, is proposed and verified for calibrating the twelve cameras and the four digital projectors simultaneously, where a 1m×2m plate as calibration target with feature points pasted on its two-sides is used. An experiment indicates that the proposed calibration method, with a re-projection error less than 0.05pixels, has a considerable accuracy. The whole 3D body surface color point cloud data can be measured without splice different views of point cloud, because of the high accuracy calibration results. Then, in order to measure the whole body point cloud data with high accuracy, a combination of single and stereo camera measuring method, based on digital fringe projection, has presented to calculating 3D point cloud data. At last, a novel body chromoscan system is developed and a human body 3D digital model was scanned, by which a physical body model was manufactured using 3D printing technology.

  3. Human Body Exergy Balance: Numerical Analysis of an Indoor Thermal Environment of a Passive Wooden Room in Summer

    Directory of Open Access Journals (Sweden)

    Koichi Isawa

    2015-09-01

    Full Text Available To obtain a basic understanding of the resultant changes in the human body exergy balance (input, consumption, storage, and output accompanying outdoor air temperature fluctuations, a “human body system and a built environmental system” coupled with numerical analysis was conducted. The built environmental system assumed a wooden room equipped with passive cooling strategies, such as thermal insulation and solar shading devices. It was found that in the daytime, the cool radiation exergy emitted by surrounding surfaces, such as walls increased the rate of human body exergy consumption, whereas the warm radiant exergy emitted by the surrounding surfaces at night decreased the rate of human body exergy consumption. The results suggested that the rates and proportions of the different components in the exergy balance equation (exergy input, consumption, storage, and output vary according to the outdoor temperature and humidity conditions.

  4. Signal measurement system for intra-body communication using optical isolation method

    Science.gov (United States)

    Matsumoto, Kazuki; Katsuyama, Jun; Sugiyama, Ryo; Takizawa, Yasuaki; Ishii, Seita; Shinagawa, Mitsuru; Kado, Yuichi

    2014-09-01

    In this paper, we describe an induced signal measurement on the human body for developing a high-performance transceiver of an intra-body communication system. It is important to isolate awearable transceiver from an electrical instrument for precise measurement. We have developed a probe system using an optical isolation method including a laser diode, photo-diode, and optical fiber. The probe system can be successfully applied to the precise measurement of a receiving signal power at a wearable transceiver. We verify that the experimental results agree with the simulation results based on our previous channel model of intra-body communication.

  5. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    Science.gov (United States)

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  6. Transport of gaseous pollutants around a human body in quiescent indoor environment

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Mioduszewski, Pawel

    2014-01-01

    (CBL) to transport the pollution in quiescent indoor environment. A human body is resembled by a thermal manikin with a body shape and surface temperature distribution of a real person. The objective of the study is to examine the impact of the pollutant location around the human body on the pollution...... concentration levels in the breathing zone. The results show that the location of the pollution source has a considerable influence of the breathing zone concentrations. This is contributed to the human CBL, as it pulls the pollution emitted close to the human body and transports it to the breathing zone...... the human body should be recognized in ventilation design practice....

  7. Automatic Identification of Inertial Sensors on the Human Body Segments

    NARCIS (Netherlands)

    Weenk, D.; Beijnum, van B.J.F.; Veltink, P.H.

    2011-01-01

    In the last few years, inertial sensors (accelerometers and gyroscopes) in combination with magnetic sensors was proven to be a suitable ambulatory alternative to traditional human motion tracking systems based on optical position measurements. While accurate full 6 degrees of freedom information is

  8. Automatic Identification of Inertial Sensors on the Human Body Segments

    NARCIS (Netherlands)

    Weenk, D.; van Beijnum, Bernhard J.F.; Veltink, Petrus H.

    In the last few years, inertial sensors (accelerometers and gyroscopes) in combination with magnetic sensors was proven to be a suitable ambulatory alternative to traditional human motion tracking systems based on optical position measurements. While accurate full 6 degrees of freedom information is

  9. Triglycerides in the human kidney cortex: relationship with body size.

    Directory of Open Access Journals (Sweden)

    Ion Alexandru Bobulescu

    Full Text Available Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04. Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis.

  10. Triglycerides in the Human Kidney Cortex: Relationship with Body Size

    Science.gov (United States)

    Bobulescu, Ion Alexandru; Lotan, Yair; Zhang, Jianning; Rosenthal, Tara R.; Rogers, John T.; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W.

    2014-01-01

    Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI) is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis) has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04). Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis) in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis. PMID:25170827

  11. Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts.

    Science.gov (United States)

    Vavalle, Nicholas A; Davis, Matthew L; Stitzel, Joel D; Gayzik, F Scott

    2015-09-01

    Validation is a critical step in finite element model (FEM) development. This study focuses on the validation of the Global Human Body Models Consortium full body average male occupant FEM in five localized loading regimes-a chest impact, a shoulder impact, a thoracoabdominal impact, an abdominal impact, and a pelvic impact. Force and deflection outputs from the model were compared to experimental traces and corridors scaled to the 50th percentile male. Predicted fractures and injury severity measures were compared to evaluate the model's injury prediction capabilities. The methods of ISO/TS 18571 were used to quantitatively assess the fit of model outputs to experimental force and deflection traces. The model produced peak chest, shoulder, thoracoabdominal, abdominal, and pelvis forces of 4.8, 3.3, 4.5, 5.1, and 13.0 kN compared to 4.3, 3.2, 4.0, 4.0, and 10.3 kN in the experiments, respectively. The model predicted rib and pelvic fractures related to Abbreviated Injury Scale scores within the ranges found experimentally all cases except the abdominal impact. ISO/TS 18571 scores for the impacts studied had a mean score of 0.73 with a range of 0.57-0.83. Well-validated FEMs are important tools used by engineers in advancing occupant safety.

  12. A triboelectric motion sensor in wearable body sensor network for human activity recognition.

    Science.gov (United States)

    Hui Huang; Xian Li; Ye Sun

    2016-08-01

    The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.

  13. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body

    Directory of Open Access Journals (Sweden)

    Hatem Elfekey

    2016-12-01

    Full Text Available Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  14. NASA Human System Risk Assessment Process

    Science.gov (United States)

    Francisco, D.; Romero, E.

    2016-01-01

    two-page assessment representing the state of knowledge/evidence of that risk, available risk mitigations, traceability to the Space Flight Human System Standards (SFHSS) and program requirements, and future work required. These data then can drive coordinated budgets across the Human Research Program, the International Space Station, Crew Health and Safety and Advanced Exploration System budgets to provide the most economical and timely mitigations. The risk assessments were completed for the 6 DRMs and serve as the baseline for which subsequent research and technology development and crew health care portfolios can be assessed. The HSRB reviews each risk at least annually or when new evidence/information is available that adds to the body of evidence. The current status of each risk can be reported to program management for operations, budget reviews and general oversight of the human system risk management program.

  15. Identification of lymphatics in the ciliary body of the human eye: a novel "uveolymphatic" outflow pathway.

    Science.gov (United States)

    Yücel, Yeni H; Johnston, Miles G; Ly, Tina; Patel, Manoj; Drake, Brian; Gümüş, Ersin; Fraenkl, Stephan A; Moore, Sara; Tobbia, Dalia; Armstrong, Dianna; Horvath, Eva; Gupta, Neeru

    2009-11-01

    Impaired aqueous humor flow from the eye may lead to elevated intraocular pressure and glaucoma. Drainage of aqueous fluid from the eye occurs through established routes that include conventional outflow via the trabecular meshwork, and an unconventional or uveoscleral outflow pathway involving the ciliary body. Based on the assumption that the eye lacks a lymphatic circulation, the possible role of lymphatics in the less well defined uveoscleral pathway has been largely ignored. Advances in lymphatic research have identified specific lymphatic markers such as podoplanin, a transmembrane mucin-type glycoprotein, and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1). Lymphatic channels were identified in the human ciliary body using immunofluorescence with D2-40 antibody for podoplanin, and LYVE-1 antibody. In keeping with the criteria for lymphatic vessels in conjunctiva used as positive control, D2-40 and LYVE-1-positive lymphatic channels in the ciliary body had a distinct lumen, were negative for blood vessel endothelial cell marker CD34, and were surrounded by either discontinuous or no collagen IV-positive basement membrane. Cryo-immunogold electron microscopy confirmed the presence D2-40-immunoreactivity in lymphatic endothelium in the human ciliary body. Fluorescent nanospheres injected into the anterior chamber of the sheep eye were detected in LYVE-1-positive channels of the ciliary body 15, 30, and 45 min following injection. Four hours following intracameral injection, Iodine-125 radio-labeled human serum albumin injected into the sheep eye (n = 5) was drained preferentially into cervical, retropharyngeal, submandibular and preauricular lymph nodes in the head and neck region compared to reference popliteal lymph nodes (P human ciliary body, and that fluid and solutes flow at least partially through this system. The discovery of a uveolymphatic pathway in the eye is novel and highly relevant to studies of glaucoma and other eye diseases.

  16. The human kidney as a regulator of body cytokine homeostasis

    Directory of Open Access Journals (Sweden)

    A. Bonanni

    2011-01-01

    Full Text Available Evidence is accumulating that the human kidney is a major site for the removal of several cytokines and growth factors, which can accumulate in body pools in patients with acute and chronic kidney disease (CKD. In addition, progressive renal failure and the increase in circulating proinflammatory cytokines are associated with mortality, suggesting that altered cytokines handling by the kidney is associated with worse outcome. Also, the kidney itself may be damaged by signals arising by endothelia and peripheral tissues during the course of the metabolic syndrome, type 2 diabetes and obesity. In this paper we provide a review of kidney handling of several adipokines and myokines, with special emphasis to interleukin-6 (IL-6, leptin, resistin and transforming growth factor-beta (TGF-beta.

  17. Treatment model of dengue hemorrhagic fever infection in human body

    Science.gov (United States)

    Handayani, D.; Nuraini, N.; Primasari, N.; Wijaya, K. P.

    2014-03-01

    The treatment model of DHF presented in this paper involves the dynamic of five time-dependent compartments, i.e. susceptible, infected, free virus particle, immune cell, and haematocrit level. The treatment model is investigated based on normalization of haematocrit level, which is expressed as intravenous fluid infusion control. We analyze the stability of the disease free equilibrium and the endemic equilibrium. The numerical simulations will explain the dynamic of each compartment in human body. These results show particularly that infected compartment and free virus particle compartment are tend to be vanished in two weeks after the onset of dengue virus. However, these simulation results also show that without the treatment, the haematocrit level will decrease even though not up to the normal level. Therefore the effective haematocrit normalization should be done with the treatment control.

  18. Radiative human body cooling by nanoporous polyethylene textile

    Science.gov (United States)

    Hsu, Po-Chun; Song, Alex Y.; Catrysse, Peter B.; Liu, Chong; Peng, Yucan; Xie, Jin; Fan, Shanhui; Cui, Yi

    2016-09-01

    Thermal management through personal heating and cooling is a strategy by which to expand indoor temperature setpoint range for large energy saving. We show that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution (50 to 1000 nanometers). We processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability. We developed a device to simulate skin temperature that shows temperatures 2.7° and 2.0°C lower when covered with nanoPE cloth and with processed nanoPE cloth, respectively, than when covered with cotton. Our processed nanoPE is an effective and scalable textile for personal thermal management.

  19. Sizing Optimization with Thermal and Electrical Matching of a Thermogenerator placed on the Human Body

    OpenAIRE

    2011-01-01

    International audience; In this paper, we studied the potential of thermoelectric generation from human body heat. The main objective is to maximize the thermoelectric productivity while minimizing the volume of the generator incorporating or not a heat sink, with a view to charging an accumulator which itself supplies a consumer electronic device such as a communicating sensor. The sizing of such a device should be done with a system-level approach where the thermal coupling with the environ...

  20. Comparison of Biodynamic Responses in Standing and Seated Human Bodies

    Science.gov (United States)

    MATSUMOTO, Y.; GRIFFIN, M. J.

    2000-12-01

    The dynamic responses of the human body in a standing position and in a sitting position have been compared. The apparent mass and transmissibilities to the head, six locations along the spine, and the pelvis were measured with eight male subjects exposed to vertical whole-body vibration. In both postures, the principal resonance in the apparent mass occurred in the range 5-6 Hz, with slightly higher frequencies and lower apparent mass in the standing posture. There was greater transmission of vertical vibration to the pelvis and the lower spine and greater relative motion within the lower spine in the standing posture than in the sitting posture at the principal resonance and at higher frequencies. Transmissibilities from the supporting surface (floor or seat) to the thoracic region had similar magnitudes for both standing and sitting subjects. The lumbar spine has less lordosis and may be more compressed and less flexible in the sitting posture than in the standing posture. This may have reduced the relative motions between lumbar vertebrae and both the supporting vibrating surface and the other vertebrae in the sitting posture. The characteristics of the vibration transmitted to the pelvis may have differed in the two postures due to different transmission paths. Increased forward rotation of the pelvis in the standing posture may have caused the differences in responses of the pelvis and the lower spine that were observed between the two postures.

  1. Human flourishing through body, creative imagination and reflection

    Directory of Open Access Journals (Sweden)

    Angie Titchen

    2011-06-01

    Full Text Available Background:A new methodological framework for human flourishing as the ends and means of transformational action research and practice development has recently been published. Located in the critical creativity paradigmatic synthesis, the framework is one of the outcomes of our shared journey as practice development facilitators and researchers. Aims and objectives: The aim of this paper is to show how methodological development can be an outcome of practice development. The first objective is to show, through an exemplar story, how our human flourishing was achieved through learning experientially about the new framework at a retreat in the Australian Grampian Mountains. The second objective is to indicate how we exposed the developing framework to national and international artistic and cognitive critique. Design:Part of a co-operative inquiry under the auspices of the International Practice Development Collaborative, including retreats, workshops and conference presentations. Methods: Imbued by the philosophical and theoretical frameworks for human flourishing, the methodological framework was used at the retreat to create conditions for human flourishing through nature, the body, creative imagination, reflection and reflexivity. Data on the impact of using the framework were collected and synthesised through a variety of methods, including dialogue, contemplative walks, dance, landscape art and reflection. Further synthesis was undertaken through experiential workshops and scholarly/creative writing. Results: Findings show how the methodology was further evaluated and refined whilst simultaneously enabling others to flourish as they gained confidence in using the methods of critical creativity as critical companions. Thereby the interrelatedness of methodology and methods of critical creativity is illustrated. Conclusions: This outcome of our practice development journey offers a potential addition to critical social science methodologies in

  2. Why does it matter how we regulate the use of human body parts?

    Science.gov (United States)

    Goold, Imogen

    2014-01-01

    Human tissue and body parts have been used in one way or another for millennia. They have been preserved and displayed, both in museums and public shows. Real human hair is used for wigs, while some artists even use human tissue in their works. Blood, bone marrow, whole organs and a host of other structures and human substances are all transplanted into living persons to treat illness. New life can be created from gametes through in vitro fertilisation (IVF), while the creation of cell lines keeps tissue alive indefinitely. These uses create significant challenges for the legal system in the UK. The major challenge for the law is to balance the competing demands of those groups who have vested interests in human tissue-researchers, medical practitioners, patients, families, the community and the police, among many others. It must provide sufficient control to users of tissue, but also take account of the fact that our bodies hold psychological importance for us while we live and, after we die, for those we leave behind. To some degree the law has been successful, but we still lack a comprehensive, coherent approach to the regulation of human tissue. Partially as a reaction to this lack of a comprehensive approach, some commentators have turned to applying the concept of property to human tissue means to achieve regulatory outcomes they support.

  3. Body movement distribution with respect to swimmer's glide position in human underwater undulatory swimming.

    Science.gov (United States)

    Hochstein, Stefan; Blickhan, Reinhard

    2014-12-01

    Human swimmers use undulatory motions similar to fish locomotion to attain high speeds. The human body is a non-smooth multi-body linkage system with restricted flexibility and is not primarily adapted to motion in the water. Due to anatomical limitations, the human swimmer is forced to deviate from the symmetric fish-like motion and to adjust his motion to his limited abilities. The goal of this paper is to investigates the movement of ten swimmers during human underwater undulatory in a still water pool and to find out to what extent the human swimmer approaches an ideal undulatory wave which is symmetric with respect to the extended gliding position. Therefore, it is necessary to (i) to ascertain the magnitude of the normalized dorsal, ventral and total amplitudes of the undulatory movements, (ii) to examine the distribution and symmetry/asymmetry of the dorsal, ventral and total amplitudes along the length of the swimming body, and (iii) to compare the differences in amplitude distribution and other indicators between different skill levels. The amplitude distribution of the dorsal and ventral deflection along the body (related to the swimmer's stretched position) is highly asymmetric. Skilled swimmers swim with a more linear body wave and use a smaller range of envelop than less skilled swimmers. The durations of the up and down kicks show only minor differences. The down kick is slightly faster than the up kick. Although the down kick is more powerful than the up kick, the hip marker shows almost the same average swimming speed in both half-cycles. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Visual Coding of Human Bodies: Perceptual Aftereffects Reveal Norm-Based, Opponent Coding of Body Identity

    Science.gov (United States)

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J.

    2013-01-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this…

  5. Human telomerase and Cajal body ribonucleoproteins share a unique specificity of Sm protein association

    OpenAIRE

    Fu, Dragony; Collins, Kathleen

    2006-01-01

    Cajal bodies are nuclear structures that host RNA modification and assembly reactions. Some RNAs transit Cajal bodies, while others must concentrate in Cajal bodies to function. Here we report that at least a subfraction of human telomerase RNA and individual resident Cajal body RNAs is associated with Sm proteins. Surprisingly, of seven Sm proteins assembled into a heteroheptameric ring, only a subset copurifies telomerase and Cajal body ribonucleoproteins. We show that a Cajal body RNA loca...

  6. Dynamic response to road roughness on a tractor-semitrailer system with driver body model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A linear mass-spring system model of a tractor-semitrailer together with driver body parts and sprung seat is presented. Natural frequencies of the system are calculated and response of components in the system to road roughness is completed by means of computer simulation and power spectral density (PSD) approach in all of road conditions and loading cases. The results show that the severest situation of response of the system occurs when the road in rough condition and vehicle unladen. The most sensitive frequency to human body parts is around 0.9Hz, and model types of a human body seem to be not significant tothe response of a heavy tractor-semitrailer system, including to the response of the driver himself.

  7. 0{sup +} ground state dominance in many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu-Min [Southeast Univ., Dept. of Physics, Nanjing (China); Arima, Akito [The House of Councilors, Tokyo (Japan); Yoshinaga, Naotaka [Saitama Univ., Physics Dept., Saitama (Japan)

    2002-12-01

    We propose a simple approach to predict the angular momentum I ground states (Ig.s.) probabilities of many-body systems without diagonalization of the hamiltonian using random interactions. It is suggested that the 0g.s. dominance in boson systems and even valence nucleon systems is not given by the model space as previously assumed, but by specific two-body interactions. (author)

  8. (Radiation carcinogenesis in the whole body system)

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1990-12-14

    The objectives of the trip were: to take part in and to give the summary of a Symposium on Radiation Carcinogenesis at Tokyo, and to give a talk at the National Institute of Radiological Sciences at Chiba. The breadth of the aspects considered at the conference was about as broad as is possible, from effects at the molecular level to human epidemiology, from the effects of tritium to cancer induction by heavy ions. The events induced by cancer that lead to cancer and the events that are secondary are beginning to come into better focus but much is still not known. Interest in suppressor genes is increasing rapidly in the studies of human tumors and many would predict that the three or four suppressor genes associated with cancer are only the first sighting of a much larger number.

  9. Building "Bob": A Project Exploring the Human Body at Western Illinois University Preschool Center

    Science.gov (United States)

    Brouette, Scott

    2008-01-01

    When the children at Western Illinois University Preschool Center embarked on a study of human bodies, they decided to build a life-size model of a body, organ by organ from the inside out, to represent some of the things they were learning. This article describes the building of "Bob," the human body model, highlighting the children's…

  10. Acute normobaric hypoxia reduces body temperature in humans.

    Science.gov (United States)

    DiPasquale, Dana M; Kolkhorst, Fred W; Buono, Michael J

    2015-03-01

    Anapyrexia is the regulated decrease in body temperature during acute exposure to hypoxia. This study examined resting rectal temperature (Trec) in adult humans during acute normobaric hypoxia (NH). Ten subjects breathed air consisting of 21% (NN), 14% (NH14), and 12% oxygen (NH12) for 30 min each in thermoneutral conditions while Trec and blood oxygen saturation (Spo2) were measured. Linear regression indicated that Spo2 was progressively lower in NH14 (p=0.0001) and NH12 (p=0.0001) compared to NN, and that Spo2 in NH14 was different than NH12 (p=0.00001). Trec was progressively lower during NH14 (p=0.014) and in NH12 (p=0.0001) compared to NN. The difference in Trec between NH14 and NH12 was also significant (p=0.0287). Spo2 was a significant predictor of Trec such that for every 1% decrease in Spo2, Trec decreased by 0.15°C (p=0.0001). The present study confirmed that, similar to many other species, human adults respond to acute hypoxia exposure by lowering rectal temperature.

  11. Macro And Microcosmus: Moon Influence On The Human Body

    Science.gov (United States)

    Zanchin, Giorgio

    Belief in the action of the macrocosmus, i.e., celestial bodies, on the microcosmus, i.e., on man, goes back to the dawn of human thinking. More specifically, lunar phases have been considered to act on behaviour and on physiological functions. This possible relationship has not only been taken for granted for many centuries in ancient medicine but also investigated in a number of modern published works, mainly on the issues of emergency activity; violent behaviour; car accidents; drug overdose; menses and birth; and mood disorders. Indeed, if the idea that the stars and planets may influence human health and behaviour can be traced so far in the past, it seems that not only the laymen but a high proportion of health professionals continue to hold this credence: recently, in New Orleans a questionnaire sent to 325 people indicated that 140 individuals (43%) held the opinion that lunar phenomena alter personal behaviour. Specifically, it came out that mental health professionals (social workers, clinical psychologists, nurses' aides) held this belief more strongly than other occupational groups (Vance, 1995). A short historical outline of some old beliefs and the results of contemporary research on this fascinating, time-honoured field, will be presented.

  12. Made-to-measure N-body systems

    CERN Document Server

    Syer, D

    1996-01-01

    We describe an algorithm for constructing N-body realisations of equilibrium stellar systems. The algorithm complements existing orbit-based modelling techniques using linear programming or other optimization algorithms. The equilibria are constructed by integrating an N-body system while slowly adjusting the masses of the particles until the time-averaged density field and other observables converge to a prescribed value. The procedure can be arranged to maximise a linear combination of the entropy of the system and the \\chi^2 statistic for the observables. The equilibria so produced may be useful as initial conditions for N-body simulations or for modelling observations of individual galaxies.

  13. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    Science.gov (United States)

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  14. Compensation of human cardiovascular system with negative pressure of the lower body%下身负压下人体心血管系统的代偿功能

    Institute of Scientific and Technical Information of China (English)

    韩文强; 胡文东; 马瑞山

    2004-01-01

    背景:下体负压是模拟重力-惯性力场对人体循环功能影响的有效研究方法之一,在一定程度上可模拟正加速度对人体的影响.目的:探讨坐位下身负压暴露时人体心血管系统的代偿功能的变化,为高G值致空中意识丧失(G-LOC)的预防和监控提供生理学参数.设计:随机自身对照实验研究.地点和对象:实验地点在本系脑功能实验室,实验对象为15名健康自愿者青年男性,均系本校大学二年级学员.干预:采用坐位下身负压舱,每名被试者均要受到-4.00 kPa、-6.67 kPa下身负压的作用.主要观察指标:分别测试负压前、下身负压暴露于-4.00 kPa,-6.67 kPa的0.5,1,2,3,4,5 min和卸压后1,3,5 min的血压、心率及主观症状和客观体征等.在-4.00 kPa下身负压作用时,收缩压与舒张压与负压前对照差别无显著性意义;心率在下身负压作用3,4,5 min时,显著增快(P<0.05).结果:在-6.67 kPa下身负压作用时,心率在负压作用各时间点与负压作用前比较均显著增快(P<0.01);收缩压与负压前对照无明显改变,舒张压显著升高(P<0.05).结论:坐位下身负压造成血液在下肢积聚,大脑供血量减少,心血管系统通过加强代偿功能,使大部分被试未发生晕厥前症状.随着下身负压值的进一步增大和作用时间的延长,机体出现失代偿现象,导致出现晕厥前症状.为高G值致空中意识丧失(G-LOC)的预防和监控提供生理学参数.%BACKGROUND: Lower body negative pressure(LBNP) is one of the effective methods to simulate the influence of gravito-inertial force on human circulation. It can simulate the effects of positive accelerate on human body to a certain extent.OBJECTIVE: To explore the changes of compensation of cardiovascular system with lower body negative pressure in upright seated position (U-LBNP) . To provide physiological parameters for the prevention and monitoring of G-induced loss of conciousness (G

  15. Human neutrophil alloantigens systems

    Directory of Open Access Journals (Sweden)

    Elyse Moritz

    2009-09-01

    Full Text Available Neutrophil alloantigens are involved in a variety of clinical conditions including immune neutropenias, transfusion-related acute lung injury (TRALI, refractoriness to granulocyte transfusions and febrile transfusion reactions. In the last decade, considerable progress has been made in the characterization of the implicated antigens. Currently, seven antigens are assigned to five human neutrophil antigen (HNA systems. The HNA-1a, HNA-1b and HNA-1c antigens have been identified as polymorphic forms of the neutrophil Fcγ receptor IIIb (CD16b, encoded by three alleles. Recently, the primary structure of the HNA-2a antigen was elucidated and the HNA-2a-bearing glycoprotein was identified as a member of the Ly-6/uPAR superfamily, which has been clustered as CD177. The HNA-3a antigen is located on a 70-95 kDa glycoprotein; however, its molecular basis is still unknown. Finally, the HNA-4a and HNA-5a antigens were found to be caused by single nucleotide mutations in the αM (CD11b and αL (CD11a subunits of the leucocyte adhesion molecules (β2 integrins. Molecular and biochemical characterization of neutrophil antigenshave expanded our diagnostic tools by the introduction of genotyping techniques and immunoassays for antibody identification. Further studies in the field of neutrophil immunology will facilitate the prevention and management of transfusion reactions and immune diseases caused by neutrophil antibodies.Os aloantígenos de neutrófilos estão associados a várias condições clínicas como neutropenias imunes, insuficiência pulmonar relacionada à transfusão (TRALI, refratariedade à transfusão de granulócitos, e reações transfusionais febris. Na última década, foi observado considerável progresso na caracterização dos aloantígenos envolvidos nestas condições clínicas. Atualmente sete antígenos estão incluídos em cinco sistemas de antígenos de neutrófilo humano (HNA. Os antígenos HNA-1a, HNA-1b e HNA-1c foram

  16. Generalized parton distributions of few body systems

    CERN Document Server

    Scopetta, S

    2007-01-01

    The relevance of measuring Generalized Parton Distributions (GPDs) for few nucleon systems is illustrated. An approach which permits to calculate the GPDs of hadrons made of composite constituents by proper convolutions is described. The application of the method to the nucleon target, assumed to be made of composite constituents is reviewed. Calculations of GPDs for few nucleon systems are summarized, with special emphasis to the $^3$He target.

  17. A standardized human embryoid body platform for the detection and analysis of teratogens.

    Science.gov (United States)

    Flamier, Anthony; Singh, Supriya; Rasmussen, Theodore P

    2017-01-01

    Teratogens are compounds that can induce birth defects upon exposure of the developing fetus. To date, most teratogen studies utilize pregnant rodents to determine compound teratogenicity in vivo. However, this is a low throughput approach that cannot easily meet the need for comprehensive high-volume teratogen assessment, a goal of the US Environmental Protection Agency. In addition, rodent and human development differ substantially, and therefore the use of assays using relevant human cells has utility. For these reasons, interest has recently focused on the use of human embryonic stem cells for teratogen assessment. Here we present a highly standardized and quantitative system for the detection and analysis of teratogens that utilizes well-characterized and purified highly pluripotent stem cells. We have devised strategies to mass-produce thousands of uniformly sized spheroids of human ESCs (hESCs) that can be caused to undergo synchronous differentiation to yield embryoid bodies (EBs) in the presence and absence of suspected teratogens. The system uses all human cells and rigorously controlled and standardized EB culture conditions. Furthermore, the approach has been made quantitative by using high-content imaging approaches. Our system offers distinct advantages over earlier EB systems that rely heavily on the use on mouse ESCs and EB aggregates of stochastic sizes. Together, our results show that thousands of suspected teratogens could be assessed using human EB-based approaches.

  18. Processing and fusion for human body terahertz dual-band passive image

    Science.gov (United States)

    Tian, Li; Shen, Yanchun; Jin, Weiqi; Zhao, Guozhong; Cai, Yi

    2016-11-01

    Compared with microwave, THz has higher resolution, and compared with infrared, THz has better penetrability. Human body radiate THz also, its photon energy is low, it is harmless to human body. So THz has great potential applications in the body searching system. Dual-band images may contain different information for the same scene, so THz dual-band imaging have been a significant research subject of THz technology. Base on the dual-band THz passive imaging system which is composed of a 94GHz and a 250GHz cell detector, this paper researched the preprocessing and fusion algorithm for THz dual-band images. Firstly, THz images have such problems: large noise, low SNR, low contrast, low details. Secondly, the stability problem of the optical mechanical scanning system makes the images less repetitive, obvious stripes and low definition. Aiming at these situations, this paper used the BM3D de-noising algorithm to filter noise and correct the scanning problem. Furthermore, translation, rotation and scaling exist between the two images, after registered by the intensity-base registration algorithm, and enhanced by the adaptive histogram equalization algorithm, the images are fused by image fusion algorithm based on wavelet. This effectively reduced the image noise, scan distortion and matching error, improved the details, enhanced the contrast. It is helpful to improve the detection efficiency of hidden objects too. Method in this paper has a substantial effect for improving the dual-band THz passive imaging system's performance and promoting technology practical.

  19. New methods for dete rmining the relative load due to physical effort of the human body

    Directory of Open Access Journals (Sweden)

    Józef Szubert

    2014-04-01

    Full Text Available Background: The relative physical load (% VO2max is the quotient of oxygen uptake (Vo2 during physical effort and maximum oxygen uptake (VO2max by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Material and Methods: Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (TW or heart rate within one minute (HR, body mass (m, height (H, and body surface area (AD instead of VO2max. Results: The values of the relative physical load (% VO2max obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. Conclusions: The developed methods for determining the relative physical load (% VO2max do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study a feasible alternative to current methods. Med Pr 2014;65(2:189–195

  20. Human Systems Roadmap Review

    Science.gov (United States)

    2016-02-09

    areas produce life long disability Problem: The combination of jet fuel and high noise environment can exacerbate hearing loss Objective: Expose...Personalized Assessment, Education , and Training Systems Interfaces and Cognitive Processes Protection, Sustainment, and Warfighter...Infrastructure, & Information Distribution Statement A: Approved for Public Release 4 Personalized Assessment, Education , and Training System

  1. Obesidad monogénica humana: papel del sistema leptina-melanocortina en la regulación de la ingesta de alimentos y el peso corporal en humanos Monogenic human obesity: role of the leptin-melanocortin system in the regulation of food intake and body weight in humans

    Directory of Open Access Journals (Sweden)

    E. González Jiménez

    2012-08-01

    Full Text Available La obesidad humana es un trastorno de origen multifactorial en el que intervienen factores tanto genéticos como ambientales. La existencia de alteraciones genéticas que dan origen a obesidades monogénicas resulta muy interesante para el estudio de los mecanismos que contribuyen a un aumento de la ingesta de energía y la acumulación de grasa en el cuerpo. La mayoría de los genes implicados en obesidad monogénica se relacionan con el sistema de la leptina-melanocortinas, de ahí la importancia de su estudio a través de mutaciones naturales en ratones. Así, se han descrito mutaciones relacionadas con obesidad humana de tipo monogénica en la leptina y su receptor, proopiomelanocortina y prohormona convertasa 1. El objetivo de este trabajo ha sido ofrecer una revisión actualizada acerca de las principales características y funcionamiento del sistema leptina-melanocortinas, así como de sus implicaciones y potencialidades en el proceso de regulación de la ingesta alimentaria y control del peso corporal.Human obesity is a disorder of multifactorial origin in which genetic and environmental factors are involved. To understand the mechanisms regulating energy intake and fat accumulation in the body, it is important to study the genetic alterations causing monogenic obesity. Most of the genes involved in monogenic obesity are associated with the leptin-melanocortin system; hence the importance of studying this system by analysing natural mutations in mice. Previous studies have described mutations in leptin and its receptor, proopiomelanocortin and prohormone convertase 1 associated with human obesity of monogenic origin. The aim of this study is to provide an updated review of the main characteristics and functioning of the leptin-melanocortin system, and its implications and potentialities in regulating food intake and body weight.

  2. The effect of precrash velocity reduction on occupant response using a human body finite element model.

    Science.gov (United States)

    Guleyupoglu, B; Schap, J; Kusano, K D; Gayzik, F S

    2017-07-04

    The objective of this study is to use a validated finite element model of the human body and a certified model of an anthropomorphic test dummy (ATD) to evaluate the effect of simulated precrash braking on driver kinematics, restraint loads, body loads, and computed injury criteria in 4 commonly injured body regions. The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant (M50-O) and the Humanetics Hybrid III 50th percentile models were gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and driver airbag. Fifteen simulations per model (30 total) were conducted, including 4 scenarios at 3 severity levels: median, severe, and the U.S. New Car Assessment Program (U.S.-NCAP) and 3 extra per model with high-intensity braking. The 4 scenarios were no precollision system (no PCS), forward collision warning (FCW), FCW with prebraking assist (FCW+PBA), and FCW and PBA with autonomous precrash braking (FCW + PBA + PB). The baseline ΔV was 17, 34, and 56.4 kph for median, severe, and U.S.-NCAP scenarios, respectively, and were based on crash reconstructions from NASS/CDS. Pulses were then developed based on the assumed precrash systems equipped. Restraint properties and the generic pulse used were based on literature. In median crash severity cases, little to no risk (<10% risk for Abbreviated injury Scale [AIS] 3+) was found for all injury measures for both models. In the severe set of cases, little to no risk for AIS 3+ injury was also found for all injury measures. In NCAP cases, highest risk was typically found with No PCS and lowest with FCW + PBA + PB. In the higher intensity braking cases (1.0-1.4 g), head injury criterion (HIC), brain injury criterion (BrIC), and chest deflection injury measures increased with increased braking intensity. All other measures for these cases tended to decrease. The ATD also predicted and trended similar to the human body models predictions for both the median

  3. Characteristics of Three-Dimensional Model of the Human Body Scanning System Measurements%三维扫描系统测量的人体特征模型研究

    Institute of Scientific and Technical Information of China (English)

    徐利平; 邹奉元; 曹建达; 刘焘

    2015-01-01

    The clothing ift is an important factor affecting the quality of the garment appearance.Through experiments selected 157 young women in Jiangsu and Zhejiang as samples obtained using the three-dimensional body scanning system corresponding eigenvalues,use SPSS software to these parts of the correlation analysis and multiple regression analysis to the characteristic model of human conduct WHR site the study.The results showed that:WHR correlation bust signiifcantly; waist square section round and bust, waist circumference correlated signiifcantly; waist-sectional circumference below the bust, waist, hip signiifcant correlation; get waist-sectional circumference degree and bust, waist, hip, waist distance relationship from the equation, the establishment of Jiangsu and Zhejiang young female WHR site features model, in order to simplify data download waistline and improve the accuracy of the data obtained to make a contribution.%服装的合体性是影响服装外观质量的重要因素。文章通过实验选取了157名江浙青年女性作为样本,使用三维扫描系统得到人体相应的特征值,利用SPSS软件对这些部位进行了相关性分析和多元回归分析,从而对人体腰臀部位的特征模型进行研究。结果表明:腰围与臀围、胸围的相关性显著;腰上方截面围度与胸围、腰围的相关性显著;腰下方截面围度与胸围、腰围、臀围的相关性显著;得到了腰部截面围度与胸围、腰围、臀围、距腰围距离的关系方程式,建立了江浙青年女性腰臀部位特征模型,为简化下装腰围数据获得和提高数据的精确度作出了贡献。

  4. Regularities of many-body systems interacting by a two-body random ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.M. [Department of Physics, Shanghai Jiao-Tong University, Shanghai 200030 (China) and Cyclotron Center, Institute of Physical and Chemical Research - RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198 (Japan) and Department of Physics, Southeast University, Nanjing 210018 (China)]. E-mail: ymzhao@riken.jp; Arima, A. [Science Museum, Japan Science Foundation, 2-1 Kitanomaru-Koen, Chiyodaku, Tokyo 102-0091 (Japan); Yoshinaga, N. [Department of Physics, Saitama University, Saitama 338-0625 (Japan)

    2004-10-01

    The ground states of all even-even nuclei have angular momentum, I, equal to zero, I=0, and positive parity, {pi}=+. This feature was believed to be a consequence of the attractive short-range interaction between nucleons. However, in the presence of two-body random interactions, the predominance of I{pi}=0+ ground states (0 g.s.) was found to be robust both for bosons and for an even number of fermions. For simple systems, such as d bosons, sp bosons, sd bosons, and a few fermions in single-j shells for small j, there are a few approaches to predict and/or explain spin I ground state (I g.s.) probabilities. An empirical approach to predict I g.s. probabilities is available for general cases, such as fermions in a single-j (j>72) or many-j shells and various boson systems, but a more fundamental understanding of the robustness of 0 g.s. dominance is still out of reach. Further interesting results are also reviewed concerning other robust phenomena of many-body systems in the presence of random two-body interactions, such as the odd-even staggering of binding energies, generic collectivity, the behavior of average energies, correlations, and regularities of many-body systems interacting by a displaced two-body random ensemble.

  5. Choreography and Gravitational Waves for 2-BODY and 3-BODY Gravitating Systems

    Science.gov (United States)

    Asada, Hideki

    In the framework of general relativity, we discuss choreographic solutions for the three-body problem, where a solution is called choreographic if every massive particles move periodically in a single closed orbit. In general relativity, the periastron shift prohibits a binary system from orbiting in a single closed curve. Remarkably, a "figure-eight" solution is shown to be choreographic even at the PN approximation by carefully examining initial conditions. Next, gravitational waves for two- and three-body gravitating systems are discussed as an inverse problem. It is shown that quadrupole waveforms cannot distinguish these sources at particular configurations, especially through extending the definition of the chirp mass to such a three-body system. Finally, we present a conjecture on N particles for classification of sources with multipolar waveforms.

  6. Topographic representation of the human body in the occipitotemporal cortex.

    Science.gov (United States)

    Orlov, Tanya; Makin, Tamar R; Zohary, Ehud

    2010-11-04

    Large-scale topographic representations of the body have long been established in the somatosensory and motor cortices. Using functional imaging, we identified a topographically organized body part map within the occipitotemporal cortex (OTC), with distinct clusters of voxels showing clear preference for different visually presented body parts. This representation was consistent both across hemispheres and participants. Using converging methods, the preference for specific body parts was demonstrated to be robust and did not merely reflect shape differences between the categories. Finally, execution of (unseen) movements with different body parts resulted in a limited topographic representation of the limbs and trunk, which partially overlapped with the visual body part map. This motor-driven activation in the OTC could not be explained solely by visual or motor imagery of the body parts. This suggests that visual and motor-related information converge within the OTC in a body part specific manner. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Human-System task integration

    NARCIS (Netherlands)

    Schraagen, J.M.C.

    2005-01-01

    The Dutch Ministry of Defence research programme Human-System Task Integration aims at acquiring knowledge for the optimal cooperation between human and computer, under the following constraints: freedom of choice in decisions to automate and multiple, dynamic task distributions. This paper describe

  8. Diversity of key players in the microbial ecosystems of the human body.

    Science.gov (United States)

    Jordán, Ferenc; Lauria, Mario; Scotti, Marco; Nguyen, Thanh-Phuong; Praveen, Paurush; Morine, Melissa; Priami, Corrado

    2015-10-30

    Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different.

  9. Analysis of the Body Control System Related to Mental Workload

    Directory of Open Access Journals (Sweden)

    Seiji Naito

    2012-12-01

    Full Text Available In this paper, we present a model-based analysis of the standing posture control mechanism with consideration to mental workload and the physiological features of sensory feedback. It has been known that standing posture control is not performed autonomously or unconsciously but is affected by “working memory” [1]. In order to investigate how mental workload in working memory influences standing posture control, we consider the feedback groups in the standing posture control mechanism which include the viscoelastic characteristics of the musculoskeletal system and sensory feedback. We use a centre of pressure (COP-based tracking task to investigate the influence of mental workload on voluntary (tracking movement. Maurer-Peterka's model is applied to analyse the standing posture control mechanism, with respect to a change in the internal processes. The simulation results show the relationship of the feedback gain and its delay from the central nervous system with the standing posture control performance. The proposed model-based scheme provides a comprehensive view for physiological data analysis of human body movement in relation to mental workload.

  10. Radiation between segments of the seated human body

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    2002-01-01

    Detailed radiation properties for a thermal manikin were predicted numerically. The view factors between individual body-segments and between the body-segments and the outer surfaces were tabulated. On an integral basis, the findings compared well to other studies and the results showed...... that situations exist for which radiation between individual body segments is important....

  11. Height and body mass influence on human body outlines: a quantitative approach using an elliptic Fourier analysis.

    Science.gov (United States)

    Courtiol, Alexandre; Ferdy, Jean Baptiste; Godelle, Bernard; Raymond, Michel; Claude, Julien

    2010-05-01

    Many studies use representations of human body outlines to study how individual characteristics, such as height and body mass, affect perception of body shape. These typically involve reality-based stimuli (e.g., pictures) or manipulated stimuli (e.g., drawings). These two classes of stimuli have important drawbacks that limit result interpretations. Realistic stimuli vary in terms of traits that are correlated, which makes it impossible to assess the effect of a single trait independently. In addition, manipulated stimuli usually do not represent realistic morphologies. We describe and examine a method based on elliptic Fourier descriptors to automatically predict and represent body outlines for a given set of predicted variables (e.g., sex, height, and body mass). We first estimate whether these predictive variables are significantly related to human outlines. We find that height and body mass significantly influence body shape. Unlike height, the effect of body mass on shape differs between sexes. Then, we show that we can easily build a regression model that creates hypothetical outlines for an arbitrary set of covariates. These statistically computed outlines are quite realistic and may be used as stimuli in future studies.

  12. Kinematic simulation of human gait with a multi-rigid-body foot model

    Institute of Scientific and Technical Information of China (English)

    YANG Yan; HU Xiaochun; LI Xiaopeng

    2012-01-01

    The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.

  13. [Measurement of human body fat by means of gravimetry. Application of Archimedes' principle].

    Science.gov (United States)

    Dettwiler, W; Ribordy, M; Donath, A; Scherrer, J R

    1978-12-02

    The weighing of the human body under water is an application of Archimedes' law. Fat being lighter than water or than the structures of lean body mass, body fat can be measured by determining the specific gravity of the human body; that is, by underwater weighing. Body fat has been determined in an "ideal" sample of 14 men and 23 women, all aged 20 years. Testing against a reference measure of body fat makes it possible to test the validity of some anthropometric measurements and of some indices of obesity. These indices offer no advantages over anthropometric measurements.

  14. The Influence of Human Body Orientation on Distance Judgments

    Directory of Open Access Journals (Sweden)

    Edgard eJung

    2016-03-01

    Full Text Available People maintain larger distances to other peoples’ front than to their back. We investigated if humans also judge another person as closer when viewing their front than their back. Participants watched animated virtual characters (avatars and moved a virtual plane towards their location after the avatar was removed. In Experiment 1, participants judged avatars, which were facing them as closer and made quicker estimates than to avatars looking away. In Experiment 2, avatars were rotated in 30 degree steps around the vertical axis. Observers judged avatars roughly facing them (i.e., looking max. 60 degrees away as closer than avatars roughly looking away. No particular effect was observed for avatars directly facing and also gazing at the observer. We conclude that body orientation was sufficient to generate the asymmetry. Sensitivity of the orientation effect to gaze and to interpersonal distance would have suggested involvement of social processing, but this was not observed. We discuss social and lower-level processing as potential reasons for the effect.

  15. The question of the system of protection of human rights

    OpenAIRE

    Revina S.; Pochuykina V.

    2016-01-01

    The Russian state is subject to the human rights activities through the system of state bodies, including the judiciary, as reflected in the Constitution of the Russian Federation. The authors consider the human rights function of the state, judicial protection as one of the ways of state protection of the rights and freedoms of man and citizen, study the elements of General system of protection of human rights in the Russian Federation and its Central element — the right to judicial protecti...

  16. Resonances in nuclear few-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Afnan, I.R. [Flinders Univ. (Australia)

    1993-04-01

    The author demonstrates that the method of contour rotation in momentum space is equivalent to the mapping of the Schroedinger equation in coordinate space onto that part of the second energy plane where resonance poles reside. In this way the author can demonstrate that resonances are eigenstates of the Hamiltonian with complex eigenvalues. The corresponding eigenstates are normalizable. This idea will be demonstrated in a model of {sup 5}Li as an {alpha}N system where the Coulomb energy difference between {sup 5}Li and {sup 5}He is calculated exactly, and by perturbation theory, for both the J{sup {pi}} = 3/2{sup {minus}} and 1/2{sup {minus}} resonances. To show how these ideas can be implemented for the Faddeev equations, the author first determines the low lying spectrum of the A=6 nuclei as an {alpha}NN system, and then demonstrates the possible formation of a {Sigma}-hypertriton as a YNN resonance near the threshold for {Sigma} production in {Lambda}d scattering.

  17. Body mass index is not associated with cytokine induction during experimental human endotoxemia.

    Science.gov (United States)

    van Eijk, Lucas T; van der Pluijm, Rob W; Ramakers, Bart Pc; Dorresteijn, Mirrin J; van der Hoeven, Johannes G; Kox, Matthijs; Pickkers, Peter

    2014-01-01

    A higher body mass index (BMI) appears to be associated with lower mortality in critically ill patients, possibly explained by an altered innate immune response. However, the precise relationship between BMI and the innate immune response in humans in vivo is unknown. We investigated the relationship between BMI and the systemic cytokine response during experimental human endotoxemia. Endotoxemia was induced in 112 healthy male volunteers by intravenous administration of 2 ng/kg Escherichia coli endotoxin. Plasma concentrations of TNF-α, IL-6, IL-10 and IL-1RA were serially determined. The relationship between BMI and the cytokine response, as well as body temperature, was investigated. The BMIs of the participants ranged from 18.3 to 33.6 kg/m(2), (median: 22.7 kg/m(2)). All participants showed a marked increase in plasma cytokine levels [median (interquartile range)] peak levels: TNF-α 509 (353-673) pg/ml; IL-6 757 (522-1098) pg/ml; IL-10 271 (159-401) pg/ml; IL-1RA 4882 (3927-6025) pg/ml; and an increase in body temperature [1.8(1.4-2.2)] during endotoxemia. No significant correlations were found between BMI and levels of any of the cytokines or body temperature. No relationship between BMI and the cytokine response was found in healthy volunteers subjected to experimental endotoxemia. These data question the relationship between BMI and cytokine responses in critical illness.

  18. Physical passaging of embryoid bodies generated from human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Mi-Young Son

    Full Text Available Spherical three-dimensional cell aggregates called embryoid bodies (EBs, have been widely used in in vitro differentiation protocols for human pluripotent stem cells including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs. Recent studies highlight the new devices and techniques for hEB formation and expansion, but are not involved in the passaging or subculture process. Here, we provide evidence that a simple periodic passaging markedly improved hEB culture condition and thus allowed the size-controlled, mass production of human embryoid bodies (hEBs derived from both hESCs and hiPSCs. hEBs maintained in prolonged suspension culture without passaging (>2 weeks showed a progressive decrease in the cell growth and proliferation and increase in the apoptosis compared to 7-day-old hEBs. However, when serially passaged in suspension, hEB cell populations were significantly increased in number while maintaining the normal rates of cell proliferation and apoptosis and the differentiation potential. Uniform-sized hEBs produced by manual passaging using a 1∶4 split ratio have been successfully maintained for over 20 continuous passages. The passaging culture method of hEBs, which is simple, readily expandable, and reproducible, could be a powerful tool for improving a robust and scalable in vitro differentiation system of human pluripotent stem cells.

  19. Nonlocality in many-body quantum systems detected with two-body correlators

    Energy Technology Data Exchange (ETDEWEB)

    Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)

    2015-11-15

    Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.

  20. Human resources in innovation systems

    DEFF Research Database (Denmark)

    Nielsen, René Nesgaard

    2007-01-01

    Human resources in innovation systems: With focus on introduction of highly educated labour in small Danish firms This thesis has two purposes: (1) a ‘general' purpose to enhance our knowledge on the relationship between innovation, technological and organisational change, and human resources......, including knowledge and skills embodied in human resources, and (2) a more ‘specific' purpose to enhance our knowledge on introduction of highly educated labour, innovation, and upgrading changes in small Danish firms. Chapter 1 establishes the relevance of this research interest, and it also states...... stemming from human resources - such as insight, understanding, creativity, and action - are inherently important to all innovation processes. The chapter also suggests a tentative conceptual and analytical framework for studying human resources and their development within a system of innovation approach...

  1. A simplified thermoregulation model of the human body in warm conditions.

    Science.gov (United States)

    Li, Baizhan; Yang, Yu; Yao, Runming; Liu, Hong; Li, Yongqiang

    2017-03-01

    Thermoregulation models of the human body have been widely used in thermal comfort studies. The existing models are complicated and not fully verified for application in China. This paper presents a simplified thermoregulation model which has been statistically validated by the predicted and measured mean skin temperature in warm environments, including 21 typical conditions with 400 Chinese subjects. This model comprises three parts: i) the physical model; ii) the controlled system; and iii) the controlling system, and considers three key questions formerly ignored by the existing models including: a) the evaporation efficiency of regulatory sweat; b) the proportional relation of total skin blood flow and total heat loss by regulatory sweating against body surface area; and c) discrepancies in the mean skin temperatures by gender. The developed model has been validated to be within the 95% confidence interval of the population mean skin temperature in three cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Artificial Human Phantoms: Human proxy in testing microwave apparatus that have electromagnetic interaction with the human body

    CERN Document Server

    Mobashsher, A T

    2015-01-01

    In this manuscript, an effort is made in this review to address different state-of-the-art artificial tissue emulating (ATE) materials and phantom types for various operating frequencies, and fabrication procedures in order to have a better understanding of the pros and cons of various ATE phantoms which leads us to develop superior version of artificial human body substitute for various applications.

  3. The effect of water temperature on the human body and the swimming effort

    Directory of Open Access Journals (Sweden)

    SERAFEIM ALEXIOU

    2014-10-01

    Full Text Available Although many research papers have dealt with the influence of environmental temperature on the various Human body functions during exercise in land, a few only informations exist for the equivalent alterations in water temperatures during immersion and swimming. The present preview research paper is referred on this subject. During swimming in the normal water temperature 26° ± 1° C (63, the functions of the human body respond regularly and the performance of swimmers tends to be improved. However, during swimming in cold water critical differences appear in human functions, such as bradycardia, angiospasm, hyperventilation and adaptations of thermoregulatory mechanism which influence the swimming performance and the life itself. Especially in very cold water temperature the disturbances of the cardiovascular system may lead in critical arrhythmia or sudden death. The cold water temperature, however, influences the kinetic and energy behavior related to the reduction of swimmers performance because of its possible influence on the neuromuscular function. In the increased water temperature up to 28° C appears tachycardia, vasodilation and other alternations which aim to better thermoregulation. The swimmers records are possibly equivalent with a tendency to be improved, to the records in normal temperature of championships 26° C and the increased temperature mainly in the speed events (3. Therefore, there is a differentiation on swimmers performances due to water temperature declination from normal. Also, body functions change during water immersion.

  4. [Anatomical discoveries and concept of human body structure in Nan-jing (Classic of Questioning)].

    Science.gov (United States)

    Yang, Shi-zhe

    2006-04-01

    What Nan-jing (Classic of Questioning) contributes to the anatomical discoveries and concepts of human body structure in TCM is that it clarifies the concept, function and anatomical essence of viscera and bowels. It is the first. book that clearly defines the triple jiao as a "qi bowel", This statement is a typical example of Chinese dualistic system of its view on the human body, consisting of physical and spiritual components. This has stirred up confusion for modern interpretation and, as a result, some thought the visceral theory in the book is not based on substantial basis of anatomy. However, the Forty-second Question in Nan-jing not only carries the contents about Wei (stomach), Xiaochang (small intestine), Huichang (large intestine) and Guangchang (anus) in the chapter of "Intestine and Stomach" in Lingshu Jing (Miraculous Pivot), but also changes these names to those we actually use today in the latter chapters; and it also records the gross anatomical shape and size of gall bladder, urinary bladder and all the five viscerae. So, Nan-jing discusses the structure of human body in ancient times, and is equivalent to an integrated science of modern physiology and anatomy, and establishes a solid basis for the fundamental theory of TCM.

  5. Human Body Modeling and Posture Simulating Based on 3D Surface Scan Data

    Institute of Scientific and Technical Information of China (English)

    马永有; 张辉; 任少云; 蒋寿伟

    2003-01-01

    This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used to determine the posture of the body,and the latter is used to generate the body shape according to the given posture. The body surface is reconstructed with multi-segment B-spline surfaces based on the 3D scan data from a real human body.Using only a few joints parameters and the original surface scan data, the various body postures and the shape can be generated easily. The model has a strong potential of being used for ergonomic design,garment design, virtual reality environment, as well as creating human animation, etc.

  6. Human resources in innovation systems

    DEFF Research Database (Denmark)

    Nielsen, René Nesgaard

    2007-01-01

    the research questions which are studied in the thesis.      Chapter 2 reviews relevant literature on systems of innovation, human capital, and skill-biased technological and organisational change. It is stated in the chapter that this thesis primarily refers to a system of innovation approach as its......Human resources in innovation systems: With focus on introduction of highly educated labour in small Danish firms This thesis has two purposes: (1) a ‘general' purpose to enhance our knowledge on the relationship between innovation, technological and organisational change, and human resources......, including knowledge and skills embodied in human resources, and (2) a more ‘specific' purpose to enhance our knowledge on introduction of highly educated labour, innovation, and upgrading changes in small Danish firms. Chapter 1 establishes the relevance of this research interest, and it also states...

  7. Efimov physics in heteronuclear four-body systems.

    Science.gov (United States)

    Wang, Yujun; Laing, W Blake; von Stecher, Javier; Esry, B D

    2012-02-17

    We study three- and four-body Efimov physics in a heteronuclear atomic system with three identical heavy bosonic atoms and one light atom. We show that exchange of the light atom between the heavy atoms leads to both three- and four-body features in the low-energy inelastic rate constants that trace to the Efimov effect. Further, the effective interaction generated by this exchange can provide an additional mechanism for control in ultracold experiments. Finally, we find that there is no true four-body Efimov effect-that is, no infinite number of four-body states in the absence of two- and three-body bound states-resolving a decades-long controversy.

  8. Hypothermia – mechanism of action and pathophysiological changes in the human body

    Directory of Open Access Journals (Sweden)

    Przemysław Sosnowski

    2015-01-01

    Full Text Available This review focuses on the physiological responses and pathophysiological changes induced by hypothermia. Normal body function depends on its ability to maintain thermal homeostasis. The human body can be divided arbitrarily into two thermal compartments: a core compartment (trunk and head, with precisely regulated temperature around 37°C, and a peripheral compartment (skin and extremities with less strictly controlled temperature, and lower than the core temperature. Thermoregulatory processes occur in three phases: afferent thermal sensing, central regulation, mainly by the preoptic area of the anterior hypothalamus, and efferent response. Exposure to cold induces thermoregulatory responses including cutaneous vasoconstriction, shivering and non-shivering thermogenesis, and behavioral changes. Alterations of body temperature associated with impaired thermoregulation, decreased heat production or increased heat loss can lead to hypothermia. Hypothermia is defined as a core body temperature below 35ºC, and may be classified according to the origin as accidental (e.g. caused by exposure to a cold environment, drugs, or illness or intentional (i.e. therapeutic, or by the degree of hypothermia as mild, moderate or severe. Classification by temperature is not universal. Lowering of body temperature disrupts the physiological processes at the molecular, cellular and system level, but hypothermia induced prior to cardiosurgical or neurosurgical procedures, by the decrease in tissue oxygen demand, can reduce the risk of cerebral or cardiac ischemic damage. Therapeutic hypothermia has been recommended as a clinical procedure in situations characterized by ischemia, such as cardiac arrest, stroke and brain injuries.

  9. [Hypothermia--mechanism of action and pathophysiological changes in the human body].

    Science.gov (United States)

    Sosnowski, Przemysław; Mikrut, Kinga; Krauss, Hanna

    2015-01-16

    This review focuses on the physiological responses and pathophysiological changes induced by hypothermia. Normal body function depends on its ability to maintain thermal homeostasis. The human body can be divided arbitrarily into two thermal compartments: a core compartment (trunk and head), with precisely regulated temperature around 37°C, and a peripheral compartment (skin and extremities) with less strictly controlled temperature, and lower than the core temperature. Thermoregulatory processes occur in three phases: afferent thermal sensing, central regulation, mainly by the preoptic area of the anterior hypothalamus, and efferent response. Exposure to cold induces thermoregulatory responses including cutaneous vasoconstriction, shivering and non-shivering thermogenesis, and behavioral changes. Alterations of body temperature associated with impaired thermoregulation, decreased heat production or increased heat loss can lead to hypothermia. Hypothermia is defined as a core body temperature below 35ºC, and may be classified according to the origin as accidental (e.g. caused by exposure to a cold environment, drugs, or illness) or intentional (i.e. therapeutic), or by the degree of hypothermia as mild, moderate or severe. Classification by temperature is not universal. Lowering of body temperature disrupts the physiological processes at the molecular, cellular and system level, but hypothermia induced prior to cardiosurgical or neurosurgical procedures, by the decrease in tissue oxygen demand, can reduce the risk of cerebral or cardiac ischemic damage. Therapeutic hypothermia has been recommended as a clinical procedure in situations characterized by ischemia, such as cardiac arrest, stroke and brain injuries.

  10. On the Nature of Five Reservoir is Sub System of Human Body-On the Principle of Function Describes the Essence of Five Reservoirs Using Chinese Medicine System%论五藏的本质是人体的功能子系统-利用中医系统论功能性原理阐述五藏的本质

    Institute of Scientific and Technical Information of China (English)

    石军

    2014-01-01

    以功能为核心的藏象学说中的五藏,不同于西医解剖、生理学上的五脏,五藏系统具有比五脏更复杂的内涵和外延,中医脏腑的生理是指五藏系统的综合功能而言,五藏的本质是人体的功能子系统。%In order to function as the core of the theory of Zangxiang in five reservoirs, dif erent from the Western anatomy, physiology of the five zang organs, five reservoir system has the connotation and extension is more complex than the five internal organs, physiology of TCM is refers to the comprehensive function of five reservoir systems in terms of the nature, five reservoir is the human body function subsystem.

  11. A novel human body exergy consumption formula to determine indoor thermal conditions for optimal human performance in office buildings

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2013-01-01

    to optimal human performance, as has so often been assumed. According to the second law of thermodynamics, it makes sense that optimal human performance coincides with minimum human body exergy consumption and that this should occur under thermal conditions in which human thermal sensation is close...

  12. Remarks on human body posture estimation from silhouette image based on heuristic rules and Kalman filter

    Science.gov (United States)

    Takahashi, Kazuhiko; Naemura, Masahide

    2005-12-01

    This paper proposes a human body posture estimation method based on analysis of human silhouette and Kalman filter. The proposed method is based on both the heuristically extraction method of estimating the significant points of human body and the contour analysis of the human silhouette. The 2D coordinates of the human body's significant points, such as top of the head, and tips of feet, are located by applying the heuristically extraction method to the human silhouette, those of tips of hands are obtained by using the result of the contour analysis, and the joints of elbows and knees are estimated by introducing some heuristic rules to the contour image of the human silhouette. The estimated results are optimized and tracked by using Kalman filter. The proposed estimation method is implemented on a personal computer and runs in real-time. Experimental results show both the feasibility and the effectiveness of the proposed method for estimating human body postures.

  13. Physiological models of body composition and human obesity

    Directory of Open Access Journals (Sweden)

    Shapses Sue A

    2007-09-01

    Full Text Available Abstract Background The body mass index (BMI is the standard parameter for predicting body fat fraction and for classifying degrees of obesity. Currently available regression equations between BMI and fat are based on 2 or 3 parameter empirical fits and have not been validated for highly obese subjects. We attempt to develop regression relations that are based on realistic models of body composition changes in obesity. These models, if valid, can then be extrapolated to the high fat fraction of the morbidly obese. Methods The analysis was applied to 3 compartment (density and total body water measurements of body fat. The data was collected at the New York Obesity Research Center, Body Composition Unit, as part of ongoing studies. A total of 1356 subjects were included, with a BMI range of 17 to 50 for males and 17 to 65 for females. The body composition model assumes that obese subjects can be represented by the sum of a standard lean reference subject plus an extra weight that has a constant adipose, bone and muscle fraction. Results There is marked age and sex dependence in the relationship between BMI and fat fraction. There was no significant difference among Caucasians, Blacks and Hispanics while Asians had significantly greater fat fraction for the same BMI. A linear relationship between BMI and fat fraction provides a good description for men but overestimates the fat fraction in morbidly obese women for whom a non-linear regression should be used. New regression relations for predicting body fat just from experimental measurements of body density are described that are more accurate then those currently used. From the fits to the experimental BMI and density data, a quantitative description of the bone, adipose and muscle body composition of lean and obese subjects is derived. Conclusion Physiologically realistic models of body composition provide both accurate regression relations and new insights about changes in body composition in

  14. Physiological models of body composition and human obesity

    OpenAIRE

    Shapses Sue A; Pierson Richard N; Heymsfield Steven B; Levitt David G; Kral John G

    2007-01-01

    Abstract Background The body mass index (BMI) is the standard parameter for predicting body fat fraction and for classifying degrees of obesity. Currently available regression equations between BMI and fat are based on 2 or 3 parameter empirical fits and have not been validated for highly obese subjects. We attempt to develop regression relations that are based on realistic models of body composition changes in obesity. These models, if valid, can then be extrapolated to the high fat fraction...

  15. Virtual Character Animations from Human Body Motion by Automatic Direct and Inverse Kinematics-based Mapping

    Directory of Open Access Journals (Sweden)

    Andrea Sanna

    2015-02-01

    Full Text Available Motion capture systems provide an efficient and interactive solution for extracting information related to a human skeleton, which is often exploited to animate virtual characters. When the character cannot be assimilated to an anthropometric shape, the task to map motion capture data onto the armature to be animated could be extremely challenging. This paper presents two methodologies for the automatic mapping of a human skeleton onto virtual character armatures. Kinematics chains of the human skeleton are analyzed in order to map joints, bones and end-effectors onto an arbitrary shaped armatures. Both forward and inverse kinematics are considered. A prototype implementation has been developed by using the Microsoft Kinect as body tracking device. Results show that the proposed solution can already be used to animate truly different characters ranging from a Pixar-like lamp to different kinds of animals.

  16. Accelerator-feasible N -body nonlinear integrable system

    Science.gov (United States)

    Danilov, V.; Nagaitsev, S.

    2014-12-01

    Nonlinear N -body integrable Hamiltonian systems, where N is an arbitrary number, have attracted the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.

  17. [Human body composition during extended stay in microgravity].

    Science.gov (United States)

    Noskov, V B; Nichiporuk, I A; Vasilieva, G Yu; Smirnov, Yu I

    2015-01-01

    According to the Sprut-2 protocol, bio-impedancemetry of ISS cosmonauts was performed once a month and also before and after mission. Multiple non-invasive body measurements were carried out in 15 cosmonauts in real time. Relocation of extracellular liquid along the body axis led to its reduction in legs and, on the contrary, an increase in the abdomen. Volumes of total body liquid as well as intra- and extracellular liquids decreased in comparison with pre-flight levels. Lean body mass also became less in microgravity, whereas fat mass showed an increase.

  18. A review of the volatiles from the healthy human body.

    Science.gov (United States)

    de Lacy Costello, B; Amann, A; Al-Kateb, H; Flynn, C; Filipiak, W; Khalid, T; Osborne, D; Ratcliffe, N M

    2014-03-01

    A compendium of all the volatile organic compounds (VOCs) emanating from the human body (the volatolome) is for the first time reported. 1840 VOCs have been assigned from breath (872), saliva (359), blood (154), milk (256), skin secretions (532) urine (279), and faeces (381) in apparently healthy individuals. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been grouped into tables according to their chemical class or functionality to permit easy comparison. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces. Careful use of the database is needed. The numbers may not be a true reflection of the actual VOCs present from each bodily excretion. The lack of a compound could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from blood compared to a large number on VOCs in breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. collecting excretions on glass beads and then heating to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this database will not only be a useful database of VOCs listed in the literature, but will stimulate further study of VOCs from healthy individuals. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.

  19. Comparison of Systems for Levitation Heating of Electrically Conductive Bodies

    Directory of Open Access Journals (Sweden)

    Bohus Ulrych

    2004-01-01

    Full Text Available Levitation heating of nonmagnetic electrically conductive bodies can be realized in various systems consisting of one of more inductors. The paper deals with compassion of the resultant. Lorentz lifts force acting on such a body (cylinder, sphere and velocity of its heating for different shapes of coils and parameters of the field currents (amplitudes, frequency. The tack is solved in quasi-coupled formulation. Theoretical considerations are supplemented with an illustrative example whose results are discussed.

  20. Ultracold atoms for simulation of many body quantum systems

    Science.gov (United States)

    Hutchinson, David A. W.

    2017-01-01

    Feynman famously proposed simulating quantum physics using other, better controlled, quantum systems. This vision is now a reality within the realm of ultracold atomic physics. We discuss how these systems can be used to simulate many body physics, concentrating the Berezinskii-Kosterlitz-Thouless transition in 2D physics and the role of disorder.

  1. Spin Structure of Many-Body Systems with Two-Body Random Interactions

    CERN Document Server

    Kaplan, L; Johnson, C W; Kaplan, Lev; Papenbrock, Thomas; Johnson, Calvin W.

    2001-01-01

    We investigate the spin structure of many-fermion systems with a spin-conserving two-body random interaction. We find a strong dominance of spin-0 ground states and considerable correlations between energies and wave functions of low-lying states with different spin, but no indication of pairing. The spectral densities exhibit spin-dependent shapes and widths, and depend on the relative strengths of the spin-0 and spin-1 couplings in the two-body random matrix. The spin structure of low-lying states can largely be explained analytically.

  2. Metabolism of fatty acids and lipid hydroperoxides in human body monitoring with Fourier transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang Qin-Zeng

    2009-07-01

    Full Text Available Abstract Background The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. Results We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR – attenuated total reflection (ATR detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005~3015 cm-1, of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm-1. Conclusion The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively.

  3. Effect of Human Movement on Galvanic Intra-Body Communication during Single Gait Cycle

    Science.gov (United States)

    Ibrahim, I. W.; Razak, A. H. A.; Ahmad, A.; Salleh, M. K. M.

    2015-11-01

    Intra-body communication (IBC) is a communication system that uses human body as a signal transmission medium. From previous research, two coupling methods of IBC were concluded which are capacitive coupling and galvanic coupling. This paper investigates the effect of human movement on IBC using the galvanic coupling method. Because the human movement is control by the limb joint, the knee flexion angle during gait cycle was used to examine the influence of human movement on galvanic coupling IBC. The gait cycle is a cycle of people walking that start from one foot touch the ground till that foot touch the ground again. Frequency range from 300 kHz to 200MHz was swept in order to investigate the signal transmission loss and the result was focused on operating frequency 70MHz to 90MHz. Results show that the transmission loss varies when the knee flexion angle increased. The highest loss of signal at frequency range between 70MHz to 90 MHz was 69dB when the knee flexion angle is 50° and the minimum loss was 51dB during the flexion angle is 5°.

  4. The effect of stress on core and peripheral body temperature in humans

    NARCIS (Netherlands)

    Vinkers, Christiaan H.; Penning, Renske; Hellhammer, Juliane; Verster, Joris C.; Klaessens, John H. G. M.; Olivier, Berend; Kalkman, Cor J.

    2013-01-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature u

  5. The story of the body and the story of the person: towards an ethics of representing human bodies and body-parts.

    Science.gov (United States)

    Barilan, Y Michael

    2005-01-01

    Western culture has a few traditions of representing the human body - among them mortuary art (gisants), the freak show, the culture of the relics, renaissance art and pre-modern and modern anatomy. A historical analysis in the spirit of Norbert Elias is offered with regard to body - person relationship in anatomy. Modern anatomy is characterized by separating the story of the person from the story of the body, a strategy that is incompatible with the bio-psycho-social paradigm of clinical medicine. The paper discusses different aspects of the above traditions and how they might bear on this conflict and on contemporary bioethics and bedside practice.

  6. Contribution of thermal and nonthermal factors to the regulation of body temperature in humans.

    Science.gov (United States)

    Mekjavic, Igor B; Eiken, Ola

    2006-06-01

    The set point has been used to define the regulated level of body temperature, suggesting that displacements of core temperature from the set point initiate heat production (HP) and heat loss (HL) responses. Human and animal experiments have demonstrated that the responses of sweating and shivering do not coincide at a set point but rather establish a thermoeffector threshold zone. Neurophysiological studies have demonstrated that the sensor-to-effector pathways for HP and HL overlap and, in fact, mutually inhibit each other. This reciprocal inhibition theory, presumably reflecting the manner in which thermal factors contribute to homeothermy in humans, does not incorporate the effect of nonthermal factors on temperature regulation. The present review examines the actions of these nonthermal factors within the context of neuronal models of temperature regulation, suggesting that examination of these factors may provide further insights into the nature of temperature regulation. It is concluded that, although there is no evidence to doubt the existence of the HP and HL pathways reciprocally inhibiting one another, it appears that such a mechanism is of little consequence when comparing the effects of nonthermal factors on the thermoregulatory system, since most of these factors seem to exert their influence in the region after the reciprocal cross-inhibition. At any given moment, both thermal and several nonthermal factors will be acting on the thermoregulatory system. It may, therefore, not be appropriate to dismiss the contribution of either when discussing the regulation of body temperature in humans.

  7. Understanding quantum work in a quantum many-body system.

    Science.gov (United States)

    Wang, Qian; Quan, H T

    2017-03-01

    Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)2160-330810.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)1539-375510.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.

  8. Dental orthopantomogram biometrics system for human identification.

    Science.gov (United States)

    Singh, Sandeep; Bhargava, Darpan; Deshpande, Ashwini

    2013-07-01

    Fingerprinting is the most widely accepted method of identification of people. But in cases of disfigured, decomposed, burnt or fragmented bodies, it is of limited value. Teeth and dental restorations on the other hand are extremely resistant to destruction by fire. They retain a number of their original characteristics, which are often unique and hence offer a possibility of rather accurate and legally acceptable identification of such remains. This study was undertaken to evaluate the utility of orthopantomography for human identification and propose a coding system for orthopantomogram (OPG), which can be utilized as an identification tool in forensic sciences.

  9. Transport of gaseous pollutants by convective boundary layer around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    This study investigates the ability of the human convective boundary layer to transport pollution in a quiescent indoor environment. The impact of the source location in the vicinity of a human body is examined in relation to pollution distribution in the breathing zone and the thickness...... of the pollution boundary layer. The study, in addition, evaluates the effects of the room air temperature, table positioning, and seated body inclination. The human body is represented by a thermal manikin that has a body shape, size, and surface temperature that resemble those of a real person. The results show...... at the upper back or behind the chair. The results also indicate that a decrease in personal exposure to pollutants released from or around the human body increases the extent to which the pollution spreads to the surroundings. Reducing the room air temperature or backward body inclination intensifies...

  10. [A portable impedance meter for monitoring liquid compartments of human body under space flight conditions].

    Science.gov (United States)

    Noskov, V B; Nikolaev, D V; Tuĭkin, S A; Kozharinov, V I; Grachev, V A

    2007-01-01

    A portable two-frequency tetrapolar impedance meter was developed to study the state of liquid compartments of human body under zero-gravity conditions. The portable impedance meter makes it possible to monitor the hydration state of human body under conditions of long-term space flight on board international space station.

  11. An investigation on the assessed thermal sensation and human body exergy consumption rate

    DEFF Research Database (Denmark)

    Simone, Angela; Kolarik, Jakub; Iwamatsu, Toshiya

    2010-01-01

    -environment research has been explored in the present work. The relationship of subjectively assessed thermal sensation data, from earlier thermal comfort studies, to the calculated human-body exergy consumption has been analysed. The results show that the minimum human body exergy consumption rate was related...

  12. Examining human-system interactions: The HSYS (Human SYStem) methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S.G.; Harbour, J.L.; Sullivan, C.; Hallbert, B.P. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

    1990-01-01

    HSYS is a model-based methodology developed to examine the many factors which influence Human-SYStem interactions. HSYS is built around a linear model of human performance, called the Input-Action model, which describes five sequential steps: Input Detection, Input Understanding, Action Selection, Action Planning, and Action Execution. HSYS is structured in an hierarchical tree which presents a logical structure for examining potential areas where human performance, hardware or other system components are less than adequate. The HSYS tree consists of five major branches which correspond to the five major components of the Input-Action model. Initial validation was begun by studying accident reports via HSYS and identifying sources of error. The validation process has continued with accident investigations in operational settings. 9 refs., 3 figs.

  13. Measuring entanglement entropy in a quantum many-body system.

    Science.gov (United States)

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-01

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

  14. Uranium(VI) Binding Forms in Selected Human Body Fluids: Thermodynamic Calculations versus Spectroscopic Measurements.

    Science.gov (United States)

    Osman, Alfatih A A; Geipel, Gerhard; Barkleit, Astrid; Bernhard, Gert

    2015-02-16

    Human exposure to uranium increasingly becomes a subject of interest in many scientific disciplines such as environmental medicine, toxicology, and radiation protection. Knowledge about uranium chemical binding forms(speciation) in human body fluids can be of great importance to understand not only its biokinetics but also its relevance in risk assessment and in designing decorporation therapy in the case of accidental overexposure. In this study, thermodynamic calculations of uranium speciation in relevant simulated and original body fluids were compared with spectroscopic data after ex-situ uranium addition. For the first time, experimental data on U(VI) speciation in body fluids (saliva, sweat, urine) was obtained by means of cryogenic time-resolved laser-induced fluorescence spectroscopy (cryo-TRLFS) at 153 K. By using the time dependency of fluorescence decay and the band positions of the emission spectra, various uranyl complexes were demonstrated in the studied samples. The variations of the body fluids in terms of chemical composition, pH, and ionic strength resulted in different binding forms of U(VI). The speciation of U(VI) in saliva and in urine was affected by the presence of bioorganic ligands, whereas in sweat, the distribution depends mainly on inorganic ligands. We also elucidated the role of biological buffers, i.e., phosphate (H(2)PO(4−)/HPO(4)(2−)) on U(VI) distribution, and the system Ca(2+)/UO(2)(2+)/PO(4)(3−) was discussed in detail in both saliva and urine. The theoretical speciation calculations of the main U(VI) species in the investigated body fluids were significantly consistent with the spectroscopic data. Laser fluorescence spectroscopy showed success and reliability for direct determination of U(VI) in such biological matrices with the possibility for further improvement.

  15. A gamma-ray therapeutic system applied to treatment of body tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu; DUAN Zheng-Cheng; ZHU Guo-Li; GONG Shi-Hua; LI Xiao-Ping

    2004-01-01

    In order to treat malignant tumors in human body, a stereotactic gamma-ray whole-body therapeutic system has been developed. This system is a typical large mechatronics treatment machine. In this paper, its main working principles and characteristics are introduced. This system comprises a special gallows frame with an open vertical structure, a changeable collimator device by which the size of convergence center can be chosen, and a 3D treatment couch. A computer brings the couch to target position automatically. Therefore precise and dynamic rotary converging therapy for tumors located anywhere in the body has been realized. The system's performance has been proved in practice, which includes good curative effect, reliable automation, and safe and secure operation.

  16. The relationship between the stomatognathic system and body posture

    Directory of Open Access Journals (Sweden)

    Antonino Cuccia

    2009-01-01

    Full Text Available In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing, oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system's proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus. If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss.

  17. The relationship between the stomatognathic system and body posture.

    Science.gov (United States)

    Cuccia, Antonino; Caradonna, Carola

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system's proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss.

  18. Building an experimental model of the human body with non-physiological parameters.

    Science.gov (United States)

    Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi

    2017-03-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10(-6)) microfluidic model of the human body.

  19. Few-Body Systems in Low-Dimensional Geometries

    DEFF Research Database (Denmark)

    Volosniev, Artem

    2013-01-01

    be applied. For this setup few-body bound structures are found for different polarization an- gles and dipole strengths by using stochastic variational methods. After that a similar analysis is provided for two-dimensional planes filled with dipolar par- ticles. At the end of the thesis, a system......The research in this dissertation is devoted to few-body bound state physics in experimentally relevant systems of trapped atoms and molecules. First, the complexes of tubes containing dipoles are considered. The tubes are assumed to have zero width such that one-dimensional treatment can...

  20. Quasi-three body systems - properties and scattering

    CERN Document Server

    Amusia, M Ya

    2016-01-01

    We investigate systems of three mutually interacting particles with masses of which the inner is much bigger than the intermediate and the latter is much bigger than the outer. Then the three-body problem reduces to the two-body scattering or structure of the light one in the field of the pseudo-nucleus formed by two others. We calculate analytically the properties of considered systems, such as the scattering cross-sections, hyperfine splitting, Auger decay of exited states and Lamb shits, presenting them as expansions in powers of the ratio of light to intermediate particle masses. This ratio is the small parameter of the studied problems.

  1. Optic properties of bile liquid crystals in human body

    Institute of Scientific and Technical Information of China (English)

    Hai Ming Yang; Jie Wu; Jian Li Zhou; Li Jun He; Xian Fang Xu; Jin Yi Li

    2000-01-01

    AIM To further study the properties of bile liquid crystals, and probe into the relationship between bile liquid crystals and gallbladder stone formation, and provide evidence for the prevention and treatment of cholecystolithissis. METNODS The optic properties of bile liquid crystals in human body were determined by the method of crystal optics under polarizing microscope with plane polarized light and perpendicular polarized light. RESULTS Under a polarizing microscope with plane polarized light, bile liquid crystals scattered in bile appeared round, oval or irregularly round. The color of bile liquid crystals was a little lighter than that of the bile around. When the stage was turned round, the color of bile liquid crystals or the darkness and lightness of the color did not change obviously. On the border between bile liquid crystals and the bile around, brighter Becke-Line could be observed. When the microscope tube is lifted, Becke. Line moved inward, and when lowered,Becke-Line moved outward. Under a perpendicular polarized light, bile liquid crystals showd some special interference patterns, called Malta cross. When the stage was tuming round at an angle of 360°, the Malta cross showed four times of extinction. In the vibrating direction of 45° angle of relative to upper and lower polarizing plate, gypsum test-board with optical path difference of 530 nm was inserted, the first and the third quadrants of Malta cross appeared to be blue, and the second and the fourth quadrants appeared orange. When mica test-board with optical path difference of 147 nm was inserted, the first and the third quadrants of Malta cross appeared yellow, and the second and the fourth quadrants appeared dark grey. CONCLUSION The bile liquid crystals were distributed in bile in the form of global grains. Their polychroism and absorption were slight,but the edge and Becke-Line were very clear. Its refractive index was larger than that of the bile.These liquid crystals were uniaxial

  2. Body surface mounted biomedical monitoring system using Bluetooth.

    Science.gov (United States)

    Nambu, Masayuki

    2007-01-01

    Continuous monitoring in daily life is important for the health condition control of the elderly. However, portable or wearable devices need to carry by user on their own will. On the other hand, implantation sensors are not adoptable, because of generic users dislike to insert the any object in the body for monitoring. Therefore, another monitoring system of the health condition to carry it easily is necessary. In addition, ID system is necessary even if the subject live with few families. Furthermore, every measurement system should be wireless system, because not to obstruct the daily life of the user. In this paper, we propose the monitoring system, which is mounted on the body surface. This system will not obstruct the action or behavior of user in daily life, because this system attached the body surface on the back of the user. In addition, this system has wireless communication system, using Bluetooth, and acquired data transfer to the outside of the house via the Internet.

  3. Human telomerase and Cajal body ribonucleoproteins share a unique specificity of Sm protein association.

    Science.gov (United States)

    Fu, Dragony; Collins, Kathleen

    2006-03-01

    Cajal bodies are nuclear structures that host RNA modification and assembly reactions. Some RNAs transit Cajal bodies, while others must concentrate in Cajal bodies to function. Here we report that at least a subfraction of human telomerase RNA and individual resident Cajal body RNAs is associated with Sm proteins. Surprisingly, of seven Sm proteins assembled into a heteroheptameric ring, only a subset copurifies telomerase and Cajal body ribonucleoproteins. We show that a Cajal body RNA localization motif determines this specificity. These discoveries expand the cellular repertoire of Sm protein assemblies and their involvement in ribonucleoprotein localization and function.

  4. Geometric dimension model of virtual astronaut body for ergonomic analysis of man-machine space system

    Science.gov (United States)

    Qianxiang, Zhou

    2012-07-01

    It is very important to clarify the geometric characteristic of human body segment and constitute analysis model for ergonomic design and the application of ergonomic virtual human. The typical anthropometric data of 1122 Chinese men aged 20-35 years were collected using three-dimensional laser scanner for human body. According to the correlation between different parameters, curve fitting were made between seven trunk parameters and ten body parameters with the SPSS 16.0 software. It can be concluded that hip circumference and shoulder breadth are the most important parameters in the models and the two parameters have high correlation with the others parameters of human body. By comparison with the conventional regressive curves, the present regression equation with the seven trunk parameters is more accurate to forecast the geometric dimensions of head, neck, height and the four limbs with high precision. Therefore, it is greatly valuable for ergonomic design and analysis of man-machine system.This result will be very useful to astronaut body model analysis and application.

  5. [Some traditional representations of the human body in Basque].

    Science.gov (United States)

    Duvert, Michel

    2008-01-01

    This work is a selection of ethnographic data chiefly collected in the North of the Basque Country. It suggests restoring the traditional image of body and proposes interpretation of "historical meanings".

  6. Inverse and forward dynamics: models of multi-body systems.

    Science.gov (United States)

    Otten, E

    2003-01-01

    Connected multi-body systems exhibit notoriously complex behaviour when driven by external and internal forces and torques. The problem of reconstructing the internal forces and/or torques from the movements and known external forces is called the 'inverse dynamics problem', whereas calculating motion from known internal forces and/or torques and resulting reaction forces is called the 'forward dynamics problem'. When stepping forward to cross the street, people use muscle forces that generate angular accelerations of their body segments and, by virtue of reaction forces from the street, a forward acceleration of the centre of mass of their body. Inverse dynamics calculations applied to a set of motion data from such an event can teach us how temporal patterns of joint torques were responsible for the observed motion. In forward dynamics calculations we may attempt to create motion from such temporal patterns, which is extremely difficult, because of the complex mechanical linkage along the chains forming the multi-body system. To understand, predict and sometimes control multi-body systems, we may want to have mathematical expressions for them. The Newton-Euler, Lagrangian and Featherstone approaches have their advantages and disadvantages. The simulation of collisions and the inclusion of muscle forces or other internal forces are discussed. Also, the possibility to perform a mixed inverse and forward dynamics calculation are dealt with. The use and limitations of these approaches form the conclusion. PMID:14561340

  7. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.

    Science.gov (United States)

    Capela, N A; Lemaire, E D; Baddour, N; Rudolf, M; Goljar, N; Burger, H

    2016-01-20

    Mobile health monitoring using wearable sensors is a growing area of interest. As the world's population ages and locomotor capabilities decrease, the ability to report on a person's mobility activities outside a hospital setting becomes a valuable tool for clinical decision-making and evaluating healthcare interventions. Smartphones are omnipresent in society and offer convenient and suitable sensors for mobility monitoring applications. To enhance our understanding of human activity recognition (HAR) system performance for able-bodied and populations with gait deviations, this research evaluated a custom smartphone-based HAR classifier on fifteen able-bodied participants and fifteen participants who suffered a stroke. Participants performed a consecutive series of mobility tasks and daily living activities while wearing a BlackBerry Z10 smartphone on their waist to collect accelerometer and gyroscope data. Five features were derived from the sensor data and used to classify participant activities (decision tree). Sensitivity, specificity and F-scores were calculated to evaluate HAR classifier performance. The classifier performed well for both populations when differentiating mobile from immobile states (F-score > 94 %). As activity recognition complexity increased, HAR system sensitivity and specificity decreased for the stroke population, particularly when using information derived from participant posture to make classification decisions. Human activity recognition using a smartphone based system can be accomplished for both able-bodied and stroke populations; however, an increase in activity classification complexity leads to a decrease in HAR performance with a stroke population. The study results can be used to guide smartphone HAR system development for populations with differing movement characteristics.

  8. Using and respecting the dead human body: an anatomist's perspective.

    Science.gov (United States)

    Jones, D Gareth

    2014-09-01

    In his stimulating article enquiring into what the living owe the dead, Wilkinson (2013, Clin. Anat. DOI: 10.1002/ca.22263) sought to unpack a range of ethical questions of considerable interest to anatomists. In this, he looked closely at the extent to which we are or are not to respect all the prior wishes of the deceased, and the implications of this for the role of the family in providing consent, the use of unclaimed bodies, and the public display of bodies. Some of his conclusions challenge widely encountered views by anatomists. In this response I have re-visited these topics in an attempt to ground his arguments in the experience of anatomists, by emphasizing the many intimate connections that exist between each of these areas. The following emerge as issues for further debate. I accept that the wishes of the deceased are preeminent, so that authorities should make every effort to abide by these. This reiterates the importance of body bequests over against unclaimed bodies, and provides a context for assessing the role of family consent. This has repercussions for all activities employing dead bodies, from the dissecting room to public plastination exhibitions. In determining the extent to which the wishes of the deceased are followed the input of other interested parties is a relevant consideration. An ethical assessment of the public display of bodies needs to take into account the nature of the plastination process.

  9. Rigid multibody system dynamics with uncertain rigid bodies

    Energy Technology Data Exchange (ETDEWEB)

    Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)

    2012-03-15

    This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.

  10. Feasibility of assessing health state by detecting redox state of human body based on Chinese medicine constitution.

    Science.gov (United States)

    Li, Ling-Ru; Wang, Qi; Wang, Ji; Wang, Qian-Fei; Yang, Ling-Ling; Zheng, Lu-Yu; Zhang, Yan

    2016-08-01

    This article discussed the feasibility of assessing health state by detecting redox state of human body. Firstly, the balance of redox state is the basis of homeostasis, and the balance ability of redox can reflflect health state of human body. Secondly, the redox state of human body is a sensitive index of multiple risk factors of health such as age, external environment and psychological factors. It participates in the occurrence and development of multiple diseases involving metabolic diseases and nervous system diseases, and can serve as a cut-in point for treatment of these diseases. Detecting the redox state of high risk people is signifificantly important for early detection and treatment of disease. The blood plasma and urine could be selected to detect, which is convenient. It is pointed that the indexes not only involve oxidation product and antioxidant enzyme but also redox couple. Chinese medicine constitution reflflects the state of body itself and the ability of adapting to external environment, which is consistent with the connotation of health. It is found that there are nine basic types of constitution in Chinese population, which provides a theoretical basis of health preservation, preventive treatment of disease and personalized treatment. With the combination of redox state detection and the Chinese medicine constitution theory, the heath state can be systemically assessed by conducting large-scale epidemiological survey with classifified detection on redox state of human body.

  11. Factors Associated With Body Image Perception Among Brazilian Students From Low Human Development Index Areas.

    Science.gov (United States)

    de Araujo, Thábyta Silva; Barbosa Filho, Valter Cordeiro; Gubert, Fabiane do Amaral; de Almeida, Paulo César; Martins, Mariana Cavalcante; Carvalho, Queliane Gomes da Silva; Costa, Ana Cristina Pereira de Jesus; Vieira, Neiva Francenely Cunha

    2017-01-01

    This study aimed to evaluate sociodemographic, behavioral, and individual factors associated with body image perception in a sample of adolescents from schools in low Human Development Index areas in Brazil. This cross-sectional study included 609 boys and 573 girls (aged 11-17 years). Body image perception (nine-silhouettes scale) and sociodemographic, behavioral, and individual variables were included. Multinomial logistic regression analysis was used. Most boys (76.9%) and girls (77.5%) were dissatisfied with their body image. Body mass index status and healthy body image evaluation were significantly associated with body image dissatisfaction in both boys and girls ( p body image dissatisfaction only in boys ( p = .035). Education and health care focused on body image can pay special attention to young people from vulnerable areas with unhealthy nutritional status and focus on strategies that enable improving the perception of a healthy body and a healthy diet.

  12. The human cutaneous chemokine system

    Directory of Open Access Journals (Sweden)

    Bernhard eMoser

    2011-08-01

    Full Text Available Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfil a critical immune surveillance function by contributing to the first line of defence against a series of local threats, including microbes, tumours and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and discuss candidate chemokines that may account for the tissue selectivity in this process.

  13. The venality of human body parts and products in French law and common law.

    Science.gov (United States)

    Haoulia, Naima

    2012-03-01

    The successive bioethics laws in France have constantly argued that the human body is not for sale and consecrated an absolute principle of free and anonymous donations, whether of semen, ova, blood, tissues or organs. Nonetheless, this position is not shared by all countries. These legal divergences upset today our moral principles and the development of these practices leads us to question the legal status of human biological material and its gradual commodification. This paper outlines the current law principles that protect people's interests in their bodies, excised body parts and tissues without conferring the rights of full legal ownership in French law and in Common law. Contrary to what many people believe, people do not legally 'own' their bodies, body parts or tissues. However, they do have some legal rights in relation to their bodies and excised body material. For lawyers, the exact relationship people have with their bodies has raised a host of complex questions and long debates about the status we should grant to human body parts. The significance of this issue is due to two reasons:first, because of the imperative protection we have to assure to human dignity and then, because of the economic value which is attached to human products.

  14. Mass-imbalanced Three-Body Systems in Two Dimensions

    DEFF Research Database (Denmark)

    F. Bellotti, F.; Frederico, T.; T. Yamashita, M.

    2013-01-01

    We consider three-body systems in two dimensions with zero-range interactions for general masses and interaction strengths. The momentum-space Schr\\"odinger equation is solved numerically and in the Born-Oppenheimer (BO) approximation. The BO expression is derived using separable potentials...

  15. Iterative variational approach to finite many-body systems

    NARCIS (Netherlands)

    Sambataro, M.; Gambacurta, D.; Lo Monaco, L.

    2011-01-01

    A procedure is discussed that searches for the best description of the eigenstates of a Hamiltonian of a finite quantum many-body system in terms of a selected set of physically relevant configurations. The procedure resorts to iterative sequences of diagonalizations in spaces of very reduced size.

  16. Human Factors Considerations in System Design

    Science.gov (United States)

    Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)

    1983-01-01

    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.

  17. The personification of animals: coding of human and nonhuman body parts based on posture and function.

    Science.gov (United States)

    Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie

    2014-09-01

    The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals.

  18. Tablet PC Enabled Body Sensor System for Rural Telehealth Applications

    Directory of Open Access Journals (Sweden)

    Nitha V. Panicker

    2016-01-01

    Full Text Available Telehealth systems benefit from the rapid growth of mobile communication technology for measuring physiological signals. Development and validation of a tablet PC enabled noninvasive body sensor system for rural telehealth application are discussed in this paper. This system includes real time continuous collection of physiological parameters (blood pressure, pulse rate, and temperature and fall detection of a patient with the help of a body sensor unit and wireless transmission of the acquired information to a tablet PC handled by the medical staff in a Primary Health Center (PHC. Abnormal conditions are automatically identified and alert messages are given to the medical officer in real time. Clinical validation is performed in a real environment and found to be successful. Bland-Altman analysis is carried out to validate the wrist blood pressure sensor used. The system works well for all measurements.

  19. High performance computing for classic gravitational N-body systems

    CERN Document Server

    Capuzzo-Dolcetta, Roberto

    2009-01-01

    The role of gravity is crucial in astrophysics. It determines the evolution of any system, over an enormous range of time and space scales. Astronomical stellar systems as composed by N interacting bodies represent examples of self-gravitating systems, usually treatable with the aid of newtonian gravity but for particular cases. In this note I will briefly discuss some of the open problems in the dynamical study of classic self-gravitating N-body systems, over the astronomical range of N. I will also point out how modern research in this field compulsorily requires a heavy use of large scale computations, due to the contemporary requirement of high precision and high computational speed.

  20. Logarithmic entanglement lightcone in many-body localized systems

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Pixley, J. H.; Wu, Yang-Le; Das Sarma, S.

    2017-01-01

    We theoretically study the response of a many-body localized system to a local quench from a quantum information perspective. We find that the local quench triggers entanglement growth throughout the whole system, giving rise to a logarithmic lightcone. This saturates the modified Lieb-Robinson bound for quantum information propagation in many-body localized systems previously conjectured based on the existence of local integrals of motion. In addition, near the localization-delocalization transition, we find that the final states after the local quench exhibit volume-law entanglement. We also show that the local quench induces a deterministic orthogonality catastrophe for highly excited eigenstates, where the typical wave-function overlap between the pre- and postquench eigenstates decays exponentially with the system size.

  1. Periodically driven ergodic and many-body localized quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Pedro [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo, ON N2L 3G1 (Canada); Chandran, Anushya [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Papić, Z., E-mail: zpapic@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Institute for Quantum Computing, Waterloo, ON N2L 3G1 (Canada); Abanin, Dmitry A. [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Institute for Quantum Computing, Waterloo, ON N2L 3G1 (Canada)

    2015-02-15

    We study dynamics of isolated quantum many-body systems whose Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We support our conclusions by numerical simulations of disordered spin chains. We argue that our results hold for general driving protocols, and discuss their experimental implications.

  2. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body

    Science.gov (United States)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels

    2011-08-01

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm3 of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  3. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels, E-mail: neufeld@itis.ethz.ch [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland)

    2011-08-07

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm{sup 3} of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  4. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    Directory of Open Access Journals (Sweden)

    Gaétan Chevalier

    2012-01-01

    Full Text Available Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding refers to the discovery of benefits—including better sleep and reduced pain—from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance.

  5. [Draft of Guidelines for Human Body Dissection for Clinical Anatomy Education and Research and commentary].

    Science.gov (United States)

    Shichinohe, Toshiaki; Kondo, Satoshi; Ide, Chizuka; Higuchi, Norio; Aiso, Sadakazu; Sakai, Tatsuo; Matsumura, George; Yoshida, Kazunari; Kobayashi, Eiji; Tatsumi, Haruyuki; Yaginuma, Hiroyuki; Hishikawa, Shuji; Sugimoto, Maki; Izawa, Yoshimitsu; Imanishi, Nobuaki

    2011-07-01

    This article analyses the Draft of Guidelines for Human Body Dissection for Clinical Anatomy Education and Research drawn by the Study Group for Future Training Systems of Surgical Skills and Procedures established by the Fiscal Year 2010 research program of the Ministry of Health, Labor and Welfare. The purpose of the Draft of Guidelines is: First, to lay out the required basic guidelines for human cadaver usage to allow medical and dental faculty to conduct clinical education and research in accordance with existing regulations. Second, the guidelines are expected to give physicians a regulatory framework to carry out cadaver training in accordance with the current legal framework. This article explains the Draft of Guidelines in detail, outlines the future of cadaver training, and describes issues which must still be solved.

  6. [Draft of guidelines for human body dissection for clinical anatomy education and research and commentary].

    Science.gov (United States)

    Shichinohe, Toshiaki; Kondo, Satoshi; Ide, Chizuka; Higuchi, Norio; Aiso, Sadakazu; Sakai, Tatsuo; Matsumura, George; Yoshida, Kazunari; Kobayashi, Eiji; Tatsumi, Haruyuki; Yaginuma, Hiroyuki; Hishikawa, Shuji; Sugimoto, Maki; Izawa, Yoshimitsu; Imanishi, Nobuaki

    2011-06-01

    This article analyses the Draft of Guidelines for Human Body Dissection for Clinical Anatomy Education and Research drawn by the Study Group for Future Training Systems of Surgical Skills and Procedures established by the Fiscal Year 2010 research program of the Ministry of Health, Labor and Welfare. The purpose of the Draft of Guidelines is: First, to lay out the required basic guidelines for human cadaver usage to allow medical and dental faculty to conduct clinical education and research in accordance with existing regulations. Second, the guidelines are expected to give physicians a regulatory framework to carry out cadaver training in accordance with the current legal framework. This article explains the Draft of Guidelines in detail, outlines the future of cadaver training, and describes issues which must still be solved.

  7. Dynamics of systems of extended bodies in monad representation

    Energy Technology Data Exchange (ETDEWEB)

    Chechin, L.M.

    1995-07-01

    A universal form proposed earlier by the author for the equations of motion is used to find a monad representation of the equations of motion of a system of N extended bodies in general relativity theory. An explicit form of the equations of motion in a fixed chronometric reference system is presented. It is shown that it differs from the known coordinate motion equations obtained by the Fock method.

  8. Vibration energy absorption in the whole-body system of a tractor operator

    Directory of Open Access Journals (Sweden)

    Jan Szczepaniak

    2014-06-01

    Full Text Available Many people are exposed to whole-body vibration (WBV in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA. The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 – 4.16 ms[sup] -1 [/sup].

  9. Literature Survey on Decorporation of Radionuclides from the Human Body

    Science.gov (United States)

    2002-04-01

    brackets. Radium Dial Painters, US (226�Ra) Hanford, WA,US (241Amn) Los Alamos, NM, US (2 39 pu) Goiania , Brazil (1 3 7 Co) Chernobyl, Ukraine...Blue) are obtained from the radiological accident in Goiania , Brazil1. On 13 September 1987, a shielded 50.9 TBq (1375 Ci) 137Cs teletherapy source...in the stool, and whole body counts showed increased removal from the body. The effectiveness of Prussian Blue for one Goiania patient is depicted in

  10. Diagram of Calcium Movement in the Human Body

    Science.gov (United States)

    2002-01-01

    This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  11. Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury

    Science.gov (United States)

    Tan, X. G.; Przekwas, A. J.; Gupta, R. K.

    2017-07-01

    The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.

  12. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance

    OpenAIRE

    Chen, Yanlian; Deng, Zhiqiang; Jiang, Shuai; Hu, Qian; Liu, Haiying; Songyang, Zhou; Ma, Wenbin; Chen, Shi; Zhao, Yong

    2014-01-01

    The RNA component of human telomerase (hTR) localizes to Cajal bodies, and it has been proposed that Cajal bodies play a role in the assembly of telomerase holoenzyme and telomerase trafficking. Here, the role of Cajal bodies was examined in Human cells deficient of coilin (i.e. coilin-knockout (KO) cells), in which no Cajal bodies are detected. In coilin-KO cells, a normal level of telomerase activity is detected and interactions between core factors of holoenzyme are preserved, indicating t...

  13. An Impact of Thermodynamic Processes in Human Bodies on Performance Reliability of Individuals

    Directory of Open Access Journals (Sweden)

    Smalko Zbigniew

    2015-01-01

    Full Text Available The article presents the problem of the influence of thermodynamic factors on human fallibility in different zones of thermal discomfort. Describes the processes of energy in the human body. Been given a formal description of the energy balance of the human body thermoregulation. Pointed to human reactions to temperature changes of internal and external environment, including reactions associated with exercise. The methodology to estimate and determine the reliability of indicators of human basal acting in different zones of thermal discomfort. The significant effect of thermodynamic factors on the reliability and security ofperson.

  14. Selected aspects of the action of cobalt ions in the human body.

    Science.gov (United States)

    Czarnek, Katarzyna; Terpiłowska, Sylwia; Siwicki, Andrzej K

    2015-01-01

    Cobalt is widespread in the natural environment and can be formed as an effect of anthropogenic activity. This element is used in numerous industrial applications and nuclear power plants. Cobalt is an essential trace element for the human body and can occur in organic and inorganic forms. The organic form is a necessary component of vitamin B12 and plays a very important role in forming amino acids and some proteins in nerve cells, and in creating neurotransmitters that are indispensable for correct functioning of the organism. Its excess or deficiency will influence it unfavourably. Salts of cobalt have been applied in medicine in the treatment of anaemia, as well as in sport as an attractive alternative to traditional blood doping. Inorganic forms of cobalt present in ion form, are toxic to the human body, and the longer they are stored in the body, the more changes they cause in cells. Cobalt gets into the body in several ways: firstly, with food; secondly by the respiratory system; thirdly, by the skin; and finally, as a component of biomaterials. Cobalt and its alloys are fundamental components in orthopaedic implants and have been used for about 40 years. The corrosion of metal is the main problem in the construction of implants. These released metal ions may cause type IV inflammatory and hypersensitivity reactions, and alternations in bone modelling that lead to aseptic loosening and implant failure. The ions of cobalt released from the surface of the implant are absorbed by present macrophages, which are involved in many of the processes associated with phagocytose orthopaedic biomaterials particles and release pro-inflammatory mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and prostaglandin.

  15. Effect of the environmental stimuli upon the human body in winter outdoor thermal environment

    DEFF Research Database (Denmark)

    Kondo, Emi; Ishii, Jin; Sakoi, Tomonori;

    2013-01-01

    the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses...... of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation....... The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect...

  16. Human-system Interfaces for Automatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    OHara, J.M.; Higgins,J. (BNL); Fleger, S.; Barnes V. (NRC)

    2010-11-07

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, our study identified several topics for additional research.

  17. Application of Three-dimensional Body Measurement System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The configuration principles and functions of the non-contact three-dimensional (3D) body measurement system (BMS)developed by the Textile/Clothing Technology Corporation ([TC]2) are described in this paper. The advantages of this new system, compared with traditional contact body measurement instruments ( Martin instruments ) are discussed by selecting 40 female undergraduates of Donghua University as the scan objects. In the experiments both the Martin instruments and [TC]2 BMS were used respectively. According to the data of different position ( Bust Circumference, Full Waist, Full Hips, Bust Height, Front Waist Height and Back Waist Height) obtained from both of the methods we can get the correlation coefficient which is close to 1, indicating that the results of both methods have comparability. Finally some suggestions for the further applications of the non-contact BMS in the apparel development of China are given. Ke ywords : Body measurement, anth ro pormetr y , non- contact 3D body measurement system, apparel industry, made-tomeasure (MTM).

  18. Taking a "Giant Tour" to Explore the Human Body

    Science.gov (United States)

    Davies, Dan

    2013-01-01

    Helping children to visualise what is inside them and how their bodies work can be a challenge, since teachers are often reliant on secondary sources or investigations that can only measure outward signs (such as pulse rate). Another way is to involve the children in an imaginative role-play exercise where they explore the insides of a…

  19. Human Deception Detection from Whole Body Motion Analysis

    Science.gov (United States)

    2015-12-01

    inspection, a process that is now conducted exclusively by trained personnel. If it can be demonstrated that whole- body movement cues provide a reliable...consent document, the testing began. Participants completed a basic demographic questionnaire, and personality inventories (Neuroticism- Extraversion ...checkpoint guard held a decommissioned, rubberized M4 training gun. While the checkpoint was being assembled, the participants were prepared for the

  20. Human body donation programs in Sri Lanka: Buddhist perspectives.

    Science.gov (United States)

    Subasinghe, Sandeepani Kanchana; Jones, D Gareth

    2015-01-01

    Considerable attention is being given to the availability of bodies for anatomical education. This raises the question of the manner in which they are obtained, that is, whether they are unclaimed or donated. With increasing emphasis upon the ethical desirability of using body bequests, the spotlight tends to be focused on those countries with factors that militate against donations. However, little attention has been paid to cultures where donations are readily available. One such country is Sri Lanka where the majority of the Buddhist population follows Theravada Buddhism. Within this context, the expectation is that donations will be given selflessly without expecting anything in return. This is because donation of one's body has blessings for a better outcome now and in the afterlife. The ceremonies to honor donors are outlined, including details of the "Pirith Ceremony." The relevance for other cultures of these features of body donation is discussed paying especial attention to the meaning of altruism and consent, and justification for the anonymization of cadavers. The degree to which anatomy is integrated into the surrounding culture also emerges as significant.

  1. Carbon offers advantages as implant material in human body

    Science.gov (United States)

    Benson, J.

    1969-01-01

    Because of such characteristics as high strength and long-term biocompatability, aerospace carbonaceous materials may be used as surgical implants to correct pathological conditions in the body resulting from disease or injury. Examples of possible medical uses include bone replacement, implantation splints and circulatory bypass implants.

  2. [Inclusion Bodies are Formed in SFTSV-infected Human Macrophages].

    Science.gov (United States)

    Jin, Cong; Song, Jingdong; Han, Ying; Li, Chuan; Qiu, Peihong; Liang, Mifang

    2016-01-01

    The severe fever with thrombocytopenia syndrome virus (SFTSV) is a new member in the genus Phlebovirus of the family Bunyaviridae identified in China. The SFTSV is also the causative pathogen of an emerging infectious disease: severe fever with thrombocytopenia syndrome. Using immunofluorescent staining and confocal microscopy, the intracellular distribution of nucleocapsid protein (NP) in SFTSV-infected THP-1 cells was investigated with serial doses of SFTSV at different times after infection. Transmission electron microscopy was used to observe the ultrafine intracellular structure of SFTSV-infected THP-1 cells at different times after infection. SFTSV NP could form intracellular inclusion bodies in infected THP-1 cells. The association between NP-formed inclusion bodies and virus production was analyzed: the size of the inclusion body formed 3 days after infection was correlated with the viral load in supernatants collected 7 days after infection. These findings suggest that the inclusion bodies formed in SFTSV-infected THP-1 cells could be where the SFTSV uses host-cell proteins and intracellular organelles to produce new viral particles.

  3. Pathogenesis of Congenital Rubella Virus Infection in Human Fetuses: Viral Infection in the Ciliary Body Could Play an Important Role in Cataractogenesis

    Directory of Open Access Journals (Sweden)

    Thong Van Nguyen

    2015-01-01

    Interpretation: Our study based on the pathological examination demonstrated that the rubella virus infection occurred via systemic organs of human fetuses. This fact was confirmed by immunohistochemistry and direct detection of viral RNA in multiple organs. To the best of our knowledge, this study is the first report demonstrating that the rubella virus infection occurred via systemic organs of the human body. Importantly, virus infection of the ciliary body could play an important role in cataractogenesis.

  4. Adaptive thermogenesis in human body weight regulation: more of a concept than a measurable entity?

    Science.gov (United States)

    Dulloo, A G; Jacquet, J; Montani, J-P; Schutz, Y

    2012-12-01

    According to Lavoisier, 'Life is combustion'. But to what extent humans adapt to changes in food intake through adaptive thermogenesis--by turning down the rate of heat production during energy deficit (so as to conserve energy) or turning it up during overnutrition (so as to dissipate excess calories)--has been one of the most controversial issues in nutritional sciences over the past 100 years. The debate nowadays is not whether adaptive thermogenesis exists or not, but rather about its quantitative importance in weight homoeostasis and its clinical relevance to the pathogenesis and management of obesity. Such uncertainties are likely to persist in the foreseeable future primarily because of limitations to unobtrusively measure changes in energy expenditure and body composition with high enough accuracy and precision, particularly when even small inter-individual variations in thermogenesis can, in dynamic systems and over the long term, be important in the determining weight maintenance in some and obesity and weight regain in others. This paper reviews the considerable body of evidence, albeit fragmentary, suggesting the existence of quantitatively important adaptive thermogenesis in several compartments of energy expenditure in response to altered food intake. It then discusses the various limitations that lead to over- or underestimations in its assessment, including definitional and semantics, technical and methodological, analytical and statistical. While the role of adaptive thermogenesis in human weight regulation is likely to remain more a concept than a strictly 'quantifiable' entity in the foreseeable future, the evolution of this concept continues to fuel exciting hypothesis-driven mechanistic research which contributes to advance knowledge in human metabolism and which is bound to result in improved strategies for the management of a healthy body weight. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  5. Lumped mass formulations for modeling flexible body systems

    Science.gov (United States)

    Rampalli, Rajiv

    1989-01-01

    The efforts of Mechanical Dynamics, Inc. in obtaining a general formulation for flexible bodies in a multibody setting are discussed. The efforts being supported by MDI, both in house and externally are summarized. The feasibility of using lumped mass approaches to modeling flexibility in a multibody dynamics context is examined. The kinematics and kinetics for a simple system consisting of two rigid bodies connected together by an elastic beam are developed in detail. Accuracy, efficiency and ease of use using this approach are some of the issues that are then looked at. The formulation is then generalized to a superelement containing several nodes and connecting several bodies. Superelement kinematics and kinetics equations are developed. The feasibility and effectiveness of the method is illustrated by the use of some examples illustrating phenomena common in the context of spacecraft motions.

  6. Irreducible many-body correlations in topologically ordered systems

    Science.gov (United States)

    Liu, Yang; Zeng, Bei; Zhou, D. L.

    2016-02-01

    Topologically ordered systems exhibit large-scale correlation in their ground states, which may be characterized by quantities such as topological entanglement entropy. We propose that the concept of irreducible many-body correlation (IMC), the correlation that cannot be implied by all local correlations, may also be used as a signature of topological order. In a topologically ordered system, we demonstrate that for a part of the system with holes, the reduced density matrix exhibits IMCs which become reducible when the holes are removed. The appearance of these IMCs then represents a key feature of topological phase. We analyze the many-body correlation structures in the ground state of the toric code model in external magnetic fields, and show that the topological phase transition is signaled by the IMCs.

  7. The evolution of body size and shape in the human career

    Science.gov (United States)

    Grabowski, Mark; Hatala, Kevin G.; Richmond, Brian G.

    2016-01-01

    Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the ‘best’ for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus. The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298459

  8. The evolution of body size and shape in the human career.

    Science.gov (United States)

    Jungers, William L; Grabowski, Mark; Hatala, Kevin G; Richmond, Brian G

    2016-07-05

    Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the 'best' for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  9. Revisiting the importance of common body motion in human action perception.

    Science.gov (United States)

    Thurman, Steven M; Lu, Hongjing

    2016-01-01

    Human actions are complex dynamic stimuli comprised of two principle motion components: 1) common body motion, which represents the translation of the body when a person moves through space, and 2) relative limb movements, resulting from articulation of limbs after factoring out common body motion. Historically, most research in biological motion has focused primarily on relative limb movements while discounting the role of common body motion in human action perception. The current study examined the relative contribution of posture change resulting from relative limb movements and translation of body position resulting from common body motion in discriminating human walking versus running actions. We found that faster translation speeds of common body motion evoked significantly more responses consistent with running when discriminating ambiguous actions morphed between walking and running. Furthermore, this influence was systematically modulated by the uncertainty associated with intrinsic cues as determined by the degree of limited-lifetime spatial sampling. The contribution of common body motion increased monotonically as the reliability of inferring posture changes on the basis of intrinsic cues decreased. These results highlight the importance of translational body movements and their interaction with posture change as a result of relative limb movements in discriminating human actions when visual input information is sparse and noisy.

  10. The Knee Joint Loose Body as a Source of Viable Autologous Human Chondrocytes

    Science.gov (United States)

    Melrose, J.

    2016-01-01

    Loose bodies are fragments of cartilage or bone present in the synovial fluid. In the present study we assessed if loose bodies could be used as a source of autologous human chondrocytes for experimental purposes. Histochemical examination of loose bodies and differential enzymatic digestions were undertaken, the isolated cells were cultured in alginate bead microspheres and immunolocalisations were undertaken for chondrogenic markers such as aggrecan, and type II collagen. Isolated loose body cells had high viability (≥90% viable), expressed chondrogenic markers (aggrecan, type II collagen) but no type I collagen. Loose bodies may be a useful source of autologous chondrocytes of high viability. PMID:27349321

  11. Research on the Earth system multi-body force system dynamical model

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xiaofei; BI; Siwen; WU; Fei; DONG; Qianlin

    2006-01-01

    This paper presents an overview of the binding force and freedom force of Earth system, and describes force moment to point and line and force system in the Earth system. It introduces the force theory of the Earth system multi-body force system from special or equivalent force system of Earth system mechanics, general force and no-power force of Earth system. Finally it describes the force and moment of nodes of Earth system and provides basic model for the research of the Earth system multi-body dynamics.

  12. Human-motion energy harvester for autonomous body area sensors

    Science.gov (United States)

    Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S.

    2017-03-01

    This paper reports on a method to optimize an electromagnetic energy harvester converting the low-frequency body motion and aimed at powering wireless body area sensors. This method is based on recorded accelerations, and mechanical and transduction models that enable an efficient joint optimization of the structural parameters. An optimized prototype of 14.8 mmØ × 52 mm, weighting 20 g, has generated up to 4.95 mW in a resistive load when worn at the arm during a run, and 6.57 mW when hand-shaken. Among the inertial electromagnetic energy harvesters reported so far, this one exhibits one of the highest power densities (up to 730 μW cm-3). The energy harvester was finally used to power a bluetooth low energy wireless sensor node with accelerations measurements at 25 Hz.

  13. An Earth multi-body system elasticity and plasticity dynamics model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qingxian; BI Siwen; GONG Huili

    2006-01-01

    Research on the elasticity and plasticity dynamics of the Earth multi-body system, including the Earth multi-body system stratum-block's equivalent inertia force system and generalized inertia force, the Earth multi-body system stratum-block's equivalent inertia force system expressed with partial velocity and partial palstance, and Earth multi-body system generalized inertia force expressed with partial velocity and partial palstance. This research provides a theoretical foundation for further investigation of Earth multi-body dynamics.

  14. General theory of many body localized systems coupled to baths

    OpenAIRE

    Nandkishore, Rahul; Gopalakrishnan, Sarang

    2016-01-01

    We consider what happens when a many body localized system is coupled to a heat bath. Unlike previous works, we do not restrict ourselves to the limit where the bath is large and effectively Markovian, nor to the limit where back action on the bath is negligible. We identify limits where the effect of the bath can be captured by classical noise, and limits where it cannot. We also identify limits in which the bath delocalizes the system, as well as limits in which the system localizes the bat...

  15. Geometric methods for nonlinear many-body quantum systems

    CERN Document Server

    Lewin, Mathieu

    2010-01-01

    Geometric techniques have played an important role in the seventies, for the study of the spectrum of many-body Schr\\"odinger operators. In this paper we provide a formalism which also allows to study nonlinear systems. We start by defining a weak topology on many-body states, which appropriately describes the physical behavior of the system in the case of lack of compactness, that is when some particles are lost at infinity. We provide several important properties of this topology and use them to provide a simple proof of the famous HVZ theorem in the repulsive case. In a second step we recall the method of geometric localization in Fock space as proposed by Derezi\\'nski and G\\'erard, and we relate this tool to our weak topology. We then provide several applications. We start by studying the so-called finite-rank approximation which consists in imposing that the many-body wavefunction can be expanded using finitely many one-body functions. We thereby emphasize geometric properties of Hartree-Fock states and ...

  16. Possibility of determination of the level of antioxidants in human body using spectroscopic methods

    Science.gov (United States)

    Timofeeva, E.; Gorbunova, E.

    2016-08-01

    In this work, the processes of antioxidant defence against aggressive free radicals in human body were investigated theoretically; and the existing methods of diagnosis of oxidative stress and disturbance of antioxidant activity were reviewed. Also, the kinetics of free radical reactions in the oxidation of luminol and interaction antioxidants (such as chlorophyll in the multicomponent system of plant's leaves and ubiquinone) with the UV radiation were investigated experimentally by spectroscopic method. The results showed that this method is effective for recording the luminescence of antioxidants, free radicals, chemiluminescent reactions and fluorescence. In addition these results reveal new opportunities for the study of the antioxidant activity and antioxidant balance in a multicomponent system by allocating features of the individual components in spectral composition. A creation of quality control method for drugs, that are required for oxidative stress diagnosis, is a promising direction in the development of given work.

  17. a Six-Link Kinematic Chain Model of Human Body Using Kane's Method

    Science.gov (United States)

    Rambely, A. S.; Fazrolrozi

    A biomechanics model of six-link kinematic chain of human body is developed by using Kane's method. The kinematic data comprise of six segments; foot, calf, thigh, trunk, upper arm and forearm, are obtained through data collection of walking, running and jumping using the Vicon Nexus system. The motion capture system uses 12 Vicon MX-3+ cameras and 12 Vicon MX-F40 cameras, two DV (50 Hz) cameras and a force plate (100 Hz). Inverse dynamics approach is used to obtain the unknown value of torques produced by joint segments during walking, running and jumping activities. The results show that the largest value of torques produced occurs at the foot segment.

  18. Human nervous system function emulator.

    Science.gov (United States)

    Frenger, P

    2000-01-01

    This paper describes a modular, extensible, open-systems design for a multiprocessor network which emulates the major functions of the human nervous system. Interchangeable hardware/software components, a socketed software bus with plug-and-play capability and self diagnostics are included. The computer hardware is based on IEEE P996.1 bus cards. Its operating system utilizes IEEE 1275 standard software. Object oriented design techniques and programming are featured. A machine-independent high level script-based command language was created for this project. Neural anatomical structures which were emulated include the cortex, brainstem, cerebellum, spinal cord, autonomic and peripheral nervous systems. Motor, sensory, autoregulatory, and higher cognitive artificial intelligence, behavioral and emotional functions are provided. The author discusses how he has interfaced this emulator to machine vision, speech recognition/speech synthesis, an artificial neural network and a dexterous hand to form an android robotic platform.

  19. Anatomic connections of the diaphragm influence of respiration on the body system

    Directory of Open Access Journals (Sweden)

    Bordoni B

    2013-07-01

    Full Text Available Bruno Bordoni,1 Emiliano Zanier2 1Rehabilitation Cardiology Institute of Hospitalization and Care with Scientific Address, S Maria Nascente Don Carlo Gnocchi Foundation, 2EdiAcademy, Milano, Italy Abstract: The article explains the scientific reasons for the diaphragm muscle being an important crossroads for information involving the entire body. The diaphragm muscle extends from the trigeminal system to the pelvic floor, passing from the thoracic diaphragm to the floor of the mouth. Like many structures in the human body, the diaphragm muscle has more than one function, and has links throughout the body, and provides the network necessary for breathing. To assess and treat this muscle effectively, it is necessary to be aware of its anatomic, fascial, and neurologic complexity in the control of breathing. The patient is never a symptom localized, but a system that adapts to a corporeal dysfunction. Keywords: diaphragm, fascia, phrenic nerve, vagus nerve, pelvis

  20. Measuring orientation of human body segments using miniature gyroscopes and accelerometers

    NARCIS (Netherlands)

    Luinge, H.J.; Veltink, P.H.

    2005-01-01

    In the medical field, there is a need for small ambulatory sensor systems for measuring the kinematics of body segments. Current methods for ambulatory measurement of body orientation have limited accuracy when the body moves. The aim of the paper was to develop and validate a method for accurate me

  1. Measuring orientation of human body segments using miniature gyroscopes and accelerometers

    NARCIS (Netherlands)

    Luinge, Hendrik J.; Veltink, Petrus H.

    2005-01-01

    In the medical field, there is a need for small ambulatory sensor systems for measuring the kinematics of body segments. Current methods for ambulatory measurement of body orientation have limited accuracy when the body moves. The aim of the paper was to develop and validate a method for accurate

  2. Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons.

    Science.gov (United States)

    Berciano, Maria T; Novell, Mariona; Villagra, Nuria T; Casafont, Iñigo; Bengoechea, Rocio; Val-Bernal, J Fernado; Lafarga, Miguel

    2007-06-01

    This paper studies the cell size-dependent organization of the nucleolus and Cajal bodies (CBs) in dissociated human dorsal root ganglia (DRG) neurons from autopsy tissue samples of patients without neurological disease. The quantitative analysis of nucleoli with an anti-fibrillarin antibody showed that all neurons have only one nucleolus. However, the nucleolar volume and the number of fibrillar centers per nucleolus significantly increase as a function of cell body size. Immunostaining for coilin demonstrated the presence of numerous CBs in DRG neurons (up to 20 in large size neurons). The number of CBs per neuron correlated positively with the cell body volume. Light and electron microscopy immunocytochemical analysis revealed the concentration of coilin, snRNPs, SMN and fibrillarin in CBs of DRG neurons. CBs were frequently associated with the nucleolus, active chromatin domains and PML bodies, but not with telomeres. Our results support the view that the nucleolar volume and number of both fibrillar centers and CBs depend on the cell body mass, a parameter closely related to transcriptional and synaptic activity in mammalian neurons. Moreover, the unusual large number of CBs could facilitate the transfer of RNA processing components from CBs to nucleolar and nucleoplasmic sites of RNA processing.

  3. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    Science.gov (United States)

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  4. Safety of children in cars: A review of biomechanical aspects and human body models

    Directory of Open Access Journals (Sweden)

    Karin Brolin

    2015-03-01

    To study how children interact with restraints during on-road driving and during pre- and in-crash events, numerical child models implementing age-specific anthropometric features will be essential. The review of human whole body models covers multi body models (age 1.5 to 15 years and finite element models (ages 3, 6, and 10 years. All reviewed child models are developed for crash scenarios. The only finite element models to implement age dependent anthropometry details for the spine and pelvis were a 3 year-old model and an upcoming 10 year-old model. One ongoing project is implementing active muscles response in a 6 year-old multi body model to study pre-crash scenarios. These active models are suitable for the next important step in providing the automotive industry with adequate tools for development and assessment of future restraint systems in the full sequence of events from pre- to in-crash.

  5. Contact-free determination of human body segment parameters by means of videometric image processing of an anthropomorphic body model

    Science.gov (United States)

    Hatze, Herbert; Baca, Arnold

    1993-01-01

    The development of noninvasive techniques for the determination of biomechanical body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers, etc.) receives increasing attention from the medical sciences (e,.g., orthopaedic gait analysis), bioengineering, sport biomechanics, and the various space programs. In the present paper, a novel method is presented for determining body segment parameters rapidly and accurately. It is based on the video-image processing of four different body configurations and a finite mass-element human body model. The four video images of the subject in question are recorded against a black background, thus permitting the application of shape recognition procedures incorporating edge detection and calibration algorithms. In this way, a total of 181 object space dimensions of the subject's body segments can be reconstructed and used as anthropometric input data for the mathematical finite mass- element body model. The latter comprises 17 segments (abdomino-thoracic, head-neck, shoulders, upper arms, forearms, hands, abdomino-pelvic, thighs, lower legs, feet) and enables the user to compute all the required segment parameters for each of the 17 segments by means of the associated computer program. The hardware requirements are an IBM- compatible PC (1 MB memory) operating under MS-DOS or PC-DOS (Version 3.1 onwards) and incorporating a VGA-board with a feature connector for connecting it to a super video windows framegrabber board for which there must be available a 16-bit large slot. In addition, a VGA-monitor (50 - 70 Hz, horizontal scan rate at least 31.5 kHz), a common video camera and recorder, and a simple rectangular calibration frame are required. The advantage of the new method lies in its ease of application, its comparatively high accuracy, and in the rapid availability of the body segment parameters, which is particularly useful in clinical practice

  6. Scaling of human body mass with height: the Body Mass Index revisited

    CERN Document Server

    MacKay, N J

    2009-01-01

    We adapt a biomechanical argument of Rashevsky, which places limits on the stress experienced by a torso supported by the legs, to deduce that body mass $m$ of growing children should scale as the $p$th power of height $h$ with $7/3

  7. Ambulatory Sensing of the Dynamic interaction between the human body and the environment

    NARCIS (Netherlands)

    Veltink, Petrus H.; Schepers, H. Martin; Cooper, R.A.

    2010-01-01

    This paper presents a method to estimate power transfer between the human body and the environment during short interactions and relatively arbitrary movements with net displacement and varying loads (mass and spring), and appeared to be accurate within 4%.

  8. A novel approach to mechanical foot stimulation during human locomotion under body weight support.

    Science.gov (United States)

    Gravano, S; Ivanenko, Y P; Maccioni, G; Macellari, V; Poppele, R E; Lacquaniti, F

    2011-04-01

    Input from the foot plays an essential part in perceiving support surfaces and determining kinematic events in human walking. To simulate adequate tactile pressure inputs under body weight support (BWS) conditions that represent an effective form of locomotion training, we here developed a new method of phasic mechanical foot stimulation using light-weight pneumatic insoles placed inside the shoes (under the heel and metatarsus). To test the system, we asked healthy participants to walk on a treadmill with different levels of BWS. The pressure under the stimulated areas of the feet and subjective sensations were higher at high levels of BWS and when applied to the ball and toes rather than heels. Foot stimulation did not disturb significantly the normal motor pattern, and in all participants we evoked a reliable step-synchronized triggering of stimuli for each leg separately. This approach has been performed in a general framework looking for "afferent templates" of human locomotion that could be used for functional sensory stimulation. The proposed technique can be used to imitate or partially restore surrogate contact forces under body weight support conditions.

  9. Rhythm Pattern of Sole through Electrification of the Human Body When Walking

    Science.gov (United States)

    Takiguchi, Kiyoaki; Wada, Takayuki; Tohyama, Shigeki

    The rhythm of automatic cyclic movements such as walking is known to be generated by a rhythm generator called CPG in the spinal cord. The measurement of rhythm characteristics in walking is considered to be important for analyzing human bipedal walking and adaptive walking on irregular terrain. In particular, the soles that contact the terrain surface perform flexible movements similar to the movement of the fins of a lungfish, which is considered to be the predecessor of land animals. The sole movements are believed to be a basic movement acquired during prehistoric times. The detailed rhythm pattern of sole motion is considered to be important. We developed a method for measuring electrification without installing device on a subject's body and footwear for stabilizing the electrification of the human body. We measured the rhythm pattern of 20 subjects including 4 infants when walking by using this system and the corresponding equipment. Therefore, we confirmed the commonality of the correlative rhythm patterns of 20 subjects. Further, with regard to an individual subject, the reproducibility of a rhythm pattern with strong correlation coefficient > 0.93 ± 0.5 (mean ± SD) concerning rhythms of trials that are differently conducted on adult subjects could be confirmed.

  10. Universal three-body parameter in heteronuclear atomic systems

    CERN Document Server

    Wang, Yujun; D'Incao, J P; Greene, Chris H

    2012-01-01

    A three-body parameter (3BP) defines the energy spectrum of three particles when the Efimov effect arises. Until recently, it had been widely agreed that this parameter should not be universal. Our present study further predicts a universal 3BP for heteronuclear atomic systems near broad Feshbach resonances. In particular, we show for a system of one light and two heavy atoms a universal 3BP is expected even without an effective three-body short-range repulsion. This universality is explained by the universal properties of the van der Waals interactions in a simple Born-Oppenheimer (BO) picture. Finally, we show the numerically determined 3BPs for some combination of alkali atoms used in ultracold experiments.

  11. Applying Twisted Boundary Conditions for Few-body Nuclear Systems

    CERN Document Server

    Körber, Christopher

    2015-01-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite-volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twists angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length $L\\approx8-14$ fm. Of particular importance is our derivation and numerical verification of three-body analogue of `i-periodic' twist angles that eliminate the leading order finite-volume effects to the three-body binding energy.

  12. Evaluation of Human Body Fluids for the Diagnosis of Fungal Infections

    Directory of Open Access Journals (Sweden)

    Parisa Badiee

    2013-01-01

    Full Text Available Invasive fungal infections are a major cause of morbidity and mortality in immunocompromised patients. Because the etiologic agents of these infections are abundant in nature, their isolation from biopsy material or sterile body fluids is needed to document infection. This review evaluates and discusses different human body fluids used to diagnose fungal infections.

  13. Fluids in human bodies and biomineralization – parallels to global water resources and reactions

    NARCIS (Netherlands)

    Skinner, H. Catherine W.; King, Helen

    2014-01-01

    The amount of surface freshwaters on Earth is remarkably small considering the human population needing drinking water to survive and to ensure water in their bodies is at that very important locale where cells operate, the transcellular fluid. Like the fluid in and on the planet, body fluid is

  14. Automatic identification of inertial sensor placement on human body segments during walking

    NARCIS (Netherlands)

    Weenk, D.; van Beijnum, Bernhard J.F.; Baten, Christian T.M.; Hermens, Hermanus J.; Veltink, Petrus H.

    2013-01-01

    We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is

  15. Coming to Know about the Body in Human Movement Studies Programmes

    Science.gov (United States)

    Varea, Valeria; Tinning, Richard

    2016-01-01

    This paper explores how a group of undergraduate Human Movement Studies (HMS) students learnt to know about the body during their four-year academic programme at an Australian university. When students begin an undergraduate programme in HMS they bring with them particular constructions, ideas and beliefs about their own bodies and about the body…

  16. Cognitive Analysis of Chinese-English Metaphors of Animal and Human Body Part Words

    Science.gov (United States)

    Song, Meiying

    2009-01-01

    Metaphorical cognition arises from the mapping of two conceptual domains onto each other. According to the "Anthropocentrism", people tend to know the world first by learning about their bodies including Apparatuses. Based on that, people begin to know the material world, and the human body part metaphorization emerges as the times…

  17. Fluids in human bodies and biomineralization – parallels to global water resources and reactions

    NARCIS (Netherlands)

    Skinner, H. Catherine W.; King, Helen

    2014-01-01

    The amount of surface freshwaters on Earth is remarkably small considering the human population needing drinking water to survive and to ensure water in their bodies is at that very important locale where cells operate, the transcellular fluid. Like the fluid in and on the planet, body fluid is high

  18. The Thermal Plume above a Standing Human Body Exposed to Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter V.; Li, Yuguo;

    2009-01-01

    This study compares the impact of air distribution on the thermal plume above a human body in indoor environment. Three sets of measurements are conducted in a full-scale test room with different ventilation conditions. One breathing thermal manikin standing in the room is used to simulate...... the human body. Long-time average air velocity profiles at locations closely above the manikin are taken to identify the wandering thermal plume....

  19. The Thermal Plume above a Standing Human Body Exposed to Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter V.; Li, Yuguo

    2009-01-01

    This study compares the impact of air distribution on the thermal plume above a human body in indoor environment. Three sets of measurements are conducted in a full-scale test room with different ventilation conditions. One breathing thermal manikin standing in the room is used to simulate the hu...... the human body. Long-time average air velocity profiles at locations closely above the manikin are taken to identify the wandering thermal plume....

  20. [Detection of carotenoids in the vitreous body of the human eye during prenatal development].

    Science.gov (United States)

    Iakovleva, M A; Panova, I G; Fel'dman, T B; Zak, P P; Tatikolov, A S; Sukhikh, G T; Ostrovskiĭ, M A

    2007-01-01

    Carotenoids were found for the first time in the vitreous body of human eye during the fetal period from week 15 until week 28. Their maximum content was timed to week 16-22. No carotenoids were found the vitreous body of 31-week fetuses, as well as adult humans, which corresponds to the published data. It was shown using HPLC that chromatographic characteristics of these carotenoids correspond to those of lutein and zeaxanthin, characteristic pigments of the retinal yellow macula.

  1. INFLUENCE OF VIBRATIONS AND DYNAMIC CHARACTERIZATION OF THE HUMAN BODY GENERATED BY CARS

    Directory of Open Access Journals (Sweden)

    Bogdan Andrei BARBU

    2011-05-01

    Full Text Available Vibrations influence the human body in many different ways. The response to a vibration exposure is primarily dependent on the frequency, amplitude, and duration of exposure. This paper studies the influence of vibrations generated by automobiles on the human body, taking into account both amplitude and especially the frequency of these vibrations. Measurement of these vibrations was made through the acquisition of latest equipment by acquiring tridimensional signals.

  2. Entanglement replication in driven dissipative many-body systems.

    Science.gov (United States)

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  3. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance.

    Science.gov (United States)

    Chen, Yanlian; Deng, Zhiqiang; Jiang, Shuai; Hu, Qian; Liu, Haiying; Songyang, Zhou; Ma, Wenbin; Chen, Shi; Zhao, Yong

    2015-01-01

    The RNA component of human telomerase (hTR) localizes to Cajal bodies, and it has been proposed that Cajal bodies play a role in the assembly of telomerase holoenzyme and telomerase trafficking. Here, the role of Cajal bodies was examined in Human cells deficient of coilin (i.e. coilin-knockout (KO) cells), in which no Cajal bodies are detected. In coilin-KO cells, a normal level of telomerase activity is detected and interactions between core factors of holoenzyme are preserved, indicating that telomerase assembly occurs in the absence of Cajal bodies. Moreover, dispersed hTR aggregates and forms foci specifically during S and G2 phase in coilin-KO cells. Colocalization of these hTR foci with telomeres implies proper telomerase trafficking, independent of Cajal bodies. Therefore, telomerase adds similar numbers of TTAGGG repeats to telomeres in coilin-KO and controls cells. Overexpression of TPP1-OB-fold blocks cell cycle-dependent formation of hTR foci and inhibits telomere extension. These findings suggest that telomerase assembly, trafficking and extension occur with normal efficiency in Cajal bodies deficient human cells. Thus, Cajal bodies, as such, are not essential in these processes, although it remains possible that non-coilin components of Cajal bodies and/or telomere binding proteins (e.g. TPP1) do play roles in telomerase biogenesis and telomere homeostasis.

  4. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness.

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo; Amemiya, Kaoru

    2016-03-01

    The human brain can generate a continuously changing postural model of our body. Somatic (proprioceptive) signals from skeletal muscles and joints contribute to the formation of the body representation. Recent neuroimaging studies of proprioceptive bodily illusions have elucidated the importance of three brain systems (motor network, specialized parietal systems, right inferior fronto-parietal network) in the formation of the human body representation. The motor network, especially the primary motor cortex, processes afferent input from skeletal muscles. Such information may contribute to the formation of kinematic/dynamic postural models of limbs, thereby enabling fast online feedback control. Distinct parietal regions appear to play specialized roles in the transformation/integration of information across different coordinate systems, which may subserve the adaptability and flexibility of the body representation. Finally, the right inferior fronto-parietal network, connected by the inferior branch of the superior longitudinal fasciculus, is consistently recruited when an individual experiences various types of bodily illusions and its possible roles relate to corporeal awareness, which is likely elicited through a series of neuronal processes of monitoring and accumulating bodily information and updating the body representation. Because this network is also recruited when identifying one's own features, the network activity could be a neuronal basis for self-consciousness.

  5. Targeting ADAM12 in human disease: head, body or tail?

    DEFF Research Database (Denmark)

    Jacobsen, J; Wewer, U M

    2009-01-01

    ADAM12/meltrin alpha is a type I transmembrane multidomain protein involved in tumor progression and other severe diseases, including osteoarthritis, and as such could be considered as a potential drug target. In addition to protease activity, ADAM12 possesses cell binding and cell signaling......) and insulin-like growth factor receptor signaling. The body of the protein (consisting of the disintegrin, cysteine-rich, and EGF-like domains) is involved in contacts with the extracellular matrix and other cells through interactions with integrins and syndecans. Finally, the tail of the protein (consisting...

  6. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  7. Research of Contact Stresses between Seat Cushion and Human Body

    Directory of Open Access Journals (Sweden)

    Pervan Stjepan

    2010-06-01

    Full Text Available Design optimization of seat cushions is associated with the need to investigate their softness using, for this purpose, various kinds of loading pads. The aim of the investigation was: to determine seat cushion stiffness of a chair selected from a set of dining-room furniture, to determine values and distributions of contact strains on the seat surface caused by loading pad of different hardness, numerical calculation of contact strains between the seat cushion and the loading pad and to verify the results of these calculations with the results of laboratory experiments. The performed tests showed that the assessment of the seat cushion stiffness and the evaluation of contact stresses on their surface should be carried out using an equally stiff loading pad. In numerical calculations, polyurethane foams should be modeled as hyperfoam bodies of σ=f(ε characteristics determined in an axial compression test. Contact stresses between the seat cushion and the user’s body should be reduced as a result of application of a frictionless connection of thin layers of polyurethane foams with foam forming the proper elastic layer of the seat.

  8. In vivo analysis of Cajal body movement, separation, and joining in live human cells.

    Science.gov (United States)

    Platani, M; Goldberg, I; Swedlow, J R; Lamond, A I

    2000-12-25

    Cajal bodies (also known as coiled bodies) are subnuclear organelles that contain specific nuclear antigens, including splicing small nuclear ribonucleoproteins (snRNPs) and a subset of nucleolar proteins. Cajal bodies are localized in the nucleoplasm and are often found at the nucleolar periphery. We have constructed a stable HeLa cell line, HeLa(GFP-coilin), that expresses the Cajal body marker protein, p80 coilin, fused to the green fluorescent protein (GFP-coilin). The localization pattern and biochemical properties of the GFP-coilin fusion protein are identical to the endogenous p80 coilin. Time-lapse recordings on 63 nuclei of HeLa(GFP-coilin) cells showed that all Cajal bodies move within the nucleoplasm. Movements included translocations through the nucleoplasm, joining of bodies to form larger structures, and separation of smaller bodies from larger Cajal bodies. Also, we observed Cajal bodies moving to and from nucleoli. The data suggest that there may be at least two classes of Cajal bodies that differ in their size, antigen composition, and dynamic behavior. The smaller size class shows more frequent and faster rates of movement, up to 0.9 microm/min. The GFP-coilin protein is dynamically associated with Cajal bodies as shown by changes in their fluorescence intensity over time. This study reveals an unexpectedly high level of movement and interactions of nuclear bodies in human cells and suggests that these movements may be driven, at least in part, by regulated mechanisms.

  9. Regularities in Many-body Systems Interacting by a Two-body Random Ensemble

    CERN Document Server

    Zhao, Y M; Yoshinaga, N

    2003-01-01

    The even-even nuclei always have zero ground state angular momenta $I$ and positive parities $\\pi$. This feature was believed to be just a consequence of the attractive short-range interactions between nucleons. However, in the presence of two-body random interactions, the predominance of $I^{\\pi}=0^+$ ground states (0 g.s.) was found to be robust both for bosons and for an even number of fermions. For simple systems, such as $d$ bosons, $sp$ bosons, $sd$ bosons, and a few fermions in single-$j$ shells for small $j$, there are a few approaches to predict and/or explain the distribution of angular momentum $I$ ground state probabilities. An empirical recipe to predict the $I$ g.s. probabilities is available for general cases, but a more fundamental understanding of the robustness of 0 g.s. dominance is still out of reach. Other interesting results are also reviewed concerning other robust phenomena of many-body systems in the presence of random interactions, such as odd-even staggering of binding energies, gen...

  10. Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE (trademark)) Guidelines

    Science.gov (United States)

    2011-06-01

    Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASETM...Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASETM) Guidelines 5a

  11. Experimental quantum simulation of entanglement in many-body systems.

    Science.gov (United States)

    Zhang, Jingfu; Wei, Tzu-Chieh; Laflamme, Raymond

    2011-07-01

    We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudoentanglement. The observed pseudoentanglement for a small-size system already displays a singularity, a signature which is qualitatively similar to that in the thermodynamical limit across quantum phase transitions, including an infinite-order critical point. The experimental results illustrate a successful approach to investigate quantum correlations in many-body systems using quantum simulators.

  12. Experimental Quantum Simulation of Entanglement in Many-body Systems

    CERN Document Server

    Zhang, Jingfu; Laflamme, Raymond

    2011-01-01

    We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudo-entanglement. The observed pseudo-entanglement for a small system size already displays singularity, a signature which is qualitatively similar to that in thermodynamical limit across quantum phase transitions, including an infinite-order critical point. The experimental results illustrate a successful approach to investigate quantum correlations in many-body systems using quantum simulators.

  13. Somatostatin receptors and their ligands in the human immune system

    NARCIS (Netherlands)

    V.A.S.H. Dalm (Virgil)

    2003-01-01

    textabstractMaintenance of homeostasis is essential for survival of the mammalian organism. For a long time it was believed that the different systems in the human body act independently from each other to achieve this goal. However, during the last decades it has become more evident that the differ

  14. Lower body lift with superficial fascial system suspension.

    Science.gov (United States)

    Lockwood, T

    1993-11-01

    Multiple body contour deformities of the trunk and thighs are commonly treated in separate stages to limit postoperative complications and disability. Recent advances in the surgical design of the medial thigh lift and the lateral thigh/buttock lift along with an understanding of the functional anatomy of the superficial fascial system have significantly improved results and decreased complications of trunk/thigh lifts. The enhanced safety of current trunk/thigh lifts has allowed new combinations to treat multiple body contour deformities in a single stage. Laxity of the entire lower trunk and thigh regions can be treated in one stage in selected patients. The lower body lift combines the transverse flank/thigh/buttock lift and the fascial anchoring medial thigh lift in one operation. In addition to the expected tightening of the flank, buttocks, and total thighs, this procedure results in a surprising degree of epigastric and hypogastric tightening of mild to moderate abdominal laxity without direct surgical undermining or umbilical transposition. Ten patients having the lower body lift alone or in combination with liposuction and other body contouring procedures were followed for 6 to 24 months. The primary indication for surgery is moderate to severe soft-tissue laxity of the lower trunk and thighs with minimal or mild residual fat deposits. Skin contour irregularities due to skin laxity (cellulite of laxity) or to postliposuction adhesions are frequently present and may be severe. Patients with significant fat deposits may be treated initially with liposuction 3 to 4 months earlier to become candidates for this procedure. Key technical elements of this procedure include (1) both supine and lateral decubitus positioning with the hip flexed and abducted to allow overcorrection, (2) appropriate direct surgical undermining through superficial fascial system zones of adherence in the superior thigh while avoiding the lymphatics of the femoral triangle, (3) more

  15. Animation of multi-flexible body systems and its use in control system design

    Science.gov (United States)

    Juengst, Carl; Stahlberg, Ron

    1993-01-01

    Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.

  16. Thin Thermoelectric Generator System for Body Energy Harvesting

    Science.gov (United States)

    Settaluri, Krishna T.; Lo, Hsinyi; Ram, Rajeev J.

    2012-06-01

    Wearable thermoelectric generators (TEGs) harvest thermal energy generated by the body to generate useful electricity. The performance of these systems is limited by (1) the small working temperature differential between the body and ambient, (2) the desire to use natural air convection cooling on the cold side of the generator, and (3) the requirement for thin, lightweight systems that are comfortable for long-term use. Our work has focused on the design of the heat transfer system as part of the overall thermoelectric (TE) system. In particular, the small heat transfer coefficient for natural air convection results in a module thermal impedance that is smaller than that of the heat sink. In this heat-sink-limited regime, the thermal resistance of the generator should be optimized to match that of the heat sink to achieve the best performance. In addition, we have designed flat (1 mm thickness) copper heat spreaders to realize performance surpassing splayed pin heat sinks. Two-dimensional (2-D) heat spreading exploits the large surface area available in a wristband and allows patterned copper to efficiently cool the TE. A direct current (DC)/DC converter is integrated on the wristband. The system generates up to 28.5 μW/cm2 before the converter and 8.6 μW/cm2 after the converter, with 30% efficiency. It generates output of 4.15 V with overall thickness under 5 mm.

  17. Human breast milk and the gastrointestinal innate immune system.

    Science.gov (United States)

    Jakaitis, Brett M; Denning, Patricia W

    2014-06-01

    The gastrointestinal (GI) tract is a large potential portal for multiple infectious agents to enter the human body. The GI system performs multiple functions as part of the neonate's innate immune system, providing critical defense during a vulnerable period. Multiple mechanisms and actions are enhanced by the presence of human breast milk. Bioactive factors found in human milk work together to create and maintain an optimal and healthy environment, allowing the intestines to deliver ideal nutrition to the host and afford protection by a variety of mechanisms.

  18. A mathematical high bar-human body model for analysing and interpreting mechanical-energetic processes on the high bar.

    Science.gov (United States)

    Arampatzis, A; Brüggemann, G P

    1998-12-01

    The aims of this study were: 1. To study the transfer of energy between the high bar and the gymnast. 2. To develop criteria from the utilisation of high bar elasticity and the utilisation of muscle capacity to assess the effectiveness of a movement solution. 3. To study the influence of varying segment movement upon release parameters. For these purposes a model of the human body attached to the high bar (high bar-human body model) was developed. The human body was modelled using a 15-segment body system. The joint-beam element method (superelement) was employed for modelling the high bar. A superelement consists of four rigid segments connected by joints (two Cardan joints and one rotational-translational joint) and springs (seven rotation springs and one tension-compression spring). The high bar was modelled using three superelements. The input data required for the high bar human body model were collected with video-kinematographic (50 Hz) and dynamometric (500 Hz) techniques. Masses and moments of inertia of the 15 segments were calculated using the data from the Zatsiorsky et al. (1984) model. There are two major phases characteristic of the giant swing prior to dismounts from the high bar. In the first phase the gymnast attempts to supply energy to the high bar-humanbody system through muscle activity and to store this energy in the high bar. The difference between the energy transferred to the high bar and the reduction in the total energy of the body could be adopted as a criterion for the utilisation of high bar elasticity. The energy previously transferred into the high bar is returned to the body during the second phase. An advantageous increase in total body energy at the end of the exercise could only be obtained through muscle energy supply. An index characterising the utilisation of muscle capacity was developed out of the difference between the increase in total body energy and the energy returned from the high bar. A delayed and initially slow but

  19. Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment.

    Science.gov (United States)

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2013-04-01

    Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.

  20. Human evolution in Siberia: from frozen bodies to ancient DNA

    Directory of Open Access Journals (Sweden)

    Bouakaze Caroline

    2010-01-01

    Full Text Available Abstract Background The Yakuts contrast strikingly with other populations from Siberia due to their cattle- and horse-breeding economy as well as their Turkic language. On the basis of ethnological and linguistic criteria as well as population genetic studies, it has been assumed that they originated from South Siberian populations. However, many questions regarding the origins of this intriguing population still need to be clarified (e.g. the precise origin of paternal lineages and the admixture rate with indigenous populations. This study attempts to better understand the origins of the Yakuts by performing genetic analyses on 58 mummified frozen bodies dated from the 15th to the 19th century, excavated from Yakutia (Eastern Siberia. Results High quality data were obtained for the autosomal STRs, Y-chromosomal STRs and SNPs and mtDNA due to exceptional sample preservation. A comparison with the same markers on seven museum specimens excavated 3 to 15 years ago showed significant differences in DNA quantity and quality. Direct access to ancient genetic data from these molecular markers combined with the archaeological evidence, demographical studies and comparisons with 166 contemporary individuals from the same location as the frozen bodies helped us to clarify the microevolution of this intriguing population. Conclusion We were able to trace the origins of the male lineages to a small group of horse-riders from the Cis-Baïkal area. Furthermore, mtDNA data showed that intermarriages between the first settlers with Evenks women led to the establishment of genetic characteristics during the 15th century that are still observed today.