WorldWideScience

Sample records for human body postures

  1. Estimation of Human Body Shape and Posture Under Clothing

    OpenAIRE

    Wuhrer, Stefanie; Pishchulin, Leonid; Brunton, Alan; Shu, Chang; Lang, Jochen

    2013-01-01

    Estimating the body shape and posture of a dressed human subject in motion represented as a sequence of (possibly incomplete) 3D meshes is important for virtual change rooms and security. To solve this problem, statistical shape spaces encoding human body shape and posture variations are commonly used to constrain the search space for the shape estimate. In this work, we propose a novel method that uses a posture-invariant shape space to model body shape variation combined with a skeleton-bas...

  2. Remarks on 3D human body posture reconstruction from multiple camera images

    Science.gov (United States)

    Nagasawa, Yusuke; Ohta, Takako; Mutsuji, Yukiko; Takahashi, Kazuhiko; Hashimoto, Masafumi

    2007-12-01

    This paper proposes a human body posture estimation method based on back projection of human silhouette images extracted from multi-camera images. To achieve real-time 3D human body posture estimation, a server-client system is introduced into the multi-camera system, improvements of the background subtraction and back projection are investigated. To evaluate the feasibility of the proposed method, 3D estimation experiments of human body posture are carried out. The experimental system with six CCD cameras is composed and the experimental results confirm both the feasibility and effectiveness of the proposed system in the 3D human body posture estimation in real-time. By using the 3D reconstruction of human body posture, the simple walk-through application of virtual reality system is demonstrated.

  3. The personification of animals: coding of human and nonhuman body parts based on posture and function.

    Science.gov (United States)

    Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie

    2014-09-01

    The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals.

  4. The influence of body posture on the kinematics of prehension in humans and gorillas (Gorilla gorilla).

    Science.gov (United States)

    Reghem, E; Chèze, L; Coppens, Y; Pouydebat, E

    2014-03-01

    Much of our current understanding of human prehension in a comparative context is based on macaque models in a sitting, constrained body posture. In a previous study, we clearly showed differences in the amplitude of the forelimb joints between five primate species (lemur, capuchin, chimpanzee, gorilla and human) during unconstrained grasping where the animals were free to choose their body posture. One of our interrogations was to know if these differences could be due to the body posture. To address this question, this study compares humans with new data for gorillas during an unconstrained food prehension task in two body postures, a sitting and a quadrupedal one. The objective is to determine the behavioral and kinematic strategies (amplitudes and patterns of evolution of the articular angles) as well as differences and invariants of trunk and forelimb motions between species. The subjects were recorded by five cameras, and landmarks were digitized frame by frame to reconstruct 3D movement. Our results show that (1) despite significant influences of body postures on ranges of motion in gorillas and humans, species preserve their specific forelimb joint and trunk contribution; (2) body posture has a limited effect on the basic pattern of wrist velocity. Our study indicates that different primate species have specific kinematic features of limb coordination during prehension, which dose not alter with changes in posture. Therefore, across varying species, it is possible to compare limb kinematics irrespective of postural constraints and unconstrained condition need to be explored in other primates to understand the evolution of primate prehension.

  5. Human Body Modeling and Posture Simulating Based on 3D Surface Scan Data

    Institute of Scientific and Technical Information of China (English)

    马永有; 张辉; 任少云; 蒋寿伟

    2003-01-01

    This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used to determine the posture of the body,and the latter is used to generate the body shape according to the given posture. The body surface is reconstructed with multi-segment B-spline surfaces based on the 3D scan data from a real human body.Using only a few joints parameters and the original surface scan data, the various body postures and the shape can be generated easily. The model has a strong potential of being used for ergonomic design,garment design, virtual reality environment, as well as creating human animation, etc.

  6. The Contribution of Pre-impact Spine Posture on Human Body Model Response in Whole-body Side Impact.

    Science.gov (United States)

    Poulard, David; Subit, Damien; Donlon, John-Paul; Lessley, David J; Kim, Taewung; Park, Gwansik; Kent, Richard W

    2014-11-01

    The objective of the study was to analyze independently the contribution of pre-impact spine posture on impact response by subjecting a finite element human body model (HBM) to whole-body, lateral impacts. Seven postured models were created from the original HBM: one matching the standard driving posture and six matching pre-impact posture measured for each of six subjects tested in previously published experiments. The same measurements as those obtained during the experiments were calculated from the simulations, and biofidelity metrics based on signals correlation were established to compare the response of HBM to that of the cadavers. HBM responses showed good correlation with the subject response for the reaction forces, the rib strain (correlation score=0.8) and the overall kinematics. The pre-impact posture was found to greatly alter the reaction forces, deflections and the strain time histories mainly in terms of time delay. By modifying only the posture of HBM, the variability in the impact response was found to be equivalent to that observed in the experiments performed with cadavers with different anthropometries. The patterns observed in the responses of the postured HBM indicate that the inclination of the spine in the frontal plane plays a major role. The postured HBM sustained from 2 to 5 bone fractures, including the scapula in some cases, confirming that the pre-impact posture influences the injury outcome predicted by the simulation.

  7. Remarks on human body posture estimation from silhouette image based on heuristic rules and Kalman filter

    Science.gov (United States)

    Takahashi, Kazuhiko; Naemura, Masahide

    2005-12-01

    This paper proposes a human body posture estimation method based on analysis of human silhouette and Kalman filter. The proposed method is based on both the heuristically extraction method of estimating the significant points of human body and the contour analysis of the human silhouette. The 2D coordinates of the human body's significant points, such as top of the head, and tips of feet, are located by applying the heuristically extraction method to the human silhouette, those of tips of hands are obtained by using the result of the contour analysis, and the joints of elbows and knees are estimated by introducing some heuristic rules to the contour image of the human silhouette. The estimated results are optimized and tracked by using Kalman filter. The proposed estimation method is implemented on a personal computer and runs in real-time. Experimental results show both the feasibility and the effectiveness of the proposed method for estimating human body postures.

  8. Human body area factors for radiation exchange analysis: standing and walking postures.

    Science.gov (United States)

    Park, Sookuk; Tuller, Stanton E

    2011-09-01

    Effective radiation area factors (f (eff)) and projected area factors (f (p)) of unclothed Caucasians' standing and walking postures used in estimating human radiation exchange with the surrounding environment were determined from a sample of adults in Canada. Several three-dimensional (3D) computer body models were created for standing and walking postures. Only small differences in f (eff) and f (p) values for standing posture were found between gender (male or female) and body type (normal- or over-weight). Differences between this study and previous studies were much larger: ≤0.173 in f (p) and ≤0.101 in f (eff). Directionless f (p) values for walking posture also had only minor differences between genders and positions in a stride. However, the differences of mean directional f (p) values of the positions dependent on azimuth angles were large enough, ≤0.072, to create important differences in modeled radiation receipt. Differences in f (eff) values were small: 0.02 between the normal-weight male and female models and up to 0.033 between positions in a stride. Variations of directional f (p) values depending on solar altitudes for walking posture were narrower than those for standing posture. When both standing and walking postures are considered, the mean f (eff) value, 0.836, of standing (0.826) and walking (0.846) could be used. However, f (p) values should be selected carefully because differences between directional and directionless f (p) values were large enough that they could influence the estimated level of human thermal sensation.

  9. Modeling of a seated human body exposed to vertical vibrations in various automotive postures.

    Science.gov (United States)

    Liang, Cho-Chung; Chiang, Chi-Feng

    2008-04-01

    Although much research has been devoted to constructing specific models or to measuring the response characteristics of seated subjects, investigations on a mathematical human model on a seat with a backrest to evaluate vehicular riding comfort have not yet attracted the same level of attention. For the responses of a seated body to vertical vibrations, mathematical models of the mechanisms must be at least two-dimensional in the sagittal plane. In describing the motions of a seated body, two multibody models representative of the automotive postures found in the literature were investigated, one with and the other without a backrest support. Both models were modified to suitably represent the different automotive postures with and without backrest supports, and validated by various experimental data from the published literature pertaining to the same postural conditions. On the basis of the analytical study and the experimental validation, the fourteen-degrees-of-freedom model proposed in this research was found to be best fitted to the test results; therefore, this model is recommended for studying the biodynamic responses of a seated human body exposed to vertical vibrations in various automotive postures.

  10. Fall prevention in the young old using an exoskeleton human body posturizer: a randomized controlled trial.

    Science.gov (United States)

    Verrusio, W; Gianturco, V; Cacciafesta, M; Marigliano, V; Troisi, G; Ripani, M

    2017-04-01

    Fall risk in elderly has been related with physical decline, low quality of life and reduced survival. To evaluate the impact of exoskeleton human body posturizer (HBP) on the fall risk in the elderly. 150 subjects (mean age 64.85; 79 M/71 F) with mild fall risk were randomized into two groups: 75 for group treated with human body posturizer (HBP group) and 75 for physical training without HBP group (exercise group). The effects of interventions were assessed by differences in tests related to balance and falls. Medically eligible patients were screened with Tinetti balance and Gait evaluation scale, short physical performance battery and numeric pain rating scale to determine fall risk in elderly people. In the HBP group there was a significant improvement in short physical performance battery, Tinetti scale and Pain Numeric rating scale with a significant reduction in fall risk (p exoskeleton human body posturizer seems to be a new significant device for prevention of fall in elderly patients. Further research should be carried out to obtain more evidence on effects of robotic technology for fall prevention in the elderly.

  11. Wearable human body joint and posture measuring system

    NARCIS (Netherlands)

    Dunias, P.; Gransier, R.; Jin, A.; Statham, A.; Willems, P.

    2011-01-01

    In many medical applications, especially the orthopaedic setting, ambulatory, monitoring of human joint angles could be of substantial value to improving rehabilitation strategies and unravelling the pathomechanics of many degenerative joint diseases (e.g. knee osteoarthritis). With the ageing of th

  12. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    Science.gov (United States)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  13. Using frequency analysis to improve the precision of human body posture algorithms based on Kalman filters.

    Science.gov (United States)

    Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, G

    2016-05-01

    With the advent of miniaturized inertial sensors many systems have been developed within the last decade to study and analyze human motion and posture, specially in the medical field. Data measured by the sensors are usually processed by algorithms based on Kalman Filters in order to estimate the orientation of the body parts under study. These filters traditionally include fixed parameters, such as the process and observation noise variances, whose value has large influence in the overall performance. It has been demonstrated that the optimal value of these parameters differs considerably for different motion intensities. Therefore, in this work, we show that, by applying frequency analysis to determine motion intensity, and varying the formerly fixed parameters accordingly, the overall precision of orientation estimation algorithms can be improved, therefore providing physicians with reliable objective data they can use in their daily practice.

  14. Dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

    Science.gov (United States)

    Kujala, Miiamaaria V; Kujala, Jan; Carlson, Synnöve; Hari, Riitta

    2012-01-01

    We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facing toward each other from humans facing away, and in dog experts, a distinction also occurred for dogs facing toward vs. away in a bilateral area extending from the pSTS to the inferior temporo-occipital cortex: the dissociation of dog behavior was significantly stronger in expert than control group. Furthermore, the control group had stronger pSTS responses to humans than dogs facing toward a conspecific, whereas in dog experts, the responses were of similar magnitude. These findings suggest that dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

  15. Sagittal jaw position in relation to body posture in adult humans – a rasterstereographic study

    Directory of Open Access Journals (Sweden)

    Drerup Burkhard

    2006-01-01

    Full Text Available Abstract Background The correlations between the sagittal jaw position and the cranio – cervical inclination are described in literature. Only few studies focus on the sagittal jaw position and the body posture using valid and objective orthopaedic examination methods. The aim of this study was to test the hypothesis that patients with malocclusions reveal significant differences in body posture compared to those without (upper thoracic inclination, kyphotic angle, lordotic angle and lower lumbar inclination. Methods Eighty-four healthy adult patients (with a mean age = 25.6 years and ranging from 16.1 to 55.8 years were examined with informed consent. The orthodontic examination horizontal overjet (distance between upper and lower incisors was determined by using an orthodontic digital sliding calliper. The subjects were subdivided in respect of the overjet with the following results: 18 revealed a normal overjet (Class I, 38 had an increased overjet (Class II and 28 had an reversed overjet (Class III. Rasterstereography was used to carry out a three – dimensional back shape analysis. This method is based on photogrammetry. A three-dimensional shape was produced by analysing the distortion of parallel horizontal white light lines projected on the patient's back, followed by mathematical modelling. On the basis of the sagittal profile the upper thoracic inclination, the thoracic angle, the lordotic angle and the pelvic inclination were determined with a reported accuracy of 2.8° and the correlations to the sagittal jaw position were calculated by means of ANOVA, Scheffé and Kruskal-Wallis procedures. Results Between the different overjet groups, no statistically significant differences or correlations regarding the analysed back shape parameters could be obtained. However, comparing males and females there were statistically significant differences in view of the parameters 'lordotic angle' and 'pelvic inclination'. Conclusion No

  16. Using artificial neural networks for the transformation of human body postures based on landmarks

    NARCIS (Netherlands)

    Zhang, B.

    2005-01-01

    Designers, engineers and ergonomists are seeking to exploit the opportunities offered by the 3D anthropometric technologies. These technologies make 3D measurements possible and provide us with a more detailed description of human body in comparison with the traditional 1D or 2D data processing. In

  17. Emotional and movement-related body postures modulate visual processing.

    Science.gov (United States)

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E; Avenanti, Alessio; Bertini, Caterina

    2015-08-01

    Human body postures convey useful information for understanding others' emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Configural processing in body posture recognition: an eye-tracking study.

    Science.gov (United States)

    Tao, Weidong; Sun, Hongjin

    2013-11-13

    The body inversion effect is the finding that inverted body posture pictures are more difficult to recognize than upright body posture pictures are. The present study reinvestigated the body inversion effect in human observers using behavioral and eye movement measures to explore whether the body inversion effect correlates with specific eye movement features. Results showed that body postures elicited a robust and stable body inversion effect in reaction time throughout the experimental sessions. Eye-tracking data showed that the body inversion effect was robust only in the first fixation duration, but not in the second fixation duration. The analysis of the regions of interest showed that most fixations were located in the upper body for both the upright and the inverted body postures. Compared with inverted body postures, the upright postures led to a shorter reaction time and a shorter first fixation duration, but a larger portion of time to fixate on the head region, suggesting that participants tended to use head as a reference point to process upright body postures. For both the behavioral and the eye movement measures, the body inversion effect was robust for biomechanically possible body postures. However, for biomechanically impossible body postures (with angular manipulation of two joints), the effect was mixed. Although the error rate failed to show the body inversion effect, the reaction time measure and most eye movement measures, however, showed a body inversion effect. Overall, these results suggested that upright body postures are processed in expertise recognition and are processed configurally by human observers.

  19. Body Posture: Functional and Structural Aspects for Health Promotion

    OpenAIRE

    Bertolini, Sonia Maria Marques Gomes; UNICESUMAR; Melocra, Polyana; Universidade Estadual de Maringá; de Paula, Karla Pereira; UNICESUMAR

    2015-01-01

    Current study comprises a bibliographical review on body posture, its implication and occupational functions. The bibliographical review was undertaken from scientific articles published between 2000 and 2012 and retrieved from Lilacs, Medline, Scielo and PubMed sites. The descriptor terms posture, anthropology, postural and body equilibrium were used. Posture is directly related to body equilibrium and both have a great importance in movement. Body posture is affected by several factors in t...

  20. Body posture and syndromes of back pain.

    Science.gov (United States)

    Nowotny, Janusz; Nowotny-Czupryna, Olga; Brzęk, Anna; Kowalczyk, Anna; Czupryna, Krzysztof

    2011-01-01

    The effects of faulty postures include disturbances of the symmetric distribution of compressive and tensile forces acting on both sides of the body axis and the emergence of harmful shear forces. The torques of antigravity muscles also change unfavourably. This may lead to the development of a repetitive strain syndrome, stenosis of intervertebral foramina, compression of nerve roots and back pain. The development of back pain syndromes is significantly affected by the performance of various work-related tasks in non-ergonomic positions. The aim of the study was to investigate the association between back pain syndromes and the quality of body posture, especially in the context of work ergonomics. The study enrolled 125 persons: 39 adults with a childhood history of scoliosis, 39 midwives, and 47 physiotherapists. Body posture was assessed in all participants. In midwives and physiotherapists, body position during the performance of work-related tasks was also evaluated. The frequency and severity of pain was assessed with the Jackson-Moskowitz measure. The study revealed that over 80% of the participants suffered from spinal pain. In most cases, the pain was intermittent and was felt in the lumbar spine. The occurrence of pain among midwives and physiotherapists was not directly dependent on the predominant type of abnormal spinal position assumed during the performance of occupational tasks or the quality of body posture. The complaint was also reported by ca. 85% of persons with a history of scoliosis. An incorrect body posture (especially scoliosis) and performance of work-related tasks in non-ergonomic positions increase the probability of back pain.

  1. Evaluation of body posture in nursing students.

    Science.gov (United States)

    Andrade, Marília Fernandes; Chaves, Érika de Cássia Lopes; Miguel, Michele Rita Oliveira; Simão, Talita Prado; Nogueira, Denismar Alves; Iunes, Denise Hollanda

    2017-08-28

    To investigate the body posture of nursing students before and after clinical practice. The study was developed in two stages. Initially the body posture of students of the 2nd, 4th, 6th, and 8th periods were assessed through photogrammetry. All images were analyzed in a random and masked manner with CorporisPro® 3.1.3 software. Three evaluations were performed for each angle and then the mean value was calculated. Two years later, when the 4th period students had developed their clinical internships, their body posture was again evaluated. The total sample consisted of 112 students. Comparison of their posture with the normality pattern showed that all the angles presented significant differences (pvalores de normalidade. Os segmentos com diferença significativa, comparando-se antes e após a prática, foram o ângulo acromioclavicular, flexo de joelho e ângulo tibiotársico, sendo os dois últimos na posição de rolamento.

  2. Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads

    Science.gov (United States)

    Lu, Ming-Lun; Waters, Thomas; Werren, Dwight

    2015-01-01

    Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435

  3. Discrimination of fearful and happy body postures in 8-month-old infants: An event-related potential study

    Directory of Open Access Journals (Sweden)

    Manuela eMissana

    2014-07-01

    Full Text Available Responding to others’ emotional body expressions is an essential social skill in humans. Adults readily detect emotions from body postures, but it is unclear whether infants are sensitive to emotional body postures. We examined 8-month-old infants’ brain responses to emotional body postures by measuring event-related potentials (ERPs to happy and fearful bodies. Our results revealed two emotion-sensitive ERP components: body postures evoked an early N290 at occipital electrodes and a later Nc at fronto-central electrodes that were enhanced in response to fearful (relative to happy expressions. These findings demonstrate that, (a 8-month-old infants discriminate between static emotional body postures, and (b similar to infant emotional face perception, the sensitivity to emotional body postures is reflected in early perceptual (N290 and later attentional (Nc neural processes. This provides evidence for an early developmental emergence of the neural processes involved in the discrimination of emotional body postures.

  4. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    Science.gov (United States)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-07

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  5. The relationship between the stomatognathic system and body posture

    OpenAIRE

    Antonino Cuccia; Carola Caradonna

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. ...

  6. Body posture and postural stability of people practicing qigong

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2015-07-01

    Full Text Available Introduction: Correct and stable posture is essential for the implementation of the majority of voluntary movements and locomotion. The study of postural stability is an element of clinical trials evaluating physical activity in order to determine the optimal therapeutic procedures. Qigong exercises are not only a form of prevention, helpful in maintaining wellbeing, but also a means of therapy in many diseases, including disorders of postural stability. Aim of the research: To analyse the association between the quality of posture and postural stability of people practicing qigong. Material and methods : The study involved 32 people. The mean age of those tested was 54 years. Posture study used optoelectronic method Diers formetric III 4D. Postural stability was tested on the platform Biodex Balance System. The studies were performed at the Posture Laboratory of the Institute of Physiotherapy at Jan Kochanowski University in Kielce. Results and conclusions : Spearman rank order correlation showed a positive correlation of relative rotation of the spine area with a general indicator of stability (p = 0.0206 at an average level (R = 0.4075 and with the index of the stability A/P (p = 0.0310, although at a lower level (R = 0.3819. With the increase in the relative rotation of the spine area the overall stability indicator and stability indicator A/P also increased. Significant positive correlations were also seen for the surface rotation (+max and a general indication of the stability and the stability index A/P. With the increase of surface rotation (+max of the spine the overall stability indicator and stability indicator A/P also increased.

  7. Mood Recognition Based on Upper Body Posture and Movement Features

    NARCIS (Netherlands)

    Thrasher, M.L.; Van der Zwaag, M. D.; Bianchi-Berthouze, N.; Westerink, J.H.D.M.

    2012-01-01

    While studying body postures in relation to mood is not a new concept, the majority of these studies rely on actors interpretations. This project investigated the temporal aspects of naturalistic body postures while users listened to mood inducing music. Video data was collected while participants l

  8. Posture alters human resting-state.

    Science.gov (United States)

    Thibault, Robert T; Lifshitz, Michael; Jones, Jennifer M; Raz, Amir

    2014-09-01

    Neuroimaging is ubiquitous; however, neuroimagers seldom investigate the putative impact of posture on brain activity. Whereas participants in most psychological experiments sit upright, many prominent neuroimaging techniques (e.g., functional magnetic resonance imaging (fMRI)) require participants to lie supine. Such postural discrepancies may hold important implications for brain function in general and for fMRI in particular. We directly investigated the effect of posture on spontaneous brain dynamics by recording scalp electrical activity in four orthostatic conditions (lying supine, inclined at 45°, sitting upright, and standing erect). Here we show that upright versus supine posture increases widespread high-frequency oscillatory activity. Our electroencephalographic findings highlight the importance of posture as a determinant in neuroimaging. When generalizing supine imaging results to ecological human cognition, therefore, cognitive neuroscientists would benefit from considering the influence of posture on brain dynamics.

  9. Fingertip contact influences human postural control

    Science.gov (United States)

    Jeka, J. J.; Lackner, J. R.

    1994-01-01

    Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.

  10. Evaluation of Neutral Body Posture on Shuttle Mission STS-57 (SPACEHAB-1). Revision

    Science.gov (United States)

    Mount, Frances E.; Whitmore, Mihriban; Stealey, Sheryl L.

    2003-01-01

    Research has shown that the space environment induces physiological changes in the human body, such as fluid shifts in the upper body and chest cavity, spinal lengthening, muscular atrophy, space motion sickness, cardiopulmonary deconditioning, and bone mass loss, as well as some changes in visual perception. These require a period of adaptation and can substantially affect both crew member performance and posture. These physiological effects, when work activities are conducted, have been known to impact the body's center of gravity, reach, flexibility, and dexterity. All these aspects of posture must be considered to safely and efficiently design space systems and hardware. NASA has documented its microgravity body posture in the Man-Systems Integration Standards (MSIS); the space community uses the MSIS posture to design workstations and tools for space application. However, the microgravity body posture should be further investigated for several reasons, including small sample size in previous studies, possible imprecision, and lack of detail. JSC undertook this study to investigate human body posture exhibited under microgravity conditions. STS-57 crew members were instructed to assume a relaxed posture that was not oriented to any work area or task. Crew members were asked to don shorts and tank tops and to be blindfolded while data were recorded. Video data were acquired once during the mission from each of the six crew members. No one crew member exhibited the typical NBP called out in the MSIS; one composite posture is not adequate. A range of postures may be more constructive for design purposes. Future evaluations should define precise posture requirements for workstation, glove box, maintenance, foot-restraint, and handhold activities.

  11. Human Posture and Movement Prediction based on Musculoskeletal Modeling

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi

    2014-01-01

    Abstract This thesis explores an optimization-based formulation, so-called inverse-inverse dynamics, for the prediction of human posture and motion dynamics performing various tasks. It is explained how this technique enables us to predict natural kinematic and kinetic patterns for human posture...... and motion using AnyBody Modeling System (AMS). AMS uses inverse dynamics to analyze musculoskeletal systems and is, therefore, limited by its dependency on input kinematics. We propose to alleviate this dependency by assuming that voluntary postures and movement strategies in humans are guided by a desire...... investigated, a scaling to the mean height and body mass may be sufficient, while other questions require subject-specific models. The movement is parameterized by means of time functions controlling selected degrees-of-freedom (DOF). Subsequently, the parameters of these functions, usually referred...

  12. Sensorimotor integration in human postural control

    Science.gov (United States)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  13. Body posture measurement in a context of example-based teaching

    Science.gov (United States)

    Benoit, Eric; Perrin, Stephane; Coquin, Didier

    2015-02-01

    This paper presents a measurement process of body postures operated in a context of humanoid robot learning. The basic measured quantities are the angle joints of a human skeleton and the angle joints of a humanoid robot. Due to the differences between the two mechanical structures, the measurement results are expressed into a common representation space by the way of fuzzy scales. This paper shows how the common representation space can be defined, and presents a method to match weakly defined postures with uncertain measurements of a human posture.

  14. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Directory of Open Access Journals (Sweden)

    Tai Kubo

    Full Text Available Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade, yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals are above 500 g, except for macroscelid mammals (i.e., elephant shrew, a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs. When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  15. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Science.gov (United States)

    Kubo, Tai; Kubo, Mugino O

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  16. Human Posture Estimation using Visual Information

    Institute of Scientific and Technical Information of China (English)

    Jiayu XU

    2014-01-01

    Human-robot cooperation is one of the central research issues in robotics.Al kinds of sensors wil be used since the robot should understand human’s intention.This article wil focus on the human posture estimation by using Microsoft Kinect.The visual Information from Kinect can be acquired and used to extract the human skeletal information and further,calcu-late the human posture.The experiment results have been compared with a Qualisys system,which has been proved quite precisely.

  17. The effect of body postures on the distribution of air gap thickness and contact area

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2017-02-01

    The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.

  18. The relationship of postural body stability and severity of malocclusion

    Directory of Open Access Journals (Sweden)

    Prasanna Arumugam

    2016-01-01

    Full Text Available Objective: To evaluate the relationship between postural body stability (static and dynamic and malocclusions of varying severity and to find whether different skeletal patterns showed variation in postural body stability. Materials and Methods: Seventy-five subjects were divided into three groups based on case complexity using ABO discrepancy index. Group A consisted of 25 subjects restricted to Class I skeletal base and an ABO score ≤10; Group B consisted of 25 subjects with either Class II or III skeletal base and an ABO score of 11-25; Group C consisted of 25 subjects with either Class II or III skeletal base and an ABO score >25. Postural body stability in both static and dynamic equilibrium was recorded using a computerized dynamic posturography. The average values were obtained for the scores obtained in each group and the data obtained wes subjected to statistical analysis using one-way analysis of variance and post hoc Tukey′s test. A P ≤ 0.05 was considered significant. Results: In both static and dynamic conditions, postural body stability was inversely proportional to the severity of malocclusion. The assessment of the overall body score showed that subjects in Group A and Group B had acceptable postural stability and only subjects with Group C showed statistically significant lack of postural stability. Conclusions: Our study showed that patients with malocclusion showed decreased stability and increased sway with increasing severity of malocclusion.

  19. Does body posture influence hand preference in an ancestral primate model?

    Directory of Open Access Journals (Sweden)

    Leliveld Lisette

    2011-02-01

    Full Text Available Abstract Background The origin of human handedness and its evolution in primates is presently under debate. Current hypotheses suggest that body posture (postural origin hypothesis and bipedalism hypothesis have an important impact on the evolution of handedness in primates. To gain insight into the origin of manual lateralization in primates, we studied gray mouse lemurs, suggested to represent the most ancestral primate condition. First, we investigated hand preference in a simple food grasping task to explore the importance of hand usage in a natural foraging situation. Second, we explored the influence of body posture by applying a forced food grasping task with varying postural demands (sit, biped, cling, triped. Results The tested mouse lemur population did not prefer to use their hands alone to grasp for food items. Instead, they preferred to pick them up using a mouth-hand combination or the mouth alone. If mouth usage was inhibited, they showed an individual but no population level handedness for all four postural forced food grasping tasks. Additionally, we found no influence of body posture on hand preference in gray mouse lemurs. Conclusion Our results do not support the current theories of primate handedness. Rather, they propose that ecological adaptation indicated by postural habit and body size of a given species has an important impact on hand preference in primates. Our findings suggest that small-bodied, quadrupedal primates, adapted to the fine branch niche of dense forests, prefer mouth retrieval of food and are less manually lateralized than large-bodied species which consume food in a more upright, and less stable body posture.

  20. The relationship between the stomatognathic system and body posture

    Directory of Open Access Journals (Sweden)

    Antonino Cuccia

    2009-01-01

    Full Text Available In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing, oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system's proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus. If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss.

  1. The relationship between the stomatognathic system and body posture.

    Science.gov (United States)

    Cuccia, Antonino; Caradonna, Carola

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system's proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss.

  2. Global body posture evaluation in patients with temporomandibular joint disorder

    Directory of Open Access Journals (Sweden)

    Eliza Tiemi Saito

    2009-01-01

    Full Text Available AIM: To identify the relationship between anterior disc displacement and global posture (plantar arches, lower limbs, shoulder and pelvic girdle, vertebral spine, head and mandibles. Common signs and symptoms of anterior disc displacement were also identified. INTRODUCTION: Global posture deviations cause body adaptation and realignment, which may interfere with the organization and function of the temporomandibular joint. METHODS: Global posture evaluation was performed in a group of 10 female patients (20 to 30 years of age with temporomandibular joint disc displacement and in a control group of 16 healthy female volunteers matched for age, weight and height. Anterior disc displacement signs, symptoms and the presence of parafunctional habits were also identified through interview. RESULTS: Patients with disc displacement showed a higher incidence of pain in the temporomandibular joint area, but there were no differences in parafunctional habits between the groups. In the disc displacement group, postural deviations were found in the pelvis (posterior rotation, lumbar spine (hyperlordosis, thoracic spine (rectification, head (deviation to the right and mandibles (deviation to the left with open mouth. There were no differences in the longitudinal plantar arches between the groups. CONCLUSION: Our results suggest a close relationship between body posture and temporomandibular disorder, though it is not possible to determine whether postural deviations are the cause or the result of the disorder. Hence, postural evaluation could be an important component in the overall approach to providing accurate prevention and treatment in the management of patients with temporomandibular disorder.

  3. First-Person Perspective Virtual Body Posture Influences Stress: A Virtual Reality Body Ownership Study.

    Science.gov (United States)

    Bergström, Ilias; Kilteni, Konstantina; Slater, Mel

    2016-01-01

    In immersive virtual reality (IVR) it is possible to replace a person's real body by a life-sized virtual body that is seen from first person perspective to visually substitute their own. Multisensory feedback from the virtual to the real body (such as the correspondence of touch and also movement) can also be present. Under these conditions participants typically experience a subjective body ownership illusion (BOI) over the virtual body, even though they know that it is not their real one. In most studies and applications the posture of the real and virtual bodies are as similar as possible. Here we were interested in whether the BOI is diminished when there are gross discrepancies between the real and virtual body postures. We also explored whether a comfortable or uncomfortable virtual body posture would induce feelings and physiological responses commensurate with the posture. We carried out an experiment with 31 participants in IVR realized with a wide field-of-view head-mounted display. All participants were comfortably seated. Sixteen of them were embodied in a virtual body designed to be in a comfortable posture, and the remainder in an uncomfortable posture. The results suggest that the uncomfortable body posture led to lesser subjective BOI than the comfortable one, but that participants in the uncomfortable posture experienced greater awareness of their autonomic physiological responses. Moreover their heart rate, heart rate variability, and the number of mistakes in a cognitive task were associated with the strength of their BOI in the uncomfortable posture: greater heart rate, lower heart rate variability and more mistakes were associated with higher levels of the BOI. These findings point in a consistent direction--that the BOI over a body that is in an uncomfortable posture can lead to subjective, physiological and cognitive effects consistent with discomfort that do not occur with the BOI over a body in a comfortable posture.

  4. Remote monitoring of soldier safety through body posture identification using wearable sensor networks

    Science.gov (United States)

    Biswas, Subir; Quwaider, Muhannad

    2008-04-01

    The physical safety and well being of the soldiers in a battlefield is the highest priority of Incident Commanders. Currently, the ability to track and monitor soldiers rely on visual and verbal communication which can be somewhat limited in scenarios where the soldiers are deployed inside buildings and enclosed areas that are out of visual range of the commanders. Also, the need for being stealth can often prevent a battling soldier to send verbal clues to a commander about his or her physical well being. Sensor technologies can remotely provide various data about the soldiers including physiological monitoring and personal alert safety system functionality. This paper presents a networked sensing solution in which a body area wireless network of multi-modal sensors can monitor the body movement and other physiological parameters for statistical identification of a soldier's body posture, which can then be indicative of the physical conditions and safety alerts of the soldier in question. The specific concept is to leverage on-body proximity sensing and a Hidden Markov Model (HMM) based mechanism that can be applied for stochastic identification of human body postures using a wearable sensor network. The key idea is to collect relative proximity information between wireless sensors that are strategically placed over a subject's body to monitor the relative movements of the body segments, and then to process that using HMM in order to identify the subject's body postures. The key novelty of this approach is a departure from the traditional accelerometry based approaches in which the individual body segment movements, rather than their relative proximity, is used for activity monitoring and posture detection. Through experiments with body mounted sensors we demonstrate that while the accelerometry based approaches can be used for differentiating activity intensive postures such as walking and running, they are not very effective for identification and

  5. Time changes with the embodiment of another's body posture.

    Directory of Open Access Journals (Sweden)

    Francisco C Nather

    Full Text Available The aim of the present study was to investigate whether the perception of presentation durations of pictures of different body postures was distorted as function of the embodied movement that originally produced these postures. Participants were presented with two pictures, one with a low-arousal body posture judged to require no movement and the other with a high-arousal body posture judged to require considerable movement. In a temporal bisection task with two ranges of standard durations (0.4/1.6 s and 2/8 s, the participants had to judge whether the presentation duration of each of the pictures was more similar to the short or to the long standard duration. The results showed that the duration was judged longer for the posture requiring more movement than for the posture requiring less movement. However the magnitude of this overestimation was relatively greater for the range of short durations than for that of longer durations. Further analyses suggest that this lengthening effect was mediated by an arousal effect of limited duration on the speed of the internal clock system.

  6. Body segments decoupling in sitting: Control of body posture from automatic chair adjustments

    NARCIS (Netherlands)

    Geffen, van Paul; Molier, Birgit I.; Reenalda, Jasper; Veltink, Peter H.; Koopman, Bart F.J.M.

    2008-01-01

    Background: Individuals who cannot functionally reposition themselves adopt a passive body posture and suffer from physical discomfort in long-term sitting. To regulate body load and to prevent sitting related mobility problems, proper posture control is important. The inability to reposition underl

  7. Examination of the relationship between mandibular position and body posture.

    Science.gov (United States)

    Sakaguchi, Kiwamu; Mehta, Noshir R; Abdallah, Emad F; Forgione, Albert G; Hirayama, Hiroshi; Kawasaki, Takao; Yokoyama, Atsuro

    2007-10-01

    The purpose of this study was to evaluate the effect of changing mandibular position on body posture and reciprocally, body posture on mandibular position. Forty-five (45) asymptomatic subjects (24 males and 21 females, ages 21-53 years, mean age 30.7 years) were included in this study and randomly assigned to one of two groups, based on the table of random numbers. The only difference between group I and group II was the sequence of the testing. The MatScan (Tekscan, Inc., South Boston, MA) system was used to measure the result of changes in body posture (center of foot pressure: COP) while subjects maintained the following 5 mandibular positions: (1) rest position, (2) centric occlusion, (3) clinically midlined jaw position with the labial frena aligned, (4) a placebo wax appliance, worn around the labial surfaces of the teeth and (5) right eccentric mandibular position. The T-Scan II (Tekscan, Inc., South Boston, MA) system was used to analyze occlusal force distribution in two postural positions, with and without a heel lift under the right foot. Total trajectory length of COP in centric occlusion was shorter than in the rest position (p < 0.05). COP area in right eccentric mandibular position was larger than in centric occlusion (p < 0.05). When subjects used a heel lift under the right foot, occlusal forces shifted to the right side compared to no heel lift (p < 0.01). Based on these findings, it was concluded that changing mandibular position affected body posture. Conversely, changing body posture affected mandibular position.

  8. Habitual body posture and mountain position of people practising yoga

    Directory of Open Access Journals (Sweden)

    M Grabara

    2011-03-01

    Full Text Available In the physical exercises of yoga (hatha yoga, the Mountain Pose is a basic arrangement of the body involving, among other things, active extension of the spine in the vertical axis and symmetrical arrangement of individual elements of the body. The aim of the study was to compare the difference between this posture and the relaxed stance in people doing hatha yoga. The study included 28 women and 8 men doing yoga aged 20-58. The study was carried out using the apparatus for computer assessment of posture of the MORA system.The study has shown that all the elements of body posture in the Mountain Pose are placed more correctly (according to the criterion of symmetry related to frontal and transverse planes. Differences in the placement of lines of the spinous processes and of the pelvis in the transverse plane were observed. The angles of inclination of the anteroposterior curvatures of the spine were smaller in the Mountain Pose than in the habitual one. It has been demonstrated that for people doing hatha yoga the Mountain Pose is a more correct (symmetrical stance than the habitual one. Those who had been doing yoga longer and those who devoted more time to exercise per week were characterised by more correct body stance. The physical exercises of yoga shape the habit of correct stance. The arrangement of the body in the Mountain Pose in the light of the criteria of correct posture may be regarded as optimal.

  9. Body temperatures and associated postures of the zebra-tailed lizard, Callisaurus draconoides

    Energy Technology Data Exchange (ETDEWEB)

    Muth, A.

    1977-01-01

    Body temperature and associated postures of the zebra-tailed lizard, Callisaurus draconoides, were examined in the field and laboratory. Three distinct postures are described: prostrate, tail-down and elevated. The mean body temperatures of the respective postures in the field were: 33.9, 40.5 and 42.7 C. In the laboratory, heating rates were greatest for the prostrate posture and least for the elevated posture. Body temperatures and heating rates are significantly correlated with posture. These correlations suggest that the postures are associated with behavioral thermoregulation in the field.

  10. The effects of odour and body posture on perceived duration

    Directory of Open Access Journals (Sweden)

    Eliane eSchreuder

    2014-02-01

    Full Text Available This study reports an examination of the internal clock model, according to which subjective time duration is influenced by attention and arousal state. In a time production task, we examine the hypothesis that an arousing odour and an upright body posture affect perceived duration.The experimental task was performed while participants were exposed to an odour and either sitting upright (arousing condition or lying down in a relaxing chair (relaxing condition. They were allocated to one of three experimental odour conditions: rosemary (arousing condition, peppermint (relaxing condition and no odour (control condition. The predicted effects of the odours were not borne out by the results. Self-reported arousal and pleasure states were measured before, during (after each body posture condition and post experimentally. Heart rate and skin conductance were measured before and during the experiment. As expected, odour had an effect on perceived duration. When participants were exposed to rosemary odour, they produced significantly shorter time intervals than in the no odour condition. This effect, however, could not be explained by increased arousal. There was no effect of body posture on perceived duration, even though body posture did induce arousal. The results do not support the proposed arousal mechanism of the internal clock model.

  11. The effects of odor and body posture on perceived duration

    NARCIS (Netherlands)

    Schreuder, E.; Hoeksma, M.R.; Smeets, M.A.M.; Semin, G.R.

    2014-01-01

    This study reports an examination of the internal clock model, according to which subjective time duration is influenced by attention and arousal state. In a time production task, we examine the hypothesis that an arousing odor and an upright body posture affect perceived duration. The experimental

  12. Enhancing creativity: Proper body posture meets proper emotion.

    Science.gov (United States)

    Hao, Ning; Xue, Hua; Yuan, Huan; Wang, Qing; Runco, Mark A

    2017-02-01

    This study tested whether compatibility or incompatibility between body posture and emotion was beneficial for creativity. In Study 1, participants were asked to solve the Alternative Uses Task (AUT) problems when performing open or closed body posture in positive or negative emotional state respectively. The results showed that originality of AUT performance was higher in the compatible conditions (i.e., open-positive and closed-negative) than in the incompatible conditions (i.e., closed-positive and open-negative). In Study 2, the compatibility effect was replicated in both the AUT and the Realistic Presented Problem test (i.e., RPP). Moreover, it was revealed that participants exhibited the highest associative flexibility in the open-positive condition, and the highest persistence in the closed-negative condition. These findings indicate that compatibility between body posture and emotion is beneficial for creativity. This may be because when the implicit emotions elicited by body posture match explicit emotions, the effects of emotions on creativity are enhanced, therefore promoting creativity through the flexibility or the persistence pathway respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Changes in the body posture of women occurring with age.

    Science.gov (United States)

    Drzał-Grabiec, Justyna; Snela, Sławomir; Rykała, Justyna; Podgórska, Justyna; Banaś, Agnieszka

    2013-10-12

    A current topic in the field of geriatrics still needing a great deal of study is the changes in body posture occurring with age. Symptoms of these changes can be observed starting between the ages of 40-50 years with a slow progression that increases after 60 years of age. The aims of this study were to evaluate parameters characterizing the posture of women over the age of 60 years compared with a control group and to determine the dynamics of body posture changes in the following decades. The study included 260 randomly selected women. The study group consisted of 130 women between the ages of 60-90 years (Older Women). The control group (Younger Women) consisted of 130 women between the ages of 20-25 years (posture stabilization period). The photogrammetric method was used to evaluate body posture using the phenomenon of the projection chamber. The study was conducted according to generally accepted principles. In the analysis of parameters characterizing individual slope curves, results were varied among different age groups. The lumbar spine slope did not show significant differences between different age groups (p = 0.6952), while statistically significant differences (p = 0.0000) were found in the thoracic-lumbar spine slope (p = 0.0033) and upper thoracic spine slope. Body angle was shown to increase with age (p = 0.0000). Thoracic kyphosis depth significantly deepened with age (p = 0.0002), however, the thoracic kyphosis angle decreased with age (p = 0.0000). An increase in asymmetries was noticed, provided by a significantly higher angle of the shoulder line (p = 0.0199) and the difference in height of the lower shoulder blade angle (p = 0.0007) measurements in the group of older women. Changes in the parameters describing body posture throughout consecutive decades were observed. Therapy for women over the age of 60 years should involve strengthening of the erector spinae muscles and controlling body posture with the aim of reducing trunk inclination

  14. Automatic techniques for 3D reconstruction of critical workplace body postures from range imaging data

    Science.gov (United States)

    Westfeld, Patrick; Maas, Hans-Gerd; Bringmann, Oliver; Gröllich, Daniel; Schmauder, Martin

    2013-11-01

    The paper shows techniques for the determination of structured motion parameters from range camera image sequences. The core contribution of the work presented here is the development of an integrated least squares 3D tracking approach based on amplitude and range image sequences to calculate dense 3D motion vector fields. Geometric primitives of a human body model are fitted to time series of range camera point clouds using these vector fields as additional information. Body poses and motion information for individual body parts are derived from the model fit. On the basis of these pose and motion parameters, critical body postures are detected. The primary aim of the study is to automate ergonomic studies for risk assessments regulated by law, identifying harmful movements and awkward body postures in a workplace.

  15. Simulation of rear end impact with a full body human model with a detailed neck: role of passive muscle properties and initial seating posture

    NARCIS (Netherlands)

    Happee, R.; Wismans, J.S.H.M.; Horst, M.J. van der; Bovendeerd, P.H.M.; Kingma, H.

    2001-01-01

    To study the mechanics of the neck during rear end impact, in this paper an existing global human body model and an existing detailed submodel of the neck were combined into a new model. The combined model is validated with responses of volunteers and post mortem human subjects (PMHSs) subjected to

  16. Body posture recognition and turning recording system for the care of bed bound patients.

    Science.gov (United States)

    Hsiao, Rong-Shue; Mi, Zhenqiang; Yang, Bo-Ru; Kau, Lih-Jen; Bitew, Mekuanint Agegnehu; Li, Tzu-Yu

    2015-01-01

    This paper proposes body posture recognition and turning recording system for assisting the care of bed bound patients in nursing homes. The system continuously detects the patient's body posture and records the length of time for each body posture. If the patient remains in the same body posture long enough to develop pressure ulcers, the system notifies caregivers to change the patient's body posture. The objective of recording is to provide the log of body turning for querying of patients' family members. In order to accurately detect patient's body posture, we developed a novel pressure sensing pad which contains force sensing resistor sensors. Based on the proposed pressure sensing pad, we developed a bed posture recognition module which includes a bed posture recognition algorithm. The algorithm is based on fuzzy theory. The body posture recognition algorithm can detect the patient's bed posture whether it is right lateral decubitus, left lateral decubitus, or supine. The detected information of patient's body posture can be then transmitted to the server of healthcare center by the communication module to perform the functions of recording and notification. Experimental results showed that the average posture recognition accuracy for our proposed module is 92%.

  17. Does body posture during tree felling influence the physiological load of a chainsaw operator?

    Directory of Open Access Journals (Sweden)

    Witold Grzywiński

    2017-09-01

    A working posture during tree felling by chainsaw has influence on the level of physiological workload of an operator. Standing bent forward body postures cause higher heart response than squatting and half-kneeling.

  18. Predicting Correct Body Posture based on Theory of Planned Behavior in Iranian Operating Room Nurses

    National Research Council Canada - National Science Library

    BAHAREH ABEDI; RABIOLLAH FARMANBAR1; SAEED OMIDI; MAHDI JAHANGIR BLOURCHIAN

    2015-01-01

    Due to the importance of correct posture for preventing musculoskeletal disorders, the purpose of this study was to evaluate Theory of Planned Behavior in Predicting correct Body Posture in operating room...

  19. Energy expenditure in brass and woodwind instrumentalists: the effect of body posture.

    Science.gov (United States)

    Baadjou, Vera A E; van Eijsden-Besseling, Marjon D F; Samama-Polak, Ans L W; Smeets, Rob J E M; Passos, Valéria Lima; Westerterp, Klaas R

    2011-12-01

    Body posture appears to influence fatigue and musculoskeletal complaints in musicians. Our aim was to determine energy expenditure and to investigate whether energy expenditure is affected by body posture in brass and woodwind instrumentalists. Eighteen musicians (10 women, 8 men; 6 brass, 12 woodwinds), with a mean age of 39 ± 14 years and mean body mass index of 23.8 ± 4.9 kg/m², played their instruments for 30 minutes twice: once in nonoptimized body posture (posture A), and once in a posture according to the postural exercise therapy method Mensendieck (posture B). Patients were randomized to the order of postures in a crossover design AB/BA. Playing sessions were preceded and followed by 60 minutes of rest. Energy expenditure was measured in a respiration chamber with indirect calorimetry. Basal metabolic rate was measured with a ventilated hood. Mean metabolic equivalents (MET) for playing a wind instrument in the sitting position in a nonoptimized posture and posture according postural exercise therapy were 1.69 (SD 0.18) and 1.80 (SD 0.22), respectively. Percent change between resting metabolic rate and total energy expenditure while playing was 32% (95% CI 25-39%) in posture B and 23% (95% CI 17-30%) in posture A (p = 0.021). Average physical activity while playing a wind instrument approximates 1.8 MET. Our data show an association between energy expenditure and body posture while playing a brass or woodwind instrument: playing a musical instrument in a posture according to postural exercise therapy leads to higher energy expenditure as compared to a nonoptimized body posture. These results suggest that fatigue and the general feeling of lack of energy after playing a musical instrument are not related to actual higher energy expenditure.

  20. Human Balance out of Equilibrium: Nonequilibrium Statistical Mechanics in Posture Control

    Science.gov (United States)

    Lauk, Michael; Chow, Carson C.; Pavlik, Ann E.; Collins, James J.

    1998-01-01

    During quiet standing, the human body sways in a stochastic manner. Here we show that the fluctuation-dissipation theorem can be applied to the human postural control system. That is, the dynamic response of the postural system to a weak mechanical perturbation can be predicted from the fluctuations exhibited by the system under quasistatic conditions. We also show that the estimated correlation and response functions can be described by a simple stochastic model consisting of a pinned polymer. These findings suggest that the postural control system utilizes the same control mechanisms under quiet-standing and dynamic conditions.

  1. Modeling On-Body DTN Packet Routing Delay in the Presence of Postural Disconnections

    Science.gov (United States)

    Quwaider, Muhannad; Taghizadeh, Mahmoud; Biswas, Subir

    2014-01-01

    This paper presents a stochastic modeling framework for store-and-forward packet routing in Wireless Body Area Networks (WBAN) with postural partitioning. A prototype WBANs has been constructed for experimentally characterizing and capturing on-body topology disconnections in the presence of ultrashort range radio links, unpredictable RF attenuation, and human postural mobility. Delay modeling techniques for evaluating single-copy on-body DTN routing protocols are then developed. End-to-end routing delay for a series of protocols including opportunistic, randomized, and two other mechanisms that capture multiscale topological localities in human postural movements have been evaluated. Performance of the analyzed protocols are then evaluated experimentally and via simulation to compare with the results obtained from the developed model. Finally, a mechanism for evaluating the topological importance of individual on-body sensor nodes is developed. It is shown that such information can be used for selectively reducing the on-body sensor-count without substantially sacrificing the packet delivery delay. PMID:25530749

  2. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    Science.gov (United States)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  3. Analysis of Relationship between the Body Mass Composition and Physical Activity with Body Posture in Children

    Directory of Open Access Journals (Sweden)

    Justyna Wyszyńska

    2016-01-01

    Full Text Available Introduction. Excessive body mass in turn may contribute to the development of many health disorders including disorders of musculoskeletal system, which still develops intensively at that time. Aim. The aim of this study was to assess the relationship between children’s body mass composition and body posture. The relationship between physical activity level of children and the parameters characterizing their posture was also evaluated. Material and Methods. 120 school age children between 11 and 13 years were enrolled in the study, including 61 girls and 59 boys. Each study participant had the posture evaluated with the photogrammetric method using the projection moiré phenomenon. Moreover, body mass composition and the level of physical activity were evaluated. Results. Children with the lowest content of muscle tissue showed the highest difference in the height of the inferior angles of the scapulas in the coronal plane. Children with excessive body fat had less slope of the thoracic-lumbar spine, greater difference in the depth of the inferior angles of the scapula, and greater angle of the shoulder line. The individuals with higher level of physical activity have a smaller angle of body inclination. Conclusion. The content of muscle tissue, adipose tissue, and physical activity level determines the variability of the parameter characterizing the body posture.

  4. Physical Activity and Compensation of Body Posture Disorders in Children Aged Seven

    Directory of Open Access Journals (Sweden)

    Hricková Katarína

    2016-09-01

    Full Text Available Introduction. Physical activity is an indelible part of human life, but the impact of industrial changes on society has led to a hypokinetic lifestyle not only in adults but also in children and youth. This paper aims to present the results of a study of the body posture of 7-year-olds, which is an essential part of their physical development evaluation. The aim of our study was to expand our knowledge of the occurrence of body posture disorders in 7-year-olds, as well as to develop an appropriate movement programme which would help improve the current situation. Material and methods. The research sample consisted of 393 first-graders from 4 grammar schools in Kosice. We used muscle testing according to Janda and Tichy to obtain data on individual muscle weaknesses and postural deviations. Results. Our research confirmed the findings of several other researchers who had pointed out that muscle weaknesses and postural deviations can be observed already in preschoolers. Due to a lack of physical activity and movement, muscle weakness in preschool children results in more serious health issues at school age and later in adulthood. Conclusions. We managed to stabilise and even to correct the weaknesses we observed by implementing a movement programme focusing on the diagnosed muscle weakness.

  5. Human arm posture prediction in response to isometric endpoint forces.

    Science.gov (United States)

    Davoudabadi Farahani, Saeed; Andersen, Michael Skipper; de Zee, Mark; Rasmussen, John

    2015-11-26

    The ability to predict the musculoskeletal response to external loads has multiple applications for the design of machines with a human interface and for the prediction of outcomes of musculoskeletal interventions. In this study, we applied an inverse-inverse dynamics technique to investigate its ability to predict arm posture in response to isometric hand forces. For each subject, we made a three-dimensional musculoskeletal model using the AnyBody Modelling System (AMS). Then, we had each subject-specific model hold a weight anteriorly to the right shoulder joint at a distance of half of the arm length. We selected the glenohumeral abduction angle (GHAA) as the only free parameter. Subsequently, we used inverse-inverse dynamics to find the optimal GHAA that minimised a performance criterion with physiological constraints. In this study, we investigated the performance of two different objective functions: summation of squared muscle activity (SSMA) and summation of squared normalised joint torques (SSNJT). To validate the simulation results, arm posture responses to different isometric downward hand forces were measured for six healthy male subjects. Five trials were performed for each loading condition. The results showed that, with an increase in hand load, there was a reduced GHAA in all subjects. Another interesting finding was that self-selected postures for lighter tasks varied more than postures for heavier tasks for all subjects. To understand this, we investigated the curvature of the objective function as a function of the load and observed an increased curvature with increased load. This may explain the reduced intra-subject variations observed for increasing loads.

  6. Correlation dimension estimates of human postural sway.

    Science.gov (United States)

    Gurses, Senih; Celik, Huseyin

    2013-02-01

    Human postural sway during quiet standing demonstrates a complex structured dynamics, which has been studied by applying numerous methods, such as linear system identification methods, stochastic analysis, and nonlinear system dynamics tools. Although each of the methods applied revealed some particular features of the sway data none of them have succeeded to present a global picture of the quiet stance dynamics, which probably has both stochastic and deterministic properties. In this study we have started applying ergodic theory of dynamical systems to explore statistical characteristic of the sway dynamics observed in successive trials of a subject, different subjects in an age group, and finally different age groups constituted by children, adults, and elderly subjects. Five successive 180-s long trials were performed by each of 28 subjects in four age groups at quiet stance with eyes open. Stationary and ergodic signal characteristics of five successive center of pressure time series collected from a subject in antero-posterior direction (CoPx) were examined. 97% of the trials were found to be stationary by applying Run Test while children and elderly groups demonstrated significant nonstationary behavior. On the other hand 13 out of 24 subjects were found to be nonergodic. We expected to observe differences in complexity of CoPx dynamics due to aging (Farmer, Ott, & Yorke, 1983). However linear metrics such as standard deviation and Fourier spectra of CoPx signals did not show differences due to the age groups. Correlation dimension (Dk) estimates of stationary CoPx signals being an invariant measure of nonlinear system dynamics were computed by using the average displacement method (Eckmann & Ruelle, 1985). Postural dynamics was expanded in m-dimensional space through CoPx signal by introducing optimum time delays, τcritical. 112 out of 136 stationary CoPx signals for 24 stationary subjects converged to Dk estimates. Average of Dk estimates for children and

  7. Delayed Random Walks: Modeling Human Posture Control

    Science.gov (United States)

    Ohira, Toru

    1998-03-01

    We consider a phenomenological description of a noisy trajectory which appears on a stabiliogram platform during human postural sway. We hypothesize that this trajectory arises due to a mixture of uncontrollable noise and a corrective delayed feedback to an upright position. Based on this hypothesis, we model the process with a biased random walk whose transition probability depends on its position at a fixed time delay in the past, which we call a delayed random walk. We first introduce a very simple model (T. Ohira and J. G. Milton, Phys.Rev.E. 52), 3277, (1995), which can nevertheless capture the rough qualitative features of the two--point mean square displacement of experimental data with reasonable estimation of delay time. Then, we discuss two approaches toward better capturing and understanding of the experimental data. The first approach is an extension of the model to include a spatial displacement threshold from the upright position below which no or only weak corrective feedback motion takes place. This can be incorporated into an extended delayed random walk model. Numerical simulations show that this extended model can better capture the three scaling region which appears in the two--point mean square displacement. The other approach studied the autocorrelation function of the experimental data, which shows oscillatory behavior. We recently investigated a delayed random walk model whose autocorrelation function has analytically tractable oscillatory behavior (T. Ohira, Phys.Rev.E. 55), R1255, (1997). We discuss how this analytical understanding and its application to delay estimation (T. Ohira and R. Sawatari, Phys.Rev.E. 55), R2077, (1997) could possibly be used to further understand the postural sway data.

  8. A Human Body Analysis System

    Directory of Open Access Journals (Sweden)

    Girondel Vincent

    2006-01-01

    Full Text Available This paper describes a system for human body analysis (segmentation, tracking, face/hands localisation, posture recognition from a single view that is fast and completely automatic. The system first extracts low-level data and uses part of the data for high-level interpretation. It can detect and track several persons even if they merge or are completely occluded by another person from the camera's point of view. For the high-level interpretation step, static posture recognition is performed using a belief theory-based classifier. The belief theory is considered here as a new approach for performing posture recognition and classification using imprecise and/or conflicting data. Four different static postures are considered: standing, sitting, squatting, and lying. The aim of this paper is to give a global view and an evaluation of the performances of the entire system and to describe in detail each of its processing steps, whereas our previous publications focused on a single part of the system. The efficiency and the limits of the system have been highlighted on a database of more than fifty video sequences where a dozen different individuals appear. This system allows real-time processing and aims at monitoring elderly people in video surveillance applications or at the mixing of real and virtual worlds in ambient intelligence systems.

  9. Analysis of body posture in children with mild to moderate asthma.

    Science.gov (United States)

    Belli, Juliana Fernanda Canhadas; Chaves, Thaís Cristina; de Oliveira, Anamaria Siriani; Grossi, Débora Bevilaqua

    2009-10-01

    The mechanical alterations related to the excessive use of accessory respiratory muscles and the mouth breathing observed in children with asthma may lead to the development of alterations in head posture, shoulders, thoracic region and, consequently, in alterations of body posture. The purpose of this study was to assess body posture changes of children with asthma compared to a non-asthmatic control group matched for gender, age, weight, and height. Thirty children with asthma and 30 non-asthmatic children aged 7 to 12 years were enrolled in this study. Digital photographic records were obtained for analysis of the body posture of the children by computed photogrammetry. The intraclass correlation coefficient and Student's t test (p postural alterations compared to non-asthmatic controls since the only angle for which there was a significant difference between groups showed weak reproducibility. The findings of this study do not support the notion that children with asthma present alterations in body posture.

  10. Predicting Correct Body Posture based on Theory of Planned Behavior in Iranian Operating Room Nurses

    OpenAIRE

    BAHAREH ABEDI; RABIOLLAH FARMANBAR1; SAEED OMIDI; MAHDI JAHANGIR BLOURCHIAN

    2015-01-01

    Due to the importance of correct posture for preventing musculoskeletal disorders, the purpose of this study was to evaluate Theory of Planned Behavior in Predicting correct Body Posture in operating room nurses.In this cross-sectional study, participants (n=100) were nurses from five hospitals located in northern Iran. Participants completed demographic data and theory of planned behavior construct Questionnaires. In addition, the researcher checked the Body Posture of nurses by Rapid Entire...

  11. Kinematic of cervical thoracic spine in the context of whole body posture

    OpenAIRE

    Vláčilová, Ivana

    2015-01-01

    Title: Kinematic of cervical thoracic spine in the context of whole body posture Problematics: This work describes the kinematics of upper thoracic spine during specific movement of the shoulder girdle. The kinematic changes are evaluated with the relationship of the whole body posture. Aim: To develop the objective evaluation of the posture and the amount of the segmental spinal movement of cervical thoracic spine. To describe the relationship between the specific movement of arm - adduction...

  12. IMPLICATIONS OF MOUTH BREATHING AND ATYPICAL SWALLOWING IN BODY POSTURE

    National Research Council Canada - National Science Library

    Veronique Sousa; Maria Paço; Teresa Pinho

    2017-01-01

    .... Changes in any of the parts may lead to a general postural imbalance. Purpose: To verify if there is a relation between breathing pattern and swallowing with posture, dental occlusion and harmful oral habits of the sample under study...

  13. Holding a handle for balance during continuous postural perturbations – immediate and transitionary effects on whole body posture

    Directory of Open Access Journals (Sweden)

    Jernej Camernik

    2016-09-01

    Full Text Available When balance is exposed to perturbations, hand contacts are often used to assist postural control. We investigated the immediate and the transitionary effects of supportive hand contacts during continuous anteroposterior perturbations of stance by automated waist-pulls. Ten young adults were perturbed for five minutes and required to maintain balance by holding to a stationary, shoulder-high handle and following its removal. Centre of pressure (COP displacement, hip, knee, and ankle angles, leg and trunk muscle activity and handle contact forces were acquired. The analysis of results show that COP excursions are significantly smaller when the subjects utilize supportive hand contact and that the displacement of COP is strongly correlated to the perturbation force and significantly larger in the anterior than posterior direction. Regression analysis of hand forces revealed that subjects utilized the hand support significantly more during the posterior than anterior perturbations. Moreover, kinematical analysis showed that utilization of supportive hand contacts alters posture of the whole body and that postural readjustments after the release of the handle occur at different time scales in the hip, knee, and ankle joints. Overall, our findings show that supportive hand contacts are efficiently used for balance control during continuous postural perturbations and that utilization of a handle has significant immediate and transitionary effects on whole body posture.

  14. Holding a Handle for Balance during Continuous Postural Perturbations—Immediate and Transitionary Effects on Whole Body Posture

    Science.gov (United States)

    Čamernik, Jernej; Potocanac, Zrinka; Peternel, Luka; Babič, Jan

    2016-01-01

    When balance is exposed to perturbations, hand contacts are often used to assist postural control. We investigated the immediate and the transitionary effects of supportive hand contacts during continuous anteroposterior perturbations of stance by automated waist-pulls. Ten young adults were perturbed for 5 min and required to maintain balance by holding to a stationary, shoulder-high handle and following its removal. Center of pressure (COP) displacement, hip, knee and ankle angles, leg and trunk muscle activity and handle contact forces were acquired. The analysis of results show that COP excursions are significantly smaller when the subjects utilize supportive hand contact and that the displacement of COP is strongly correlated to the perturbation force and significantly larger in the anterior than posterior direction. Regression analysis of hand forces revealed that subjects utilized the hand support significantly more during the posterior than anterior perturbations. Moreover, kinematical analysis showed that utilization of supportive hand contacts alter posture of the whole body and that postural readjustments after the release of the handle, occur at different time scales in the hip, knee and ankle joints. Overall, our findings show that supportive hand contacts are efficiently used for balance control during continuous postural perturbations and that utilization of a handle has significant immediate and transitionary effects on whole body posture. PMID:27725798

  15. THE TEACHERS ROLE IN FORMING PROPER BODY POSTURE

    Directory of Open Access Journals (Sweden)

    Zoran Bogdanović

    2007-05-01

    Full Text Available Being acquainted and well aware of the presence of physical deformation in school population, this study is based on the research of postural deformity of the pupils of the 5th grade of elementary school and determination of dependance of deformations appearance in relation to frequency of remonstration and indication to correct sitting position from proffesors’ perspective. The complete program content is conducted in the territory of the city of Kragujevac in several elementary schools comprising 299 students of the 5th grade. The object was to determine the number of students with kyphotic and lordotic deformity, to determine the presence of deformation in depandance of gender and to determine the presence of kyphotic and lordotic deformity in depandance of the frequency of proffesors indication to improper sitting. We can notice higher presence of kyphotic deformity at the probationers of male population that it is the case with female population while the higher presence of lordotic deformity is at female population.The highest number of probationers have reported that none of the proffesors warn them about proper sitting. The measures inside the groups sorted by gender qualifi cation, indicate on high percentage of both boys and girls who are not warned on proper sitting. Also, inside the groups of improper body holders, we can notice the most signifi cant kyphotic and lordotic deformity in the category of students who are never warned to sit properly. These indicators report us that is necessary to invest much more work on the education of parents and children as well as school stuff at the preschool and school institutions which would result in reducing the appearence and development of postural deformity at the population who is more liable to transformations of such kind.

  16. A Review on Level of Specific Absorption Rate Due to High Power Transmission Lines: Analysis toward Human Position Posture

    Directory of Open Access Journals (Sweden)

    Ghazali Z.

    2016-01-01

    Full Text Available The main contribution of this project is the development of a homogeneous model of a man to presents the specific absorption rate (SAR due to high power transmission line. As a low frequency application under high power transmission line of 50 Hz in electrical engineering, to studies the influence of human’s posture on specific absorption rate. This project designs two types of human body which one design uses most cylinder block and another design use brick block where both blocks have a different value of mesh cells. For each design has four types of posture are standing, sitting, arms up and arms out by using Computer Simulation Technology (CST Studio Software. This analysis does toward for four types of the human position postures because each posture has different value of specific absorption rate (SAR based on the size of the mesh cells of the design. Based on two designs of the human body, the lowest of the mesh cells value will reduce time to simulate SAR. For each posture has different value of SAR for each part of the human body because the whole human body has different types of tissues. Therefore, the CST studio software uses extremely to simulate the SAR value toward human position posture due to high power transmission line.

  17. Comparison of Biodynamic Responses in Standing and Seated Human Bodies

    Science.gov (United States)

    MATSUMOTO, Y.; GRIFFIN, M. J.

    2000-12-01

    The dynamic responses of the human body in a standing position and in a sitting position have been compared. The apparent mass and transmissibilities to the head, six locations along the spine, and the pelvis were measured with eight male subjects exposed to vertical whole-body vibration. In both postures, the principal resonance in the apparent mass occurred in the range 5-6 Hz, with slightly higher frequencies and lower apparent mass in the standing posture. There was greater transmission of vertical vibration to the pelvis and the lower spine and greater relative motion within the lower spine in the standing posture than in the sitting posture at the principal resonance and at higher frequencies. Transmissibilities from the supporting surface (floor or seat) to the thoracic region had similar magnitudes for both standing and sitting subjects. The lumbar spine has less lordosis and may be more compressed and less flexible in the sitting posture than in the standing posture. This may have reduced the relative motions between lumbar vertebrae and both the supporting vibrating surface and the other vertebrae in the sitting posture. The characteristics of the vibration transmitted to the pelvis may have differed in the two postures due to different transmission paths. Increased forward rotation of the pelvis in the standing posture may have caused the differences in responses of the pelvis and the lower spine that were observed between the two postures.

  18. Scan posture definition and hip girth measurement: the impact on clothing design and body scanning.

    Science.gov (United States)

    Gill, Simeon; Parker, Christopher J

    2016-11-15

    Ergonomic measurement is central to product design and development; especially for body worn products and clothing. However, there is a large variation in measurement definitions, complicated by new body scanning technology that captures measurements in a posture different to traditional manual methods. Investigations of hip measurement definitions in current clothing measurement practices supports analysis of the effect of scan posture and hip measurement definition on the circumferences of the hip. Here, the hip girth is a key clothing measurement that is not defined in current body scanning measurement standards. Sixty-four participants were scanned in the standard scan posture of a [TC](2) body scanner, and also in a natural posture similar to that of traditional manual measurement collection. Results indicate that scan posture affects hip girth circumferences, and that some current clothing measurement practices may not define the largest lower body circumference. Recommendations are made concerning how the hip is defined in measurement practice and within body scanning for clothing product development. Practitioner Summary: The hip girth is an important measurement in garment design, yet its measurement protocol is not currently defined. We demonstrate that body posture during body scanning affects hip circumferences, and that current clothing measurement practices may not define the largest lower body circumference. This paper also provides future measurement practice recommendations.

  19. Human posture experiments under water: ways of applying the findings to microgravity

    Science.gov (United States)

    Dirlich, Thomas

    For the design and layout human spacecraft interiors the Neutral Body Posture (NBP) in micro-gravity is of great importance. The NBP has been defined as the stable, replicable and nearly constant posture the body "automatically" assumes when a human relaxes in microgravity. Furthermore the NBP, as published, suggests that there is one standard neutral posture for all individuals. Published experiments from space, parabolic flights and under water on the other hand show strong inter-individual variations of neutral (relaxed) postures. This might originate from the quite small sample sizes of subjects analyzed or the different experiment conditions, e. g. space and under water. Since 2008 a collaborative research project focussing on human postures and motions in microgravity has been ongoing at the Technische Univer-sitüt München (TUM). This collaborative effort is undertaken by the Institute of Astronautics a (LRT) and the Institute of Ergonomics (LfE). Several test campaigns have been conducted in simulated microgravity under water using a specially designed standardized experiment setup. Stereo-metric HD video footage and anthropometric data from over 50 subjects (female and male) has been gathered in over 80 experiments. The video data is analyzed using PCMAN software, developed by the LfE, resulting in a 3D volumetric CAD-based model of each subject and posture. Preliminary and ongoing analysis of the data offer evidence for the existence of intra-individually constant neutral postures, as well as continuously recurring relaxation strate-gies. But as with the data published prior the TUM experiments show quite a large variation of inter-individual postures. These variation might be induced or influenced by the special environmental conditions in the underwater experiment. Thus in present paper ways of stan-dardizing data and applying the findings gathered under water to real microgravity are being discussed. The following influences stemming from the

  20. Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics

    Science.gov (United States)

    Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo

    2015-01-01

    The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory–motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274

  1. Subjects with temporomandibular joint disc displacement do not feature any peculiar changes in body posture.

    Science.gov (United States)

    Rocha, T; Castro, M A; Guarda-Nardini, L; Manfredini, D

    2017-02-01

    The presence of body posture changes among patients with temporomandibular disorders (TMD) has been a controversial topic in dentistry. Based on that, the aim of this study was to assess postural features of pain-free subjects with internal derangement of the temporomandibular joint (TMJ), viz. disc displacement, when compared to subjects with normal disc position. A total of 21 subjects with unilateral, pain-free TMJ disc displacement (DD) and 21 subjects without any TMD signs of symptoms were assessed for body posture changes by means of posturographic evaluation of several body segments and postural balance reactions through the centre of mass during jaw movements using a balance platform. Posturographic measurements showed the absence of any significant differences between the two groups in any of the outcome parameters. Similarly, all balance platform responses to mandibular movements were not different between groups. There are no significant differences in body posture between subjects with and without unilateral disc displacement in the temporomandibular joint. Such observations, indicating a well-preserved postural balance in the presence of TMJ internal derangement, put into serious question the potential influence of TMJ disorders on whole body posture and viceversa. © 2016 John Wiley & Sons Ltd.

  2. Research of Human Postural Balance Parameters

    Directory of Open Access Journals (Sweden)

    Julius Griškevičius

    2011-02-01

    Full Text Available In present article postural balance between subjects with stroke and healthy subjects, is being investigated with eyes opened and eyes closed. In the research participated 30 healthy subjects and 15 subjects with stroke. At the same time two experimental measurements were performed – postural balance was measured using balance platform and oscillations of the centre of mass were observed using two-axial accelerometer. It was noted, that amplitudes of subjects with stroke were larger almost two times than control group’s of healthy subjects. It was find out, that ratios of pressure distribution on both left and right legs are in range from 1 to 0.9 for healthy subjects, and ratios below 0.9 are common for subjects with stroke. When subjects were standing with eyes closed, sway amplitudes were higher and the ratios of load distribution on left and right legs were lower.Article in Lithuanian

  3. Effects Related to Random Whole-Body Vibration and Posture on a Suspended Seatwith and Without Backrest

    Science.gov (United States)

    HINZ, B.; SEIDEL, H.; MENZEL, G.; BLÜTHNER, R.

    2002-05-01

    WBV-exposures are often linked with forced postures as prolonged sitting, bent forward sitting, or sitting without a backrest. No quantitative data are available to describe the exposure-effect relationships for different conditions of seating, posture, and the biological variability of workers. Experiments and subsequent predictions of forces acting within the spine during WBV can help to improve the assessment of the health risk. An experimental study was performed with 39 male subjects sitting on a suspension seat with or with no backrest contact. They were exposed to random whole-body vibration with a weighted r.m.s. value of 0·6 m/s2 at a relaxed or a forward bending posture. A two-dimensional finite element model was used for the calculation of the internal spinal load. The model simulates the human response on a suspension driver seat. Individual exposure conditions were considered by including the transfer functions between the seat cushion and the seat base as well as between the backrest and the seat base for the calculation of the vibration input to the buttocks and to the back respectively. The average peak seat transmissibility was higher for the seat with the backrest, but the peak seat-to-head transmissibility was higher for the seat without the backrest for both postures. The peak transmissibilities between the accelerations at the seat base and the compressive forces at L5/S1 were highest for the seat without the backrest during the bending posture. Various biological effects can result from identical exposures combined with different backrest contact and postures. The backrest contact and posture conditions should not be neglected in the assessment of health risk caused by whole-body vibration.

  4. Quantification of ln-Flight Physical Changes: Anthropometry and Neutral Body Posture

    Science.gov (United States)

    Young, K. S.; Amick, R.; Rajulu, S.

    2016-01-01

    Currently, NASA does not have sufficient in-flight anthropometric data to assess the impact of changes in body shape and size. For developing future planetary and reduced-gravity suits, NASA needs to quantify the impacts of microgravity on anthropometry and body posture to ensure optimal crew performance, fit, and comfort. To obtain data on these changes, circumference, length, height, breadth, and depth for body segments (chest, waist, bicep, thigh, calf) from astronauts for preflight, in-flight, and post-flight conditions needs to be collected. Once these data have been collected, pre-flight, in-flight, and post-flight anthropometric values will be compared, yielding microgravity factors. The neutral body posture (NBP) will also be measured, to determine body posture (joint angle) changes between subjects throughout the duration of a mission. Data collection, starting with Increments 37/38, is still in progress but has been completed for 6 out of 9 subjects. NASA suit engineers and NASA's Extravehicular Activity (EVA) Project Office have identified that suit fit in microgravity could become an issue. It has been noted that crewmembers often need to adjust their suit sizing once they are in orbit. This adjustment could be due to microgravity effects on anthropometry and postural changes, and is necessary to ensure optimal crew performance, fit, and comfort in space. To date, the only data collected to determine the effects of microgravity on physical human changes were collected during Skylab 4, the Apollo-Soyuz Test Project (ASTP), Space Shuttle mission STS-57, and a recent HRP study on seated height changes due to spinal elongation (Spinal Elongation, Master Task List [MTL] #221). The Skylab 4, ASTP, and the STS-57 studies found that, according to photographs, a distinct NBP exists. The still photographs showed a distinguishable posture with the arms raised and the shoulders abducted; in addition, the knees are flexed, with noticeable hip flexion, and the foot

  5. Postural adjustments for online corrections of arm movements in standing humans.

    Science.gov (United States)

    Leonard, Julia A; Gritsenko, Valeriya; Ouckama, Ryan; Stapley, Paul J

    2011-05-01

    The aim of this study was to investigate how humans correct ongoing arm movements while standing. Specifically, we sought to understand whether the postural adjustments in the legs required for online corrections of arm movements are predictive or rely on feedback from the moving limb. To answer this question we measured online corrections in arm and leg muscles during pointing movements while standing. Nine healthy right-handed subjects reached with their dominant arm to a visual target in front of them and aligned with their midline. In some trials, the position of the target would switch from the central target to one of the other targets located 15°, 30°, or 45° to the right of the central (midline) target. For each target correction, we measured the time at which arm kinematics, ground reaction forces, and arm and leg muscle electromyogram significantly changed in response to the target displacement. Results show that postural adjustments in the left leg preceded kinematic corrections in the limb. The corrective postural muscle activity in the left leg consistently preceded the corrective reaching muscle activity in the right arm. Our results demonstrate that corrections of arm movements in response to target displacement during stance are preceded by postural adjustments in the leg contralateral to the direction of target shift. Furthermore, postural adjustments preceded both the hand trajectory correction and the arm-muscle activity responsible for it, which suggests that the central nervous system does not depend on feedback from the moving arm to modify body posture during voluntary movement. Instead, postural adjustments lead the online correction in the arm the same way they lead the initiation of voluntary arm movements. This suggests that forward models for voluntary movements executed during stance incorporate commands for posture that are produced on the basis of the required task demands.

  6. Evidence for impaired verbal identification but intact nonverbal recognition of fearful body postures in Asperger's syndrome.

    Science.gov (United States)

    Doody, John P; Bull, Peter

    2013-07-01

    While most studies of emotion recognition in Asperger's Syndrome (AS) have focused solely on the verbal decoding of affective states, the current research employed the novel technique of using both nonverbal matching and verbal labeling tasks to examine the decoding of emotional body postures and facial expressions. AS participants performed as accurately as controls at matching fear body postures, but were significantly less accurate than controls verbally identifying these same stimuli. This profile arguably indicates that that while the AS participants were aware that the fear body posture stimuli represented a distinct emotion, they were unsure as to which specific emotion. In addition, the AS participants took significantly longer than the controls to respond to anger body posture stimuli on a matching task. However, in contrast to previous studies, AS and control participants did not differ significantly in their responses to facial expression stimuli, in terms of either accuracy or response times.

  7. Photographic measurement of upper-body sitting posture of high school students: A reliability and validity study

    Directory of Open Access Journals (Sweden)

    Louw Quinette

    2008-08-01

    Full Text Available Abstract Background All the reported measures of sitting posture, as well as photographs, have one flaw, as these measures are external to the body. These measures use calculations from external bony landmarks to estimate spinal posture, on the understanding that what is being measured externally reflects the shape, health and performance of structures of the underlying spine. Without a comparative measure of the relative position of the structures of the spine, the validity of any external spinal posture measure cannot be established. This paper reports on a study which tests the validity of photographs to measure adolescent sitting posture. Methods The study was conducted in a laboratory at the Department of Human Biology, University of Cape Town. A random sample of 40 adolescents were recruited from the Cape metropolitan schools, to detect differences of three degrees or more between the repeated measures of upright, normal or slouched posture (photographs and between the posture photographs and LODOX measures. Eligible participants were healthy male and female subjects aged 15 or 16 years old, in Grade 10, and who were undertaking Computer or Computype studies at their schools. Two posture measurement tools were used in the study, namely: Photographs were taken using the Photographic Posture Analysis Method (PPAM and Radiographs were taken using the LODOX (LODOX (Pty Ltd system. Subjects' posture was assessed in simulated computer workstations. The following angles were measured: the sagittal head angle, cervical angle, protraction/retraction angle, arm angle and the thoracic angle. Results Data from 39 subjects (19 males, 20 females was used for analysis (17 15-year-olds (7 boys and 10 girls, 22 16-year-olds (12 boys and 10 girls. All but one photographic angle showed moderate to good correlation with the LODOX angles (Pearson r values 0.67–0.95 with the exception being the shoulder protraction/retraction angle Pearson r values. Bland

  8. Photographic measurement of upper-body sitting posture of high school students: A reliability and validity study

    Science.gov (United States)

    van Niekerk, Sjan-Mari; Louw, Quinette; Vaughan, Christopher; Grimmer-Somers, Karen; Schreve, Kristiaan

    2008-01-01

    Background All the reported measures of sitting posture, as well as photographs, have one flaw, as these measures are external to the body. These measures use calculations from external bony landmarks to estimate spinal posture, on the understanding that what is being measured externally reflects the shape, health and performance of structures of the underlying spine. Without a comparative measure of the relative position of the structures of the spine, the validity of any external spinal posture measure cannot be established. This paper reports on a study which tests the validity of photographs to measure adolescent sitting posture. Methods The study was conducted in a laboratory at the Department of Human Biology, University of Cape Town. A random sample of 40 adolescents were recruited from the Cape metropolitan schools, to detect differences of three degrees or more between the repeated measures of upright, normal or slouched posture (photographs) and between the posture photographs and LODOX measures. Eligible participants were healthy male and female subjects aged 15 or 16 years old, in Grade 10, and who were undertaking Computer or Computype studies at their schools. Two posture measurement tools were used in the study, namely: Photographs were taken using the Photographic Posture Analysis Method (PPAM) and Radiographs were taken using the LODOX (LODOX (Pty) Ltd) system. Subjects' posture was assessed in simulated computer workstations. The following angles were measured: the sagittal head angle, cervical angle, protraction/retraction angle, arm angle and the thoracic angle. Results Data from 39 subjects (19 males, 20 females) was used for analysis (17 15-year-olds (7 boys and 10 girls), 22 16-year-olds (12 boys and 10 girls)). All but one photographic angle showed moderate to good correlation with the LODOX angles (Pearson r values 0.67–0.95) with the exception being the shoulder protraction/retraction angle Pearson r values. Bland Altman limits of

  9. Quantification of In-flight Physical Changes: Anthropometry and Neutral Body Posture

    Science.gov (United States)

    Young, K. S.; Reid, C. R.; Rajulu, S.

    2014-01-01

    Currently, NASA does not have sufficient in-flight anthropometric data gathered to assess the impact of physical body shape and size changes on suit sizing. For developing future planetary and reduced gravity suits, NASA needs to quantify the impacts of microgravity on anthropometry, body posture, and neutral body postures (NBP) to ensure optimal crew performance, fit, and comfort. To obtain these impacts, anthropometric data, circumference, length, height, breadth, and depth for body segments (i.e. chest, waist, bicep, thigh, calf) from astronauts for pre, in-, and postflight conditions needs to be collected. Once this data has been collected, a comparison between pre, in-, and postflight anthropometric values will be analyzed, yielding microgravity factors. The NBP will be used to determined body posture (joint angle) changes between subjects throughout the duration of a mission. Data collection, starting with Increments 37/38, is still in progress with the completion of 3 out of 12 subjects. NASA suit engineers and NASA's Extravehicular Activity (EVA) Project Office have identified that suit fit in microgravity could become an issue. It has been noted that crewmembers often need to adjust their suit sizing once they are in orbit. This adjustment could be due to microgravity effects on anthropometry and postural changes, and is necessary to ensure optimal crew performance, fit, and comfort in space. To date, the only data collected to determine the effects of microgravity on physical human changes have been during Skylab, STS-57, and a recent HRP study on seated height changes due to spinal elongation (Spinal Elongation, Master Task List [MTL] #221). The Skylab and the STS-57 studies found that there is a distinct neutral body posture (NBP) based on photographs. The still photographs showed that there is a distinguishable posture with the arms raised and the shoulder abducted; and, in addition, the knees were flexed with noticeable hip flexion and the foot

  10. The role of haptic cues from rough and slippery surfaces in human postural control

    Science.gov (United States)

    Jeka, J. J.; Lackner, J. R.

    1995-01-01

    Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface long-loop "reflexes" involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.

  11. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women.

    Science.gov (United States)

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-06-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment.

  12. Does asymmetry in the stomatognathic system correlate with body posture impairments?: A systematic review

    Directory of Open Access Journals (Sweden)

    Dal Borgo B.

    2016-09-01

    Full Text Available Objectives: To assess the potential correlations between anatomical and functional asymmetry in the stomatognathic system and body posture impairments. Methods: Literature search using the Medline, SCOPUS, LILACS and SciELO databases, the Cochrane Library and a manual search. Experimental and observational studies were included with no restrictions as to the type of asymmetry. Type of asymmetry, treatment and/ or recording conditions, follow-up, postural examinations, main results and clinical implication were extracted, and risk of bias was assessed. Results: Eleven articles (including one randomized clinical trial were retrieved. The risk of bias was medium in 6 studies and high in the remaining investigations. Only three studies, all with a high risk of bias and without follow-up, reported significant correlations between the asymmetry in the stomatognathic system and body posture impairments. Discussion: According to the limited present evidence, asymmetry in the stomatognathic system does not appear to correlate with body posture impairments at a clinically relevant level.

  13. The effect of alexithymia on early visual processing of emotional body postures.

    Science.gov (United States)

    Borhani, Khatereh; Borgomaneri, Sara; Làdavas, Elisabetta; Bertini, Caterina

    2016-03-01

    Body postures convey emotion and motion-related information useful in social interactions. Early visual encoding of body postures, reflected by the N190 component, is modulated both by motion (i.e., postures implying motion elicit greater N190 amplitudes than static postures) and by emotion-related content (i.e., fearful postures elicit the largest N190 amplitude). At a later stage, there is a fear-related increase in attention, reflected by an early posterior negativity (EPN) (Borhani et al., 2015). Here, we tested whether difficulties in emotional processing (i.e., alexithymia) affect early and late visual processing of body postures. Low alexithymic participants showed emotional modulation of the N190, with fearful postures specifically enhancing N190 amplitude. In contrast, high alexithymic participants showed no emotional modulation of the N190. Both groups showed preserved encoding of the motion content. At a later stage, a fear-related modulation of the EPN was found for both groups, suggesting that selective attention to salient stimuli is the same in both low and high alexithymia. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. IMPLICATIONS OF MOUTH BREATHING AND ATYPICAL SWALLOWING IN BODY POSTURE

    OpenAIRE

    Veronique Sousa; Maria Paço; Teresa Pinho

    2017-01-01

    Introduction: The stomatognathic system is a set of structures that are interconnected to perform vital functions. Changes in any of the parts may lead to a general postural imbalance. Purpose: To verify if there is a relation between breathing pattern and swallowing with posture, dental occlusion and harmful oral habits of the sample under study. Materials and methods: The final sample of n=50 consisted of 34 children/ adolescents males and 16 females. The evaluation consisted of a que...

  15. Postural control of the human mandible.

    Science.gov (United States)

    Miles, Timothy S

    2007-04-01

    This article reviews recent experimental evidence explaining the mechanisms that support the mandible in its rest or postural position when the head is stationary and during locomotion. At rest, and during slow jaw movements, there is alternating activation of the jaw-opening and jaw-closing muscles which arises from a central pattern generator. However, this cannot account for the rest position of the mandible even when the head is stationary. Jaw movements and masticatory muscle activity were measured in subjects who stood, walked and ran on a treadmill. Even during walking, there are no bursts of masseter EMG time-locked to heel-landing. However, when subjects ran, the downward movement of the mandible in each step evokes a burst of EMG in the masseters. This is a stretch reflex in the jaw-closing muscles, which acts to limit the downward movement of the mandible relative to the maxilla during locomotion, and to restore the mandibular position towards its rest position. Thus, when the head is stationary, the low-level activity in the jaw-opening and jaw-closing muscles does not contribute to the rest position. Instead, the mandible is supported by passive viscoelastic forces in perioral soft tissues which limit vertical jaw movements even when the head moves gently up and down during walking. When the head moves more vigorously up and down, stretch reflexes in the jaw-closing muscles limit the movement of the mandible. That is, both passive forces and active reflex responses maintain jaw posture within narrow limits during brisk head movements.

  16. Posture-Dependent Human 3He Lung Imaging in an Open Access MRI System: Initial Results

    CERN Document Server

    Tsai, L L; Li, C -H; Rosen, M S; Patz, S; Walsworth, R L

    2007-01-01

    The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized 3He MRI of the human lung, and most other common radiological imaging modalities including PET and CT, restrict subjects to lying horizontally, minimizing most gravitational effects. In this paper, we briefly review the motivation for posture-dependent studies of human lung function, and present initial imaging results of human lungs in the supine and vertical body orientations using inhaled hyperpolarized 3He gas and an open-access MRI instrument. The open geometry of this MRI system features a "walk-in" capability that permits subjects to be imaged in vertical and horizontal positions, and potentially allows for complete rotation of the orientation of the imaging su...

  17. The Fulfillment of Others' Needs Elevates Children's Body Posture

    Science.gov (United States)

    Hepach, Robert; Vaish, Amrisha; Tomasello, Michael

    2017-01-01

    Much is known about young children's helping behavior, but little is known about the underlying motivations and emotions involved. In 2 studies we found that 2-year-old children showed positive emotions of similar magnitude--as measured by changes in their postural elevation using depth sensor imaging technology--after they achieved a goal for…

  18. Kinematid Parameters of Corrective Postural Responses Differ between Upper and Lower Body Perturbations

    Science.gov (United States)

    Sayenko, G.

    2004-01-01

    Balance control is disrupted following prolonged microgravity exposure, and to better understand this, both upper and lower body perturbations have been used to study postural control in space flight crewmembers. However, differences between several postural response indicators observed using the two techniques suggest that different sensory systems may be involved in organizing responses to these different perturbation approaches. The present study sought to compare differences in parameters of corrective postural responses between upper body perturbations (pushes to the chest) and forward translations of the support surface. Nine subjects participated in this study. Forward translations were performed using a NeuroCom EquiTest(TM) CDP system, which was synchronized with a Northern Digital OptoTrak motion tracking system (3 subjects). Chest pushes were applied using a hand-held force transducer device and were performed using a stabilometric system (6 subjects). Analysis of EMG has shown that: i) the earliest response of the leg muscles was registered significantly later during forward translation of the support surface than during chest pushes, and ii) there was a tendency for the different order of leg muscles activation during the translation tests. Analysis of the kinematic data showed a significant difference in the subject's body segments inclinations during corrective postural responses to upper and lower body perturbations. It appears that upper body perturbations likely engage the vestibular system more rapidly, while lower body perturbations likely engage somatosensory systems more rapidly. These differences must be taken into account when choosing the type of perturbation for testing postural function.

  19. [Correlation between pulmonary function, posture, and body composition in patients with asthma].

    Science.gov (United States)

    Almeida, V P; Guimarães, F S; Moço, V J R; Menezes, S L S; Mafort, T T; Lopes, A J

    2013-01-01

    Asthma may result in postural disorders due to increased activity of accessory respiratory muscles and hyperinflation. Our primary objective was to assess the correlation between pulmonary function and posture in adult patients with asthma. Secondarily, we aimed to study the correlation between body composition and body posture in this group of patients. This was a cross-sectional study including 34 patients with asthma who were subjected to postural assessment (photogrammetry), pulmonary function testing (spirometry, whole-body plethysmography, diffusing capacity for carbon monoxide, and respiratory muscle strength), and body composition estimation by means of bioelectrical impedance. Most patients were female (70.6%) with a median age of 32.5 years (range: 23-42 years old). We found a significant correlation between horizontal alignment of head (anterior view) and the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC; ρ=-0,37; P=.03), total lung capacity (TLC; ρ=0,42; P=.01), and residual volume (RV; ρ=0,45; P<.001). Bronchial obstruction and respiratory muscle strength variables also correlated with postural assessment measures on the right and left lateral views. Both body mass index and the percentage of fat mass correlated with horizontal alignment of head, horizontal alignment of the pelvis, and the frontal angle of the lower limbs. Adult patients with asthma exhibit specific postural disorders that correlate with pulmonary function and body composition. The assessment of postural variables may provide a better pulmonary rehabilitation approach for these patients. Copyright © 2012 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  20. The ergonomics body posture on repetitive and heavy lifting activities of workers in aerospace manufacturing warehouse

    Science.gov (United States)

    Kamat, S. R.; Zula, N. E. N. Md; Rayme, N. S.; Shamsuddin, S.; Husain, K.

    2017-06-01

    Warehouse is an important entity in manufacturing organizations. It usually involves working activities that relate ergonomics risk factors including repetitive and heavy lifting activities. Aerospace manufacturing workers are prone of having musculoskeletal disorder (MSD) problems because of the manual handling activities. From the questionnaires is states that the workers may have experience discomforts experience during manual handling work. Thus, the objectives of this study are; to investigate the body posture and analyze the level of discomfort for body posture of the workers while performing the repetitive and heavy lifting activities that cause MSD problems and to suggest proper body posture and alternatives to reduce the MSD related problems. Methodology of this study involves interviews, questionnaires distribution, anthropometry measurements, RULA (Right Upper Limb Assessment) assessment sheet and CATIA V5 RULA analysis, NIOSH lifting index (LI) and recommended weight limit (RWL). Ten workers are selected for pilot study and as for anthropometry measurement all workers in the warehouse department were involved. From the first pilot study, the RULA assessment score in CATIA V5 shows the highest score which is 7 for all postures and results after improvement of working posture is very low hence, detecting weight of the material handling is not in recommendation. To reduce the risk of MSD through the improvisation of working posture, the weight limit is also calculated in order to have a RWL for each worker. Therefore, proposing a guideline for the aerospace workers involved with repetitive movement and excessive lifting will help in reducing the risk of getting MSD.

  1. The relationship between fear of falling and human postural control.

    Science.gov (United States)

    Davis, Justin R; Campbell, Adam D; Adkin, Allan L; Carpenter, Mark G

    2009-02-01

    This study was designed to improve the understanding of how standing at elevated surface heights and the associated changes in the visual field affect human balance control. Healthy young adults stood at four different surface heights (ground, 0.8, 1.6 and 3.2 m) under three different visual conditions (eyes open, eyes closed and eyes open with peripheral vision occluded). Mean position, Mean Power Frequency (MPF) and Root Mean Square (RMS) of centre of pressure (COP) displacements were calculated from 60s standing trials, and psychosocial and physiological measures of fear and anxiety were also collected. When standing at a height of 3.2 m, 10 of 36 participants reported an increase in anxiety and a robust fear response while the remaining 26 participants experienced only an increase in anxiety and no fear response. A between subjects analysis of the effect of surface height on postural control revealed that fearful and non-fearful participants adopted different postural control strategies with increased heights. Non-fearful participants demonstrated a postural response characterized by increased MPF and decreased RMS of COP displacements with increasing heights. In contrast, fearful participants demonstrated both increasing MPF and RMS of COP displacements with increasing heights. These findings demonstrate, for the first time, a direct relationship between fear of falling and the strategies used for human postural control.

  2. Dental occlusion, body posture and temporomandibular disorders: where we are now and where we are heading for.

    Science.gov (United States)

    Manfredini, D; Castroflorio, T; Perinetti, G; Guarda-Nardini, L

    2012-06-01

    The aim of this investigation was to perform a review of the literature dealing with the issue of relationships between dental occlusion, body posture and temporomandibular disorders (TMD). A search of the available literature was performed to determine what the current evidence is regarding: (i) The physiology of the dental occlusion-body posture relationship, (ii) The relationship of these two topics with TMD and (iii) The validity of the available clinical and instrumental devices (surface electromyography, kinesiography and postural platforms) to measure the dental occlusion-body posture-TMD relationship. The available posturographic techniques and devices have not consistently found any association between body posture and dental occlusion. This outcome is most likely due to the many compensation mechanisms occurring within the neuromuscular system regulating body balance. Furthermore, the literature shows that TMD are not often related to specific occlusal conditions, and they also do not have any detectable relationships with head and body posture. The use of clinical and instrumental approaches for assessing body posture is not supported by the wide majority of the literature, mainly because of wide variations in the measurable variables of posture. In conclusion, there is no evidence for the existence of a predictable relationship between occlusal and postural features, and it is clear that the presence of TMD pain is not related with the existence of measurable occluso-postural abnormalities. Therefore, the use instruments and techniques aiming to measure purported occlusal, electromyographic, kinesiographic or posturographic abnormalities cannot be justified in the evidence-based TMD practice.

  3. A mathematical model for incorporating biofeedback into human postural control

    Directory of Open Access Journals (Sweden)

    Ersal Tulga

    2013-02-01

    Full Text Available Abstract Background Biofeedback of body motion can serve as a balance aid and rehabilitation tool. To date, mathematical models considering the integration of biofeedback into postural control have represented this integration as a sensory addition and limited their application to a single degree-of-freedom representation of the body. This study has two objectives: 1 to develop a scalable method for incorporating biofeedback into postural control that is independent of the model’s degrees of freedom, how it handles sensory integration, and the modeling of its postural controller; and 2 to validate this new model using multidirectional perturbation experimental results. Methods Biofeedback was modeled as an additional torque to the postural controller torque. For validation, this biofeedback modeling approach was applied to a vibrotactile biofeedback device and incorporated into a two-link multibody model with full-state-feedback control that represents the dynamics of bipedal stance. Average response trajectories of body sway and center of pressure (COP to multidirectional surface perturbations of subjects with vestibular deficits were used for model parameterization and validation in multiple perturbation directions and for multiple display resolutions. The quality of fit was quantified using average error and cross-correlation values. Results The mean of the average errors across all tactor configurations and perturbations was 0.24° for body sway and 0.39 cm for COP. The mean of the cross-correlation value was 0.97 for both body sway and COP. Conclusions The biofeedback model developed in this study is capable of capturing experimental response trajectory shapes with low average errors and high cross-correlation values in both the anterior-posterior and medial-lateral directions for all perturbation directions and spatial resolution display configurations considered. The results validate that biofeedback can be modeled as an additional

  4. A Computational Approach for Automated Posturing of a Human Finite Element Model

    Science.gov (United States)

    2016-07-01

    following: obtaining source geometries in the posture being tested, a so- called posturing “by hand” where geometries are moved to what “looks correct ...ARL-MR-0934• JULY 2016 US Army Research Laboratory A Computational Approach for Automated Posturing of a Human Finite ElementModel by Justin McKee...Automated Posturing of a Human Finite ElementModel by Justin McKee Bennett Aerospace, Inc., Cary, NC Adam Sokolow Weapons and Materials Research

  5. The degrees of freedom problem in human standing posture: collective and component dynamics.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available The experiment was setup to investigate the coordination and control of the degrees of freedom (DFs of human standing posture with particular reference to the identification of the collective and component variables. Subjects stood in 3 postural tasks: feet side by side, single left foot quiet stance and single left foot stance with body rocking at the ankle joint in the sagittal plane. All three postural tasks showed very high coherence (∼ 1 of center of pressure (COP--center of mass (COM in the low frequency range. The ankle and hip coherence was mid range (∼.5 with the tasks having different ankle/hip compensatory cophase patterns. The findings support the view that the in-phase relation of the low frequency components of the COP-COM dynamic is the collective variable in the postural tasks investigated. The motions of the individual joints (ankle, knee, hip, neck and couplings of pair wise joint synergies (e.g., ankle-hip provide a supporting cooperative role to the preservation of the collective variable in maintaining the COM within the stability region of the base of support (BOS and minimizing the amount of body motion consistent with the task constraint.

  6. Sad or Fearful? The Influence of Body Posture on Adults' and Children's Perception of Facial Displays of Emotion

    Science.gov (United States)

    Mondloch, Catherine J.

    2012-01-01

    The current research investigated the influence of body posture on adults' and children's perception of facial displays of emotion. In each of two experiments, participants categorized facial expressions that were presented on a body posture that was congruent (e.g., a sad face on a body posing sadness) or incongruent (e.g., a sad face on a body…

  7. The effects of split keyboard geometry on upper body postures.

    Science.gov (United States)

    Rempel, David; Nathan-Roberts, Dan; Chen, Bing Yune; Odell, Dan

    2009-01-01

    Split, gabled keyboard designs can prevent or improve upper extremity pain among computer users; the mechanism appears to involve the reduction of awkward wrist and forearm postures. This study evaluated the effects of changes in opening angle, slope and height (independent variables) of a gabled (14 degrees) keyboard on typing performance and upper extremity postures. Twenty-four experienced touch typists typed on seven keyboard conditions while typing speed and right and left wrist extension, ulnar deviation, forearm pronation and elbow position were measured using a motion tracking system. The lower keyboard height led to a lower elbow height (i.e. less shoulder elevation) and less wrist ulnar deviation and forearm pronation. Keyboard slope and opening angle had mixed effects on wrist extension and ulnar deviation, forearm pronation and elbow height and separation. The findings suggest that in order to optimise wrist, forearm and upper arm postures on a split, gabled keyboard, the keyboard should be set to the lowest height of the two heights tested. Keyboard slopes in the mid-range of those tested, 0 degrees to -4 degrees, provided the least wrist extension, forearm pronation and the lowest elbow height. A keyboard opening angle in the mid-range of those tested, 15 degrees, may provide the best balance between reducing ulnar deviation while not increasing forearm pronation or elbow separation. These findings may be useful in the design of computer workstations and split keyboards. The geometry of a split keyboard can influence wrist and forearm postures. The findings of this study are relevant to the positioning and adjustment of split keyboards. The findings will also be useful for engineers who design split keyboards.

  8. Body posture and gender impact neural processing of power-related words.

    Science.gov (United States)

    Bailey, April H; Kelly, Spencer D

    2016-09-29

    Judging others' power facilitates successful social interaction. Both gender and body posture have been shown to influence judgments of another's power. However, little is known about how these two cues interact when they conflict or how they influence early processing. The present study investigated this question during very early processing of power-related words using event-related potentials (ERPs). Participants viewed images of women and men in dominant and submissive postures that were quickly followed by dominant or submissive words. Gender and posture both modulated neural responses in the N2 latency range to dominant words, but for submissive words they had little impact. Thus, in the context of dual-processing theories of person perception, information extracted from both behavior (i.e., posture) and from category membership (i.e., gender) are recruited side-by-side to impact word processing.

  9. Pain communication through body posture: the development and validation of a stimulus set.

    Science.gov (United States)

    Walsh, Joseph; Eccleston, Christopher; Keogh, Edmund

    2014-11-01

    Pain can be communicated nonverbally through facial expressions, vocalisations, and bodily movements. Most studies have focussed on the facial display of pain, whereas there is little research on postural display. Stimulus sets for facial and vocal expressions of pain have been developed, but there is no equivalent for body-based expressions. Reported here is the development of a new stimulus set of dynamic body postures that communicate pain and basic emotions. This stimulus set is designed to facilitate research into the bodily communication of pain. We report a 3-phase development and validation study. First 16 actors performed affective body postures for pain, as well as happiness, sadness, fear, disgust, surprise, anger, and neutral expressions. Second, 20 observers independently selected the best image stimuli based on the accuracy of emotion identification and valence/arousal ratings. Third, to establish reliability, this accuracy and valence rating procedure was repeated with a second independent group of 40 participants. A final set of 144 images with good reliability was established and is made available. Results demonstrate that pain, along with basic emotions, can be communicated through body posture. Cluster analysis demonstrates that pain and emotion are recognised with a high degree of specificity. In addition, pain was rated as the most unpleasant (negative valence) of the expressions, and was associated with a high level of arousal. For the first time, specific postures communicating pain are described. The stimulus set is provided as a tool to facilitate the study of nonverbal pain communication, and its possible uses are discussed.

  10. Does forward head posture affect postural control in human healthy volunteers?

    Science.gov (United States)

    Silva, Anabela G; Johnson, Mark I

    2013-06-01

    Proprioceptive afferent input from neck muscles plays an important role in postural control. Forward head posture has the potential to impair proprioceptive information from neck muscles and contribute to postural control deficits in patients with neck pain. This study investigated whether induced forward head posture affects postural control in healthy participants when compared to natural head posture. Centre of pressure sway area, distance covered and mean velocity were measured during 30s of static standing using a force platform with 25 healthy individuals (mean age ± SD = 20.76 ± 2.19 years) in 8 different conditions. Base of support, eyes open or closed and natural or forward head posture varied within these testing conditions. The majority of comparisons between natural and forward head posture were not statistically significant (p>0.05). This suggests that induced forward head posture in young healthy adults does not challenge them enough to impair postural control. Future studies should evaluate whether forward head posture affects postural control of individuals with chronic neck pain.

  11. Pelvic morphology, body posture and standing balance characteristics of adolescent able-bodied and idiopathic scoliosis girls.

    Directory of Open Access Journals (Sweden)

    Georgios A Stylianides

    Full Text Available The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP, and its anteroposterior (AP and mediolateral (ML displacements. A multivariate analysis of variance (MANOVA was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1, body posture variables (factor 2, and pelvic morphology variables (factors 3 and 4. Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population.

  12. Biomechanical evaluation of the relationship between postural control and body mass index.

    Science.gov (United States)

    Ku, P X; Abu Osman, N A; Yusof, A; Wan Abas, W A B

    2012-06-01

    Postural stability is crucial in maintaining body balance during quiet standing, locomotion, and any activities that require a high degree of balance performance, such as participating in sports and dancing. Research has shown that there is a relationship between stability and body mass. The aims of this study were to examine the impact that two variables had on static postural control: body mass index (BMI) and gender. Eighty healthy young adults (age=21.7±1.8 yr; height=1.65±0.09 m; mass=67.5±19.0 kg) participated in the study and the static postural control was assessed using the Biodex Balance System, with a 20 Hz sampling rate in the bipedic stance (BLS) and unipedic stance (ULS) for 30s. Five test evaluations were performed for each balance test. Postural control was found to be negatively correlated with increased adiposity, as the obese BMI group performed significantly poorer than the underweight, normal weight and overweight groups during BLS and ULS tests. The underweight, normal weight and overweight groups exhibited greater anterior-posterior stability in postural control during quiet stance. In addition, female displayed a trend of having a greater postural sway than male young adults, although it was evidenced in only some BMI groups. This study revealed that BMI do have an impact on postural control during both BLS and ULS. As such, BMI and gender-specific effects should be taken into consideration when selecting individuals for different types of sporting activities, especially those that require quiet standing.

  13. Intricate correlation between body posture, personality trait and incidence of body pain: a cross-referential study report.

    Directory of Open Access Journals (Sweden)

    Sylvain Guimond

    Full Text Available OBJECTIVE: Occupational back pain is a disorder that commonly affects the working population, resulting in disability, health-care utilization, and a heavy socioeconomic burden. Although the etiology of occupational pain remains largely unsolved, anecdotal evidence exists for the contribution of personality and posture to long-term pain management, pointing to a direct contribution of the mind-body axis. In the current study, we have conducted an extensive evaluation into the relationships between posture and personality. METHOD: We have sampled a random population of 100 subjects (50 men and 50 women in the age range of 13-82 years based on their personality and biomechanical profiles. All subjects were French-Canadian, living in Canada between the Québec and Sorel-Tracy areas. The Biotonix analyses and report were used on the subjects being tested in order to distinguish postural deviations. Personality was determined by using the Myers-Briggs Type Indicator questionnaire. RESULTS: We establish a correlation between ideal and kyphosis-lordosis postures and extraverted personalities. Conversely, our studies establish a correlative relationship between flat back and sway-back postures with introverted personalities. CONCLUSION: Overall, our studies establish a novel correlative relationship between personality, posture and pain.

  14. Artificial Neural Network based Body Posture Classification from EMG signal analysis

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Tripathy

    2013-04-01

    Full Text Available  This paper deals with the body posture Classification from EMG signal analysis using artificial neural network (ANN. The various statistical features extracted from each EMG signal corresponding to different muscles associated with the different body postures are framed using LABVIEW software. Further-more, these features are taken as the input towards the ANN classifier and thus the corresponding output for the respective classifier predicts the postures like Bowing, Handshaking, and Hugging. The performance of the classifier is determined by the classification rate (CR. The outcome of result indicates that the CR of Multilayer Feed Forward Neural Network (MFNN type of ANN is rounded up to a percentage of 71.02%.

  15. Whole-body vibration and postural stress among operators of construction equipment: a literature review.

    Science.gov (United States)

    Kittusamy, N Kumar; Buchholz, Bryan

    2004-01-01

    Operators of construction equipment perform various duties at work that expose them to a variety of risk factors that may lead to health problems. A few of the health hazards among operators of construction equipment are: (a) whole-body vibration, (b) awkward postural requirements (including static sitting), (c) dust, (d) noise, (e) temperature extremes, and (f) shift work. It has been suggested that operating engineers (OEs) are exposed to two important risk factors for the development of musculoskeletal disorders: whole-body vibration and non-neutral body postures. This review evaluates selected papers that have studied exposure to whole-body vibration and awkward posture among operators of mobile equipment. There have been only few studies that have specifically examined exposure of these risk factors among operators of construction equipment. Thus other studies from related industry and equipment were reviewed as applicable. In order to better understand whole-body vibration and postural stress among OEs, it is recommended that future studies are needed in evaluating these risk factors among OEs.

  16. Determining Underground Mining Work Postures Using Motion Capture and Digital Human Modeling.

    Science.gov (United States)

    Lutz, Timothy J; DuCarme, Joseph P; Smith, Adam K; Ambrose, Dean

    2016-12-27

    According to Mine Safety and Health Administration (MSHA) data, during 2008-2012 in the U.S., there were, on average, 65 lost-time accidents per year during routine mining and maintenance activities involving remote-controlled continuous mining machines (CMMs). To address this problem, the National Institute for Occupational Safety and Health (NIOSH) is currently investigating the implementation and integration of existing and emerging technologies in underground mines to provide automated, intelligent proximity detection (iPD) devices on CMMs. One research goal of NIOSH is to enhance the proximity detection system by improving its capability to track and determine identity, position, and posture of multiple workers, and to selectively disable machine functions to keep workers and machine operators safe. Posture of the miner can determine the safe working distance from a CMM by way of the variation in the proximity detection magnetic field. NIOSH collected and analyzed motion capture data and calculated joint angles of the back, hips, and knees from various postures on 12 human subjects. The results of the analysis suggests that lower body postures can be identified by observing the changes in joint angles of the right hip, left hip, right knee, and left knee.

  17. Characterizing the human postural control system using detrended fluctuation analysis

    Science.gov (United States)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2010-01-01

    Detrended fluctuation analysis is used to study the behaviour of the time series of the position of the center of pressure, output from the activity of a human postural control system. The results suggest that these trajectories present a crossover in their scaling properties from persistent (for high frequencies, short-range time scale) to anti-persistent (for low frequencies, long-range time scale) behaviours. The values of the scaling exponent found for the persistent parts of the trajectories are very similar for all the cases analysed. The similarity of the results obtained for the measurements done with both eyes open and both eyes closed indicate either that the visual system may be disregarded by the postural control system, while maintaining quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with this technique.

  18. The influence of body posture on lithium clearance

    DEFF Research Database (Denmark)

    Kamper, A L; Strandgaard, S; Holstein-Rathlou, N H;

    1988-01-01

    To establish appropriate standard circumstances for lithium clearance measurements, a study was undertaken in 12 healthy volunteers. In each subject, the glomerular filtration rate (GFR), as estimated by [51Cr]EDTA plasma clearance, and the renal clearances of lithium, sodium and potassium were...... measured four times at 1-week intervals: two in the supine and one in the sitting position, and one when the subject was walking around. Glomerular filtration rate was not influenced by posture changes. On the contrary, lithium clearance, which in the supine position was 30 +/- 9 ml/min (1 SD), tended...... to fall in the sitting position, and fell significantly to 26 +/- 5 ml/min (p less than 0.025) in walking subjects. Absolute proximal tubular reabsorption rate of fluid correspondingly rose from 83 +/- 16 to 92 +/- 15 ml/min (p less than 0.005) and sodium clearance fell from 1.52 +/- 0.81 to 1.00 +/- 0...

  19. Anticipatory and compensatory postural adjustments in conditions of body asymmetry induced by holding an object.

    Science.gov (United States)

    Chen, Bing; Lee, Yun-Ju; Aruin, Alexander S

    2015-11-01

    The effect of body asymmetry on anticipatory and compensatory postural adjustments was studied. Ten healthy subjects stood on the force platform and held an object in one hand which induced body asymmetry. Subjects were exposed to external perturbations applied to their shoulders while standing with either normal or narrow base of support. Bilateral electromyographic activity (EMG) of dorsal and ventral trunk and leg muscles and center-of-pressure displacements were recorded. Data was analyzed within the intervals typical for anticipatory (APA) and compensatory postural adjustments. Integrals of EMG activity and co-contraction and reciprocal activation of muscles were calculated and analyzed. Reciprocal activation of muscles on the target side and co-contraction of muscles on the contralateral side were seen when standing in asymmetrical stance and being subjected to external perturbations. Decreased magnitudes of co-contraction and reciprocal activation of muscles were seen in the APA phase while standing asymmetrically with narrow base of support. The findings highlight the importance of investigating the role of body asymmetry in maintaining control of vertical posture. The outcome of the study provides a foundation for future studies focusing on improvement in postural control in individuals with body asymmetry due to unilateral weakness.

  20. Mechanical impedance of the human body in vertical direction.

    Science.gov (United States)

    Holmlund, P; Lundström, R; Lindberg, L

    2000-08-01

    The mechanical impedance of the human body in sitting posture and vertical direction was measured during different experimental conditions, such as vibration level (0.5-1.4 m/s2), frequency (2-100 Hz), body weight (57-92 kg), relaxed and erect upper body posture. The outcome shows that impedance increases with frequency up to a peak at about 5 Hz after which it decreases in a complex manner which includes two additional peaks. The frequency at which the first and second impedance peak occurs decreases with higher vibration level. Erect, compared with relaxed body posture resulted in higher impedance magnitudes and with peaks located at somewhat higher frequencies. Heavy persons show higher impedance magnitudes and peaks at lower frequencies.

  1. Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position

    Science.gov (United States)

    Rahmatalla, Salam; DeShaw, Jonathan

    2011-12-01

    Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.

  2. Age-related changes in human posture control: Sensory organization tests

    Science.gov (United States)

    Peterka, R. J.; Black, F. O.

    1989-01-01

    Postural control was measured in 214 human subjects ranging in age from 7 to 81 years. Sensory organization tests measured the magnitude of anterior-posterior body sway during six 21 s trials in which visual and somatosensory orientation cues were altered (by rotating the visual surround and support surface in proportion to the subject's sway) or vision eliminated (eyes closed) in various combinations. No age-related increase in postural sway was found for subjects standing on a fixed support surface with eyes open or closed. However, age-related increases in sway were found for conditions involving altered visual or somatosensory cues. Subjects older than about 55 years showed the largest sway increases. Subjects younger than about 15 years were also sensitive to alteration of sensory cues. On average, the older subjects were more affected by altered visual cues whereas younger subjects had more difficulty with altered somatosensory cues.

  3. Face piercing (body art: choosing pleasure vs. possible pain and posture instability

    Directory of Open Access Journals (Sweden)

    Eric eMatheron

    2011-09-01

    Full Text Available Piercings (body art, i.e. with jewelry are more and more widespread. They can induce various complications such as infections, allergies, headaches, and various skin, cartilage, or dental problems which will lead to economic effects on health-care systems. We draw attention to other possible side effects resulting from face piercing complications such as eye misalignment, decreased postural control efficiency, and nonspecific chronic back pain. We found that the origin was pierced jewelry on the face. Removing the jewelry restored eye alignment, improved postural control, and alleviated back pain in a lasting way. This observation is important for health; further investigations would be of interest.

  4. Anticipatory and compensatory postural adjustments in conditions of body asymmetry induced by holding an object

    OpenAIRE

    Chen, Bing; Lee, Yun-Ju; Aruin, Alexander S.

    2015-01-01

    The effect of body asymmetry on anticipatory and compensatory postural adjustments was studied. Ten healthy subjects stood on the force platform and held an object in one hand which induced body asymmetry. Subjects were exposed to external perturbations applied to their shoulders while standing with either normal or narrow base of support. Bilateral electromyographic activity (EMG) of dorsal and ventral trunk and leg muscles and center of pressure displacements were recorded. Data was analyze...

  5. Limitations of surface EMG signals of extrinsic muscles in predicting postures of human hand.

    Science.gov (United States)

    Vinjamuri, Ramana; Mao, Zhi-Hong; Sclabassi, Robert; Sun, Mingui

    2006-01-01

    This paper explores the limitations of sEMG (surface Electromyography) signals collected from the extrinsic muscles in the forearm in predicting the postures of human hand. Four subjects were asked to try ten extreme postures of hand which need high effort. Two of these four subjects were asked to try ten more normal postures which did not need effort During the experiments, muscle activity and static postures of the hand were measured. The data obtained were analyzed by principal component analysis. The results obtained revealed the limitations of sEMG signals of extrinsic muscles in reproducing the postures of the hand.

  6. A wireless accelerometer-based body posture stability detection system and its application for meditation practitioners.

    Science.gov (United States)

    Chang, Kang-Ming; Chen, Sih-Huei; Lee, Hsin-Yi; Ching, Congo Tak-Shing; Huang, Chun-Lung

    2012-12-18

    The practice of meditation has become an interesting research issue in recent decades. Meditation is known to be beneficial for health improvement and illness reduction and many studies on meditation have been made, from both the physiological and psychological points of view. It is a fundamental requirement of meditation practice to be able to sit without body motion. In this study, a novel body motion monitoring and estimation system has been developed. A wireless tri-axis accelerometer is used to measure body motion. Both a mean and maximum motion index is derived from the square summation of three axes. Two experiments were conducted in this study. The first experiment was to investigate the motion index baseline among three leg-crossing postures. The second experiment was to observe posture dynamics for thirty minute's meditation. Twenty-six subjects participated in the experiments. In one experiment, thirteen subjects were recruited from an experienced meditation group (meditation experience > 3 years); and the other thirteen subjects were beginners (meditation experience < 1 years). There was a significant posture stability difference between both groups in terms of either mean or maximum parameters (p < 0.05), according to the results of the experiment. Results from another experiment showed that the motion index is different for various postures, such as full-lotus < half-lotus < non-lotus.

  7. An optimal state estimation model of sensory integration in human postural balance

    Science.gov (United States)

    Kuo, Arthur D.

    2005-09-01

    We propose a model for human postural balance, combining state feedback control with optimal state estimation. State estimation uses an internal model of body and sensor dynamics to process sensor information and determine body orientation. Three sensory modalities are modeled: joint proprioception, vestibular organs in the inner ear, and vision. These are mated with a two degree-of-freedom model of body dynamics in the sagittal plane. Linear quadratic optimal control is used to design state feedback and estimation gains. Nine free parameters define the control objective and the signal-to-noise ratios of the sensors. The model predicts statistical properties of human sway in terms of covariance of ankle and hip motion. These predictions are compared with normal human responses to alterations in sensory conditions. With a single parameter set, the model successfully reproduces the general nature of postural motion as a function of sensory environment. Parameter variations reveal that the model is highly robust under normal sensory conditions, but not when two or more sensors are inaccurate. This behavior is similar to that of normal human subjects. We propose that age-related sensory changes may be modeled with decreased signal-to-noise ratios, and compare the model's behavior with degraded sensors against experimental measurements from older adults. We also examine removal of the model's vestibular sense, which leads to instability similar to that observed in bilateral vestibular loss subjects. The model may be useful for predicting which sensors are most critical for balance, and how much they can deteriorate before posture becomes unstable.

  8. Dynamic Postural Control in Female Athletes and Nonathletes After a Whole-Body Fatigue Protocol.

    Science.gov (United States)

    Baghbani, Fatemeh; Woodhouse, Linda J; Gaeini, Abbas A

    2016-07-01

    Baghbani, F, Woodhouse, LJ, and Gaeini, AA. Dynamic postural control in female athletes and nonathletes after a whole-body fatigue protocol. J Strength Cond Res 30(7): 1942-1947, 2016-Postural control is a crucial element in regular training of athletes, development of complex technical movement, and injury prevention; however, distributing factor of the postural control such as fatigue has been neglected by athletic trainers in novice and inexperienced athletes. The objective of this study was to compare changes in dynamic postural control of young female athletes and nonathletes after a fatigue protocol. Thirty females (15 athletes and 15 nonathletes) with no orthopedic problems were recruited to participate in this study. All participants completed the pre-SEBT (star excursion balance test) in 8 directions at baseline; then, they performed a 20-minute fatigue protocol after which post-SEBT was measured. Rating of perceived exertion was measured using the Borg scale immediately before, mid-way through (i.e., after the third station), and after performing the fatigue protocol (i.e., immediately before the post-SEBT). Female nonathlete groups had significant differences in dynamic balance performance after fatigue in the medial, posteromedial, and posterior directions (p postural control of the novice with progressing the exercise time. Our findings could also help coaches to develop trainings focused on the 3 directions of medial, posteromedial, and posterior directions and aimed at exercises increasing fatigue resistance.

  9. Multichannel Human Body Communication

    Science.gov (United States)

    Przystup, Piotr; Bujnowski, Adam; Wtorek, Jerzy

    2016-01-01

    Human Body Communication is an attractive alternative for traditional wireless communication (Bluetooth, ZigBee) in case of Body Sensor Networks. Low power, high data rates and data security makes it ideal solution for medical applications. In this paper, signal attenuation for different frequencies, using FR4 electrodes, has been investigated. Performance of single and multichannel transmission with frequency modulation of analog signal has been tested. Experiment results show that HBC is a feasible solution for transmitting data between BSN nodes.

  10. Body posture changes in women with migraine with or without temporomandibular disorders

    Directory of Open Access Journals (Sweden)

    Mariana C. Ferreira

    2014-03-01

    Full Text Available Background: Migraine and temporomandibular disorders (TMDs are reported to be associated. However, there are no reports on the association among migraines, TMDs and changes in body posture. Objectives : To assess changes in body posture in women suffering migraines with or without TMD compared with a control group. Method: Sixty-six women with a mean age of 18 to 45 years participated in this study. The groups were composed of 22 volunteers with migraine and TMD (MTMD, 22 volunteers with migraines without TMD (MG and 22 women in the control group (CG. Static posture was assessed by photogrammetry, and 19 angles were measured. Results: Postural asymmetry was observed in the face for 4 angles measured on the frontal plane in the MG group and for 4 angles of the trunk in the MG and MTMD groups with respect to CG. However, for comparisons between MTMD and CG, clinical relevance was identified for two angles of the sagittal plane (Cervical and Lumbar Lordosis, Effect Size - ES - moderate: 0.53 and 0.60. For comparisons between the MG and CG, the clinical relevance/potential was verified for three angles with moderate ES (ES>0.42. The clinical relevance when comparing MTMD and CG was identified for four angles of facial symmetry head inclination (ES>0.54 and for two angles between MG and CG (ES>0.48. Conclusion : The results demonstrated the presence of postural changes compared with a control group in women with migraines with or without TMD, and there were similar clinically relevant postural changes among the patients with migraines with and without TMD.

  11. Body Posture After Mastectomy: Comparison Between Immediate Breast Reconstruction Versus Mastectomy Alone.

    Science.gov (United States)

    Atanes Mendes Peres, Ana Carolina; Dias de Oliveira Latorre, Maria do Rosário; Yugo Maesaka, Jonathan; Filassi, José Roberto; Chada Baracat, Edmund; Alves Gonçalves Ferreira, Elizabeth

    2017-01-01

    Immediate breast reconstruction has been increasingly incorporated as part of breast cancer treatment, especially for the psychological benefits. Currently, there are many options for breast reconstruction surgery, but the impact of the different techniques on body posture has not been widely studied. One study demonstrated that immediate breast reconstruction with a Beker-25 prosthesis could help to preserve body posture after mastectomy; however, there is no evidence regarding the effect of surgery on the body posture of women after breast reconstruction when using autologous tissue. The purpose of this paper is to compare the body postures of women who underwent immediate breast reconstruction using an abdominal flap with those of women who underwent mastectomy alone. This is a cross-sectional study. Seventy-six women diagnosed with breast cancer underwent mastectomy, between 1 and 5 years after the diagnosis, are the participants of the study. Two groups were defined: women who underwent mastectomy and immediate breast reconstruction (n = 38) and women who underwent mastectomy alone (n = 38). To assess body posture, specific anatomical points for obtaining photographs were located and marked in anterior, posterior and right-side and left-side views. The photographs were analysed using Postural Analysis Software/Software de Análise Postural (PAS/SAPO). In the left lateral view, there was a significant difference in the vertical alignment of the trunk (4.2 vs 3.1; p = 0.05). There were no significant differences between the two groups for the variables in the anterior, posterior or right-side views. Women who underwent mastectomy alone, compared with women who underwent immediate breast reconstruction with abdominal flaps, showed differences in the vertical alignment of the trunk, with greater asymmetry between the acromion and greater trochanter, which can mean trunk rotation. No significant differences were found between the two groups in the

  12. Swimming fundamentals: turning performance of leopard sharks (Triakis semifasciata) is predicted by body shape and postural reconfiguration.

    Science.gov (United States)

    Porter, Marianne E; Roque, Cassandra M; Long, John H

    2011-12-01

    Turns are essential maneuvers that sharks employ when foraging, feeding, and migrating. How well any individual performs in turning is determined, in part, by the static form and postural reconfiguration of its body. Since the importance of postural reconfiguration in determining turning performance is not well understood, our goal was to examine how body form and posture correlate with turning performance in juvenile leopard sharks, Triakis semifasciata. From videos of sharks turning laterally in yaw, performance was measured as turning radius, turning angle, angular speed of the head, and translational speed of the body along its path. Body form variables included the body's length, mass, width, second moment of area, and mass moment of inertia. Postural variables included body-bending coefficient, body flexion at different longitudinal positions, and lag time between body flexion and turning of the center of rotation. Using step-wise linear regression followed by multiple regression, each performance variable was regressed onto three pools of independent variables: (i) all form variables alone, (ii) all postural variables alone, and (iii) a combination of all form and postural variables. From these correlations, it appears that turning performance may be controlled primarily by the magnitude and timing of the flexion of the body. In other words, sharks alter how they turn by changing the pattern in which they bend their bodies; the body acts as a dynamically reconfiguring rudder.

  13. Evaluation of relations between body posture parameters with somatic features and motor abilities of boys aged 14 years

    Directory of Open Access Journals (Sweden)

    Paweł Lizis

    2014-11-01

    Full Text Available [b]introduction[/b]. Body posture is an individual characteristic for everyone, it shows great differentiation – especially in people during their progressive development. As a result, the variability of the development and lack of physical activity impose body posture defects in children and youth. In the literature there is a great lack of measureable data on the relations between correct body posture with somatic features, especially motor features in children at the developing age. The aim of this study was to evaluate the relations between correct body posture parameters, measured with the photogrammetric method, with some of the somatic features and motor abilities of boys at the age of 14. [b]material and methods[/b]. The study included 133 boys aged 14 attending junior secondary schools in the Kraków area of Poland. Only boys with the correct body posture were examined. Posture was examined by the Moire method, through which six parameters were obtained in the sagittal plane, seven in the frontal plane, and one in the transverse plane. The somatic measurements included basic parameters, such as body weight and body height. The measurements of motor features included: marching balance test, speed movement test of the arms and their functional strength. To evaluate the relationships between correct body posture with the characteristics of somatic and motor abilities, the Spearman rank correlation was used. The lowest level of statistical significance was accepted at p ≤ 0,05. [b]results[/b]. No correlations were noted between some of the correct body posture features and the somatic features, and some of the motor abilities of the examined boys at the level of p ≤ 0.05 and p ≤ 0.01. [b]conclusions[/b]. The irregular correlation between the correct body posture and somatic and motor features probably results from the rather big development variability of the boys during puberty.

  14. Effects of the combined swimming, corrective and aqua gymnastics programme on body posture of preschool age children

    Directory of Open Access Journals (Sweden)

    Aldvin Torlaković

    2013-09-01

    Full Text Available Introduction: This research paper is aimed at identifying the possible effects that the implementation of the combined kinesiological programs of swimming and hydro-kinesiological therapy may have on thebody posture in preschool children.Methods: The survey was conducted on a sample of 50 boys selected from a number of Sarajevo kindergartens, in the age group of 5.2±0.6 yrs.; mean height=114±7 cm; mean weight= 21.8±4.7 kg. In order to evaluate the postural status, we used a reduced Napoleon Wolanski method. The activities were carried out within the period of 16 weeks, twice a week for 60 minutes.Results: The analysis of the initial and fi nal series of testing with t-test indicates a high level of statistical signifi cance in the variables of shoulder posture assessment, shoulder blade posture assessment, spinalcord posture assessment, leg posture assessment, feet posture assessment, overall body posture assessment according to Wolanski, whereas somewhat lower level of statistical signifi cance was found in thevariables of abdominal posture assessment and chest posture assessment. A relatively low level of statistical significance is observed only in the variable of head posture assessment.Conclusion: It can be concluded that a combined program of corrective gymnastics with games and exercises in water had signifi cant effects on improving the muscle tone in the respondents, which in turn had a direct impact on improving their body posture, both in terms of all of the individually surveyed body parts and in overall terms.

  15. Visually guided adjustments of body posture in the roll plane.

    Science.gov (United States)

    Tarnutzer, A A; Bockisch, C J; Straumann, D

    2013-05-01

    Body position relative to gravity is continuously updated to prevent falls. Therefore, the brain integrates input from the otoliths, truncal graviceptors, proprioception and vision. Without visual cues estimated direction of gravity mainly depends on otolith input and becomes more variable with increasing roll-tilt. Contrary, the discrimination threshold for object orientation shows little modulation with varying roll orientation of the visual stimulus. Providing earth-stationary visual cues, this retinal input may be sufficient to perform self-adjustment tasks successfully, with resulting variability being independent of whole-body roll orientation. We compared conditions with informative (earth-fixed) and non-informative (body-fixed) visual cues. If the brain uses exclusively retinal input (if earth-stationary) to solve the task, trial-to-trial variability will be independent from the subject's roll orientation. Alternatively, central integration of both retinal (earth-fixed) and extra-retinal inputs will lead to increasing variability when roll-tilted. Subjects, seated on a motorized chair, were instructed to (1) align themselves parallel to an earth-fixed line oriented earth-vertical or roll-tilted 75° clockwise; (2) move a body-fixed line (aligned with the body-longitudinal axis or roll-tilted 75° counter-clockwise to it) by adjusting their body position until the line was perceived earth-vertical. At 75° right-ear-down position, variability increased significantly (p importance of earth-stable visual cues when estimates of gravity become more variable with increasing whole-body roll.

  16. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers

    Science.gov (United States)

    Hoy, J.; Mubarak, N.; Nelson, S.; Sweerts de Landas, M.; Magnusson, M.; Okunribido, O.; Pope, M.

    2005-06-01

    A cross-sectional study was conducted to investigate the risks from whole-body vibration and posture demands for low back pain (LBP) among forklift truck (forklift) drivers. Using a validated questionnaire, information about health history was obtained over a period of two weeks in face-to-face interviews. The forklift drivers were observed in respect of their sitting posture, including frequency with which different positions were adopted (bending, leaning and twisting) and postural analyses were conducted using the OWAS and RULA techniques. Forklift vibrations at the seat (exposure) were measured in the three orthogonal axes ( x-fore and aft, y-lateral and z-vertical) under actual working conditions according to the recommendations of ISO 2631-1. The results showed that LBP was more prevalent amongst forklift drivers than among non-drivers and driving postures in which the trunk is considerably twisted or bent forward associated with greatest risk. Furthermore, forklift drivers showed to be exposed to acceptable levels of vibration in the x- and y-directions (i.e., below the EU Physical Agents Directive on Vibration Exposure recommended action level—0.5 m/s 2), but not in the z-direction. There were indications that whole-body vibration acts associatively with other factors (not independently) to precipitate LBP.

  17. Body Posture Asymmetry Differences between Children with Mild Scoliosis and Children with Unilateral Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Małgorzata Domagalska-Szopa

    2013-01-01

    Full Text Available Patients with unilateral cerebral palsy (CP often have impaired movement coordination, reduced between-limb synchronization, and less weight bearing on the affected side, which can affect the maintenance of an upright weight-bearing position and gait. This study evaluated whether the different postural patterns of children with unilateral CP could be statistically recognized using cluster analysis. Forty-five outpatients with unilateral CP (mean age, 9 years and 5 months and 51 able-bodied children with mild scoliosis (mean age, 9 years and 2 months were included. One observer performed moiré topography (MT examinations using a CQ Electronic System (Poland device. A weight distribution analysis on the base of support (BOS between the body sides was performed simultaneously. A force plate dynamographic platform (PDM, ZEBRIS (Germany, with FootPrint software was used for these measurements. Cluster analysis revealed three groups: Cluster 1 (, 73.96%, Cluster 2 (, 8.33%, and Cluster 3 (, 17.71%. Based on the MT parameters (extracted using a data reduction technique, three typical asymmetrical postural patterns were described: (1 the postural pattern of children with mild scoliosis (SCOL, (2 the progravitational postural pattern (PGPP, and (3 the antigravitational pattern. Patterns two and three were identified in children with unilateral CP.

  18. Body posture asymmetry differences between children with mild scoliosis and children with unilateral cerebral palsy.

    Science.gov (United States)

    Domagalska-Szopa, Małgorzata; Szopa, Andrzej

    2013-01-01

    Patients with unilateral cerebral palsy (CP) often have impaired movement coordination, reduced between-limb synchronization, and less weight bearing on the affected side, which can affect the maintenance of an upright weight-bearing position and gait. This study evaluated whether the different postural patterns of children with unilateral CP could be statistically recognized using cluster analysis. Forty-five outpatients with unilateral CP (mean age, 9 years and 5 months) and 51 able-bodied children with mild scoliosis (mean age, 9 years and 2 months) were included. One observer performed moiré topography (MT) examinations using a CQ Electronic System (Poland) device. A weight distribution analysis on the base of support (BOS) between the body sides was performed simultaneously. A force plate dynamographic platform (PDM), ZEBRIS (Germany), with FootPrint software was used for these measurements. Cluster analysis revealed three groups: Cluster 1 (n = 71, 73.96%), Cluster 2 (n = 8, 8.33%), and Cluster 3 (n = 17, 17.71%). Based on the MT parameters (extracted using a data reduction technique), three typical asymmetrical postural patterns were described: (1) the postural pattern of children with mild scoliosis (SCOL), (2) the progravitational postural pattern (PGPP), and (3) the antigravitational pattern. Patterns two and three were identified in children with unilateral CP.

  19. Modulation of anticipatory postural activity for multiple conditions of a whole-body pointing task.

    Science.gov (United States)

    Tolambiya, A; Chiovetto, E; Pozzo, T; Thomas, E

    2012-05-17

    This is a study on associated postural activities during the anticipatory segments of a multijoint movement. Several previous studies have shown that they are task dependant. The previous studies, however, have mostly been limited in demonstrating the presence of modulation for one task condition, that is, one aspect such as the distance of the target or the direction of reaching. Real-life activities like whole-body pointing, however, can vary in several ways. How specific is the adaptation of the postural activities for the diverse possibilities of a whole-body pointing task? We used a classification paradigm to answer this question. We examined the anticipatory postural electromyograms for four different types of whole-body pointing tasks. The presence of task-dependent modulations in these signals was probed by performing four-way classification tests using a support vector machine (SVM). The SVM was able to achieve significantly higher than chance performance in correctly predicting the movements at hand (Chance performance 25%). Using only anticipatory postural muscle activity, the correct movement at hand was predicted with a mean rate of 62%. Because this is 37% above chance performance, it suggests the presence of postural modulation for diverse conditions. The anticipatory activities consisted of both activations and deactivations. Movement prediction with the use of the activating muscles was significantly better than that obtained with the deactivating muscles. This suggests that more specific modulations for the movement at hand take place through activation, whereas the deactivation is more general. The study introduces a new method for investigating adaptations in motor control. It also sheds new light on the quantity and quality of information available in the feedforward segments of a voluntary multijoint motor activity.

  20. Human cerebral venous outflow pathway depends on posture and central venous pressure

    DEFF Research Database (Denmark)

    Gisolf, J; van Lieshout, J J; van Heusden, K

    2004-01-01

    and central venous pressure (CVP) on the distribution of cerebral outflow over the internal jugular veins and the vertebral plexus, using a mathematical model. Input to the model was a data set of beat-to-beat cerebral blood flow velocity and CVP measurements in 10 healthy subjects, during baseline rest...... and during a Valsalva manoeuvre in both body positions, correlate highly with model simulation of the jugular cross-sectional area (R(2) = 0.97). The results suggest that the cerebral venous flow distribution depends on posture and CVP: in supine humans the internal jugular veins are the primary pathway...

  1. Computational human body models

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Happee, R.; Dommelen, J.A.W. van

    2005-01-01

    Computational human body models are widely used for automotive crashsafety research and design and as such have significantly contributed to a reduction of traffic injuries and fatalities. Currently crash simulations are mainly performed using models based on crash-dummies. However crash dummies dif

  2. Computational human body models

    NARCIS (Netherlands)

    Wismans, J.S.H.M.; Happee, R.; Dommelen, J.A.W. van

    2005-01-01

    Computational human body models are widely used for automotive crashsafety research and design and as such have significantly contributed to a reduction of traffic injuries and fatalities. Currently crash simulations are mainly performed using models based on crash-dummies. However crash dummies

  3. Measurement of three-dimensional posture and trajectory of lower body during standing long jumping utilizing body-mounted sensors.

    Science.gov (United States)

    Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi

    2013-01-01

    The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system.

  4. Relations of the morphological characteristic latent structure and body posture indicators in children aged seven to nine years.

    Science.gov (United States)

    Pausić, Jelena; Cavala, Marijana; Katić, Ratko

    2006-09-01

    With the aim of determining the connection between the indicators of body posture and latent structure of morphological variables in children aged 7 and 8 years, first and second grade of primary school, a set of 17 morphological measures and 12 body posture indicators were longitudinally applied to a sample of 110 boys and 114 girls. The latent structure of morphological variables in both sexes was defined by three factors but at a different order of significance: in boys, the order was longitudinal dimensionality, voluminosity, mass and subcutaneous fat tissue and transverse dimensionality, whereas in girls the order was voluminosity, mass and subcutaneous fat tissue, longitudinal dimensionality and transverse dimensionality. The latent structure of torax body posture indicator was defined by two factors, the status of body posture of the rear part of the thorax, and status of the body posture of the front part of the thorax. The results obtained by canonical correlation analysis between predictive variables, morphological latent structure and criterion variables, latent structure of thorax body posture indicators with two posture indicators of the chest and one of the foot status, showed two important pairs of canonical roots on each measurement, suggesting a significant association between these two sets of parameters.

  5. Do malocclusion and Helkimo Index ≥ 5 correlate with body posture?

    Science.gov (United States)

    Perillo, L; Femminella, B; Farronato, D; Baccetti, T; Contardo, L; Perinetti, G

    2011-04-01

    Whether there are correlations between the stomatognathic system and body posture remains controversial. Here, we have investigated whether malocclusal traits and having a Helkimo Index ≥ 5 show detectable correlations with body-posture alterations in children and young adults. A total of 1178 11- to 19-year-old subjects were divided into four groups: (i) controls; (ii) malocclusion; (iii) Helkimo Index ≥ 5 and (iv) malocclusion + Helkimo Index ≥ 5. Dental occlusion assessment included the following: overbite, overjet, posterior crossbite, scissorbite, mandibular crowding and dental class. Subsequently, body-posture assessments were performed through static analyses of body inclination and trunk asymmetry, and according to the dynamic Fukuda stepping test. Univariate and multivariate statistical analyses were performed. Although at the univariate level both the trunk asymmetry and Fukuda stepping test showed significant differences among the groups, the multivariate level revealed that age and gender were mostly responsible for this. The only significant correlation that was seen was for the malocclusion + Helkimo Index ≥ 5 group: these subjects had a positive (worse) trunk asymmetry and a negative (better) Fukuda stepping test performance. At the further multivariate analyses of each single malocclusal trait ⁄Helkimo Index ≥ 5 (irrespective of the groups), only an increased overbite showed a statistically significant association with a slightly better Fukuda stepping test performance. Given the small number of significant associations seen and their limited entities, this study does not support the existence of clinically relevant correlations for malocclusal traits and Helkimo Index ≥ 5 with body posture in children and young adults.

  6. Evaluation of ergonomic postures of dental professions by Rapid Entire Body Assessment (REBA, in Birjand, Iran

    Directory of Open Access Journals (Sweden)

    Nasl Saraji J.

    2005-05-01

    Full Text Available Statement of Problem: Musculoskeletal disorders (MSDs are major parts of the occupational diseases in workplaces. Protection from such diseases is dependent on assessment and improvement of job postures by using job analysis methods in ergonomics. Purpose: This study was aimed to evaluate ergonomic conditions in dental professions by rapid entire body assessment (REBA in Birjand city and also to assess the relation between MSDS in different parts of the body and work conditions. Materials and Methods: This study was a descriptive-analytical approach performed on 48 persons working at different professions by using REBA method. The prevalence of MSDs was obtained by using Nordic Musculoskeletal Questionnaire (NMQ. The data were analyzed by independent t-test, Chi-square and Fisher tests with P<0.05 as the limit of significance. Results: In this investigation, the prevalence of disorders for different parts of the body was as follows: 65% for neck, 60% for back, 38% for shoulders, and 31% for wrist. These disorders were higher in women than men except for the back. There were significant correlation between disorders of femur and foreleg with work history, ankle and sole with body mass index (BMI, and MSDs with work conditions (P<0.05. Conclusion: It is concluded that the work conditions and postures need to be improved. In addition the level of dental professional education regarding biomechanical hazardous effects as well as correct work conditions and postures should be increased.

  7. Body-mind unity and the spiritual dimension of Modern Postural Yoga

    Directory of Open Access Journals (Sweden)

    Maria Kapsali

    2012-01-01

    Full Text Available This article is concerned with the connection between body and mind that the practice of yoga is expected to develop and it aims specifically to examine the relationship between this body–mind connection and the spiritual dimension of yoga practice. The article particularly focuses on contemporary forms of yoga. Since these forms feature predominantly the practice of yoga postures or asanas, the term Modern Postural Yoga is employed.The phenomenological approach renders yoga ahistorical and ostensibly concentrates on the individual and her experience. The cultural materialist viewpoint cannot account for the ways in which yoga can act as a technique for empowerment and spiritual cultivation. More importantly, both currents seem to exist as possibilities within the same class,even within the same body.

  8. Contraction of the human diaphragm during rapid postural adjustments.

    Science.gov (United States)

    Hodges, P W; Butler, J E; McKenzie, D K; Gandevia, S C

    1997-12-01

    1. The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2. With rapid flexion of the shoulder in response to a visual stimulus, EMG activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG coincided with that of transversus abdominis. 3. Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 +/- 1.9 (mean +/- S.E.M.) and 13.5 +/- 1.8 cmH2O, respectively. The increases occurred 49 +/- 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 +/- 7 ms. 4. Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5. This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs.

  9. Contraction of the human diaphragm during rapid postural adjustments.

    Science.gov (United States)

    Hodges, P W; Butler, J E; McKenzie, D K; Gandevia, S C

    1997-01-01

    1. The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2. With rapid flexion of the shoulder in response to a visual stimulus, EMG activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG coincided with that of transversus abdominis. 3. Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 +/- 1.9 (mean +/- S.E.M.) and 13.5 +/- 1.8 cmH2O, respectively. The increases occurred 49 +/- 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 +/- 7 ms. 4. Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5. This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs. Images Figure 1 PMID:9423192

  10. Effects of different sitting postures on armchair's body comfort level%不同坐姿对靠背椅人体舒适性的影响

    Institute of Scientific and Technical Information of China (English)

    唐立华; 杨元

    2013-01-01

    By taking Tekscan body pressure distribution measurement system and combining comprehensive experiment of subjective evaluation method,the effects of different sitting postures of human body on armchair's body comfort levels were analyzed.According to the ergonomic principles,the reasonable sitting postures recommendations and optimal seat design method were put forward.The results indicate that different postures could affect the pressure distribution on seat surface,and then influence the sitting comfort levels.The findings show that when human body sat on an armchair with a natural relaxed backrest sitting posture,the pressure distribution indexes of the body on the armchair were the minimum values,so it is the most comfortable posture.%采用Tekscan体压分布测量系统并结合主观评价的综合实验方法,剖析了人体不同坐姿形式对坐姿舒适性的影响.依据人体工程学原理提出了合理的坐姿方式建议以及相应的坐具优化设计方法.研究结果表明:不同的坐姿可明显影响体压分布情况,进而影响人体舒适性.自然放松的靠背坐姿时,各体压分布指标最小,是舒适性最好的坐姿形式.

  11. Determining suitable dimensions for dairy goat feeding places by evaluating body posture and feeding reach.

    Science.gov (United States)

    Keil, Nina M; Pommereau, Marc; Patt, Antonia; Wechsler, Beat; Gygax, Lorenz

    2017-02-01

    Confined goats spend a substantial part of the day feeding. A poorly designed feeding place increases the risk of feeding in nonphysiological body postures, and even injury. Scientifically validated information on suitable dimensions of feeding places for loose-housed goats is almost absent from the literature. The aim of the present study was, therefore, to determine feeding place dimensions that would allow goats to feed in a species-appropriate, relaxed body posture. A total of 27 goats with a height at the withers of 62 to 80 cm were included in the study. Goats were tested individually in an experimental feeding stall that allowed the height difference between the feed table, the standing area of the forelegs, and a feeding area step (difference in height between forelegs and hind legs) to be varied. The goats accessed the feed table via a palisade feeding barrier. The feed table was equipped with recesses at varying distances to the feeding barrier (5-55 cm in 5-cm steps) at angles of 30°, 60°, 90°, 120°, or 150° (feeding angle), which were filled with the goats' preferred food. In 18 trials, balanced for order across animals, each animal underwent all possible combinations of feeding area step (3 levels: 0, 10, and 20 cm) and of difference in height between feed table and standing area of forelegs (6 levels: 0, 5, 10, 15, 20, and 25 cm). The minimum and maximum reach at which the animals could reach feed on the table with a relaxed body posture was determined for each combination. Statistical analysis was performed using mixed-effects models. The animals were able to feed with a relaxed posture when the feed table was at least 10 cm higher than the standing height of the goats' forelegs. Larger goats achieved smaller minimum reaches and minimum reach increased if the goats' head and neck were angled. Maximum reach increased with increasing height at withers and height of the feed table. The presence of a feeding area step had no influence on minimum and

  12. CHARACTERISTICS OF BODY POSTURE IN THE SAGITTAL PLANE AND FITNESS OF FIRST-FORM PUPILS FROM RURAL AREAS

    OpenAIRE

    Żukowska Hanna; Szark-Eckardt Mirosława; Muszkieta Radosław; Iermakova T.S.

    2014-01-01

    Purpose: to find correlations between characteristics of body posture in the sagittal plane and fitness and endurance of first-form children from rural areas. Material: an analysis of more than 30 sources of scientific and educational literature. Results: the study involved 209 children, including 102 girls and 107 boys. They were children who lived in the country since they were born. To assess particular characteristics of body posture, the children were studied by means of the measuring eq...

  13. Viewing pain and happy faces elicited similar changes in postural body sway.

    Directory of Open Access Journals (Sweden)

    Juan Gea

    Full Text Available Affective facial expressions are potent social cues that can induce relevant physiological changes, as well as behavioral dispositions in the observer. Previous studies have revealed that angry faces induced significant reductions in body sway as compared with neutral and happy faces, reflecting an avoidance behavioral tendency as freezing. The expression of pain is usually considered an unpleasant stimulus, but also a relevant cue for delivering effective care and social support. Nevertheless, there are few data about behavioral dispositions elicited by the observation of pain expressions in others. The aim of the present research was to evaluate approach-avoidance tendencies by using video recordings of postural body sway when participants were standing and observing facial expressions of pain, happy and neutral. We hypothesized that although pain faces would be rated as more unpleasant than the other faces, they would provoke significant changes in postural body sway as compared to neutral facial expressions. Forty healthy female volunteers (mean age 25 participated in the study. Amplitude of forward movements and backward movements in the anterior-posterior and medial-lateral axes were obtained. Statistical analyses revealed that pain faces were the most unpleasant stimuli, and that both happy and pain faces were more arousing than neutral ones. Happy and pain faces also elicited greater amplitude of body sway in the anterior-posterior axes as compared with neutral faces. In addition, significant positive correlations were found between body sway elicited by pain faces and pleasantness and empathic ratings, suggesting that changes in postural body sway elicited by pain faces might be associated with approach and cooperative behavioral responses.

  14. Isomap transform for segmenting human body shapes.

    Science.gov (United States)

    Cerveri, P; Sarro, K J; Marchente, M; Barros, R M L

    2011-09-01

    Segmentation of the 3D human body is a very challenging problem in applications exploiting volume capture data. Direct clustering in the Euclidean space is usually complex or even unsolvable. This paper presents an original method based on the Isomap (isometric feature mapping) transform of the volume data-set. The 3D articulated posture is mapped by Isomap in the pose of Da Vinci's Vitruvian man. The limbs are unrolled from each other and separated from the trunk and pelvis, and the topology of the human body shape is recovered. In such a configuration, Hoshen-Kopelman clustering applied to concentric spherical shells is used to automatically group points into the labelled principal curves. Shepard interpolation is utilised to back-map points of the principal curves into the original volume space. The experimental results performed on many different postures have proved the validity of the proposed method. Reliability of less than 2 cm and 3° in the location of the joint centres and direction axes of rotations has been obtained, respectively, which qualifies this procedure as a potential tool for markerless motion analysis.

  15. Effect of lower-body positive pressure on postural fluid shifts in men

    Science.gov (United States)

    Hinghofer-Szalkay, H.; Kravik, S. E.; Greenleaf, J. E.

    1988-01-01

    The effect of the lower-body positive pressure (LBPP) on the orthostatic fluid and protein shifts were investigated in five men during combined tilt-table/antigravity suit inflation and deflation experiments. Changes in the mass densities of venous blood and plasma were measured and the values were used to calculate the densities of erythrocytes, whole-body blood, and shifted fluid. It was found that the application of 60 mm Hg LBPP during 60-deg head-up tilt prevented about half of the postural hemoconcentration occurring during passive head-up tilt.

  16. Some possibilities of correction and compensation in body posture regulation among children and adolescents with low degree scoliosis.

    Science.gov (United States)

    Nowotny-Czupryna, Olga; Czupryna, Krzysztof; Nowotny, Janusz; Brzęk, Anna

    2012-01-01

    Postural alignments, secondary curves of spine and tendency to unequal body weight distribution are the compensatory mechanisms in scoliosis, eventually leading to disturbances in the regulation of body posture. The pathological pattern of incorrect posture, evokes a vicious circle of causes and effects, which probably includes alterations in body weight distribution to both feet. To examine the role of equal weight loading of both feet in posture regulation among children and adolescents with low-degree scoliosis. A total of 115 participants, aged 7-19 years, were divided into three groups: low degree scoliosis (10-26⁰ Cobb; n = 56), scoliotic posture (5-9⁰; n = 29), and without lateral spine curvature (n = 30). Three measurements of body arrangement and the weight distribution on feet were simultaneously taken using the photogrammetry and the podographic platform: in a free standing position, while attempt to correct body arrangement and with equal loading of both feet. Unequal weight distribution was observed in free standing position in patients with scoliosis. Attempts to correct body arrangement worsened existing disproportion, especially in the left-side curvatures. Equal feet loading lead to the body disarrangement, even among non - scoliotic subjects. In subjects with low degree scoliosis the compensatory changes in the spatial arrangement of the body are usually accompanied by asymmetric distribution of foot pressure and the active attempt to correct the curvature enhances this asymmetry. Attempts to maintain symmetrical distribution of body weight result in significant deterioration of the posturometric parameters even in non-scoliotic subjects.

  17. Inter-worker variability in lower body postures during assembly line work: implications for exposure assessment.

    Science.gov (United States)

    Keyserling, W Monroe; Wiggermann, Neal; Werner, Robert A; Gell, Nancy

    2010-05-01

    This study evaluated inter-worker variability in lower body posture and work activity during highly-structured assembly line work. Data were collected from 79 unique assembly line workstations in an engine manufacturing plant. Because the plant utilized work teams, 4-8 workers rotated through each workstation. At least 30 min of videotape was collected from at least three workers at each workstation. A computer-assisted work sampling procedure randomly selected 200 video "freeze-frames" for each worker. Lower body posture/movement (e.g., sit, stand, walk, etc.) was determined for each frame and used to estimate the percentage of time the worker spent in various postures and activities. Chi-square analyses were performed for each workstation to assess the significance of inter-worker differences. Due to variations in individual work methods, significant differences (p <.05) were found at 57 out of 79 workstations (72%). The greatest differences occurred when workers had the option to choose between standing and sitting (significant in 8 of 8 cases; in extreme examples, sit time ranged between 0-100% on one job, and 6.5-98% on another). Studying a single worker (or "proxy") can contribute to substantial error when estimating exposures in workplace studies of ergonomic stressors, since the proxy may not be representative of all workers who perform the job. Individual measurements are preferable, particularly for jobs where workers have substantial latitude to develop individualized work methods.

  18. A Scott bench with ergonomic thorax stabilisation pad improves body posture during preacher arm curl exercise.

    Science.gov (United States)

    Biscarini, Andrea; Benvenuti, Paolo; Busti, Daniele; Zanuso, Silvano

    2016-05-01

    We assessed whether the use of an ergonomic thorax stabilisation pad, during the preacher arm curl exercise, could significantly reduce the excessive shoulder protraction and thoracic kyphosis induced by the standard flat pad built into the existing preacher arm curl equipment. A 3D motion capture system and inclinometers were used to measure shoulder protraction and thoracic kyphosis in 15 subjects performing preacher arm curl with a plate-loaded machine provided with the standard flat pad. The same measures were repeated after replacing the flat pad with a new ergonomic pad, specifically designed to accommodate the thorax profile and improve body posture. Pad replacement significantly (p thorax stabilisation pad for the preacher arm curl exercise. The new ergonomic pad improves the poor posture conditions induced by the standard flat pad and may potentially allow a more effective training, prevent musculoskeletal discomfort, improve the breathing function and reduce the risk of injury.

  19. Back pain and body posture evaluation instrument (BackPEI): development, content validation and reproducibility.

    Science.gov (United States)

    Noll, Matias; Tarragô Candotti, Cláudia; Vieira, Adriane; Fagundes Loss, Jefferson

    2013-08-01

    Following a search conducted in several databases, no instrument was found that jointly evaluates the prevalence of back pain and its associated demographic, social-economic, hereditary, behavioral and postural risk factors. Thus, the present study aims to develop the Back Pain and Body Posture Evaluation Instrument (BackPEI) for school-age children and verify its validity and reproducibility. Twenty-one questions were elaborated to compose the BackPEI instrument, eight experts checked the content validity, and its reproducibility was tested by applying the questionnaire to 260 primary schoolchildren, at two different times with a 7-day interval. The reproducibility data for the first 20 questions, analyzed using the kappa (k) coefficient, were classified as "very good" (k > 0.8) or "good" (0.6 back pain and its associated risk factors.

  20. Long-range tactile masking occurs in the postural body schema.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2016-02-01

    Long-range tactile masking has been reported between mirror symmetric body locations. This suggests a general principle of contralateral inhibition between corresponding points on each side of the body that may serve to enhance distinguishing touches on the two halves of the body. Do such effects occur before or after posture is added to the body schema? Here, we address this question by exploring the effect of arm position on long-range tactile masking. The influence of arm position was investigated using different positions of both the test and masking arms. Tactile sensitivity was measured on one forearm, while vibrotactile-masking stimulation was applied to the opposite arm or to a control site on the shoulder. No difference was found in sensitivity when test arm position was varied. Physical contact between the arms significantly increased the effectiveness of a masking stimulus applied to the other arm. Long-range masking between the arms was strongest when the arms were held parallel to each other and was abolished if the position of either the test arm or the masking arm was moved from this position. Modulation of the effectiveness of masking by the position of both the test and masking arms suggests that these effects occur after posture information is added to the body's representation in the brain.

  1. Human Posture Recognition Based on Images Captured by the Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Wen-June Wang

    2016-03-01

    Full Text Available In this paper we combine several image processing techniques with the depth images captured by a Kinect sensor to successfully recognize the five distinct human postures of sitting, standing, stooping, kneeling, and lying. The proposed recognition procedure first uses background subtraction on the depth image to extract a silhouette contour of a human. Then, a horizontal projection of the silhouette contour is employed to ascertain whether or not the human is kneeling. If the figure is not kneeling, the star skeleton technique is applied to the silhouette contour to obtain its feature points. We can then use the feature points together with the centre of gravity to calculate the feature vectors and depth values of the body. Next, we input the feature vectors and the depth values into a pre-trained LVQ (learning vector quantization neural network; the outputs of this will determine the postures of sitting (or standing, stooping, and lying. Lastly, if an output indicates sitting or standing, one further, similar feature identification technique is needed to confirm this output. Based on the results of many experiments, using the proposed method, the rate of successful recognition is higher than 97% in the test data, even though the subjects of the experiments may not have been facing the Kinect sensor and may have had different statures. The proposed method can be called a “hybrid recognition method”, as many techniques are combined in order to achieve a very high recognition rate paired with a very short processing time.

  2. Human bipedalism and body-mass index.

    Science.gov (United States)

    Yi, Su Do; Noh, Jae Dong; Minnhagen, Petter; Song, Mi-Young; Chon, Tae-Soo; Kim, Beom Jun

    2017-06-16

    Body-mass index, abbreviated as BMI and given by M/H (2) with the mass M and the height H, has been widely used as a useful proxy to measure a general health status of a human individual. We generalise BMI in the form of M/H (p) and pursue to answer the question of the value of p for populations of animal species including human. We compare values of p for several different datasets for human populations with the ones obtained for other animal populations of fish, whales, and land mammals. All animal populations but humans analyzed in our work are shown to have p ≈ 3 unanimously. In contrast, human populations are different: As young infants grow to become toddlers and keep growing, the sudden change of p is observed at about one year after birth. Infants younger than one year old exhibit significantly larger value of p than two, while children between one and five years old show p ≈ 2, sharply different from other animal species. The observation implies the importance of the upright posture of human individuals. We also propose a simple mechanical model for a human body and suggest that standing and walking upright should put a clear division between bipedal human (p ≈ 2) and other animals (p ≈ 3).

  3. Postural mechanisms to control body displacements in the performance of lateral gaze shifts.

    Science.gov (United States)

    Bonnet, Cédrick T; Morio, Cédric; Szaffarczyk, Sébastien; Rougier, Patrice R

    2014-01-01

    Medialateral postural control mechanisms (bodyweight distribution and center of pressure location) have been studied in static conditions. Our objective was to determine how these mechanisms are adjusted to perform voluntary movements, in our case 80° lateral gaze shifts at 0.125 Hz and 0.25 Hz. In healthy, young adults, we expected body marker (neck, lower back) and center of pressure displacements to be significantly greater in gaze shift conditions than in the stationary gaze condition. To explain these changes in center of pressure displacement, the amplitude contribution of both mechanisms was expected to increase significantly. All these results were found accordingly. Unexpectedly, the active contribution of the bodyweight distribution mechanism was negatively related to body marker displacements in the gaze shift conditions (ns in stationary condition). Moreover, changes in the contribution of the mechanisms were statistically weaker in effect size than changes in body displacement. However, the participants were not unstable because they performed the visual tasks as requested. We propose that the strength of medialateral postural control mechanisms may not only be strengthened to control challenging ML stance conditions but also slightly weakened to allow the performance of adequate body motions in ongoing tasks.

  4. Optimal Control of Active Suspension in Consideration of Human Body Sitting Posture Model%考虑人体坐姿模型的汽车主动悬架最优控制

    Institute of Scientific and Technical Information of China (English)

    叶光湖; 盛云; 吴光强

    2013-01-01

    根据IS05982:2001 (E)推荐使用的人体坐姿低频振动模型,基于1/4汽车垂向振动模型,建立了车辆-人体振动系统的力学与数学模型.采用最优控制理论,设计了汽车主动悬架线性二次型调节控制器.在Matlab/Simulink环境下分别对被动悬架与主动悬架的性能进行仿真,时域和频域仿真结果对比表明,所建立的车辆-人体振动系统动力学模型能很好地反映人体振动特性,设计的主动悬架线性二次型调节控制器使汽车平顺性得到明显改善.%Based on the biodynamic model of the seated human body recommended by ISO 5982: 2001 (E) in low frequency vibration, and combined with the quarter automotive vertical vibration model, the mechanical and mathematical models of vehicle-human vibration system are established. Then, an active suspension with Linear Quadratic Regulator (LQR) controller is designed by applying the optimal control theory. The performance of the passive and active suspension systems is simulated in Matlab/Simulink and compared on frequency and time domain. The simulation results show that the vibration property of the human body can be well reflected by vehicle-human dynamics model, and the ride comfort of automobile with the active suspension with LQR is improved obviously.

  5. Photographic measurement of upper-body sitting posture of high school students: A reliability and validity study

    OpenAIRE

    Louw Quinette; van Niekerk Sjan-Mari; Vaughan Christopher; Grimmer-Somers Karen; Schreve Kristiaan

    2008-01-01

    Abstract Background All the reported measures of sitting posture, as well as photographs, have one flaw, as these measures are external to the body. These measures use calculations from external bony landmarks to estimate spinal posture, on the understanding that what is being measured externally reflects the shape, health and performance of structures of the underlying spine. Without a comparative measure of the relative position of the structures of the spine, the validity of any external s...

  6. LASER SCANNING APPLICATION FOR DETECTION OF HUMAN POSTURE DISTORTION DURING MASS EXAMINATIONS

    Directory of Open Access Journals (Sweden)

    R. L. Voinov

    2014-03-01

    Full Text Available Identification of human posture distortion in the early stages is an important task, which makes it possible to adjust the onset of the disease with just exercise and without the use of drugs. Existing methods for monitoring of human posture assessment do not meet modern requirements for speed of data acquisition and processing. Real time evaluation of human posture distortion in static and dynamic modes is possible by using a laser scanner. The paper deals with a three-dimensional laser scanning method for determining human posture. The device designed on the basis of its examination gives the possibility for real-time static and dynamic modes. Characteristic feature of the laser scanner is the presence of automated servo rotatable measuring head in two planes (vertical and horizontal with a density of up to tens of measurement points per square centimeter.

  7. A New Interpretation of Spontaneous Sway Measures Based on a Simple Model of Human Postural Control

    National Research Council Canada - National Science Library

    Maurer, Christoph; Peterka, Robert J

    ...) traces that closely resemble physiologically measured COP functions can be produced by an appropriate selection of model parameters in a simple feedback model of the human postural control system...

  8. Effect of an Ergonomics-Based Educational Intervention Based on Transtheoretical Model in Adopting Correct Body Posture Among Operating Room Nurses

    OpenAIRE

    Moazzami, Zeinab; Dehdari, Tahere; Taghdisi, Mohammad Hosein; Soltanian, Alireza

    2015-01-01

    Background: One of the preventive strategies for chronic low back pain among operating room nurses is instructing proper body mechanics and postural behavior, for which the use of the Transtheoretical Model (TTM) has been recommended. Methods: Eighty two nurses who were in the contemplation and preparation stages for adopting correct body posture were randomly selected (control group = 40, intervention group = 42). TTM variables and body posture were measured at baseline and again after 1 and...

  9. A model-based approach for analysis of intracellular resistance variations due to body posture on bioimpedance measurements

    Science.gov (United States)

    Weyer, Sören; Ulbrich, Mark; Leonhardt, Steffen

    2013-04-01

    Bioimpedance spectroscopy is a known option for measuring body fluid volume. However, it is prone to a variety of influence factors which prevent a wider use. One of these influencing factors is the body posture. It could be shown that the average intracellular resistance percentage changes when the subject changes position from lying to standing. Most authors explain this phenomenon by fluid shifts. Another possible reason is the stray capacitance between the body and the ground, because if a certain fraction of the injected current follows other paths than between the potential electrodes, the result will be wrong. This paper analyses the influence of different body postures on the measured intracellular resistance and the posture depending capacity. For this purpose, FEM simulations are used. Subsequently, an electrical equivalent model with capacitances was developed. With this model, it is possible to correct the measured impedance and to neglect the influence of the stray capacitance.

  10. BODY POSTURES AND ASYMMETRIES IN FRONTAL AND TRANSVERSE PLANES IN THE TRUNK AREA IN TABLE TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Katarzyna Barczyk-Pawelec

    2012-04-01

    Full Text Available The aim of this research was to assess the body posture within the trunk area in table tennis players and to estimate the correlations between the specific body posture types, their asymmetries and table tennis practice (training experience. To evaluate body posture the photogrammetric method based on the Moiré phenomenon with equipment by CQ Electronic was applied. Tests of significance of difference and correlation were used to estimate the correlation of the observed asymmetries with the training experience. 40 table tennis players and 43 subjects not practising sports participated in the research. The analysis of the results revealed that table tennis players, unlike non-players, are characterized by kyphotic body posture. It probably results from a specific trunk, head and limb position during table tennis matches. Thus, many asymmetries in frontal and transverse planes were observed in the examined table tennis players. Perhaps table tennis, which is characterized by intensive and one-sided trunk muscle work during its performance, is in favour of creating asymmetries. The majority of subjects did not reveal any statistically significant correlations between the observed body posture types, their asymmetries and training experience. However, it was observed that training experience is significantly related to the considerable asymmetry of the inclination angle of shoulder line (KLB. It may result from the negative influence of very intensive, one-sided work and constant work of the shoulder girdle muscles of the playing limb with negligence of exercises of the second limb.

  11. Human Energy Expenditure and Postural Coordination on the Mechanical Horse.

    Science.gov (United States)

    Baillet, Héloïse; Thouvarecq, Régis; Vérin, Eric; Tourny, Claire; Benguigui, Nicolas; Komar, John; Leroy, David

    2017-01-01

    The authors investigated and compared the energy expenditure and postural coordination of two groups of healthy subjects on a mechanical horse at 4 increasing oscillation frequencies. Energy expenditure was assessed from the oxygen consumption, respiratory quotient, and heart rate values, and postural coordination was characterized by relative phase computations between subjects (elbow, head, trunk) and horse. The results showed that the postural coordination of the riders was better adapted (i.e., maintenance of in-phase and antiphase) than that of the nonriders, but the energy expenditure remains the same. Likewise, we observed an energy system shifting only for nonriders (from aerobic to lactic anaerobic mode). Finally, cross-correlations showed a link between energy expenditure and postural coordination in the riders (i.e., effectiveness).

  12. Attribution of emotions to body postures: an independent component analysis study of functional connectivity in autism.

    Science.gov (United States)

    Libero, Lauren E; Stevens, Carl E; Kana, Rajesh K

    2014-10-01

    The ability to interpret others' body language is a vital skill that helps us infer their thoughts and emotions. However, individuals with autism spectrum disorder (ASD) have been found to have difficulty in understanding the meaning of people's body language, perhaps leading to an overarching deficit in processing emotions. The current fMRI study investigates the functional connectivity underlying emotion and action judgment in the context of processing body language in high-functioning adolescents and young adults with autism, using an independent components analysis (ICA) of the fMRI time series. While there were no reliable group differences in brain activity, the ICA revealed significant involvement of occipital and parietal regions in processing body actions; and inferior frontal gyrus, superior medial prefrontal cortex, and occipital cortex in body expressions of emotions. In a between-group analysis, participants with autism, relative to typical controls, demonstrated significantly reduced temporal coherence in left ventral premotor cortex and right superior parietal lobule while processing emotions. Participants with ASD, on the other hand, showed increased temporal coherence in left fusiform gyrus while inferring emotions from body postures. Finally, a positive predictive relationship was found between empathizing ability and the brain areas underlying emotion processing in ASD participants. These results underscore the differential role of frontal and parietal brain regions in processing emotional body language in autism.

  13. Human body communication performance simulations

    OpenAIRE

    Mufti, H. (Haseeb)

    2016-01-01

    Human Body Communication (HBC) is a novel communication method between devices which use human body as a transmission medium. This idea is mostly based on the concept of wireless biomedical monitoring system. The on-body sensor nodes can monitor vital signs of a human body and use the body as a transmission medium. This technology is convenient for long durations of clinical monitoring with the option of more mobility and freedom for the user. In this thesis, IEEE 802.15.6-2012 phy...

  14. Human cerebral venous outflow pathway depends on posture and central venous pressure

    DEFF Research Database (Denmark)

    Gisolf, J; van Lieshout, J J; van Heusden, K

    2004-01-01

    and central venous pressure (CVP) on the distribution of cerebral outflow over the internal jugular veins and the vertebral plexus, using a mathematical model. Input to the model was a data set of beat-to-beat cerebral blood flow velocity and CVP measurements in 10 healthy subjects, during baseline rest...... and a Valsalva manoeuvre in the supine and standing position. The model, consisting of 2 jugular veins, each a chain of 10 units containing nonlinear resistances and capacitors, and a vertebral plexus containing a resistance, showed blood flow mainly through the internal jugular veins in the supine position...... and during a Valsalva manoeuvre in both body positions, correlate highly with model simulation of the jugular cross-sectional area (R(2) = 0.97). The results suggest that the cerebral venous flow distribution depends on posture and CVP: in supine humans the internal jugular veins are the primary pathway...

  15. A method to model anticipatory postural control in driver braking events

    NARCIS (Netherlands)

    Osth, J.; Eliasson, E.; Happee, R.; Brolin, K.

    2014-01-01

    Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated brakin

  16. Spinal and supraspinal postural networks.

    Science.gov (United States)

    Deliagina, T G; Beloozerova, I N; Zelenin, P V; Orlovsky, G N

    2008-01-01

    Different species maintain a particular body orientation in space (upright in humans, dorsal-side-up in quadrupeds, fish and lamprey) due to the activity of a closed-loop postural control system. We will discuss operation of spinal and supraspinal postural networks studied in a lower vertebrate (lamprey) and in two mammals (rabbit and cat). In the lamprey, the postural control system is driven by vestibular input. The key role in the postural network belongs to the reticulospinal (RS) neurons. Due to vestibular input, deviation from the stabilized body orientation in any (roll, pitch, yaw) plane leads to generation of RS commands, which are sent to the spinal cord and cause postural correction. For each of the planes, there are two groups of RS neurons responding to rotation in the opposite directions; they cause a turn opposite to the initial one. The command transmitted by an individual RS neuron causes the motor response, which contributes to the correction of posture. In each plane, the postural system stabilizes the orientation at which the antagonistic vestibular reflexes compensate for each other. Thus, in lamprey the supraspinal networks play a crucial role in stabilization of body orientation, and the function of the spinal networks is transformation of supraspinal commands into the motor pattern of postural corrections. In terrestrial quadrupeds, the postural system stabilizing the trunk orientation in the transversal plane was analyzed. It consists of two relatively independent sub-systems stabilizing orientation of the anterior and posterior parts of the trunk. They are driven by somatosensory input from limb mechanoreceptors. Each sub-system consists of two closed-loop mechanisms - spinal and spino-supraspinal. Operation of the supraspinal networks was studied by recording the posture-related activity of corticospinal neurons. The postural capacity of spinal networks was evaluated in animals with lesions to the spinal cord. Relative contribution of

  17. Posture and mobility of the upper body quadrant and pulmonary function in COPD: an exploratory study

    Directory of Open Access Journals (Sweden)

    Nuno Morais

    2016-01-01

    Full Text Available ABSTRACT Background There is limited evidence regarding interactions between pulmonary (dysfunction, posture, and mobility of the upper body quadrant in patients with chronic obstructive pulmonary disease (COPD. Objectives This exploratory study aimed to investigate whether postural alignment and mobility of the upper quadrant are related to changes in pulmonary function and compare such variables between patients with COPD and healthy individuals. Method Fifteen patients with COPD (67.93±9.71yrs and 15 healthy controls (66.80±7.47yrs participated. Pulmonary function (FEV1, FVC was assessed with spirometry. Alignment and mobility of the head, thoracic spine, and shoulder were assessed using digital photographs. Pectoralis minor muscle (PmM length and thoracic excursion were assessed with a measuring tape. Groups were compared and linear regression analyses were used to assess potential relationships between postural and mobility variables and pulmonary function. Results Patients with COPD were more likely to have a forward head position at maximal protraction (28.81±7.30º vs. 35.91±8.56º, p=0.02 and overall mobility of the head (21.81±10.42º vs. 13.40±7.84º, p=0.02 and a smaller range of shoulder flexion (136.71±11.91º vs. 149.08±11.58º, p=0.01 than controls. Patients’ non-dominant PmM length and maximal head protraction were predictors of FEV1 (r2adjusted=0.34. These variables, together with the upper thoracic spine at maximal flexion and thoracic kyphosis at maximal extension, were predictors of FVC (r2adjusted=0.68. Conclusion Our findings suggest that impaired pulmonary function is associated with muscle length and mobility adaptations. Further studies are needed to understand the underlying mechanisms and clinical value of these relationships.

  18. EMG analysis of human postural responses during parabolic flight microgravity episodes

    Science.gov (United States)

    Layne, Charles S.; Spooner, Brian S.

    1990-01-01

    Anticipatory postural activity in the trunk and legs precedes rapid shoulder flexion in unit gravity. The hypothesis that anticipatory activity is a component of a single neural command for arm movement was tested by monitoring the surface electromyographic activity of the biceps femoris, paraspinals, and deltoid muscles of three subjects during the microgravity phase of parabolic flight. If part of a single command, anticipatory postural activity would be expected to remain intact despite the absence of the body's center of gravity in a reduced gravity environment. However, in at least 75 percent of the microgravity trials anticipatory biceps femoris activity was absent, indicating a separation of postural and agonist muscle activity. Such a finding suggests that anticipatory postural biceps femoris activity may be initiated independently of agonist (deltoid) activity.

  19. Body posture and backpack loading: an upright magnetic resonance imaging study of the adult lumbar spine.

    Science.gov (United States)

    Shymon, Stephen; Hargens, Alan R; Minkoff, Lawrence A; Chang, Douglas G

    2014-07-01

    Axial loading of the spine while supine, simulating upright posture, decreases intervertebral disc (IVD) height and lumbar length and increases lumbar lordosis. The purpose of this study is to measure the adult lumbar spine's response to upright posture and a backpack load using upright magnetic resonance imaging (MRI). We hypothesize that higher spinal loads, while upright and with a backpack, will compress lumbar length and IVD height as well as decrease lumbar lordosis. Six volunteers (45 ± 6 years) underwent 0.6 T MRI scans of the lumbar spine while supine, upright, and upright with a 10 % body weight (BW) backpack. Main outcomes were IVD height, lumbar spinal length (distance between anterior-superior corners of L1 and S1), and lumbar lordosis (Cobb angle between the superior endplates of L1 and S1). The 10 % BW load significantly compressed the L4-L5 and L5-S1 IVDs relative to supine (p spine wearing common backpack loads. The novel upright MRI protocol described allows for functional, in vivo, loaded measurements of the spine that enables the study of spinal biomechanics and therapeutic interventions.

  20. A dance to the music of time: aesthetically-relevant changes in body posture in performing art.

    Directory of Open Access Journals (Sweden)

    Elena Daprati

    Full Text Available In performing arts, body postures are both means for expressing an artist's intentions, and also artistic objects, appealing to the audience. The postures of classical ballet obey the body's biomechanical limits, but also follow strict rules established by tradition. This combination offers a perfect milieu for assessing scientifically how the execution of this particular artistic activity has changed over time, and evaluating what factors may induce such changes. We quantified angles between body segments in archive material showing dancers from a leading company over a 60-year period. The data showed that body positions supposedly fixed by codified choreography were in fact implemented by very different elevation angles, according to the year of ballet production. Progressive changes lead to increasingly vertical positions of the dancer's body over the period studied. Experimental data showed that these change reflected aesthetic choices of naïve modern observers. Even when reduced to stick figures and unrecognisable shapes, the more vertical postures drawn from later productions were systematically preferred to less vertical postures from earlier productions. This gradual change within a conservative art form provides scientific evidence that aesthetic change may arise from continuous interaction between artistic tradition, individual artists' creativity, and a wider environmental context. This context may include social aesthetic pressure from audiences.

  1. Spatial cognition, body representation and affective processes: the role of vestibular information beyond ocular reflexes and control of posture

    Science.gov (United States)

    Mast, Fred W.; Preuss, Nora; Hartmann, Matthias; Grabherr, Luzia

    2014-01-01

    A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are—at least in part—associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood. PMID:24904327

  2. Spatial Cognition, Body Representation and Affective Processes: The Role of Vestibular Information beyond Ocular Reflexes and Control of Posture

    Directory of Open Access Journals (Sweden)

    Fred W Mast

    2014-05-01

    Full Text Available A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: 1 Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths, body rotation (changing the input from the semicircular canals, in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. 2 Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. 3 Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are – at least in part – associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood.

  3. Photographic analysis of human posture: a literature review.

    Science.gov (United States)

    do Rosário, José Luís Pimentel

    2014-01-01

    The study of posture is not an easy task, mainly because postural assessment is still scientifically inaccurate. Photographs of bipedalism in the frontal and sagittal planes are one of the most widely used methods for this assessment. The aim of this literature review was to determine which anatomical markers authors of scientific papers have taken to minimize the chances of error in measurements. The Medline and Lilacs databases were searched for the period from 2002 to 2012, with the following keywords: "postura"; "posture" and "postural." A number of studies have shown a reasonable correlation between radiographic measurements and the placement of markers. It appears possible to use photography as a form of scientific assessment since the anatomical landmarks are well chosen. The markers that were suggested in this review: malleolus; posterior calcaneal tuberosity; fibular head; tibial tuberosity; greater trochanter of the femur; anterior angle and/or posterior lateral edge of the acromion; spinous processes (particularly C7); inferior angle of the scapula; sternum manubrium; mental protuberance; and the intertragic notch. Iliac spines, both anterior superior and posterior superior, should only be used with lean subjects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. What is a Human Body?

    DEFF Research Database (Denmark)

    Nissen, Ulrik Becker

    2016-01-01

    The essay offers an overview of different understandings of what a body is. As such, it can be read as an overview of what we mean, when we speak of a “human body”. However, the article also goes a step further; in the last section, a responsive understanding of the human body is outlined....... This is understood as responsiveness in three ways: viz an embodied self that responds to natural life, other human beings and, ultimately, to God....

  5. Body Posture Angle Affects the Physiological Indices of Patients With Liver Cirrhosis Ascites.

    Science.gov (United States)

    Hsu, Wen-chuan; Ho, Lun-hui; Lin, Mei-hsiang; Chiu, Hsiu-ling

    2016-01-01

    The study objective was to compare the effect of different angles of lying positions on the physiological indices of patients with cirrhosis ascites. Chronic liver disease and cirrhosis were ranked 9th among the top 10 causes of death. Ascites is the most common cirrhosis comorbidity. Body posture can affect pulmonary ventilation and arterial oxygen partial pressure, making it an important clinical nursing intervention significantly affecting patient recovery. This was a quasi-experimental study design. From a medical center in Taiwan, 252 patients with cirrhosis ascites were recruited. Subjects were randomly divided into three groups by bed angle: 15°, 30°, and 45°. Physiological indices were measured at 5, 10, 15, 20, 25, and 30 minutes to determine any changes in heart rate, respiration rate, and oxygenation saturation. Data analysis included descriptive statistics and the generalized estimating equation for statistical analysis with significance set at α= 0.05. After controlling for confounding variables, the three groups differed significantly in heart rate at 20, 25, and 30 minutes, oxygenation saturations at 15 and 20 minutes, and respiration rate at 5 and 10 minutes (α< 0.05). Body posture can affect pulmonary ventilation and arterial oxygen partial pressure and is thus an important clinical nursing intervention that significantly affects the recovery of patients. When caring for patients with cirrhosis ascites, nurses should help patients to choose the most comfortable angle for them with no particular restrictions. Our results can be used to guide nurses in making a plan for health education and nursing that improves the quality of care for patients with chronic liver disease and cirrhosis patients with ascites.

  6. Optimal prediction of human postural response under anterior-posterior platform tilting

    Science.gov (United States)

    Naderi, D.; Miripour Fard, B.; Sadeghi-Mehr, M.

    2013-01-01

    Previous studies have suggested that human beings movements can be related to the problem of cost function minimization. But at the present time it is not clear that which objective function(s) and constraints are used by central nervous system (CNS) to produce optimal reactions under perturbations. Present study has been done experimentally and by numerical simulations to explore the stability constraints which should be used in combination with energy based cost function (weighted minimum torque) to estimate the motor planning criterion is used by CNS for disturbance rejections. The influence of three stability criterions (ZMP, extrapolated center of mass and a vertical force criterion) in combination with minimum torque model on the optimal trajectory formation is investigated. First, the response of 10 male healthy persons to platform oscillation was recorded by motion analysis system and the hip, knee and ankle angular trajectories were derived from recorded data. Second, the dynamic simulation of a four-segment, three actuated degrees of freedom mechanical model of the human body was performed using predictive dynamic method which leads to an optimization problem. The simulated trajectories were then compared to the experimental data. With comparison between experimental results, the weighting coefficients of the objective function were found to achieve best estimation. It was seen that the minimum torque objective function with weighting coefficients gives trajectories that are mostly matched with experimental observation. Moreover, the results showed that between stability criterions, the ZMP predictions are near to experimental results. Although by using vertical force criterion some nearness to experimental results are lost (in comparison with ZMP criterion) but a secured flat-foot posture for the model is obtained which this posture is more applicable than others in humanoid implementations.

  7. Short-term effects of whole-body vibration on postural control in unilateral chronic stroke patients: preliminary evidence.

    NARCIS (Netherlands)

    Nes, I.J.W. van; Geurts, A.C.H.; Hendricks, H.T.; Duysens, J.E.J.

    2004-01-01

    The short-term effects of whole-body vibration as a novel method of somatosensory stimulation on postural control were investigated in 23 chronic stroke patients. While standing on a commercial platform, patients received 30-Hz oscillations at 3 mm of amplitude in the frontal plane. Balance was asse

  8. Muscular tension and body posture in relation to voice handicap and voice quality in teachers with persistent voice complaints.

    NARCIS (Netherlands)

    Kooijman, P.G.C.; Jong, F.I.C.R.S. de; Oudes, M.J.; Huinck, W.J.; Acht, H. van; Graamans, K.

    2005-01-01

    The aim of this study was to investigate the relationship between extrinsic laryngeal muscular hypertonicity and deviant body posture on the one hand and voice handicap and voice quality on the other hand in teachers with persistent voice complaints and a history of voice-related absenteeism. The st

  9. Human body motion tracking based on quantum-inspired immune cloning algorithm

    Science.gov (United States)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  10. The influence of anthropometric factors on postural balance: the relationship between body composition and posturographic measurements in young adults

    Directory of Open Access Journals (Sweden)

    Angélica Castilho Alonso

    2012-12-01

    Full Text Available OBJECTIVE: The aim of the present study was to evaluate the influence of anthropometric characteristics and gender on postural balance in adults. One hundred individuals were examined (50 males, 50 females; age range 20-40 years. METHODS: The following body composition measurements were collected (using bone densitometry measurements: fat percentage (% fat, tissue (g, fat (g, lean mass (g, bone mineral content (g, and bone mineral density (g/cm2. In addition, the following anthropometric measurements were collected: body mass (kg, height (cm, length of the trunk-cephalic region (cm, length of the lower limbs (cm and length of the upper limbs (cm. The following indices were calculated: body mass index (kg/m², waist-hip ratio and the support base (cm². Also, a postural balance test was performed using posturography variables with open and closed eyes. RESULTS: The analysis revealed poor correlations between postural balance and the anthropometric variables. A multiple linear regression analysis demonstrated that the whole group (female and male height explained 12% of the medial-lateral displacement, 10% of the speed of oscillation, and 11% of the displacement area. The length of the trunk-cephalic length explained 6% of the displacement in the anteroposterior direction. With eyes closed, the support base and height explained 18% of the medial displacement, and the lateral height explained 10% of the displacement speed and 5% of the scroll area. CONCLUSION: Measured using posturography, the postural balance was only slightly influenced by the anthropometric variables, both with open and closed eyes. Height was the anthropometric variable that most influenced postural balance, both in the whole group and separately for each gender. Postural balance was more influenced by anthropometric factors in males than females.

  11. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  12. Physics of the Human Body

    CERN Document Server

    Herman, Irving P

    2007-01-01

    Physics of the Human Body comprehensively addresses the physical and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the materials properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to understand physical issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the necessary physical principles. There are problems at the end of each chapter; solutions to selected problems are also provided. This text is geared t...

  13. Specifying comfortable driving postures for ergonomic design and evaluation of the driver workspace using digital human models.

    Science.gov (United States)

    Kyung, Gyouhyung; Nussbaum, Maury A

    2009-08-01

    Specifying comfortable driving postures is essential for ergonomic design and evaluation of a driver workspace. The present study sought to enhance and expand upon several existing recommendations for such postures. Participants (n = 38) were involved in six driving sessions that differed by vehicle class (sedan and SUV), driving venue (laboratory-based and field) or seat (from vehicles ranked high and low by vehicle comfort). Sixteen joint angles were measured in preferred postures to more completely describe driving postures, as were corresponding perceptual responses. Driving postures were found to be bilaterally asymmetric and distinct between vehicle classes, venues, age groups and gender. A subset of preferred postural ranges was identified using a filtering mechanism that ensured desired levels of perceptual responses. Accurate ranges of joint angles for comfortable driving postures, and careful consideration of vehicle and driver factors, will facilitate ergonomic design and evaluation of a driver workspace, particularly when embedded in digital human models.

  14. Scaling-violation phenomena and fractality in the human posture control systems

    CERN Document Server

    Thurner, S; Hanel, R; Ehrenberger, K

    2000-01-01

    By analyzing the movements of quiet standing persons by means of wavelet statistics, we observe multiple scaling regions in the underlying body dynamics. The use of the wavelet-variance function opens the possibility to relate scaling violations to different modes of posture control. We show that scaling behavior becomes close to perfect, when correctional movements are dominated by the vestibular system.

  15. Biomechanical investigation of thoracolumbar spine in different postures during ejection using a combined finite element and multi-body approach.

    Science.gov (United States)

    Du, Chengfei; Mo, Zhongjun; Tian, Shan; Wang, Lizhen; Fan, Jie; Liu, Songyang; Fan, Yubo

    2014-11-01

    The aim of this study is to investigate the dynamic response of a multi-segment model of the thoracolumbar spine and determine how the sitting posture affects the response under the impact of ejection. A nonlinear finite element model of the thoracolumbar-pelvis complex (T9-S1) was developed and validated. A multi-body dynamic model of a pilot was also constructed so an ejection seat restraint system could be incorporated into the finite element model. The distribution of trunk mass on each vertebra was also considered in the model. Dynamics analysis showed that ejection impact induced obvious axial compression and anterior flexion of the spine, which may contribute to spinal injuries. Compared with a normal posture, the relaxed posture led to an increase in stress on the cortical wall, endplate, and intradiscal pressure of 43%, 10%, 13%, respectively, and accordingly increased the risk of inducing spinal injuries. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Low back pain in drivers: The relative role of whole-body vibration, posture and manual materials handling

    Science.gov (United States)

    Okunribido, O. O.; Magnusson, M.; Pope, M. H.

    2006-12-01

    A cross-sectional study was conducted to investigate the relative role of whole-body vibration (WBV), posture and manual materials handling (MMH) as risk factors for low back pain (LBP). Using a validated questionnaire, information about health history, posture and MMH performed was obtained from 394 workers who drove vehicles as part of their job (according to seven predefined occupational groups) and 59 who did not. The intention was to reflect a wide range of exposures with the lower end of the exposure spectrum defined as that of non-manual workers who do not drive as part of their job. Based on the questionnaire responses and direct measurements of vibration exposure, personal aggregate measures of exposure were computed for each of the respondents, i.e., total vibration dose (TVD), posture score (PS) and manual handling score (MHS). Odds ratios (and 95% confidence intervals) for back pain were obtained from logistics regression models and log-linear backward elimination analysis was performed. The findings showed that 'combined exposure' due to posture and one or both of vibration and MMH, rather than the individual exposure to one of the three factors (WBV, posture, MMH) is the main contributor of the increased prevalence of LBP.

  17. Physics of the human body

    CERN Document Server

    Herman, Irving P

    2016-01-01

    This book comprehensively addresses the physics and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the mechanical properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to clearly explain the physics issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the underlying physics. There are problems at the end of each chapter; solutions to selected problems are also provided. This second edition enhances the treat...

  18. Dynamic fe Model of Sitting Man Adjustable to Body Height, Body Mass and Posture Used for Calculating Internal Forces in the Lumbar Vertebral Disks

    Science.gov (United States)

    Pankoke, S.; Buck, B.; Woelfel, H. P.

    1998-08-01

    Long-term whole-body vibrations can cause degeneration of the lumbar spine. Therefore existing degeneration has to be assessed as well as industrial working places to prevent further damage. Hence, the mechanical stress in the lumbar spine—especially in the three lower vertebrae—has to be known. This stress can be expressed as internal forces. These internal forces cannot be evaluated experimentally, because force transducers cannot be implementated in the force lines because of ethical reasons. Thus it is necessary to calculate the internal forces with a dynamic mathematical model of sitting man.A two dimensional dynamic Finite Element model of sitting man is presented which allows calculation of these unknown internal forces. The model is based on an anatomic representation of the lower lumbar spine (L3-L5). This lumber spine model is incorporated into a dynamic model of the upper torso with neck, head and arms as well as a model of the body caudal to the lumbar spine with pelvis and legs. Additionally a simple dynamic representation of the viscera is used. All these parts are modelled as rigid bodies connected by linear stiffnesses. Energy dissipation is modelled by assigning modal damping ratio to the calculated undamped eigenvalues. Geometry and inertial properties of the model are determined according to human anatomy. Stiffnesses of the spine model are derived from static in-vitro experiments in references [1] and [2]. Remaining stiffness parameters and parameters for energy dissipation are determined by using parameter identification to fit measurements in reference [3]. The model, which is available in 3 different postures, allows one to adjust its parameters for body height and body mass to the values of the person for which internal forces have to be calculated.

  19. Stochastic resonance whole-body vibration improves postural control in health care professionals: a worksite randomized controlled trial.

    Science.gov (United States)

    Elfering, Achim; Schade, Volker; Stoecklin, Lukas; Baur, Simone; Burger, Christian; Radlinger, Lorenz

    2014-05-01

    Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p < .05). Stochastic resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work.

  20. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  1. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  2. Thermal sensation during mild hyperthermia is modulated by acute postural change in humans

    Science.gov (United States)

    Takeda, Ryosuke; Imai, Daiki; Suzuki, Akina; Ota, Akemi; Naghavi, Nooshin; Yamashina, Yoshihiro; Hirasawa, Yoshikazu; Yokoyama, Hisayo; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-12-01

    Thermal sensation represents the primary stimulus for behavioral and autonomic thermoregulation. We assessed whether the sensation of skin and core temperatures for the driving force of behavioral thermoregulation was modified by postural change from the supine (Sup) to sitting (Sit) during mild hyperthermia. Seventeen healthy young men underwent measurements of noticeable increase and decrease (±0.1 °C/s) of skin temperature (thresholds of warm and cold sensation on the skin, 6.25 cm2 of area) at the forearm and chest and of the whole-body warm sensation in the Sup and Sit during normothermia (NT; esophageal temperature (Tes), ˜36.6 °C) and mild hyperthermia (HT; Tes, ˜37.2 °C; lower legs immersion in 42 °C of water). The threshold for cold sensation on the skin at chest was lower during HT than NT in the Sit ( P < 0.05) but not in Sup, and at the forearm was lower during HT than NT in the Sup and further in Sit (both, P < 0.05), with interactive effects of temperature (NT vs. HT) × posture (Sup vs. Sit) (chest, P = 0.08; forearm, P < 0.05). The threshold for warm sensation on the skin at both sites remained unchanged with changes in body posture or temperature. The whole-body warm sensation was higher during HT than NT in both postures and higher in the Sit than Sup during both NT and HT (all, P < 0.05). Thus, thermal sensation during mild hyperthermia is modulated by postural change from supine to sitting to sense lesser cold on the skin and more whole-body warmth.

  3. School furniture and work surface lighting impacts on the body posture of Paraíba's public school students.

    Science.gov (United States)

    da Silva, Luiz Bueno; Coutinho, Antonio Souto; da Costa Eulálio, Eliza Juliana; Soares, Elaine Victor Gonçalves

    2012-01-01

    The main objective of this study is to evaluate the impact of school furniture and work surface lighting on the body posture of public Middle School students from Paraíba (Brazil). The survey was carried out in two public schools and the target population for the study included 8th grade groups involving a total of 31 students. Brazilian standards for lighting levels, the CEBRACE standards for furniture measurements and the Postural Assessment Software (SAPO) for the postural misalignment assay were adopted for the measurements comparison. The statistic analysis includes analyses of parametric and non-parametric correlations. The results show that the students' most affected parts of the body were the spine, the regions of the knees and head and neck, with 90% of the total number of students presenting postural misalignment. The lighting levels were usually found below 300 lux, below recommended levels. The statistic analysis show that the more adequate the furniture seems to be to the user, the less the user will complain of pain. Such results indicate the need of investments in more suitable school furniture and structural reforms aimed at improving the lighting in the classrooms, which could fulfill the students' profile and reduce their complaints.

  4. Parkinson's Disease-Related Impairments in Body Movement, Coordination and Postural Control Mechanisms When Performing 80° Lateral Gaze Shifts.

    Science.gov (United States)

    Bonnet, Cédrick T; Delval, Arnaud; Defebvre, Luc

    2015-09-01

    We investigated early signs of Parkinson's disease-related impairment in mediolateral postural control. Thirty-six participants (18 Hoehn & Yahr stage 2 patients in the off-drug condition and 18 healthy controls) were studied in a stationary gaze condition and when performing 80° lateral gaze shifts at 0.125 and 0.25 Hz. Body sway, coordination and postural control mechanisms were analyzed. All participants performed the visual tasks adequately. The patients were not unstable in the stationary gaze condition. In both groups, mediolateral ankle- and hip-based postural control mechanisms were significantly more active under gaze shift conditions than under the stationary gaze condition. As expected, the patients exhibited significantly greater angular movements of the lower back and significantly lower angular movements of the head (relative to controls) when performing gaze shifts. When considering linear displacements (rather than angular movements), the patients exhibited significantly greater displacements of the lower back and lower, slower displacements of the head than controls under gaze shift conditions. Relative to controls, the patients performed "en block" body movements. Overall, our results show that the patients' ankle- and hip-based mediolateral postural control mechanisms did not adapt to the difficulty of the visual task being performed.

  5. Muscular tension and body posture in relation to voice handicap and voice quality in teachers with persistent voice complaints.

    Science.gov (United States)

    Kooijman, P G C; de Jong, F I C R S; Oudes, M J; Huinck, W; van Acht, H; Graamans, K

    2005-01-01

    The aim of this study was to investigate the relationship between extrinsic laryngeal muscular hypertonicity and deviant body posture on the one hand and voice handicap and voice quality on the other hand in teachers with persistent voice complaints and a history of voice-related absenteeism. The study group consisted of 25 female teachers. A voice therapist assessed extrinsic laryngeal muscular tension and a physical therapist assessed body posture. The assessed parameters were clustered in categories. The parameters in the different categories represent the same function. Further a tension/posture index was created, which is the summation of the different parameters. The different parameters and the index were related to the Voice Handicap Index (VHI) and the Dysphonia Severity Index (DSI). The scores of the VHI and the individual parameters differ significantly except for the posterior weight bearing and tension of the sternocleidomastoid muscle. There was also a significant difference between the individual parameters and the DSI, except for tension of the cricothyroid muscle and posterior weight bearing. The score of the tension/posture index correlates significantly with both the VHI and the DSI. In a linear regression analysis, the combination of hypertonicity of the sternocleidomastoid, the geniohyoid muscles and posterior weight bearing is the most important predictor for a high voice handicap. The combination of hypertonicity of the geniohyoid muscle, posterior weight bearing, high position of the hyoid bone, hypertonicity of the cricothyroid muscle and anteroposition of the head is the most important predictor for a low DSI score. The results of this study show the higher the score of the index, the higher the score of the voice handicap and the worse the voice quality is. Moreover, the results are indicative for the importance of assessment of muscular tension and body posture in the diagnosis of voice disorders.

  6. The role of whole body vibration, posture and manual materials handling as risk factors for low back pain in occupational drivers.

    Science.gov (United States)

    Okunribido, O O; Magnusson, M; Pope, M H

    2008-03-01

    It seems evident that occupational drivers have an increased risk of developing back pain. Not only are they exposed to whole body vibration (vibration), their work often includes exposure to several other risk factors for low back pain (LBP), particularly the seated posture (posture) and manual materials handling (MMH). Excessive demands on posture are likely to be aggravated by vibration and vice versa, and the risks may be further compounded when MMH is performed. This study investigated the relative role of vibration, posture and MMH as risk factors for LBP and the stated hypothesis was that the risks for LBP in drivers are the combined effect of vibration, posture and/or MMH. The findings showed that interaction effects due to posture and one or both of vibration and MMH, rather than the individual exposure effects, are the main contributors for precipitation of LBP.

  7. The role of the human cerebellum in short- and long-term habituation of postural responses.

    Science.gov (United States)

    Schwabe, Achim; Drepper, Johannes; Maschke, Matthias; Diener, Hans Christoph; Timmann, Dagmar

    2004-02-01

    The aim of the present study was to investigate the role of the human cerebellum in short-term (STH) and long-term habituation (LTH) of postural responses to repeated platform perturbations. Ten cerebellar patients and ten age- and sex-matched healthy controls participated. Twenty backward platform translations were applied on each of 5 consecutive days. Changes of postural response size within each day were assessed to determine STH and changes across days to determine LTH. Both controls and cerebellar patients showed a significant reduction of postural response size within each day (i.e. STH). No significant reduction of postural response size was observed across days (i.e. no LTH). Both controls and cerebellar patients, however, showed a tendency of response size to increase across days suggesting long-term sensitization. The amount of changes within and across days did not significantly differ between groups. The present findings suggest that changes of postural response size to repeated perturbations do not depend upon the integrity of the cerebellum.

  8. Postural And Eye-Positional Effects On Human Biting Force: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Altay Tabancacı

    2012-06-01

    Full Text Available Muscle groups affected on biting force are called temporal muscle as a major and masseter muscle as a minor. According to the human posture stability, forces of these muscles vary with the force directions. In this case, experimental investigation is strictly important such that biting force under different postural and eye- positional situations is changed. In this study, seven-male and seven-female within the age-range of 17-24 are considered corresponding to having with restorated molar tooth and without that type of tooth. With the help of specially designed biting fork, different posture- and eye-positions are investigated for experimental biting force analysis. Changes in eye-positions are not indicated significant difference for all postural positions. On one hand, it is obtained that biting force of no-filling tooth in men becomes maximum if facial muscles give full effort to biting. On the other hand, effect of facial muscles for women is not clearly noticed depending on the postural differences.

  9. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  10. Revisiting the importance of common body motion in human action perception.

    Science.gov (United States)

    Thurman, Steven M; Lu, Hongjing

    2016-01-01

    Human actions are complex dynamic stimuli comprised of two principle motion components: 1) common body motion, which represents the translation of the body when a person moves through space, and 2) relative limb movements, resulting from articulation of limbs after factoring out common body motion. Historically, most research in biological motion has focused primarily on relative limb movements while discounting the role of common body motion in human action perception. The current study examined the relative contribution of posture change resulting from relative limb movements and translation of body position resulting from common body motion in discriminating human walking versus running actions. We found that faster translation speeds of common body motion evoked significantly more responses consistent with running when discriminating ambiguous actions morphed between walking and running. Furthermore, this influence was systematically modulated by the uncertainty associated with intrinsic cues as determined by the degree of limited-lifetime spatial sampling. The contribution of common body motion increased monotonically as the reliability of inferring posture changes on the basis of intrinsic cues decreased. These results highlight the importance of translational body movements and their interaction with posture change as a result of relative limb movements in discriminating human actions when visual input information is sparse and noisy.

  11. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture.

    Science.gov (United States)

    Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J

    2017-06-01

    Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with (99m)Tc or (113m)In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions.NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.

  12. MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study.

    Science.gov (United States)

    van Nierop, Lotte E; Slottje, Pauline; Kingma, Herman; Kromhout, Hans

    2013-07-01

    We assessed postural body sway performance after exposure to movement induced time-varying magnetic fields in the static magnetic stray field in front of a 7 Tesla (T) magnetic resonance imaging scanner. Using a double blind randomized crossover design, 30 healthy volunteers performed two balance tasks (i.e., standing with eyes closed and feet in parallel and then in tandem position) after standardized head movements in a sham, low exposure (on average 0.24 T static magnetic stray field and 0.49 T·s(-1) time-varying magnetic field) and high exposure condition (0.37 T and 0.70 T·s(-1)). Personal exposure to static magnetic stray fields and time-varying magnetic fields was measured with a personal dosimeter. Postural body sway was expressed in sway path, area, and velocity. Mixed-effects model regression analysis showed that postural body sway in the parallel task was negatively affected (P static magnetic stray field and time-varying magnetic field exposure. In addition, practical safety implications of these findings, e.g., for surgeons and others working near magnetic resonance imaging scanners need to be investigated.

  13. Intricate correlation between body posture, personality trait and incidence of body pain: a cross-referential study report

    National Research Council Canada - National Science Library

    Guimond, Sylvain; Massrieh, Wael

    2012-01-01

    .... Although the etiology of occupational pain remains largely unsolved, anecdotal evidence exists for the contribution of personality and posture to long-term pain management, pointing to a direct...

  14. Variability in human body size

    Science.gov (United States)

    Annis, J. F.

    1978-01-01

    The range of variability found among homogeneous groups is described and illustrated. Those trends that show significantly marked differences between sexes and among a number of racial/ethnic groups are also presented. Causes of human-body size variability discussed include genetic endowment, aging, nutrition, protective garments, and occupation. The information is presented to aid design engineers of space flight hardware and equipment.

  15. Treatment and ergonomics training of work-related lower back pain and body posture problems for nurses.

    Science.gov (United States)

    Jaromi, Melinda; Nemeth, Andrea; Kranicz, Janos; Laczko, Tamas; Betlehem, Jozsef

    2012-06-01

    The purpose of the study was to measure the effectiveness of a spine training programme (Back School) in nurses who have been living with chronic low back pain. It was hypothesised that active therapy, ergonomics and education called Back School will significantly decrease the pain intensity levels and improve the body posture of the study participants. A chronic low back pain is a significant work-related health problem among healthcare workers around the world. Proper body posture is essential for decreasing pain in healthcare workers who have history of chronic low back pain. By teaching proper body posture and with the creation of occupational settings that are 'spine-friendly' hospitals and other healthcare settings can significantly lower the suffering of their nursing staff. Single-blinded randomised controlled trial was utilised with six- and 12-months follow-up. The study was carried out at the University of Pecs, Faculty of Health Sciences from 2007 to 2008 involving 124 nurses with low back pain. Participants were randomly assigned to the study group (who have received ergonomics training and education called Back School) with an intervention conducted once a week for a six-week period. The control group received passive physiotherapy once a week for a six-week period. Further follow-up measurements were conducted at six and 12 months, respectively. The study variables and outcome measures were pain intensity and body posture (angle of thoracic kyphosis and lumbar lordosis). The pain intensity was investigated with the Visual Analogue Scale. Body posture was recorded and analysed with the Zebris biomechanical motion analysis system. The statistical analysis of repeated measures indicated a significant decrease in back pain intensity after the therapy in both groups, compared with measurements before the therapy; however, the BS group showed significantly better results during the six-month and one-year follow-up period. The biomechanical analysis of

  16. Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time

    OpenAIRE

    Zelai Saenz-de-Urturi; Begonya Garcia-Zapirain Soto

    2016-01-01

    Poor posture can result in loss of physical function, which is necessary to preserving independence in later life. Its decline is often the determining factor for loss of independence in the elderly. To avoid this, a system to correct poor posture in the elderly, designed for Kinect-based indoor applications, is proposed in this paper. Due to the importance of maintaining a healthy life style in senior citizens, the system has been integrated into a game which focuses on their physical stimul...

  17. [Wireless human body communication technology].

    Science.gov (United States)

    Sun, Lei; Zhang, Xiaojuan

    2014-12-01

    The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference.

  18. Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time

    Directory of Open Access Journals (Sweden)

    Zelai Saenz-de-Urturi

    2016-05-01

    Full Text Available Poor posture can result in loss of physical function, which is necessary to preserving independence in later life. Its decline is often the determining factor for loss of independence in the elderly. To avoid this, a system to correct poor posture in the elderly, designed for Kinect-based indoor applications, is proposed in this paper. Due to the importance of maintaining a healthy life style in senior citizens, the system has been integrated into a game which focuses on their physical stimulation. The game encourages users to perform physical activities while the posture correction system helps them to adopt proper posture. The system captures limb node data received from the Kinect sensor in order to detect posture variations in real time. The DTW algorithm compares the original posture with the current one to detect any deviation from the original correct position. The system was tested and achieved a successful detection percentage of 95.20%. Experimental tests performed in a nursing home with different users show the effectiveness of the proposed solution.

  19. Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time.

    Science.gov (United States)

    Saenz-de-Urturi, Zelai; Garcia-Zapirain Soto, Begonya

    2016-05-16

    Poor posture can result in loss of physical function, which is necessary to preserving independence in later life. Its decline is often the determining factor for loss of independence in the elderly. To avoid this, a system to correct poor posture in the elderly, designed for Kinect-based indoor applications, is proposed in this paper. Due to the importance of maintaining a healthy life style in senior citizens, the system has been integrated into a game which focuses on their physical stimulation. The game encourages users to perform physical activities while the posture correction system helps them to adopt proper posture. The system captures limb node data received from the Kinect sensor in order to detect posture variations in real time. The DTW algorithm compares the original posture with the current one to detect any deviation from the original correct position. The system was tested and achieved a successful detection percentage of 95.20%. Experimental tests performed in a nursing home with different users show the effectiveness of the proposed solution.

  20. Is "circling" behavior in humans related to postural asymmetry?

    Directory of Open Access Journals (Sweden)

    Emma Bestaven

    Full Text Available In attempting to walk rectilinearly in the absence of visual landmarks, persons will gradually turn in a circle to eventually become lost. The aim of the present study was to provide insights into the possible underlying mechanisms of this behavior. For each subject (N = 15 six trajectories were monitored during blindfolded walking in a large enclosed area to suppress external cues, and ground irregularities that may elicit unexpected changes in direction. There was a substantial variability from trial to trial for a given subject and between subjects who could either veer very early or relatively late. Of the total number of trials, 50% trajectories terminated on the left side, 39% on the right side and 11% were defined as "straight". For each subject, we established a "turning score" that reflected his/her preferential side of veering. The turning score was found to be unrelated to any evident biomechanical asymmetry or functional dominance (eye, hand.... Posturographic analysis, used to assess if there was a relationship between functional postural asymmetry and veering revealed that the mean position of the center of foot pressure during balance tests was correlated with the turning score. Finally, we established that the mean position of the center of pressure was correlated with perceived verticality assessed by a subjective verticality test. Together, our results suggest that veering is related to a "sense of straight ahead" that could be shaped by vestibular inputs.

  1. Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework

    Science.gov (United States)

    Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao

    2016-09-01

    Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.

  2. [Risks of awkward posture].

    Science.gov (United States)

    Bazzini, G; Capodaglio, E; Panigazzi, M; Prestifilippo, E; Vercesi, C

    2010-01-01

    For posture we mean the position of the body in the space and the relationship with its segments. The correct posture is determined by neurophysiological, biomechanical, emotional, psychological and relation factors, enabling us to perform daily and working activities with the lowest energy expenditure. When possible we suggest during posture variation, a preventive measure where there are prolonged fixed activities.

  3. Influence of Posture and Frequency Modes in Total Body Water Estimation Using Bioelectrical Impedance Spectroscopy in Boys and Adult Males

    Directory of Open Access Journals (Sweden)

    Masaharu Kagawa

    2014-05-01

    Full Text Available The aim of the study was to examine differences in total body water (TBW measured using single-frequency (SF and multi-frequency (MF modes of bioelectrical impedance spectroscopy (BIS in children and adults measured in different postures using the deuterium (2H dilution technique as the reference. Twenty-three boys and 26 adult males underwent assessment of TBW using the dilution technique and BIS measured in supine and standing positions using two frequencies of the SF mode (50 kHz and 100 kHz and the MF mode. While TBW estimated from the MF mode was comparable, extra-cellular fluid (ECF and intra-cellular fluid (ICF values differed significantly (p < 0.01 between the different postures in both groups. In addition, while estimated TBW in adult males using the MF mode was significantly (p < 0.01 greater than the result from the dilution technique, TBW estimated using the SF mode and prediction equation was significantly (p < 0.01 lower in boys. Measurement posture may not affect estimation of TBW in boys and adult males, however, body fluid shifts may still occur. In addition, technical factors, including selection of prediction equation, may be important when TBW is estimated from measured impedance.

  4. Childhood cerebral palsy and the use of positioning systems to control body posture: Current practices.

    Science.gov (United States)

    Pérez-de la Cruz, S

    2015-08-20

    One of the consequences of poor postural control in children with cerebral palsy is hip dislocation. This is due to the lack of weight-bearing in the sitting and standing positions. Orthotic aids can be used to prevent onset and/or progression. The aim of this study is to analyse the effectiveness of positioning systems in achieving postural control in patients with cerebral palsy, and discuss these findings with an emphasis on what may be of interest in the field of neurology. We selected a total of 18 articles on interventions in cerebral palsy addressing posture and maintenance of ideal postures to prevent deformities and related problems. The main therapeutic approaches employed combinations of botulinum toxin and orthoses, which reduced the incidence of hip dislocation although these results were not significant. On the other hand, using positioning systems in 3 different positions decreases use of botulinum toxin and surgery in children under 5 years old. The drawback is that these systems are very uncomfortable. Postural control systems helps control hip deformities in children with cerebral palsy. However, these systems must be used for prolonged periods of time before their effects can be observed. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius.

    Science.gov (United States)

    Loram, Ian D; Maganaris, Constantinos N; Lakie, Martin

    2005-04-01

    It has been widely assumed for nearly a century, that postural muscles operate in a spring-like manner and that muscle length signals joint angle (the mechano-reflex mechanism). Here we employ automated analysis of ultrasound images to resolve calf muscle (soleus and gastrocnemius) length changes as small as 10 mum in standing subjects. Previously, we have used balancing of a real inverted pendulum to make predictions about human standing. Here we test and confirm these predictions on 10 subjects standing quietly. We show that on average the calf muscles are actively adjusted 2.6 times per second and 2.8 times per unidirectional sway of the body centre of mass (CoM). These alternating, small (30-300 microm) movements provide impulsive, ballistic regulation of CoM movement. The timing and pattern of these adjustments are consistent with multisensory integration of all information regarding motion of the CoM, pattern recognition, prediction and planning using internal models and are not consistent with control solely by local reflexes. Because the system is unstable, errors in stabilization provide a perturbation which grows into a sway which has to be reacted to and corrected. Sagittal sway results from this impulsive control of calf muscle activity rather than internal sources (e.g. the heart, breathing). This process is quite unlike the mechano-reflex paradigm. We suggest that standing is a skilled, trial and error activity that improves with experience and is automated (possibly by the cerebellum). These results complement and extend our recent demonstration that paradoxical muscle movements are the norm in human standing.

  6. Effects of body mass index on foot posture alignment and core stability in a healthy adult population.

    Science.gov (United States)

    AlAbdulwahab, Sami S; Kachanathu, Shaji John

    2016-06-01

    Foot biomechanics and core stability (CS) play significant roles in the quality of standing and walking. Minor alterations in body composition may influence base support or CS strategies. The aim of this study was to investigate the effect of the body mass index (BMI) on the foot posture index (FPI) and CS in a healthy adult population. A total of 39 healthy adult subjects with a mean age of 24.3±6.4 years and over-weight BMI values between 25 and 29.9 kg/m2 (27.43±6.1 kg/m2) participated in this study. Foot biomechanics were analyzed using the FPI. CS was assessed using a plank test with a time-to-failure trial. The Spearman correlation coefficient indicated a significant correlation between BMI and both the FPI (r=0.504, P=0.001) and CS (r= -0.34, P=0.036). Present study concluded that an overweight BMI influences foot posture alignment and body stability. Consequently, BMI should be considered during rehabilitation management for lower extremity injuries and body balance.

  7. Low-cost human motion capture system for postural analysis onboard ships

    Science.gov (United States)

    Nocerino, Erica; Ackermann, Sebastiano; Del Pizzo, Silvio; Menna, Fabio; Troisi, Salvatore

    2011-07-01

    The study of human equilibrium, also known as postural stability, concerns different research sectors (medicine, kinesiology, biomechanics, robotics, sport) and is usually performed employing motion analysis techniques for recording human movements and posture. A wide range of techniques and methodologies has been developed, but the choice of instrumentations and sensors depends on the requirement of the specific application. Postural stability is a topic of great interest for the maritime community, since ship motions can make demanding and difficult the maintenance of the upright stance with hazardous consequences for the safety of people onboard. The need of capturing the motion of an individual standing on a ship during its daily service does not permit to employ optical systems commonly used for human motion analysis. These sensors are not designed for operating in disadvantageous environmental conditions (water, wetness, saltiness) and with not optimal lighting. The solution proposed in this study consists in a motion acquisition system that could be easily usable onboard ships. It makes use of two different methodologies: (I) motion capture with videogrammetry and (II) motion measurement with Inertial Measurement Unit (IMU). The developed image-based motion capture system, made up of three low-cost, light and compact video cameras, was validated against a commercial optical system and then used for testing the reliability of the inertial sensors. In this paper, the whole process of planning, designing, calibrating, and assessing the accuracy of the motion capture system is reported and discussed. Results from the laboratory tests and preliminary campaigns in the field are presented.

  8. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.

    Directory of Open Access Journals (Sweden)

    Leonardo Abdala Elias

    2014-11-01

    Full Text Available Several models have been employed to study human postural control during upright quiet stance. Most have adopted an inverted pendulum approximation to the standing human and theoretical models to account for the neural feedback necessary to keep balance. The present study adds to the previous efforts in focusing more closely on modelling the physiological mechanisms of important elements associated with the control of human posture. This paper studies neuromuscular mechanisms behind upright stance control by means of a biologically based large-scale neuromusculoskeletal (NMS model. It encompasses: i conductance-based spinal neuron models (motor neurons and interneurons; ii muscle proprioceptor models (spindle and Golgi tendon organ providing sensory afferent feedback; iii Hill-type muscle models of the leg plantar and dorsiflexors; and iv an inverted pendulum model for the body biomechanics during upright stance. The motor neuron pools are driven by stochastic spike trains. Simulation results showed that the neuromechanical outputs generated by the NMS model resemble experimental data from subjects standing on a stable surface. Interesting findings were that: i an intermittent pattern of muscle activation emerged from this posture control model for two of the leg muscles (Medial and Lateral Gastrocnemius; and ii the Soleus muscle was mostly activated in a continuous manner. These results suggest that the spinal cord anatomy and neurophysiology (e.g., motor unit types, synaptic connectivities, ordered recruitment, along with the modulation of afferent activity, may account for the mixture of intermittent and continuous control that has been a subject of debate in recent studies on postural control. Another finding was the occurrence of the so-called "paradoxical" behaviour of muscle fibre lengths as a function of postural sway. The simulations confirmed previous conjectures that reciprocal inhibition is possibly contributing to this effect, but

  9. Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model.

    Science.gov (United States)

    Elias, Leonardo Abdala; Watanabe, Renato Naville; Kohn, André Fabio

    2014-11-01

    Several models have been employed to study human postural control during upright quiet stance. Most have adopted an inverted pendulum approximation to the standing human and theoretical models to account for the neural feedback necessary to keep balance. The present study adds to the previous efforts in focusing more closely on modelling the physiological mechanisms of important elements associated with the control of human posture. This paper studies neuromuscular mechanisms behind upright stance control by means of a biologically based large-scale neuromusculoskeletal (NMS) model. It encompasses: i) conductance-based spinal neuron models (motor neurons and interneurons); ii) muscle proprioceptor models (spindle and Golgi tendon organ) providing sensory afferent feedback; iii) Hill-type muscle models of the leg plantar and dorsiflexors; and iv) an inverted pendulum model for the body biomechanics during upright stance. The motor neuron pools are driven by stochastic spike trains. Simulation results showed that the neuromechanical outputs generated by the NMS model resemble experimental data from subjects standing on a stable surface. Interesting findings were that: i) an intermittent pattern of muscle activation emerged from this posture control model for two of the leg muscles (Medial and Lateral Gastrocnemius); and ii) the Soleus muscle was mostly activated in a continuous manner. These results suggest that the spinal cord anatomy and neurophysiology (e.g., motor unit types, synaptic connectivities, ordered recruitment), along with the modulation of afferent activity, may account for the mixture of intermittent and continuous control that has been a subject of debate in recent studies on postural control. Another finding was the occurrence of the so-called "paradoxical" behaviour of muscle fibre lengths as a function of postural sway. The simulations confirmed previous conjectures that reciprocal inhibition is possibly contributing to this effect, but on the

  10. Relationship between functional movement screen scores, core strength, posture, and body mass index in school children in Moldova.

    Science.gov (United States)

    Mitchell, Ulrike H; Johnson, A Wayne; Adamson, Brynn

    2015-05-01

    The assessment of functionality should include parameters that consider postural control, limb asymmetries, range of motion limitations, proprioceptive deficits, and pain. An increasingly popular battery of tests, the Functional Movement Screen (FMS), is purported to assess the above named parameters. The purpose of our study was twofold: (a) to report differences in total FMS scores in children, provide preliminary normative reference values of each of the 7 individual FMS scores for both genders and report on asymmetries and (b) to evaluate the relationship between total FMS scores, age, body mass index (BMI), core strength/stability, and postural angles to explore the possibility of using the FMS in the assessment of children's functional fitness. Descriptive data on 77 children aged 8-11 years were collected. The children performed core strength/stability exercises. Photographs were taken from a lateral view for later calculation of postural angles. The children performed the FMS while being videotaped for later review. The average total FMS score (of 21) was 14.9 (+1.9), and BMI was 16.4 (+2.2). Static posture is not related to results of the FMS. Core strength was positively correlated to the total FMS score (r = 0.31; p = 0.006). Over 60% demonstrated at least 1 asymmetry. The individual test scores indicate that none of the test items is too difficult for the children. Based on the screen's correlation to core strength, and the fact that it identifies areas of asymmetry, we suggest to further investigate its possible use in the assessment of children's functional fitness.

  11. Postural Control and Automaticity in Dyslexic Children: The Relationship between Visual Information and Body Sway

    Science.gov (United States)

    Barela, Jose A.; Dias, Josenaldo L.; Godoi, Daniela; Viana, Andre R.; de Freitas, Paulo B.

    2011-01-01

    Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic…

  12. Ergonomic evaluation of body postures and effective risk factors contributing musculoskeletal disorder in barbers in SARDASHT

    Directory of Open Access Journals (Sweden)

    2012-03-01

    Conclusion: High prevalence of upper extremity musculoskeletal disorders shows that inappropriate posture,improper use of work tools, and highly repetitive movements for long period in make up task are the main reasons for the er prevalence of upper limb disorders in this occupational group.

  13. Influence of body posture on the association between postpartum depression and pain

    Directory of Open Access Journals (Sweden)

    Rita di Cássia de Oliveira Angelo

    2014-03-01

    Full Text Available OBJECTIVE: To determine the association between postpartum depression (PPD, intensification of back pain and exacerbation of changes in postural alignment intrinsic to puerperium. METHODS: Eighty women at 2 to 30 weeks postpartum were included in the study according to the following criteria: literate mothers, gestation of 34 to 42 weeks, and healthy live-born infants. All mothers agreed to participate in the study. Depressive symptoms were measured using the Edinburgh Postnatal Depression Scale (EPDS. Pain was assessed using a visual analogue scale (VAS and the Nordic Musculoskeletal Questionnaire (NMQ, and posture, using real time naturalistic observation. RESULTS: There was a statistically significant association between PPD and pain intensity (p = 0.002. The upper back was the most frequent pain site among depressed women, both before (p = 0.04 and after delivery (p = 0.01. There were no associations between PPD and type of posture (p = 0.328. However, pain intensity was greater among depressed women in the swayback group (p < 0.001. CONCLUSION: The intensification of puerperal pain is closely associated with PPD. Our results suggest that back pain may be both a risk factor and a comorbidity of PPD among puerperal women and that pain and type of posture are interdependent.

  14. Study of the human postural control system during quiet standing using detrended fluctuation analysis

    Science.gov (United States)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2009-05-01

    The detrended fluctuation analysis is used to study the behavior of different time series obtained from the trajectory of the center of pressure, the output of the activity of the human postural control system. The results suggest that these trajectories present two different regimes in their scaling properties: persistent (for high frequencies, short-range time scale) to antipersistent (for low frequencies, long-range time scale) behaviors. The similitude between the results obtained for the measurements, done with both eyes open and eyes closed, indicate either that the visual system may be disregarded by the postural control system while maintaining the quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with the type of analysis performed here.

  15. The structure of somatosensory information for human postural control

    Science.gov (United States)

    Jeka, J. J.; Ribeiro, P.; Oie, K.; Lackner, J. R.

    1998-01-01

    The goal of the present study was to determine the properties of the somatosensory stimulus that alter its temporal coupling to body sway. Six standing subjects were tested while touching a metal plate positioned either directly in front of or lateral to the subject. In each condition, the plate moved 4 mm at 0.2 Hz in either the medial-lateral (ML) or anterior-posterior direction (AP). The results showed that coupling between body sway and touch plate movement was strongest when the touch plate moved in a direction along the longitudinal axis of the arm. Coupling strength was weaker when the touch plate moved perpendicular to the longitudinal axis of the arm. The results consistently show that a radial expansion stimulus was more effective than a lamellar-type stimulus at the fingertip. Moreover, somatosensory information from a surface is interpreted in terms of the orientation of the contact limb and the potential degrees of freedom available through its movement.

  16. Age-related differences in postural control in humans in response to a sudden deceleration generated by postural disturbance.

    Science.gov (United States)

    Okada, S; Hirakawa, K; Takada, Y; Kinoshita, H

    2001-07-01

    Age-related differences in postural control in response to a relatively large deceleration resulting from postural disturbance were investigated in eight normal elderly men (age range 67-72 years) and eight young men as controls (age range 19-22 years) using a moving platform. Data were obtained for the hip, knee and ankle angles, position of the centre of foot pressure (CFP), head acceleration, and muscle activity of the leg muscles. The elderly subjects had slower and larger ankle and hip joint movements, and CFP displacement in response to the disturbance compared to the young controls. The elderly subjects also had a delayed occurrence, and greater magnitude of peak acceleration of head rotation than did the young subjects. For the elderly subjects, the CFP was closely related to angular changes in the hip joint movement, but not to those of the ankle and knee joint movements. For the young subjects, on the other hand, the CFP was significantly correlated with angular change in the ankle joint. Cocontraction of the tibialis anterior and gastrocnemius muscles was observed in the elderly subjects. The results indicated that a movement pattern for postural correction in the elderly adults was different from that of the young adults. The elderly relied more on hip movements while the young controls relied on ankle movements to control postural stability.

  17. Fluid Shifts: Otoacoustical Emission Changes in Response to Posture and Lower Body Negative Pressure

    Science.gov (United States)

    Melgoza, R.; Kemp, D.; Ebert, D.; Danielson, R.; Stenger, M.; Hargens, A.; Dulchavsky, S.

    2016-01-01

    INTRODUCTION: The purpose of the NASA Fluid Shifts Study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to correlate these findings with vision changes and other elements of the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. Due to the invasive nature of direct measures of ICP, a noninvasive technique of monitoring ICP is desired for use during spaceflight. The phase angle and amplitude of otoacoustic emissions (OAEs) have been shown to be sensitive to posture change and ICP (1, 2), therefore use of OAEs is an attractive option. OAEs are low-level sounds produced by the sensory cells of the cochlea in response to auditory stimulation. These sounds travel peripherally from the cochlea, through the oval window, to the ear canal where they can be recorded. OAE transmission is sensitive to changes in the stiffness of the oval window, occurring as a result of changes in cochlear pressure. Increased stiffness of the oval window largely affects the transmission of sound from the cochlea at frequencies between 800 Hz and 1600 Hz. OAEs can be self-recorded in the laboratory or on the ISS using a handheld device. Our primary objectives regarding OAE measures in this experiment were to 1) validate this method during preflight testing of each crewmember (while sitting, supine and in head-down tilt position), and 2) determine if OAE measures (and presumably ICP) are responsive to lower body negative pressure and to spaceflight. METHODS: Distortion-product otoacoustic emissions (DPOAEs) and transient evoked otoacoustic emissions (TEOAEs) were recorded preflight using the Otoport Advance OAE system (Otodynamics Ltd., Hatfield, UK). Data were collected in four conditions (seated

  18. Evaluation of upper-limb body postures based on the effects of back and shoulder flexion angles on subjective discomfort ratings, heart rates and muscle activities.

    Science.gov (United States)

    Lim, Cheol-Min; Jung, Myung-Chul; Kong, Yong-Ku

    2011-09-01

    A possible limitation of many ergonomics checklists that evaluate postures is an independent evaluation of each body segment without considering the coordination between body segments and resulting in the under-/over-estimation of body postures. A total of 20 men were selected to evaluate the effects of shoulder and back flexion angles on the upper-limb muscle activities, subjective discomforts and heart rates. Interesting findings were obtained from the coordination between back flexion angles and shoulder flexion angles. At a back flexion angle of 45°, the discomfort and heart rates were the least at a shoulder flexion angle of 45°. The %MVC also showed a similar trend. It could be inferred that the 0° shoulder flexion angle would be a natural posture, when the back flexion angle is 0°, whereas 45° shoulder flexion might be a more natural posture when the back flexion angle is 45°. STATEMENT OF RELEVANCE: This study evaluated the effects of back and shoulder flexion angles on subjective as well as objective measures. The findings of this study considered the coordination between two body flexion angles and could be used to improve the accuracy of existing ergonomics evaluation methods for body postures.

  19. Imaging Posture Veils Neural Signals

    Science.gov (United States)

    Thibault, Robert T.; Raz, Amir

    2016-01-01

    Whereas modern brain imaging often demands holding body positions incongruent with everyday life, posture governs both neural activity and cognitive performance. Humans commonly perform while upright; yet, many neuroimaging methodologies require participants to remain motionless and adhere to non-ecological comportments within a confined space. This inconsistency between ecological postures and imaging constraints undermines the transferability and generalizability of many a neuroimaging assay. Here we highlight the influence of posture on brain function and behavior. Specifically, we challenge the tacit assumption that brain processes and cognitive performance are comparable across a spectrum of positions. We provide an integrative synthesis regarding the increasingly prominent influence of imaging postures on autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing that neuroimagers and cognitive scientists could benefit from considering the influence posture wields on both general functioning and brain activity, we examine existing imaging technologies and the potential of portable and versatile imaging devices (e.g., functional near infrared spectroscopy). Finally, we discuss ways that accounting for posture may help unveil the complex brain processes of everyday cognition.

  20. Imaging Posture Veils Neural Signals

    Directory of Open Access Journals (Sweden)

    Robert T Thibault

    2016-10-01

    Full Text Available Whereas modern brain imaging often demands holding body positions incongruent with everyday life, posture governs both neural activity and cognitive performance. Humans commonly perform while upright; yet, many neuroimaging methodologies require participants to remain motionless and adhere to non-ecological comportments within a confined space. This inconsistency between ecological postures and imaging constraints undermines the transferability and generalizability of many a neuroimaging assay.Here we highlight the influence of posture on brain function and behavior. Specifically, we challenge the tacit assumption that brain processes and cognitive performance are comparable across a spectrum of positions. We provide an integrative synthesis regarding the increasingly prominent influence of imaging postures on autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing that neuroimagers and cognitive scientists could benefit from considering the influence posture wields on both general functioning and brain activity, we examine existing imaging technologies and the potential of portable and versatile imaging devices (e.g., functional near infrared spectroscopy. Finally, we discuss ways that accounting for posture may help unveil the complex brain processes of everyday cognition.

  1. Power-law scaling for macroscopic entropy and microscopic complexity: Evidence from human movement and posture

    Science.gov (United States)

    Hong, S. Lee; Bodfish, James W.; Newell, Karl M.

    2006-03-01

    We investigated the relationship between macroscopic entropy and microscopic complexity of the dynamics of body rocking and sitting still across adults with stereotyped movement disorder and mental retardation (profound and severe) against controls matched for age, height, and weight. This analysis was performed through the examination of center of pressure (COP) motion on the mediolateral (side-to-side) and anteroposterior (fore-aft) dimensions and the entropy of the relative phase between the two dimensions of motion. Intentional body rocking and stereotypical body rocking possessed similar slopes for their respective frequency spectra, but differences were revealed during maintenance of sitting postures. The dynamics of sitting in the control group produced lower spectral slopes and higher complexity (approximate entropy). In the controls, the higher complexity found on each dimension of motion was related to a weaker coupling between dimensions. Information entropy of the relative phase between the two dimensions of COP motion and irregularity (complexity) of their respective motions fitted a power-law function, revealing a relationship between macroscopic entropy and microscopic complexity across both groups and behaviors. This power-law relation affords the postulation that the organization of movement and posture dynamics occurs as a fractal process.

  2. Myoelectric Response of Back Muscles to Vertical Random Whole-Body Vibration with Different Magnitudes at Different Postures

    Science.gov (United States)

    BLÜTHNER, R.; SEIDEL, H.; HINZ, B.

    2002-05-01

    Back muscle forces contribute essentially to the whole-body vibration-induced spinal load. The electromyogram (EMG) can help to estimate these forces during whole-body vibration (WBV). Thirty-eight subjects were exposed to identical random low-frequency WBV (0·7, 1·0 and 1·4 m/s-2 r.m.s. weighted acceleration) at a relaxed, erect and bent forward postures. The acceleration of the seat and the force between the seat and the buttocks were measured. Six EMGs were derived from the right side of the m. trapezius pars descendens, m. ileocostalis lumborum pars thoracis, m. ileocostalis lumborum pars lumborum; m. longissimus thoracis pars thoracis, m. longissimus thoracis pars lumborum, and lumbar multifidus muscle. All data were filtered for anti-aliasing and sampled with 1000 Hz. Artefacts caused by the ECG in the EMG were identified and eliminated in the time domain using wavelets. The individually rectified and normalized EMGs were averaged across subjects. The EMGs without WBV exhibited characteristic patterns for the three postures examined. The coherence and transfer functions indicated characteristic myoelectric responses to random WBV with several effects of posture and WBV magnitude. A comprehensive set of transfer functions from the seat acceleration or the mean normalized input force to the mean processed EMG was presented.The results can be used for the development of more sophisticated models with a separate control of various back muscle groups. However, the EMG-force relationship under dynamic conditions needs to be examined in more detail before the results can be implemented. Since different reflex mechanisms depending on the frequency of WBV are linked with different types of active muscle fibres, various time delays between the EMG and muscle force may be necessary.

  3. Associations between craniofacial morphology, head posture, and cervical vertebral body fusions in men with sleep apnea

    DEFF Research Database (Denmark)

    Svanholt, Palle; Petri, Niels; Wildschiødtz, Gordon

    2009-01-01

    . The patients were divided into 4 groups according to fusion in the cervical vertebrae: group I, no fusions (42 subjects); group II, fusion of cervical vertebrae 2 and 3 (15 subjects); group III, occipitalization (10 subjects); and group IV, block fusion (11 subjects). Mean differences of craniofacial...... significantly. No significant differences were seen in head posture. CONCLUSIONS: OSA patients with block fusions in the cervical vertebrae and fusion of 2 vertebrae differed significantly in craniofacial profile from other OSA patients.......INTRODUCTION: The aim of this study was to analyze craniofacial profiles and head posture in patients with obstructive sleep apnea (OSA) subgrouped according to cervical column morphology. METHODS: Seventy-four white men aged 27 to 65 years (mean, 49.0 years) diagnosed with OSA in sleep studies...

  4. Evaluation of ergonomic factors and postures that cause muscle pains in dentistry students’ bodies

    OpenAIRE

    Shirzaei, Masoumeh; Mirzaei, Ramazan; Khaje Alizade, Ali; Mohammadi, Mahdi

    2015-01-01

    Background Work-related musculoskeletal disorders commonly experienced by dental professionals are one of the main occupational health problem affecting their health and well-being.This study was conducted to evaluate ergonomic factors and profession-related postures and also investigate relationship between demographic factors and work condition with pain in dental students. Material and Methods 60 freshman and sophomore dentistry students were randomly chosen as the subjects of control grou...

  5. Associations between craniofacial morphology, head posture, and cervical vertebral body fusions in men with sleep apnea.

    Science.gov (United States)

    Svanholt, Palle; Petri, Niels; Wildschiødtz, Gordon; Sonnesen, Liselotte; Kjaer, Inger

    2009-06-01

    The aim of this study was to analyze craniofacial profiles and head posture in patients with obstructive sleep apnea (OSA) subgrouped according to cervical column morphology. Seventy-four white men aged 27 to 65 years (mean, 49.0 years) diagnosed with OSA in sleep studies by using overnight polysomnography were included. Only patients with apnea-hypopnea index scores between 5.1 and 92.7 (mean, 36.4) were included. Lateral profile radiographs in standardized head posture were taken, and cephalometric analyses of sagittal and vertical jaw relationships were made. The patients were divided into 4 groups according to fusion in the cervical vertebrae: group I, no fusions (42 subjects); group II, fusion of cervical vertebrae 2 and 3 (15 subjects); group III, occipitalization (10 subjects); and group IV, block fusion (11 subjects). Mean differences of craniofacial dimensions between the groups were assessed by unpaired t tests. No significant differences were seen between groups I and III. Between groups I and II, significant differences were seen in jaw relationship (P < 0.05). Between groups I and IV, anterior face height and mandibular length deviated significantly. No significant differences were seen in head posture. OSA patients with block fusions in the cervical vertebrae and fusion of 2 vertebrae differed significantly in craniofacial profile from other OSA patients.

  6. Real-Time Hand Posture Recognition for Human-Robot Interaction Tasks.

    Science.gov (United States)

    Hernandez-Belmonte, Uriel Haile; Ayala-Ramirez, Victor

    2016-01-04

    In this work, we present a multiclass hand posture classifier useful for human-robot interaction tasks. The proposed system is based exclusively on visual sensors, and it achieves a real-time performance, whilst detecting and recognizing an alphabet of four hand postures. The proposed approach is based on the real-time deformable detector, a boosting trained classifier. We describe a methodology to design the ensemble of real-time deformable detectors (one for each hand posture that can be classified). Given the lack of standard procedures for performance evaluation, we also propose the use of full image evaluation for this purpose. Such an evaluation methodology provides us with a more realistic estimation of the performance of the method. We have measured the performance of the proposed system and compared it to the one obtained by using only the sampled window approach. We present detailed results of such tests using a benchmark dataset. Our results show that the system can operate in real time at about a 10-fps frame rate.

  7. [Neural representation of human body schema and corporeal self-consciousness].

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo

    2014-04-01

    The human brain processes every sensation evoked by altered posture and builds up a constantly changing postural model of the body. This is called a body schema, and somatic signals originating from skeletal muscles and joints, i.e. proprioceptive signals, largely contribute its formation. Recent neuroimaging techniques have revealed neuronal substrates for human body schema. A dynamic limb position model seems to be computed in the central motor network (represented by the primary motor cortex). Here, proprioceptive (kinesthetic) signals from muscle spindles are transformed into motor commands, which may underlie somatic perception of limb movement and facilitate its efficient motor control. Somatic signals originating from different body parts are integrated in the course of hierarchical somatosensory processing, and activity in higher-order somatosensory parietal cortices is capable of representing a postural model of the entire body. The left fronto-parietal network associates internal motor representation with external object representation, allowing the embodiment of external objects. In contrast, the right fronto-parietal regions connected by the most inferior branch of superior longitudinal fasciculus fibers seem to have the functions of monitoring bodily states and updating body schema. We hypothesize that activity in these right-sided fronto-parietal regions is deeply involved in corporeal self-consciousness.

  8. Development of a computational framework to adjust the pre-impact spine posture of a whole-body model based on cadaver tests data.

    Science.gov (United States)

    Poulard, David; Subit, Damien; Donlon, John-Paul; Kent, Richard W

    2015-02-26

    A method was developed to adjust the posture of a human numerical model to match the pre-impact posture of a human subject. The method involves pulling cables to prescribe the position and orientation of the head, spine and pelvis during a simulation. Six postured models matching the pre-impact posture measured on subjects tested in previous studies were created from a human numerical model. Posture scalars were measured on pre- and after applying the method to evaluate its efficiency. The lateral leaning angle θL defined between T1 and the pelvis in the coronal plane was found to be significantly improved after application with an average difference of 0.1±0.1° with the PMHS (4.6±2.7° before application). This method will be applied in further studies to analyze independently the contribution of pre-impact posture on impact response using human numerical models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans

    Directory of Open Access Journals (Sweden)

    Arito Yozu

    2016-01-01

    Full Text Available To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task, upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task, and typical upright bipedalism (UpBi task, on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks and horizontal posture task (downhill pattern for the HKQuad task. Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans.

  10. Evolution of human posture and bipedal locomotion within a provisional time frame of harsh climate changes

    OpenAIRE

    Kurbel, Sven; Rapan, Saša

    2015-01-01

    In this review paper several emerging issues related to development of human posture and locomotion are arranged in a provisional time frame. Accumulated evidences show that the Eurasian climate was often cold and arid with abundant dust in the atmosphere during the last 500 Ky. These dusty periods of cold, aridity and low insolation lasted from 360 to 340 Kya, 270 to 255 Kya, 170 to 130 Kya, 80 to 60 and finally 40 to 10 Kya. They coincide with migrations of Neanderthals a...

  11. Assessing combined exposures of whole-body vibration and awkward posture--further results from application of a simultaneous field measurement methodology.

    Science.gov (United States)

    Raffler, Nastaran; Hermanns, Ingo; Sayn, Detlef; Göres, Benno; Ellegast, Rolf; Rissler, Jörg

    2010-01-01

    The drivers of ten vehicles (tram, helicopter, saloon car, van, forklift, two mobile excavators, wheel loader, tractor, elevating platform truck) were studied with regard to the combined exposures of whole-body vibration and awkward posture during occupational tasks. Seven degrees of freedom (DOFs), or body angles, were recorded as a function of time by means of the CUELA measuring system (Computer-assisted registration and long-term analysis of musculoskeletal workloads) for the purpose of posture assessment. The vibrational exposure is expressed as the vector sum of the frequency-weighted accelerations in the three Cartesian coordinates; these were recorded simultaneously with the posture measurement. Based upon the percentage of working time spent under different workloads, a scheme is proposed for classification of the two exposures into three categories. In addition, a risk of adverse health effects classified as low, possible or high can be assigned to the combination of the two exposures. With regard to posture, the most severe exposure was measured for the drivers of the wheel loader and for the tractor driver, whereas the lowest exposure was measured for the helicopter pilots and van drivers. With regard to the combination of whole-body and posture exposures, the tractor driver and the elevating platform truck driver exhibited the highest workloads.

  12. The Role of Human Body Movements in Mate Selection

    Directory of Open Access Journals (Sweden)

    Nadine Hugill

    2010-01-01

    Full Text Available It is common scientific knowledge, that most of what we say within a conversation is not only expressed by the words' meaning alone, but also through our gestures, postures, and body movements. This non-verbal mode is possibly rooted firmly in our human evolutionary heritage, and as such, some scientists argue that it serves as a fundamental assessment and expression tool for our inner qualities. Studies of nonverbal communication have established that a universal, culture-free, non-verbal sign system exists, that is available to all individuals for negotiating social encounters. Thus, it is not only the kind of gestures and expressions humans use in social communication, but also the way these movements are performed, as this seems to convey key information about an individual's quality. Dance, for example, is a special form of movement, which can be observed in human courtship displays. Recent research suggests that people are sensitive to the variation in dance movements, and that dance performance provides information about an individual's mate quality in terms of health and strength. This article reviews the role of body movement in human non-verbal communication, and highlights its significance in human mate preferences in order to promote future work in this research area within the evolutionary psychology framework.

  13. Embodying approach motivation: body posture influences startle eyeblink and event-related potential responses to appetitive stimuli.

    Science.gov (United States)

    Price, Tom F; Dieckman, Laurtiz W; Harmon-Jones, Eddie

    2012-07-01

    Past research suggested that the motivational significance of images influences reflexive and electrocortical responses to those images (Briggs and Martin, 2009; Gard et al., 2007; Schupp et al., 2004), with erotica often exerting the largest effects for appetitive pictures (Grillon and Baas, 2003; Weinberg and Hajcak, 2010). This research paradigm, however, compares responses to different types of images (e.g., erotica vs. exciting sports scenes). This past motivational interpretation, therefore, would be further supported by experiments wherein appetitive picture content is held constant and motivational states are manipulated with a different method. In the present experiment, we tested the hypothesis that changes in physical postures associated with approach motivation influences reflexive and electrocortical responses to appetitive stimuli. Past research has suggested that bodily manipulations (e.g., facial expressions) play a role in emotion- and motivation-related physiology (Ekman and Davidson, 1993; Levenson et al., 1990). Extending these results, leaning forward (associated with a heightened urge to approach stimuli) relative to reclining (associated with less of an urge to approach stimuli) caused participants to have smaller startle eyeblink responses during appetitive, but not neutral, picture viewing. Leaning relative to reclining also caused participants to have larger LPPs to appetitive but not neutral pictures, and influenced ERPs as early as 100ms into stimulus viewing. This evidence suggests that body postures associated with approach motivation causally influence basic reflexive and electrocortical reactions to appetitive emotive stimuli. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Hands behind your back: effects of arm posture on tactile attention in the space behind the body.

    Science.gov (United States)

    Gillmeister, Helge; Forster, Bettina

    2012-02-01

    Previous research has shown that tactile-spatial information originating from the front of the body is remapped from an anatomical to an external spatial coordinate system, guided by the availability of visual information early in development. Comparably little is known about regions of space for which visual information is not typically available, such as the space behind the body. This study tests for the first time the electrophysiological correlates of the effects of proprioceptive information on tactile-attentional mechanisms in the space behind the back. Observers were blindfolded and tactually cued to detect infrequent tactile targets on either their left or right hand and to respond to them either vocally or with index finger movements. We measured event-related potentials to tactile probes on the hands in order to explore tactile-spatial attention when the hands were either held close together or far apart behind the observer's back. Results show systematic effects of arm posture on tactile-spatial attention different from those previously found for front space. While attentional selection is typically more effective for hands placed far apart than close together in front space, we found that selection occurred more rapidly for close than far hands behind the back, during both covert attention and movement preparation tasks. This suggests that proprioceptive space may "wrap" around the body, following the hands as they extend horizontally from the front body midline to the center of the back.

  15. Can quiet standing posture predict compensatory postural adjustment?

    Directory of Open Access Journals (Sweden)

    Gabriel Bueno Lahóz Moya

    2009-01-01

    Full Text Available OBJECTIVE: The aim of this study was to analyze whether quiet standing posture is related to compensatory postural adjustment. INTRODUCTION: The latest data in clinical practice suggests that static posture may play a significant role in musculoskeletal function, even in dynamic activities. However, no evidence exists regarding whether static posture during quiet standing is related to postural adjustment. METHODS: Twenty healthy participants standing on a movable surface underwent unexpected, standardized backward and forward postural perturbations while kinematic data were acquired; ankle, knee, pelvis and trunk positions were then calculated. An initial and a final video frame representing quiet standing posture and the end of the postural perturbation were selected in such a way that postural adjustments had occurred between these frames. The positions of the body segments were calculated in these initial and final frames, together with the displacement of body segments during postural adjustments between the initial and final frames. The relationship between the positions of body segments in the initial and final frames and their displacements over this time period was analyzed using multiple regressions with a significance level of p < 0.05. RESULTS: We failed to identify a relationship between the position of the body segments in the initial and final frames and the associated displacement of the body segments. DISCUSSION: The motion pattern during compensatory postural adjustment is not related to quiet standing posture or to the final posture of compensatory postural adjustment. This fact should be considered when treating balance disturbances and musculoskeletal abnormalities. CONCLUSION: Static posture cannot predict how body segments will behave during compensatory postural adjustment.

  16. Neural correlates of human body perception.

    Science.gov (United States)

    Aleong, Rosanne; Paus, Tomás

    2010-03-01

    The objective of this study was to investigate potential sex differences in the neural response to human bodies using fMRI carried out in healthy young adults. We presented human bodies in a block-design experiment to identify body-responsive regions of the brain, namely, extrastriate body area (EBA) and fusiform body area (FBA). In a separate event-related "adaptation" experiment, carried out in the same group of subjects, we presented sets of four human bodies of varying body size and shape. Varying levels of body morphing were introduced to assess the degree of morphing required for adaptation release. Analysis of BOLD signal in the block-design experiment revealed significant Sex x Hemisphere interactions in the EBA and the FBA responses to human bodies. Only women showed greater BOLD response to bodies in the right hemisphere compared with the left hemisphere for both EBA and FBA. The BOLD response in right EBA was higher in women compared with men. In the adaptation experiment, greater right versus left hemisphere response for EBA and FBA was also identified among women but not men. These findings are particularly novel in that they address potential sex differences in the lateralization of EBA and FBA responses to human body images. Although previous studies have found some degree of right hemisphere dominance in body perception, our results suggest that such a functional lateralization may differ between men and women.

  17. Electric Shock and the Human Body.

    Science.gov (United States)

    Brown, Colin

    1986-01-01

    Discusses electricity's documented effects on the human body, including both the dangers to human health and the medical application of electrical stimulation to heart problems. Discusses the teaching of such physics topics to potential medical students. (TW)

  18. Can different occlusal positions instantaneously impact spine and body posture? : A pilot study using rasterstereography for a three-dimensional evaluation.

    Science.gov (United States)

    März, Karoline; Adler, Werner; Matta, Ragai-Edward; Wolf, Linda; Wichmann, Manfred; Bergauer, Bastian

    2017-05-01

    Orthodontists influence dental occlusion directly. To suggest any link between dental occlusion and body posture is highly contentious, as evidenced by the literature. Rasterstereography, an optical technique that enables three-dimensional (3D) body measurements to be collected, has not yet been used to impartially examine whether different occlusal positions could instantaneously alter spine and body posture. We therefore set out to use this technique to nonsubjectively evaluate this question under static conditions. Optical body scans were collected for 44 subjects, using the Diers formetric 4D system, for seven different mandible positions. In total, ten spinal and body posture parameters were assessed (trunk inclination, trunk imbalance, pelvic tilt, pelvic torsion, fleche cervicale, fleche lombaire, kyphotic angle, lordotic angle, surface rotation, and lateral deviation) for each mandible position and compared with scans performed with habitual intercuspation (HIC). Significant body posture deviations were found for the fleche cervicale (position of the mandible: right eccentrically), fleche lombaire (positions of the mandible: physiologic rest position, cotton rolls on both sides, bite elevation 1 mm), and the kyphotic angle (positions of the mandible: cotton rolls on both sides, right eccentrically). No other significant differences were detected. Data for the parameters that varied with different dental occlusions generated high standard deviations. Therefore, within the limitations of this pilot study, we could not conclusively associate dental occlusion to an instantaneous impact on the tested parameters. The posture changes that we detected could also have arisen from individual neuromuscular compensation; a possibility that must now be ruled-in, or out, by further research studies with a higher number of subjects.

  19. Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

    Science.gov (United States)

    Morningstar, Mark W; Pettibon, Burl R; Schlappi, Heidi; Schlappi, Mark; Ireland, Trevor V

    2005-01-01

    Objective This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness. Background Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice. Method We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or all of the postural reflexes

  20. Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

    Directory of Open Access Journals (Sweden)

    Schlappi Mark

    2005-08-01

    Full Text Available Abstract Objective This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness. Background Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice. Method We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or

  1. Validity of Standing Posture Eight-electrode Bioelectrical Impedance to Estimate Body Composition in Taiwanese Elderly

    Directory of Open Access Journals (Sweden)

    Ling-Chun Lee

    2014-09-01

    Conclusion: The results of this study showed that the impedance index and LST in the whole body, upper limbs, and lower limbs derived from DXA findings were highly correlated. The LST and BF% estimated by BIA8 in whole body and various body segments were highly correlated with the corresponding DXA results; however, BC-418 overestimates the participants' appendicular LST and underestimates whole body BF%. Therefore, caution is needed when interpreting the results of appendicular LST and whole body BF% estimated for elderly adults.

  2. Parametric Modeling of Visual Human Posture in DELMIA Based- on Database%基于数据库的DELMIA虚拟人姿势参数化建模

    Institute of Scientific and Technical Information of China (English)

    袁允伟; 乔玉炜; 陈品华

    2011-01-01

    数字虚拟人是DELMIA人机工程模块的重要组成部分.文章分析了DELMIA二次开发和DELMIA人体姿势的参数化建模的原理,研究了应用C#.NET编程语言在VS.NET开发环境下,基于数据库对DELMIA二次开发的关键技术和基本架构,最后给出了数字虚拟人姿势参数化建模的实例进行验证.%The digit visual human module is one of the important parts in DELMIA Ergonomics. This paper analyzed the principle of DELMIA secondary development and the parametric modeling of DELMIA human body posture, and put forward the framework that adopt VS. NET develop environment and C#. NET program language, according to DELMIA secondary development by database , and provided the example of the rapid parametric modeling of the body posture of digit visual human.

  3. Frequency weightings for fore-and-aft vibration at the back: effect of contact location, contact area, and body posture.

    Science.gov (United States)

    Morioka, Miyuki; Griffin, Michael J

    2010-01-01

    Fore-and-aft vibration of a backrest can influence discomfort and the risk of injury associated with whole-body vibration. Relevant standards (BS 6841:1987 and ISO2631-1:1997) recommend the W(c) frequency weighting for evaluating fore-and-aft vibration of backrests, but do not specify the precise location for measuring vibration. This study determined equivalent comfort contours for fore-and-aft vibration of the backs of seated persons from 2 to 80 Hz using the method of magnitude estimation, examining the effect of input location, contact area, and body posture. The equivalent comfort contours indicate decreased sensitivity to vibration acceleration at frequencies greater than 8 Hz. Equivalent comfort contours with a full backrest were similar to those with contact at only the highest location on the back. The derived frequency weightings are broadly consistent with frequency weighting W(c) but suggest somewhat greater sensitivity at frequencies greater than 30 Hz and vary in shape with changes in vibration magnitude. It is concluded that with low and moderate magnitudes of vibration the severity of fore-and-aft vibration of a backrest can be assessed from the frequency-weighted fore-and-aft acceleration measured at the highest point of contact between the backrest and the body if the frequency weighting W(c) is employed in the evaluation.

  4. Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches.

    Science.gov (United States)

    Keller, Bridget R; Duke, Elizabeth R; Amer, Ayman S; Zill, Sasha N

    2007-08-01

    Decreases in load are important cues in the control of posture and walking. We recorded activities of the tibial campaniform sensilla, receptors that monitor forces as strains in the exoskeleton, in the middle legs of freely moving cockroaches. Small magnets were attached to the thorax and body load was changed by applying currents to a coil below the substrate. Body position was monitored by video recording. The tibial sensilla are organized into proximal and distal subgroups that have different response properties and reflex effects: proximal sensilla excite extensor motoneurons while distal receptors inhibit extensor firing. Sudden load decreases elicited bursts from distal sensilla, while increased load excited proximal receptors. The onset of sensory discharges closely approximated the time of peak velocity of body movement in both load decreases and increases. Firing of distal sensilla rapidly adapted to sustained unloading, while proximal sensilla discharged tonically to load increases. Load decreases of small amplitude or at low rates produced only inhibition of proximal activity while decrements of larger size or rate elicited distal firing. These response properties may provide discrete signals that either modulate excitatory extensor drive during small load variations or inhibit support prior to compensatory stepping or initiation of swing.

  5. Modeling Forces on the Human Body.

    Science.gov (United States)

    Pagonis, Vasilis; Drake, Russel; Morgan, Michael; Peters, Todd; Riddle, Chris; Rollins, Karen

    1999-01-01

    Presents five models of the human body as a mechanical system which can be used in introductory physics courses: human arms as levers, humans falling from small heights, a model of the human back, collisions during football, and the rotating gymnast. Gives ideas for discussions and activities, including Interactive Physics (TM) simulations. (WRM)

  6. Ultrasonic range measurements on the human body

    NARCIS (Netherlands)

    Weenk, D.; Beijnum, van B.J.F.; Droog, A.; Hermens, H.J.; Veltink, P.H.

    2013-01-01

    Ambulatory range estimation on the human body is important for the assessment of the performance of upper- and lower limb tasks outside a laboratory. In this paper an ultrasound sensor for estimating ranges on the human body is presented and validated during gait. The distance between the feet is e

  7. Ultrasonic range measurements on the human body

    NARCIS (Netherlands)

    Weenk, D.; van Beijnum, Bernhard J.F.; Droog, Adriaan; Hermens, Hermanus J.; Veltink, Petrus H.

    2013-01-01

    Ambulatory range estimation on the human body is important for the assessment of the performance of upper- and lower limb tasks outside a laboratory. In this paper an ultrasound sensor for estimating ranges on the human body is presented and validated during gait. The distance between the feet is

  8. Upper Body Venous Compliance Exceeds Lower Body Venous Compliance in Humans

    Science.gov (United States)

    Watenpaugh, Donald E.

    1996-01-01

    Human venous compliance hypothetically decreases from upper to lower body as a mechanism for maintenance of the hydrostatic indifference level 'headward' in the body, near the heart. This maintains cardiac filling pressure, and thus cardiac output and cerebral perfusion, during orthostasis. This project entailed four steps. First, acute whole-body tilting was employed to alter human calf and neck venous volumes. Subjects were tilted on a tilt table equipped with a footplate as follows: 90 deg, 53 deg, 30 deg, 12 deg, O deg, -6 deg, -12 deg, -6 deg, O deg, 12 deg, 30 deg, 53 deg, and 90 deg. Tilt angles were held for 30 sec each, with 10 sec transitions between angles. Neck volume increased and calf volume decreased during head-down tilting, and the opposite occurred during head-up tilt. Second, I sought to cross-validate Katkov and Chestukhin's (1980) measurements of human leg and neck venous pressures during whole-body tilting, so that those data could be used with volume data from the present study to calculate calf and neck venous compliance (compliance = (Delta)volume/(Delta)pressure). Direct measurements of venous pressures during postural chances and whole-body tilting confirmed that the local changes in venous pressures seen by Katkov and Chestukhin (1980) are valid. The present data also confirmed that gravitational changes in calf venous pressure substantially exceed those changes in upper body venous pressure. Third, the volume and pressure data above were used to find that human neck venous compliance exceeds calf venous compliance by a factor of 6, thereby upholding the primary hypothesis. Also, calf and neck venous compliance correlated significantly with each other (r(exp 2) = 0.56). Fourth, I wished to determine whether human calf muscle activation during head-up tilt reduces calf venous compliance. Findings from tilting and from supine assessments of relaxed calf venous compliance were similar, indicating that tilt-induced muscle activation is

  9. Sports activities are reflected in the local stability and regularity of body sway: older ice-skaters have better postural control than inactive elderly.

    Science.gov (United States)

    Lamoth, Claudine J C; van Heuvelen, Marieke J G

    2012-03-01

    With age postural control deteriorates and increases the risk for falls. Recent research has suggested that in contrast to persons with superior balance control (dancer's athletes), with pathology and aging, predictability and regularity of sway patterns increase and stability decreases implying a less adaptive form of postural control. The aim of the present study was to determine, whether patterns of body sway of elderly (N=13) who practice a sport which challenges postural control (ice speed-skating), are more similar to that of young subjects (N=10) than to that of inactive elderly (N=10). Trunk patterns were measured with a tri-axial accelerometer. Data were recorded during quiet upright stance with (1) eyes open, (2) limited vision, and (3) while performing a dual task. Anterior-posterior and medio-lateral acceleration time-series were analyzed. Differences in postural control were quantified in terms of the magnitude of the acceleration (root mean square), the smoothness (mean power frequency), the predictability (sample entropy) and the local stability (largest Lyapunov exponent). Postural control of ice-skating elderly differed from that of sedentary elderly. As anticipated, postural control of the ice-skating elderly was similar to that of young adults. For anterior-posterior accelerations, the skating elderly and the younger subjects had significant higher stability and lower regularity than the non-skating elderly in all tasks. These results imply that sport activities such as ice-skating are beneficial for elderly people. It might, at least partly, counteract the age related changes in postural control.

  10. Wide Eyes and Drooping Arms: Adult-Like Congruency Effects Emerge Early in the Development of Sensitivity to Emotional Faces and Body Postures

    Science.gov (United States)

    Mondloch, Catherine J.; Horner, Matthew; Mian, Jasmine

    2013-01-01

    Adults' and 8-year-old children's perception of emotional faces is disrupted when faces are presented in the context of incongruent body postures (e.g., when a sad face is displayed on a fearful body) if the two emotions are highly similar (e.g., sad/fear) but not if they are highly dissimilar (e.g., sad/happy). The current research investigated…

  11. Are temporomandibular disorders associated with habitual sleeping body posture or nasal septal deviation?

    Science.gov (United States)

    Yalçınkaya, Esin; Cingi, Cemal; Bayar Muluk, Nuray; Ulusoy, Seçkin; Hanci, Deniz

    2016-01-01

    Numerous factors can be considered for the etiology of temporomandibular disorders (TMD). The aim of the present study was to investigate whether the presence of both nasal septal deviation (NSD) and habitual prone sleeping posture (HPSP) predisposes TMD. We evaluated 200 subjects in 4 groups. Group I (NSD-, HPSP-/control group), Group II (NSD+, HPSP-), Group III (NSD-, HPSP+), Group IV (NSD+, HPSP+). All patients were examined according to the research diagnostic criteria to determine the presence of TMD. Group IV had the highest value for TMD incidence (44 %). Thus, we found that the presence of both NSD and HPSP parameters increased TMD incidence in Group IV compared to the control group (p = 0.000). Additionally, Group IV showed significantly higher values than Group II (p = 0.012) and Group III (p = 0.039). For Group III (NSD-, HPSP+), TMD was determined higher compared to the control group (p = 0.009). A statistically higher value of presence of TMD was determined in Group II (NSD+, HPSP-) than control group (p = 0.029). The incidence of TMD was significantly higher in women than men (p = 0.020). We concluded that one having an unilateral obstructive nasal septal deviation in addition to a habit of sleeping in prone position must be alert for potential TMD.

  12. Effects of whole-body vibration on postural control in elderly: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Rogan Slavko

    2011-11-01

    Full Text Available Abstract Background This systematic review was performed to summarize the current evidence for whole body vibration (WBV interventions on postural control in elderly. Methods English and German language papers in Medline, PEDro, Cinahl and the Cochrane databases were searched. Two reviewers extracted data on patients' characteristics, type of WBV intervention and outcomes. Two independent reviewers rated the methodological quality of these studies. Data were pooled using random-effects meta-analysis. Results Fifteen papers reporting quantitative data were included. Results from 15 papers could be pooled for a meta-analysis. The studies involved 933 participants. In 7 studies the authors investigated the effects of vibration plates generating vertical sinusoidal vibrations (VS-WBV and 7 papers described the use of side-alternating sinusoidal vibrations (SS-WBV. One study investigated both VS-WBV and SS-WBV. Weak to moderate evidence of an overall effect as a result of VS-WBV and SS-WBV was observed for (a static balance for post-intervention values with a standardized mean difference (SMD -0.06, 95% CI -0.31 to 0.18 and for change values SMD -0.26, 95% CI -1.09 to 0.57, and (b dynamic balance for post-intervention-values SMD -0.34, 95% CI -0.60 to -0.08. For functional balance (c an overall outcome for post-intervention values with SMD of 0.34, 95% CI -0.19 to 0.87 was found. Conclusions The 15 studies reviewed were of moderate methodological quality. In summary, SS-WBV seems to have a beneficial effect on dynamic balance in elderly individuals. However, the current results should be interpreted with caution because of the observed heterogeneity of training parameters and statistical methods. Future studies are warranted to evaluate the effects of WBV on postural control in an elderly population.

  13. Biodynamics of deformable human body motion

    Science.gov (United States)

    Strauss, A. M.; Huston, R. L.

    1976-01-01

    The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.

  14. Effects of whole-body vibration training on explosive strength and postural control in young female athletes.

    Science.gov (United States)

    Fort, Azahara; Romero, Daniel; Bagur, Caritat; Guerra, Myriam

    2012-04-01

    This study aimed to evaluate the effectiveness of a whole-body vibration training program to improve neuromuscular performance in young elite female athletes. Twenty-three women basketball players (14-18 years old) were randomly assigned to a control group (CG, n = 11) or to a whole-body vibration group (WBVG, n = 12). During the study period, both groups continued their usual training program, but the WBVG also underwent a 15-week vibration training program. We analyzed the countermovement jump test (CMJ), the 1-leg hop test for the right leg and for the left leg, and the single-limb standing balance for both legs and with eyes open and closed at 3 time points: before training (T1), after an 8-week training period (T2), and after a further 7-week training period (T3). Compared with the CG, CMJ increased significantly in the WBVG from T1 to T2 (6.47%, p training program improves explosive strength and postural stability in adolescent female basketball players.

  15. Posture-dependent control of stimulation in standing neuroprosthesis: Simulation feasibility study

    OpenAIRE

    Musa L. Audu, PhD; Steven J. Gartman, MS; Raviraj Nataraj, PhD; Ronald J. Triolo, PhD

    2014-01-01

    We used a three-dimensional biomechanical model of human standing to test the feasibility of feed-forward control systems that vary stimulation to paralyzed muscles based on the user’s posture and desire to effect a postural change. The controllers examined were (1) constant baseline stimulation, which represented muscle activation required to maintain erect standing, and (2) posture follower, which varied muscle activation as a function of the location of the projection of whole-body center ...

  16. Eye Movements Affect Postural Control in Young and Older Females.

    Science.gov (United States)

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  17. New Window into the Human Body

    Science.gov (United States)

    1985-01-01

    Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.

  18. Neck posture and muscle activity are different when upside down: a human volunteer study.

    Science.gov (United States)

    Newell, Robyn S; Blouin, Jean-Sébastien; Street, John; Cripton, Peter A; Siegmund, Gunter P

    2013-11-15

    Rollover crashes are dynamic and complex events in which head impacts with the roof can cause catastrophic neck injuries. Ex vivo and computational models are valuable in understanding, and ultimately preventing, these injuries. Although neck posture and muscle activity influence the resulting injury, there is currently no in vivo data describing these parameters immediately prior to a head-first impact. The specific objectives of this study were to determine the in vivo neck vertebral alignment and muscle activation levels when upside down, a condition that occurs during a rollover. Eleven human subjects (6F, 5M) were tested while seated upright and inverted in a custom-built apparatus. Vertebral alignment was measured using fluoroscopy and muscle activity was recorded using surface and indwelling electrodes in eight superficial and deep neck muscles. In vivo vertebral alignment and muscle activation levels differed between the upright and inverted conditions. When inverted and relaxed, the neck was more lordotic, C1 was aligned posterior to C7, the Frankfort plane was extended, and the activity of six muscles increased compared to upright and relaxed. When inverted subjects were asked to look forward to eliminate head extension, flexor muscle activity increased, C7 was more flexed, and C1 was aligned anterior to C7 versus upright and relaxed. Combined with the large inter-subject variability observed, these findings indicate that cadaveric or computational models designed to study injuries and prevention devices while inverted need to consider a variety of postures and muscle conditions to be relevant to the in vivo situation.

  19. Cervical Spine Muscle-Tendon Unit Length Differences Between Neutral and Forward Head Postures: Biomechanical Study Using Human Cadaveric Specimens.

    Science.gov (United States)

    Khayatzadeh, Saeed; Kalmanson, Olivia A; Schuit, Dale; Havey, Robert M; Voronov, Leonard I; Ghanayem, Alexander J; Patwardhan, Avinash G

    2017-07-01

    Forward head posture (FHP) may be associated with neck pain and poor health-related quality of life. Literature describes only qualitative muscle length changes associated with FHP. The purpose of this study was to quantify how muscle-tendon unit lengths are altered when human cadaveric specimens are placed in alignments representing different severities of FHP. This biomechanical study used 13 fresh-frozen cadaveric cervical spine specimens (Occiput-T1, 54±15 y). Specimens' postural changes simulating increasing FHP severity while maintaining horizontal gaze were assessed. Specimen-specific anatomic models derived from computed tomography-based anatomic data were combined with postural data and specimen-specific anatomy of muscle attachment points to estimate the muscle length changes associated with FHP. Forward head posture was associated with flexion of the mid-lower cervical spine and extension of the upper cervical (sub-occipital) spine. Muscles that insert on the cervical spine and function as flexors (termed "cervical flexors") as well as muscles that insert on the cranium and function as extensors ("occipital extensors") shortened in FHP when compared to neutral posture. In contrast, muscles that insert on the cervical spine and function as extensors ("cervical extensors") as well as muscles that insert on the cranium and function as flexors ("occipital flexors") lengthened. The greatest shortening was seen in the major and minor rectus capitis posterior muscles. These muscles cross the Occiput-C2 segments, which exhibited extension to maintain horizontal gaze. The greatest lengthening was seen in posterior muscles crossing the C4-C6 segments, which exhibited the most flexion. This cadaver study did not incorporate the biomechanical influence of active musculature. This study offers a novel way to quantify postural alignment and muscle length changes associated with FHP. Model predictions are consistent with qualitative descriptions in the literature.

  20. a Modal Analysis of Whole-Body Vertical Vibration, Using a Finite Element Model of the Human Body

    Science.gov (United States)

    Kitazaki, S.; Griffin, M. J.

    1997-02-01

    A two-dimensional model of human biomechanical responses to whole-body vibration has been developed, by using the finite element method. Beam, spring and mass elements were used to model the spine, viscera, head, pelvis and buttocks tissue in the mid-sagittal plane. The model was developed by comparison of the vibration mode shapes with those previously measured in the laboratory. At frequencies below 10 Hz, the model produced seven modes which coincided well with the measurements. The principal resonance of the driving point response at about 5 Hz consisted of an entire body mode, in which the head, spinal column and the pelvis move almost rigidly, with axial and shear deformation of tissue beneath the pelvis occurring in phase with a vertical visceral mode. The second principal resonance at about 8 Hz corresponded to a rotational mode of the pelvis, with a possible contribution from a second visceral mode. A shift of the principal resonance of the driving point response, when changing posture, was achieved only by changing the axial stiffness of the buttocks tissue. It is suggested that an increase in contact area between the buttocks and the thighs and the seat surface, when changing posture from erect to slouched, may decrease the axial stiffness beneath the pelvis, with a non-linear force-deflection relationship of tissue resulting in decreases in the natural frequencies. A change in posture from erect to slouched also increased shear deformation of tissue beneath the pelvis in the entire body mode, and the natural frequency was decreased as a result of the much lower shear stiffness of tissue compared to the axial stiffness.

  1. Video Analysis of Human Gait and Posture to Determine Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Ivan Lee

    2008-08-01

    Full Text Available This paper investigates the application of digital image processing techniques to the detection of neurological disorder. Visual information extracted from the postures and movements of a human gait cycle can be used by an experienced neurologist to determine the mental health of the person. However, the current visual assessment of diagnosing neurological disorder is based very much on subjective observation, and hence the accuracy of diagnosis heavily relies on experience. Other diagnostic techniques employed involve the use of imaging systems which can only be operated under highly constructed environment. A prototype has been developed in this work that is able to capture the subject's gait on video in a relatively simple setup, and from which to process the selected frames of the gait in a computer. Based on the static visual features such as swing distances and joint angles of human limbs, the system identifies patients with Parkinsonism from the test subjects. To our knowledge, it is the first time swing distances are utilized and identified as an effective means for characterizing human gait. The experimental results have shown a promising potential in medical application to assist the clinicians in diagnosing Parkinsonism.

  2. Light bodies in human pituitary adenomas

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1987-01-01

    Light bodies are large cytoplasmic granules originally described in the gonadotrophic cells of the rat pituitary gland. In order to determine whether similar bodies occur in the human anterior pituitary gland, 89 pituitary adenomas and periadenomatous tissue from 20 cases were examined by transmi......Light bodies are large cytoplasmic granules originally described in the gonadotrophic cells of the rat pituitary gland. In order to determine whether similar bodies occur in the human anterior pituitary gland, 89 pituitary adenomas and periadenomatous tissue from 20 cases were examined...... by transmission electron microscopy. Double membrane bound bodies with filamentous internal structure identical to rodent light bodies were identified in 10 hormone-producing adenomas: 5 PRL, 1 PRL-GH, 2 GH, and 2 ACTH-producing tumours. No light bodies were found in the remaining 79 tumours nor in the pituitary...... cells in periadenomatous tissue from 20 cases. These results show that some human pituitary adenomas may contain light bodies identical to those seen in gonadotrophs of rat pituitary....

  3. Automatic human body modeling for vision-based motion capture system using B-spline parameterization of the silhouette

    Science.gov (United States)

    Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Mas, Ramon; Perales, Francisco J.

    2012-02-01

    Human motion capture has a wide variety of applications, and in vision-based motion capture systems a major issue is the human body model and its initialization. We present a computer vision algorithm for building a human body model skeleton in an automatic way. The algorithm is based on the analysis of the human shape. We decompose the body into its main parts by computing the curvature of a B-spline parameterization of the human contour. This algorithm has been applied in a context where the user is standing in front of a camera stereo pair. The process is completed after the user assumes a predefined initial posture so as to identify the main joints and construct the human model. Using this model, the initialization problem of a vision-based markerless motion capture system of the human body is solved.

  4. The Effect of Physical Exercise on Postural Stability in Sighted Individuals and Those Who Are Visually Impaired: An Analysis Adjusted for Physical Activity and Body Mass Index.

    Science.gov (United States)

    Sadowska, Dorota; Stemplewski, Rafał; Szeklicki, Robert

    2015-10-01

    The aim of this study was to assess the effect of physical exercise on postural stability in sighted participants and individuals who are visually impaired, adjusted for potential modulatory effects of physical activity level and body mass index (BMI). The study included 23 participants who were severely visually impaired and 23 sighted participants. Postural stability measurements were taken with open eyes (session I) and with closed eyes (session II). During each session, the mean velocity of the center of pressure (COP) displacements was determined using a force plate both before and after physical exercise. During testing with open eyes, the 2 groups did not differ significantly in terms of their postural response to physical exercise. When examined with closed eyes, the individuals who were visually impaired showed markedly greater postexercise increase in mean velocity of the COP displacement in the mediolateral direction. This intergroup difference was likely a consequence of significantly higher preexercise values of posturographic parameters observed in the sighted participants. More pronounced postexercise changes in the postural stability of sighted participants were associated with lower levels of physical activity and higher values of BMI. Further research is needed to explain the character of the abovementioned relationships in individuals who are visually impaired.

  5. "Stand up straight": notes toward a history of posture.

    Science.gov (United States)

    Gilman, Sander L

    2014-03-01

    The essay presents a set of interlinked claims about posture in modern culture. Over the past two centuries it has come to define a wide range of assumptions in the West from what makes human beings human (from Lamarck to Darwin and beyond) to the efficacy of the body in warfare (from Dutch drill manuals in the 17th century to German military medical studies of soldiers in the 19th century). Dance and sport both are forms of posture training in terms of their own claims. Posture separates 'primitive' from 'advanced' peoples and the 'ill' from the 'healthy.' Indeed an entire medical sub-specialty developed in which gymnastics defined and recuperated the body. But all of these claims were also part of a Western attempt to use posture (and the means of altering it) as the litmus test for the healthy modern body of the perfect citizen. Focusing on the centrality of posture in two oddly linked moments of modern thought--modern Zionist thought and Nationalism in early 20th century China--in terms of bodily reform, we show how "posture" brings all of the earlier debates together to reform the body.

  6. Study of Methods for Monitoring Body Posture in Sleep Based on Accelerometer%基于加速度传感器的睡眠体位监测方法的研究

    Institute of Scientific and Technical Information of China (English)

    胡弢; 王蕾; 侯琳琳; 张亮

    2012-01-01

    目的:睡眠质量是保证身体健康的重要因素,目前常用的评价方法有主观评价法和客观评价法两种,各有利弊.持续监测睡眠过程中身体位置的变化是客观评价睡眠质量的方法之一.为了能够低成本、大量、准确的采集睡眠状态信息,介绍一种基于加速度传感器的睡眠体位检测的方法.方法:加速度传感器能准确感知人体体位变化,具有体积小精度高的特点.通过佩戴在小腹位置的以IAP12LE5A62AD单片机和MMA7361加速度传感器为核心的微型体位状态采集设备连续采集睡眠期间的身体位置状态,然后通过上位机软件对体位信号的突变、渐变、状态间相似度进行分析,从中分离出相关体位信息.结果:对静态体位信号和身体位置的快速变化的识别率较高,查全率达到98.9%以上,查准率超过93%,对于缓慢变化的身体状态的识别率略低,查全率达到85%以上,查准率达到96%.结论:该方法结构简单、成本低,对睡眠影响很小,能够比较准确的反映睡眠过程中体位状态,可以用来评价睡眠质量,适用于对大量患者长时间的睡眠监测.%Sleep quality is an essential factor for human health. Presently the evaluation methods widely used are subjective evaluation method and objective evaluation method, and each has its advantages and disadvantages. Continuous acquisition of body posture is one of the ways in objective evaluation of quality of sleep in patients. In order to gathering body postures information in sleep with low-cost, widely and accurately, the paper introduces a method for monitoring body posture in sleep based on an accelerometer. Methods: Acceleration sensor has an ability of accurate prediction of the change of body posture, which is characterized by small volume and precise accuracy. By a miniature device which using microcontroller of IAP12LE5-A62AD and accelerometer of MMA7361 continues recording body postures

  7. The effects of working height and manipulated weights on subjective strain, body posture and muscular activity of milking parlor operatives--laboratory study.

    Science.gov (United States)

    Jakob, Martina; Liebers, Falk; Behrendt, Sylvia

    2012-07-01

    The incidence of work-related musculoskeletal disorders among milking parlor operatives has increased while milking parlors were getting bigger. At the same time parlor design was improved regarding the physical load as well as body postures. In contrast to former studies on workload in parlor milking this project was designed and performed as an experimental study in a laboratory setting including 6 female subjects. Motion analysis and psycho-physiological analysis (EMG, heart rate, subjective perceived strain index) were carried out. Intra-individual comparisons were made for the different settings using general linear models for repeated measurements. The effects of working height and weight of milking unit during parlor milking were investigated regarding the impact on muscular load and body posture. The results showed that the optimal working height for attaching the cluster is having the teats at shoulder level of the parlor operative. Another important workload reduction was achieved by reducing the weight of the milking cluster. The named discomfort, localized fatigue and the body posture analysis provide evidence that the changes in modern milking parlors due to mechanization still bear the risk of overburden for the worker.

  8. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios

    Science.gov (United States)

    Schmid, Gernot; Hirtl, Rene

    2016-06-01

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  9. Whole Body Posture Generation of Virtual Characters by Combining Posture Examples and Prioritized Inverse Kinematics%基于姿态库和PIK算法的虚拟人全身姿态生成

    Institute of Scientific and Technical Information of China (English)

    李石磊; 梁加红; 李猛; 陈凌; 胡志伟; 李旭渊

    2011-01-01

    当前,虚拟人的全身关键帧姿态主要通过手工方式设计生成,耗时费力,将以姿态样本为基础的数据驱动方法和以直观的高层任务约束为基础的目标驱动方法相结合,实现了虚拟人全身姿态的自动交互生成。首先构建姿态样本库,依据特定任务约束,对全身关节进行分组并提出了参数化姿态拼接方法用于虚拟人全身姿态的估计生成,随后以估计值为初始姿态,利用带优先级的逆向运动学(PIK)算法对所有任务约束按优先级顺序进行IK迭代求解,实现对全身姿态的进一步优化生成。在姿态迭代求解过程中,将静态平衡约束和其它任务约束分层单独求解,解决了平衡约束优先级难以设置的问题并可确保姿态结果的静态平衡性。实验结果表明,通过将姿态样本库和PIK算法相结合,既克服了已有基于数据样本的逆向运动学算法只能生成与原有姿态样本差别不大的姿态的限制,又可解决PIK算法的初值选取问题,相应地减少了PIK算法所需的迭代求解次数,提高了求解计算效率,并可适度保证最终姿态结果的逼真自然性。%Currently,the key-frame whole body posture of virtual characters is mainly designed by hand,which is time-consuming and hard.The combination of data-driven method based on posture samples and goal-driven method based on intuitive and high-level task constraints was proposed to realize the whole body posture generation automatically and interactively.First,according to the set of the high level constraints,the whole body was divided into some partial joint groups,whose postures were then generated from a single posture database constructed beforehand by using the proposed parametric posture splicing technique.Then,starting from this initial guess and with all constraints considered at different priority levels,the PIK(Prioritized Inverse Kinematics) algorithm could be initialized with a bias defined by

  10. Dark Matter collisions with the Human Body

    CERN Document Server

    Freese, Katherine

    2012-01-01

    We investigate the interactions of Weakly Interacting Massive Particles (WIMPs) with nuclei in the human body. We are motivated by the fact that WIMPs are excellent candidates for the dark matter in the Universe. Our estimates use a 70 kg human and a variety of WIMP masses and cross-sections. The contributions from individual elements in the body are presented and it is found that the dominant contribution is from scattering off of oxygen (hydrogen) nuclei for the spin-independent (spin-dependent) interactions. For the case of 60 GeV WIMPs, we find that, of the billions of WIMPs passing through a human body per second, roughly ~10 WIMPs hit one of the nuclei in the human body in an average year, if the scattering is at the maximum consistent with current bounds on WIMP interactions. We also study the 10-20 GeV WIMPs with much larger cross-sections that best fit the DAMA, COGENT, and CRESST data sets and find much higher rates: in this case as many as $10^5$ WIMPs hit a nucleus in the human body in an average ...

  11. Measurement and Geometric Modelling of Human Spine Posture for Medical Rehabilitation Purposes Using a Wearable Monitoring System Based on Inertial Sensors

    Science.gov (United States)

    Voinea, Gheorghe-Daniel; Butnariu, Silviu; Mogan, Gheorghe

    2016-01-01

    This paper presents a mathematical model that can be used to virtually reconstruct the posture of the human spine. By using orientation angles from a wearable monitoring system based on inertial sensors, the model calculates and represents the curvature of the spine. Several hypotheses are taken into consideration to increase the model precision. An estimation of the postures that can be calculated is also presented. A non-invasive solution to identify the human back shape can help reducing the time needed for medical rehabilitation sessions. Moreover, it prevents future problems caused by poor posture. PMID:28025480

  12. Measurement and Geometric Modelling of Human Spine Posture for Medical Rehabilitation Purposes Using a Wearable Monitoring System Based on Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Gheorghe-Daniel Voinea

    2016-12-01

    Full Text Available This paper presents a mathematical model that can be used to virtually reconstruct the posture of the human spine. By using orientation angles from a wearable monitoring system based on inertial sensors, the model calculates and represents the curvature of the spine. Several hypotheses are taken into consideration to increase the model precision. An estimation of the postures that can be calculated is also presented. A non-invasive solution to identify the human back shape can help reducing the time needed for medical rehabilitation sessions. Moreover, it prevents future problems caused by poor posture.

  13. Investigation of blood pulse PPG signal regulation on toe effect of body posture and lower limb height

    Institute of Scientific and Technical Information of China (English)

    XIN Shang-zhi; HU Sijung; CRABTREE Vincent P.; ZHENG Jia

    2007-01-01

    Objective: To study the regulation of blood pulse volume via photoplethysmography (PPG) signal detected from toe, while the lower limb is passively raised in different height positions. Methods: Use a modified non-invasive PPG technique to detect the blood pulse signal on toe with infrared (IR) photo sensor. A protocol consisting of two postures, i.e., supine and 45° reclining, was designed to conduct laboratory trial in this study. During the period of performing the protocol of these postures, the lower limb was passively raised from the heights of 10 cm to 60 cm randomly and individually with sponge blocks underneath the foot. Results: In the supine posture, the higher the foot was passively raised, the more the blood PPG signal decreased. In the 45° reclining posture, the blood PPG signal increased at the beginning and then decreased in the foot height position from 10 cm to 60 cm. In both postures the normalized AC signal changes significantly while the normalized DC signal changes little. Conclusion:The toe PPG signals can obviously indicate the regulated blood volume change with the designated postural procedures due to the heart level position.

  14. Oil Palm Workers: Designing Ergonomics Harvesting Tool Us¬ing User Centered Design Approach to Reducing Awkward Body Posture by Catia Simulation

    Directory of Open Access Journals (Sweden)

    Irwan Syah MOHD YUSOFF

    2015-10-01

    Full Text Available Background: The aim of this study is to develop a new ergonomics chisel based on user centered design approach and to evaluate the effectiveness for reducing awkward posture using CATIA software for simulation analysis.Methods: Respondents were selected using purposive sampling – age 18 – 49 years old, men, experience using chisel (>1 month. A set of questionnaire were used to interview workers while postural risks were determined using Rapid Upper Limb Assessment (RULA. Selected anthropometric parameters were taken and user centered design concept were applied to determine mismatch and to facilitate design process. CATIA software was used to integrate the results of postural analysis and anthropometric measurement using 3D modeling.Results: A total of 273 male harvesters participated in this study. The result shows 5.2% of the chisels’ length of handles matches with the respondents whereas none (100% of the chisels’ circumference of handle matches with respondents’ internal grip diameter. Tool-chisel usage, majority of harvester bend forward while harvesting (96.7% and most of workers having blister (83.2%, redness (85.3% and numbness (65.9% during harvesting. RULA simulation analysis showed the score action level for new design is 3(further investigated need and changes may be required compared to existing tool are in action score 7(investigated and changes required immediately.Conclusions: The study showed that the design of new harvesting tool has the potential to reduce awkward body posture during harvesting activities as compared to existing tools. Keywords: Harvesting tool, Awkward posture, User centered design, CATIA simulation

  15. Postural discomfort and perceived exertion in standardized box-holding postures.

    Science.gov (United States)

    Olendorf, M R; Drury, C G

    2001-12-15

    To help in the design or redesign of workplaces it would be helpful to know in advance the postural stress consequences of a wide range of body postures. This experiment evaluated 168 postures chosen to represent those in the Ovako Working-posture Analysing System (OWAS) using Rated Perceived Exertion (RPE) and Body Part Discomfort (BPD) measures. The postures comprised all combinations of three arm postures, four back postures, seven leg postures and two forces (weights of held boxes). Twelve male subjects held each posture for a fixed duration (20 s) before providing RPE and BPD ratings. Analysis of the ratings gave highly significant main effects, with the major driver being the object weight. As each factor was varied, the largest effect was on the body region corresponding to that factor. A simple main-effects-only additive model explained 91% of the variance of RPE means for the postures.

  16. Does observation of postural imbalance induce a postural reaction?

    Directory of Open Access Journals (Sweden)

    Banty Tia

    Full Text Available BACKGROUND: Several studies bring evidence that action observation elicits contagious responses during social interactions. However automatic imitative tendencies are generally inhibited and it remains unclear in which conditions mere action observation triggers motor behaviours. In this study, we addressed the question of contagious postural responses when observing human imbalance. METHODOLOGY/PRINCIPAL FINDINGS: We recorded participants' body sway while they observed a fixation cross (control condition, an upright point-light display of a gymnast balancing on a rope, and the same point-light display presented upside down. Our results showed that, when the upright stimulus was displayed prior to the inverted one, centre of pressure area and antero-posterior path length were significantly greater in the upright condition compared to the control and upside down conditions. CONCLUSIONS/SIGNIFICANCE: These results demonstrate a contagious postural reaction suggesting a partial inefficiency of inhibitory processes. Further, kinematic information was sufficient to trigger this reaction. The difference recorded between the upright and upside down conditions indicates that the contagion effect was dependent on the integration of gravity constraints by body kinematics. Interestingly, the postural response was sensitive to habituation, and seemed to disappear when the observer was previously shown an inverted display. The motor contagion recorded here is consistent with previous work showing vegetative output during observation of an effortful movement and could indicate that lower level control facilitates contagion effects.

  17. [The solidarity of the human body].

    Science.gov (United States)

    Bioy, Xavier

    2014-06-01

    The legal and bioethical regulation of the uses of the elements of the human body can be described by means of the concept of solidarity. From the French example, we can so show that the State tries to frame solidarities which already exist, for example between people who share the same genome, in the family, or, on the contrary, tent to impose or to direct the sharing of the human biological resources (organs, tissues, gametes, stem cell...).

  18. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Asai

    Full Text Available It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.

  19. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.

    Science.gov (United States)

    Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin

    2013-01-01

    It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.

  20. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models

  1. Visuals and Visualisation of Human Body Systems

    Science.gov (United States)

    Mathai, Sindhu; Ramadas, Jayashree

    2009-01-01

    This paper explores the role of diagrams and text in middle school students' understanding and visualisation of human body systems. We develop a common framework based on structure and function to assess students' responses across diagram and verbal modes. Visualisation is defined in terms of understanding transformations on structure and relating…

  2. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models b

  3. Human body modeling in injury biomechanics

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Horst, M.J. van der; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling is widely used for crash-safety research and design. However, most occupant models used in crash simulations are based on crash dummies and thereby inherit their apparent limitations. This paper describes a mathematical model of the real human body for impact loading. A combin

  4. Design and validation of a morphing myoelectric hand posture controller based on principal component analysis of human grasping.

    Science.gov (United States)

    Segil, Jacob L; Weir, Richard F ff

    2014-03-01

    An ideal myoelectric prosthetic hand should have the ability to continuously morph between any posture like an anatomical hand. This paper describes the design and validation of a morphing myoelectric hand controller based on principal component analysis of human grasping. The controller commands continuously morphing hand postures including functional grasps using between two and four surface electromyography (EMG) electrodes pairs. Four unique maps were developed to transform the EMG control signals in the principal component domain. A preliminary validation experiment was performed by 10 nonamputee subjects to determine the map with highest performance. The subjects used the myoelectric controller to morph a virtual hand between functional grasps in a series of randomized trials. The number of joints controlled accurately was evaluated to characterize the performance of each map. Additional metrics were studied including completion rate, time to completion, and path efficiency. The highest performing map controlled over 13 out of 15 joints accurately.

  5. Dynamic Control of Posture Across Locomotor Tasks

    OpenAIRE

    Earhart, Gammon M.

    2013-01-01

    Successful locomotion depends on postural control to establish and maintain appropriate postural orientation of body segments relative to one another and to the environment, and to ensure dynamic stability of the moving body. This paper provides a framework for considering dynamic postural control, highlighting the importance of coordination, consistency, and challenges to postural control posed by various locomotor tasks such as turning and backward walking. The impacts of aging and various ...

  6. The Survey of Noise and Light Effects on Body Posture During the Study in Male Dormitory of Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Z Zamanian

    2014-11-01

    Conclusion: Posture of students during the study has correlation with light. Therefore, improved lightening can improve student posture and consequently a remarkable help to increase the students comfort.

  7. [Microbiota and representations of the human body].

    Science.gov (United States)

    Dodet, Betty

    2016-11-01

    Although the presence of an intestinal flora has been known for a long time, the discovery of the role of gut microbiota in human health and disease has been widely recognized as one of the most important advances in the recent years. Chronic diseases may result from dysbiosis, i.e. a disruption of the balance within the bacterial population hosted by the human body. These developments open new prospects in terms of prevention and treatment, including the design of adapted diets, the development of functional foods and fecal transplantation. These discoveries have profoundly altered our view of microbes, of health and disease, of self and non-self, as well as our representations of the body and its relationship with its ecosystem. Gut microbiota is now generally considered as an organ in its own right. A model of the "microbiotic person" thus arises, in which the human organism is defined as an ecosystem, a chimeric superorganism with a double genome, both human and microbial. Thought should be given to the way in which these new paradigms modify lay perceptions of the human body.

  8. A statistical model including age to predict passenger postures in the rear seats of automobiles.

    Science.gov (United States)

    Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J

    2016-06-01

    Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations.

  9. Decoupling of stretch reflex and background muscle activity during anticipatory postural adjustments in humans.

    Science.gov (United States)

    Vedula, Siddharth; Kearney, Robert E; Wagner, Ross; Stapley, Paul J

    2010-08-01

    We studied the evolution of stretch reflexes in relation to background electromyographic (EMG) activity in the soleus muscle preceding the onset of voluntary arm raise movements. Our objective was to investigate if changes in reflex EMG and muscle activity occur simultaneously and are similarly scaled in amplitude. Ten human subjects stood with each foot on pedals able to exert short dorsiflexor pulses during stance. Subjects were asked to product consistent voluntary arm raise movements to a target upon a visual cue. In (1/4) of trials, no pulse perturbations were given, but in the remaining (3/4)'s of all trials pulses were given randomly during a 600-ms period, from 400 ms before until 200 ms after the onset of the movements. Perturbation trials were sorted into 20-ms bins post hoc, and the amplitude of the reflex EMG component was calculated and compared to the EMG activity obtained when no pulses were given. Results showed that despite exhibiting similar profiles over time, the background EMG consistently inhibited before the reflex EMG did. However, times of reactivation (rebound) were variable across subjects, with background EMG activating before reflex for some subjects and vice versa for others. The minimum values of inhibition, time of inhibition and time of rebound for background and reflex EMG measures did not show significant linear correlations when all subjects' data were considered. These results suggest that reflex and background EMG components of anticipatory postural adjustments evolve differently in time and amplitude. This has implications for the independent control of reflexes and voluntary muscle activity.

  10. Analysis on the relationship between the school furniture and the work surface lighting and the body posture of public Middle School students from João Pessoa, Paraíba, Brazil.

    Science.gov (United States)

    da Silva, Luiz Bueno; da Costa Eulálio, Eliza Juliana; Souto Coutinho, Antonio; Gonçalves Soares, Elaine Victor; de Lourdes Silva dos Santos, Roberta

    2012-01-01

    The main objective of this study is to evaluate the impact of school furniture and work surface lighting on the body posture of two public Middle School students from Paraíba (Brazil). The target population included 8th grade groups involving 31 students. Brazilian standards for lighting levels, the CEBRACE standards for furniture measurements and the Postural Assessment Software (SAPO) for the postural misalignment assay were adopted for the measurements comparison. The statistic analysis includes analyses of parametric and non-parametric correlations. The results show that the students' most affected parts of the body were the spine, the regions of the knees and head and neck and about 90% of the students presented postural misalignment. The lighting levels were usually found below 300 lux, below recommended levels. Such results indicate the need of investments in more suitable school furniture and structural reforms aimed at improving the lighting in the classrooms, which could fulfill the students' profile and reduce their complaints.

  11. Dynamic Postural Control in Female Athletes and Non-Athletes following a Whole-Body Fatigue Protocol.

    Science.gov (United States)

    Baghbani, Fatemeh; Woodhouse, Linda; Gaeini, Abbas Ali

    2015-11-20

    Postural control is a crucial element in regular training of athletes, development of complex technical movement, and injury prevention; however, distributing factor of the postural control such as fatigue have been neglected by athletic trainers in novice and inexperienced athletes. The objective of this study was to compare changes in dynamic postural control of young female athletes and non-athletes after a fatigue protocol. Thirty females (15 athletes and 15 non-athletes) with no orthopedic problems were recruited to participate in this study. All participants completed the pre-SEBT (Star Excursion Balance Test) in eight directions at baseline; then they performed a 20- minute fatigue protocol following which post-SEBT was measured. Rating of perceived exertion was measured using the Borg scale immediately before, mid-way through (i.e. after the third station), and after performing the fatigue protocol (i.e. immediately before the post-SEBT). Female non-athlete groups had significant differences in dynamic balance performance after fatigue in the medial, posterormedial, and posterior directions (p postural control of the novice with progressing the exercise time. Our findings could also help coaches to develop trainings focused on the three directions of medial, posterormedial, and posterior directions and aimed at exercises increasing fatigue resistance.

  12. The Effects of a Lower Body Exoskeleton Load Carriage Assistive Device on Limits of Stability and Postural Sway

    Science.gov (United States)

    2006-11-01

    basic outfit consisting of combat boots, socks , T-shirt, and warm-up pants. The fighting load consisted of the basic outfit plus a helmet, an armor...Hoffman, R.G., Lovett, E.G., and Myklebust, B.M., 1996: Measures of postural steadiness: Differences between healthy young and elderly adults

  13. Use of Body Armor Protection Levels with Squad Automatic Weapon Fighting Load Impacts Soldier Performance, Mobility, and Postural Control

    Science.gov (United States)

    2015-05-01

    COURSE PROTECTIVE EQUIPMENT BALLISTICS BIOMECHANICS POSTURAL CONTROL PPE(PERSONAL PROTECTIVE EQUIPMENT) Natick Soldier Research...24  vi ACKNOWLEDGEMENTS The evaluation reported was carried out by personnel of the Biomechanics Team...performance (e.g., long distance runs , short sprints, agility runs , and obstacle courses) (Knapik, 2004). Recently, Peoples et al., (2010) compared the

  14. Discussion on body posture in the aerobics%浅谈健美操运动中的身体姿态

    Institute of Scientific and Technical Information of China (English)

    彭鹰; 方智

    2012-01-01

    Body posture plays an important role in the aerobics. It not only influences the effectiveness of the action, but also it is the key to complete a whole set. With the support of the relevant reference, I probe into the importance of the body pos- ture in aerobics and the fundamental request and training methods of body posture. This can improve the effectiveness of teach- ing and training aerobics.%身体姿态在健美操运动中具有非常重要的作用,它不仅影响动作效果,而且也是完成成套动作的关键。查阅相关文献资料,探讨了身体姿态在健美操运动中的重要性以及基本要求与训练,旨在为提高健美.操的教学质量与训练效果提供参考。

  15. [An interactive three-dimensional model of the human body].

    Science.gov (United States)

    Liem, S L

    2009-01-01

    Driven by advanced computer technology, it is now possible to show the human anatomy on a computer. On the internet, the Visible Body programme makes it possible to navigate in all directions through the anatomical structures of the human body, using mouse and keyboard. Visible Body is a wonderful tool to give insight in the human structures, body functions and organs.

  16. Small-bodied humans from Palau, Micronesia.

    Directory of Open Access Journals (Sweden)

    Lee R Berger

    Full Text Available UNLABELLED: Newly discovered fossil assemblages of small bodied Homo sapiens from Palau, Micronesia possess characters thought to be taxonomically primitive for the genus Homo. BACKGROUND: Recent surface collection and test excavation in limestone caves in the rock islands of Palau, Micronesia, has produced a sizeable sample of human skeletal remains dating roughly between 940-2890 cal ybp. PRINCIPLE FINDINGS: Preliminary analysis indicates that this material is important for two reasons. First, individuals from the older time horizons are small in body size even relative to "pygmoid" populations from Southeast Asia and Indonesia, and thus may represent a marked case of human insular dwarfism. Second, while possessing a number of derived features that align them with Homo sapiens, the human remains from Palau also exhibit several skeletal traits that are considered to be primitive for the genus Homo. SIGNIFICANCE: These features may be previously unrecognized developmental correlates of small body size and, if so, they may have important implications for interpreting the taxonomic affinities of fossil specimens of Homo.

  17. Postural stability is altered by the stimulation of pain but not warm receptors in humans

    Directory of Open Access Journals (Sweden)

    Corbeil Philippe

    2003-10-01

    Full Text Available Abstract Background It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Methods Two cutaneous heat stimulations (experiment 1: non-noxious 40 degrees C; experiment 2: noxious 45 degrees C were applied bilaterally on the calves of the subject with two thermal grills to stimulate A delta and C warm receptors and nociceptors in order to examine their effects on postural stability. The non-noxious stimulation induced a gentle sensation of warmth and the noxious stimulation induced a perception of heat pain (visual analogue scores of 0 and 46 mm, respectively. For both experiments, ten healthy young adults were tested with and without heat stimulations of the lower limbs while standing upright on a force platform with eyes open, eyes closed and eyes closed with tendon co-vibration of tibialis anterior and triceps surae muscles. The center of pressure displacements were analyzed to examine how both stimulations affected the regulation of quiet standing and if the effects were exacerbated when vision was removed or ankle proprioception perturbed. Results The stimulation of the warm receptors (40 degrees C did not induce any postural deterioration. With pain (45 degrees C, subjects showed a significant increase in standard deviation, range and mean velocity of postural oscillations as well as standard deviation of the center of pressure velocity. The effects of heat pain were exacerbated when subjects had both their eyes closed and ankle tendons vibrated (increased standard deviation of the center of pressure velocity and mean velocity of the center of pressure. Conclusions A non

  18. Common postural defects among music students.

    Science.gov (United States)

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora

    2015-07-01

    Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors.

  19. Head and cervical spine posture in behaving rats: implications for modeling human conditions involving the head and cervical spine.

    Science.gov (United States)

    Griffin, C; Choong, W Y; Teh, W; Buxton, A J; Bolton, P S

    2015-02-01

    The aim of this study was to define the temporal and spatial (postural) characteristics of the head and cervical vertebral column (spine) of behaving rats in order to better understand their suitability as a model to study human conditions involving the head and neck. Time spent in each of four behavioral postures was determined from video tape recordings of rats (n = 10) in the absence and presence of an intruder rat. Plain film radiographic examination of a subset of these rats (n = 5) in each of these postures allowed measurement of head and cervical vertebral column positions adopted by the rats. When single they were quadruped or crouched most (∼80%) of the time and bipedal either supported or free standing for only ∼10% of the time. The introduction of an intruder significantly (P cervical spine was orientated (median, 25-75 percentile) near vertical (18.8°, 4.2°-30.9°) when quadruped, crouched (15.4°, 7.6°-69.3°) and bipedal supported (10.5°, 4.8°-22.6°) but tended to be less vertical oriented when bipedal free standing (25.9°, 7.7°-39.3°). The range of head positions relative to the cervical spine was largest when crouched (73.4°) and smallest when erect free standing (17.7°). This study indicates that, like humans, rats have near vertical orientated cervical vertebral columns but, in contrast to humans, they displace their head in space by movements at both the cervico-thoracic junction and the cranio-cervical regions. © 2014 Wiley Periodicals, Inc.

  20. Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas

    Science.gov (United States)

    Chestek, Cynthia A.; Gilja, Vikash; Blabe, Christine H.; Foster, Brett L.; Shenoy, Krishna V.; Parvizi, Josef; Henderson, Jaimie M.

    2013-04-01

    Objective. Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system.Approach. We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. Main results. Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. Significance. These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training

  1. Embodying animals: Body-part compatibility in mammalian, reptile and aves classes.

    Science.gov (United States)

    Pacione, Sandra M; Welsh, Timothy N

    2015-09-01

    The purpose of the present study was to determine how humans code homologous body parts of nonhuman mammal, reptilian, and aves animals with respect to the representation of the human body. To this end, participants completed body-part compatibility tasks in which responses were executed to colored targets that were superimposed over the upper limbs, lower limbs or head of different animals in different postures. In Experiment 1, the images were of meekats and lizards in bipedal and quadrupedal postures. In Experiment 2, the images were of a human, a penguin, and an owl in a bipedal posture with upper limbs stretched out. Overall, the results revealed that the limbs of nonhuman mammals (meerkat and human) were consistently mapped onto the homologous human body parts only when the mammals were in a bipedal posture. Specifically, body-part compatibility effects emerged for the human and the meerkat in a bipedal posture, but not the meerkat in the quadrupedal posture. Further, consistent body-part compatibility effects were not observed for the lizard in the quadrupedal posture or for the lizard, penguin, or owl in a bipedal posture. The pattern of results suggests that the human bipedal body representation may distinguish taxonomical classes and is most highly engaged when viewing homologous body parts of mammalian animals.

  2. Scandinavian Semantics and the Human Body

    DEFF Research Database (Denmark)

    Levisen, Carsten

    2015-01-01

    , it is demonstrated that Scandinavian and English systems differ significantly in some aspects of the way in which the construe the human body with words. The study ventures an innovative combination of methods, pairing the Natural Semantic Metalanguage (NSM) approach to linguistic and conceptual analysis...... in closely related languages can differ substantially in their semantics. In related languages, where shared lexical form does not always mean shared semantics, ethnolinguistic studies in semantic change and shifts in polysemy patterns can help to reveal and explain the roots of semantic diversity.......This paper presents an ethnolinguistic analysis of how the space between the head and the body is construed in Scandinavian semantic systems vis-a-vis the semantic system of English. With an extensive case study of neck-related meanings in Danish, and with cross-Scandinavian reference...

  3. [The human body in Michelangelo's Moses].

    Science.gov (United States)

    Figueroa, Gustavo

    2013-10-01

    What grips us so powerfully to a work of art is the artist's intention, if he succeeds to express it in his work and we are able to understand it. Michelangelo's Moses established the essential structures of an animate organism and the embodiment of consciousness in the world. Since the body is an expressive unit, it is possible to reconstruct a highly feasible sequence of movements that might have preceded the moment caught in the statue. It is an expression of the highest ideal of mental and spiritual achievement through the controlled tension between action and restraint. The phenomenon of embodiment and feeling the body as own is the basis of concrete human existence.

  4. Effect of standing posture during whole body vibration training on muscle morphology and function in older adults: A randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Greene David

    2010-10-01

    Full Text Available Abstract Background Whole body vibration (WBV is a novel modality of exercise shown to improve musculoskeletal function. This study aims to examine the effects of standing posture during low magnitude WBV training on muscle function and muscle morphology in older adults. Methods Nineteen men and women (50-80 years were recruited to a three month randomised controlled trial and allocated to one of three groups: WBV with flexed knees (FK, WBV with locked knees (LK, or sham WBV with flexed knees (CON. Exposure was intermittent (1 min WBV:1 min rest for 20 min, three times per week for 13 weeks. Measurements were taken at baseline and at three months. Primary outcomes included upper and lower body muscle function (strength, power and velocity. Secondary outcomes were muscle morphology, balance, habitual and maximal gait velocity, stair climb power, and chair stand performance. Results Sixteen subjects completed the study. Relative (% upper body contraction velocity improved significantly after WBV with FK compared to LK (FK 16.0%, LK -7.6%, CON 4.7, p = 0.01. Relative upper body strength (LK 15.1%, p = 0.02; FK 12.1%, p = 0.04; CON 4.7% increased significantly following WBV compared to control. Absolute (p = 0.05 and relative (p = 0.03 lower leg strength significantly improved with both standing postures (LK 14.4%; FK 10.7%; CON 1.3%. Only the LK group differed significantly from CON in relative leg strength gains (p = 0.02. Potentially clinically meaningful but statistically non-significant improvements in lower leg muscle cross-sectional area (LK 3.7 cm2, FK 2.4 cm2, CON 2.2 cm2 p = 0.13 were observed after WBV with LK compared to the other groups. No significant effects of WBV on any functional performance tests were observed. Conclusions Our results suggest that WBV may improve muscle strength and contraction velocity in some muscle groups in older adults. However, hypothesised differential adaptation to standing posture (FK > LK was observed

  5. Functional Neuroanatomy for Posture and Gait Control

    OpenAIRE

    Takakusaki, Kaoru

    2017-01-01

    Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending p...

  6. Otolith and Vertical Canal Contributions to Dynamic Postural Control

    Science.gov (United States)

    Black, F. Owen

    1999-01-01

    The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.

  7. Earthing the human body influences physiologic processes.

    Science.gov (United States)

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  8. The effect of asymmetry of posture on anticipatory postural adjustments.

    Science.gov (United States)

    Aruin, Alexander S

    2006-06-19

    The study investigates the effect of body asymmetry on anticipatory postural adjustments (APAs). Subjects performed a task involving a standard load release induced by a shoulder abduction movement while standing symmetrically or in an asymmetrical stance with either their right or left leg in 45 degrees of external rotation. EMG activities of trunk and leg muscles were recorded during the postural perturbation and were quantified within the time intervals typical of APAs. Anticipatory postural adjustments were observed in all experimental conditions. It was found that asymmetrical body positioning was associated with significant asymmetrical patterns of APAs seen in the right and left distal muscles. These APA asymmetries were dependant upon the side in which the body asymmetry was induced: reduced APAs were observed in the leg muscles on the side of leg rotation, while increased APAs were seen in the muscles on the contralateral side. These findings stress the important role that body asymmetries play in the control of upright posture.

  9. Human body region enhancement method based on Kinect infrared imaging

    Science.gov (United States)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  10. Postural stability is altered by the stimulation of pain but not warm receptors in humans

    OpenAIRE

    Corbeil Philippe; Blouin Jean-Sébastien; Teasdale Normand

    2003-01-01

    Abstract Background It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Methods Two cutaneous heat stimulations (experiment 1: non-n...

  11. Characterising postural sway fluctuations in humans using linear and nonlinear methods

    OpenAIRE

    2013-01-01

    Introduction: Postural control is a prerequisite to many everyday and sporting activities which requires the interaction of multiple sensorimotor processes. As long as we have no balance disorders, the maintenance of an erect standing position is taken for granted with automatic running control processes. It is well known that with increasing age or disease balance problems occur which often cause fall-related injuries. To assess balance performance, posturography is widely applied in which b...

  12. Efeito da reeducação postural global no alinhamento corporal e nas condições clínicas de indivíduos com disfunção temporomandibular associada a desvios posturais Effect of global postural reeducation on body alignment and on clinical status of individuals with temporomandibular disorder associated to postural deviations

    Directory of Open Access Journals (Sweden)

    Débora Basso

    2010-03-01

    Full Text Available Este estudo visou verificar o efeito da técnica de reeducação postural global (RPG nas condições físicas, psicológicas e psicossociais, assim como no alinhamento corporal, de indivíduos com disfunção temporomandibular (DTM associada a desvio postural. Participaram 20 indivíduos com DTM e com desvio postural confirmado por exame físico, avaliados, antes e depois do tratamento de RPG, pelos critérios diagnósticos de desordens temporomandibulares (RDC/TMD, na sigla em inglês e quanto às medidas angulares, por fotogrametria digital. O tratamento consistiu em 10 sessões semanais de RPG. Os resultados após o tratamento mostram, na classificação da disfunção, maior predomínio de desordens apenas musculares (em detrimento das articulares e por deslocamento de disco e redução da intensidade da dor orofacial; o percentual de indivíduos sem depressão aumentou de 10% para 35%; o percentual de indivíduos com classificação normal de sintomas físicos (excluindo itens de dor passou de 30% para 55%. Foi encontrada melhora estatisticamente significante na maioria das medidas angulares, exceto nos ângulos frontais dos membros inferiores e ângulo perna/retropé direito. O alinhamento horizontal da cabeça e as medidas de lordose cervical e lombar, com valores normais antes da RPG, não se modificaram. Conclui-se que, com o tratamento de RPG, os indivíduos apresentaram importantes melhoras dos sintomas físicos e psicológicos da DTM, assim como melhora do alinhamento e simetria corporais.The purpose of this study was to assess the effects of the technique of global postural re-education (GPR on body alignment and clinical status of individuals with temporomandibular disorder (TMD associated to postural deviations. Twenty individuals with both TMD and postural deviations confirmed by physical examination were assessed, before and after treatment, by the research diagnostic criteria for temporomandibular disorders (RDC/TMD and as to

  13. Study II: mechanoreceptive sensation is of increased importance for human postural control under alcohol intoxication.

    Science.gov (United States)

    Modig, F; Patel, M; Magnusson, M; Fransson, P A

    2012-03-01

    Standing postural stability relies on input from visual, vestibular, proprioceptive and mechanoreceptive sensors. When the information from any of these sensors is unavailable or disrupted, the central nervous system maintains postural stability by relying more on the contribution from the reliable sensors, termed sensory re-weighting. Alcohol intoxication is known to affect the integrity of the vestibular and visual systems. The aim was to assess how mechanoreceptive sensory information contributed to postural stability at 0.00% (i.e. sober), 0.06% and 0.10% blood alcohol concentration (BAC) in 25 healthy subjects (mean age 25.1 years). The subjects were assessed with eyes closed and eyes open under quiet standing and while standing was perturbed by repeated, random-length, vibratory stimulation of the calf muscles. Plantar cutaneous mechanoreceptive sensation was assessed for both receptor types: slowly adapting (tactile sensitivity) and rapidly adapting (vibration perception). The correlation between recorded torque variance and the sensation from both mechanoreceptor types was calculated. The recorded stability during alcohol intoxication was significantly influenced by both the tactile sensation and vibration perception of the subjects. Moreover, the study revealed a fluctuating association between the subjects' vibration perception and torque variance during balance perturbations, which was significantly influenced by the level of alcohol intoxication, vision and adaptation. Hence, one's ability to handle balance perturbations under the influence of alcohol is strongly dependent on accurate mechanoreceptive sensation and efficient sensory re-weighting.

  14. A modular approach to numerical human body modeling

    NARCIS (Netherlands)

    Forbes, P.A.; Griotto, G.; Rooij, L. van

    2007-01-01

    The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body mod

  15. A modular approach to numerical human body modeling

    NARCIS (Netherlands)

    Forbes, P.A.; Griotto, G.; Rooij, L. van

    2007-01-01

    The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body

  16. Enhancing digital driver models: identification of distinct postural strategies used by drivers.

    Science.gov (United States)

    Kyung, Gyouhyung; Nussbaum, Maury A; Babski-Reeves, Kari L

    2010-03-01

    Driver workspace design and evaluation is, in part, based on assumed driving postures of users and determines several ergonomic aspects of a vehicle, such as reach, visibility and postural comfort. Accurately predicting and specifying standard driving postures, hence, are necessary to improve the ergonomic quality of the driver workspace. In this study, a statistical clustering approach was employed to reduce driving posture simulation/prediction errors, assuming that drivers use several distinct postural strategies when interacting with automobiles. 2-D driving postures, described by 16 joint angles, were obtained from 38 participants with diverse demographics (age, gender) and anthropometrics (stature, body mass) and in two vehicle classes (sedans and SUVs). Based on the proximity of joint angle sets, cluster analysis yielded three predominant postural strategies in each vehicle class (i.e. 'lower limb flexed', 'upper limb flexed' and 'extended'). Mean angular differences between clusters ranged from 3.8 to 52.4 degrees for the majority of joints, supporting the practical relevance of the distinct clusters. The existence of such postural strategies should be considered when utilising digital human models (DHMs) to enhance and evaluate driver workspace design ergonomically and proactively. STATEMENT OF RELEVANCE: This study identified drivers' distinct postural strategies, based on actual drivers' behaviours. Such strategies can facilitate accurate positioning of DHMs and hence help design ergonomic driver workspaces.

  17. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness.

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo; Amemiya, Kaoru

    2016-03-01

    The human brain can generate a continuously changing postural model of our body. Somatic (proprioceptive) signals from skeletal muscles and joints contribute to the formation of the body representation. Recent neuroimaging studies of proprioceptive bodily illusions have elucidated the importance of three brain systems (motor network, specialized parietal systems, right inferior fronto-parietal network) in the formation of the human body representation. The motor network, especially the primary motor cortex, processes afferent input from skeletal muscles. Such information may contribute to the formation of kinematic/dynamic postural models of limbs, thereby enabling fast online feedback control. Distinct parietal regions appear to play specialized roles in the transformation/integration of information across different coordinate systems, which may subserve the adaptability and flexibility of the body representation. Finally, the right inferior fronto-parietal network, connected by the inferior branch of the superior longitudinal fasciculus, is consistently recruited when an individual experiences various types of bodily illusions and its possible roles relate to corporeal awareness, which is likely elicited through a series of neuronal processes of monitoring and accumulating bodily information and updating the body representation. Because this network is also recruited when identifying one's own features, the network activity could be a neuronal basis for self-consciousness.

  18. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    Science.gov (United States)

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  19. A pinned polymer model of posture control

    CERN Document Server

    Chow, C C; Chow, Carson C; Collins, J J

    1995-01-01

    A phenomenological model of human posture control is posited. The dynamics are modelled as an elastically pinned polymer under the influence of noise. The model accurately reproduces the two-point correlation functions of experimental posture data and makes predictions for the response function of the postural control system. The physiological and clinical significance of the model is discussed.

  20. Origins and early development of human body knowledge.

    Science.gov (United States)

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial

  1. Human papillomavirus vaccines, complex regional pain syndrome, postural orthostatic tachycardia syndrome, and autonomic dysfunction - a review of the regulatory evidence from the European Medicines Agency

    DEFF Research Database (Denmark)

    Jefferson, Tom; Jørgensen, Lars

    2017-01-01

    Recent concerns about a possible association between exposure of young women to human papillomavirus (HPV) vaccines and two "dysautonomic syndromes" (a collection of signs and symptoms thought to be caused by autoimmunity) - complex regional pain syndrome (CRPS) and postural orthostatic tachycardia...

  2. Human Body Image Edge Detection Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    李勇; 付小莉

    2003-01-01

    Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.

  3. Orthostatic intolerance and postural tachycardia syndrome as suspected adverse effects of vaccination against human papilloma virus

    DEFF Research Database (Denmark)

    Brinth, Louise S; Pors, Kirsten; Theibel, Ann C

    2015-01-01

    intolerance, headache, fatigue, cognitive dysfunction, and neuropathic pain starting in close relation to HPV vaccination. METHODS: Patients were referred for orthostatic intolerance following HPV vaccination. Symptoms of autonomic dysfunction were quantified by standardised questionnaire. The diagnosis...... of postural orthostatic tachycardia syndrome (POTS) rested on finding a sustained heart rate increment of >30min(-1) (>40min(-1) in adolescents) or to levels >120min(-1) during orthostatic challenge. RESULTS: 35 women aged 23.3±7.1 years participated. Twenty-five had a high level of physical activity before...... intolerance, 94% nausea, 82% chronic headache, 82% fatigue, 77% cognitive dysfunction, 72% segmental dystonia, 68% neuropathic pain. CONCLUSIONS: In a population referred for symptoms of orthostatic intolerance and other symptoms consistent with autonomic dysfunction that began in close temporal association...

  4. 人体工程学与汽车座椅设计%Human Body Engineering and the Design of Car Seats

    Institute of Scientific and Technical Information of China (English)

    于文卫

    2014-01-01

    This paper briefly describes the various parameters in the design of car seat and body size in human body engineering, the relationship between the posture of human body , human body size range . It also explores the choice of seat parameters , vibration effects on the human body and seat strength design.%简述了汽车座椅设计中的各参数与人体工程学中人体尺寸的关系,对人体的姿态、人体的尺寸范围与座椅参数的选择进行了探讨及振动对人体的影响,座椅强度设计。

  5. Human body composition models and methodology: theory and experiment.

    NARCIS (Netherlands)

    Wang, Z.M.

    1997-01-01

    The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors. Accordingly, the study of human

  6. Global sagittal axis: a step toward full-body assessment of sagittal plane deformity in the human body.

    Science.gov (United States)

    Diebo, Bassel G; Oren, Jonathan H; Challier, Vincent; Lafage, Renaud; Ferrero, Emmanuelle; Liu, Shian; Vira, Shaleen; Spiegel, Matthew Adam; Harris, Bradley Yates; Liabaud, Barthelemy; Henry, Jensen K; Errico, Thomas J; Schwab, Frank J; Lafage, Virginie

    2016-10-01

    OBJECTIVE Sagittal malalignment requires higher energy expenditure to maintain an erect posture. Because the clinical impact of sagittal alignment is affected by both the severity of the deformity and recruitment of compensatory mechanisms, it is important to investigate new parameters that reflect both disability level and compensatory mechanisms for all patients. This study investigated the clinical relevance of the global sagittal axis (GSA), a novel measure to evaluate the standing axis of the human body. METHODS This is a retrospective review of patients who underwent full-body radiographs and completed health-related quality of life (HRQOL) questionnaires: Oswestry Disability Index (ODI), Scoliosis Research Society-22, EuroQol-5D (EQ-5D), and the visual analog scale for back and leg pain. The GSA was defined as the angle formed by a line from the midpoint of the femoral condyles to the center of C-7, and a line from the midpoint between the femoral condyles to the posterior superior corner of the S-1 sacral endplate. After evaluating the correlation of GSA/HRQOL with sagittal parameters, linear regression models were generated to investigate how ODI and GSA related to radiographic parameters (T-1 pelvic angle, pelvic retroversion, knee flexion, and pelvic posterior translation). RESULTS One hundred forty-three patients (mean age 44 years) were included. The GSA correlated significantly with all HRQOL (up to r = 0.6 with EQ-5D) and radiographic parameters (up to r = 0.962 with sagittal vertical axis). Regression between ODI and sagittal radiographic parameters identified the GSA as an independent predictor (r = 0.517, r(2) = 0.267; p human body in the sagittal plane. The GSA correlated highly with spinopelvic and lower-extremities sagittal parameters and exhibited remarkable correlations with HRQOL, which exceeded other commonly used parameters.

  7. Postural Variables in Girls Practicing Volleyball

    Science.gov (United States)

    Grabara, Malgorzata; Hadzik, Andrzej

    2009-01-01

    Study aim: To assess body posture of young female volleyball players in relation to their untrained mates. Material and methods: A group of 42 volleyball players and another of 43 untrained girls, all aged 13-16 years were studied with respect to their body posture indices by using computer posturography. Spinal angles and curvatures were…

  8. Optimization-based human motion prediction using an inverse-inverse dynamics technique implemented in the AnyBody Modeling System

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi; Andersen, Michael Skipper; de Zee, Mark

    2012-01-01

    derived from the detailed musculoskeletal analysis. The technique is demonstrated on a human model pedaling a bicycle. We use a physiology-based cost function expressing the mean square of all muscle activities over the cycle to predict a realistic motion pattern. Posture and motion prediction......This paper presents an optimization-based human movement prediction using the AnyBody modeling system (AMS). It is explained how AMS can enables prediction of a realistic human movement by means of a computationally efficient optimization-based algorithm. The human motion predicted in AMS is based......, the parameters of these functions are optimized to produce an optimum posture or movement according to a user-defined cost function and constraints. The cost function and the constraints are typically express performance, comfort, injury risk, fatigue, muscle load, joint forces and other physiological properties...

  9. Evaluation of 6 and 10 Year-Old Child Human Body Models in Emergency Events

    Science.gov (United States)

    2017-01-01

    Emergency events can influence a child’s kinematics prior to a car-crash, and thus its interaction with the restraint system. Numerical Human Body Models (HBMs) can help understand the behaviour of children in emergency events. The kinematic responses of two child HBMs–MADYMO 6 and 10 year-old models–were evaluated and compared with child volunteers’ data during emergency events–braking and steering–with a focus on the forehead and sternum displacements. The response of the 6 year-old HBM was similar to the response of the 10 year-old HBM, however both models had a different response compared with the volunteers. The forward and lateral displacements were within the range of volunteer data up to approximately 0.3 s; but then, the HBMs head and sternum moved significantly downwards, while the volunteers experienced smaller displacement and tended to come back to their initial posture. Therefore, these HBMs, originally intended for crash simulations, are not too stiff and could be able to reproduce properly emergency events thanks, for instance, to postural control. PMID:28099505

  10. Auto-measuring System of 3- Dimensional Human Body

    Institute of Scientific and Technical Information of China (English)

    李勇; 尚保平; 付小莉; 尚会超

    2001-01-01

    To realize the automation of fashion industry measuring,designing and manufacturing, the auto-measurement of 3D size of human body is of great importance. The auto measurement system of 3D human body based on Charge Coupled Devices (CCD) and infrared sensors is presented in this paper. The system can measure the bare size of human body that excludes the effect of clothing quickly and accurately.

  11. Effects of a Pilates exercise program on muscle strength, postural control and body composition: results from a pilot study in a group of post-menopausal women.

    Science.gov (United States)

    Bergamin, M; Gobbo, S; Bullo, V; Zanotto, T; Vendramin, B; Duregon, F; Cugusi, L; Camozzi, V; Zaccaria, M; Neunhaeuserer, D; Ermolao, A

    2015-12-01

    Participation in exercise programs is heartily recommended for older adults since the level of physical fitness directly influences functional independence. The aim of this present study was to investigate the effects of supervised Pilates exercise training on the physical function, hypothesizing that a period of Pilates exercise training (PET) can increase overall muscle strength, body composition, and balance, during single and dual-task conditions, in a group of post-menopausal women. Twenty-five subjects, aged 59 to 66 years old, were recruited. Eligible participants were assessed prior and after 3 months of PET performed twice per week. Muscular strength was evaluated with handgrip strength (HGS) test, 30-s chair sit-to-stand test (30CST), and abdominal strength (AST) test. Postural control and dual-task performance were measured through a stabilometric platform while dynamic balance with 8 ft up and go test. Finally, body composition was assessed by means of dual-energy X-ray absorptiometry. Statistically significant improvements were detected on HGS (+8.22%), 30CST (+23.41%), 8 ft up and go test (-5.95%), AST (+30.81%), medio-lateral oscillations in open eyes and dual-task condition (-22.03% and -10.37%). Pilates was effective in increasing upper body, lower body, and abdominal muscle strength. No changes on body composition were detected. Results on this investigation indicated also that 12-week of mat Pilates is not sufficient to determine a clinical meaningful improvement on static balance in single and dual-task conditions.

  12. Mathematical description of human body constitution and fatness.

    Science.gov (United States)

    Sheikh-Zade, Yu R; Galenko-Yaroshevskii, P A; Cherednik, I L

    2014-02-01

    Using mathematical modeling of human body, we demonstrated logical drawbacks of body mass index (BMI1 = M/H(2); A. Quetelet, 1832) and proposed more precise body mass index (BMI2 = M/H(3)) as well as body constitution index (BCI = (M/H(3))(1/2)) and fatness index (FI = M/HC(2)), where M, H, and C are body weight, height, and wrist circumference of the individual.

  13. Research on Vibration Characteristics Between Human Body and Seat, Steering Wheel, and Pedals (effects of Seat Position on Ride Comfort)

    Science.gov (United States)

    NISHIYAMA, S.; UESUGI, N.; TAKESHIMA, T.; KANO, Y.; TOGII, H.

    2000-09-01

    Experimental results are presented of the vibrational characteristics of the automotive subsystem comprising the human body, seat, steering wheel and pedals. The magnitude of the vibrations transferred to a driver from the seat, steering wheel and pedals have been measured with both sinusoidal and random excitations in the vertical direction at frequencies up to 20 Hz. Measurement points were located on the surface of the head, chest, hip, thigh, shin, upper arm and lower arm. Eleven subjects were used to investigate the effect of some variable factors, such as arm angle, that may affect human dynamic behavior. It was found that arm angle in driving posture has a substantial influence on the dynamic behavior of the human body while driving. Some results are presented in the form of parametric graphs and tables. The results are useful for improving ride comfort, maneuverability and safety.

  14. Microwave non-contact imaging of subcutaneous human body tissues

    Science.gov (United States)

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  15. Human body capacitance: static or dynamic concept? [ESD

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1998-01-01

    A standing human body insulated from ground by footwear and/or floor covering is in principle an insulated conductor and has, as such, a capacitance, i.e. the ability to store a charge and possibly discharge the stored energy in a spark discharge. In the human body, the human body capacitance (HBC...... when a substantial part of the flux extends itself through badly defined stray fields. Since the concept of human body capacitance is normally used in a static (electric) context, it is suggested that the HBC be determined by a static method. No theoretical explanation of the observed differences...

  16. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  17. [The gift of human body's products: philosophical and ethical aspects].

    Science.gov (United States)

    Baertschi, B

    2014-09-01

    In continental Europe, there is a very strong moral condemnation against putting parts or products of the human body on sale-and, consequently, against putting sperms and oocytes on sale. Only a gift is morally permissible. The situation is different in Anglo-Saxon countries. Who is right? Above all, it must be noticed that two views of the human body are facing each other here: for the first, the human body is a part of the person (so, it partakes of the person's dignity), whereas for the second, the human body is a possession of the person (the person is the owner of his/her body). In my opinion, the argument of dignity comes up against serious objections, and the property argument is more consistent. However, it does not follow that it would be judicious to put parts and products of the human body for sale on a market.

  18. Perceiving conspecifics as integrated body-gestalts is an embodied process.

    Science.gov (United States)

    Kessler, Klaus; Miellet, Sebastien

    2013-08-01

    We investigated the effect of posture congruence on social perception. Specifically, we tested the hypothesis that completing "body gestalts," rather than being a purely visual process, is mediated by congruence in the postures of observer and stimulus. We developed novel stimuli showing a face and 2 hands that could be combined in various ways to form "body gestalts" implying different postures. In 3 experiments we found that imitative finger movements were consistently faster when the observer's posture matched the posture implied by the configuration of face and hands shown onscreen, suggesting that participants intuitively used their own body schema to "fill in the gaps" in the stimuli. Besides shaping how humans perceive others' bodies, embodied body-gestalt (eBG) completion may be an essential social and survival mechanism, for example, allowing for quick recovery from deceptive actions. It may also partly explain why humans subconsciously align themselves in everyday interactions: This might facilitate optimal corepresentation at higher, conscious levels.

  19. Recurrence quantification analysis of human postural fluctuations in older fallers and non-fallers.

    Science.gov (United States)

    Ramdani, Sofiane; Tallon, Guillaume; Bernard, Pierre Louis; Blain, Hubert

    2013-08-01

    We investigate postural sway data dynamics in older adult fallers and non-fallers. Center of pressure (COP) signals were recorded during quiet standing in 28 older adults. The subjects were divided in two groups: with and without history of falls. COP time series were analyzed using recurrence quantification analysis (RQA) in both anteroposterior and mediolateral (ML) directions. Classical stabilometric variables (path length and range) were also computed. The results showed that RQA outputs quantifying predictability of COP fluctuations and Shannon entropy of recurrence plot diagonal line length distribution, were significantly higher in fallers, only for ML direction. In addition, the range of ML COP signals was also significantly higher in fallers. This result is in accordance with some findings of the literature and could be interpreted as an increased hip strategy in fallers. The RQA results seem coherent with the theory of loss of complexity with aging and disease. Our results suggest that RQA is a promising approach for the investigation of COP fluctuations in a frail population.

  20. Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; Chalavi, Sima; van Ruitenbeek, Peter; Leunissen, Inge; Levin, Oron; Nieuwboer, Alice; Swinnen, Stephan P

    2017-02-01

    It remains unclear which specific brain regions are the most critical for human postural control and balance, and whether they mediate the effect of age. Here, associations between postural performance and corticosubcortical brain regions were examined in young and older adults using multiple structural imaging and linear mixed models. Results showed that of the regions involved in posture, the brainstem was the strongest predictor of postural control and balance: lower brainstem volume predicted larger center of pressure deviation and higher odds of balance loss. Analyses of white and gray matter in the brainstem showed that the pedunculopontine nucleus area appeared to be critical for postural control in both young and older adults. In addition, the brainstem mediated the effect of age on postural control, underscoring the brainstem's fundamental role in aging. Conversely, lower basal ganglia volume predicted better postural performance, suggesting an association between greater neural resources in the basal ganglia and greater movement vigor, resulting in exaggerated postural adjustments. Finally, results showed that practice, shorter height and heavier weight (i.e., higher body mass index), higher total physical activity, and larger ankle active (but not passive) range of motion were predictive of more stable posture, irrespective of age.

  1. Human body and head characteristics as a communication medium for Body Area Network.

    Science.gov (United States)

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  2. Education and the Prevention of Postural Defects

    Directory of Open Access Journals (Sweden)

    Olchowska-Kotala Agnieszka

    2014-12-01

    Full Text Available Purpose. The aim of this study was to determine: whether and at what stage of education is proper body posture learned, the intention of young adults to participate in activities teaching proper posture, and the effects of factors related with the said intention. Methods. The study involved 430 university students aged 18-24 years. Anthropometric data was collected. Participants completed questionnaires assessing physical activity level (IPAQ and their intention to participate in extracurricular activities teaching proper posture while sitting or walking, proper running technique, corrective gymnastics, or weight loss exercises. A self-assessment of posture, physical fitness, attractiveness, and body satisfaction was also completed. Results. Lower back pain was experienced by 41% of the respondents. Most were taught proper posture-related habits in primary school, followed by secondary school, and then at university. Many students expressed their intention to participate in the extracurricular activities. None of the questionnaire variables were associated with the intention to learn proper walking posture or proper running technique. The intention to participate in classes teaching proper sitting posture was associated with lower back pain in women and low physical activity level in men. In women, a relationship was found between the intention to participate in weight loss exercises and body dissatisfaction, high BMI, and poor self-evaluations of posture and attractiveness. In men, this activity was associated with body dissatisfaction. Conclusions. There is a need for further education on the development of proper postural habits at the university level.

  3. Specialised structural descriptions for human body parts: Evidence from autotopagnosia.

    Science.gov (United States)

    Buxbaum, L J; Coslett, H B

    2001-06-01

    Previous accounts of autotopagnosia (e.g., Ogden, 1985; Pick, 1908; Semenza, 1988) propose that the disorder is attributable to deficits in "mental images," visual body schema, or semantic representations. A recent account (Sirigu, Grafman, Bressler, & Sunderland, 1991b) posits deficits in visual structural descriptions of the human body and its parts, in the context of spared semantic and proprioceptivespatio-motor body representations, but provides no evidence bearing on the nature or format of the putatively damaged representation. We report data from a man with autotopagnosia consequent to lefthemisphere brain damage which bear directly on the nature of the representation impaired in the disorder. The subject, GL, is unable to localise body parts on himself or others, whether cued by verbal or visual input. In contrast, he uses body parts precisely in reaching and grasping tasks, correctly matches items of clothing to body parts, and localises the parts of animals and man-made objects without error. We also demonstrate that GL is unable to match pictured or real human body parts across shifts in orientation or changes in visual appearance, but can perform analogous matching tasks with animal body parts and man-made object parts. The data extend the account of Sirigu et al. (1991b) in suggesting that human body part localisation depends upon structural descriptions of human (but not animal) bodies that enable viewpoint-independent body part recognition and participate in the calculation of equivalence between the body parts of self and others across transformations in orientation.

  4. Development of Preferences for the Human Body Shape in Infancy.

    Science.gov (United States)

    Slaughter, Virginia; Heron, Michelle; Sim, Susan

    2002-01-01

    Two studies investigated development of infants' visual preferences for the human body shape. Results indicated that 18-month-olds had a reliable preference for scrambled body shapes over typical body shapes in line drawings, while 12- and 15-month-olds did not respond differentially. In condition using photographs, only 18-month-olds had reliable…

  5. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.

    Science.gov (United States)

    Liu, Chi; Qiu, Yi; Griffin, Michael J

    2017-08-16

    Biodynamic responses of the seated human body are usually measured and modelled assuming a single point of vibration excitation. With vertical vibration excitation, this study investigated how forces are distributed over the body-seat interface. Vertical and fore-and-aft forces were measured beneath the ischial tuberosities, middle thighs, and front thighs of 14 subjects sitting on a rigid flat seat in three postures with different thigh contact while exposed to random vertical vibration at three magnitudes. Measures of apparent mass were calculated from transfer functions between the vertical acceleration of the seat and the vertical or fore-and-aft forces measured at the three locations, and the sum of these forces. When sitting normally or sitting with a high footrest, vertical forces at the ischial tuberosities dominated the vertical apparent mass. With feet unsupported to give increased thigh contact, vertical forces at the front thighs were dominant around 8Hz. Around 3-7Hz, fore-and-aft forces at the middle thighs dominated the fore-and-aft cross-axis apparent mass. Around 8-10Hz, fore-and-aft forces were dominant at the ischial tuberosities with feet supported but at the front thighs with feet unsupported. All apparent masses were nonlinear: as the vibration magnitude increased the resonance frequencies decreased. With feet unsupported, the nonlinearity in the apparent mass was greater at the front thighs than at the ischial tuberosities. It is concluded that when the thighs are supported on a seat it is not appropriate to assume the body has a single point of vibration excitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Water and electrolytes. [in human bodies

    Science.gov (United States)

    Greenleaf, J. E.; Harrison, M. H.

    1986-01-01

    It has been found that the performance of the strongest and fittest people will deteriorate rapidly with dehydration. The present paper is concerned with the anatomy of the fluid spaces in the body, taking into account also the fluid shifts and losses during exercise and their effects on performance. Total body water is arbitrarily divided into that contained within cells (cellular) and that located outside the cells (extracellular). The anatomy of body fluid compartments is considered along with the effects of exercise on body water, fluid shifts with exercise, the consequences of sweating, dehydration and exercise, heat acclimatization and endurance training, the adverse effects of dehydration, thirst and drinking during exercise, stimuli for drinking, and water, electrolyte, and carbohydrate replacement during exercise. It is found that the deterioration of physical exercise performance due to dehydration begins when body weight decreases by about 1 percent.

  7. Postural Stability is Altered by Blood Shift

    Science.gov (United States)

    Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.

    2008-06-01

    Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.

  8. Effectiveness of elastic band-type ankle–foot orthoses on postural control in poststroke elderly patients as determined using combined measurement of the stability index and body weight-bearing ratio

    Directory of Open Access Journals (Sweden)

    Kim JH

    2015-11-01

    Full Text Available Jong Hyun Kim, Woo Sang Sim, Byeong Hee Won Usability Evaluation Technology Center, Advanced Biomedical and Welfare R&D Group, Korea Institute of Industrial Technology, Cheonan-si, Chungcheongnam-do, South Korea Purpose: Poor recovery of postural stability poststroke is the primary cause of impairment in activities and social participation in elderly stroke survivors. The purpose of our study was to experimentally evaluate the effectiveness of our new elastic ankle–foot orthosis (AFO, compared to a traditional AFO fabricated with hard plastic, in improving postural stability in elderly chronic stroke survivors. Patients and methods: Postural stability was evaluated in ten chronic stroke patients, 55.7±8.43 years old. Postural stability was evaluated using the standardized methods of the Biodex Balance System combined with a foot pressure system, under three experimental conditions, no AFO, rigid plastic AFO, and elastic AFO (E-AFO. The following dependent variables of postural stability were analyzed: plantar pressure under the paretic and nonparetic foot, area of the center of balance (COB and % time spent in each location, distance traveled by the COB away from the body center, distance traveled by the center of pressure, and calculated index of overall stability, as well as indices anterior–posterior and medial–lateral stability. Results: Both AFO designs improved all indices of postural stability. Compared to the rigid plastic AFO, the E-AFO produced additional positive effects in controlling anterior–posterior body sway, equalizing weight bearing through the paretic and nonparetic limbs, and restraining the displacement of the center of pressure and of the COB. Conclusion: Based on our outcomes, we recommend the prescription of E-AFOs as part of a physiotherapy rehabilitation program to promote recovery of postural stability poststroke. When possible, therapeutic outcomes should be documented using the Biodex Balance System and

  9. Human Body Orientation Estimation using a Committee based Approach

    NARCIS (Netherlands)

    Ichim, M; Tan, R.T.; van der Aa, N.P.; Veltkamp, R.C.

    2014-01-01

    Human body orientation estimation is useful for analyzing the activities of a single person or a group of people. Estimating body orientation can be subdivided in two tasks: human tracking and orientation estimation. In this paper, the second task of orientation estimation is accomplished by using H

  10. High School Students' Understanding of the Human Body System

    Science.gov (United States)

    Assaraf, Orit Ben-Zvi; Dodick, Jeff; Tripto, Jaklin

    2013-01-01

    In this study, 120 tenth-grade students from 8 schools were examined to determine the extent of their ability to perceive the human body as a system after completing the first stage in their biology curriculum--"The human body, emphasizing homeostasis". The students' systems thinking was analyzed according to the STH thinking model, which roughly…

  11. Human body composition models and methodology : theory and experiment

    NARCIS (Netherlands)

    Wang, Z.M.

    1997-01-01


    The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors.

  12. What women like: influence of motion and form on esthetic body perception

    Directory of Open Access Journals (Sweden)

    Valentina eCazzato

    2012-07-01

    Full Text Available Several studies have shown the distinct contribution of motion and form to the esthetic evaluation of female bodies. Here, we investigated how variations of implied motion and body size interact in the esthetic evaluation of female and male bodies in a sample of young healthy women. Participants provided attractiveness, beauty, and liking ratings for the shape and posture of virtual renderings of human bodies with variable body size and implied motion. The esthetic judgments for both shape and posture of human models were influenced by body size and implied motion, with a preference for thinner and more dynamic stimuli. Implied motion, however, attenuated the impact of extreme body size on the esthetic evaluation of body postures, and body size variations did not affect the preference for more dynamic stimuli. Results show that body form and action cues interact in esthetic perception, but the final esthetic appreciation of human bodies is predicted by a mixture of perceptual and affective evaluative components.

  13. Planckian Power Spectral Densities from Human Calves during Posture Maintenance and Controlled Isometric Contractions.

    Directory of Open Access Journals (Sweden)

    J E Lugo

    Full Text Available The relationship between muscle anatomy and physiology and its corresponding electromyography activity (EMGA is complex and not well understood. EMGA models may be broadly divided in stochastic and motor-unit-based models. For example, these models have successfully described many muscle physiological variables such as the value of the muscle fiber velocity and the linear relationship between median frequency and muscle fiber velocity. However they cannot explain the behavior of many of these variables with changes in intramuscular temperature, or muscle PH acidity, for instance. Here, we propose that the motor unit action potential can be treated as an electromagnetic resonant mode confined at thermal equilibrium inside the muscle. The motor units comprising the muscle form a system of standing waves or modes, where the energy of each mode is proportional to its frequency. Therefore, the power spectral density of the EMGA is well described and fit by Planck's law and from its distribution we developed theoretical relationships that explain the behavior of known physiological variables with changes in intramuscular temperature or muscle PH acidity, for instance.EMGA of the calf muscle was recorded during posture maintenance in seven participants and during controlled isometric contractions in two participants. The power spectral density of the EMGA was then fit with the Planckian distribution. Then, we inferred nine theoretical relationships from the distribution and compared the theoretically derived values with experimentally obtained values.The power spectral density of EMGA was fit by Planckian distributions and all the theoretical relationships were validated by experimental results.Only by considering the motor unit action potentials as electromagnetic resonant modes confined at thermal equilibrium inside the muscle suffices to predict known or new theoretical relationships for muscle physiological variables that other models have failed

  14. [BODY AND CORPORALITY IN THE HUMAN BEING: SOME INTERDISCIPLINARY REFLECTIONS].

    Science.gov (United States)

    Giménez Amaya, JosÉ Manuel

    2014-01-01

    The major purpose of this contribution is to illustrate some differential aspects between the human and the animal bodies, in order to understand the main distinctive characteristic of the human being: his or her rationality. Thus, we firstly deal with some considerations about the general anthropological framework in which the human body is going to be analysed. Next, we briefly explain the importance of the body for an adequate understanding of the intimacy and the biographical perspectives of the person. Here we show some examples of the altered human corporality to stress the importance of the relation to oneself and others as a key and fundamental aspect to look at our rational corporality.

  15. Simulating Non-Specific Influences of Body Posture and Temperature on Thigh-Bioimpedance Spectroscopy during Continuous Monitoring Applications

    Science.gov (United States)

    Ismail, A. H.; Leonhardt, S.

    2013-04-01

    Application of bioimpedance spectroscopy (BIS) for continuous monitoring of body fluid volumes is gaining considerable importance in personal health care. Unless laboratory conditions are applied, both whole-body or segmental BIS configurations are subject to nonspecific influences (e.g. temperature and change in body position) reducing the method's accuracy and reproducibility. In this work, a two-compartment mathematical model, which describes the thigh segment, has been adapted to simulate fluid and solute kinetics during change in body position or variation in skin temperature. The model is an improved version of our previous one offering a good tradeoff between accuracy and simplicity. It represents the kinetics of fluid redistribution, sodium-, potassium-, and protein-concentrations based on simple equations to predict the time course of BIS variations. Validity of the model was verified in five subjects (following a sequence of 7 min supine, 20 min standing, and 40 min supine). The output of the model may reduce possible influences on BIS by up to 80%.

  16. Avaliação da postura corporal de violinistas e violistas Body postural evaluation of violinists and violists

    Directory of Open Access Journals (Sweden)

    Clarissa Stefani Teixeira

    2012-12-01

    Full Text Available Para a prática instrumental há necessidade de acessórios, como a partitura e estante. Assim como em computadores, o trabalho dos músicos necessita ajustes para que posturas desnecessárias não sejam adotadas ao longo da jornada das atividades, causando fadiga ou problemas futuros. O objetivo deste estudo foi avaliar a distância visual, o ângulo visual, a altura da partitura musical e o ângulo cervical de 11 músicos de cordas (violino e viola. Os resultados apresentaram associação entre o ângulo visual e a distância e a altura da partitura, assim como a distância visual com a altura da partitura. Os resultados foram de 100,23±5,46 cm para a altura da partitura, 89,36±8,22 cm para a distância visual, 9,23±0,79° para o ângulo visual e 49,86±5,71° para o ângulo da cervical. Apenas o ângulo da cervical estava fora dos padrões recomendados (indicação máxima de 30º e deve ser analisado com maior profundidade em estudos futuros. Conforme o ritmo, novas obras, troca de acessórios e/ou instrumento, estas dimensões poderão ser modificadas, mas sem interferir nas condições visuais, físicas e de conforto. As dimensões estiveram dentro dos limites recomendados pela ergonomia.For the instrumental practice there are accessories needs, as the musical score and shelf. As well as in computers, the musicians' work needs fittings so that unnecessary postures are not adopted along the day of the activities, causing fatigue or future problems. The objective this study was to evaluate the visual distance, the visual angle, the height of the musical scores and cervical angle in 11 string musicians (violin and viola. The results presented association between the visual angle and the distance and the height of the musical score, as well as the visual distance with the height of the musical score. The results went of 100.23±5.46 cm to the height of the musical score, 89.36±8.22 cm for the visual distance, 9.23±0.79° for the visual

  17. Postures and Motions Library Development for Verification of Ground Crew Human Systems Integration Requirements

    Science.gov (United States)

    Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena

    2012-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  18. Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements

    Science.gov (United States)

    Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles

    2013-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  19. "Scientific peep show": the human body in contemporary science museums.

    Science.gov (United States)

    Canadelli, Elena

    2011-01-01

    The essay focuses on the discourse about the human body developed by contemporary science museums with educational and instructive purposes directed at the general public. These museums aim mostly at mediating concepts such as health and prevention. The current scenario is linked with two examples of past museums: the popular anatomical museums which emerged during the 19th century and the health museums thrived between 1910 and 1940. On the museological path about the human body self-care we went from the emotionally involving anatomical Venuses to the inexpressive Transparent Man, from anatomical specimens of ill organs and deformed subjects to the mechanical and electronic models of the healthy body. Today the body is made transparent by the new medical diagnostics and by the latest discoveries of endoscopy. The way museums and science centers presently display the human body involves computers, 3D animation, digital technologies, hands-on models of large size human parts.

  20. Human body segmentation via data-driven graph cut.

    Science.gov (United States)

    Li, Shifeng; Lu, Huchuan; Shao, Xingqing

    2014-11-01

    Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.

  1. Automatic Modeling of Virtual Humans and Body Clothing

    Institute of Scientific and Technical Information of China (English)

    Nadia Magnenat-Thalmann; Hyewon Seo; Frederic Cordier

    2004-01-01

    Highly realistic virtual human models are rapidly becoming commonplace in computer graphics.These models, often represented by complex shape and requiring labor-intensive process, challenge the problem of automatic modeling. The problem and solutions to automatic modeling of animatable virtual humans are studied. Methods for capturing the shape of real people, parameterization techniques for modeling static shape (the variety of human body shapes) and dynamic shape (how the body shape changes as it moves) of virtual humans are classified, summarized and compared. Finally, methods for clothed virtual humans are reviewed.

  2. Apparent mass of the human body in the vertical direction: Effect of a footrest and a steering wheel

    Science.gov (United States)

    Toward, M. G. R.; Griffin, M. J.

    2010-04-01

    The apparent mass of the seated human body influences the vibration transmitted through a car seat. The apparent mass of the body is known to be influenced by sitting posture but the influence of the position of the hands and the feet is not well understood. This study was designed to quantify the influence of steering wheel location and the position of a footrest on the vertical apparent mass of the human body. The influences of the forces applied by the hands to a steering wheel and by the feet to a footrest were also investigated. Twelve subjects were exposed to whole-body vertical random vibration (1.0 m s -2 rms over the frequency range 0.13-40.0 Hz) while supported by a rigid seat with a backrest reclined to 15°. The apparent mass of the body was measured with five horizontal positions and three vertical positions of a steering wheel and also with hands in the lap, and with five horizontal positions of a footrest. The influence of five forward forces (0, 50, 100, 150, 200 N) applied separately to the 'steering wheel' and the footrest were also investigated as well as a 'no backrest' condition. With their hands in their laps, subjects exhibited a resonance around 6.7 Hz, compared to 4.8 Hz when sitting upright with no backrest. In the same posture holding a steering wheel, the mass supported on the seat surface decreased and there was an additional resonance at 4 Hz. Moving the steering wheel away from the body reduced the apparent mass at the primary resonance frequency and increased the apparent mass around the 4 Hz resonance. As the feet moved forward, the mass supported on the seat surface decreased, indicating that the backrest and footrest supported a greater proportion of the subject weight. Applying force to either the steering wheel or the footrest reduced the apparent mass at resonance and decreased the mass supported on the seat surface. It is concluded that the positions and contact conditions of the hands and the feet affect the biodynamic

  3. Moving human full body and body parts detection, tracking, and applications on human activity estimation, walking pattern and face recognition

    Science.gov (United States)

    Chen, Hai-Wen; McGurr, Mike

    2016-05-01

    We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance

  4. Vision Influence on Whole-Body Human Vibration Comfort Levels

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Machado Duarte

    2006-01-01

    Full Text Available The well being of people needs to be a priority in the modern world. In that respect, vibration cannot be one more cause of stress. Besides that, vibration comfort is very important, since high levels may cause health or even tasks' accomplishment problems. Several parameters may influence the levels of vibration a human being supports. Among them, one can mention the influence of gender, age, corporeal mass index (CMI, temperature, humor, anxiety, hearing, posture, vision, etc. The first three parameters mentioned were already investigated in previous studies undertaken by GRAVI (Group of Acoustics and Vibration researchers. In this paper, the influence of vision is evaluated. The main objective with this series of tests performed is to try to quantify in a future the influence of each parameter in a global vibration comfort level. Conclusions are presented for the parameter investigated.

  5. O exercício físico influencia a postura corporal de idosas? Does exercise influence the body posture in elderly women?

    Directory of Open Access Journals (Sweden)

    Flávia Porto

    2012-09-01

    Full Text Available As alterações posturais associadas ao envelhecimento influem diretamente no desempenho de atividades da vida diária. E o exercício físico tem sido utilizado como forma de prevenção aos desgastes causados pelo avanço da idade. Este estudo objetivou comparar o perfil postural no plano sagital de idosas participantes do Estudo Multidimensional dos Idosos de Porto Alegre (EMIPOA e idosas participantes de um programa de exercícios físicos (GEF, através de avaliação com o uso de posturógrafo. Utilizou-se o protocolo de Kendall, Mccreary e Provance (1995 para análise e classificação das posturas. Para o tratamento dos dados, foi utilizada estatística descritiva e teste de Kolmogorov-Smirnov (αAge-associated postural changes directly affect daily-task performance. Exercise has been used in order prevent impairments caused by aging process. This study has aimed to compare the postural profile at the sagittal plane of elderly women participants of the Multidimensional Study of Elderly in Porto Alegre (EMIPOA and elderly women engaged in an exercise program (GEF through posture grad assessment. Posterior image analysis and posture classification was done as described by Kendall, Mccreary e Provance (1995. We used descriptive statistics and the Kolmogorov-Smirnov test (α<0.05 to compare the results of the groups. Both groups presented the kyphosis-lordosis as predominant posture profile. There was no significant difference in prevalence of postural profile between EMIPOA and GEF. Results suggest that the exercise program was not effective to produce postural changes at the sagittal plane for elderly women.

  6. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population

    Science.gov (United States)

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B.; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  7. Effect of body posture on sleep-related breathing disorders in patients with acute cerebral infarction%体位对急性脑梗死患者睡眠呼吸紊乱的影响

    Institute of Scientific and Technical Information of China (English)

    尉飞

    2012-01-01

    目的 探讨睡眠体位对脑梗死患者睡眠呼吸紊乱的影响和作用机制.方法 选择急性脑梗死患者53例,分为睡眠呼吸暂停综合征(SAHS)组34例,非SAHS组19例.采用视频多导睡眠监测仪,对急性脑梗死患者自然睡眠过程及不同体位睡眠呼吸状况进行全程描记.结果 53例患者中,有34例(64.2%)急性脑梗死患者睡眠呼吸暂停低通气指数(AHI)≥10.与仰卧位比较,SAHS组左、右侧卧位患者的AHI明显降低,平均血氧饱和度明显升高(P<0.05,P<0.01);且睡眠呼吸紊乱事件以阻塞型为主,仰卧位最重(P<0.01);SAHS组患者自然睡眠状态下,AHI与侧卧位/仰卧位睡眠时间比值呈负相关(r=-0.56,P<0.01).结论 脑梗死后睡眠呼吸紊乱发生率高,仰卧位时加重,体位自我调节保护睡眠呼吸的功能减弱.%Objective To study the effect of body posture on sleep-related breathing disorders (SRBD)in patients with acute cerebral infarction( ACI). Methods Fifty-three ACI patients were divided into sleep apnea hypersomnolence syndrome(SAHS) group(n= 34)and non-SAHS group (n=19). Natural sleeping and breathing of the ACI patients at different body postures were recorded with a video-polysomnography system. Results Among the 53 ACI patients,the AHI was ≥10 in 34(64. 2%). The AHI was significantly lower and the average blood oxygen satuation was significantly higher in SAHS patients sleeping at the left and right posture than in those sleeping at the supine posture(P<0. 05,P<0. 01). In addition,the most common type of SRBD was obstructive, which was most severe when the patients slept at the supine posture(P<0. 01). The AHI in SAHS patients at natural sleeping was negatively related with the sleeping time at lateral posture/supine posture(r= -0. 56,P<0. 01). Conclusion The incidence of SRBD is high in patients with cerebral infarction. SRBD will aggravate when the patients sleep at the supine posture. Self adjustment of body posture can

  8. Research on Dynamic Model of the Human Body

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-lin; WANG Guang-quan; LU Dun-yong

    2005-01-01

    After summarizing the current situation of the research on human body modeling, a new dynamic model containing 5 equivalent masses has been proposed and the corresponding dynamic equations has been deduced too. By using this new model, more detailed information about the situation of the human body under impact and vibration can be obtained. The new model solves the problem that transmission functions of forces inside the human body can't be deduced by using 3-equivalent-mass model. It will find its usage in many applications.

  9. Globalization and the trade in human body parts.

    Science.gov (United States)

    Harrison, T

    1999-02-01

    Since the early 1980s, the number and variety of organ transplantations has increased enormously worldwide. Accompanying this increase has been the emergence of a market for human body parts. This paper argues that, while the trade in human body parts is conditioned by technological advances, it must be understood in the broader context of globalization, specifically the extension and intensification of a capitalist mode of exchange. In this regard, it is argued that the trade in human body parts mirrors the "normal" system of unequal exchanges that mark other forms of trade between the developed and undeveloped regions of the world.

  10. Functional Neuroanatomy for Posture and Gait Control.

    Science.gov (United States)

    Takakusaki, Kaoru

    2017-01-01

    Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.

  11. Functional Neuroanatomy for Posture and Gait Control

    Directory of Open Access Journals (Sweden)

    Kaoru Takakusaki

    2017-01-01

    Full Text Available Here we argue functional neuroanatomy for posture- gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture- gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.

  12. Functional Neuroanatomy for Posture and Gait Control

    Science.gov (United States)

    Takakusaki, Kaoru

    2017-01-01

    Here we argue functional neuroanatomy for posture-gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture-gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling. PMID:28122432

  13. Gender Recognition from Unconstrained and Articulated Human Body

    Directory of Open Access Journals (Sweden)

    Qin Wu

    2014-01-01

    human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  14. Improvement of anticipatory postural adjustments for balance control: effect of a single training session.

    Science.gov (United States)

    Kanekar, Neeta; Aruin, Alexander S

    2015-04-01

    Humans use anticipatory and compensatory postural strategies to maintain and restore balance when perturbed. Inefficient generation and utilization of anticipatory postural adjustments (APAs) is one of the reasons for postural instability. The aim of the study was to investigate the role of training in improvement of APAs and its effect on subsequent control of posture. Thirteen healthy young adults were exposed to predictable external perturbations before and after a single training session consisting of catches of a medicine ball thrown at the shoulder level. 3-D body kinematics, EMG activity of thirteen trunk and lower limb muscles, and ground reaction forces were recorded before and immediately after a single training session. Muscle onsets, EMG integrals, center of pressure (COP), and center of mass (COM) displacements were analyzed during the anticipatory and compensatory phases of postural control. The effect of a single training session was seen as significantly early muscle onsets and larger anticipatory COP displacements. As a result, significantly smaller peak COM displacements were observed after the perturbation indicating greater postural stability. The outcome of this study provides a background for examining the role of training in improvement of APAs and its effect on postural stability in individuals in need.

  15. The functional architecture of the human body: assessing body representation by sorting body parts and activities.

    Science.gov (United States)

    Bläsing, Bettina; Schack, Thomas; Brugger, Peter

    2010-05-01

    We investigated mental representations of body parts and body-related activities in two subjects with congenitally absent limbs (one with, the other without phantom sensations), a wheelchair sports group of paraplegic participants, and two groups of participants with intact limbs. To analyse mental representation structures, we applied Structure Dimensional Analysis. Verbal labels indicating body parts and related activities were presented in randomized lists that had to be sorted according to a hierarchical splitting paradigm. Participants were required to group the items according to whether or not they were considered related, based on their own body perception. Results of the groups of physically intact and paraplegic participants revealed separate clusters for the lower body, upper body, fingers and head. The participant with congenital phantom limbs also showed a clear separation between upper and lower body (but not between fingers and hands). In the participant without phantom sensations of the absent arms, no such modularity emerged, but the specific practice of his right foot in communication and daily routines was reflected. Sorting verbal labels of body parts and activities appears a useful method to assess body representation in individuals with special body anatomy or function and leads to conclusions largely compatible with other assessment procedures.

  16. Numerical Modeling of Electromagnetic Field Effects on the Human Body

    Directory of Open Access Journals (Sweden)

    Zuzana Psenakova

    2006-01-01

    Full Text Available Interactions of electromagnetic field (EMF with environment and with tissue of human beings are still under discussion and many research teams are investigating it. The human simulation models are used for biomedical research in a lot of areas, where it is advantage to replace real human body (tissue by the numerical model. Biological effects of EMF are one of the areas, where numerical models are used with many advantages. On the other side, this research is very specific and it is always quite hard to simulate realistic human tissue. This paper deals with different possibilities of numerical modelling of electromagnetic field effects on the human body (especially calculation of the specific absorption rate (SAR distribution in human body and thermal effect.

  17. Standoff Human Identification Using Body Shape

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, Shari; Heredia-Langner, Alejandro; Amidan, Brett G.; Boettcher, Evelyn J.; Lochtefeld, Darrell; Webb, Timothy

    2015-09-01

    The ability to identify individuals is a key component of maintaining safety and security in public spaces and around critical infrastructure. Monitoring an open space is challenging because individuals must be identified and re-identified from a standoff distance nonintrusively, making methods like fingerprinting and even facial recognition impractical. We propose using body shape features as a means for identification from standoff sensing, either complementing other identifiers or as an alternative. An important challenge in monitoring open spaces is reconstructing identifying features when only a partial observation is available, because of the view-angle limitations and occlusion or subject pose changes. To address this challenge, we investigated the minimum number of features required for a high probability of correct identification, and we developed models for predicting a key body feature—height—from a limited set of observed features. We found that any set of nine randomly selected body measurements was sufficient to correctly identify an individual in a dataset of 4426 subjects. For predicting height, anthropometric measures were investigated for correlation with height. Their correlation coefficients and associated linear models were reported. These results—a sufficient number of features for identification and height prediction from a single feature—contribute to developing systems for standoff identification when views of a subject are limited.

  18. Dynamic control of posture across locomotor tasks.

    Science.gov (United States)

    Earhart, Gammon M

    2013-09-15

    Successful locomotion depends on postural control to establish and maintain appropriate postural orientation of body segments relative to one another and to the environment and to ensure dynamic stability of the moving body. This article provides a framework for considering dynamic postural control, highlighting the importance of coordination, consistency, and challenges to postural control posed by various locomotor tasks, such as turning and backward walking. The impacts of aging and various movement disorders on postural control are discussed broadly in an effort to provide a general overview of the field and recommendations for assessment of dynamic postural control across different populations in both clinical and research settings. Suggestions for future research on dynamic postural control during locomotion also are provided and include discussion of opportunities afforded by new and developing technologies, the need for long-term monitoring of locomotor performance in everyday activities, gaps in our knowledge of how targeted intervention approaches modify dynamic postural control, and the relative paucity of literature regarding dynamic postural control in movement disorder populations other than Parkinson's disease.

  19. Planning, Plumbing, or Posturing? Explaining the Weakness of Human Resource Development Structures and Policies in South Africa

    Science.gov (United States)

    Allais, Stephanie; Marock, Carmel; Ngcwangu, Siphelo

    2017-01-01

    In South Africa, a national peak structure, the Human Resource Development Council, led by the Deputy President and consisting of key Cabinet Ministers, senior leaders from organised labour and business, community representatives, professional bodies and experts from research and higher education, was established to enable high-level coordination…

  20. Planning, Plumbing, or Posturing? Explaining the Weakness of Human Resource Development Structures and Policies in South Africa

    Science.gov (United States)

    Allais, Stephanie; Marock, Carmel; Ngcwangu, Siphelo

    2017-01-01

    In South Africa, a national peak structure, the Human Resource Development Council, led by the Deputy President and consisting of key Cabinet Ministers, senior leaders from organised labour and business, community representatives, professional bodies and experts from research and higher education, was established to enable high-level coordination…

  1. Dynamic Human Body Modeling Using a Single RGB Camera

    Directory of Open Access Journals (Sweden)

    Haiyu Zhu

    2016-03-01

    Full Text Available In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  2. Dynamic Human Body Modeling Using a Single RGB Camera.

    Science.gov (United States)

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  3. Gender Recognition from Unconstrained and Articulated Human Body

    OpenAIRE

    Qin Wu; Guodong Guo

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, ho...

  4. Individualized Human CAD Models: Anthropmetric Morphing and Body Tissue Layering

    Science.gov (United States)

    2014-07-31

    torso sub-assembly may have more fat in the abdomen than in the chest. A study 18 that could help refine this feature is being developed by the US...responses to various ensembles being developed, taking 3 into account human characteristics (height, weight, body fat , etc.), physical activity levels...model of the human body in a CAD (Computer- Aided Design) format which includes both surface features as well as internal composition, e.g., the fat

  5. 基于人体动作姿态识别的机器人仿人运动%Humanoid Motion of Manipulator that Based on Human-posture Recognition

    Institute of Scientific and Technical Information of China (English)

    王梅; 卢熙昌; 屠大维; 于远芳; 周华

    2016-01-01

    以关节式机器人为对象,进行机器人仿人运动研究。从人体动作姿态识别、人-机动作映射、机器人运动控制等方面,详细阐述机器人仿人运动算法。提出人体动作姿态识别方法,利用 Kinect 传感器捕获人体运作的关节点位置信息,在建立人体基准坐标系的基础上,为了得到描述肩、肘运动的动作信息,计算人体手臂动作的关节角度,实现人体动作姿态的识别。在分析人体肩、肘等关节和机器人机构差异性的基础上,建立人体手臂与四自由度机械手臂的人-机动作映射规则。针对机器人自由度较少,无法完全复现人体运动的情形,分析、比较不同控制策略的优缺点和适用性,寻求适合机器人操作的复现控制策略。关节式机器人接收运动控制指令,执行相应的关节运动,从而实现机器人仿人运动。相关试验验证了人体动作姿态识别和机器人仿人运动控制算法的有效性。研究成果对于提高机器人控制和操作的简单易用性、提高人机交互能力具有借鉴意义,对于扩展机器人应用领域具有实践意义。%Humanoid motion of manipulator is studied. The problem of human-posture recognition, human-robot motion mapping and humanoid motion control are summarized. A Kinect is used to capture the human body movement. In the coordinate system on the human body, the joint angles of the human arm are calculated to recognize the motion of shoulder joint and elbow joint. By analyzing the difference between the motion of a human arm and that of a four-degree manipulator, the human-robot motion mapping is developed. To deal with the problem of limitation in motion imitation, caused by robot lower-mobility, three method of humanoid control is comparatively analyzed. And the method to maximize the range of motion is selected to control the manipulator. The manipulator would execute the action, according to the

  6. [Research progress on free radicals in human body].

    Science.gov (United States)

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  7. Effect of postural changes on ICP in healthy and ill subjects

    DEFF Research Database (Denmark)

    Petersen, Lonnie G; Juhler, Marianne

    2015-01-01

    to distinguish normal human physiology from disease entities such as idiopathic intracranial hypertension and normal pressure hydrocephalus, we investigated ICP in different body postures in both normal and ill subjects. METHODS: Thirty-one patients were included: four normal patients following complete removal...

  8. A method to model anticipatory postural control in driver braking events.

    Science.gov (United States)

    Östh, Jonas; Eliasson, Erik; Happee, Riender; Brolin, Karin

    2014-09-01

    Human body models (HBMs) for vehicle occupant simulations have recently been extended with active muscles and postural control strategies. Feedback control has been used to model occupant responses to autonomous braking interventions. However, driver postural responses during driver initiated braking differ greatly from autonomous braking. In the present study, an anticipatory postural response was hypothesized, modelled in a whole-body HBM with feedback controlled muscles, and validated using existing volunteer data. The anticipatory response was modelled as a time dependent change in the reference value for the feedback controllers, which generates correcting moments to counteract the braking deceleration. The results showed that, in 11 m/s(2) driver braking simulations, including the anticipatory postural response reduced the peak forward displacement of the head by 100mm, of the shoulder by 30 mm, while the peak head flexion rotation was reduced by 18°. The HBM kinematic response was within a one standard deviation corridor of corresponding test data from volunteers performing maximum braking. It was concluded that the hypothesized anticipatory responses can be modelled by changing the reference positions of the individual joint feedback controllers that regulate muscle activation levels. The addition of anticipatory postural control muscle activations appears to explain the difference in occupant kinematics between driver and autonomous braking. This method of modelling postural reactions can be applied to the simulation of other driver voluntary actions, such as emergency avoidance by steering.

  9. A Circuit Model of Real Time Human Body Hydration.

    Science.gov (United States)

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration.

  10. Teaching exploration and practice of the human body structure course

    Institute of Scientific and Technical Information of China (English)

    Feng LI; Ming-feng CHEN; Wen-long DING

    2015-01-01

    In the 21 st century,the medical model has transformed from the biological model to the biopsycho-social medical model. The transformation of medical model raises higher requirements for the training of medical staff. Comprehensive promotion of the reform of medical education has become the consensus and trend,which breeds the integrated medical teaching that is based on modules and organ systems. As one of eight integrated modules,the human body structure course of Shanghai Jiao Tong University School of Medicine introduces morphological structures of normal human organs according to function systems( such as locomotor system,digestive system,angiological system,and nervous system) of human organs and parts of human body. This course endeavors to integrate theories with practices,contents of disciplines of basic medicine,and basic medicine with clinical medicine. The human body structure course combines basic medicine with clinical medicine and is an important part of medical science.

  11. Quantifying Postural Control during Exergaming Using Multivariate Whole-Body Movement Data: A Self-Organizing Maps Approach.

    Directory of Open Access Journals (Sweden)

    Mike van Diest

    Full Text Available Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user's balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating exergame.Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM, an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar. Additionally a k Nearest Neighbor (kNN classifier was trained to discriminate between young and older adults based on the SOM features.Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%.Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training.

  12. Determining the optimal size for posture categories used in video-based posture assessment methods.

    Science.gov (United States)

    van Wyk, Paula M; Weir, Patricia L; Andrews, David M; Fiedler, Krysia M; Callaghan, Jack P

    2009-08-01

    Currently, there are no standards for the development of posture classification systems used in observation-based ergonomic posture assessment methods. This study was conducted to determine if an optimal posture category size for different body segments and posture views could be established by examining the trade-off between magnitude of error and the number of posture category misclassification errors made. Three groups (trunk flexion/extension and lateral bend; shoulder flexion/extension and adduction/abduction; elbow flexion/extension) of 30 participants each selected postures they perceived to correctly represent the video image shown on a computer screen. For each view, 10 images were presented for five different posture category sizes, three times each. The optimal posture category sizes established were 30 degrees for trunk, shoulder and elbow flexion/extension, 30 degrees for shoulder adduction/abduction and 15 degrees for trunk lateral bend, suggesting that posture category size should be based on the body segment and view of the image being assessed. Across all conditions, the posture category sizes were comparable to those used in published ergonomic tools.

  13. Electric Wheelchair Controlled by Human Body Motion Interface

    Science.gov (United States)

    Yokota, Sho; Hashimoto, Hiroshi; Ohyama, Yasuhiro; She, Jin-Hua

    This research studies the possibility of an intuitive interface for an electric wheelchair by using human body except hands. For this purpose, we focused on the human body motion which has relation to actions or behavior. This motion comes from the human stabilization function for holding expectable collapsing caused by voluntary motion. Thus this motion is considered as a kind of characteristics of human motion, and is linked to intentions unconsciously. Therefore, the interface which does not require conscious and complex motion is realized by applying this human body motion to the interface of electric wheelchair. In this paper, first, we did experiment to search a part which vividly shows the pressure change on the seat. As a result, it was confirmed that pressure change of the seat back vividly shows the human body motion. Next, we designed the prototype based on this evidence. Finally, experiment was conducted by using 10 subjects and SD method to evaluate feeling of operation. For this result, it was turned out that all subjects feel that proposed interface was intuitive, or to control at their direction. Therefore it was confirmed that human body motion interface has a possibility to be used for an interface of electric wheelchair.

  14. Response to Jakobsson on Human Body Shields

    Directory of Open Access Journals (Sweden)

    Walter E. Block

    2010-10-01

    Full Text Available A grabs B and uses him as a body shield. That is, A hides behind B (A renders B helpless to resist his grasp, and from that vantage point, shoots at C. According to libertarian theory, may B shoot at C, or, is it proper that C pull the trigger at B? In the view of Rothbard (1984, the former is correct: B is entitled to gun down C. In my (Block, forthcoming view, this is incorrect. Rather, it would be lawful to C to properly kill B. (Both Rothbard and I assume that neither B nor C can end A’s reign of terror. Jakobsson (2010 supports the Rothbardian position. The present paper is at an attempt of mine to refute Jakobsson, and, thus, also, Rothbard (1984, once again.

  15. Self versus environment motion in postural control.

    Directory of Open Access Journals (Sweden)

    Kalpana Dokka

    2010-02-01

    Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.

  16. Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome

    Directory of Open Access Journals (Sweden)

    Jana K. Shirey-Rice

    2013-07-01

    Postural orthostatic tachycardia syndrome (POTS is a common autonomic disorder of largely unknown etiology that presents with sustained tachycardia on standing, syncope and elevated norepinephrine spillover. Some individuals with POTS experience anxiety, depression and cognitive dysfunction. Previously, we identified a mutation, A457P, in the norepinephrine (NE; also known as noradrenaline transporter (NET; encoded by SLC6A2 in POTS patients. NET is expressed at presynaptic sites in NE neurons and plays a crucial role in regulating NE signaling and homeostasis through NE reuptake into noradrenergic nerve terminals. Our in vitro studies demonstrate that A457P reduces both NET surface trafficking and NE transport and exerts a dominant-negative impact on wild-type NET proteins. Here we report the generation and characterization of NET A457P mice, demonstrating the ability of A457P to drive the POTS phenotype and behaviors that are consistent with reported comorbidities. Mice carrying one A457P allele (NET+/P exhibited reduced brain and sympathetic NE transport levels compared with wild-type (NET+/+ mice, whereas transport activity in mice carrying two A457P alleles (NETP/P was nearly abolished. NET+/P and NETP/P mice exhibited elevations in plasma and urine NE levels, reduced 3,4-dihydroxyphenylglycol (DHPG, and reduced DHPG:NE ratios, consistent with a decrease in sympathetic nerve terminal NE reuptake. Radiotelemetry in unanesthetized mice revealed tachycardia in NET+/P mice without a change in blood pressure or baroreceptor sensitivity, consistent with studies of human NET A457P carriers. NET+/P mice also demonstrated behavioral changes consistent with CNS NET dysfunction. Our findings support that NET dysfunction is sufficient to produce a POTS phenotype and introduces the first genetic model suitable for more detailed mechanistic studies of the disorder and its comorbidities.

  17. Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome.

    Science.gov (United States)

    Shirey-Rice, Jana K; Klar, Rebecca; Fentress, Hugh M; Redmon, Sarah N; Sabb, Tiffany R; Krueger, Jessica J; Wallace, Nathan M; Appalsamy, Martin; Finney, Charlene; Lonce, Suzanna; Diedrich, André; Hahn, Maureen K

    2013-07-01

    Postural orthostatic tachycardia syndrome (POTS) is a common autonomic disorder of largely unknown etiology that presents with sustained tachycardia on standing, syncope and elevated norepinephrine spillover. Some individuals with POTS experience anxiety, depression and cognitive dysfunction. Previously, we identified a mutation, A457P, in the norepinephrine (NE; also known as noradrenaline) transporter (NET; encoded by SLC6A2) in POTS patients. NET is expressed at presynaptic sites in NE neurons and plays a crucial role in regulating NE signaling and homeostasis through NE reuptake into noradrenergic nerve terminals. Our in vitro studies demonstrate that A457P reduces both NET surface trafficking and NE transport and exerts a dominant-negative impact on wild-type NET proteins. Here we report the generation and characterization of NET A457P mice, demonstrating the ability of A457P to drive the POTS phenotype and behaviors that are consistent with reported comorbidities. Mice carrying one A457P allele (NET(+/P)) exhibited reduced brain and sympathetic NE transport levels compared with wild-type (NET(+/+)) mice, whereas transport activity in mice carrying two A457P alleles (NET(P/P)) was nearly abolished. NET(+/P) and NET(P/P) mice exhibited elevations in plasma and urine NE levels, reduced 3,4-dihydroxyphenylglycol (DHPG), and reduced DHPG:NE ratios, consistent with a decrease in sympathetic nerve terminal NE reuptake. Radiotelemetry in unanesthetized mice revealed tachycardia in NET(+/P) mice without a change in blood pressure or baroreceptor sensitivity, consistent with studies of human NET A457P carriers. NET(+/P) mice also demonstrated behavioral changes consistent with CNS NET dysfunction. Our findings support that NET dysfunction is sufficient to produce a POTS phenotype and introduces the first genetic model suitable for more detailed mechanistic studies of the disorder and its comorbidities.

  18. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  19. Categorical discrimination of human body parts by magnetoencephalography.

    Science.gov (United States)

    Nakamura, Misaki; Yanagisawa, Takufumi; Okamura, Yumiko; Fukuma, Ryohei; Hirata, Masayuki; Araki, Toshihiko; Kamitani, Yukiyasu; Yorifuji, Shiro

    2015-01-01

    Humans recognize body parts in categories. Previous studies have shown that responses in the fusiform body area (FBA) and extrastriate body area (EBA) are evoked by the perception of the human body, when presented either as whole or as isolated parts. These responses occur approximately 190 ms after body images are visualized. The extent to which body-sensitive responses show specificity for different body part categories remains to be largely clarified. We used a decoding method to quantify neural responses associated with the perception of different categories of body parts. Nine subjects underwent measurements of their brain activities by magnetoencephalography (MEG) while viewing 14 images of feet, hands, mouths, and objects. We decoded categories of the presented images from the MEG signals using a support vector machine (SVM) and calculated their accuracy by 10-fold cross-validation. For each subject, a response that appeared to be a body-sensitive response was observed and the MEG signals corresponding to the three types of body categories were classified based on the signals in the occipitotemporal cortex. The accuracy in decoding body-part categories (with a peak at approximately 48%) was above chance (33.3%) and significantly higher than that for random categories. According to the time course and location, the responses are suggested to be body-sensitive and to include information regarding the body-part category. Finally, this non-invasive method can decode category information of a visual object with high temporal and spatial resolution and this result may have a significant impact in the field of brain-machine interface research.

  20. The influence of seat backrest angle on human performance during whole-body vibration.

    Science.gov (United States)

    Paddan, G S; Holmes, S R; Mansfield, N J; Hutchinson, H; Arrowsmith, C I; King, S K; Jones, R J M; Rimell, A N

    2012-01-01

    This study investigated the effects of reclined backrest angles on cognitive and psycho-motor tasks during exposure to vertical whole-body vibration. Twenty participants were each exposed to three test stimuli of vertical vibration: 2-8 Hz; 8-14 Hz and 14-20 Hz, plus a stationary control condition whilst seated on a vibration platform at five backrest angles: 0° (recumbent, supine) to 90° (upright). The vibration magnitude was 2.0 ms(-2) root-mean-square. The participants were seated at one of the backrest angles and exposed to each of the three vibration stimuli while performing a tracking and choice reaction time tasks; then they completed the NASA-TLX workload scales. Apart from 22.5° seat backrest angle for the tracking task, backrest angle did not adversely affect the performance during vibration. However, participants required increased effort to maintain performance during vibration relative to the stationary condition. These results suggest that undertaking tasks in an environment with vibration could increase workload and risk earlier onset of fatigue. Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This paper reports new experimental data systematically investigating the effect of backrest angle on human performance. It demonstrates how workload is elevated with whole-body vibration, without getting affected by backrest angle.

  1. Sensory re-weighting in human postural control during moving-scene perturbations.

    Science.gov (United States)

    Mahboobin, Arash; Loughlin, Patrick J; Redfern, Mark S; Sparto, Patrick J

    2005-11-01

    The aim of the current study was to further investigate a recently proposed "sensory re-weighting" hypothesis, by evoking anterior-posterior (AP) body sway using visual stimuli during sway-referencing of the support surface. Twelve healthy adults participated in this study. Subjects stood on the platform while looking at a visual scene that encompassed the full horizontal field of view. A sequence of scene movements was presented to the subjects consisting of multiple visual push/pull perturbations; in between the first two push/pull sequences, the scene either moved randomly or was stationary. The peak-squared velocity of AP center-of-pressure (COP) was computed within a 6 s window following each push and pull. The peak-squared velocity was lowest for the push/pull sequence immediately following the random moving scene. These results are consistent with the sensory re-weighting hypothesis, wherein the sensory integration process reduced the contribution of visual sensory input during the random moving scene interval. We also found evidence of habituation to moving scene perturbations with repeated exposure.

  2. Representational Similarity of Body Parts in Human Occipitotemporal Cortex.

    Science.gov (United States)

    Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V

    2015-09-23

    Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex

  3. Relationship between alertness, performance, and body temperature in humans

    Science.gov (United States)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  4. Development of Postural Muscles and Their Innervation

    Directory of Open Access Journals (Sweden)

    J. IJkema-Paassen

    2005-01-01

    Full Text Available Control of posture is a prerequisite for efficient motor performance. Posture depends on muscles capable of enduring contractions, whereas movements often require quick, forceful muscle actions. To serve these different goals, muscles contain fibers that meet these different tasks. Muscles with strong postural functions mainly consist of slow muscle fibers with a great resistance against fatigue. Flexor muscles in the leg and arm muscles are mainly composed of fast muscle fibers producing relatively large forces that are rapidly fatigable. Development of the neuromuscular system continues after birth. We discuss in the human baby and in animal experiments changes in muscle fiber properties, regression from polyneural into mononeural innervation, and developmental changes in the motoneurons of postural muscles during that period. The regression of poly-neural innervation in postural muscles and the development of dendrite bundles of their motoneurons seem to be linked to the transition from the immature into the adult-like patterns of moving and postural control.

  5. A relação da postura corporal com a prosódia na doença de parkinson: estudo de caso The relations between body posture and prosody in Parkinson's disease: case study

    Directory of Open Access Journals (Sweden)

    Fernanda Vargas Ferreira

    2007-09-01

    Full Text Available OBJETIVO: investigar a associação entre a postura corporal e a prosódia em indivíduos com Doença de Parkinson. MÉTODOS: estudo de corte transversal realizado com cinco sujeitos com Doença de Parkinson da cidade de Santa Maria, Estado do Rio Grande do Sul, em 2006. Utilizaram-se avaliações da prosódia lingüística e emocional bem como da postura corporal. A análise estatística utilizada foi descritiva. RESULTADOS: foram estudados quatro sujeitos do sexo masculino e um sujeito do sexo feminino com idades entre 37 e 53 anos. Três sujeitos encontravam-se no estágio I, um sujeito no estágio III e um sujeito no estágio IV da doença conforme a escala de classificação da função motora Hohen &Yahr, todos sob o uso de medicação e apresentando os sinais da tríade característica da patologia (rigidez, tremor, bradicinesia bem como as alterações posturais típicas. Na comparação entre prosódia emocional e prosódia lingüística, encontrou-se melhor desempenho na prosódia emocional e não se evidenciou associação entre os estágios da patologia e alterações na postura corporal e prosódia. CONCLUSÃO: as alterações posturais são sinais característicos da Doença de Parkinson, assim como alterações na prosódia lingüística e emocional. A ocorrência de alterações posturais foi elevada entre os parkinsonianos. Os sujeitos apresentaram melhor performance na prosódia emocional. Não houve evidências de que os estágios da doença estivessem associados às alterações da prosódia e da postura corporal.PORPOSE: to investigate the relationship between body posture and prosody in patients with Parkinson Disease. METHODS: the study was carried out with five patients (four males and one female from Santa Maria, Rio Grande do Sul, Brazil, by means of cross-section study, in 2006. Evaluations of linguistic and emotional prosody as well as analysis of body posture were carried out. The statistical analysis was descriptive

  6. [How does music affect the human body?].

    Science.gov (United States)

    Myskja, A; Lindbaek, M

    2000-04-10

    Music therapy has developed its practice and research approaches within a qualitative framework more related to humanistic traditions than to medical science. Music medicine has therefore developed as a separate discipline, endeavouring to incorporate the legitimate therapeutic use of music within a medical framework. This paper argues that more extensive communication and collaboration between the methods developed within the music therapy community, and research based on medical science, could lead to a better understanding of the place of music as a therapeutic tool, both as regards its efficacy and its limits. Research has shown that music may influence central physiological variables like blood pressure, heart rate, respiration, EEG measurements, body temperature and galvanic skin response. Music influences immune and endocrine function. The existing research literature shows growing knowledge of how music can ameliorate pain, anxiety, nausea, fatigue and depression. There is less research done on how music, and what type of music, is utilized and administered specifically for optimum effect in specific clinical situations.

  7. Size variation in small-bodied humans from palau, micronesia.

    Directory of Open Access Journals (Sweden)

    Andrew Gallagher

    Full Text Available BACKGROUND: Recent discoveries on Palau are claimed to represent the remains of small-bodied humans that may display evidence insular size reduction. This claim has yet to be statistically validated METHODOLOGY/PRINCIPAL FINDINGS: Published postcranial specimens (n = 16 from Palau were assessed relative to recent small-bodied comparative samples. Resampling statistical approaches were employed to test specific hypotheses relating to body size in the Palau sample. Results confirm that the Palau postcranial sample is indisputably small-bodied. CONCLUSIONS/SIGNIFICANCE: A single, homogenous body size morph is represented in early prehistoric postcrania from Palau. Small body size in early Palauans is an ancestral characteristic and was likely not a consequence of in-situ size reduction. Specimens from Palau have little bearing upon hypothesised insular size reduction in the ancestral lineage of Homo floresiensis.

  8. Natural User Interface Sensors for Human Body Measurement

    Science.gov (United States)

    Boehm, J.

    2012-08-01

    The recent push for natural user interfaces (NUI) in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  9. The dentist's operating posture - ergonomic aspects.

    Science.gov (United States)

    Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C

    2014-06-15

    The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.

  10. Body mass estimates of hominin fossils and the evolution of human body size.

    Science.gov (United States)

    Grabowski, Mark; Hatala, Kevin G; Jungers, William L; Richmond, Brian G

    2015-08-01

    Body size directly influences an animal's place in the natural world, including its energy requirements, home range size, relative brain size, locomotion, diet, life history, and behavior. Thus, an understanding of the biology of extinct organisms, including species in our own lineage, requires accurate estimates of body size. Since the last major review of hominin body size based on postcranial morphology over 20 years ago, new fossils have been discovered, species attributions have been clarified, and methods improved. Here, we present the most comprehensive and thoroughly vetted set of individual fossil hominin body mass predictions to date, and estimation equations based on a large (n = 220) sample of modern humans of known body masses. We also present species averages based exclusively on fossils with reliable taxonomic attributions, estimates of species averages by sex, and a metric for levels of sexual dimorphism. Finally, we identify individual traits that appear to be the most reliable for mass estimation for each fossil species, for use when only one measurement is available for a fossil. Our results show that many early hominins were generally smaller-bodied than previously thought, an outcome likely due to larger estimates in previous studies resulting from the use of large-bodied modern human reference samples. Current evidence indicates that modern human-like large size first appeared by at least 3-3.5 Ma in some Australopithecus afarensis individuals. Our results challenge an evolutionary model arguing that body size increased from Australopithecus to early Homo. Instead, we show that there is no reliable evidence that the body size of non-erectus early Homo differed from that of australopiths, and confirm that Homo erectus evolved larger average body size than earlier hominins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.

    Science.gov (United States)

    Capela, N A; Lemaire, E D; Baddour, N; Rudolf, M; Goljar, N; Burger, H

    2016-01-20

    Mobile health monitoring using wearable sensors is a growing area of interest. As the world's population ages and locomotor capabilities decrease, the ability to report on a person's mobility activities outside a hospital setting becomes a valuable tool for clinical decision-making and evaluating healthcare interventions. Smartphones are omnipresent in society and offer convenient and suitable sensors for mobility monitoring applications. To enhance our understanding of human activity recognition (HAR) system performance for able-bodied and populations with gait deviations, this research evaluated a custom smartphone-based HAR classifier on fifteen able-bodied participants and fifteen participants who suffered a stroke. Participants performed a consecutive series of mobility tasks and daily living activities while wearing a BlackBerry Z10 smartphone on their waist to collect accelerometer and gyroscope data. Five features were derived from the sensor data and used to classify participant activities (decision tree). Sensitivity, specificity and F-scores were calculated to evaluate HAR classifier performance. The classifier performed well for both populations when differentiating mobile from immobile states (F-score > 94 %). As activity recognition complexity increased, HAR system sensitivity and specificity decreased for the stroke population, particularly when using information derived from participant posture to make classification decisions. Human activity recognition using a smartphone based system can be accomplished for both able-bodied and stroke populations; however, an increase in activity classification complexity leads to a decrease in HAR performance with a stroke population. The study results can be used to guide smartphone HAR system development for populations with differing movement characteristics.

  12. Skin Sensitive Difference of Human Body Sections under Clothing --Comparative Judging of Body Sections' Cold Sensitivity Sequence

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WANG Yun-yi; WU Hai-yan

    2005-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design. By a new psychological & physical researching method, the subjective psychological perception of human body sections affected by the same cold stimulus are studied, and with Thurstone comparative judgement the main human body sections' cold sensitivity sequences are obtained. Furthermore the physiological causes for skin sensitive difference of human body sections under clothing are suggested.

  13. Development of the ventral body wall in the human embryo.

    Science.gov (United States)

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Köhler, S Eleonore; Lamers, Wouter H

    2015-11-01

    Migratory failure of somitic cells is the commonest explanation for ventral body wall defects. However, the embryo increases ~ 25-fold in volume in the period that the ventral body wall forms, so that differential growth may, instead, account for the observed changes in topography. Human embryos between 4 and 10 weeks of development were studied, using amira reconstruction and cinema 4D remodeling software for visualization. Initially, vertebrae and ribs had formed medially, and primordia of sternum and hypaxial flank muscle primordium laterally in the body wall at Carnegie Stage (CS)15 (5.5 weeks). The next week, ribs and muscle primordium expanded in ventrolateral direction only. At CS18 (6.5 weeks), separate intercostal and abdominal wall muscles differentiated, and ribs, sterna, and muscles began to expand ventromedially and caudally, with the bilateral sternal bars fusing in the midline after CS20 (7 weeks) and the rectus muscles reaching the umbilicus at CS23 (8 weeks). The near-constant absolute distance between both rectus muscles and approximately fivefold decline of this distance relative to body circumference between 6 and 10 weeks identified dorsoventral growth in the dorsal body wall as determinant of the 'closure' of the ventral body wall. Concomitant with the straightening of the embryonic body axis after the 6th week, the abdominal muscles expanded ventrally and caudally to form the infraumbilical body wall. Our data, therefore, show that the ventral body wall is formed by differential dorsoventral growth in the dorsal part of the body.

  14. Functional synergies underlying control of upright posture during changes in head orientation.

    Directory of Open Access Journals (Sweden)

    Eunse Park

    Full Text Available BACKGROUND: Studies of human upright posture typically have stressed the need to control ankle and hip joints to achieve postural stability. Recent studies, however, suggest that postural stability involves multi degree-of-freedom (DOF coordination, especially when performing supra-postural tasks. This study investigated kinematic synergies related to control of the body's position in space (two, four and six DOF models and changes in the head's orientation (six DOF model. METHODOLOGY/PRINCIPAL FINDINGS: Subjects either tracked a vertically moving target with a head-mounted laser pointer or fixated a stationary point during 4-min trials. Uncontrolled manifold (UCM analysis was performed across tracking cycles at each point in time to determine the structure of joint configuration variance related to postural stability or tracking consistency. The effect of simulated removal of covariance among joints on that structure was investigated to further determine the role of multijoint coordination. Results indicated that cervical joint motion was poorly coordinated with other joints to stabilize the position of the body center of mass (CM. However, cervical joints were coordinated in a flexible manner with more caudal joints to achieve consistent changes in head orientation. CONCLUSIONS/SIGNIFICANCE: An understanding of multijoint coordination requires reference to the stability/control of important performance variables. The nature of that coordination differs depending on the reference variable. Stability of upright posture primarily involved multijoint coordination of lower extremity and lower trunk joints. Consistent changes in the orientation of the head, however, required flexible coordination of those joints with motion of the cervical spine. A two-segment model of postural control was unable to account for the observed stability of the CM position during the tracking task, further supporting the need to consider multijoint coordination to

  15. A postura corporal e as funções estomatognáticas em crianças respiradoras orais: uma revisão de literatura Body posture and the stomatognathic functions in mouth breathing children: a literature review

    Directory of Open Access Journals (Sweden)

    Patricia Girarde Machado

    2012-06-01

    Full Text Available A postura corporal das crianças é objeto de crescente estudo na fisioterapia, assim como as crianças respiradoras orais o são na fonoaudiologia. Este estudo tem por objetivo verificar, na literatura científica, as funções estomatognáticas, a postura corporal e suas relações, em crianças respiradoras orais. Trata-se de uma revisão da literatura sobre a postura corporal, e o sistema estomatognático e suas relações em respiradores orais obstrutivos e funcionais. Buscou-se nas bases de dados eletrônicos MEDLINE, SCIELO e LILACS, e Googlecientífico, artigos que relacionassem esses temas nos últimos 10 anos. Os artigos selecionados foram organizados de acordo com os autores, o título, a origem, a faixa etária e o ano de publicação. Após a seleção dos textos, foram identificados apenas quatro trabalhos que relacionam postura, sistema estomatognático e respiração oral; dois que relacionam sistema estomatognático e postura; e a maioria, treze que estudam sistema estomatognático e respiração oral; dentre outros. Notou-se que há uma escassez de informações sobre a relação da postura corporal com o sistema estomatognático em respiradores orais. A escassez é ainda maior quando se compara o grupo de respiradores orais obstrutivos e respiradores orais funcionais relacionando a postura corporal com o sistema estomatognático.Children's body posture has been studied more and more by physical therapy, as well as mouth breather children have been studied by speech-language-hearing therapy. This study tries to check, through scientific literature, the relationship between stomatognathic functions and body posture in mouth breather children. This is a review of literature on body posture and the stomatognathic system in obstructive and functional mouth breathers. We searched, in electronic data basis such as MEDLINE, SCIELO and LILACS, and Google Scientific, articles related to these topics, published in the last 10. The

  16. Source Localization of Brain States Associated with Canonical Neuroimaging Postures.

    Science.gov (United States)

    Lifshitz, Michael; Thibault, Robert T; Roth, Raquel R; Raz, Amir

    2017-02-14

    Cognitive neuroscientists rarely consider the influence that body position exerts on brain activity; yet, postural variation holds important implications for the acquisition and interpretation of neuroimaging data. Whereas participants in most behavioral and EEG experiments sit upright, many prominent brain imaging techniques (e.g., fMRI) require participants to lie supine. Here we demonstrate that physical comportment profoundly alters baseline brain activity as measured by magnetoencephalography (MEG)-an imaging modality that permits multipostural acquisition. We collected resting-state MEG data from 12 healthy participants in three postures (lying supine, reclining at 45°, and sitting upright). Source-modeling analysis revealed a broadly distributed influence of posture on resting brain function. Sitting upright versus lying supine was associated with greater high-frequency (i.e., beta and gamma) activity in widespread parieto-occipital cortex. Moreover, sitting upright and reclined postures correlated with dampened activity in prefrontal regions across a range of bandwidths (i.e., from alpha to low gamma). The observed effects were large, with a mean Cohen's d of 0.95 (SD = 0.23). In addition to neural activity, physiological parameters such as muscle tension and eye blinks may have contributed to these posture-dependent changes in brain signal. Regardless of the underlying mechanisms, however, the present results have important implications for the acquisition and interpretation of multimodal imaging data (e.g., studies combining fMRI or PET with EEG or MEG). More broadly, our findings indicate that generalizing results-from supine neuroimaging measurements to erect positions typical of ecological human behavior-would call for considering the influence that posture wields on brain dynamics.

  17. The commerce of human body parts: an Eastern Orthodox response.

    Science.gov (United States)

    Reardon, P H

    2000-08-01

    The Orthodox Church teaches that the bodies of those in Christ are to be regarded as sanctified by the hearing of the Word and faithful participation in the Sacraments, most particularly the Holy Eucharist; because of the indwelling of the Holy Spirit the consecrated bodies of Christians do not belong to them but to Christ; with respect to the indwelling Holy Spirit there is no difference between the bodies of Christians before and after death; whether before or after death, the Christian body is also to receive the same veneration; and notwithstanding the physical corruptions that the body endures by reason of death, there remains a strict continuity between the body in which the Christian dies and the body in which the Christian will rise again. That is to say, it is the very same reality that is sown in corruption and will be raised in incorruption. Given such consideration, the notion of "selling" and integral part of a human being is simply outside the realm of rational comprehension. Indeed, it is profoundly repugnant to those Orthodox Christian sentiments that are formed and nourished by the Church's sacramental teaching and liturgical worship. One does not sell or purchase that which has been consecrated in those solemn ways that the Church consecrates the human body.

  18. Determining postural stability

    Science.gov (United States)

    Lieberman, Erez (Inventor); Forth, Katharine E. (Inventor); Paloski, William H. (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  19. Governing the postmortem procurement of human body material for research.

    Science.gov (United States)

    Van Assche, Kristof; Capitaine, Laura; Pennings, Guido; Sterckx, Sigrid

    2015-03-01

    Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent.

  20. The Human-Body-in-Coordination as Perceptual Instrument

    Directory of Open Access Journals (Sweden)

    Harrison Steven J.

    2011-12-01

    Full Text Available Recent evidence suggests that the human body in locomotor coordination performs dual roles, acting to propel the body over the surface of support, and embodying haptic information arising from and specific to the movement of the body as a whole with respect to the substrate. Here we show that blindfolded human subjects, trained to crawl using gait patterns that differed in the spatio-temporal symmetries defined with respect to the arms and legs in coordination, perceived distance travelled quadrupedally. These results suggest that 1 the body in coordination gives rise to a haptic measure of how one is moving through the world relative to the substrate and 2 that the measure that results is specific to the softly assembled global organization of the locomotor action system.

  1. POSTUR PADA WANITA HAMIL

    Directory of Open Access Journals (Sweden)

    Paryono .

    2013-09-01

    Full Text Available ABSTRACTIntroduction: Pregnancy effects in changes on all body systems leading to a new balance women and maternal adaptation.Weight gain in pregnant women from both the uterus and breast development generally occurs at the front of the body, butwhen standing they were still able to maintain a posture that does not face. The purpose of this article is to examine thereasons why pregnant women do not fall to front and how the good attitude of the pregnant woman's body.Materials and Methods: Material of this article are literatures related to pregnancy and the pregnant woman's bodyp o s t u r e , a n d t h e y w e r e c o l l e c t e d b y l i t e r a t u r e ' s s t u d y a n d l i t e r a r y s t u d y .Discussion: Increased abdominal distension that makes tilting the pelvis forward, decreased abdominal muscle tone andincrease weight gain in late pregnancy requires a readjustment spinal curvature. Woman's center of gravity shifts forward.Lumbosakrum normal curve should be more curved and the curvature of the servikodorsal be formed to maintain balance.Assessment of anterior view, lateral and posterior body should include an understanding of the physical structures such asjoints and muscles as well as how the meridian pathways. To compensate for the anterior position of the enlarged uterus,lordosis shifting center of gravity to the back of the lower limbs. There is an increased sacroiliac joint mobility,sakrokoksigeal, and pubic joints during pregnancy, possibly due to hormonal changes. Individual assessments will berequired to determine the pattern of muscle for every person, especially for those who have musculoskeletal problems.Conclusions and Recommendations: The size of the stomach in a pregnant woman, then the gravity of the body changes.Body to be biased toward the rear, but this position makes your back hurt. Advice for pregnant women in order to maintainyour posture as follows: head upKeyword : Posture, Pregnancy, Women.

  2. Segmentation of human upper body movement using multiple IMU sensors.

    Science.gov (United States)

    Aoki, Takashi; Lin, Jonathan Feng-Shun; Kulic, Dana; Venture, Gentiane

    2016-08-01

    This paper proposes an approach for the segmentation of human body movements measured by inertial measurement unit sensors. Using the angular velocity and linear acceleration measurements directly, without converting to joint angles, we perform segmentation by formulating the problem as a classification problem, and training a classifier to differentiate between motion end-point and within-motion points. The proposed approach is validated with experiments measuring the upper body movement during reaching tasks, demonstrating classification accuracy of over 85.8%.

  3. Optimization study of using PTC for human body heating dissipation

    Directory of Open Access Journals (Sweden)

    Tiberiu Adrian SALAORU

    2014-06-01

    Full Text Available A better knowledge of the human body heat loses mechanisms is important for both diminishing the number of deaths during the surgical procedures of the patients under effect of full anaesthesia and increasing the efficiency of the Heating, Ventilation and Air Conditioning (HVAC systems. For these studies it is necessary to manufacture a human body mannequin having its surface temperature maintained on a value close to the real human body temperature. A number of PTC (Positive Temperature Coefficient thermistors placed on the entire external surface of the mannequin can be used for this purpose. This paper presents a study of the transient heating regime and the stability of the maintained temperature, performed on these devices.

  4. Gender recognition from unconstrained and articulated human body.

    Science.gov (United States)

    Wu, Qin; Guo, Guodong

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  5. Identification of rheological properties of human body surface tissue.

    Science.gov (United States)

    Benevicius, Vincas; Gaidys, Rimvydas; Ostasevicius, Vytautas; Marozas, Vaidotas

    2014-04-11

    According to World Health Organization obesity is one of the greatest public health challenges of the 21st century. It has tripled since the 1980s and the numbers of those affected continue to rise at an alarming rate, especially among children. There are number of devices that act as a prevention measure to boost person's motivation for physical activity and its levels. The placement of these devices is not restricted thus the measurement errors that appear because of the body rheology, clothes, etc. cannot be eliminated. The main objective of this work is to introduce a tool that can be applied directly to process measured accelerations so human body surface tissue induced errors can be reduced. Both the modeling and experimental techniques are proposed to identify body tissue rheological properties and prelate them to body mass index. Multi-level computational model composed from measurement device model and human body surface tissue rheological model is developed. Human body surface tissue induced inaccuracies can increase the magnitude of measured accelerations up to 34% when accelerations of the magnitude of up to 27 m/s(2) are measured. Although the timeframe of those disruptions are short - up to 0.2 s - they still result in increased overall measurement error.

  6. More-Realistic Digital Modeling of a Human Body

    Science.gov (United States)

    Rogge, Renee

    2010-01-01

    A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.

  7. Emergency Handling for MAC Protocol in Human Body Communication

    Directory of Open Access Journals (Sweden)

    Kwon Youngmi

    2011-01-01

    Full Text Available The human body communication (HBC is a technology that enables short range data communication using the human body as a medium, like an electrical wire. Thus it removes the need for a traditional antenna. HBC may be used as a type of data communication in body area network (BAN, while the devices are being in contact with body. One of important issues in BAN is an emergency alarm because it may be closely related to human life. For emergency data communication, the most critical factor is the time constraint. IEEE 802.15.6 specifies that the emergency alarm for the BAN must be notified in less than 1 sec and must provide prioritization mechanisms for emergency traffic and notification. As one type of BAN, the HBC must follow this recommendation, too. Existing emergency handling methods in BAN are based on the carrier sensing capability on radio frequencies to detect the status of channels. However, PHY protocol in HBC does not provide the carrier sensing. So the previous methods are not well suitable for HBC directly. Additionally, in the environment that the emergency rate is very low, the allocation of dedicated slot(s for emergency in each superframe is very wasteful. In this work, we proposed specific emergency handling operation for human body communication's medium access control (HBC-MAC protocol to meet the emergency requirements for BAN. We also showed the optimal number of emergency slots for the various combinations of beacon intervals and emergency rates.

  8. Biostereometric Data Processing In ERGODATA: Choice Of Human Body Models

    Science.gov (United States)

    Pineau, J. C.; Mollard, R.; Sauvignon, M.; Amphoux, M.

    1983-07-01

    The definition of human body models was elaborated with anthropometric data from ERGODATA. The first model reduces the human body into a series of points and lines. The second model is well adapted to represent volumes of each segmentary element. The third is an original model built from the conventional anatomical points. Each segment is defined in space by a tri-angular plane located with its 3-D coordinates. This new model can answer all the processing possibilities in the field of computer-aided design (C.A.D.) in ergonomy but also biomechanics and orthopaedics.

  9. The Reconfigured Body. Human-animal relations in xenotransplantation

    Directory of Open Access Journals (Sweden)

    Kristofer Hansson

    2011-12-01

    Full Text Available The article explores issues concerning the reconfiguration of human and animal bodies in modern biotechnology. The examples are based on xenotransplantation: Transplantation of cells, tissue and organs from animals to humans. Three thematic issues that emerged from xenotransplantation research in Sweden in the 1990s and early 2000s are examined in the article. The first issue concerns how the pig was introduced as a donor animal in xenotransplantation and, at the same time, dehumanized in relation to what is human. Baboons and chimpanzees that had previously been used in xenotransplantation now became an ethically problematic choice, and were in stead humanized. The second issue concerns the introduction of transgenic and cloned pigs as commoditized objects. The biotechnological development reconfigured the pig’s cells, tissue and organs to become more human-like. The third issue concerns the risk that pigs contain retrovirus that could infect the transplanted patients. The human body became part of a network of both animal and retrovirus. Boundlessness between human and animal bodies appears in these three thematic phases and is analysed from a cultural perspective.

  10. Inclusion bodies in loggerhead erythrocytes are associated with unstable hemoglobin and resemble human Heinz bodies.

    Science.gov (United States)

    Basile, Filomena; Di Santi, Annalisa; Caldora, Mercedes; Ferretti, Luigi; Bentivegna, Flegra; Pica, Alessandra

    2011-08-01

    The aim of this study was to clarify the role of the erythrocyte inclusions found during the hematological screening of loggerhead population of the Mediterranean Sea. We studied the erythrocyte inclusions in blood specimens collected from six juvenile and nine adult specimens of the loggerhead turtle, Caretta caretta, from the Adriatic and Tyrrhenian Seas. Our study indicates that the percentage of mature erythrocytes containing inclusions ranged from 3 to 82%. Each erythrocyte contained only one round inclusion body. Inclusion bodies stained with May Grünwald-Giemsa show that their cytochemical and ultrastructure characteristics are identical to those of human Heinz bodies. Because Heinz bodies originate from the precipitation of unstable hemoglobin (Hb) and cause globular osmotic resistance to increase, we analyzed loggerhead Hb using electrophoresis and high-performance liquid chromatography to detect and quantitate Hb fractions. We also tested the resistance of Hb to alkaline pH, heat, isopropanol denaturation, and globular osmosis. Our hemogram results excluded the occurrence of any infection, which could be associated with an inclusion body, in all the specimens. Negative Feulgen staining indicated that the inclusion bodies are not derived from DNA fragmentation. We hypothesize that amino acid substitutions could explain why loggerhead Hb precipitates under normal physiologic conditions, forming Heinz bodies. The identification of inclusion bodies in loggerhead erythrocytes allow us to better understand the haematological characteristics and the physiology of these ancient reptiles, thus aiding efforts to conserve such an endangered species. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  11. The Effect of the Posture of the “Hermit Doing Body Contortion” on Relief of Shoulder and Scapular Pain Caused by Chronic Myofascial Pain Syndrome: A Randomized, Parallel Group, Controlled Trial

    Directory of Open Access Journals (Sweden)

    Peamruetai Butdapan

    2016-11-01

    Full Text Available Objective: To explore the ability of the posture of the “Hermit Doing Body Contortion” (HDBC to relieve shoulder and scapular pain in patients with chronic myofascial pain syndrome (MPS. Methods: One hundred and thirty-six out-patients with chronic MPS were randomly assigned to one of two groups. The experimental group was advised to perform a posture of the HDBC named “posture for relieving abdominal pain, pain of the scapular blade” (PRASP every day for two months. Both groups received Thai traditional massage treatment and hot herbal compresses once a week for four weeks. Using a numeric rating scale and dolorimeter, outcomes were assessed prior to commencing the intervention (M0 , and one and two months after commencing the intervention (M1 and M2 . Results: The mean change in pain intensity between M1 and M2 differed significantly between the groups (1.32±1.45 in the experimental group and 0.47±2.26 in the control group; p = 0.039. Similarly, the mean change in pressure pain threshold between M0 and M2 also differed significantly between the groups (1.39±1.76 in the experimental group and 0.53±1.90 in the control group; p =0.027. In both cases, the experimental group achieved greater pain relief. Conclusion: In patients with chronic MPS, the posture of the HDBC combined with standard Thai traditional medicine treatments provided better ongoing relief of shoulder and scapular pain than did standard Thai traditional medicine treatments alone. Clinical trial registration no.: TCTR20151230002

  12. BODY PRESSURE DISTRIBUTION OF AUTOMOBILE DRIVING HUMAN MACHINE CONTACT INTERFACE

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; HONG Jun; ZHANG E; LIANG Jian; LU Bingheng

    2007-01-01

    Aiming at the fatigue and comfort issues of human-machine contact Interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic Indexes are mapped to biomechanical Indexes like muscle stress-strain, the compression deformation of Wood vessels and nerves etc.from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive lest platform for sitting comfort of 3D adjustable contact Interface is constructed. The lest of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical Indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface.

  13. Sports activities are reflected in the local stability and regularity of body sway : Older ice-skaters have better postural control than inactive elderly

    NARCIS (Netherlands)

    Lamoth, Claudine J. C.; van Heuvelen, Marieke J. G.

    2012-01-01

    With age postural control deteriorates and increases the risk for falls. Recent research has suggested that in contrast to persons with superior balance control (dancer's athletes), with pathology and aging, predictability and regularity of sway patterns increase and stability decreases implying a l

  14. Exemplification of Movement Patterns and Their Influence on Body Posture in Younger School-Age Children on the Basis of an Authorial Program “I Take Care of My Spine”

    Science.gov (United States)

    Brzek, Anna; Plinta, Ryszard

    2016-01-01

    Abstract Exemplification of movement patterns is most noticeable in the youngest pupils group. Generally, children do not know which patterns are correct and which ones are risk factors. After correcting and stabilizing some improper patterns, a child can perform their daily activities without constant cognizance of their appropriateness. The concept of this research is included in a paradigm for the quality research conducted as action-research, which assumed a quality and efficiency improvement of health education in Polish schools. The main aim of this study was to encourage pupils, their parents and teachers to perform pro-health behaviors oriented toward maintaining an appropriate body posture. First, the study aimed to assess the postures of children involved in the authorial program “I take care of my spine” in comparison with a group of children without diagnosed postural defects and not involved in the curriculum. The examinations covered a group of 144 children (group A) ages 7 to 9 years (mean 7.60 ± 0.64 years) with appropriate body postures recognized in the screening test, which was conducted at a school where the curriculum “I take care of my spine” was launched. The control group included 222 healthy children at a similar age who attended schools where the curriculum was not implemented. The examinations were performed 2 times, as follows: the first time occurred before the program “I take care of my spine” was launched (initial examination), and the second time after 9 to 10 months of full participation in the program's activities and after 1 year of observation of children from group B (final examination). A significant improvement of posturometric parameters in the main group and worsening of the parameters in the control group were noted. The results in examined groups of children and diversification of the results were linked to implementing the prevention program in the main group. In the group of children involved in the

  15. Exemplification of Movement Patterns and Their Influence on Body Posture in Younger School-Age Children on the Basis of an Authorial Program "I Take Care of My Spine".

    Science.gov (United States)

    Brzek, Anna; Plinta, Ryszard

    2016-03-01

    Exemplification of movement patterns is most noticeable in the youngest pupils group. Generally, children do not know which patterns are correct and which ones are risk factors. After correcting and stabilizing some improper patterns, a child can perform their daily activities without constant cognizance of their appropriateness. The concept of this research is included in a paradigm for the quality research conducted as action-research, which assumed a quality and efficiency improvement of health education in Polish schools.The main aim of this study was to encourage pupils, their parents and teachers to perform pro-health behaviors oriented toward maintaining an appropriate body posture. First, the study aimed to assess the postures of children involved in the authorial program "I take care of my spine" in comparison with a group of children without diagnosed postural defects and not involved in the curriculum.The examinations covered a group of 144 children (group A) ages 7 to 9 years (mean 7.60 ± 0.64 years) with appropriate body postures recognized in the screening test, which was conducted at a school where the curriculum "I take care of my spine" was launched. The control group included 222 healthy children at a similar age who attended schools where the curriculum was not implemented. The examinations were performed 2 times, as follows: the first time occurred before the program "I take care of my spine" was launched (initial examination), and the second time after 9 to 10 months of full participation in the program's activities and after 1 year of observation of children from group B (final examination).A significant improvement of posturometric parameters in the main group and worsening of the parameters in the control group were noted. The results in examined groups of children and diversification of the results were linked to implementing the prevention program in the main group. In the group of children involved in the postural prevention program

  16. A long term model of circulation. [human body

    Science.gov (United States)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  17. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD).

    Science.gov (United States)

    Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W

    2016-01-01

    Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial

  18. Human and animal sounds influence recognition of body language.

    Science.gov (United States)

    Van den Stock, Jan; Grèzes, Julie; de Gelder, Beatrice

    2008-11-25

    In naturalistic settings emotional events have multiple correlates and are simultaneously perceived by several sensory systems. Recent studies have shown that recognition of facial expressions is biased towards the emotion expressed by a simultaneously presented emotional expression in the voice even if attention is directed to the face only. So far, no study examined whether this phenomenon also applies to whole body expressions, although there is no obvious reason why this crossmodal influence would be specific for faces. Here we investigated whether perception of emotions expressed in whole body movements is influenced by affective information provided by human and by animal vocalizations. Participants were instructed to attend to the action displayed by the body and to categorize the expressed emotion. The results indicate that recognition of body language is biased towards the emotion expressed by the simultaneously presented auditory information, whether it consist of human or of animal sounds. Our results show that a crossmodal influence from auditory to visual emotional information obtains for whole body video images with the facial expression blanked and includes human as well as animal sounds.

  19. The Contribution of Pre-impact Posture on Restrained Occupant Finite Element Model Response in Frontal Impact.

    Science.gov (United States)

    Poulard, David; Subit, Damien; Nie, Bingbing; Donlon, John-Paul; Kent, Richard W

    2015-01-01

    The objective of this study was to discuss the influence of the pre-impact posture to the response of a finite element human body model (HBM) in frontal impacts. This study uses previously published cadaveric tests (PMHS), which measured six realistic pre-impact postures. Seven postured models were created from the THUMS occupant model (v4.0): one matching the standard UMTRI driving posture as it was the target posture in the experiments, and six matching the measured pre-impact postures. The same measurements as those obtained during the cadaveric tests were calculated from the simulations, and biofidelity metrics based on signals correlation (CORA) were established to compare the response of the seven models to the experiments. The HBM responses showed good agreement with the PMHS responses for the reaction forces (CORA = 0.80 ± 0.05) and the kinematics of the lower part of the torso but only fair correlation was found with the head, the upper spine, rib strains (CORA= 0.50 ± 0.05) and chest deflections (CORA = 0.67 ± 0.08). All models sustained rib fractures, sternal fracture and clavicle fracture. The average number of rib fractures for all the models was 5.3 ± 1.0, lower than in the experiments (10.8 ± 9.0). Variation in pre-impact posture greatly altered the time histories of the reaction forces, deflections and the rib strains, mainly in terms of time delay, but no definite improvement in HBM response or injury prediction was observed. By modifying only the posture of the HBM, the variability in the impact response was found to be equivalent to that observed in the experiments. The postured HBM sustained from 4 to 8 rib fractures, confirming that the pre-impact posture influenced the injury outcome predicted by the simulation. This study tries to answer an important question: what is the effect of occupant posture on kinematics and kinetics. Significant differences in kinematics observed between HBM and PMHS suggesting more coupling between the pelvis

  20. Spinal lordosis optimizes the requirements for a stable erect posture.

    Science.gov (United States)

    Wagner, Heiko; Liebetrau, Anne; Schinowski, David; Wulf, Thomas; de Lussanet, Marc H E

    2012-04-16

    Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally. We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA) of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability. We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment.

  1. Spinal lordosis optimizes the requirements for a stable erect posture

    Directory of Open Access Journals (Sweden)

    Wagner Heiko

    2012-04-01

    Full Text Available Abstract Background Lordosis is the bending of the lumbar spine that gives the vertebral column of humans its characteristic ventrally convex curvature. Infants develop lordosis around the time when they acquire bipedal locomotion. Even macaques develop a lordosis when they are trained to walk bipedally. The aim of this study was to investigate why humans and some animals develop a lumbar lordosis while learning to walk bipedally. Results We developed a musculoskeletal model of the lumbar spine, that includes an asymmetric, dorsally shifted location of the spinal column in the body, realistic moment arms, and physiological cross-sectional areas (PCSA of the muscles as well as realistic force-length and force-velocity relationships. The model was used to analyze the stability of an upright body posture. According to our results, lordosis reduces the local joint torques necessary for an equilibrium of the vertebral column during an erect posture. At the same time lordosis increases the demands on the global muscles to provide stability. Conclusions We conclude that the development of a spinal lordosis is a compromise between the stability requirements of an erect posture and the necessity of torque equilibria at each spinal segment.

  2. Fusion of Multiple Pyroelectric Characteristics for Human Body Identification

    Directory of Open Access Journals (Sweden)

    Wanchun Zhou

    2014-12-01

    Full Text Available Due to instability and poor identification ability of single pyroelectric infrared (PIR detector for human target identification, this paper proposes a new approach to fuse the information collected from multiple PIR sensors for human identification. Firstly, Fast Fourier Transform (FFT, Short Time Fourier Transform (STFT, Wavelet Transform (WT and Wavelet Packet Transform (WPT are adopted to extract features of the human body, which can be achieved by single PIR sensor. Then, we apply Principal Component Analysis (PCA and Support Vector Machine (SVM to reduce the characteristic dimensions and to classify the human targets, respectively. Finally, Fuzzy Comprehensive Evaluation (FCE is utilized to fuse recognition results from multiple PIR sensors to finalize human identification. The pyroelectric characteristics under scenarios with different people and/or different paths are analyzed by various experiments, and the recognition results with/without fusion procedure are also shown and compared. The experimental results demonstrate our scheme has improved efficiency for human identification.

  3. A REVIEW ON LOWER APPENDICULAR MUSCULOSKELETAL SYSTEM OF HUMAN BODY

    Directory of Open Access Journals (Sweden)

    M. Akhtaruzzaman

    2016-04-01

    Full Text Available Rehabilitation engineering plays an important role in designing various autonomous robots to provide better therapeutic exercise to disabled patients. Hence it is necessary to study human musculoskeletal system and also needs to be presented in scientific manner in order to describe and analyze the biomechanics of human body motion. This review focuses on lower appendicular musculoskeletal structure of human body to represent joints and links architectures; to identify muscle attachments and functions; and to illustrate muscle groups which are responsible for a particular joint movement. Firstly, human lower skeletal structure, linking systems, joint mechanisms, and their functions are described with a conceptual representation of joint architecture of human skeleton. This section also represents joints and limbs by comparing with mechanical systems. Characteristics of ligaments and their functions to construct skeletal joints are also discussed briefly in this part. Secondly, the study focuses on muscular system of human lower limbs where muscle structure, functions, roles in moving endoskeleton structure, and supporting mechanisms are presented ellaborately. Thirdly, muscle groups are tabulated based on functions that provide mobility to different joints of lower limbs. Finally, for a particular movement action of lower extremity, muscles are also grouped and tabulated to have a better understanding on functions of individual muscle. Basically the study presents an overview of the structure of human lower limbs by characterizing and classifying skeletal and muscular systems.KEYWORDS:   Musculoskeletal system; Human lower limbs; Muscle groups; Joint motion; Biomechatronics; Rehabilitation.

  4. Medical Sequencing at the extremes of Human Body Mass

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy; Ustaszewski,Anna; Martin, Joes; Hebert, Sybil; Doelle, Heather; Ersoy, Baran; Kryukov, Gregory; Schmidt, Steffen; Yosef, Nir; Ruppin, Eytan; Sharan,Roded; Vaisse, Christian; Sunyaev, Shamil; Dent, Robert; Cohen, Jonathan; McPherson, Ruth; Pennacchio, Len A.

    2006-09-01

    Body weight is a quantitative trait with significantheritability in humans. To identify potential genetic contributors tothis phenotype, we resequenced the coding exons and splice junctions of58 genes in 379 obese and 378 lean individuals. Our 96Mb survey included21 genes associated with monogenic forms of obesity in humans or mice, aswell as 37 genes that function in body weight-related pathways. We foundthat the monogenic obesity-associated gene group was enriched for rarenonsynonymous variants unique to the obese (n=46) versus lean (n=26)populations. Computational analysis further predicted a significantlygreater fraction of deleterious variants within the obese cohort.Consistent with the complex inheritance of body weight, we did notobserve obvious familial segregation in the majority of the 28 availablekindreds. Taken together, these data suggest that multiple rare alleleswith variable penetrance contribute to obesity in the population andprovide a deep medical sequencing based approach to detectthem.

  5. Intellectual property rights and detached human body parts.

    Science.gov (United States)

    Pila, Justine

    2014-01-01

    This paper responds to an invitation by the editors to consider whether the intellectual property (IP) regime suggests an appropriate model for protecting interests in detached human body parts. It begins by outlining the extent of existing IP protection for body parts in Europe, and the relevant strengths and weaknesses of the patent system in that regard. It then considers two further species of IP right of less obvious relevance. The first are the statutory rights of ownership conferred by domestic UK law in respect of employee inventions, and the second are the economic and moral rights recognised by European and international law in respect of authorial works. In the argument made, both of these species of IP right may suggest more appropriate models of sui generis protection for detached human body parts than patent rights because of their capacity better to accommodate the relevant public and private interests in respect of the same.

  6. A low power wearable transceiver for human body communication.

    Science.gov (United States)

    Huang, Jin; Chen, Lian-Kang; Zhang, Yuan-Ting

    2009-01-01

    This paper reports a low power transceiver designed for wearable medical healthcare system. Based on a novel energy-efficient wideband wireless communication scheme that uses human body as a transmission medium, the transceiver can achieve a maximum 15 Mbps data rate with total receiver sensitivity of -30 dBm. The chip measures only 0.56 mm(2) and was fabricated in the SMIC 0.18um 1P6M RF CMOS process. The RX consumes 5mW and TX dissipates 1mW with delivering power up to 10uW, which is suitable for the body area network short range application. Real-time medical information collecting through the human body is fully simulated. Architecture of the chip together with the detail characterizes from its wireless analog front-end are presented.

  7. Mechanism of toppling instability of the human body in floodwaters

    Science.gov (United States)

    Shu, C. W.; Han, S. S.; Kong, W. N.; Dong, B. L.

    2016-08-01

    Extreme urban flood events occur frequently in China, often leading to heavy casualties. Thus, it is of great importance to study the mechanism of the instability of the human body in floodwaters. The results of such research can provide scientific reference for city flood control standards. In this paper, a formula for the incipient velocity of the human body, during toppling instability in floodwaters, was derived based on mechanical characteristics, instability mechanism, and critical conditions during instability. A series of flume experiments were conducted to investigate the incipient velocity of two 3D printed human body models of different sizes; the resultant experimental data was used to determine parameters in the derived formula. Additionally, grip strength was taken as a standard of a person's ability to withstand floodwaters. Finally, crowd factors were introduced, and based on this study, a criterion for the toppling instability of different subjects in floodwaters was proposed. Compared to the results of previous studies, the proposed formula can better predict the instability of the human body in floodwaters.

  8. Language Functions and Medical Communication: The Human Body as Text

    Science.gov (United States)

    Kantz, Deirdre; Marenzi, Ivana

    2016-01-01

    This article presents the findings of a field experiment in medical English with first-year medical students at the University of Pavia, Northern Italy. Working in groups of 8-10, the students were asked to produce a corpus of medical texts in English demonstrating how the human body is itself a meaningful text (Baldry and Thibault 2006: Ch. 1).…

  9. Of Human Bodies in Scientific Communication and Enculturation

    Science.gov (United States)

    Hwang, SungWon; Roth, Wolff-Michael

    2008-01-01

    How do students become enculturated and come to enact culture in ways that are new to them? This study probes the dialectical processes of enculturation, the central aspect of which is the role of human bodies in communication. For students, as for any individual, culture exists in terms of action possibilities that presuppose their…

  10. Scanning 3D full human bodies using Kinects.

    Science.gov (United States)

    Tong, Jing; Zhou, Jin; Liu, Ligang; Pan, Zhigeng; Yan, Hao

    2012-04-01

    Depth camera such as Microsoft Kinect, is much cheaper than conventional 3D scanning devices, and thus it can be acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of extreme low quality. In this paper, we present a novel scanning system for capturing 3D full human body models by using multiple Kinects. To avoid the interference phenomena, we use two Kinects to capture the upper part and lower part of a human body respectively without overlapping region. A third Kinect is used to capture the middle part of the human body from the opposite direction. We propose a practical approach for registering the various body parts of different views under non-rigid deformation. First, a rough mesh template is constructed and used to deform successive frames pairwisely. Second, global alignment is performed to distribute errors in the deformation space, which can solve the loop closure problem efficiently. Misalignment caused by complex occlusion can also be handled reasonably by our global alignment algorithm. The experimental results have shown the efficiency and applicability of our system. Our system obtains impressive results in a few minutes with low price devices, thus is practically useful for generating personalized avatars for everyday users. Our system has been used for 3D human animation and virtual try on, and can further facilitate a range of home–oriented virtual reality (VR) applications.

  11. Students' Conceptions about Energy and the Human Body

    Science.gov (United States)

    Mann, Michael; Treagust, David F.

    2010-01-01

    Students' understanding of energy has been primarily within the domain of physics. This study sought to examine students' understanding of concepts relating to energy and the human body using pencil and paper questionnaires administered to 610 students in Years 8-12. From students' responses to the questionnaires, conceptual patterns were…

  12. Science Teachers' Drawings of What Is inside the Human Body

    Science.gov (United States)

    Patrick, Patricia G.; Tunnicliffe, Sue Dale

    2010-01-01

    The purpose of this study was to report United States of America (USA) science teachers' understandings of the internal structures of the human body. The 71 science teachers who participated in this study attended a frog/pig, two-hour dissection workshop at the 2004 National Science Teachers Association (NSTA) conference in Atlanta, Georgia. The…

  13. Posture in dentists: Sitting vs. standing positions during dentistry work: An EMG study

    OpenAIRE

    Pejčić, Nataša; Đurić-Jovičić, Milica; Miljković, Nadica; id_orcid 0000-0002-3933-6076; Popović, Dejan B.; id_orcid 0000-0002-0882-7227; Petrović, Vanja

    2016-01-01

    Introduction Adequate working posture is important for overall health. Inappropriate posture may increase fatigue, decrease efficiency, and eventually lead to injuries. Objective The purpose was to examine posture positions used during dentistry work. Methods In order to quantify different posture positions, we recorded muscle activity and positions of body segments. The position (inclination) data of the back was used to assess two postures: sitting and standing during standard dental interv...

  14. Validity of using tri-axial accelerometers to measure human movement - Part I: Posture and movement detection.

    Science.gov (United States)

    Lugade, Vipul; Fortune, Emma; Morrow, Melissa; Kaufman, Kenton

    2014-02-01

    A robust method for identifying movement in the free-living environment is needed to objectively measure physical activity. The purpose of this study was to validate the identification of postural orientation and movement from acceleration data against visual inspection from video recordings. Using tri-axial accelerometers placed on the waist and thigh, static orientations of standing, sitting, and lying down, as well as dynamic movements of walking, jogging and transitions between postures were identified. Additionally, subjects walked and jogged at self-selected slow, comfortable, and fast speeds. Identification of tasks was performed using a combination of the signal magnitude area, continuous wavelet transforms and accelerometer orientations. Twelve healthy adults were studied in the laboratory, with two investigators identifying tasks during each second of video observation. The intraclass correlation coefficients for inter-rater reliability were greater than 0.95 for all activities except for transitions. Results demonstrated high validity, with sensitivity and positive predictive values of greater than 85% for sitting and lying, with walking and jogging identified at greater than 90%. The greatest disagreement in identification accuracy between the algorithm and video occurred when subjects were asked to fidget while standing or sitting. During variable speed tasks, gait was correctly identified for speeds between 0.1m/s and 4.8m/s. This study included a range of walking speeds and natural movements such as fidgeting during static postures, demonstrating that accelerometer data can be used to identify orientation and movement among the general population.

  15. [Mechanism of heat transfer in various regions of human body].

    Science.gov (United States)

    Luchakov, Iu I; Nozdrachev, A D

    2009-01-01

    The processes of heat transfer in a human body were studied with the use of a mathematical model. It has been shown that only conductive or only convective heat transfer may occur in different body areas. The rate of blood-mediated heat transfer in the presence of blood circulation is many times higher than heat transfer due to temperature gradient; therefore, the convective process prevails over the conductive process. The body core contains a variety of blood vessels, and the bulk of blood concentrates there in the norm. Hence, heat transfer in it is mainly convective. In surface tissues, where the rate of blood circulation is lower and the vasculature has certain specific features, heat transfer is mainly conductive. Hence, the core and surface tissues are absolutely different body zones in terms of heat transfer.

  16. Combined volatolomics for monitoring of human body chemistry.

    Science.gov (United States)

    Broza, Yoav Y; Zuri, Liat; Haick, Hossam

    2014-04-09

    Analysis of volatile organic compounds (VOCs) is a promising approach for non-invasive, fast and potentially inexpensive diagnostics. Here, we present a new methodology for profiling the body chemistry by using the volatile fraction of molecules in various body fluids. Using mass spectrometry and cross-reactive nanomaterial-based sensors array, we demonstrate that simultaneous VOC detection from breath and skin would provide complementary, non-correlated information of the body's volatile metabolites profile. Eventually with further wide population validation studies, such a methodology could provide more accurate monitoring of pathological changes compared to the information provided by a single body fluid. The qualitative and quantitative methods presented here offers a variety of options for novel mapping of the metabolic properties of complex organisms, including humans.

  17. Human young children as well as adults demonstrate 'superior' rapid snake detection when typical striking posture is displayed by the snake.

    Science.gov (United States)

    Masataka, Nobuo; Hayakawa, Sachiko; Kawai, Nobuyuki

    2010-11-30

    Humans as well as some nonhuman primates have an evolved predisposition to associate snakes with fear by detecting their presence as fear-relevant stimuli more rapidly than fear-irrelevant ones. In the present experiment, a total of 74 of 3- to 4-year-old children and adults were asked to find a single target black-and-white photo of a snake among an array of eight black-and-white photos of flowers as distracters. As target stimuli, we prepared two groups of snake photos, one in which a typical striking posture was displayed by a snake and the other in which a resting snake was shown. When reaction time to find the snake photo was compared between these two types of the stimuli, its mean value was found to be significantly smaller for the photos of snakes displaying striking posture than for the photos of resting snakes in both the adults and children. These findings suggest the possibility that the human perceptual bias for snakes per se could be differentiated according to the difference of the degree to which their presence acts as a fear-relevant stimulus.

  18. Robot and Human Surface Operations on Solar System Bodies

    Science.gov (United States)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  19. Postural stability in children with hemiplegia estimated for three postural conditions: standing, sitting and kneeling.

    Science.gov (United States)

    Szopa, Andrzej; Domagalska-Szopa, Małgorzata

    2015-04-01

    Postural control deficit is one of the most important problems in children with cerebral palsy (CP). The purpose of the presented study was to compare the effects of body posture asymmetry alone (i.e., in children with mild scoliosis) with the effects of body posture impairment (i.e., in children with hemiplegia) on postural stability. Forty-five outpatients with hemiplegia and 51 children with mild scoliosis were assessed using a posturography device. The examination comprised two parts: (1) analysis of the static load distribution; and (2) a posturographic test (CoP measurements) conducted in three postural conditions: standing, sitting and kneeling. Based on the asymmetry index of the unaffected/affected body sides while standing, the children with hemiplegia were divided into two different postural patterns: a pro-gravitational postural pattern (PGPP) and an anti-gravitational postural pattern (AGPP) (Domagalska-Szopa & Szopa (2013). BioMed Research International, 2013, 462094; (2014). Therapeutics and Clinical Risk Management, 10, 113). The group of children with mild scoliosis, considered as a standard for static body weight distribution, was used as the reference group. The results of present study only partially confirmed that children with hemiplegia have increased postural instability. Strong weight distribution asymmetry was found in children with an AGPP, which induced larger lateral-medial CoP displacements compared with children with scoliosis. In children with hemiplegia, distinguishing between their postural patterns may be useful to improve the guidelines for early therapy children with an AGPP before abnormal patterns of weight-bearing asymmetry are fully established.

  20. Geometric morphometrics as a tool for improving the comparative study of behavioural postures

    Science.gov (United States)

    Fureix, Carole; Hausberger, Martine; Seneque, Emilie; Morisset, Stéphane; Baylac, Michel; Cornette, Raphaël; Biquand, Véronique; Deleporte, Pierre

    2011-07-01

    Describing postures has always been a central concern when studying behaviour. However, attempts to compare postures objectively at phylogenetical, populational, inter- or intra-individual levels generally either rely upon a few key elements or remain highly subjective. Here, we propose a novel approach, based on well-established geometric morphometrics, to describe and to analyse postures globally (i.e. considering the animal's body posture in its entirety rather than focusing only on a few salient elements, such as head or tail position). Geometric morphometrics is concerned with describing and comparing variation and changes in the form (size and shape) of organisms using the coordinates of a series of homologous landmarks (i.e. positioned in relation to skeletal or muscular cues that are the same for different species for every variety of form and function and that have derived from a common ancestor, i.e. they have a common evolutionary ancestry, e.g. neck, wings, flipper/hand). We applied this approach to horses, using global postures (1) to characterise behaviours that correspond to different arousal levels, (2) to test potential impact of environmental changes on postures. Our application of geometric morphometrics to horse postures showed that this method can be used to characterise behavioural categories, to evaluate the impact of environmental factors (here human actions) and to compare individuals and groups. Beyond its application to horses, this promising approach could be applied to all questions involving the analysis of postures (evolution of displays, expression of emotions, stress and welfare, behavioural repertoires…) and could lead to a whole new line of research.

  1. An OWAS-based analysis of nurses' working postures.

    Science.gov (United States)

    Engels, J A; Landeweerd, J A; Kant, Y

    1994-05-01

    The working postures of Dutch nurses (n = 18) in an orthopaedic ward and a urology ward were observed using the Ovako Working posture Analysis System (OWAS). During observation, both working postures and activities were recorded. A specially developed computer program was used for data analysis. By means of this program, it was possible to calculate the working posture load for each activity and the contribution of a specific activity to the total working posture load. This study shows that some activities of the nurses in both wards were performed with poor working postures. In the orthopaedic (resp. urology) ward two (resp. one) out of 19 observed postures of parts of the body were classified as Action Category 2. Moreover, 20% (resp. 16%) of the so-called typical working postures was classified in Action Category 2. This suggests, that in both wards working postures that are slightly harmful to the musculoskeletal system, occur during a substantial part of the working day. Differences between both wards with respect to working posture load and time expenditure were determined. Activities causing the workload to fall into OWAS higher Action Categories were identified. The data show that poor working postures in the nursing profession not only occur during patient handling activities but also during tasks like 'administration'. Focusing on patient-handling (i.e., lifting patients) in order to determine the load on the musculoskeletal system would therefore lead to an underestimation of the total working posture load of nurses.

  2. Equivalent dose rate by muons to the human body.

    Science.gov (United States)

    Băcioiu, I

    2011-11-01

    In this paper, the relative sensitivity from different human tissues of the human body, at a ground level, from muon cosmic radiation has been studied. The aim of this paper was to provide information on the equivalent dose rates received from atmospheric muons to human body, at the ground level. The calculated value of the effective dose rate by atmospheric muons plus the radiation levels of the natural annual background radiation dose, at the ground level, in the momentum interval of cosmic ray muon (0.2-120.0 GeV/c) is about 2.106±0.001 mSv/y, which is insignificant in comparison with the values of the doses from the top of the atmosphere.

  3. Human males and females body thermoregulation: perfusion effect analysis.

    Science.gov (United States)

    Acharya, Saraswati; Gurung, D B; Saxena, V P

    2014-10-01

    Skin temperature is a common physiological parameter that reflects thermal responses. Blood perfusion is an important part of the physiological processes that the human body undergoes in order to maintain homeostasis. This study focuses on the effect of perfusion on the temperature distribution in human males and females body in different thermal environment. The study has been carried out for one dimensional steady cases using finite element method. The input parameter of the model is the blood perfusion or volumetric flow rate within the tissue. The appropriate physical and physiological parameters together with suitable boundary conditions that affect the heat regulations have been incorporated in the model. The study is to have a better understanding that how does thermoregulation change in human males and females skin layered due to perfusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Electronic spinal posture detection

    OpenAIRE

    Thoné, Jef; Jourand, Philippe; Puers, Robert

    2009-01-01

    A wearable automatic monitoring system for back posture has been developed and tested. Making use of only five accelerometers placed on strategic locations on the back, a stand alone system enables detection, logging and feedback of the patient’s posture. The system enables alerting the patient of a bad posture, or long-term data logging to analyze the patient’s posture over a prolonged period.

  5. Similarities and Differences of the Soleus and Gastrocnemius H-reflexes during Varied Body Postures, Foot Positions, and Muscle Function: Multifactor Designs for Repeated Measures

    Directory of Open Access Journals (Sweden)

    Sabbahi Mohamed A

    2011-06-01